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I 
 

Sammendrag 

Dataassistert diagnostikk av prostatakreft ved bruk av Multiparametrisk 

MRI: Forbehandling, segmentering og kvalitetskontroll  

Prostatakreft er den vanligste kreftformen hos menn og den nest hyppigste årsaken til 

kreftrelaterte dødsfall hos menn på verdensbasis. På grunn av fremskritt innen teknologi 

og diagnostiske metoder har overlevelsesraten for prostatakreft de siste årene økt og 

dødeligheten har sunket. Tidlig diagnostikk av prostatakreft er viktig for bedre behandling 

av sykdommen. Den tradisjonelle diagnostiske prosessen inkluderer måling av forhøyet 

prostata spesifikt antigen (PSA) i blodet etterfulgt av prøvetaking av prostata biopsi og 

histopatologisk analyse. Multi-parametrisk magnetisk resonans avbildning (mpMRI) og 

etablering av internasjonale retningslinjer for bildeopptak og tolkning har bidratt til bedre 

nøyaktighet i diagnostikken, men tolkningen av MR-bildene er fortsatt i stor grad 

kvalitativ. Dette har noen begrensninger, for eksempel at tolkningen krever erfarne 

radiologer, variasjon mellom observatører og at det er tidkrevende arbeid. Med innføring 

av pakkeforløp for prostatakreft i Norge har antallet MR undersøkelser som gjennomføres 

for deteksjon av prostatakreft økt kraftig, og det er krevende å skalere opp de nødvendige 

radiolog-ressursene for å holde tidsrammene som er angitt i pakkeforløpet. Automatiske 

dataassisterte deteksjons- og diagnosesystemer (CAD) har potensial til å overvinne disse 

begrensningene ved å bruke MR-bildene i kvantitative modeller som automatiserer, 

standardiserer og støtter reproduserbar tolkning av radiologiske bilder. 

Den automatiserte CAD-arbeidsflyten består av flere trinn, for eksempel normalisering 

og segmentering, før bildene så kan benyttes til å etablere diagnostiske modeller basert 

på maskinlæring (ML) eller dyp læring (DL). For å sikre effektiv og pålitelig 

beslutningsstøtte, må alle trinn i arbeidsflyten være generaliserbare, transparente og 

robuste. 

CAD for diagnostikk av prostatakreft har ennå ikke blitt innlemmet i klinisk praksis. 

Målet med denne avhandlingen var derfor å legge til rette for dette ved å utvikle og 

evaluere nye metoder for bildebehandling, segmentering og kvalitetskontroll for å 

forbedre generaliserbarheten, gjennomsiktigheten og robustheten til arbeidsflyten i CAD. 



II 

Denne avhandlingen er basert på tre artikler. I Artikkel I ble en ny automatisert metode 

for normalisering av T2-vektede (T2W) MR-bilder av prostata utviklet og evaluert ved 

bruk av to referansevev (fett og muskler). Metoden reduserer intensitetsforskjeller 

mellom ulike MR-bilder og forbedrer med dette den kvantitative vurderingen av 

prostatakreft. Artikkel II og III fokuserer på segmenteringsmetoder basert på DL. I 

Artikkel II ble et helautomatisk kvalitetskontrollsystem for DL-basert prostata-

segmentering fra T2-vektete MR-bilder etablert og evaluert. Kvalitetskontrollen 

identifiserer når segmenteringen blir unøyaktig, og hindrer dermed at senere trinn i CAD-

systemet baseres på feilaktig informasjon. I Artikkel III blir reproduserbarheten av DL-

basert segmentering av hele prostatakjertelen og prostatasoner vurdert. Dette er spesielt 

viktig for applikasjoner hvor pasienten følges opp med flere MR-undersøkelser over tid 

(aktiv overvåkning). Forskningsresultatene viser at reproduserbarheten til den beste DL-

baserte prostata-segmenteringsmetoden er sammenlignbar med manuell segmentering. 

Kort oppsummert viser avhandlingen hvordan avanserte, generaliserte og kontrollerte 

metoder for bildeforbehandling og kvalitetskontroll kan bidra til å forbedre ytelsen og 

tilliten til CAD-basert beslutningstøtte for diagnostikk av prostatakreft, noe som er et 

viktig skritt mot klinisk implementering. 
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Summary 

Computer-Aided Diagnosis of Prostate Cancer Using Multiparametric MRI: 

Pre-processing, Segmentation and Quality Control 

Prostate cancer is the most commonly diagnosed cancer in men and the second leading 

cause of cancer-related deaths in men worldwide. In recent years, and due to advances in 

technology and diagnostic procedures, prostate cancer survival rates have increased and 

mortality rates have decreased. Early diagnosis of prostate cancer is critical for better 

treatment of the disease. The traditional diagnostic process includes measuring elevated 

prostate-specific antigen (PSA) in the blood followed by prostate biopsy sampling and 

histopathology analysis. The addition of multiparametric magnetic resonance imaging 

(mpMRI) and the establishment of international guidelines for image acquisition and 

interpretation have improved prostate cancer diagnosis. Typically, interpretation of 

mpMR images is performed qualitatively by a radiologist. This approach has a number 

of limitations, such as high inter-observer variability, time-consuming nature, dependence 

on reader opinion and lack of scalability of the manual data processing approach as 

demand increases. Automated computer-aided detection and diagnosis (CAD) systems 

have the potential to overcome these limitations and utilize mpMRI by implementing 

quantitative models to automate, standardize and support reproducible interpretation of 

radiological images. 

The automated CAD workflow typically consists of a machine learning algorithm, 

preceded by several stages of image processing, including pre-processing, segmentation, 

registration, feature extraction and classification. Each stage depends on the previous 

stages to finally produce an accurate diagnosis. Errors in any of the stages of the 

workflow, but especially in the early pre-processing stages, will propagate through the 

pipeline and can lead to a misdiagnosis of the patient. Consequently, to provide an 

efficient and trustworthy diagnosis, each stage of a CAD system should be generalizable, 

transparent and robust. 

Despite a growing body of evidence showing potential, CAD of prostate cancer has not 

yet been integrated into clinical practice. This is mainly due to the lack of generalizability, 

transparency and robustness, which causes a lack of confidence of the radiologists in the 
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capabilities of CAD. To increase the confidence in CAD, its performance should be 

improved, controlled and generalized. Therefore, the aim of this thesis was to facilitate 

the integration of automated CAD systems for prostate cancer using mpMRI into clinical 

practice by developing and evaluating new image normalization, segmentation and 

quality control methods to improve the generalizability, transparency and robustness of 

the CAD workflow. 

This thesis is based on three papers. In Paper I, a novel automated method for prostate 

T2-weighted (T2W) MR image normalization using dual-reference tissue (fat and 

muscle) was developed and evaluated. The method was shown to reduce T2W intensity 

variation between scans and to improve quantitative assessment of prostate cancer on 

MRI. Papers II and III focused on deep learning (DL)-based prostate segmentation. In 

Paper II, a fully automated quality control system for DL-based prostate segmentation on 

T2W MRI was established and evaluated. The system was able to assign an appropriate 

score based on extracted image features, reflecting the quality of the generated 

segmentations. This score can be used to distinguish between acceptable and poor DL-

based segmentations. In Paper III, the reproducibility of the DL-based segmentations of 

the whole prostate, peripheral zone, and remaining prostate zones was investigated. This 

is important for implementing DL-based segmentation methods in CAD system for 

clinical applications that depend on multiple scans. The study showed that the 

reproducibility of the best performing DL-based prostate segmentation methods is 

comparable to that of manual segmentations. 

In summary, in this thesis advanced image pre-processing and quality control methods 

were developed and evaluated for CAD of prostate cancer using mpMRI. Ultimately, 

these automated methods can help improve the performance of and increase the 

confidence in CAD systems, which is an important step towards their implementation in 

clinical practice. 
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1 Introduction 

1.1 Cancer 
Cancer is a general term for a large group of heterogeneous, convoluted diseases characterized 

by unregulated cell division and growth in the body [1]. There are more than 100 different types 

of cancer that can affect humans [1], which are thought to share a number of molecular, 

biochemical and cellular characteristics that ensure the survival, proliferation and spread of 

cancer cells [2]. Hanahan and Weinberg referred to these characteristics as hallmarks of cancer 

and listed them as “self-sufficiency in growth signals”, “insensitivity to growth-inhibitory 

signals”, “evasion of apoptosis”, “limitless replicative potential”, “sustained angiogenesis”, 

and “tissue invasion and metastasis” [2]. In 2011, two emerging hallmarks – “deregulating 

cellular energetics” and “avoiding immune destruction” – and two enabling characteristics – 

“genome instability and mutation” and “tumour promoting inflammation” – were added to this 

list [3]. 

Cancer is one of the leading causes of premature death worldwide, with 9.6 million cancer 

deaths and 18.1 million estimated new cancer cases in 2018 [4]. The most commonly diagnosed 

cancers are breast, colorectal and lung cancer in women and lung, prostate and colorectal cancer 

in men [4]. Despite the complexity of cancer and the high incidence rates, mortality rates have 

decreased in recent years [5], which can be attributed to improvements in cancer diagnosis and 

treatment procedures. 

1.2 Prostate anatomy and function 
The human prostate is a walnut-sized accessory genital gland composed of 70% glandular 

tissue and 30% fibromuscular or stromal tissue, surrounded by a thin fibrous capsule. It is part 

of the male reproductive tract and is located anterior to the rectal ampulla between the bladder 

neck at the base and the pelvic floor at the apex and surrounds the uppermost part of the urethra 

(Figure 1.1 A) [6-8].  

The prostate is divided into four histological zones: peripheral zone, central zone, transition 

zone and anterior fibromuscular stroma (Figure 1.1 B). The peripheral zone is a horseshoe-

shaped region composed of branched glands; it occupies approximately 70% of the prostate 

volume in young men and covers the distal prostatic urethra at the apex and extends 

posterolaterally to the base. The central zone is an inverted cone-shaped region composed of 

periurethral mucosal glands; it occupies about 25% of the prostatic volume and is located 

posterior to the urethra, surrounds the ejaculatory ducts, and makes up most of the gland base. 
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The transition zone is an annular region consisting of periurethral submucosal glands; it 

occupies about 5% of the prostate volume and is located in the glandular centre surrounding 

the urethra and makes up a large portion of the midgland. As men age, the transition zone tends 

to enlarge and develop a non-cancerous condition called benign prostatic hyperplasia (BPH). 

The anterior fibromuscular stroma is a thickened area composed of muscle fibres and fibrous 

connective tissue that surrounds the anterior and anterolateral surfaces of the prostate [6-9].  

 

Figure 1.1: Sagittal view of the location and anatomy of the prostate. 

A) The anatomical location of the prostate, between the bladder neck and the pelvic floor. B) The four 
histological zones of the prostate: peripheral zone, central zone, transition zone and anterior 
fibromuscular stroma. Adapted and edited from [10]. 

 
The main function of the prostate is to secrete a slightly alkaline prostatic fluid containing 

calcium, citrate ions, phosphate ions, a coagulating enzyme and a profibrinolysin. This fluid is 

added to the semen during ejaculation. The properties of the prostatic fluid help enhancing the 

sperm fertility and the ability of spermatozoa to move independently [11].  
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1.3 Prostate cancer 
Prostate cancer is a heterogeneous type of cancer that begins in the mucus-producing glandular 

cells and ranges from slow-growing and indolent to very aggressive [12]. About 70-80%, 

20-25% and 5-10% of prostate cancers originate in the peripheral, transition and central 

zone, respectively [6,7,12]. 

Prostate cancer is the second most commonly diagnosed cancer and the second leading cause 

of cancer-related deaths in men worldwide, with an estimated 358,989 deaths and 1,276,106 

new cases in men in 2018 [4]. In Norway, prostate cancer has the highest cancer incidence rate 

in total with 4,877 new cases in 2019, which is slightly lower (about 7.4%) than in previous 

years, indicating a stabilization in the incidence rate. The stabilization may be due to the 

decrease in elevated prostate specific antigen (PSA) testing. Despite the increase in the prostate 

cancer incidence rate over the last two decades, it has been shown that the mortality rate has 

decreased while the 5-year survival rate has increased (Figure 1.2). This shift can be attributed 

to early and improved detection and treatment of prostate cancer [13]. 

Figure 1.2: Trends in incidence and mortality rates and 5-year relative survival rate of prostate 
cancer in Norway. 

Incidence, mortality and 5-year relative survival rate of cancer in Norway for the last 54 years. Since 
the mid-1990s, incidence and survival rates have increased, while mortality rate have decreased. 
Adapted from [13] with permission. 
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1.3.1 Risk factors 

Age, ethnicity and family history are established risk factors for prostate cancer [12,14-16]. 

Prostate cancer is rare in men younger than 50 years, while it is more likely in men aged 65-75 

years [12]. The likelihood of developing prostate cancer has been shown to be higher in men of 

African descent, while it is lower in men of Asian descent [12,14-16]. The reason for this is 

unclear, but it has been speculated that it may be related to the gene pool [12].  Family history 

is an important factor, as the presence of a first-degree relative with prostate cancer history 

increases the risk by twofold [17] and the presence of multiple relatives with prostate cancer 

history increases the risk by up to fivefold due to the presence of multiple risk alleles [12]. High 

fat, high processed carbohydrate diet, low physical activity level, unhealthy lifestyle, harmful 

work environment, obesity and smoking have also been associated with the risk of developing 

prostate cancer [14-16,18,19]. Therefore, a combination of several factors increases the risk of 

developing prostate cancer. 

1.3.2 Clinical presentation 

The symptoms of prostate cancer are similar to those of BPH. They may include one or more 

of the following symptoms: Urinary tract obstruction, dysuria, urinary incontinence, nocturia 

or hematuria. These symptoms occur as the cancer progresses, whereas most prostate cancers 

are asymptomatic at the time of diagnosis [12,20,21]. The impact of prostate cancer on urinary 

function is due to the location of the prostate gland, as it surrounds the urethra and abuts the 

bladder neck. Due to the prostate's function of secreting prostatic fluid and mixing it with 

seminal fluid from the vas deferens, the changes in the prostate resulting from the developed 

cancer can lead to complications related to sexual function and performance, such as difficulty 

achieving an erection or painful ejaculation [12,20]. Bone pain is the presenting symptom in 

men with metastatic prostate cancer, but the initial diagnosis of such condition is rare, with 

only 6% of men with prostate cancer having metastatic disease at diagnosis [22]. 

1.3.3 Detection and diagnosis 

The main diagnostic procedure of prostate cancer includes measuring the elevated PSA level 

in the blood, digital rectal examination (DRE), transrectal ultrasound (TRUS)-guided prostate 

biopsy sampling and histopathological analysis [23]. More recently, the use of multiparametric 

magnetic resonance imaging (mpMRI) was also added to the recommended diagnostic 

procedure [24]. 
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Testing for elevated PSA is the most commonly used test in prostate cancer diagnosis and 

management [12]. PSA is a protein produced by the glandular cells of the prostate. When 

prostate cancer attacks the tissue barriers, PSA leaks into the bloodstream causing an elevated 

PSA level in the blood serum. Normal PSA level is usually below 4 ng/ml in old men and 

below 3 ng/ml in young men [21,23]. The elevation of PSA level is not limited to the 

development of cancer; it can also be caused by BPH, prostatitis or urinary tract infection 

[12,25]. In addition, prostate cancer may still exist despite low PSA level [26,27]. Although PSA 

testing improves the initial diagnosis of prostate cancer patients, the sensitivity and specificity 

are still low. Because of its low specificity, PSA may lead to overdiagnosis and overtreatment 

in some men [28-30]. Therefore, the Norwegian Directorate of Health, the Unites States 

Preventive Services Task Force and the European Society of Urogenital Radiology do not 

recommend PSA screening in healthy men [23,31,32]. DRE examination, which is performed in 

addition to PSA testing, is part of the usual primary care routine in men [33,34]. The DRE 

examination is a test in which the physician inserts a gloved finger into the rectum to palpate 

the prostate and examine for lumps or abnormalities. This exam can help detect some of the 

aggressive tumours that do not have an elevated PSA. However, DRE might fail to detect 

localized and less aggressive tumours, raising questions about its role in early detection of 

prostate cancer [35]. Similar to the elevated PSA test, DRE testing has shown a high false-

positive rate, leading to overdiagnosis and overtreatment [36,37]. 

Due to the limitations of the PSA and DRE tests, suspicious findings must be confirmed by 

TRUS-guided biopsy sampling followed by histopathologic analysis. In TRUS-guided biopsy 

sampling, an ultrasound-guided needle is used to schematically sample 10-12 cores from the 

prostate [38]. Because prostate tumours are heterogeneous and multifocal, the underlying 

structures are often difficult to capture with a needle biopsy. This sometimes leads to 

differences between the aggressiveness assessment from TRUS-guided biopsies and 

subsequent radical prostatectomy specimens [39,40]. TRUS is also unable to visualize most 

prostate cancer tumours and may fail to detect up to 35% of carcinomas at initial biopsy, which 

pushed towards utilising a high resolution MRI scan prior to biopsy [41]. The MRI scan can 

then be used to guide biopsy sampling by model-based MRI-ultrasound fusion, MRI-directed 

cognitive fusion or directly in the MRI scanner [41-43]. The MRI scan before biopsy is usually 

evaluated according to the standardized guidelines "Prostate Imaging-Reporting and Data 

System (PI-RADS)" and the clinical suspicion of the presence of cancer to decide whether 

biopsy sampling is required [44,45]. 
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1.3.4 Histopathological evaluation  

The aggressiveness of prostate cancer is assessed by the Gleason score. Gleason score is 

assigned by a pathologist after viewing a biopsy or prostatectomy material. The Gleason score 

is a histologic scoring system that describes the appearance, patterns and organisational 

structure of the cancerous epithelial cells of prostate cancer [46]. The Gleason scoring system 

ranges from 1 to 5, with 1 representing a nearly normal cells pattern and appearance and 5 

representing the presence of exclusively abnormal cancerous epithelial cells. The Gleason 

score contains two grades, the most common and the second most common pattern Gleason 

grade in the biopsy, that together make up the total score, with the lowest total score being 2 

(1 + 1) and the highest being 10 (5+5) [47]. For more accurate assessment, the International 

Society of Urologic Pathology proposed a new classification system "Grade Groups", which 

was adapted by the World Health Organisation in 2016. The new system includes 5 grade 

groups (1-5) with prognostic differences corresponding to Gleason scores 3+3, 3+4, 4+3, 8 

(4+4; 3+5; 5+3) and 9-10 (4+5; 5+4; 5+5), respectively [48,49]. 

1.3.5 Staging and prognostics 

Determining the stage of prostate cancer is important to define the prognosis of the disease and 

to choose the appropriate therapy. The TNM classification system – primary tumour (T), 

regional lymph nodes (N), and distant metastases (M) – (Table 1.1) is the most common system 

for prostate cancer staging. T stage is determined based on findings from DRE, number and 

location of positive TRUS biopsies and MRI [50]. 

To aid in treatment decisions, prostate cancer prognostics are grouped into four stages based 

on PSA level, Gleason grade group and TNM categories [50]. Table 1.2 shows and describes 

each of these stages. The same clinical variables are used by the European Association of 

Urology to group patients with a similar risk of biochemical recurrence (see Section 1.3.7) after 

initial treatment. Accordingly, the patients are stratified into low-, intermediate- and high-risk 

groups (Table 1.3) [45].  
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Table 1.1: Tumour Node Metastasis (TNM) Classification system for prostate cancer. 

Category Definition/Criteria 

T – Primary tumour 

TX Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

T1 Clinically inapparent tumour that is not palpable 

T2 Tumour is palpable and confirmed within the prostate 

T2a Tumour involves one-half of one side or less 

T2b Tumour involves more than one-half of one side but not both sides 

T2c Tumour involves both sides 

T3 Extraprostatic extension 

T4 Tumour is fixed or invades adjacent structures other than seminal vesicles 

R – Regional lymph nodes 

NX Regional lymph nodes were not assessed 

N0 No positive regional lymph nodes 

N1 Metastases in regional lymph node(s) 

M – Distant metastasis 

M0 No distant metastasis 

M1 Distant metastasis 

Adapted from [50,51] with permission. 

 

Table 1.2: Prognostic stage grouping for prostate cancer. 

Stage T status N status M status 
PSA level 
(ng/mL) 

Grade Group Spreading 

I T1, T2a N0 M0 <10 1  
IIA T1, T2a-c N0 M0 ≥10, <20 1 Localized 
IIB T1, T2 N0 M0 <20 2-4  

IIIA T1, T2 N0 M0 ≥20 1-4  
IIIB T3, T4 N0 M0 Any 1-4 Locally 
IIIC Any T N0 M0 Any 5 advanced 
IVA Any T N1 M0 Any Any  

IVB Any T Any N M1 Any Any Metastatic 

Adapted from [50,51] with permission.  
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Table 1.3: Risk groups for biochemical recurrence of prostate cancer. 

Risk group Definition 

 PSA (ng/mL)  Gleason score  Clinical stage 

Low-risk <10 AND <7 AND T1, T2a 

Intermediate-risk 10–20 OR 7 OR T2b 

High-risk ≥20 OR >7 OR T2c 
 Any  Any OR T3 

Adapted from [45,51] with permission. 

 

1.3.6 Management and treatment 

The next step for men diagnosed with prostate cancer is to proceed with either disease 

management or treatment. Early-stage patients with indolent or slow-growing cancer, or 

patients with short life expectancy will proceed with disease management, which is divided 

into active surveillance and watchful waiting [52]. In active surveillance, the patient is followed-

up to monitor the disease progression so that intervention can be made as early as possible if 

the cancer begins to behave more aggressively. Monitoring in active surveillance may include 

PSA testing, DRE, biopsy sampling and MRI scans. In watchful waiting, the patient is treated 

for symptoms only and no palliative treatment is given unless advanced symptomatic disease 

develops [52,53]. 

Treatment of prostate cancer is determined based on disease progression and location, in 

addition to other factors such as age, life expectancy and side effects. Treatment may include 

one or a combination of external beam radiotherapy, brachytherapy, cryosurgery, high-

intensity focused ultrasound, and prostatectomy if the cancer has not spread from the prostate. 

In case of development of metastatic cancer, chemotherapy and hormonal therapy are the usual 

treatment choices [54-57]. Each of these treatments has side effects, such as erectile dysfunction, 

rectal bleeding and urinary incontinence, in addition to the constant stress, anxiety and lifestyle 

changes [58]. Therefore, accurate diagnosis and assessment of prostate cancer is necessary to 

select the most appropriate disease management and treatment and to avoid over- or under-

treatment. 

1.3.7 Biochemical recurrence 

The PSA level is expected to drop a few weeks after treatment until it becomes undetectable 

or returns to baseline levels, so an increase in PSA may be an indicator of prostate cancer 

recurrence [59]. Biochemical recurrence is the continuous rise in PSA after treatment. It is 
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defined as serum PSA ≥ 0.02 ng/ml in two independent measurements after radical 

prostatectomy or an increase in serum PSA ≥ 2 ng/ml above baseline after radiotherapy [60,61]. 

Biochemical recurrence occurs in 20-40% of patients after radical prostatectomy and in 30-

50% of patients after radiotherapy within 10 years of treatment [62,63]. Patients with 

biochemical recurrence are considered to have prostate cancer recurrence, even in the absence 

of symptoms and signs of local or metastatic disease [64]. The management of biochemical 

recurrence is challenging, as the spread of the cancer should be stopped without over-treating 

the patient or negatively affecting his quality of life  [64].  

1.4 Magnetic resonance imaging 
Magnetic resonance imaging (MRI) is a noninvasive medical imaging modality based on the 

principles of nuclear magnetic resonance (NMR) that uses nonionizing radiation to produce 

images of the anatomy and functional and physiological processes of the body. MRI is typically 

used to scan soft tissues because of its exceptional soft tissue contrast and high sensitivity to a 

variety of tissue properties [65,66]. These characteristics have made MRI a useful tool for 

diagnosis and repeated assessment of the progression of various diseases, including cancer. 

Therefore, MRI has become a popular tool for prostate cancer diagnosis, active surveillance 

monitoring and treatment evaluation [67]. In Norway, MRI examination is currently the first 

step in the standardized care path for patients suspected of having prostate cancer based on 

PSA test and/or DRE [68].  

In 1938, Isidor Rabi first described NMR. He realized that atomic nuclei, when exposed to a 

strong magnetic field, can absorb or emit radio waves [69]. In 1946, Felix Bloch and Edward 

Purcell observed the NMR phenomenon in liquids and solids; they discovered that atomic 

nuclei with angular momentum (spin) can interact with a magnetic field [70,71]. In 1973, Peter 

Mansfield and Paul Lauterbur described how NMR can be used to generate images [72,73]; this 

can be considered the basis of what is now known as MRI. 

1.4.1 Basics of nuclear magnetic resonance 

NMR principles are based on the property of spinning motion of atomic nuclei. Inside the 

nucleus, the protons and neutrons spin in opposite directions with a value of ½. The nucleus 

with an even number of protons and neutrons ends up with a net spin of zero, while the nucleus 

with an odd mass number ends up with a non-zero net spin and thus a magnetic moment. MR 

uses spin -½ nuclei, e.g. hydrogen-1 (1H), carbon-13 (13C) and oxygen-17 (17O). 1H, which 
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contains only one proton, is abundant in biological tissues, so it is used in medical MRI 

[65,66,74]. 

The magnetic moments of the nuclei are randomly aligned unless an external magnetic field 

(B0) is applied (Figure 1.3 A). B0 then forces the magnetic moments to align parallel or 

antiparallel to it (Figure 1.3 B). The principle of thermal equilibrium will result in a slightly 

higher number of parallel aligned magnetic moments, producing a non-zero net magnetization 

vector (M) along the z-axis (longitudinal plane), referred to as M0. The spinning nucleus 

precesses around the B0 axis at the Larmor frequency (𝜔𝜔0), is proportional to B0 strength 

(Figure 1.3 C) and governed by equation (1.1) [65,66,74]. 

𝜔𝜔0 =  𝛾𝛾𝐵𝐵0 (1.1) 

where 𝛾𝛾 is the gyromagnetic ratio, which is specific for each nucleus (42.57 MHz/T for 1H). 

To generate MR signal (Figure 1.3 D), the thermal equilibrium state must be disturbed by 

exposing the nuclei to a high radiofrequency (RF) pulse, also called an ‘excitation pulse’, with 

a frequency equal to 𝜔𝜔0 resulting in a resonance in which the spins absorb energy and precess 

in phase. Due to the resonance, M will not equal M0 anymore and it will have an angle (flip 

angle) that depends on the duration and magnitude of the RF pulse. When a 90° excitation pulse 

disturbs the thermal equilibrium state, M flips from the longitudinal plane to x-y space 

(transverse plane). When the excitation pulse is turned off, the relaxation process begins. M 

will try to realign with B0, the longitudinal plane will gradually become more magnetized (T1 

relaxation), with the nuclei releasing the absorbed RF energy to the surrounding lattice. At the 

same time, the magnetization of the transverse plane decreases (T2 relaxation), while the spin 

goes out of phase due to the interaction between the magnetic fields of the neighbouring nuclei. 

The T2 decay causes a decrease in the current voltage of the receiving coil, leading to the 

generation of the free induction decay signal (FID), which represents the recorded MR 

signal.[65,66,74]. 

The time required for T1 and T2 relaxation varies depending on the surrounding environment. 

This property, in addition to the proton density (i.e., number of protons per unit volume), allows 

contrasting and distinguishing different tissues and thus generating anatomical images. 

Furthermore, the properties of blood perfusion and water diffusion can be detected and help in 

the generation of functional images [65,66,74]. 
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Figure 1.3: Basics of NMR signal generation. 

A) The magnetic moments of the nuclei are randomly aligned in the absence of the external magnetic 
field (B0). B) When B0 is present, the magnetic moments will align parallel or antiparallel to it. Due to 
thermal equilibrium theory, a slightly higher number of magnetic moments will align parallel to B0, and 
a non-zero net magnetization vector (M) will be produced along the z-axis. C) A spinning proton 
precesses around B0 axis at the Larmor frequency (𝜔𝜔0). D) Signal generation begins by perturbing the 
thermal equilibrium state by exposing the spins to a radiofrequency pulse (RF).90° RF pulse will flip 
M from the longitudinal plane to precess in the transverse plane, resulting in a net transverse 
magnetization (Mxy) and inducing a current (FID) in the receiver coil. When the RF turns off, relaxation 
begins and the longitudinal magnetization re-establishes, resulting in a decrease in the FID signal. 
Adapted and modified from [51] with permission.  

 

1.4.2 Image formation and spatial encoding 

To create an image, the origin of the FID signal needs to be located in space, this is called 

spatial encoding. For spatial encoding, special magnetic coils (gradients) are used to create a 

magnetic field of different strength at different locations. The gradients are superimposed on 

the external homogeneous magnetic field of the MRI scanner. Three gradients are needed to 

acquire an image: the slice gradient, the frequency-encoding gradient and the phase-encoding 

gradient. The slice gradient ensures that the 1H protons experience different magnetic fields 

and thus have different 𝜔𝜔0. By manipulating the slice gradient, images of different slices in 
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different planes can be acquired. The RF pulse frequency range and the bandwidth of the 

gradient field strength determine the thickness of these slices. The frequency-encoding gradient 

will cause the protons to have different precession frequencies, while the phase-encoding 

gradient will result in phase-shifted proton precession. Using the three gradients together helps 

to identify the exact point in space of each FID signal. The signals are then sampled and mapped 

into an array (k-space). The signal frequency components along the horizontal and vertical axis 

of the image are mapped into the x- and y-axis of the k-space, respectively. The inverse Fourier 

transform of the entire array yields the MR image (Figure 1.4 C) [65,66,75].  

1.4.3 MRI pulse sequences 

To obtain an MR image, RF pulses and gradients are used to control the contrast through pulse 

sequences. The pulse sequence is a combination of RF pulses, second FID signals (echo) 

generated by refocusing the spin through the process of dephasing followed by rephasing, and 

an intervening recovery phase. The echo is generated either by an additional RF pulse (spin-

echo) or by additional gradient application (gradient-echo). These two means serve as the basis 

for all MRI pulse sequences [65,66,74,76]. There are many different types of sequences, but spin-

echo and gradient-echo sequences are described here as they are considered the fundamental 

pulse sequences. 

Spin-echo sequence  

The spin-echo sequence (Figure 1.4 A) consists of an excitation pulse and a refocusing pulse. 

The excitation pulse (90°) rotates M from the longitudinal plane to the transverse plane. When 

the excitation pulse is turned off, M will try to realign with B0, the spins will dephase, and thus 

the FID will decay exponentially. Then a refocusing pulse (180°) is applied, which rotates the 

dephasing magnetization vectors around the y-axis. In the case of static magnetic field 

inhomogeneities, the protons regain their precession frequency and the magnetization vectors 

will rephase an echo at echo time (TE). To enable phase-encoding, this sequence is repeated 

with different gradients for each repetition. The time between each excitation pulse is called 

the repetition time (TR). The scanning time in the conventional spin-echo sequence is relatively 

long; therefore, the fast or turbo spin-echo sequence is often used in practice. In the fast spin-

echo sequence, multiple rephasing pulses (180°) are applied per TR to generate a train of 

echoes and perform multiple phase encoding steps, resulting in more k-space lines being filled 

per TR [65,66,77]. 
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Gradient-echo sequence 

The gradient-echo sequence (Figure 1.4 B) consists of an excitation pulse and a 

dephasing/rephasing gradient. After the excitation pulse, the frequency-encoding gradient is 

used to force a dephasing of the magnetization in the transverse plane. The same gradient, but 

in the opposite direction, is then turned on to rephase the spin and produce a gradient echo. To 

allow faster image acquisition, the waiting time for longitudinal relaxation before the next 

acquisition must be reduced, which can be achieved by using flip angles smaller than 90° 

[65,66]. 

 

Figure 1.4: Illustration of MRI pulse sequences and image formation. 

A) Diagram of spin-echo sequence containing an excitation pulse (90°) and a refocusing pulse (180°) 
to produce the echo. B) Gradient-echo sequence diagram, where the frequency-encoding gradient is 
used for dephasing and rephrasing to generate an echo. C) K-space representation. The k-space is an 
array filled with the signals that are assigned an exact position within the array using the gradients. The 
frequency components of the signal along the horizontal and vertical axis of the image are mapped into 
kx and ky, respectively. The array is then used to generate the final image by implementing the 2D 
inverse Fourier transform (2D iFT) help. TR: repetition time; TE: echo time. 

 

1.4.4 Multiparametric MRI in prostate cancer diagnosis 

In recent years, MRI has become an indispensable tool for the diagnosis of prostate cancer 

because it provides excellent soft tissue contrast, is a non-invasive technique and offers the 

ability to assess multiple physiologic parameters [65,66]. Advances in technology led to the 
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development of multiparametric MRI (mpMRI), which involves the acquisition and integration 

of multiple MRI sequences and provides images with different types of functional and 

anatomical contrast [23]. To improve prostate cancer diagnosis, the use of mpMRI has been 

established by international guidelines [23,44,78]. mpMRI is being used to detect, localize and 

stage prostate cancer in order to select a more appropriate treatment strategy for patients [79-

84]. In addition, mpMRI has been employed in active surveillance programs to follow up 

patients with indolent lesions [85], prostate cancer risk calculators [86] and treatment response 

monitoring [87]. Moreover, mpMRI has demonstrated the ability to reduce overdiagnosis of 

inconspicuous prostate cancer [83,88]. 

The mpMRI protocols include T2-weighted imaging (T2W), diffusion-weighted imaging 

(DWI) and dynamic contrast-enhanced (DCE) MRI [23]. The T2W sequence provides 

anatomical and structural information; the DWI sequence produces high-contrast images based 

on water molecule motion variation, while DCE can be used to study vascularity characteristic 

of the tissue [23]. Figure 1.5 shows an example case where the mpMRI sequences have been 

used to scan a prostate cancer patient.  

 

Figure 1.5: An example of multiparametric MRI scans. 

An example case of a patient with biopsy-confirmed prostate cancer (pointed with the red arrow; PI-
RADS 4, Gleason = 4+4). The example shows the middle slice of the prostate gland on T2W (A), DWI 
b800 (B), ADC (C) and DCE (D) MRI. 
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T2-weighted imaging 

T2W imaging is the main sequence to visualize the anatomy of the prostate gland and zones 

[89]. In T2W images, contrast depends mainly on the differences in T2 relaxation times between 

fat and water. T2W images require a long TE, to give the fat and water enough time to decay 

[23,66]. In T2W images, fatty tissue will appear darker than the water due to the shorter T2 

relaxation time of the fat. Therefore, the peripheral zone, which is fluid rich, will have 

moderately high and uniform signal intensity, while the transition and central zones will have 

lower signal intensity. Due to the increased cell density and loss of glandular ducts, prostate 

cancer appears hypo-intense on T2W images compared to normal prostate tissue, which tends 

to appear hyper-intense in the peripheral zone [23]. However, low signal intensities may also 

be caused by BPH, prostatitis, scarring, or post-biopsy haemorrhage [90]. In prostate cancer, 

T2W does not serve as an independent sequence due to the non-specificity of the intensity 

signal.  

Diffusion-weighted imaging 

The DWI uses diffusion weighting gradients to probe the movement of water molecules in the 

extracellular space due to thermal motion known as diffusion [66,91]. Diffusion is dependent on 

tissue structure. In normal prostate tissue, water molecules move more freely than in cell-dense 

malignant tissues [91]. The apparent diffusion coefficient (ADC) represents the total 

displacement of molecular diffusion in the tissue and is higher in areas where there is no 

restricted diffusion [66]. The ADC map can be calculated from DWIs with different gradient 

strengths (b values) [83] . In contrast to DWI, a suspicious cancer area has a low signal intensity 

in the ADC map [44,92]. In prostate cancer, the extracellular space is reduced, therefore ADC 

and DWI can help provide quantitative and qualitative information to aid in the detection and 

staging of the cancer. Combining DWI with T2W imaging has increased the sensitivity and 

specificity of prostate cancer detection [93] and improved transition zone characterization [94].  

Dynamic contrast-enhanced imaging 

DCE imaging is used to assess tissue vascularity by calculating perfusion parameters. DCE 

imaging is performed by following the time-course of the contrast agent (usually gadolinium-

based) by sequentially acquiring T1-weighted images. The contrast agent shortens the T1 

relaxation time, giving rise to increased signal. Cancer is characterized by angiogenesis and the 

new vessels are more permeable. Therefore, on DCE images, tumour areas typically exhibit 

rapid wash-in and wash-out of contrast agent, which can be seen as a rapid signal increase 
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followed by a signal decrease when the signal is tracked as a function of time [95,96]. DCE 

information can help in the diagnosis of prostate cancer and the assessment of response to 

treatment [97]. However, recently the added value of DCE has been debated [98-100] and 

therefore DCE acquisition for prostate cancer assessment is no longer embedded in all mpMRI 

procedures.   

1.4.5 Interpretation 

The mpMR images of prostate cancer are usually interpreted qualitatively by a radiologist to 

find signs and patterns of the disease (detection) and/or to identify the nature of the disease 

(diagnosis). Until 2012, the variability and lack of reliability of the radiologists' reporting and 

assessment systems was high [83]. Therefore, in 2012, the first version of PI-RADS was 

introduced by European Society of Urogenital Radiology to standardize the prostate mpMRI 

reporting process [23]. To overcome some of the problems of the first version, PI-RADS v2 

was introduced in 2014 [44]. In 2019, an updated version, PI-RADS v2.1, was released to 

simplify PI-RADS assessment and improve inter-reader variability [78]. PI-RADS categorizes 

suspected prostate cancer according to the likelihood of clinically significant cancer (PI-RADS 

1 = very unlikely to PI-RADS 5 = very likely). The studies demonstrated the utility and 

improvements in prostate cancer assessment with PI-RADS [101-103], which increased the 

confidence in PI-RADS, which is widely used in the clinic nowadays [83]. 

Despite the improvements in mpMRI reporting systems, traditional qualitative radiological 

interpretation of images still has a number of limitations, such as high inter-observer variability 

[104], time-consuming nature [105], dependence on reader opinion [104,106] and lack of 

scalability of the manual data processing approach as demand increases [107]. Automated 

computer-aided detection and diagnosis (CAD) systems, discussed in more detail in Section 

1.6, have the potential to overcome the limitations of traditional radiological reading by 

implementing quantitative models to automate, standardize and support reproducible 

interpretation of radiological images [105,107-109]. 

1.4.6 Radiomics and quantitative analysis 

The mpMRI images contain information that goes beyond the qualitative observations of a 

radiologist. Quantitative analysis of mpMRI images provides numerical data from which 

various useful parameters can be extracted [110,111]. These parameters, called features, contain 

valuable information about the characteristics of the tissue and thus can be used to improve 

prostate cancer diagnosis [112,113]. The process of extracting and analysing a large number of 
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advanced quantitative radiological features through high-throughput computations is referred 

to as radiomics (Figure 1.6). In radiomics, imaging data is converted into a high-dimensional 

space that enables feature mining using automated statistical models to develop decision 

support tools [110-115]. Radiomics features include, but are not limited to, first order 

(histogram-based), shape and higher order (textural) features [116,117]. The most common 

textural features are those from the gray level co-occurrence matrix [118], gray level run length 

matrix [119], gray level size zone matrix [120], gray level dependence matrix [121] and 

neighbouring gray tone difference matrix [122]. Radiomics feature extraction requires the 

determination of some variables and settings, which are detailed in the Image Biomarker 

Standardization Initiative [117]. 

The implementation of radiomics may lead to a better assessment of prostate tumours by 

providing quantitative features for intra- and inter-tumoral heterogeneity [113]. Although the 

field of radiomics is relatively young, several studies have shown that it has potential for 

prostate cancer detection, staging and monitoring of treatment response [110,112,123-125]. 

Although radiomics can be performed as a stand-alone process, it is usually implemented as a 

part of a CAD system [111]. The implementation of radiomics in CAD systems has improved 

the performance of CAD systems [107,108,110].  

 

Figure 1.6: Illustration of radiomics features. 

Radiomics features extracted from the region/volume of interest typically include statistical (histogram-
based), textural and morphological (shape-based) features. The combination of these features enables 
the development of more efficient statistical models. Adapted and modified from [126] with permission.  
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1.5 Artificial intelligence 
CAD systems can be regarded as a form of artificial intelligence (AI). AI is the implementation 

of computerized systems to mimic human intelligence to perform tasks that require the ability 

to learn, reason, and respond to situations that are not programmed into the machine's system 

[127,128]. Machine learning (ML), which is a subfield of AI, and deep learning (DL), which is 

a subfield of ML, have been used in various areas of medical imaging, including mpMRI of 

prostate cancer, and have shown great potential for a variety of applications [129-134].  

1.5.1 Machine learning 

ML is a branch of AI (Figure 1.7 A) that uses statistical and mathematical models to improve 

the performance of computer systems. ML models learn from training data to make predictions 

for unseen data [129,132]. CAD systems are highly dependent on the ML methods [129], which 

are classified into three types: supervised learning, unsupervised learning and reinforcement 

learning. Supervised learning, most commonly used in medical imaging applications, depends 

on labelled data, where the model is trained on pairs of inputs and the corresponding output 

[129,132]. Examples of supervised learning approaches include linear regression [135], logistic 

regression [136], least absolute shrinkage and selection operator [137], decision tree [138], 

random forest [139], naive Bayes [136], support vector machine (SVM) [140], k-nearest 

neighbour [141] and neural network [142]. Unsupervised learning, on the other hand, does not 

require the corresponding outputs of the training data. It categorizes the input data based on the 

recognized patterns [129,132]. Examples of unsupervised learning approaches include 

hierarchical clustering [143], fuzzy C-means clustering [144], Gaussian mixture modelling [145] 

and K-means clustering [146]. Reinforcement learning is based on the reward principle, where 

a classifier is created with labelled data and used with unlabelled data to further improve the 

performance of the classifier using the returned feedback [129,132]. Examples of reinforcement 

learning approaches include Markov decision process and Q-learning [147].  

1.5.2 Deep learning 

DL is a subfield of ML (Figure 1.7 A), which is based on the use of multilayer artificial neural 

networks to learn a large number of features using Big Data to improve the performance of 

computer systems [129,148]. Due to the advances in computing technology, the development of 

graphics processing units (GPUs) and the increase in the amount of available data, DL has 

become very popular in recent years [149]. DL has shown promising results in various fields of 

medical imaging [133,149,150]. In mpMRI of the prostate, DL has been implemented in image 

acquisition and reconstruction [151-155], pre-processing [156-162], prostate cancer diagnosis 
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[163], detection [164-167] and staging [168-170]. Since it is a subfield of ML, DL can also be part 

of the CAD workflow [171]. DL can be based on supervised or unsupervised models using 

different architectures such as recurrent neural networks, long short-term memory networks 

and deep belief networks [148]; however, the most common architecture in medical imaging is 

the convolutional neural network (CNN) [172]. As Figure 1.7 B illustrates, a CNN takes images 

as input; each image then goes through a sequence of convolutional layers along with filters, 

activation functions and pooling layers, extracting features from the images; then the output 

(features) of the last convolutional layer is fed into fully connected layer and activation function 

to classify the object with probabilistic values [172,173].  

 

Figure 1.7: Illustration of artificial intelligence subfields and convolutional neural network (CNN) 
architecture.  

A) Deep learning is a subfield of machine learning, which is a subfield of artificial intelligence. B) A 
common CNN architecture shows how a series of convolutional layers with activation functions and 
pooling layers are used to extract features and pass them to a fully connected layer to classify the input 
(e.g., healthy/lesion tissue) using an activation function. 
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1.6 Computer-aided detection and diagnosis 
CAD systems have emerged from the field of computer vision with the aim of assisting 

radiologists in making clinical decisions by facilitating the detection or/and diagnosis of 

disease from medical images [107,108,174]. Automated CAD systems offer promising solutions 

to overcome the limitations of qualitative image interpretation. They can shorten reading time, 

reduce required radiological reading expertise, standardize and support reproducible 

interpretation of radiological images [105,107-109,175]. CAD systems have been developed to 

assist radiologists in the detection and diagnosis of various diseases, such as breast cancer [176], 

colorectal cancer [177], lung cancer [178] and prostate cancer [107-109]. For prostate cancer, CAD 

systems using prostate mpMRI have shown promising results in detecting and diagnosing the 

disease [175,179-184]. For prostate mpMRI, a CAD system can use some or all of the mpMRI 

sequences (i.e., T2W, DWI and DCE images) as input to the CAD workflow. A typical CAD 

workflow (Figure 1.8) consists of pre-processing, segmentation, registration, feature extraction 

and selection, classification and diagnosis [107-109]. These stages are usually performed with 

the assistant of ML, either traditional methods such as linear regression models or more 

recently DL methods such as CNNs. DL methods are also capable of combining two or more 

of the CAD stages, e.g. feature extraction and classification (Figure 1.7 B). 
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Figure 1.8: Computer-aided detection and diagnosis (CAD) system workflow. 

A typical CAD workflow takes input images (e.g., prostate gland T2W, DWI and DCE MR images) 
and proceed with pre-processing, segmentation, registration, feature extraction and selection and 
classification to end up with a diagnosis or detection. 
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1.6.1 Pre-processing and normalization 

Image pre-processing is an essential stage in CAD systems as it prepares and transforms the 

images into a domain where the data can be processed quantitatively [107]. The most important 

pre-processing steps for mpMRI images are bias field correction and signal intensity 

normalization. Bias field correction involves the correction of low spatial frequencies 

variations in signal intensities arising from inhomogeneity of the MRI field and the sensitivity 

profile of the receiver coils [185]. Excluding this step from CAD pre-processing will increase 

the difficulty of performing the next processing steps.  

Another important step in CAD pre-processing is intensity normalization, which eliminates 

signal intensity variations between images [107,108]. Intensity normalization is often required 

to use T2W images for quantitative analysis because of a lack of standardization between 

scanners. The lack of intensity standardization is due to scanning parameters such as coil type, 

field strength and acquisition protocols, among others [186-189]. Intensity normalization allows 

comparison of T2W image values from different patients (inter-patient comparison), tracking 

patients on multiple scans over time (intra-patient comparison), and performing tissue 

classification tasks [190-192].  

The intensity normalization approaches can be divided into histogram-based and reference 

tissue-based methods. Although simple to implement, histogram-based methods, which depend 

on pre-set histogram landmarks to deform or rescale intensity, have their limitations [188,193].  

A promising alternative is reference tissue-based normalization, which is based on scaling the 

intensity of the original T2W image by the intensity in the corresponding region-of-interest 

(ROI) of the reference tissue [194,195]. A drawback is that this approach traditionally requires 

manual segmentation of the reference tissues. Figure 1.9 shows an example of a number of 

cases normalized using the fully automated reference tissue-based approach proposed in Paper 

I. 
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Figure 1.9: An example of a number of cases of a T2W MR image of the prostate acquired from 
three different datasets before (left) and after (right) normalization. 

The example cases were normalized using the normalization approach proposed in Paper I (see Section 
4.1). The figure shows the changes of the images after normalization qualitatively and quantitatively 
(stacked prostate intensity histogram). In both panels, the images were window-levelled from 0 to 2 
times the mean prostate intensity of all images in the example. 

 

1.6.2 Segmentation 

Volume-of-interest (VOI) segmentation (e.g., prostate gland or zones) is an essential pillar for 

any CAD system. It helps remove redundant image information and enables the subsequent 

extraction of quantitative image features from sub-volumes such as tumours for further analysis 

or diagnosis [107,108]. Figure 1.10 gives an example of T2W MRI segmentation. 

Accurate and precise segmentation is crucial as the following stages of a CAD system depend 

on it. It is also necessary for clinical applications that are sensitive to segmentation errors, such 

as MRI-ultrasound fusion for targeted prostate biopsies, which is currently becoming a standard 

clinical procedure [41], and prostate-targeted MR-guided radiotherapy, which has been used in 

the treatment of prostate cancer patients in recent years [196]. However, manual segmentation 

of the prostate, which is traditionally performed on T2W MR images by radiologists, is a time-

consuming task. Recently, DL-based segmentation methods have shown great promise to fully 
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automate this stage [158-161,197], which would save valuable time and could facilitate the 

integration of CAD systems in clinical practice.  

 

Figure 1.10: An example on manually segmented T2W MR images of the prostate. 

A) Shows an axial 2D view of the scan middle slice, in which the peripheral zone (red), the remaining 
zones (central zone, transition zone and anterior fibromuscular stroma, combined; green) and the lesion 
(blue) are segmented. B) A 3D view of the whole prostate gland segmentation. 

 

1.6.3 Registration 

Registration is the process of bringing different imaging modalities (e.g., MRI, ultrasound, 

computed tomography) or sequences (e.g., T2W, DWI, DCE) into the same spatial position 

and aligning them [107,108,198]. Registration is performed in 2D or 3D by aligning a moving 

image with a fixed image by geometric transformation to maximize the similarity of the two 

images [198]. The geometric transformation can be categorized into linear and non-linear [198]. 

Examples of linear transformation include rigid transformation, affine transformation, and 

projective transformation [198]. Examples of non-linear transformation include B-splines, fluid 

flow, and optical flow [198]. The purpose of the registration is to allow feature extraction from 

the same VOI using different modalities or sequences, which will improve the performance of 

the classification process and thus the diagnosis by providing more representative quantitative 

information. In mpMRI of the prostate, it is common to register DWI or DCE images to the 

T2W images and use the VOI segmentation mask generated on T2W to extract features from 

the VOI in the moving image.  
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1.6.4 Feature extraction and selection 

Feature extraction is the step where the quantitative image features (radiomics) that 

characterize the VOI, see Section 1.4.6, are computed to serve as input to the classification 

stage [107,108]. The feature extraction process in traditional ML methods is hand-crafted, i.e., 

the required features are first identified and then computed. In DL-based systems, a larger 

number of features than the hand-crafted ones in ML are automatically extracted, without prior 

identification, and fed into an integrated fully connected layer to perform the classification 

[199]. To simplify the classification model, a feature selection strategy can be used to select a 

subset of the extracted features to be used in training and testing the classification model [108]. 

For feature selection, the traditional ML-based systems could for example rank the features in 

order of importance and then select the most important ones [200], while the DL-based systems 

could use a dropout layer after the fully connected layer to randomly exclude a certain 

percentage of the extracted features from further analysis [201].  

1.6.5 Classification 

Classification is the final stage in the workflow of a CAD system that leads to disease detection 

or/and diagnosis [107,108]. In this stage, the selected features from the previous stage and the 

generated VOI segmentations are used to train and test models that perform a specific task, 

such as distinguishing healthy prostate tissue from malignant lesions. Training and testing the 

classifier depends on the training approach (supervised/unsupervised) and whether it is 

traditional ML-based or DL-based. Examples of traditional ML-based and DL-based classifiers 

can be found in Section 1.5.1 and Section 1.5.2 respectively. 
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2 Objectives 
The overall aim of this thesis was to facilitate the integration of automated computer-aided 

detection and diagnosis (CAD) systems of prostate cancer using multiparametric MRI into 

clinical practice by developing and evaluating new image pre-processing, segmentation and 

quality control methods to improve the performance of the CAD workflow.  

The specific focus of the thesis was to:  

• Develop and evaluate a novel automated method for prostate T2-weighted MR image 

normalization using dual-reference (fat and muscle) tissue (Paper I). 
 

• Establish a fully automated quality control system for deep learning-based prostate 

segmentation on T2-weighted MRI (Paper II). 
 

• Investigate the reproducibility of deep learning-based segmentations of the whole 

prostate gland, peripheral zone and the remaining prostate zones (Paper III). 
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3 Materials and methods 
This chapter briefly summarizes the materials and methods used in the three papers that make 

up this thesis. Further details are provided in the corresponding papers. All methods were 

carried out in accordance with the relevant guidelines and regulations. Table 3.1 provides an 

overview of the datasets, methods, and statistical analyses conducted for each of the three 

papers. 

Table 3.1: Overview of the datasets, methods and statistical analyses used in the papers that 
make up this thesis. 

AFC: aggregate channel features; LASSO: least absolute shrinkage and selection operator; AutoRef: the 
normalization method proposed in Paper I; DL: deep learning. 

 

  Paper I Paper II Paper III  

D
at

as
et

s In-house N = 60 N = 246 N = 244  

PROMISE12 N = 80 N = 50 –  

PROSTATEx N = 202 N = 339 –  

M
et

ho
ds

 

Pre-processing 
N4 Bias field correction 

Intensity rescaling 

Image resizing 

N4 Bias field correction 

AutoRef normalization 

DL network requirements 

DL network requirements 

 

Segmentation 
Manual 

Object detection-based 

Manual 

DL-based (U-Net, V-Net, 

 nnU-Net-2D, nnU-Net-3D) 

Manual 

DL-based (V-Net,  

nnU-Net-2D, nnU-Net-3D) 

 

Extracted 

features 
First order (N = 1) 

First order (N = 18) 

Texture (N = 75) 

Shape (N = 14) 

Shape (N = 14) 

 

Models 
AFC object detectors 

Linear scaling model 

Logistic regression model 

Linear mapping function 

LASSO model 
– 

 

St
at

is
tic

al
 a

na
ly

si
s 

Statistical 

difference 

Wilcoxon signed-rank test 

Wilcoxon rank-sum test 

Two-sample t test 

DeLong’s method 

– 
Wilcoxon signed-rank test 

Permutation test 

 

Correction for 

multiple testing 

Benjamini–Hochberg 

false discovery rate 
– 

Benjamini–Hochberg 

false discovery rate 

 

Correlation – Spearman’s rank test Spearman’s rank test  

Evaluation 

Qualitative analysis 

Histogram intersection 

Area under receiver operating 

characteristic curve 

Mean absolute error 

Bland–Altman analysis 

Dice similarity coefficient 

Absolute relative volume difference 

95% Hausdorff distance Average 

Symmetric surface distance 

Bland–Altman analysis 

Dice similarity coefficient 

Intra-class correlation 

coefficient 
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3.1 Datasets 
The research conducted for the three papers that make up this thesis relied on one or more of 

three datasets: PROMISE12, PROSTATEx and In-house. The Regional Committee for 

Medical and Health Research Ethics (REC Mid Norway) approved the use of the in-house 

collected dataset (identifiers 2013/1869 and 2017/576). All the in-house collected dataset 

patients signed informed consent prior to the initiation of the study, whereas the two other 

datasets were publicly available. An overview of how and where each of the datasets was used 

can be found in Figure 3.1. 

 

Figure 3.1: Overview of the datasets that used in the papers that make up this thesis and where 
they were used. 

Seven patients were excluded from the PROSTATEx dataset due to technical issues. Note 
that patients with 2 scans in the in-house collected dataset were also counted among those 
with 1 scan, but they were used separately in Paper III. 
AutoRef: the normalization method proposed in Paper I; CNN: convolutional neural 
network; QC: quality control. 
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PROMISE12 

The prostate MR image segmentation (PROMISE12) challenge dataset [202] is a multi-centre 

and multi-vendor dataset that consists of transverse T2W images of both patients with prostate 

cancer and benign disease acquired with different field strengths, acquisition protocols and 

coils for the purpose of prostate cancer detection or staging. Table 3.2 provides details of the 

PROMISE12 dataset collection.  

Table 3.2: Details of PROMISE12 acquisition protocols. 

Centre HUH BIDMC UCL RUNMC 

Patients number 20 20 20 20 

Field strength (T) 1.5 3 1.5 & 3 3 

Manufacturer Siemens GE Siemens Siemens 

Endorectal coil used Yes Yes No No 

In-plane resolution (mm2) 0.625 0.25 0.325 – 0.625 0.5 – 0.75 

Slice thickness (mm) 3.6 2.2 – 3 3 – 3.6 3.6 – 4 

HUH: Haukeland University Hospital, Bergen, Norway; BIDMC: Beth Israel Deaconess Medical Center, Boston, 
US; UCL: University College London, London, UK; RUNMC: Radboud University Nijmegen Medical Centre 
Nijmegen, Netherlands. Siemens: Siemens Healthineers, Erlangen, Germany. GE: General Electric, Boston, US. 
Adapted and modified from [202] with permission.  

 

PROSTATEx 

The PROSTATEx challenge dataset [203] consists of pre-biopsy mpMRI sequences (T2W, 

DWI and DCE) from 346 patients (median age = 66; range: 48 – 83 years) acquired at Radboud 

University Medical Centre, Nijmegen, Netherlands. Targeted biopsy cores results were 

available for 202 patients, which were used in Paper I to distinguish between healthy and 

malignant tissue. The use of this dataset was limited to the transverse T2W images, which were 

acquired using a turbo spin-echo sequence and had an in-plane resolution of 0.5 mm and a slice 

thickness of 3.6 mm. 7 patients were excluded from this dataset due to technical issues related 

to the field of view of the images. 

In-house 

The in-house collected dataset consists of pre-biopsy mpMRI sequences (T2W, DWI and DCE) 

from 246 patients (median age = 65; range: 44 – 76 years) examined at St. Olavs Hospital, 

Trondheim University Hospital, Trondheim, Norway between March 2015 and December 

2017. The use of this dataset was limited to the transverse T2W images, which were performed 

on a Magnetom Skyra 3 T MRI system (Siemens Healthineers, Erlangen, Germany) with a 
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turbo spin-echo sequence. 62 of the patients had two scans acquired at two different time points: 

first, at the initial visit for detection of prostate cancer, and second, during an MR-guided 

biopsy procedure. The interval between the two scans ranged from 1 – 71 (median = 7) days. 

The details of the scan parameters of the dataset are shown in Table 3.3. 

Table 3.3: Details of the in-house collected dataset scanning parameters. 

 Patients with multiple scans 
Rest of patients 

 Scan 1 Scan 2 

Repetition time (ms) 4800 – 9520 5660 – 7740 4450 – 9520 

Echo time (ms) 101 – 104 101 – 104 101 – 108 

Flip angle (degree) 152 – 160 152 – 160 145 – 160 

Number of averages 3 3 – 6 1 – 3 

Matrix size 320×320 – 384×384 320×320 – 384×384 320×320 – 384×384 

Slices 24 – 32 17 – 24 24 – 36 

Slice thickness (mm) 3 3 3 – 3.5 

In plane resolution (mm2) 0.5×0.5 – 0.6×0.6 0.5×0.5 – 0.6×0.6 0.5×0.5 – 0.6×0.6 

 

3.2  Methods 
For each of the papers, the study workflow was similar to that of CAD (Figure 1.8). After the 

images were collected, they were pre-processed, segmented and features were extracted to 

develop statistical models (Paper I and Paper II) or to investigate reproducibility (Paper III). 

All processing and subsequent statistical analysis was performed using MATLAB R2019b 

(Mathworks, Natick, MA, USA) unless otherwise stated. In the spirit of transparent science, 

the code for the proposed algorithms has been made publicly available. For Paper I, it can be 

found at www.github.com/ntnu-mr-cancer/AutoRef. For Paper II, it can be found at 

www.github.com/ntnu-mr-cancer/SegmentationQualityControl.  

3.2.1 Pre-processing 

In Paper I, 3D T2W images were pre-processed using N4 bias field correction [204] to correct 

for MR image distortion caused by MRI field inhomogeneity (see Section 1.6.1); rescaling to 

the 99th percentile intensity value to exclude the extreme intensity values that could have a 

negative impact on the performance of the proposed normalization method (AutoRef); and 

resizing the transverse slices to 384x384 pixels with 0.5x0.5 mm in-plane resolution to feed 

into object detectors that require a fixed input size. The bias field correction and rescaling were 

based on an optimization process aimed at finding the optimal pre- and post-processing settings 

that lead to the best performance of AutoRef. In Paper II, the 3D T2W images were pre-

http://www.github.com/ntnu-mr-cancer/AutoRef
http://www.github.com/ntnu-mr-cancer/SegmentationQualityControl
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processed with the N4 bias field correction [204] and normalized with the AutoRef method 

(Paper I) to prepare the images for quantitative analysis. In Paper II and Paper III, before 

training the prostate segmentation CNNs, each network was pre-processed according to its 

requirements as implemented in the code provided by the respective authors. 

3.2.2 Segmentation 

In this thesis, the segmentation of VOIs was an essential stage. Segmentation was performed 

both manually, as a gold standard, and automatically to develop or evaluate the performance 

of the method-of-interest. 

Manual segmentation 

For the PROMISE12 dataset, manual expert segmentations of the whole prostate (WP) were 

publicly available for 50 patients (training subset). Segmentation was performed using either 

3DSlicer (www.slicer.org) [205] or MeVisLab (www.mevislab.de). For the PROSTATEx 

dataset, the manual segmentation was performed using MIM (MIM Software Inc., Cleveland, 

OH, USA) by imaging experts with a combined experience of more than 25 years in prostate 

imaging and reviewed by radiation oncologists at Miller School of Medicine, Miami, FL, USA. 

The segmentations included the WP, peripheral zone (PZ), non-PZ (central, transition and 

anterior fibromuscular stroma zones, combined), and cancer-suspicious VOIs (based on the 

targeted biopsy locations provided by the PROSTATEx challenge organizers). The results of 

the targeted biopsy cores were used to label each cancer-suspicious VOI as a true positive 

(Gleason score >3+3) or false positive (Gleason score ≤3+3) radiological finding, while the 

prostate remnant was considered healthy tissue. For the in-house collected dataset, the WP, PZ 

and non-PZ were segmented using ITK-SNAP (www.itksnap.org) [206] by a radiology resident 

at St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway, under the 

supervision of a radiologist with more than 10 years' experience in prostate imaging. 

For Paper I, manual segmentation of areas within fat and muscle tissue was required for a 

training set of T2W images. Segmentation was performed using ITK-SNAP [206] by a 

researcher with three years of experience in prostate imaging. The same researcher performed 

manual segmentations of the prostate for 50 cases randomly selected from a combination of 

the PROSTATEx and in-house collected datasets to be used for developing a mapping function 

in Paper II. 

 

http://www.slicer.org/
http://www.mevislab.de/
http://www.itksnap.org/
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Automated segmentation 

In Paper I, the automated segmentation of the fat and the levator ani muscle was performed 

using two trained separate aggregate channel features (ACF) object detectors [207] that generate 

rectangular ROIs. Each ROI was then post-processed by Otsu thresholding [208] and 

morphological opening (disk shape with one pixel radius, based on an optimization process) to 

extract the largest contiguous bright (for fat) or dark (for muscle) structures in the detected 

rectangle.  

In Paper II and Paper III, DL-based segmentation of the prostate was performed with CNNs 

(Figure 1.7 B). All CNNs are variants of the famous U-Net with skip connections [209]. In 

Paper II and Paper III, V-Net [159], nnU-Net-2D [158] and nnU-Net-3D [158] were used, while 

U-Net [210] was used only in Paper II. Table 3.4 gives an overview of these CNNs and their 

usage.  
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Table 3.4: Overview of the CNNs used for automated segmentation. 

 Paper II Paper III 

 
U-Net V-Net nnU-Net-

2D 

nnU-Net-

3D 

V-Net nnU-Net-

2D 

nnU-Net-

3D 

Base 
2D 

slice-by-
slice 

3D volume 
2D 

slice-by-
slice 

3D volume 3D volume 
2D 

slice-by-
slice 

3D volume 

Pre-
processing 

According 
to [210] 

According 
to [159] 

According 
to [158] 

According 
to [158] 

According 
to [159] 

According 
to [158] 

According 
to [158] 

Platform 

Keras 
(v. 2.3.0) + 
TensorFlow 

(v. 1.9.0) 

PyTorch 
 (v. 1.4.0) 

PyTorch 
 (v. 1.4.0) 

PyTorch 
(v. 1.4.0) 

PyTorch 
(v. 1.4.0) 

PyTorch 
(v. 1.7.0) 

PyTorch 
(v. 1.7.0) 

Software Python 
(v. 2.7.12) 

Python 
 (v. 3.6.9) 

Python 
(v. 3.6.9) 

Python 
(v. 3.6.9) 

Python 
(v. 3.6.9) 

Python 
(v. 3.6.10) 

Python 
(v. 3.6.10) 

System 
Ubuntu 
16.04.6 

LTS 

Ubuntu 
16.04.6 

LTS 

Ubuntu 
16.04.6 

LTS 

Ubuntu 
16.04.6 

LTS 

Ubuntu 
18.04.4 

LTS 

Ubuntu 
18.04.4 

LTS 

Ubuntu 
18.04.4 

LTS 

GPU 

Single 
NVIDIA 

Tesla P100 
PCIe 16 

GB 

Single 
NVIDIA 

Tesla P100 
PCIe 16 

GB 

Single 
NVIDIA 

Tesla P100 
PCIe 16 

GB 

Single 
NVIDIA 

Tesla P100 
PCIe 16 

GB 

Single 
NVIDIA 

Tesla P100 
PCIe 16 

GB 

Single 
NVIDIA 

Tesla P100 
PCIe 16 

GB 

Single 
NVIDIA 

Tesla P100 
PCIe 16 

GB 

Model to 
segment WP WP WP WP 1. WP 

2. PZ  
1. PZ 

2. non-PZ 
1. PZ 

2. non-PZ 

Note – – – – 

The 
models 

were used 
to generate 
the non-PZ 
masks by 

subtraction 

The 
models 

were used 
to generate 

the WP 
masks by 
merging 

The  
models 

were used 
to generate 

the WP 
masks by 
merging 

Keras: Keras API (www.keras.io); TensorFlow: TensorFlow (www.tensorflow.org); PyTorch: PyTorch 
(www.pytorch.org) [211]; Python : Python (Python Software Foundation, Wilmington, DE, USA); Ubuntu: 
Ubuntu (www.ubuntu.com); NVIDIA: NVIDIA (Santa Clara, CL, USA).  
WP: Whole prostate; PZ: peripheral zone (PZ); non-PZ: central, transition and anterior fibro-muscular zones, 
combined. 

 

3.2.3 Feature extraction 

In Paper I, the mean intensity feature was calculated using MATLAB for the WP, in addition 

to healthy and malignant PZ and non-PZ to evaluate the performance of the proposed 

normalization method. In Paper II, 107 radiomics features (first order (N = 18), texture (N = 

75), shape (N = 14); see Section 1.4.6) were extracted from the 3D segmentation masks (manual 

or DL-based) of the WP using Pyradiomics (v. 2.2.0; an open-source Python package) [116] to 

http://www.keras.io/
http://www.tensorflow.org/
http://www.pytorch.org/
http://www.ubuntu.com/
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train, optimize and test the proposed segmentation quality control (QC) system. In Paper III, 

14 shape features were extracted from the 3D segmentation masks (manual or DL-based) of 

WP, PZ and non-PZ and WP using Pyradiomics (v. 3.0) [116] to investigate the reproducibility 

of the DL-based segmentations over multiple scans in time. 

3.2.4 Models 

New methods based on statistical models were developed and evaluated in Paper I and Paper 

II. Note that the segmentation models were developed by others, as described in Section 3.2.2. 

In Paper I, the ACF object detector was trained in two training stages using manually selected 

rectangular ROIs. The ACF object detector works as follows: It computes multiple channels 

from an input image, each channel being a registered feature map of the input image, and then 

sums and smooths each group of pixels in the channels to produce lower resolution channels. 

Features are then extracted from each pixel in the aggregated channels and used to train boosted 

decision trees to distinguish the object (fat/muscle) from the background [207]. The core of 

Paper I was a linear scaling function, which is based on multiplying each value (i.e., pixel 

intensity) by a constant plus an additive term. The scaling equation (3.1) scales the fat (𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓) 

and muscle (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) reference intensity values, calculated as the 90th (for fat) and 10th (for 

muscle) percentiles of the intensity values in the extracted ROIs, to their respective T2 values 

at 3T from the literature (𝑇𝑇2𝑓𝑓𝑓𝑓𝑓𝑓 = 121 ms and  𝑇𝑇2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 40 ms) [212]. In this process all 3D 

image intensities (𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)) are normalized to pseudo T2 values (𝑝𝑝𝑝𝑝2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)). 

𝑝𝑝𝑝𝑝2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =
𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) −  𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓  − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
×  (𝑇𝑇2𝑓𝑓𝑓𝑓𝑓𝑓  −  𝑇𝑇2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +   𝑇𝑇2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

(3.1) 

To evaluate the performance of the normalization method, a simple logistic regression model 

was trained and tested to discriminate healthy from malignant tissue based on mean intensity 

values in ROIs in the PZ and non-PZ. Logistic regression is a type of binary classification that 

uses predictors to determine a probability value for belonging to two possible values (e.g., 

healthy vs malignant tissue), using log-odds and sigmoid functions [213]. 

In Paper II, the manual segmentations were used to develop a mapping function to calculate 

representative reference segmentation quality scores. The function was in agreement with the 

mapping function proposed by Litjens et al [202] and uses a combination of metrics that reflect 

segmentation performance: the dice similarity coefficient (DSC) [214], absolute relative volume 

difference [215], average symmetric surface distance [216] and 95% Hausdorff distance [217]. 

They were separately obtained from the whole prostate, apex and base by comparing DL-based 
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segmentations with manual segmentations. The core of Paper II was a least absolute shrinkage 

and selection operator (LASSO) [137] with the aim of assigning an automatically estimated 

segmentation quality score. LASSO is an appropriate choice when dealing with a large number 

of radiomics features, as it performs feature selection using L1 regularization, which adds a 

penalty equal to the absolute value of the magnitude of the coefficients that leads to the 

elimination of the useless input variables, to improve model accuracy and interpretability [218]. 

LASSO is a type of linear regression model, which makes it a simple and fully transparent ML-

based model.  

3.3 Statistical analysis 
Wilcoxon signed rank tests (non-parametric) [219] were used to assess statistical differences 

between two related samples, whereas Wilcoxon rank sum tests (non-parametric) [219], also 

known as Mann-Whitney U tests, were used for independent samples. Two-sample t-tests 

(parametric) [220] were used for the continuous independent samples with the assumption of 

equal means. In Paper I, the performance of the logistic regression model was evaluated using 

the area under the receiver operating characteristic curves (AUC) [221]. To assess statistical 

differences between AUCs, the DeLong's method [222] was used. In Paper III, to assess the 

difference in feature reproducibility before and after the implementation of the segmentation 

QC system, a permutation test [219] with 1000 runs was performed. In all papers, the Benjamini-

Hochberg correction for multiple comparisons [223] was performed at a false discovery rate of 

0.05. p-values of less than 0.05 after correction for multiple comparisons were considered 

statistically significant in all papers. 

In Paper II and Paper III, Spearman's rank tests [219] were performed to assess correlations, and 

Bland-Altman analyses [224] were performed to visually assess bias in the data distribution.  

Evaluation metrics were used to assess the performance of the methods or features. In Paper I, 

histogram intersections [225] were calculated to evaluate inter- and intra-patient normalization 

performance. In Paper II, mean absolute error [226] was used to evaluate the QC system 

(LASSO model). In Paper III, DSC was used to evaluate the segmentation performance, and 

the two-way random, single score intra-class correlation coefficient (ICC) [227,228] was used 

to measure the inter-scan reproducibility of the radiomics shape features. 
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4 Summary of papers 

4.1 Paper I 

Automated reference tissue normalization of T2-weighted MR images of the 

prostate using object recognition 

Mohammed R. S. Sunoqrot, Gabriel A. Nketiah, Kirsten M. Selnæs, Tone F. Bathen, Mattijs 

Elschot. 

Magnetic Resonance Materials in Physics, Biology and Medicine 2021; 34(2):309-321. 

T2W MRI is considered an essential pillar of mpMRI for prostate cancer diagnosis due to its 

high spatial resolution and the anatomical details it provides. However, T2W images are 

hindered by non-standard signal intensity, which limits their use to qualitative analysis. To 

enable quantitative analysis and facilitate comparison between and within patients, intensity 

normalization, an essential step of CAD, is required. Several normalization approaches have 

been proposed for prostate imaging, but the most promising has been multi-reference tissue 

normalization, where the intensity from two or more reference tissues is used to scale the 

intensity of the image. A disadvantage is that the method requires manual segmentation of the 

reference tissues. Therefore, the aim of this work was to develop and evaluate a novel method 

(Figure 4.1) for automated dual-reference tissue normalization of T2W images of the prostate, 

referred to as AutoRef, based on object recognition to automatically extract the reference tissue 

ROIs.  

In this study, transverse T2W images from the publicly available PROMISE12 (N = 80) and 

PROSTATEx (N = 202) challenge datasets and an in-house collected dataset (N = 60) were 

used. ACF object detectors were trained to detect reference regions for fat and muscle tissue, 

which were processed and utilized to normalize the 3D images to pseudo T2 values by linear 

scaling. To evaluate the performance of Autoref, mean pseudo T2 values of the prostate after 

normalization were compared with literature values. Inter-patient histogram intersections of 

voxel intensities in the prostate were compared between the proposed method, the original 

images, and other commonly used normalization methods. The classification performance of 

healthy and malignant tissue was compared before and after normalization.  

The results showed that the prostate pseudo T2 values of the three tested datasets 

(mean±standard deviation = 78.49±9.42, 79.69±6.34 and 79.29±6.30 ms) were in good 
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agreement with T2 values from the literature (80±34 ms). AutoRef was also found to result in 

significantly higher (p < 0.001) inter-patient histogram intersections (median = 0.746) than the 

original images (median = 0.417) and most other normalization methods. In addition, there was 

a significant improvement (p < 0.001) in classification of healthy vs. malignant tissue in PZ 

(AUC = 0.826 vs. 0.769) and non-PZ (AUC = 0.743 vs. 0.678). 

In conclusion, in this study, an automated dual-reference tissue normalization method of T2W 

images of the prostate was proposed, which has been shown to reduce T2W intensity variation 

between scans and could improve quantitative assessment of prostate cancer on MRI. 

 

Figure 4.1: Overview of the proposed normalization method. 

T2W images were first pre-processed including bias field correction, rescaling and resizing. Rectangles 
containing fat/muscle were then detected slice by slice using trained aggregate channel features (ACF) 
detectors. The three slices that contained rectangular regions with the highest probability of fat/muscle 
were identified and post-processed by Otsu thresholding and morphological opening to extract the 
largest connected fat/muscle region-of-interest (ROI). Fat/muscle reference intensities were obtained 
from these ROIs for normalization of 3D image intensities. 
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4.2 Paper II 

A quality control system for automated prostate segmentation on T2-weighted 

MRI 

Mohammed R. S. Sunoqrot, Kirsten M. Selnæs, Elise Sandsmark, Gabriel A. Nketiah, Olmo 

Zavala-Romero, Radka Stoyanova, Tone F. Bathen, Mattijs Elschot. 

Diagnostics 2020; 10(9):714. 

Fully automated segmentation of the prostate is a crucial step of CAD for prostate cancer. This 

step helps focusing on the relevant image information and facilitates the subsequent extraction 

of radiomics features from sub-volumes for further analysis or diagnosis. DL-based methods 

seem to be most promising for this purpose, but are not perfect yet. Consequently, visual 

inspection of the segmentation results is still required to detect poorly segmented cases. 

Therefore, the aim of this work was to establish a fully automated QC system for prostate 

segmentation based on T2W MRI (Figure 4.2). 

Four different DL-based segmentation methods (U-Net, V-Net, nnU-Net-2D and nnU-Net-3D) 

were trained using 50 cases from the PROMISE12 challenge dataset. These methods were then 

used to segment the prostate for a dataset (N = 585) resulting from the combination of the 

PROSTATEx dataset (N = 339) and the in-house collected dataset (N = 246). T2W images 

were bias field corrected and normalized using AutoRef (the method proposed in Paper I) to 

facilitate feature extraction. First order (N = 18), shape (N = 14) and textural (N = 75) radiomics 

features were extracted from the segmented prostate masks. A reference quality score was 

calculated for each automated segmentation in comparison to its corresponding manual 

segmentation. A LASSO was trained and optimized on a randomly assigned training dataset 

(N = 1756, 439 cases from each segmentation method) to create a generalizable linear 

regression model based on the radiomics features that best estimated the reference quality 

score. To evaluate the performance of the QC system, the mean absolute error and Spearman's 

rank correlation tests were used. 

The mean±standard deviation absolute error between the estimated and reference quality scores 

was 5.47±6.33 on a scale of 0 to 100. Furthermore, a strong correlation was found between the 

estimated and reference quality scores (rho = 0.70). 
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In conclusion, in this study, a fully automated and transparent QC system was developed to 

estimate the quality of automated segmentation of the prostate in T2W MR images, which 

could be an important step towards the clinical implementation of CAD for prostate cancer. 

 

 

Figure 4.2: The pipeline of training (A) and testing (B) the proposed quality control system. 

The system training (A) starts from the normalized T2W image stack with the corresponding manual 
prostate segmentation and the automated segmentation provided by a deep learning-based segmentation 
method. These two segmentations are used to compute the reference quality score, and the automated 
segmentation is also overlaid on the normalized image stack to extract various radiomics features. The 
reference quality score and the features are then fed into a least absolute shrinkage and selection 
operator (LASSO) to train and optimize a linear regression model that predicts the quality scores based 
on the imaging features. During system test (B), the trained model uses the radiomics features extracted 
from the overlaid automated segmentation on the normalized image stack to estimate a quality score for 
a previously unseen case. 
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4.3 Paper III 

The reproducibility of deep learning-based segmentation of the prostate gland 

and zones on T2-weighted MR images 
Mohammed R. S. Sunoqrot, Kirsten M. Selnæs, Elise Sandsmark, Sverre Langørgen, Helena 

Bertilsson, Tone F. Bathen, Mattijs Elschot. 

Submitted 

Although the performance of DL-based prostate segmentation on single scans is well described, 

little is known about the reproducibility of these methods for clinical MRI scans. Yet good 

reproducibility is important for the clinical implementation of automated CAD systems to 

automate, standardize and support interpretation of radiological images, and paramount for 

clinical applications based on multiple scans in time, such as active surveillance. Therefore, in 

this work, the reproducibility of DL-based segmentations of WP, PZ and non-PZ was 

investigated by comparing radiomics shape features from T2W MR images acquired with short 

time intervals. 

In this work, the in-house collected dataset (N = 244) was used. The dataset (T2W images) was 

split into a training set (N = 182) to train the DL-based segmentation networks, and an 

investigation set (N = 62) acquired at two different time points (interval time median = 7 days) 

to investigate the intra-patient reproducibility of 14 radiomics shape features extracted from 

the segmented prostate masks of WP, PZ and non-PZ (Figure 4.3). The DL-based segmentation 

was performed and compared using three different CNNs: V-Net, nnU-Net-2D and nnU-Net-

3D. To measure the inter-scan reproducibility of each feature for each CNN and manual 

segmentation, the two-way random, single score ICC was used. 

The reproducibility of all investigated DL-based methods was found to be comparable to that 

of manual segmentations (14/14 features), except for the V-Net in the PZ (7/14 features). The 

ICC score for segmentation volume was 0.888, 0.607, 0.819 and 0.903 in PZ; 0.988, 0.967, 

0.986 and 0.983 in non-PZ; and 0.982, 0.975, 0.973 and 0.984 in WP for manual, V-Net, nnU-

Net-2D and nnU-Net-3D, respectively. 

In conclusion, in this study, the reproducibility of shape features extracted from DL-based 

segmentations of the prostate gland and zones on T2W MR images acquired at short time 

intervals was investigated. The results demonstrate the feasibility of embedding DL-based 
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segmentation into CAD systems based on multiple T2W MR scans of the prostate, which is an 

important step towards clinical implementation. 

 

Figure 4.3: The pipeline to investigate the reproducibility of deep learning-based segmentation. 

The T2W MR images from each of the scans were segmented manually and with deep learning-based 
segmentation methods. The segmentations are then used to extract shape features. The two-way random, 
single score intra-class correlation coefficient (ICC) was then used to measure the inter-scan 
reproducibility of each feature for each of the three deep learning-based segmentation methods and the 
manual segmentation. Segmentations of the whole prostate, peripheral zone and rest of the zones were 
investigated. 
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5 Discussion 
Automated CAD of prostate cancer using mpMRI can overcome many of the limitations of the 

traditional diagnostic approach. Its promise is the fully automated, standardized, reproducible 

and rapid diagnosis of patients with suspected prostate cancer [105,107-109,175]. However, to 

facilitate the implementation of CAD systems in clinical practice, further improvement of CAD 

stages is required, and a relationship of trust must be established. To increase trust in CAD 

systems, the methods embedded in them should be generalizable, transparent, controlled, 

reproducible and robust. The aim of this thesis was therefore to develop, evaluate and 

investigate new methods to achieve this goal. 

5.1 Multiparametric MRI interpretation 
The addition of mpMRI scanning of prostate cancer patients has significantly improved the 

diagnostic process of the disease [79-84]. Initial high inter-reader variability of image 

interpretation has led to the establishment of international guidelines and the proposal of PI-

RADS to standardize image interpretation [23]. Standardized interpretation leads to 

standardized decision-making for the right treatment strategy for the patient [23]. PI-RADS has 

led to more standardized interpretation [101-103], but it has not eliminated inter-reader 

variability, which is still a concern [78,229,230]. Despite the establishment of the guidelines, the 

human factor still has an impact on diagnosis and treatment. The radiologist is still the one who 

ultimately decides, typically based on qualitative information, whether the perceived 

patterns/areas in the images meet one of the definitions of PI-RADS. In addition, radiologists 

manually segment the VOIs on the images to be used in clinical applications such as MRI-

ultrasound fusion for targeted prostate biopsies [41], targeted MR-guided radiotherapy of the 

prostate [196] and PSA density measurement for prostate cancer risk calculators [86]. 

Automated interpretation, i.e. CAD, of mpMR images in accordance with PI-RADS could help 

minimize the influence of the human factor. In this way, the diagnostic process becomes 

standardized and less prone to human error [175]. However, this does not mean that the 

radiologist will be replaced by a CAD system, because the aim of the system is to support the 

radiologist in the diagnostic process, not to replace. Of course, the role of the radiologist will 

change, the focus will probably shift towards the most difficult and complex cases, i.e. the 

cases that the system has problems with [231]. 
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5.2 The potential and challenges of computer-aided diagnosis of prostate cancer 
Automated CAD systems for prostate cancer have the potential to overcome traditional reading 

problems [105,107-109,175]. CAD extracts and utilizes quantitative (radiomics) information in 

mpMR images. This information, which is impossible to obtain with the traditional manual 

approach, is paramount to  provide a better interpretation of the patient images [112,113]. The 

entire CAD processing workflow is automated and thus the diagnostic process is less prone to 

human error with the aid of CAD [105,175]. The implementation of CAD in the diagnostic 

process can help overcome the variability between and within readers that results from the 

reader-dependent nature of the traditional diagnostic approach [107]. Furthermore, the addition 

of CAD can help the less experienced observers to significantly improve their ability to 

discriminate between benign and malignant lesions and achieve similar performance to 

experienced observers [232]. Overcoming the variability problems leads to a more standardized 

diagnosis and thus a more standardized decision-making [44]. The traditional diagnostic 

approach requires a high degree of focus, is not scalable to handle the increasing demand for 

prostate cancer mpMRI and is time-consuming [105,107]. With CAD, a large number of cases 

can be processed quickly, leaving time for radiologists to focus on the difficult cases that 

require further investigation or care [231]. 

In recent years, several CAD systems for prostate cancer have been developed. In 2003, Chan 

et al. [233] implemented a CAD system with mpMRI for the first time. They integrated the 

information from T2W, ADC, T2 map and proton density sequences with anatomical and 

texture features extracted from manually delineated VOIs. A linear discriminant analysis 

classifier was used to generate a cancer probability map for the PZ, and an average AUC of 

0.839 was obtained. To generate a similar map, Shah et al. [234] used T2W, ADC and DCE 

images to create a combination of features from the manually delineated VOIs. The features 

were fed into a SVM classifier and an F-score of 0.89 was obtained. To distinguish between 

benign and malignant tissues for WP, Liu et al. [180] used the T2W, ADC, and DCE images to 

train a SVM classifier. Intensity, shape and texture features were extracted from the images 

and fed into the classifier, resulting in an AUC of 0.82. Peng et al. [235] chose to extract the 

10th percentile and average ADC values, DCE transfer constant, and histogram-based features 

and fed them into a linear discriminant analysis classifier, resulting in an AUC of 0.95. Vos et 

al. [184] developed a fully automated two-stage CAD system to detect cancer in WP. Instead of 

manually delineating VOIs, they first performed voxel classification using a Hessian blob 

detection algorithm on the ADC map along with an automatic prostate segmentation method 
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to detect possible lesion candidates. Histogram-based features are then computed from the 

lesion candidates on the T2W, ADC and DCE images and fed into a classifier with linear 

discriminant analysis. The results showed sensitivities of 0.41, 0.65 and 0.74 with false 

positives of 1, 3 and 5 per patient, respectively. The two-stage strategy was also used by Litjens 

et al. [105] to detect cancer in WP. In the first stage, they used an atlas-based method to segment 

the prostate on T2W images, extracted voxel features from the segmented VOI, and classified 

the voxels with a random forest classifier to select candidate areas. In the second stage, T2W, 

DW, DCE and proton density weighted images were used to extract statistical, local contrast, 

symmetry and shape features from candidate areas and fed them to a random forest classifier 

to obtain a cancer probability score of the candidate area. The results showed sensitivities of 

0.42, 0.75 and 0.89 with 0.1, 1 and 10 false positives per normal case, respectively. To 

determine whether or not the patient has prostate cancer, Ishioka et al. [236] developed a CAD 

system based on DL. They fed a CNN architecture combining U-Net (17 layers) with ResNet50 

with labelled T2W images and obtained an AUC of 0.645. To increase the prediction accuracy, 

Song et al. [237] incorporated an extended prediction method into their optimized patch-based 

CNN model (based on VGGNet) and obtained an AUC of 0.944. CAD systems for grading 

prostate cancer have also been developed. In their work, Abraham and Niar [238] developed a 

CAD system for predicting the Gleason Grade Group for prostate cancer. The lesion centres 

were defined; therefore, they cropped the area around the lesion centre and used the T2W, ADC 

and high B-value DW images to extract histogram-based and textural radiomics features. The 

radiomics features were then fed into a stacked sparse autoencoder with three hidden layers for 

latent feature extraction. The laten features were then fed into a softmax classifier and a square 

weighted kappa score of 0.2326 was obtained. de Vente et al. [239] developed a CAD system 

that used T2W and ADC images as input to a 2D U-Net (5 layers) and generated lesion 

segmentation maps that encoded Gleason Grade Group as output. The system included 

placement of a rectangular ROI around the prostate gland and automatic segmentation of PZ 

and non-PZ with 3D U-Net. The system achieved a quadratic-weighted kappa score of 0.13. 

2D U-Net was also used by Schelb et al. [170] to discriminate between clinically significant and 

non-significant lesions using T2W, ADC and high B-value DW images. The network 

composed of 34 layers and achieved a sensitivity of 0.92 and a specificity of 0.47 when the cut 

threshold was set to 0.33. It should be noted that the performance of CAD systems depends on 

how the system is trained and tested. The earlier studies used leave-one-out cross-validation 

[105,234,235] and k-fold cross-validation [184,233], whereas the later studies [170,180,236,237,239] 

set up completely separate training, validation, and testing sets in which the same patient data 
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are not used in more than one of the sets. In summary, the studies show that the performance 

of CAD is improved when a combination of features was used and when DL was included in 

the classification stage.  

Despite its potential, CAD faces several challenges that hinders its implementation in clinical 

practice, including system compatibility, processing power, machine error, generalizability, 

transparency, familiarity and building a relationship of trust [240,241]. Translating CAD into the 

clinic requires the development of compatible systems that can easily communicate with a 

variety of systems and data structures [241,242]. A suitable hardware infrastructure that enables 

high computational performance will also be required, especially when DL-based methods are 

embedded [133,240]. The workflow of CAD consists of several stages that build on each other, 

each of which typically embeds one or more different ML-based methods [107], which means 

that any error through the pipeline can be propagated and lead to a misdiagnosis. The errors 

are to be expected, there is no perfect CAD system. The different stages are trained with data 

processed and labelled by humans [107,108,241]; thus, human errors can eventually lead to 

machine errors. Therefore, there should be QC systems for various CAD steps to ensure that 

mistakes are detected and corrected, or forwarded to radiologists for correction. This was 

addressed in Paper II, where a QC system was developed for the segmentation stage. 

Furthermore, the generalizability of the systems is very important for clinical implementation 

[240,243]. The automated systems should be able to adapt to different types of unseen data. They 

should be able to perform well in patients with different backgrounds, lifestyles and health 

conditions [242,243]. This means that CAD systems need big and diverse data for training to be 

able to accurately diagnose a wide range of patients [241,244]. Paper I addressed this problem 

by providing a generalizable normalization method for the T2W images. Another important 

aspect is the transparency of CAD systems [245]. Ideally, it should be clear how the algorithms 

work and what features they rely on [246,247]. There are fewer transparency concerns with 

traditional ML approaches than with DL-based methods, since in many of the DL-based 

methods the decision-making mechanism is a black box [246]. It is difficult to gain a complete 

understanding of what is going on in the black box [248]. Therefore, traditional ML can be used 

to control the output of the DL-based methods and determine when it goes wrong. In other 

words: If we cannot understand how it works, we can at least control it to prevent it from 

making mistakes. Paper II has adopted this strategy and shown its potential. Another important 

issue is the reproducibility of CAD systems [249]. For clinical applications based on multiple 

scans in time, such as active surveillance, it is crucial that the implemented CAD systems are 
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reproducible [250]. If they are not, this could have a negative impact on patient diagnosis and 

thus treatment. This motivated the investigation of the automated segmentation reproducibility 

in Paper III. All these reasons, in addition to lack of familiarity and the limited number of 

studies that have prospectively evaluated the performance of CAD in the clinic, have raised 

concerns among radiologists about whether CAD can be trusted [241]. In order to build a 

trustworthy relationship between CAD and radiologists, the aforementioned challenges should 

be addressed and considered in system development, and more prospective studies should be 

conducted with an aim at evaluating the performance of the CAD system in clinic [241]. 

In this thesis, the overall goal was to make CAD of prostate cancer more trustworthy for 

implementation in the clinic by ensuring the implementation and control of the best performing 

ML-/DL-based methods in the early stages of the workflow. Focusing on the early stages 

should reduce the risk of propagated errors. In this thesis, a new normalization approach was 

proposed (Paper I), a QC system for DL-based segmentations was developed (Paper II) and a 

reproducibility study for the DL-based segmentations was performed (Paper III). The proposed 

methods aimed to be generalizable, transparent and robust. Although clinical data were used in 

this work, the methods still need to be prospectively evaluated in a clinical setting to test their 

compatibility, efficiency, accuracy and ease of use, among others. Such a step will require 

many efforts, including obtaining ethical, organizational, legal and patient approvals, rewriting 

code to be compatible, developing easy-to-use graphical interfaces and recruiting radiologists 

willing to invest time to use and evaluate the methods. 

5.3 Improving T2-weighted MRI normalization 
The normalization method proposed in Paper I helps facilitate more accurate quantitative 

analysis by increasing the homogeneity of signal intensity between and within cohorts. The 

method could help standardize the T2W images used at different stages of CAD workflow. In 

addition, it may help to increase confidence in the representativeness of the extracted radiomics 

features from the normalized images. In Paper I, AutoRef, the proposed method, was compared 

to some of the commonly used histogram-based normalization methods and was found to 

outperform them. This might be due to the fact that these methods are dependent on the overall 

2D/3D image values, which is a weakness as these are subject to variation due to differences 

in scan settings (e.g., field of view) and patient-related factors (e.g., bladder filling) [251]. 

Normalization using single or multiple reference tissues, on the other hand, is potentially less 

sensitive to variations in scan settings and patient-related factors. The single reference tissue 

normalization approach is based on scaling the intensity of the original T2W image by the 
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intensity in the corresponding ROI of the reference tissue [181,194,195,252,253]. A common 

example of this in the prostate is normalization to the intensity of the obturator internus muscle 

or the levator ani muscle [194,238,247,254,255]. In contrast, multi-reference tissue normalization 

uses the intensities of multiple reference tissues to build a linear/non-linear regression model 

to estimate normalized T2W image values [195,252]. In Paper I, AutoRef, an approach to 

normalization using two reference tissues, was found to outperform normalization using only 

one reference tissue (levator ani muscle).  

Reference tissue-based normalization requires labelling of the reference tissues to enable 

intensity extraction from them. This is usually done manually [195,252], which is a time-

consuming and tedious process. Automating the labelling task, e.g. using object detectors as in 

Paper I, makes reference tissue normalization more efficient and could potentially facilitate its 

integration into clinical practice. Automation of the labelling task can also be achieved using 

other methods, for example by semantic segmentation methods. Compared to semantic 

segmentation, object recognition requires less computational power, time and data [150,207,238]. 

To provide a fully automated normalization method, AutoRef relies on ACF object detectors 

to detect the ROIs of the reference tissues, which are then post-processed to obtain a segmented 

region within the ROIs.  

AutoRef has already been used in studies requiring quantitative image analysis of mpMRI. In 

Paper II of this thesis, AutoRef was used in pre-processing the T2W images for standardized 

feature extraction for the QC system. Earlier versions of Paper II skipped image normalization 

or performed it with variations of scaling to the histogram median [256]. It was observed that 

replacing these normalization approaches with AutoRef improved the performance of the 

developed system. In their work, Patsanis et al. [257] evaluated generative adversarial networks 

for prostate cancer detection. They found that an automated end-to-end pipeline, which is 

highly dependent on pre-processing parameters, gave the best results (AUC = 0.878) when 

AutoRef was implemented. These results are consistent with the comparison of AutoRef's 

ability to improve discrimination between healthy and malignant tissue performed in Paper I. 

Dewi et al. [258] included AutoRef in their study on the influence of pre-processing 

configurations on the reproducibility of radiomic features in T2W MRI of the prostate. 

Similarly, they showed that the inclusion of AutoRef in the pre-processing of T2W images 

increased the reproducibility of first order and textural radiomics features extracted from T2W 

MRI. In their preliminary study aimed at evaluating the diagnostic relevance of T2W MRI-

derived textural features in prostate cancer with Gleason score 3+4 and 4+3, Nketiah et al. [125] 
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used the histogram-based normalization approach proposed by Nyúl et al. [188] to pre-process 

the T2W images. However, in their subsequent multicentre study which aimed at evaluating 

the potential of T2W MRI-derived textural features for quantitative assessment of peripheral 

zone aggressiveness [259], histogram equalization was replaced by AutoRef due to its higher 

performance and ability to achieve more homogeneous intensities within and between cohorts.  

As suggested in the discussion of Paper I, the performance of AutoRef was further investigated 

using a large, multicentre, multivendor cohort. Sørland et al. [260] used AutoRef to normalize 

T2W images from a cohort of ten scanners (three manufacturers) located at three different 

institutions in three different countries. The study confirmed that AutoRef performed well 

across scanners and centres. In Paper I, quantitative T2 maps were not available for the study 

patients, which hindered direct comparison of pseudo T2 values with a gold standard. 

Therefore, Sørland et al. [261] acquired the quantitative T2 maps for 7 asymptomatic volunteers 

with the aim of comparing the gold standard T2 values with the pseudo T2 values generated 

by AutoRef. The work concluded that Autoref can reproduce both the prostate T2 values and 

the contrast between the prostate zones. However, since the cohort size is small and consist of 

relatively young, asymptomatic volunteers (median = 28.5 years), further confirmation in a 

clinical cohort is required. 

Whereas AutoRef performed well for the inter-patient normalization, little additional value was 

shown for normalization of two scans of the same patients. One explanation for this could be 

the limited variability of the dataset used in the test, as both scans were acquired at the same 

centre, on the same scanner, with similar protocols and with a short time interval in between. 

Moreover, the general performance of AutoRef was close to that of Gaussian normalization, 

which is much easier to implement and faster than AutoRef (1 second vs. 35 seconds). This 

might raise the question of whether it is worth implementing AutoRef when Gaussian 

normalization can perform sufficiently well. However, unlike Gaussian normalization, 

AutoRef is able to produce pseudo T2 values that are comparable to the T2 values reported in 

the literature [212]. In addition, normalization with a single reference tissue was also close to 

AutoRef. Single reference tissue normalization is also easier to implement than AutoRef, but 

unlike AutoRef, single reference tissue normalization was not able to map prostate T2 values 

from the literature.  

One potential disadvantage of AutoRef in comparison to histogram-based normalization is that 

the detection of reference tissue ROIs can fail. In paper I, it was shown that this was mostly a 
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problem in patients scanned with an endorectal coil. However, body surface coils are currently 

recommended for prostate imaging with 3T MRI scanners [262], on which the vast majority of 

patients is scanned. The high sensitivity of fat detection in T2W images acquired without an 

endorectal coil was confirmed by Sørland et al. [260] whose results indicated that the object 

detectors for fat and muscle are stable, but the fat detector has a higher probability (≈ 2.2%) of 

failure than muscle (≈ 1.8%). Interestingly, the study suggested that an object detector for 

femoral head can be used instead of fat if fat detection fails. Extending AutoRef to include 

more tissues could lead to a more robust method. The femoral head, pelvic bone and urinary 

bladder might be good candidates [195,260,261]. However, further investigation should be 

conducted to explore their potentials and effects on the performance of AutoRef.  

5.4 Towards deep learning-based segmentation 
Automated segmentation of the prostate is of great importance for automated CAD systems, as 

it can reduce human error, standardize output and save time [107,108]. DL-based segmentation 

of the prostate has shown excellent performance in this regard [158-161,197]. Inter-observer 

variability has been shown to be approximately the same between DL-based segmentation 

methods and experienced radiologists [170]. Nevertheless, each of the proposed segmentation 

methods will occasionally lead to unpredictable suboptimal contours in some cases. Thus, 

manual verification of contours by radiologists remains a necessary step. This verification 

limits the automated DL-based prostate segmentation methods implementation in clinical 

practice. A QC system that automatically provides an assessment of segmentation quality could 

help overcome this limitation and standardize segmentation quality decisions. Such a QC 

system has been proposed in Paper II. However, little is known about the reproducibility of 

DL-based segmentation methods for clinical MRI scans [263], which was addressed in Paper 

III.  

Segmentation quality control 

The proposed segmentation QC system in Paper II is a transparent and flexible (i.e., easily 

trainable on different datasets) safety net. The results shown in Paper II indicate that the system 

performance is acceptable and could prevent poorly segmented cases from continuing through 

the CAD system. These cases are red flagged and forwarded to the radiologist for correction. 

This indicates that the intervention of the radiologist will still be necessary from time to time 

even if automated systems are implemented. 
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The proposed QC system can also be very helpful in the development of new CAD systems for 

prostate imaging, as it simplifies the labelling process by integrating DL-based segmentation 

methods. This saves time, as it allows automated generation of prostate segmentations with 

acceptable quality. Sørland et al. [260] used the QC system to discard data with low-quality DL-

based segmentations from their test set. Patsanis et al. [257] used the QC system to choose 

between segmentations generated by two different DL-based methods. The selected mask was 

not only of acceptable quality, but also the one with the highest quality score from either of the 

networks. This shows that the QC system can also be used to automatically select the best 

segmentation from a set of segmentations generated by different networks. Incorporating 

multiple DL-based segmentation methods into one CAD system and followed by an educated 

selection process can potentially reduce the number of cases requiring radiologist intervention. 

Radiomics features were used to train the QC system. Some features such as the wavelet 

features were not included even though they could improve the performance of the model. 

These features were excluded because they are expected to increase the complexity of the 

model and hence the processing time. The combination of radiomics and LASSO has been 

shown to work well, as LASSO performs feature selection and assigns appropriate weights to 

the features to increase the model accuracy and interpretability [218]. 

The proposed QC system was only developed for WP segmentation. The proposed system 

could be specifically useful for clinical applications that are sensitive to errors in WP 

segmentation, such as MRI-ultrasound fusion for targeted biopsies [41], and prostate-targeted 

MR-guided radiotherapy [196]. The performance of DL-based segmentation methods was 

shown to be comparable to that of radiologists for WP segmentation [170]. Recently, DL 

networks such as nnU-Net have also shown good performance for prostate zones segmentation 

[158]. Therefore, and for future work, the proposed QC system could be extended to cover the 

DL-based segmentation models for prostate zones, which would make it useful for more 

clinical applications. 

One of the concerns about the proposed QC system is processing time. The total time required 

to generate a mask using a DL-based method and check its quality is about one minute. Of 

course, this time may vary depending on the computational power of the device, but in the end, 

this time will still be less than the time required for a radiologist to perform the same tasks. 

Most importantly, it may help implementing DL-based segmentation methods in the clinic, as 

it helps detect the segmentation failures. 
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A potential drawback of the proposed QC system is that it performs differently on different 

datasets. This could be due to the unbalanced and biased reference quality scores, which are 

dependent on the manual segmentation quality, used to train the model. The general model 

used by the QC system showed that the combination of the different datasets in training 

increased the overall robustness and generalizability of the model. Despite the good 

performance of the general model, there were some outliers, indicating that the system is not 

perfect and may over- or underestimate the quality score. To obtain the best possible 

performance for a new dataset, it might be necessary to retrain the model with a balanced subset 

of that dataset. For future work, the proposed system could be improved by training it with a 

large and diverse dataset containing segmentations generated by several radiologists and a 

variety of DL-based segmentation methods. 

A clinical evaluation of the CAD systems, integrating DL-based prostate segmentation and the 

proposed QC system, is still required. Such an evaluation will identify any compatibility or 

integration difficulties. It will also allow radiologists to explore automated segmentation, with 

its capabilities and pitfalls, and the potential added value of the QC system in this context. 

Segmentation reproducibility 

For clinical applications based on multiple scans in time, such as active surveillance, it is 

critical that the CAD systems used are reproducible [249,250]. The lack of reproducibility could 

be a reason not to use CAD in the clinic. Currently, very little is known about the 

reproducibility of DL-based segmentation methods [263], which are an important component 

of the fully automated CAD system. 

In Paper III the reproducibility of DL-based segmentation was investigated by comparing 14 

radiomics shape features from two T2W MR scans acquired with short time intervals (median 

= 7 days). The investigation led to the conclusion that the overall reproducibility of the DL-

based segmentations was comparable to manual segmentations. The exception was the V-Net 

segmentation of PZ, which was found to be significantly less reproducible than manual for 7/14 

features. The study also highlighted the influence of the biopsy guiding probe on prostate 

deformation, reducing the reproducibility of Elongation, Flatness and Sphericity features in 

WP and non-PZ for the manual and automated segmentations. 

The study also showed that the inclusion of a post-processing step for DL-based segmentation, 

where only the largest connected component is retained, can remarkably increase 

reproducibility. Implementing this post-processing step costs no more than a few seconds in 
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processing time, and thus its inclusion in CAD is recommended. Similarly, implementing the 

QC system proposed in Paper II and excluding cases with low quality segmentations leads to 

a more reproducible DL-based segmentation. 

In addition to WP segmentation, the reproducibility of PZ and non-PZ segmentations was 

investigated, as the DL-based segmentation methods for PZ and non-PZ recently started 

reporting good results [158]. The reported DSCs in Paper III show that overall, but specifically 

for PZ, the networks that require 3D input images perform better than those that perform the 

segmentation slice-by-slice (2D). 

Manual segmentation in Paper III was performed by a single radiologist. This raises concerns 

about the possibility of bias since the same radiologist provided the masks for training the 

CNNs. Multiple readers may be needed to ensure that there is no bias or that the CNNs are not 

simply imitating the style of just one radiologist. In addition, the study used a dataset that came 

from a single centre. For a better overall understanding of the reproducibility of DL-based 

segmentation, a multicentre dataset with manual segmentations from multiple readers would 

be needed. 

5.5 Registration 
Registration is one of CAD workflow stages and it can be performed before or after 

segmentation, depending on the application [107]. Registration can be very useful in clinical 

applications, such as MRI-ultrasound fusion for targeted biopsies, where the suspicious lesions 

are segmented on mpMR images and overlaid on the ultrasound images, allowing the operator 

to locate the areas to be biopsied [41,83]. It may also be useful to facilitate the extraction of 

radiomics features from the different mpMRI sequences to improve the performance of the 

classifiers. In that case, VOIs are segmented manually or automatically on one sequence, 

usually the T2W sequence, and then the generated mask is overlaid on the images of the other 

sequences to extract features [108].  

Since some CAD systems use registration to allow one image segmentation to be used by 

another, the quality of the segmentation is critical. If the overlaid mask was faulty, this would 

result in unrepresentative features being extracted from the registered images. Furthermore, 

this could result in suspicious areas not being properly detected when MRI-ultrasound fusion 

is used for targeted biopsies. Such a problem might be avoided by implementing the 

segmentation QC system proposed in Paper II. 
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Another important aspect is the accuracy of the registration process and the quality of the 

registered images. There are several traditional ML-based [107,108,264,265] and DL-based [266-

268] methods have been developed for medical image registration. However, as in the 

segmentation case, the quality of these methods needs to be controlled to avoid the patient 

misdiagnosis and to increase CAD robustness. Consequently, developing a QC system for 

mpMRI registration is an interesting topic for future work. 

5.6 Feature extraction and radiomics 
A key characteristic of a successful CAD system is extracting distinctive features for the task 

at hand [107]. Radiomics features have demonstrated the ability to exploit the big data generated 

by mpMRI [110,111]. Combining features can improve classifier performance and thus the 

performance of CAD [112,113]. Therefore, the interest in radiomics for prostate cancer diagnosis 

and treatment has increased in the last few years [110,112,123].  

Radiomics features can be divided into hand‐crafted (traditional ML-based) and non-hand‐

crafted (DL-based) [199]. The employment of hand-crafted features in a CAD system, make it 

easier to understand which features were selected to be fed into the model and how the 

classifiers reach their decision, which is not the case with DL-based radiomics [199,269]. The 

DL-based radiomics features are the features that a deep artificial neural network extracts 

through multiple layers with different filters before passing them to the classification part of 

the network architecture [199]. By their nature, artificial neural networks extract a larger number 

of features than traditional hand-crafted radiomics [270].  

Due to the lack of understanding of what and why the artificial neural network extracts, the use 

of DL-based radiomics has raised trustworthy concerns despite their excellent performance 

[269]. However, although it is difficult to understand what is going on in a neural network, it is 

possible to visualize the extracted features after each layer [271]. The visualized features from 

the images shows that shape-related features seems to be extracted in the shallow layers of the 

network, and a wide range of divergent features, including textural features, seem to be 

extracted in the deep layers [272]. This might explain why most of the shape features were 

selected by LASSO during the development of the segmentation QC system proposed in Paper 

II.  

Normalization is an essential step in radiomics feature extraction because it increases the 

robustness and reproducibility of radiomics features [258,273-275]. This was one of the 

motivations for developing the normalization method proposed in Paper I. It can be 
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hypothesized that an improved normalization method will lead to more robust and reproducible 

the radiomics features will be, and hence the better the performance of the classifier. AutoRef 

was studied in Dewi et al. [258] and found to increase the reproducibility of the extracted 

radiomics features from T2W-MR. 

5.7 Classification 
Classification is the final stage of the CAD workflow. After extracting the features, a traditional 

ML-based or DL-based classifier is trained with the features as predictors and the reference 

classes as responses [107,108]. The output of the classifier in CAD systems is usually disease 

detection or diagnosis, depending on the goal of the system [107,108]. 

In recent years, several traditional ML-based and DL based classifiers have been developed 

[107,108,171], see Section 1.5.1 and Section 1.5.2. The performance of DL-based classifiers for 

prostate cancer detection and diagnosis is promising [171,276]. However, DL-based feature 

extraction and classification techniques still require pre-processing and segmentation. The 

robustness and accuracy of these two stages have a great impact on the final output of the CAD 

system, regardless of the classification technique. Recently, Patsanis et al. [257] developed an 

automated end-to-end pipeline for evaluating generative adversarial networks for prostate 

cancer detection. In their work, they implemented the normalization method proposed in Paper 

I and the QC system proposed in Paper II and found that they improved the classification 

performance. 

Classification is the last stage of the CAD workflow and its performance is influenced by the 

accuracy and quality of the preceding stages. Lemaître et al. [191] showed in their work that 

selecting a good normalization approach can improve classification accuracy for traditional 

ML-based classification. Swiderska-Chadaj et al. [277] came to the same conclusion with 

respect to DL-based classification. Gao et al. [278] showed that segmentation optimization can 

also improve classification performance. In this thesis, methods were proposed to reduce the 

possibility of errors in the normalization (Paper I) and segmentation (Paper II and Paper III) 

stages. The better the normalization and segmentation, the more representative, accurate and 

reproducible are the extracted features, i.e. the predictors of the classifier. 

Another important aspect is the generalizability of the classification. A generalizable classifier 

should be balanced and applicable to the new unseen dataset, regardless of which institution or 

population it came from [279]. Generalizable classifiers allow CAD systems to be used across 

institutions without fear of system bias, which can lead to over- or under-diagnosis and 
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consequently incorrect patient treatment [241]. Training the classifier with large and diverse 

data and avoiding overfitting and underfitting the model can help develop a generalizable 

classifier [280]. The developed classifier should also have balanced results and avoid high false-

positive and false-negative rates to avoid overdiagnosis or underdiagnosis of patients [107,281]. 

Open access repositories are a good source of large and diverse data that can be used to increase 

the accuracy and generalizability of the classifier, and benchmark it [282]. These repositories 

could save the hassle of acquiring medical images and all the legal and technical issues 

involved. In this thesis, the open access datasets of the PROMISE12 [202] and PROSTATEx 

[203] challenges were used in Paper I and Paper II. It is a good practice to separate the training, 

validation, and testing sets of the classifier [283]. This separation can help avoid the risk of 

overfitting, increase the estimation accuracy of the model performance and improve the 

generalizability of the classifier [283]. One possible approach to train more generalizable 

classifiers with variant data from different countries and institutions is federated learning. 

Federated learning performs at the client level, so there is no need to transfer the data to have 

it in one place [284,285]. In federated learning, each client (e.g., institution/hospital) can train 

the classifier on its own data. The weights of the classifier are then uploaded to a server that is 

shared by all clients, so that the other clients can download the weights and continue the 

training process of the classifier with their data [284,285].  

5.8 Research ethics, data management and privacy aspects 
The use of medical images to develop AI-based systems, e.g., CAD, is subject to a specific 

procedure including collecting ethical approvals, data access, querying data, data de-

identification, data transfer and storage, QC, structuring data, and labelling data [286].  

Medical images and all supporting clinical data are considered sensitive data. Data that should 

not be collected without ethical approvals [286]. Approvals are usually granted by institutional 

and/or local ethics committees before the study begins. Ethics committee members evaluate 

the benefits, harms, and risks of the systems to be developed [286]. For most medical image 

analysis studies, informed or passive consent must be obtained from patients [286]. Researchers 

and developers of AI systems have an obligation to respect the dignity and rights of patients 

[287]. Patient data should be secured, not sold, and not used in a way that contradicts the ethical 

consent given [287]. In this thesis, the ethical perspective was explored before starting the work. 

The ethical approvals to collect and use the in-house collected dataset were obtained from the 

Regional Committee for Medical and Health Research Ethics (REC Mid Norway; identifiers 

2013/1869 and 2017/576), and signed informed consent was obtained from patients. Patients 
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retained the right to withdraw consent to the use of their images at any time during the study 

period. To ensure the patients involvement, the thesis work was discussed during the users’ 

panel meetings with the researchers at the MR Cancer group at the Norwegian University of 

Science and Technology. The panel (https://www.ntnu.edu/isb/mr-cancer-user-involvement), 

which was established in close dialogue with the Norwegian Cancer Society, includes four 

former patients, two breast cancer and two prostate cancer patients, who provide important 

insights and participate in ethical and scientific discussions. 

Medical images are typically accessed, queried and retrieved through Image Archiving and 

Communication System (PACS) [287]. Each medical institution has its own PACS, which 

requires access permission, granted after reviewing the access request and ensuring that ethical 

approval has been obtained. Locating the desired data in PACS is a tedious and time-consuming 

process that must be done carefully. Researchers should not view data for which they have not 

granted access permission. In this thesis, these guidelines were carefully followed and the 

permission to access and retrieve data from PACS was granted by the department of Radiology 

and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 

Norway. 

Before using the data to develop the CAD system, the data should be de-identified [286]. This 

includes anonymizing/pseudonymizing the metadata of the images and renaming the cases 

[288,289]. If a list is needed to link patients to their new pseudonymized identifiers, this list 

should be carefully stored in a different location than the data. Once de-identified, the data can 

be transferred to a secure storage point for later use in developing the system [286]. In this 

thesis, the European General Data Protection Regulation (GDPR) act [290] was followed, the 

data was pseudonymized and uploaded to a secure server on HUNT Cloud [291] and the link 

list was stored securely in a different location. HUNT Cloud is am ISO-certified digital 

infrastructure that allows data controllers and researchers to store, access and analyse sensitive 

data in controlled environments. HUNT Cloud is in compliance with the European GDPR and 

Norwegian acts and regulations for research and data security. 

After transferring the data to a secure server, it should be systematically structured and checked 

for quality before being used for AI system development to avoid inherited errors [286]. All or 

part of the data should be labelled by experts to provide references for AI system development 

and evaluation [286]. All these aspects have been considered and followed in this work. 

https://www.ntnu.edu/isb/mr-cancer-user-involvement
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To ensure a good data management protocol in this thesis, the data and the AutoRef and 

segmentation QC code was treated according to the FAIR (Findability, Accessibility, 

Interoperability, and Reusability) principles [292]. AutoRef and the segmentation QC code have 

been made publicly available on GitHub (https://github.com/ntnu-mr-cancer) with clear 

instructions for their use 
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6 Conclusions and future perspectives 
This thesis aimed to facilitate the integration of automated CAD systems of prostate cancer 

using mpMRI into clinical practice by developing and evaluating new image pre-processing, 

segmentation and quality control methods to improve the performance of the CAD workflow.  

CAD systems have the potential to overcome many of the pitfalls of traditional prostate cancer 

diagnostics. Especially when integrated with mpMRI, which provides multiple anatomical and 

functional parameters and quantitative information that can improve the diagnostic process. 

CAD usually consists of a chain of steps, which implement ML-based methods to achieve a 

specific task. Each step depends on the performance of the previous step, i.e., if one of the steps 

fails or commits an error, the following steps are prone to propagate that error, potentially 

leading to misdiagnosis. Therefore, the implemented methods should be automated, accurate 

and transparent. The work in this thesis focused on the early steps of the CAD workflow, in 

particular the T2W MRI normalization and prostate segmentation, as ensuring high 

performance and error control of these steps reduces the risk of propagated errors. This could 

not only improve the performance of CAD, but also increase the confidence of the radiologists 

in these systems. 

T2W MR images require normalization of signal intensity to allow quantitative analysis, which 

is the direction CAD and related statistical models follow. Several normalization methods have 

been proposed for this purpose, but with limitations. In this thesis a new dual-reference tissue 

normalization approach that automatically extracts the signal intensity of the fat and muscle 

around the prostate to normalize the image was proposed. To the best of our knowledge, this 

is the first multi-reference tissue normalization approach where the delineation of ROIs is fully 

automated. The proposed method was found to increase the intensity homogeneity between 

patients and within patients scanned multiple times. Moreover, it showed better performance 

than other commonly used normalization methods. The method was also shown to improve 

classification between healthy and malignant prostate tissue in PZ and non-PZ. The proposed 

method is generalizable, transparent, easy to implement and made publicly available. 

Another important step in the CAD workflow is VOI segmentation, in this case of the prostate. 

This step, which defines the VOIs to be used later for feature extraction, could be efficiently 

performed automatically using DL-based methods. Despite the overall good performance, 

these methods can still produce poor segmentation masks in some cases, which calls for a QC 

step. In this thesis, a generalizable, transparent, publicly available segmentation QC system 
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was developed. The system assigns a score to each segmentation related to its quality, which 

can be used to distinguish between acceptable and poor segmentations. This system is an 

important step towards implementing DL-based segmentation methods in clinical practice and 

reducing human intervention. 

DL-based segmentations could also be used in clinical applications that rely on multiple scans 

in time, such as for patients on active surveillance. Therefore, it is extremely important that the 

segmentations generated by DL-based methods are not only accurate but also reproducible. In 

this thesis, the reproducibility of DL-based segmentations of the prostate and its zones was 

investigated. The reproducibility of the best-performing DL-based methods were found to be 

comparable to that of manual segmentations. 

In conclusion, this thesis shows that the performance of the early steps of automated CAD for 

prostate cancer can be improved and controlled, leading to more generalizable, transparent and 

trustworthy systems. This is seen as an important step towards the integration of CAD systems 

into clinical practice. 

This thesis could be fundamental for further research to improve robust, generalizable and 

transparent CAD systems for prostate cancer. Normalization can be further improved by 

developing new methods that build on AutoRef and perhaps incorporate additional reference 

tissues. The segmentation QC system can be extended to include prostate zones segmentation. 

Developing a similar QC system for mpMRI registration would be helpful and may improve 

the performance of CAD. Conducting studies to investigate the reproducibility of the various 

radiomics features and pre-processing steps would be very informative and would provide 

useful suggestions to extract features correctly. CAD systems have the potential to decide 

whether or not biopsy sampling is necessary, help detect the suspicious areas and help targeting 

them when biopsy sampling is necessary. Despite the existence of several CAD systems aimed 

at detecting or grading prostate cancer, there is still room for the development of more robust 

and trustworthy systems. In the era of open science, these systems should benefit from previous 

research and methods developed for the various CAD steps to ensure better performance than 

the previous systems. However, the most important step for the future is to test the various 

CAD systems in the clinic and ensure that they meet the radiologists' expectations. This is 

crucial for building a trust relationship between the radiologists and the CAD systems, which 

will hopefully lead to the actual implementation of CAD in the clinic. 
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Abstract
Objectives  To develop and evaluate an automated method for prostate T2-weighted (T2W) image normalization using dual-
reference (fat and muscle) tissue.
Materials and methods  Transverse T2W images from the publicly available PROMISE12 (N = 80) and PROSTATEx 
(N = 202) challenge datasets, and an in-house collected dataset (N = 60) were used. Aggregate channel features object 
detectors were trained to detect reference fat and muscle tissue regions, which were processed and utilized to normalize the 
3D images by linear scaling. Mean prostate pseudo T2 values after normalization were compared to literature values. Inter-
patient histogram intersections of voxel intensities in the prostate were compared between our approach, the original images, 
and other commonly used normalization methods. Healthy vs. malignant tissue classification performance was compared 
before and after normalization.
Results  The prostate pseudo T2 values of the three tested datasets (mean ± standard deviation = 78.49 ± 9.42, 79.69 ± 6.34 and 
79.29 ± 6.30 ms) corresponded well to T2 values from literature (80 ± 34 ms). Our normalization approach resulted in signifi-
cantly higher (p < 0.001) inter-patient histogram intersections (median = 0.746) than the original images (median = 0.417) and 
most other normalization methods. Healthy vs. malignant classification also improved significantly (p < 0.001) in peripheral 
(AUC 0.826 vs. 0.769) and transition (AUC 0.743 vs. 0.678) zones.
Conclusion  An automated dual-reference tissue normalization of T2W images could help improve the quantitative assess-
ment of prostate cancer.

Keywords  Prostate · Reference tissue · Normalization · MRI · Object recognition

Introduction

Prostate cancer is the second most commonly diagnosed 
cancer and the leading cause of cancer-related deaths 
among men worldwide [1]. Multiparametric magnetic reso-
nance imaging (mpMRI) has been established as a valuable 

diagnostic tool for prostate cancer [2, 3]. T2-weighted (T2W) 
MR imaging is considered an essential pillar of mpMRI for 
prostate cancer diagnosis due to the high spatial resolu-
tion and the superior anatomical details it provides [3–5]. 
However, unlike other mpMRI sequences such as diffusion-
weighted and dynamic contrast-enhanced imaging, the use 
of T2W imaging has mainly been limited to a qualitative 
evaluation of prostate anomalies. Its utility for quantitative 
analysis is hindered by, among other things, non-standard 
signal intensity (SI) attributed to scanner parameters such 
as the field strength, coil type, signal amplification, and 
acquisition protocols [6–9]. To make use of T2W images 
for quantitative analysis, an image processing step called SI 
normalization is often required, which theoretically removes 
the variation in SI between images from different scan ses-
sions. Consequently, SI normalization enables comparing 
T2W image values from different patients (inter-patient 
comparison), patient follow-up at multiple scans over time 
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(intra-patient comparison), and tissue classification tasks in 
the setting of a radiomics or computer-assisted diagnosis 
approach [10, 11].

SI normalization is not new, and over the years, differ-
ent approaches have been proposed for prostate imaging. 
Due to their simplicity, histogram-based approaches, which 
typically depend on pre-set histogram landmarks to deform 
or rescale the SI [7, 12], have become the most commonly 
used [10, 13–16]. A drawback of these methods is that they 
usually rely on the content in the complete 2D or 3D image, 
which is subject to variation due to differences in scan set-
tings (e.g. the field-of-view) and patient-related factors 
(e.g. bladder filling). Recently, SI normalization utilizing 
single or multiple reference tissues has shown promise as 
an alternative to histogram-based methods [17–21]. In sin-
gle reference tissue normalization, the original T2W image 
SI is scaled by the SI in the corresponding reference tis-
sue region-of-interest (ROI). One common example of this 
in the prostate is normalization to the SI of the obturator 
internus or levator ani muscles [17, 22–24]. Multi-reference 
tissue normalization, on the other hand, utilizes the SIs of 
multiple reference tissues to create a linear or non-linear 
regression model to estimate the normalized T2W image 
values [18, 19]. The assumption is that reference tissue-
based normalization is less sensitive to variations in scan 
settings and patient-related factors. However, a key aspect 
of this approach is labelling the reference tissues, to enable 
SI extraction. Currently, this is done manually, which is a 
time-consuming and tedious process. Automated delineation 
of reference tissue ROIs would make the approach more effi-
cient and could possibly facilitate its integration into clini-
cal practice. This can for example be achieved using auto-
mated semantic segmentation or object detection methods. 
In comparison with semantic segmentation, object detection 
requires less processing power, time and data [25, 26].

The contribution of this work is a novel method for auto-
mated dual-reference tissue normalization of T2W images of 
the prostate, based on object recognition to extract the refer-
ence tissue ROIs. We compared the automatically extracted 
reference tissue intensities with those of manually delineated 
ROIs, and evaluated the merit of the proposed method for 
inter- and intra-patient comparison of T2W image intensities 
and for the classification of malignant lesions versus healthy 
prostate tissue.

Materials and methods

Datasets

In this study, transverse T2W images from three separate 
datasets were used: the PROMISE12 grand challenge dataset 
(N = 80) [27], the PROSTATEx challenge dataset (N = 202) 

[28] and a dataset of in-house collected T2W images from 
patients who underwent two sequential MRI scans for detec-
tion and biopsy-guiding, respectively (N = 60). The Regional 
Committee for Medical and Health Research Ethics (REC 
Mid Norway) approved the use of the in-house collected 
dataset (identifier 2017/576) and granted permission for pas-
sive consent to be used, whereas the two other datasets were 
publicly available.

The PROMISE12 dataset [27] consists of multi-centre 
and multi-vendor transverse T2W images obtained with dif-
ferent field strengths, acquisition protocols and coils. It also 
includes manual expert segmentations of the whole prostate 
for 50 cases. The PROSTATEx challenge dataset [28] con-
sists of pre-biopsy mpMRI sequences acquired at Radboud 
University Medical Centre, Nijmegen, Netherlands. The 
whole prostate, peripheral zone, and cancer-suspicious vol-
umes of interest (VOIs) were manually delineated by radi-
ologists (at Miller School of Medicine, Miami, FL, USA) 
based on targeted biopsy locations provided by the challenge 
organizers. The presence of clinically significant prostate 
cancer (Gleason score > 3 + 3) in the targeted biopsy cores 
was then used to label each cancer-suspicious VOI as a true 
positive (malignant) or false positive radiological finding. 
The rest of the prostate was considered healthy tissue.

The in-house collected dataset was obtained from St. 
Olavs Hospital, Trondheim University Hospital, Trond-
heim, Norway between March 2015 and December 2017. It 
consists of pairs of pre-biopsy 3 T images from 60 patients 
(median age = 65.5 years; range 47–75 years) acquired at two 
different time points: first, at the initial visit for detection of 
prostate cancer (scan 1), and second, during an MR-guided 
biopsy procedure (scan 2). The interval between scans ranged 
1–71 days with a median interval of 7 days. T2W imaging 
was performed on a Magnetom Skyra 3 T MRI system (Sie-
mens, Erlangen, Germany) with a turbo spin-echo sequence 
(Scan 1: repetition time/echo time = 4800–9520/104 ms, 
320 × 320 – 384 × 384 matrix size, 26–32 slices, 3 mm slice 
thickness and 0.5 × 0.5–0.6 × 0.6 mm2 in plane resolution. 
Scan 2: repetition time/echo time = 5660–7740/101–104 ms, 
320 × 320–384 × 384 matrix size, 19–26 slices, 3 mm slice 
thickness and 0.5 × 0.5–0.6 × 0.6 mm2 in plane resolution). 
The whole prostate volumes were manually delineated by a 
radiologist in training.

Proposed intensity normalization method

Figure  1 gives an overview of the proposed method, 
termed AutoRef. The method contains several tune-
able parameters, which were optimized as described in 
the next section. In the final, optimized version, the 3D 
T2W images were first pre-processed, which included N4 
bias field correction [29], rescaling to the 99th percen-
tile intensity value and resizing the transverse slices to 
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384 × 384 pixels with 0.5 × 0.5 mm in-plane resolution. 
Two separate aggregate channel features (ACF) object 
detectors [25] were then trained, using two training stages 
for the iterative training process, to detect rectangular 
ROIs containing fat and muscle (levator ani muscle) tis-
sue on the 2D transverse slices. Both object detectors 
were forced to focus on regions where the ROIs were 
expected to minimize the detection of unwanted struc-
tures. For fat, the focus region comprised the lower (pos-
terior) 50% of the image in the lower (inferior) 75% of 
the slices. For muscle, the focus region comprised the 
middle (posterior-anterior) 50% of the image in the mid-
dle (inferior-superior) 50% of the slices. The three slices 
containing the rectangular ROIs with the highest prob-
ability of fat/muscle were identified, and post-processed 
by Otsu thresholding [30] and morphological opening, 
with disk shape of one-pixel radius, to extract the larg-
est connected bright and dark structures in the detected 
rectangle, representing fat and muscle ROIs, respectively. 
The fat ( Ifat ) and muscle ( Imuscle) reference intensity val-
ues were then calculated as the 90th and 10th percen-
tiles, respectively, of the intensity values in these ROIs. 
Subsequently, the 3D image intensities ( I(x, y, z) ) were 
normalized to pseudo T2 values ( pT2(x, y, z) ) by linearly 
scaling Ifat and Imuscle to their respective T2 values at 3 T 
from literature ( T2fat = 121 ms and T2muscle = 40 ms) [31], 
using Eq. (1):

(1)
pT2(x, y, z) =

I(x, y, z) − Imuscle

Ifat − Imuscle
× (T2fat − T2muscle) + T2muscle.

Training, validation and testing

The PROMISE12 dataset was shuffled and split for train-
ing (N = 40), validation (N = 20), and testing (N = 20) of 
AutoRef. Since prostate segmentations were only available 
for 50 cases, the splitting was semi-random and controlled 
in a way that ensured that only cases with the required seg-
mentations were included in the validation and test subsets. 
The PROSTATEx and the in-house collected datasets were 
used for testing only.

The training and validation subsets were used to train 
the object detectors and to find the optimal pre- and post-
processing settings resulting in the best performance of 
AutoRef. An overview of the optimization results in the vali-
dation subset is provided in Online Resource 1. The trained 
detectors and optimal parameter settings, as described in the 
previous section, were subsequently applied to normalize 
the images in the PROMISE12 test subset, the PROSTATEx 
dataset and the in-house collected dataset.

Verification of reference tissue intensities

The reference tissue intensities extracted from muscle and 
fat tissue by AutoRef, Ifat and Imuscle , respectively, were com-
pared with those of manually drawn ROIs in the PROM-
ISE12 test subset. In the manual approach, a researcher with 
3 years of experience with prostate imaging (MRSS) deline-
ated three ROIs in both fat and muscle tissue on what were 
judged to be representative T2W slices by visual inspec-
tion. The 90th and 10th percentiles of the intensity values 
within the manual fat and muscle ROIs, respectively, were 

Fig. 1   Overview of AutoRef, the proposed normalization method. 
The T2W images were first pre-processed including bias field correc-
tion, rescaling and resizing. Rectangles containing fat/muscle were 
then detected slice by slice using trained aggregate channel features 
(ACF) detectors. The three slices containing rectangular regions with 

the highest probability of containing fat/muscle were identified and 
post-processed by Otsu thresholding and morphological opening to 
extract the largest connected fat/muscle region-of-interest (ROI). 
From these ROIs, fat/muscle reference intensities were obtained for 
normalization of the 3D image intensities
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compared to Ifat and Imuscle and the relative differences and 
absolute relative differences were calculated. Visual inspec-
tion of all automatically extracted fat and muscle ROIs from 
the PROMISE12 test subset, the PROSTATEx dataset, and 
the in-house collected dataset was performed by the same 
researcher to reveal any suboptimal ROIs. A ROI was con-
sidered suboptimal when it failed to detect the tissue of 
interest or covered additional regions not belonging to fat 
or muscle on any of the three slices.

Inter‑ and intra‑patient performance 
of normalization

The performance of AutoRef was compared to the origi-
nal images and three other automated normalization meth-
ods, commonly used in literature, i.e. histogram stretching 
(Eq. (2)) [8], histogram equalization (histeq function from 
MATLAB®), and Gaussian kernel normalization (Eq. (3)) 
[8]:

where Imax and Imin represent the maximum and minimum 
intensity values, respectively, in the original image I.

where � and � represent the mean and standard deviation 
of the voxel intensities in the original image I , respectively.

Furthermore, the performance of AutoRef using two 
reference tissues (as proposed) was compared to that of 
AutoRefmuscle (Eq. 4), which uses only muscle reference 
intensity values, as by several other studies [17, 22–24]:

where Imuscle represents the mean value of the automatically 
extracted muscle ROIs and T2muscle the muscle T2 value 
from literature.

The histogram intersections (Eq. 5) of whole prostate 
voxel intensities of each pair of patients within the PROM-
ISE12 test subset were used as a metric of inter-patient per-
formance. In addition, the PROSTATEx dataset was used to 
separately evaluate the inter-patient histogram intersections 
in the peripheral (PZ) and transition zone (TZ):

where Hx and Hy represent the intensity histograms of patient 
x and patient y , respectively, and n represents the number of 

(2)Inormalized(x, y, z) =
I(x, y, z) − Imin

Imax − Imin

(3)Inormalized(x, y, z) =
I(x, y, z) − �

�

(4)pT2(x, y, z) =
I(x, y, z)

Imuscle
× T2muscle,

(5)Intersection
(

Hx,Hy

)

=

n
∑

i=1

min
(

Hx(i),Hy(i)
)

histogram bins (set to 100). Hx and Hy were normalized to 
the total number of voxels in the prostate or zone.

The in-house collected dataset was used to assess the 
intra-patient performance, by measuring the whole prostate 
histogram intersection between the pair of consecutive scans 
of the same patient (Eq. 6):

where H1 and H2 represent the histograms for the first and 
second scans of the same patient, respectively, and n rep-
resents the number of histogram bins (set to 100). H1 and 
H1 were normalized to the total number of voxels in the 
prostate.

For all datasets, the pT2(x, y, z) values of prostate tissue 
obtained with AutoRef and AutoRefmuscle were compared 
to T2 values from the literature [31]. Furthermore, the 
pT2(x, y, z) values of prostate tissue obtained with AutoRef 
were compared between patients scanned with and without 
an endorectal coil.

Classification of malignant lesions versus healthy 
prostate tissue

Mean intensity values were extracted from the histologi-
cally verified malignant lesions and from healthy tissue 
in the PZ and TZ of the PROSTATEx dataset. The values 
were used as predictors in logistic regression models to dis-
tinguish healthy prostate tissue from malignant lesions in 
the PZ and TZ, separately. To ensure representative results 
least influenced by how the data was split, the models were 
trained and tested using 10 iterations with fivefold cross-
validation. In each iteration, the dataset was randomly split, 
in a controlled way, into training (4 folds) and testing (1 
fold) datasets, allowing each fold to be used once for testing. 
Receiver operating characteristic (ROC) curves were created 
to evaluate the performance of the classifier at each iteration 
and the mean and 95% confidence interval (CI) of the area 
under the curves (AUC) was reported.

Statistical analysis

Wilcoxon signed-rank tests were used to assess statisti-
cal differences between the manually and automatically 
obtained reference tissue intensities, and between the his-
togram intersections of the various normalization methods. 
Two-sample t tests were used to assess statistical differ-
ences between the pseudo T2 and literature T2 values of the 
prostate [31], and between the prostate pseudo T2 values 
of patients scanned with and without an endorectal coil. 
Wilcoxon rank-sum tests were used to assess statistical dif-
ferences between the mean intensity values of healthy and 

(6)Intersection
(

H1,H2

)

=

n
∑

i=1

min
(

H1(i),H2(i)
)
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malignant regions after normalization. DeLong’s method 
[32] was used to assess statistical differences between AUCs. 
The tests were followed by Benjamini–Hochberg correction 
for multiple comparisons [33] with false discovery rate of 
0.05. Corrected p values less than 0.05 were considered sta-
tistically significant.

All algorithms and analyses were implemented and per-
formed in MATLAB R2019b (The Mathworks, Nattick, MA, 
USA). The proposed algorithm will be made available on 
GitHub at https​://githu​b.com/ntnu-mr-cance​r/AutoR​ef.

Results

Verification of reference tissue intensities

Figure 2a shows the manually and automatically extracted 
fat and muscle intensities, respectively, for all cases in the 
PROMISE12 test subset before normalization. There were 
significant differences between the reference intensity values 
from manually and automatically detected fat (p = 0.048) 
and muscle (p = 0.018) ROIs, with relative differences 
(median (range)) of 2.52% (− 16.21 to 39.86%) for fat and 
7.03% (− 20.24 to 23.20%) for muscle. The absolute rela-
tive differences [median (range)] between the manual and 

automated approach were 5.25% (0.17–39.86%) for fat and 
9.10% (1.74–23.20%) for muscle intensities. Visual inspec-
tion revealed that automated ROIs were suboptimal in 4/20 
(20%), 4/202 (2%) and 0/120 (0%) cases for fat and in 0/20 
(0%), 3/202 (1.5%) and 0/120 (0%) for muscle ROIs in the 
PROMISE12 test subset, the PROSTATEx dataset and the 
in-house collected dataset, respectively, whereas the method 
performed well in all other cases. In the PROMISE12 test 
subset, 3/4 (75%) suboptimal ROIs were found in patients 
with an endorectal coil. Figure 2b shows representative 
examples of optimal ROIs automatically extracted with our 
method. All automatically extracted suboptimal ROIs are 
shown in Online Resource 2. It can be appreciated that the 
‘suboptimal parts’ of the ROIs are often relatively small and 
of similar image intensity compared to the ‘correct parts’ of 
the ROIs, so their impact on the normalization is limited as 
shown in Online Resource 2.

Inter‑ and intra‑patient evaluation of normalization 
performance

Figure 3 shows examples from the PROMISE12 test sub-
set, the PROSTATEx dataset, and the in-house collected 
dataset before and after normalization using AutoRef. 
The image intensities are more homogeneous within and 

Fig. 2   a The 90th and 10th percentiles of the fat and muscle intensities before normalization, respectively, in manually placed and automatically 
detected ROIs. b Representative examples of optimal fat (green) and muscle (red) ROIs automatically extracted with our method

https://github.com/ntnu-mr-cancer/AutoRef
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between the datasets after normalization. This improve-
ment is most obvious in the PROMISE12 dataset, which 
was acquired with varying protocols, field strengths, and 
at multiple centres.

The intensity histograms from the original and normal-
ized images of PROMISE12 test subset are displayed in 
Online Resource 3. Figure 4a and Table 1 show that AutoRef 
resulted in significantly higher inter-patient intersections 
than the original data and the other normalization methods, 
except for AutoRefmuscle.

Figure 4b, c and Table 1 also present the inter-patient 
histogram intersections for PZ and TZ of the PROSTATEx 
dataset. In both zones, the histogram intersections after 
normalization with AutoRef were significantly higher than 
those of the original data and the other normalization meth-
ods, except for histogram stretching in TZ.

The intra-patient histogram intersections between scan 
1 and scan 2 of the in-house collected dataset are shown in 
Fig. 4c and Table 2. AutoRef resulted in significantly higher 
intra-patient intersections than histogram equalization but 

performed similar to the original data and the other normali-
zation methods.

Figure 5 compares the pseudo T2 values of the whole 
prostate obtained with AutoRef and AutoRefmuscle with those 
reported in the literature (80 ± 34 ms) [31]. Using AutoRef, 
the mean ± standard deviation prostate pseudo T2 values 
were 78.49 ± 9.42 ms (p = 0.063), 79.69 ± 6.34 ms (p = 0.486) 
and 79.29 ± 6.30 ms (p = 0.161) for PROMISE12 test subset, 
the PROSTATEx dataset and the in-house collected dataset, 
respectively. Pseudo T2 values were not significantly differ-
ent between patients scanned with (83.15 ± 8.85 ms) or with-
out (79.36 ± 6.41 ms) an endorectal coil (p = 0.690). Using 
AutoRefmuscle, the prostate pseudo T2 values were significantly 
higher (p < 0.001) than literature values for all the datasets.

Classification of malignant lesions versus healthy 
prostate tissue

Figure 6a, b and Table 3 compare the performances (ROC 
curves and mean AUCs of the 10 iterations, respectively) of 

Fig. 3   Central slice through the prostates of five patients from the 
PROMISE12 test subset, the PROSTATEx dataset and the in-house 
collected dataset before (left panel) and after normalization (right 

panel). In both panels, the images were window-levelled from 0 to 2 
times the mean prostate intensity of all images in the respective data-
set
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Fig. 4   The inter-patient histogram intersections of the proposed 
method (AutoRef) compared to original and normalized images for 
the whole prostate (a), the peripheral (PZ; b) and transitional zone 
(TZ; c), respectively. The PROMISE12 test subset and PROSTA-
TEx dataset were used in a, and b and c, respectively. AutoRef inter-
sections were significantly higher (p < 0.001) than others, except 

for AutoRefmuscle in a (p = 0.424) and histogram stretching in c 
(p = 0.154). The histogram intersections between scan 1 and scan 2 
of the in-house collected dataset (d) of AutoRef were significantly 
higher than for histogram equalization (p < 0.001), but similar to 
those of the other methods
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Table 1   The inter-patient histogram intersections before (Original data) and after normalization with our proposed method (AutoRef) and the 
other investigated methods in the whole prostate, peripheral (PZ) and transition zone (TZ)

The PROMISE12 test subset and PROSTATEx dataset were used in Whole prostate, and PZ and TZ, respectively. The bold values indicate a sig-
nificant difference from AutoRef after correction for multiple testing

Original data Histogram stretching Histogram equalization Gaussian kernel AutoRefmuscle AutoRef

Whole prostate
 Median 0.417 0.351 0.465 0.712 0.750 0.746
 Range 0.000–0.945 0.003–0.958 0.054–0.835 0.244–0.960 0.302–0.951 0.387–0.945
 p value  < 0.001  < 0.001  < 0.001  < 0.001 0.424

PZ
 Median 0.714 0.734 0.665 0.741 0.729 0.749
 Range 0.118–0.967 0.202–0.965 0.165–0.898 0.196–0.974 0.185–0.968 0.197–0.970
 p value  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

TZ
 Median 0.743 0.799 0.708 0.792 0.796 0.796
 Range 0.144–0.984 0.093–0.981 0.111–0.919 0.208–0.983 0.111–0.984 0.126–0.980
 p value  < 0.001 0.154  < 0.001  < 0.001 0.003

Table 2   The intra-patient histogram intersections between scan 1 and scan 2 of the in-house collected dataset before (Original data) and after 
normalization with our proposed method (AutoRef) and the other investigated methods

The bold values indicate a significant difference from AutoRef after correction for multiple testing

Original data Histogram stretching Histogram equalization Gaussian kernel AutoRefmuscle AutoRef

Median 0.884 0.885 0.788 0.883 0.884 0.889
Range 0.565–0.968 0.568–0.966 0.340–0.890 0.573–0.969 0.563–0.961 0.557–0.964
p value 0.640 0.640  < 0.001 0.774 0.640

Fig. 5   Box and whisker plots of the mean prostate pseudo T2 val-
ues of the patients in the PROMISE12 test subset, the PROSTATEx 
dataset and the in-house collected dataset after normalization with the 
proposed dual-reference normalization method (AutoRef) and sin-

gle reference tissue normalization (AutoRefmuscle). The dashed lines 
correspond to the T2 values reported in literature. All the mean pros-
tate T2 values for AutoRefmuscle, but not AutoRef, were significantly 
higher than those reported in literature (p < 0.001)
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AutoRef and other methods in the classification of healthy 
tissue versus biopsy-confirmed cancer regions. In the PZ, 
AutoRef performed significantly better than the original data 
and the other normalization methods. In the TZ, the perfor-
mance was similar to Gaussian kernel normalization and 
AutoRefmuscle, but significantly better than the original data, 
histogram stretching and histogram equalization. Figure 6c 
shows box and whisker plots of the mean pseudo T2 values 
of healthy and malignant regions after AutoRef normaliza-
tion, which were significantly different in both the PZ and TZ 
(p < 0.001).

Discussion

In this paper, we propose a new method for automated 
dual-reference tissue normalization of T2W images of the 
prostate, which shows promise for quantitative assess-
ment of prostate cancer and could ease the comparison of 
T2-weighted images between and within patients. The pro-
posed method successfully uses a simple object detector 
to extract reference tissue intensities from fat and muscle 
surrounding the prostate, which are subsequently used for 

Fig. 6   The receiver operating characteristic curves and areas under 
the curves (AUC; mean of 10 iterations) for the proposed method 
(AutoRef), the original images and the other investigated normaliza-
tion methods in the peripheral (PZ; a) and transitional zone (TZ; b). 
In PZ, the AUC for AutoRef was significantly higher than that of the 

other methods (p < 0.001), whereas in TZ it was significantly higher 
than the original data (p < 0.001), histogram stretching (p = 0.010) 
and histogram equalization (p = 0.007). The mean pseudo T2 values 
(c) were significantly different between healthy and malignant regions 
in both the PZ and TZ. (p < 0.001)

Table 3   Areas under the curves (AUC; mean of 10 iterations) for the proposed method (AutoRef), the original images and the other investigated 
normalization methods when classifying healthy versus malignant tissues in the peripheral (PZ) and transition zone (TZ)

The bold values indicate a significant difference from AutoRef after correction for multiple testing
CI confidence interval

Original data Histogram stretching Histogram equalization Gaussian kernel AutoRefmuscle AutoRef

PZ
 AUC​ 0.769 0.782 0.766 0.804 0.801 0.826
 95% CI 0.765–0.772 0.778–0.787 0.761–0.771 0.800–0.808 0.797–0.805 0.822–0.830
 p value  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

TZ
 AUC​ 0.678 0.727 0.708 0.742 0.748 0.743
 95% CI 0.672–0.684 0.723–0.730 0.703–0.712 0.739–0.746 0.744–0.751 0.738–0.748
 p value  < 0.001 0.010 0.007 0.881 0.559
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intensity normalization of the 3D T2-weighted image. The 
proposed method generally resulted in higher inter-patient 
histogram intersections compared to the other investigated 
automated normalization methods, which indicates that the 
normalized intensity values in the prostate are more simi-
lar between images. Furthermore, the proposed method 
resulted in images with pseudo T2 values comparable to 
T2 values reported in the literature [31]. Lastly, as dem-
onstrated by the improved classification of healthy ver-
sus malignant tissue, the proposed method successfully 
reduced the inter-patient variation in T2W image intensi-
ties, which could facilitate the extraction and application 
of meaningful intensity-based image features for quantita-
tive assessment of prostate cancer, e.g. in a radiomics or 
computer-assisted diagnosis framework [34].

T2W normalization is paramount for the quantitative 
assessment of prostate cancer, and several methods have 
been previously proposed in the literature. Liu et al. [13] 
defined a non-parametric normalization standard as the 
median image intensity plus two times the inter-quartile 
range. Artan et al. [14] and Ozer et al. [15] normalized 
T2W images in a way similar to the Gaussian kernel 
method investigated here, but with the mean and stand-
ard deviation extracted from the PZ instead of the entire 
image. However, these methods require manual delineation 
of the PZ and might not be valid if the image intensities 
do not follow a Gaussian distribution [10]. Lemaitre et al. 
[10] chose to normalize the images using a parametric 
model assuming a Rician distribution of the voxel inten-
sities in the whole prostate. Yet differently, Nyúl et al. 
[7] proposed a two-stage method, wherein the first stage 
a template histogram with landmarks of interest is cre-
ated and in the second stage new histograms are mapped 
via linear transformation to the template. This method 
assumes that the MR images of the same sequence should 
have the same intensity distribution, which might not 
be the case for varying protocols. Vos et al. proposed a 
sequence-based approach, which depends on the original 
T2W signal, proton density value, a reference tissue, and a 
known sequence model to estimate new normalized T2W 
images [35]. Although this approach performs well, the 
intricate nature and additional scan time make its prac-
tical implementation difficult. Niaf et al. [20, 21] inves-
tigated a single reference tissue method that normalizes 
the image intensities by dividing by the mean intensity 
value of the bladder. Likewise, Peng et al. [17] normalized 
the images separately using each of the levator ani mus-
cle, urinary bladder, and pubic bone, and concluded that 
using levator ani muscle as a single reference tissue gave 
the best results. In this work, the performance of AutoRef 
using only muscle reference intensities was shown to be 
generally inferior to that based on a dual-reference tissue 
normalization approach, and unable to correctly map the 

image intensities to literature T2 values. Our method uses 
fat as a second reference tissue because it typically has 
high T2W intensity values, thus together with muscle cov-
ering the full range of expected prostate intensity values, 
it is present in all images and less vulnerable to external 
factors than for example the urinary bladder.

Recently, Stoilescu et al. [19] showed that multi-reference 
tissue normalization of T2W prostate images significantly 
improved prostate cancer classification accuracy in compari-
son to non-normalized images. Four reference tissues were 
used based on manually annotated ROIs, which currently 
hinders the implementation of the method in clinical prac-
tice. Therefore, in our work, we developed an automated 
approach for detecting ROIs to enable multi-reference tissue 
normalization using two reference tissues (fat and levator ani 
muscle). The ACF detector used in this work is a relatively 
simple, classical machine learning approach that was able to 
accurately detect the fat and muscle ROIs in nearly all cases, 
despite the small training dataset (N = 40). Exceptions were 
found in 8/342 (2%) cases for fat and 3/342 (1%) cases for 
muscle ROIs when considering all patients, and in 1/331 
(0.3%) and 3/331 (1%) cases, respectively, when consider-
ing patients scanned without an endorectal coil. The detec-
tion of fat thus performs worse in patients scanned with an 
endorectal coil but this may not pose a problem in clinical 
practice, as 3 T MRI with body surface coils is currently the 
recommended and preferred method. The detection of both 
fat and muscle may be further improved by using a larger 
dataset for training, while the method can also be extended 
to include more reference tissues if deemed necessary, which 
is subject of further investigation.

Although AutoRef generally performed better than or 
similar to the other normalization methods in all datasets, 
the largest differences were observed in the multi-centre, 
multi-vendor PROMISE12 dataset. In this dataset, images 
were acquired with 1.5 T or 3 T scanners, with or without an 
endorectal coil, and with different acquisition protocols, all 
of which are likely to influence the T2W image intensity. An 
important advantage of our method to the other investigated 
normalization methods is that the image intensities could be 
correctly mapped to literature T2 values [31], irrespective of 
these factors. The pseudo T2 values could be an interesting 
alternative to quantitative T2 mapping, given the limited 
scan time available in clinical practice, but this needs further 
investigation in studies where T2 maps are also acquired. 
However, it should be noted that AutoRef does not correct 
for local differences in signal intensities caused by the non-
uniform sensitivity of the receiver coils. This effect is espe-
cially apparent for images acquired with an endorectal coil, 
which typically shows an intensity profile inversely related 
to proximity to the coil. Although we showed that the mean 
pseudo T2 values of images acquired with an endorectal coil 
were comparable to those acquired with body surface coils, 
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there may be differences in intensity distribution within the 
prostate gland that are not accounted for by AutoRef.

In the intra-patient evaluation, AutoRef had similar intra-
patient histogram intersections compared to the original data 
and most of the other investigated methods. This probably 
reflects the limited variability in the in-house collected data-
set, which has been acquired at the same centre, the same 
scanner, with the same protocols at a relatively short interval 
between scans. It would be insightful to assess the perfor-
mance of the method in a dataset where the same patients 
are systematically scanned at different hospitals, but such 
data are probably scarce.

Normalization with the proposed method resulted in a 
significantly higher AUC for the classification of histologi-
cally verified PZ lesions compared to the other methods. For 
TZ lesions, the AUC was significantly higher than the origi-
nal data, histogram stretching and histogram equalization, 
and on par with the other normalization methods. However, 
the differences in the classification performance were rela-
tively small, which again may be the result of the limited 
variability in a dataset acquired at a single centre and with 
a single protocol [28]. Furthermore, considerable overlap 
in pseudo T2 values was still present between healthy tis-
sue and malignant lesions, especially in the TZ, indicating 
that pseudo T2 values alone may not be sufficient to detect 
prostate cancer in clinical practice.

Our study has some limitations. Quantitative T2 maps 
were not available for the patients included in this study, 
which hindered a direct comparison of the pseudo T2 values 
with a gold standard. Although we included several com-
monly applied automated normalization methods in this 
study, there are still many more described in the literature, as 
discussed above, that may perform better than those included 
here. In addition, it would be interesting to compare the per-
formance of the proposed object detector to that of semantic 
segmentation for detecting ROIs, which will be subject to 
further research. Despite these limitations, we have shown 
that our proposed method for automated dual-reference tis-
sue normalization performed equal to or better than other 
automated normalization methods. The method requires no 
manual input and the resulting images can be used for both 
quantitative and qualitative assessment of prostate cancer.

Conclusion

We successfully developed a method for automated dual-
reference tissue normalization of T2W MR images of the 
prostate using object recognition. The method was shown 
to reduce T2W intensity variation between scans and could 
improve the quantitative assessment of prostate cancer on 
MRI.
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Online Resource 1 

Optimization of the AutoRef pre- and post-processing settings on the 
validation set 

 
We optimized the following pre- and post-processing parameters on the validation set: type of scaling, 
number of the detector training stages, radius of the morphological opening structure, number of the 
evaluated slices, low (muscle) and high (fat) percentiles used to calculate the reference intensity values 
and focus regions (inferior-superior slices and posterior-anterior rows) for fat and muscle. The table 
below lists the effect on the median histogram intersection (HI) when changing one parameter at the 
time, while keeping the other parameters set at the bold values. The bold set of parameters was 
considered our optimal set as no further improvements of more than 1% could be achieved by additional 
tuning of the parameters (i.e. Change in HI median < 1% for all parameter values).  

 

Settings HI median Change in HI median (%) Selected as an optimal 
Scaling 

99th Percentile 0.76997959 0 X 
Median 0.77183996 0.241613039 

 

Max 0.76662009 -0.436310938 
 

None 0.75950878 -1.359881374 
 

Number of detector Stages 
1 0.77192269 0.252357431 

 

2 0.76997959 0 X 
3 0.76997959 0 

 

4 0.76997959 0 
 

5 0.76997959 0 
 

Morphological opening structure radius 
1 0.76997959 0 X 
2 0.77002793 0.006277583 

 

3 0.7677967 -0.283500407 
 

4 0.76807893 -0.246846188 
 

5 0.7675968 -0.309461357 
 

Number of evaluated Slices  
1 0.76806568 -0.248566275 

 

2 0.77272643 0.356741256 
 

3 0.76997959 0 X 
4 0.76859372 -0.179988324 

 

5 0.77103737 0.137376853 
 



Low percentile (Muscle) 
25 0.7736801 0.48059794 

 

20 0.77221788 0.290693982 
 

15 0.77017365 0.025203469 
 

10 0.76997959 0 X 
5 0.76839093 -0.206325746 

 

High percentile (Fat) 
75 0.76036739 -1.044199148 

 

80 0.76423774 -0.540504432 
 

85 0.76676418 -0.211708731 
 

90 0.76839093 0 X 
95 0.76178638 -0.859529925 

 

Focus Region Slices (Fat) 
All [0-100%] 0.76997959 0 

 

Lower Half [0-50%] 0.76997959 0 
 

lower 75% [0-75%] 0.76997959 0 X 
Middle [25%-75%] 0.76964891 -0.042946643 

 

Upper Half [50%-100%] 0.74567085 -3.157063397 
 

Upper 75% [25%-100%] 0.76964891 -0.042946643 
 

Focus Region Rows (Fat) 
All [0-100%] 0.76968231 -0.03860894 

 

Lower Half [0-50%] 0.76997959 0 X 
lower 75% [0-75%] 0.76968231 -0.03860894 

 

Middle [25%-75%] 0.75187963 -2.3507062 
 

Upper 75% [25%-100%] 0.75562408 -1.864402074 
 

Focus Region Slices (Muscle) 
All [0-100%] 0.77053318 0.071896978 

 

Lower Half [0-50%] 0.7737537 0.490156996 
 

lower 75% [0-75%] 0.76997959 0 
 

Middle [25%-75%] 0.76997959 0 X 
Upper Half [50%-100%] 0.7679594 -0.262369737 

 

Upper 75% [25%-100%] 0.77053318 0.071896978 
 

Focus Region Rows (Muscle) 
All [0-100%] 0.76913026 -0.110305212 

 

Lower Half [0-50%] 0.76709563 -0.374550451 
 

lower 75% [0-75%] 0.76913026 -0.110305212 
 

Middle [25%-75%] 0.76997959 0 X 
Upper 75% [25%-100%] 0.76912854 -0.110528935 
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Online Resource 2 

All suboptimal automatically extracted ROIs using AutoRef and their impact 
on the normalization 

 
 
The suboptimal ROIs impact on the normalization: 

To measure the suboptimal ROIs impact on the normalization, we compared the medians of 

the histogram intersections of all the cases with suboptimal ROIs with an equivalent number 

(overall and per dataset) of randomly selected cases with optimal ROIs. For each case, the 

median of the histogram intersections with the rest of its dataset cases, excluding those with 

suboptimal ROIs, was taken. Wilcoxon signed rank test was used to assess the statistical 

difference and p-values less than 0.05 were considered statistically significant. The test showed 

no significant difference between the medians (p=0.278). 

 



The suboptimal automatically extracted ROIs using AutoRef: 

Below, each row represents a case, while the columns are the 3 detected regions-of-interest 

(ROIs) for that case. The fat ROIs are in green and the muscle ROIs are in red. Under each case 

of PROMISE12 test subset, the absolute relative difference of the reference intensity values 

between the manual and automated approach has been given. 

Criteria:  

A case was considered a suboptimal when any of its extracted ROIs failed to detect the fat or 
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Abstract: Computer-aided detection and diagnosis (CAD) systems have the potential to improve
robustness and efficiency compared to traditional radiological reading of magnetic resonance imaging
(MRI). Fully automated segmentation of the prostate is a crucial step of CAD for prostate cancer,
but visual inspection is still required to detect poorly segmented cases. The aim of this work was
therefore to establish a fully automated quality control (QC) system for prostate segmentation based
on T2-weighted MRI. Four different deep learning-based segmentation methods were used to segment
the prostate for 585 patients. First order, shape and textural radiomics features were extracted from
the segmented prostate masks. A reference quality score (QS) was calculated for each automated
segmentation in comparison to a manual segmentation. A least absolute shrinkage and selection
operator (LASSO) was trained and optimized on a randomly assigned training dataset (N = 1756, 439
cases from each segmentation method) to build a generalizable linear regression model based on the
radiomics features that best estimated the reference QS. Subsequently, the model was used to estimate
the QSs for an independent testing dataset (N = 584, 146 cases from each segmentation method).
The mean ± standard deviation absolute error between the estimated and reference QSs was 5.47
± 6.33 on a scale from 0 to 100. In addition, we found a strong correlation between the estimated
and reference QSs (rho = 0.70). In conclusion, we developed an automated QC system that may be
helpful for evaluating the quality of automated prostate segmentations.

Keywords: prostate; segmentation; deep learning; radiomics; quality control; computer-aided
detection and diagnosis; MRI; machine learning

1. Introduction

Prostate cancer is one of the most commonly diagnosed cancers among men worldwide [1]. Precise
diagnosis is essential for management of the disease, where early detection and staging can increase the
survival rate [2]. The current diagnostic process includes measuring elevated prostate-specific antigen
(PSA) in the blood followed by prostate biopsy sampling and histopathology analysis. The addition
of multiparametric magnetic resonance imaging (mpMRI) and the establishment of international
guidelines for the image acquisition and interpretation have improved the diagnostic precision for
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prostate cancer [3,4]. However, the traditional, qualitative radiological interpretation of the images has
a number of limitations, such as high inter-observer variability [5], its time-consuming nature and a
lack of scalability of the manual data handling approach with increasing demand [6,7].

Automated computer-aided detection and diagnosis (CAD) systems, which exploit the quantitative
information in MR images, are providing promising solutions to overcome these limitations of
qualitative image interpretation and support clinical decision making [6,8]. Typically, the segmentation
of the organ of interest, in this case the prostate gland, constitutes one of the first important steps in
a CAD system workflow [7,9]. This step helps remove irrelevant image information and facilitates
subsequent extraction of quantitative image features (radiomics) from sub-regions/volumes such as
tumors for further analysis or diagnosis. However, manual segmentation of the prostate, which is
traditionally performed on T2-weighted (T2W) MR images by radiologists, is a time-consuming task.
Fortunately, recently developed segmentation algorithms have shown great promise to fully automate
this step [10–15], which would save valuable time and could facilitate the integration of CAD systems
in clinical practice.

Deep learning-based methods seem to be the most promising for this purpose, as they outperform
the more traditional methods in the PROMISE12 prostate segmentation grand challenge [16] (https:
//promise12.grand-challenge.org/evaluation/results). Interestingly, the top-performing methods in
this challenge scored better—on average—than a non-expert second reader. Nevertheless, none of
the proposed methods is perfect. Occasionally, each of the proposed segmentation methods results
in a few cases with unpredictable, suboptimal contours. Time-consuming manual verification of the
contours by radiologists is thus still a necessary step, which limits the implementation of automated
prostate segmentation algorithms in clinical practice. A quality control (QC) system that automatically
provides an assessment of the segmentation quality could help overcome this limitation and standardize
decisions about segmentation quality.

The aim of this study was to develop a fully automated QC system that generates a quality score for
assessing the accuracy of automated prostate segmentations on T2W MR images. We trained, optimized
and tested the proposed QC system using two data cohorts and four different deep learning-based
segmentation algorithms. We explored the importance of the radiomics features the system is based on
and compared a generalizable model with models trained on specific combinations of dataset and
segmentation algorithm. Finally, we show that the quality of the segmentations can be successfully
estimated by our QC system.

2. Materials and Methods

We propose a novel QC system, which is designed to automatically score the quality of prostate
segmentations on T2W MR images. Briefly, the inputs to the QC system are the T2W MR image and
the corresponding deep learning-based prostate segmentation. Radiomics features are extracted from
the segmented prostate image volume and fed into a least absolute shrinkage and selection operator
(LASSO) to build a linear regression model [17], which is trained to generate an estimated quality score
(eQS). Reference quality scores (rQSs) based on manual segmentations from experts are then used to
assess the performance of the QC system.

2.1. Dataset

In this study, the PROMISE12 grand challenge [16] training dataset (N = 50) was only used to train
and validate four different deep learning-based networks to segment three-dimensional (3D) prostate
volumes on T2W MR images. This dataset consists of multi-center and multi-vendor transverse T2W
MR images obtained with different acquisition protocols, field strengths and coils. Each of the trained
networks was subsequently used to segment T2W MR images from the PROSTATEx challenges [18]
(N = 346; seven cases excluded due to technical errors) and a dataset of in-house collected T2W MR
images (N = 246), resulting in a combined dataset (N = 585). The combined dataset was shuffled and
randomly split, in a controlled way, to ensure similar data distribution, into a training dataset (75%,
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N = 439) and a testing dataset (25%, N = 146) to respectively train/optimize and test the proposed
QC system.

The in-house collected dataset was obtained from St. Olavs Hospital, Trondheim University
Hospital, Trondheim, Norway between March 2015 and December 2017. It consists of pre-biopsy 3T
images from 246 patients (median age = 65; range: 44–76 years). T2W imaging was performed on a
Magnetom Skyra 3T MRI system (Siemens Healthineers, Erlangen, Germany) with a turbo spin-echo
sequence (repetition time/echo time = 4450–9520/101–108 ms, 320 × 320–384 × 384 matrix size, 26–36
slices, 3 mm slice thickness and 0.5 × 0.5–0.6 × 0.6 mm2 in plane resolution).

The Regional Committee for Medical and Health Research Ethics (REC Mid Norway) approved
the use of the in-house collected dataset (identifier 2017/576; 5 May 2017) and granted permission
for passive consent to be used. The two other datasets (PROMISE12 and PROSTATEx) were publicly
available and details can be found in [16,18].

2.2. Prostate Segmentation

For each dataset, manual segmentations of the prostate gland without seminal vesicles were
used as the gold standard. The PROMISE12 training dataset segmentations, used for training the
segmentation algorithms, were publicly available [16]. The segmentation for the PROSTATEx dataset
was performed by imaging experts with more than 25 years′ combined expertise in prostate imaging
and reviewed by radiation oncologists at Miller School of Medicine, Miami, FL, USA. The in-house
collected dataset segmentation was performed by a radiology resident (E.S.) at St. Olavs Hospital,
Trondheim University Hospital, Trondheim, Norway, under the supervision of a radiologist with more
than 10 years′ experience in prostate imaging. The manual segmentations of the PROSTATEx and
in-house collected dataset were used to calculate the rQSs (see 2.3. Reference Quality Scores).

The deep learning-based prostate segmentation was performed using four different convolutional
neural networks (CNNs), which are all variants of the famous U-Net with skip connections [15],
here further referred to as U-Net [19], V-Net [10], nnU-Net-2D [11] and nnU-Net-3D [11]. U-Net and
nnU-Net-2D perform the segmentation on a 2D slice-by-slice basis, whereas V-Net and nnU-Net-3D
perform the segmentation on a 3D volume basis. Prior to segmentation, all images were pre-processed
in accordance with the corresponding segmentation method. The segmentation pre-processing and
the network training, validation and testing were performed on a single NVIDIA Tesla P100 PCIe
16 GB GPU in Ubuntu 16.04.6 LTS system. U-Net was implemented with the Keras API (version
2.3.0; https://keras.io) backboned with TensorFlow (version 1.9.0; https://www.tensorflow.org) using
Python (version 2.7.12; Python Software Foundation, Wilmington, DE, USA). V-Net, nnU-Net-2D
and nnU-Net-3D were implemented with PyTorch (version 1.4.0; https://pytorch.org) using Python
(version 3.6.9).

2.3. Reference Quality Scores

To assess the true quality of the automated segmentations, rQSs were calculated in accordance
with Litjens et al. [16]. Briefly, the rQS is a combination of the dice similarity coefficient (DSC) [20],
the absolute relative volume difference (aRVD) [21], the 95% Hausdorff distance (95HD) [22] and the
average symmetric surface distance (ASD) [21], separately obtained from the whole prostate, apex
and base by comparing the automated segmentations with the manual segmentations (gold standard).
Here, we defined the apex and base of the prostate to be the inferior and superior third parts of the
mask-containing slices, respectively. However, before these 12 metrics can be combined in a single
rQS, they need to be transformed to a common scale [16,21]. To do this, a second observer (M.R.S.S.,
three years of experience with prostate imaging) manually segmented 50 randomly selected cases
from the combined dataset. These cases were used to calculate, for each metric, a linear function that
maps the metric on a scale from 0 to 100, with the average performance of the second observer fixed at
85. These linear functions were subsequently applied to the 12 metrics calculated for each automated
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segmentation and the resulting 12 scores were averaged to obtain a single rQS for each segmentation.
Details are provided in Appendix A.

2.4. Quality Control System

Figure 1 gives an overview of the proposed QC system. After preprocessing the T2W images, the
LASSO model was trained and optimized on the training dataset, and tested on the independent testing
dataset. All steps were implemented in MATLAB R2019b (MathWorks, Natick, MA, USA), except for
the feature extraction which was performed using Python (version 3.7.3). The proposed system will be
made available on GitHub at https://github.com/ntnu-mr-cancer/SegmentationQualityControl. Figure 2
shows an example of how the proposed QC system can be integrated in the image analysis pipeline.
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Figure 1. The pipeline of training (a) and testing (b) the proposed quality control system. The system
training starts from the normalized T2-weighted (T2W) image stack with its corresponding manual
prostate segmentation and automated segmentation delivered by a deep learning-based segmentation
method. These two segmentations are used to calculate the reference quality score and the automated
segmentation is also overlaid on the normalized image stack to extract various radiomics features.
The reference quality score and the features are then fed into a least absolute shrinkage and selection
operator (LASSO) to train and optimize a linear regression model that predicts the quality scores based
on the imaging features. During the system testing, the trained model uses the radiomics features
extracted from the overlaid automated segmentation on the normalized image stack to estimate a
quality score for a previously unseen case.
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2.4.1. Data Preparation

All T2W images were N4 bias field corrected [23] and intensity normalized using the AutoRef
method [24]. In an attempt to develop a generalizable QC model, the segmentations generated by the
four CNNs were combined in one dataset, producing a system training dataset of n = 1756 images (439
images from each CNN) and a system testing dataset of n = 584 images (146 images from each CNN)
with corresponding segmentations. The dataset was split on the patient level, so all four segmentations
belonging to one patient ended up in either the system training dataset or the system testing dataset.

Feature extraction from the preprocessed T2W images was performed using the automated
prostate segmentations as the region of interest. All the features were extracted using Pyradiomics
(version 2.2.0; an open-source Python package) [25]. Discretization of image intensity was performed
using the fixed bin size approach, as recommended by Pyradiomics. The bin width was set to 64
in correspondence with the relatively large volume of interest. The features (N = 107) consisted of
first-order features (N = 18), shape features (N = 14, performed on prostate 3D volume) and texture
features (N = 75, 24 features from the gray level co-occurrence matrix (GLCM; in 3D along 13 directions
(26-connectivity) and 1 pixel distance) [26], 16 features from the gray level run length matrix (GLRLM;
in 3D along 13 directions) [27], 16 features from the gray level size zone matrix (GLSZM; in 3D along
13 directions) [28], 14 features from the gray level dependence matrix (GLDM; 1 pixel distance) [29]
and 5 features from the neighboring gray tone difference matrix (NGTDM; 1 pixel distance) [30]). The
average of the GLCM, GLRLM and GLSZM features across the direction was used. A complete list
of the extracted features is given in Table S1. The features were extracted from the 3D volume of the
whole prostate, apex and base parts of the prostate, separately, giving a total of 321 features per case.

2.4.2. Model Training, Optimizing and Testing

A least absolute shrinkage and selection operator (LASSO) [17] was used to build a linear
regression model. The model was trained using the extracted features (N = 321) as predictors and the
rQSs as responses. The LASSO, by nature, performs feature selection to enhance the model accuracy
and interpretability [31]. How many features are selected depends on the regularization parameter
lambda, which needs to be optimized. We employed a 5-fold cross-validation scheme to find the
optimal lambda, here defined as the model returning the lowest mean squared errors between the eQS
and rQS while satisfying a non-biased distribution as visualized by Bland–Altman plots [32].

The optimized model was tested and evaluated on the system testing dataset, returning an eQS for
each segmentation based on features extracted from the deep learning-based prostate segmentation in
the T2W MR image. If the returned eQS was > 100 it was set to 100 and if it was < 0 it was set to 0. The
mean absolute error (MAE) and Spearman’s rank test between eQSs and rQSs were used to evaluate
the performance of the QC system. This was done on all the cases of the system testing dataset (General
model), as well as separately for each of the eight combinations of dataset and segmentation method
(sub-results from the General model; e.g., PROSTATEx—U-Net). The sub-results from the General
model were also compared to the performance of (non-generalizable) models specifically trained on
each combination of dataset and segmentation method. The manual and automated segmentations
belonging to outliers of the tested General model were visually inspected by a researcher with three
years of experience with prostate imaging (M.R.S.S.).

3. Results

3.1. Reference Quality Scores

The rQSs of the system training and testing dataset segmentations are presented in Figure 3. The
maximum, mean ± standard deviation and minimum rQS of the combined dataset were 98.65, 82.26
± 12.19 and 34.24, respectively, for the system training dataset and 98.95, 82.51 ± 12.22 and 26.24,
respectively, for the system testing dataset. Figure 3 shows that the distribution of rQSs varies both
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between datasets and among the segmentation methods, indicating that the performance of automated
prostate segmentation depends on both the dataset and the method used.
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3.2. Training and Optimization

The maximum, mean ± standard deviation and minimum eQS of the General model were 98.04,
82.26 ± 10.71 and 28.06, respectively, for the system training dataset.
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The optimal lambda was found to be 0.01, which resulted in the selection of 142 out of 321
radiomics features in the trained General LASSO model. Figure 4 shows the distribution of the selected
features. Overall, 46.30%, 76.19%, 45.83%, 20.83%, 41.67%, 33.34% and 66.67% of the extracted first
order, shape, GLCM, GLRLM, GLSZM, GLDM and NGTDM features were selected, respectively.
Further details of the trained model are provided in Table S2. The details of the eight non-generalizable
models are provided in Tables S3–S10.
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Figure 4. The distribution of the selected features in the optimized General model.

Figure 5 shows the overlap between the selected features in the PROSTATEx and in-house datasets
of non-generalizable models trained on data processed with the same segmentation method. To
account for the high co-linearity between features, overlap was defined as the selection of the same
feature or a highly correlated feature (rho > 0.9). For each segmentation method, we found a high
number of overlapping features (directly or highly correlated), indicating that the models extracted
similar features irrespective of dataset.
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Figure 5. The overlap between the features in the PROSTATEx (gray) and in-house (blue) datasets
of the same segmentation method (e.g., overlap between the “PROSTATEx—U-Net model” and
“In-house—U-Net model”). The intersection area presents the overlapping features, whereas the areas
out of the intersection present the set of features unique to each dataset.
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3.3. Testing

For the system testing dataset, the maximum, mean ± standard deviation and minimum eQS of
the General model were 97.60, 82.03 ± 11.02 and 0.00, respectively.

The performance of the tested models is presented in Table 1. Table 2 presents sub-results from
the tested General model, for direct comparison with the non-generalizable models. Sub-results from
the General model resulted in lower MAE in 7/8 cases than their non-generalizable counterparts,
indicating that the overall performance of the General model is better than the non-generalizable
models. Nevertheless, it should be noted that the sub-results vary considerably. This is especially
apparent from the difference in slope (ideally 1), intercept (ideally 0) and rho (ideally 1) between results
from the PROSTATEx and in-house datasets.

Table 1. The performance evaluation of the separately tested models.

Model N MAE ± SD IQR Slope Intercept Rho Correlation p-Value

General 584 5.37 ± 11.02 9.32 0.72 22.40 0.70 <0.001
PROSTATEx—U-Net 89 5.48 ± 9.04 7.20 0.67 27.83 0.49 <0.001
PROSTATEx—V-Net 89 5.91 ± 8.21 6.80 0.40 50.43 0.43 <0.001

PROSTATEx—nnU-Net-2D 89 5.14 ± 6.04 5.96 0.40 51.25 0.41 <0.001
PROSTATEx—nnU-Net-3D 89 5.89 ± 7.79 5.64 0.47 44.97 0.40 <0.001

In-house—U-Net 57 9.55 ± 17.24 22.95 0.86 7.92 0.70 <0.001
In-house—V-Net 57 6.58 ± 13.01 12.33 1.07 −9.55 0.55 <0.001

In-house—nnU-Net-2D 57 8.18 ± 14.2 21.26 0.71 21.99 0.67 <0.001
In-house—nnU-Net-3D 57 8.35 ± 19.02 14.78 0.75 20.73 0.48 <0.001

N: Number of segmentations; MAE: Mean absolute error; SD: Standard deviation of the absolute error; IQR:
Interquartile range.

Table 2. Sub-results from the tested General model performance evaluation.

Sub-Results Combination N MAE ± SD IQR Slope Intercept Rho Correlation p-Value

PROSTATEx—U-Net 89 5.24 ± 5.28 6.20 0.36 52.69 0.50 <0.001
PROSTATEx—V-Net 89 5.50 ± 4.67 5.33 0.27 61.28 0.38 <0.001

PROSTATEx—nnU-Net-2D 89 5.41 ± 4.46 5.37 0.26 62.80 0.43 <0.001
PROSTATEx—nnU-Net-3D 89 4.85 ± 5.76 6.12 0.35 57.17 0.50 <0.001

In-house—U-Net 57 7.27 ± 12.61 19.84 0.73 17.59 0.76 <0.001
In-house—V-Net 57 4.39 ± 6.64 6.47 0.59 34.65 0.70 <0.001

In-house—nnU-Net-2D 57 4.84 ± 12.4 17.78 0.78 16.90 0.87 <0.001
In-house—nnU-Net-3D 57 5.76 ± 20.79 10.17 1.02 −3.50 0.74 <0.001

N: Number of segmentations; MAE: Mean absolute error; SD: Standard deviation of the absolute error; IQR:
Interquartile range.

Figure 6a shows the linear fit of the eQSs for the General model with examples of segmentations.
The segmentations of the cases outside of the 95% prediction interval were visually inspected. We
subjectively judged the eQS to be extremely overestimated in 2/9 segmentations that were over the
95% prediction interval, and extremely underestimated in 3/18 segmentations that were under the 95%
prediction interval. The rest of the visually inspected segmentations were judged to have an eQS that
acceptably represented the quality of the automated segmentation. All of the segmentations over the
95% prediction interval belonged to the PROSTATEx dataset, and all of the segmentations under the
95% prediction interval belonged to the in-house dataset. Interestingly, in 8/27 segmentations, the
discrepancy between the eQS and rQS was judged to result from a sub-optimal manual segmentation.
Examples of over- and underestimated segmentations are shown in Figure 6a. Figure 6b shows the
difference between the eQSs and rQSs of the General model. The mean difference was −0.48, with a
tendency for overestimating cases with a low rQS and underestimating cases with a high rQS.
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Figure 6. (a) The linear fit of the estimated quality scores with 95% prediction interval of the General
model with examples of segmentations. Example 1 presents a case where the model accurately predicted
the quality score (QS) of a low-quality automated segmentation; Example 2 presents a case where the
model extremely underestimated the QS of a low-quality automated segmentation, the automated
segmentation here covered parts of the rectum and the bladder; Example 3 presents a case where
the model extremely overestimated the QS of a low-quality automated segmentation, the manual
segmentation here misses the peripheral zone; Example 4 presents a case where the model slightly
underestimated the QS of a high-quality automated segmentation, the automated segmentation here
was slightly over segmented; Example 5 presents a case where the model accurately predicted the QS of
a high-quality automated segmentation; (b) the difference between the estimated and reference quality
scores of the General model.

The linear fits of the eight non-generalizable models and the sub-results from the General model
are presented in Figure 7. It can be appreciated that the slopes and intercepts of the models/sub-results
associated with the in-house dataset were better than those associated with the PROSTATEx dataset.
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4. Discussion

Automated segmentation of the prostate is a crucial step in the CAD of prostate cancer, but quality
control and possibly adjustment by a trained radiologist is still required. In this work, we present a
fully automated QC system that aims to present the user with an estimated score indicative of the
segmentation quality. This system could function as a safety net that saves time and costs, standardizes
the decision about the segmentation accuracy and thus facilitate the clinical implementation of
automated prostate segmentation algorithms. The system could be specifically useful for clinical
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applications that are sensitive to errors in segmentation, such as MRI–ultrasound fusion for targeted
prostate biopsies, which is currently becoming a clinical standard procedure [33], and prostate-targeted
MR-guided radiotherapy, which has been implemented in the treatment of prostate cancer patients
during the last few years [34].

Our results indicate that the proposed QC system could be helpful for this purpose. Overall,
the General model had better performance than the non-generalizable models. We found a strong
correlation between the rQSs and eQSs (rho = 0.70) and MAE values less than the standard deviation
between the experts and the second observer segmentations (5.37 vs. 7.76), implying that errors were
in an acceptable range. In addition, the mean of the differences between the eQSs and rQSs was low
(mean = −0.48). Despite the overall good performance, some of the eQSs of the segmentations were
over- or underestimated. This can be partly explained by the fact that the rQSs, used as input for
training the model, were imbalanced and skewed towards high scores. This probably had an effect
on the model performance, leading to a higher number of over- and underestimated segmentations
around the low rQSs. Indeed, the non-generalizable models that had the most balanced distribution of
rQSs in the training dataset (e.g., “In-house—U-Net” and “In-house—nnU-Net_2D”) performed better
than the other models.

T2W MRI clearly depicts the borders and anatomy of the prostate gland, and thus constitutes an
excellent starting point for both prostate segmentation algorithms and the proposed QC system. In
this work, we implemented four deep learning-based segmentation methods using two different T2W
MRI datasets. Combining these datasets made the proposed system more generalizable and robust,
and it is thus potentially applicable to other segmentation methods and datasets. However, we also
showed that the model did not perform well for all combinations of dataset and segmentation method.
Consequently, the proposed QC system should be carefully tested and evaluated on new data and
methods before application.

The first-order, shape and texture features were investigated because they describe distinct
characteristics of the volume of interest. Our QC system was trained to find common features and
assess the segmentation quality among the investigated cases. We selected the LASSO model due to its
model interpretability advantage [31] and its good performance in multiple radiomics studies [35–37].
To calculate the rQS, we chose to use the established PROMISE12 challenge evaluation metric [16] as it
imparts a comprehensive overview of the segmentation accuracy, and shows interest in the prostate
apex and base segmentations, which are the most difficult parts of the prostate gland to segment. It is
paramount to segment these two sections correctly in some of the clinical applications and procedures,
e.g., in MRI–ultrasound fusion for targeted prostate biopsy [33]. Similar to Litjens et al. [16], the
average performance of the second observer was fixed at 85 during the rQS calculation due to the
relatively good correspondence between the second observer segmentations and the gold standard.

To develop a flexible system, we chose to train a regression model instead of a classifier. A
classifier would require a fixed threshold to distinguish the good and poor rQSs, which is challenging
and depends on the targeted clinical application. Moreover, a fixed threshold may restrict the system’s
generalizability. Depending on the desired application and corresponding acceptable segmentation
error margin, a threshold can be set to distinguish poor from acceptable segmentations (e.g., Figure 2).
The QC system could thus save time for radiologists, as many of the segmentations can be used without
further manual verification; the total computational time to generate an automated segmentation and
corresponding eQS was less than one minute per case on the described computing system, which is
drastically less than the time required by a radiologist to do the same task. In addition, the system
could standardize the decision about the segmentation accuracy and build confidence using the deep
learning-based algorithms.

All the different types of features available in Pyradiomics were used in the trained General
model. However, shape features were found to be the most important, since approximately 76% of
them were selected. This finding is in accordance with the way the CNNs work, gradually moving
from shape-based to texture-based features through the layers [38]. Interestingly, compared to features
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extracted from the apex and the whole prostate, a higher number of features was selected from the
base of the prostate for the model training. This potentially reflects how difficult it is to segment—both
manually and automatically—the prostate base due to the variability between patients [16].

It could be noticed from Figure 3 that the rQS distributions are wider and more balanced in the
case of the in-house dataset. This has a positive effect on the performance of the non-generalizable
models as well as the General model’s sub-results associated with the in-house dataset. This is
especially noticeable from the low eQSs, which are closer to the unity line than those associated with
the PROSTATEx dataset. The high overlap between the features of the non-generalizable models
trained on the PROSTATEx and the in-house datasets indicates that the performance difference is
probably due to the input data, and not caused by differences in the selected dataset features. For
future work, the model performance could potentially be enhanced by increasing the number of low
rQSs by stopping the CNN training early, i.e., before finishing the recommended number of iterations.

Despite the acceptable performance of the QC system General model, there were some outliers,
here defined as the eQSs outside the 95% prediction interval limits. Visual inspection revealed that the
eQSs of the segmentations actually accurately represented the quality of the automated segmentations
for most of these over- and underestimated cases. It was found that 8/9 segmentations over the 95%
prediction interval outliers belonged to the four CNN segmentations of two patients. The manual
segmentation of one of these patients was missing the contour in some of the slices in the apex and
the base, and not properly covering the peripheral zone in the middle part of the prostate gland (see
Example 3 in Figure 6a). The manual segmentation of the other patient did not include the peripheral
zone in all slices from base to middle prostate. The automated segmentations associated with an
underestimated eQS included in many cases small areas outside of the regions of interest (see Example
2 in Figure 6a). The visual inspection also revealed that all of the overestimated cases belonged to the
PROSTATEx dataset and all of the underestimated cases belonged to the in-house dataset, which might
be explained by the distribution of the rQSs used in training the system.

In this study, we propose a QC system that estimates the quality of automated prostate
segmentations based on the shape of the segmentation mask, and the histogram intensity and
texture of the underlying T2W image. Another interesting approach, which requires an additional
step, was recently proposed by Valindria et al. [39]. In their reverse classification accuracy method, a
segmentation model was built from the segmentation mask and corresponding image of a single new
case (lacking ground truth). Subsequently, this model was applied to all images of a database with
corresponding expert segmentations. Under the assumption that the same segmentation model should
work for at least one of these images, the best segmentation accuracy (DSC) is assumed to reflect the
accuracy of the newly segmented case. Robinson et al. [40] showed that this approach works well for
QC of segmentation of the heart in cardiovascular MRI. Yet another interesting approach was recently
presented by Roy et al. [41], in which a structure-wise uncertainty estimate was intrinsically included
in a CNN algorithm for brain segmentation on T1 MR images. This approach keeps the drop-out layers
of the CNN active during test time, to produce multiple segmentation variants from which uncertainty
measures can be calculated. One disadvantage compared to our system is that Roy et al.’s approach
cannot be easily generalized to other segmentation methods. Moreover, unlike our system, both of the
aforementioned approaches used only volume-based segmentation accuracy metrics and did not take
boundary-based metrics into consideration. To the best of our knowledge, these methods have not
yet been tested for prostate segmentation. Although they are more complex, it will be interesting to
compare them with our system in future work.

Our study has limitations. The number of cases with a low rQS was relatively small; a more
balanced dataset would probably have led to a more robust system over all datasets and segmentation
methods and would have given better insight into the system’s potential. In addition, there are other
radiomics features such as wavelet transformation-based texture features, which were not include
in our model. These features could potentially enhance the performance of the system at the cost of
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generating a more complex model and expanding the computational time. For these reasons, they
have not been used in this study, but their additional value will be investigated in future work.

5. Conclusions

We propose a QC system for estimating the quality of automated segmentation of the prostate
in T2W MR images, which could be an important step towards the clinical implementation of
computer-aided detection and diagnosis of prostate cancer. The performance of the generalizable
model is acceptable in regard to estimating the segmentation quality scores, but varies between
datasets and segmentation methods. The system is transparent and could save considerable time and
standardize decision-making in clinical practice, albeit careful implementation and testing is required.
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Appendix A

The metrics we used to calculate the rQSs, as mentioned in Section 2.3. Reference Quality Scores,
are defined in Equations (A1), (A2), (A4) and (A5). Equation (A3) was required to enable the calculation
of Equations (A4) and (A5). The linear mapping function that we used is defined in Equation (A6). All
calculations are in accordance with Litjens et al. [16].

DSC (X,Y) = 2|X∩Y|/(|X| + |Y|) (A1)

where X and Y represent the reference and automated segmentation voxels, respectively.

aRVD (X,Y) = |(Y/X − 1) × 100| (A2)

to calculate 95HD and ASD, the Euclidean distance of the surface point sets (dH) from the reference
(Xs) and automated (Ys) segmentations was measured using Equation (A3):

dH (Xs, Ys) = max
x∈Xs

(min
y∈Ys

d(x, y)) (A3)

where d is the Euclidean distance operator.

95HD = max (P95 (dH (Xs,Ys)), P95 (dH (Ys,Xs))) (A4)

http://www.mdpi.com/2075-4418/10/9/714/s1
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where P95 represents the 95th percentile of dH.

ASD (Xs, Ys) = (
∑

x∈Xs min
y∈Ys

d(x, y) +
∑

y∈Ys min
x∈Xs

d(y, x))/(NXs + NYs) (A5)

where NXs and NYs represent the number of surface points of the reference and automated segmentations,
respectively.

metric score (Z) = max (aZ + b, 0) (A6)

where Z is the average unmapped metric value. The variables a and b were determined by solving two
equations through setting the metric score to equal 85, representing the average performance of the
second observer, and a perfect score to equal 100.
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Table S1. List of the extracted Radiomics features. The shape features were extracted from the 3-
dimensional volume. 

First order Shape 
10Percentile Elongation 
90Percentile Flatness 

Energy Least Axis Length 
Entropy Major Axis Length 

Interquartile Range Maximum 2D Diameter Column 
Kurtosis Maximum 2D DiameterRow 

Maximum Maximum 2D DiameterSlice 
Mean Absolute Deviation Maximum 3D Diameter 

Mean Mesh Volume 
Median Minor Axis Length 

Minimum Sphericity 
Range Surface Area 

Robust Mean Absolute Deviation Surface Volume Ratio 
Root Mean Squared Voxel Volume 

Skewness  
Total Energy  
Uniformity  

Variance  
  

GLCM GLRLM 
Autocorrelation Gray Level Non Uniformity 

Cluster Prominence Gray Level Non Uniformity Normalized 
Cluster Shade Gray Level Variance 

Cluster Tendency High Gray Level Run Emphasis 
Contrast Long Run Emphasis 

Correlation Long Run High Gray Level Emphasis 
Difference Average Long Run Low Gray Level Emphasis 
Difference Entropy Low Gray Level Run Emphasis 
Difference Variance Run Entropy 
Inverse Difference Run Length Non Uniformity 

Inverse Difference Moment Run Length Non Uniformity Normalized 
Inverse Difference Moment Normalized Run Percentage 

Inverse Difference Normalized Run Variance 
Informational Measure of Correlation1 Short Run Emphasis 
Informational Measure of Correlation2 Short Run High Gray Level Emphasis 

Inverse Variance Short Run Low Gray Level Emphasis 
Joint Average  
Joint Energy  
Joint Entropy  

Maximal Correlation Coefficient  
Maximum Probability  

Sum Average  
Sum Entropy  
Sum Squares  
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GLSZM GLDM 
Gray Level Non Uniformity Dependence Entropy 

Gray Level Non Uniformity Normalized Dependence Non Uniformity 
Gray Level Variance Dependence Non Uniformity Normalized 

High Gray Level Zone Emphasis Dependence Variance 
Large Area Emphasis Gray Level Non Uniformity 

Large Area High Gray Level Emphasis Gray Level Variance 
Large Area Low Gray Level Emphasis High Gray Level Emphasis 

Low Gray Level Zone Emphasis Large Dependence Emphasis 
Size Zone Non Uniformity Large Dependence High Gray Level Emphasis 

Size Zone Non Uniformity Normalized Large Dependence Low Gray Level Emphasis 
Small Area Emphasis Low Gray Level Emphasis 

Small Area High Gray Level Emphasis Small Dependence Emphasis 
Small Area Low Gray Level Emphasis Small Dependence High Gray Level Emphasis 

Zone Entropy Small Dependence Low Gray Level Emphasis 
Zone Percentage  
Zone Variance  

  
NGTDM  
Busyness  

Coarseness  
Complexity  

Contrast  
Strength  

 

Table S2. The trained General model intercept and coefficients. 

Feature Coefficient 
Intercept -589.649 

firstorder_10Percentile_WP -0.146612531 
firstorder_90Percentile_WP 0.314 

firstorder_Kurtosis_WP -0.117812674 
firstorder_Maximum_WP -0.084492677 
firstorder_Skewness_WP 0.593 

firstorder_TotalEnergy_WP 1.02358E-08 
firstorder_Uniformity_WP 230.905 

shape_Elongation_WP 5.983 
shape_Flatness_WP 4.539 

shape_MajorAxisLength_WP -0.06845567 
shape_Maximum2DDiameterColumn_WP -0.230560053 

shape_Maximum2DDiameterRow_WP -0.197985328 
shape_Maximum2DDiameterSlice_WP 0.097 

shape_Maximum3DDiameter_WP -0.017992308 
shape_Sphericity_WP 60.282 

shape_SurfaceArea_WP 0.000246851 
shape_SurfaceVolumeRatio_WP 14.199 

shape_VoxelVolume_WP 1.89481E-05 
glcm_Autocorrelation_WP 0.012 

glcm_ClusterProminence_WP 2.54466E-06 
glcm_ClusterShade_WP -0.000307025 
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glcm_Correlation_WP -6.007937184 
glcm_Idmn_WP 399.583 
glcm_Idn_WP 39.058 

glcm_Imc2_WP -2.099325012 
glcm_MCC_WP 1.038 

glcm_MaximumProbability_WP 399.127 
glcm_SumSquares_WP -0.009626445 

glrlm_GrayLevelNonUniformity_WP 8.3781E-05 
glrlm_RunEntropy_WP -3.564375279 

glrlm_ShortRunEmphasis_WP 169.42 
glrlm_ShortRunLowGrayLevelEmphasis_WP -94.32961035 

glszm_GrayLevelNonUniformityNormalized_WP -6.943523116 
glszm_HighGrayLevelZoneEmphasis_WP -0.000191147 

glszm_LargeAreaEmphasis_WP -7.997E-05 
glszm_LargeAreaHighGrayLevelEmphasis_WP -1.77614E-07 

glszm_LowGrayLevelZoneEmphasis_WP -826.0651781 
glszm_SizeZoneNonUniformity_WP 0.00055125 

glszm_SmallAreaEmphasis_WP 13.466 
ngtdm_Coarseness_WP -1711.077441 
ngtdm_Complexity_WP -1.5201E-05 

ngtdm_Contrast_WP -41.04467909 
gldm_LargeDependenceHighGrayLevelEmphasis_WP -0.001140483 
gldm_LargeDependenceLowGrayLevelEmphasis_WP 2.304 
gldm_SmallDependenceLowGrayLevelEmphasis_WP 4037.305 

firstorder_10Percentile_Apex 0.07 
firstorder_90Percentile_Apex 0.005208716 

firstorder_InterquartileRange_Apex -0.167191767 
firstorder_Kurtosis_Apex -1.413813301 

firstorder_Maximum_Apex 0.002036756 
firstorder_Range_Apex 0.022 

firstorder_TotalEnergy_Apex 3.86153E-09 
firstorder_Variance_Apex -0.003263068 

shape_Flatness_Apex 4.344 
shape_LeastAxisLength_Apex -0.25878969 
shape_MajorAxisLength_Apex -0.181309904 

shape_Maximum2DDiameterColumn_Apex 0.144 
shape_Maximum2DDiameterRow_Apex -0.05676138 
shape_Maximum2DDiameterSlice_Apex -0.160179193 

shape_Maximum3DDiameter_Apex 0.128 
shape_MinorAxisLength_Apex -0.078853106 

shape_Sphericity_Apex -18.44345633 
shape_SurfaceVolumeRatio_Apex -8.651565013 

glcm_Autocorrelation_Apex 0.002396675 
glcm_ClusterProminence_Apex 1.58546E-05 

glcm_ClusterShade_Apex -0.000233358 
glcm_Contrast_Apex 0.024 

glcm_DifferenceEntropy_Apex -3.181807907 
glcm_Imc2_Apex -24.38850896 

glcm_InverseVariance_Apex -4.997607902 
glcm_JointAverage_Apex 0.257 

glcm_MCC_Apex -5.063286745 
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glcm_MaximumProbability_Apex 274.934 
glcm_SumAverage_Apex 0.000565326 
glcm_SumEntropy_Apex 8.527 

glrlm_GrayLevelNonUniformityNormalized_Apex 29.468 
glszm_LowGrayLevelZoneEmphasis_Apex -74.12210353 

glszm_SizeZoneNonUniformity_Apex -0.001095124 
glszm_SmallAreaEmphasis_Apex -21.1662332 

glszm_SmallAreaHighGrayLevelEmphasis_Apex 0.000109585 
glszm_SmallAreaLowGrayLevelEmphasis_Apex -646.1424857 

ngtdm_Coarseness_Apex -100.5948909 
ngtdm_Complexity_Apex -0.0004838 

ngtdm_Contrast_Apex -9.923565475 
gldm_DependenceNonUniformityNormalized_Apex -8.445707876 

gldm_DependenceVariance_Apex 1.657 
gldm_GrayLevelNonUniformity_Apex 0.002130354 

gldm_LargeDependenceLowGrayLevelEmphasis_Apex 11.498 
gldm_SmallDependenceLowGrayLevelEmphasis_Apex 1392.455 

firstorder_10Percentile_Base -0.04819649 
firstorder_InterquartileRange_Base 0.023 

firstorder_Kurtosis_Base 0.099 
firstorder_Median_Base 0.093 

firstorder_Minimum_Base 0.067 
firstorder_Range_Base -0.024171931 

firstorder_RobustMeanAbsoluteDeviation_Base 0.005885974 
firstorder_Skewness_Base 0.311 

firstorder_TotalEnergy_Base -5.06827E-08 
firstorder_Variance_Base -0.000494672 
shape_Elongation_Base 7.267 

shape_Flatness_Base -7.148647697 
shape_MajorAxisLength_Base 0.015 

shape_Maximum2DDiameterColumn_Base 0.088 
shape_Maximum2DDiameterRow_Base -0.029136784 
shape_Maximum2DDiameterSlice_Base 0.145 

shape_Maximum3DDiameter_Base -0.15695807 
shape_MinorAxisLength_Base -0.299508723 

shape_Sphericity_Base 7.676 
shape_SurfaceArea_Base 0.001355521 

shape_SurfaceVolumeRatio_Base -7.966227392 
glcm_ClusterProminence_Base 2.78103E-06 

glcm_ClusterShade_Base 0.000147965 
glcm_Contrast_Base 0.024 

glcm_Correlation_Base -4.439963012 
glcm_DifferenceVariance_Base -0.091992981 

glcm_Imc1_Base 7.974 
glcm_InverseVariance_Base 3.67 

glcm_JointEntropy_Base 1.319 
glcm_MCC_Base -4.742227434 

glcm_MaximumProbability_Base 27.757 
glcm_SumSquares_Base 7.24288E-07 

glrlm_GrayLevelNonUniformity_Base 0.000624266 
glrlm_GrayLevelNonUniformityNormalized_Base 162.796 
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glrlm_GrayLevelVariance_Base 0.024 
glrlm_RunLengthNonUniformityNormalized_Base -2.037792585 

glrlm_RunPercentage_Base -43.98514778 
glszm_GrayLevelVariance_Base 0.002715081 

glszm_HighGrayLevelZoneEmphasis_Base -0.005185856 
glszm_LargeAreaEmphasis_Base 0.001428885 

glszm_LargeAreaHighGrayLevelEmphasis_Base -5.14652E-06 
glszm_LargeAreaLowGrayLevelEmphasis_Base -0.024674203 

glszm_SizeZoneNonUniformity_Base -0.000780204 
glszm_SizeZoneNonUniformityNormalized_Base 31.825 
glszm_SmallAreaHighGrayLevelEmphasis_Base -0.000885754 

ngtdm_Coarseness_Base -258.3717435 
ngtdm_Complexity_Base -0.000762292 

ngtdm_Contrast_Base -29.49518732 
ngtdm_Strength_Base 0.014 

gldm_DependenceEntropy_Base 11.801 
gldm_DependenceNonUniformityNormalized_Base 0.814 

gldm_DependenceVariance_Base -1.555376005 
gldm_GrayLevelVariance_Base 0.017 

gldm_LargeDependenceHighGrayLevelEmphasis_Base -4.40462E-05 
gldm_SmallDependenceLowGrayLevelEmphasis_Base -664.1445652 
The Radiomics features named as: Feature type_Feature name_Extraction area. WP: whole prostate. 

Table S3. The trained PROSTATEx - U-Net model intercept and coefficients. 

Feature Coefficient 
Intercept -321.976 

firstorder_10Percentile_WP -0.361109955 
firstorder_InterquartileRange_WP 0.169 

firstorder_Kurtosis_WP 2.423 
firstorder_Minimum_WP -0.156260053 

firstorder_Range_WP 0.039 
firstorder_RobustMeanAbsoluteDeviation_WP 1.557 

firstorder_TotalEnergy_WP 2.22304E-08 
firstorder_Variance_WP -0.046085079 
shape_Elongation_WP 1.968 

shape_MajorAxisLength_WP -0.250079909 
shape_Maximum2DDiameterColumn_WP -0.257196182 

shape_Maximum2DDiameterRow_WP -0.145420583 
shape_Maximum2DDiameterSlice_WP -0.01886947 

shape_Maximum3DDiameter_WP -0.130069698 
shape_MeshVolume_WP 0.000120006 

shape_MinorAxisLength_WP 0.396 
glcm_ClusterProminence_WP 2.71164E-06 

glcm_ClusterShade_WP 0.000646111 
glcm_Correlation_WP -30.71256449 

glcm_Idmn_WP 76.422 
glcm_Imc1_WP 64.115 
glcm_Imc2_WP -42.31670998 
glcm_MCC_WP 16.528 

glcm_MaximumProbability_WP -1094.72248 
glszm_GrayLevelNonUniformityNormalized_WP 780.396 
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glszm_SizeZoneNonUniformity_WP 0.000570052 
glszm_SmallAreaLowGrayLevelEmphasis_WP -2417.522262 

glszm_ZoneEntropy_WP -8.843609049 
glszm_ZonePercentage_WP -7.43438445 

ngtdm_Coarseness_WP 8643.934 
ngtdm_Complexity_WP -0.001616607 

ngtdm_Strength_WP 4.063 
gldm_DependenceEntropy_WP 41.577 

gldm_DependenceNonUniformityNormalized_WP -1.37948949 
gldm_LargeDependenceHighGrayLevelEmphasis_WP -0.001317192 
gldm_LargeDependenceLowGrayLevelEmphasis_WP 64.421 

firstorder_90Percentile_Apex -0.107347033 
firstorder_InterquartileRange_Apex 0.329 

firstorder_Kurtosis_Apex 0.336 
firstorder_Maximum_Apex -0.000548995 

firstorder_Median_Apex -0.13347353 
firstorder_Minimum_Apex -0.024977611 
firstorder_Variance_Apex 0.002616362 
shape_Elongation_Apex 5.729 

shape_LeastAxisLength_Apex -0.410394504 
shape_MajorAxisLength_Apex -0.359425987 

shape_Maximum2DDiameterColumn_Apex 0.279 
shape_Maximum2DDiameterRow_Apex 0.036 
shape_Maximum2DDiameterSlice_Apex 0.207 

shape_MinorAxisLength_Apex -0.384513413 
shape_Sphericity_Apex 3.807 

shape_SurfaceVolumeRatio_Apex -44.062383 
glcm_ClusterShade_Apex -0.000321166 
glcm_Correlation_Apex 6.09 

glcm_Idn_Apex -15.19375392 
glcm_Imc2_Apex -5.01588654 

glcm_JointAverage_Apex 1.1824E-05 
glcm_JointEnergy_Apex -3038.847586 
glcm_JointEntropy_Apex -19.36122323 

glcm_MCC_Apex -11.42593655 
glcm_MaximumProbability_Apex 2787.13 

glcm_SumAverage_Apex 0.503 
glcm_SumEntropy_Apex 44.621 

glrlm_GrayLevelNonUniformity_Apex -0.004539868 
glrlm_LongRunLowGrayLevelEmphasis_Apex -2134.126787 
glrlm_ShortRunLowGrayLevelEmphasis_Apex -665.1488514 

glszm_GrayLevelNonUniformityNormalized_Apex -691.5931433 
glszm_GrayLevelVariance_Apex 0.013 

glszm_SizeZoneNonUniformity_Apex -0.000650814 
glszm_SizeZoneNonUniformityNormalized_Apex -54.0932208 

glszm_SmallAreaEmphasis_Apex -35.20923677 
glszm_SmallAreaLowGrayLevelEmphasis_Apex 2823.613 

glszm_ZoneEntropy_Apex 2.863 
glszm_ZonePercentage_Apex 59.685 
glszm_ZoneVariance_Apex -0.006606771 
ngtdm_Coarseness_Apex 1438.473 
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ngtdm_Complexity_Apex -0.000288665 
ngtdm_Strength_Apex -3.219797197 

gldm_DependenceEntropy_Apex -36.05944425 
gldm_DependenceVariance_Apex 8.133 

gldm_HighGrayLevelEmphasis_Apex -0.008487508 
gldm_LargeDependenceHighGrayLevelEmphasis_Apex -0.00071812 
gldm_LargeDependenceLowGrayLevelEmphasis_Apex 81.651 

firstorder_10Percentile_Base 0.204 
firstorder_90Percentile_Base 0.292 

firstorder_Kurtosis_Base 0.345 
firstorder_Maximum_Base -0.175831002 

firstorder_RobustMeanAbsoluteDeviation_Base 1.058 
firstorder_Skewness_Base 2.1 

firstorder_TotalEnergy_Base -1.01867E-07 
shape_Elongation_Base 19.307 

shape_Flatness_Base -2.189503192 
shape_LeastAxisLength_Base 0.142 
shape_MajorAxisLength_Base 0.191 

shape_Maximum2DDiameterColumn_Base 0.198 
shape_Maximum2DDiameterRow_Base -0.052203795 

shape_Maximum3DDiameter_Base 0.025 
shape_MinorAxisLength_Base -0.395836828 

shape_Sphericity_Base -42.1834581 
shape_SurfaceArea_Base -0.001978519 

shape_SurfaceVolumeRatio_Base -30.98683539 
glcm_Autocorrelation_Base 0.02 

glcm_ClusterProminence_Base 1.6374E-05 
glcm_ClusterShade_Base -0.000524944 

glcm_ClusterTendency_Base -0.033890673 
glcm_Idm_Base -78.12670175 

glcm_Idmn_Base 423.115 
glcm_JointEnergy_Base 181.847 

glcm_MCC_Base 10.921 
glcm_MaximumProbability_Base -41.13260693 

glcm_SumSquares_Base -0.05457626 
glrlm_GrayLevelNonUniformityNormalized_Base -145.1853283 

glrlm_RunVariance_Base -39.09025331 
glrlm_ShortRunLowGrayLevelEmphasis_Base 68.658 

glszm_LargeAreaHighGrayLevelEmphasis_Base 2.40474E-05 
glszm_LargeAreaLowGrayLevelEmphasis_Base 0.387 

glszm_LowGrayLevelZoneEmphasis_Base 1340.043 
glszm_SizeZoneNonUniformityNormalized_Base -7.925389028 
glszm_SmallAreaLowGrayLevelEmphasis_Base -900.8285969 

glszm_ZoneVariance_Base 0.015 
ngtdm_Busyness_Base 1.77 

ngtdm_Complexity_Base 0.000728423 
ngtdm_Strength_Base -1.767239323 

gldm_GrayLevelVariance_Base -0.072416517 
gldm_LargeDependenceLowGrayLevelEmphasis_Base -64.18091988 
gldm_SmallDependenceHighGrayLevelEmphasis_Base -0.052635022 
The Radiomics features named as: Feature type_Feature name_Extraction area. WP: whole prostate. 
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Table S4. The trained PROSTATEx - V-Net model intercept and coefficients. 

Feature Coefficient 
Intercept 382.283 

firstorder_90Percentile_WP 0.104 
firstorder_InterquartileRange_WP -0.12899759 

firstorder_Median_WP -0.184649075 
firstorder_Minimum_WP -0.258722838 
firstorder_Skewness_WP -0.499665432 

firstorder_TotalEnergy_WP 1.14172E-08 
firstorder_Uniformity_WP 734.318 

firstorder_Variance_WP -0.003975761 
shape_Elongation_WP 14.085 

shape_Flatness_WP -26.24663162 
shape_LeastAxisLength_WP -0.188759158 

shape_Maximum2DDiameterColumn_WP -0.350192943 
shape_Maximum2DDiameterRow_WP -0.275736401 
shape_Maximum2DDiameterSlice_WP 0.178 

shape_Maximum3DDiameter_WP 0.103 
shape_Sphericity_WP 23.296 

shape_SurfaceVolumeRatio_WP -187.1852196 
glcm_Autocorrelation_WP 0.026 

glcm_ClusterProminence_WP -2.64673E-06 
glcm_ClusterShade_WP -0.000443921 
glcm_Correlation_WP -7.74557482 

glcm_DifferenceVariance_WP -0.205850712 
glcm_Imc1_WP 49.886 
glcm_MCC_WP 36.646 

glcm_MaximumProbability_WP 572.011 
glrlm_GrayLevelNonUniformity_WP -0.001540021 

glrlm_RunVariance_WP -80.71373963 
glszm_LargeAreaLowGrayLevelEmphasis_WP 0.032 

glszm_SizeZoneNonUniformity_WP 0.000386128 
glszm_SizeZoneNonUniformityNormalized_WP -4.383540801 
glszm_SmallAreaHighGrayLevelEmphasis_WP 0.019 
glszm_SmallAreaLowGrayLevelEmphasis_WP 0.022 

glszm_ZoneEntropy_WP 0.207 
ngtdm_Coarseness_WP 31851.18 
ngtdm_Complexity_WP -0.000796818 

ngtdm_Strength_WP 7.652 
gldm_DependenceEntropy_WP -3.524423106 

gldm_LowGrayLevelEmphasis_WP 202.878 
gldm_SmallDependenceLowGrayLevelEmphasis_WP 2828.786 

firstorder_10Percentile_Apex -0.176567555 
firstorder_InterquartileRange_Apex -0.139750995 

firstorder_Kurtosis_Apex -0.269244183 
firstorder_Minimum_Apex 0.088 
firstorder_Skewness_Apex 7.323 
firstorder_Variance_Apex 0.011 
shape_Elongation_Apex -15.28827643 

shape_Flatness_Apex -9.750282188 
shape_MajorAxisLength_Apex -1.049820093 
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shape_Maximum2DDiameterColumn_Apex -0.062538105 
shape_Maximum2DDiameterRow_Apex -0.011840197 
shape_Maximum2DDiameterSlice_Apex 0.802 

shape_Maximum3DDiameter_Apex -0.797852217 
shape_MeshVolume_Apex 0.000260848 

shape_MinorAxisLength_Apex 0.241 
shape_Sphericity_Apex -69.6374527 

shape_VoxelVolume_Apex 0.000124394 
glcm_ClusterProminence_Apex 1.57165E-05 

glcm_ClusterShade_Apex -0.002219026 
glcm_Correlation_Apex 12.85 

glcm_DifferenceEntropy_Apex -4.09303929 
glcm_DifferenceVariance_Apex -0.032803925 

glcm_Imc1_Apex -11.12989885 
glcm_Imc2_Apex -13.6901273 

glcm_JointEnergy_Apex -6990.37425 
glcm_MCC_Apex -31.9032659 

glcm_MaximumProbability_Apex 1533.047 
glcm_SumAverage_Apex 0.089 
glcm_SumEntropy_Apex 13.538 

glrlm_RunLengthNonUniformityNormalized_Apex -92.79630735 
glrlm_ShortRunEmphasis_Apex -61.55064738 

glszm_GrayLevelNonUniformityNormalized_Apex 101.119 
glszm_LargeAreaHighGrayLevelEmphasis_Apex -0.000181693 
glszm_LargeAreaLowGrayLevelEmphasis_Apex 5.608 
glszm_SmallAreaHighGrayLevelEmphasis_Apex -0.014196094 

glszm_ZoneVariance_Apex -0.049201918 
ngtdm_Busyness_Apex 2.637 

ngtdm_Complexity_Apex 0.000669415 
ngtdm_Contrast_Apex -4.427026509 

gldm_DependenceEntropy_Apex 1.031 
gldm_DependenceNonUniformityNormalized_Apex 92.378 

gldm_LargeDependenceEmphasis_Apex 3.355 
gldm_LargeDependenceHighGrayLevelEmphasis_Apex 0.001035733 
gldm_LargeDependenceLowGrayLevelEmphasis_Apex -50.79463837 

gldm_LowGrayLevelEmphasis_Apex -157.2508035 
gldm_SmallDependenceLowGrayLevelEmphasis_Apex -2099.038966 

firstorder_10Percentile_Base -0.587515943 
firstorder_90Percentile_Base 0.286 

firstorder_Energy_Base 9.70197E-09 
firstorder_InterquartileRange_Base -0.393165233 

firstorder_Kurtosis_Base 1.857 
firstorder_Skewness_Base -9.12033662 

firstorder_TotalEnergy_Base 2.81459E-08 
shape_Elongation_Base 18.966 

shape_LeastAxisLength_Base -0.177479526 
shape_MajorAxisLength_Base 0.15 

shape_Maximum2DDiameterColumn_Base 0.125 
shape_Maximum2DDiameterRow_Base 0.037 

shape_Maximum3DDiameter_Base -0.245084468 
shape_MinorAxisLength_Base -0.658126709 
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shape_Sphericity_Base -19.69112292 
shape_SurfaceArea_Base 7.8765E-05 

shape_SurfaceVolumeRatio_Base -11.58048961 
glcm_ClusterShade_Base -0.000434701 
glcm_Correlation_Base 1.614 

glcm_DifferenceVariance_Base -0.4222514 
glcm_Idm_Base -50.69111048 
glcm_Imc2_Base 54.678 

glcm_JointEnergy_Base 451.315 
glcm_MCC_Base -8.432719431 

glcm_MaximumProbability_Base 1006.898 
glcm_SumEntropy_Base -5.542663873 

glrlm_RunLengthNonUniformityNormalized_Base -0.493380462 
glrlm_RunVariance_Base -37.80154633 

glszm_GrayLevelNonUniformity_Base -0.000570521 
glszm_GrayLevelNonUniformityNormalized_Base -717.5100996 

glszm_LargeAreaEmphasis_Base 0.005691618 
glszm_LargeAreaLowGrayLevelEmphasis_Base 0.003134206 

glszm_LowGrayLevelZoneEmphasis_Base -2803.662984 
glszm_SmallAreaHighGrayLevelEmphasis_Base -0.053575609 

glszm_ZoneVariance_Base 3.25766E-07 
ngtdm_Coarseness_Base -13159.97686 
ngtdm_Complexity_Base 0.001141479 

ngtdm_Contrast_Base 58.232 
gldm_DependenceEntropy_Base -6.324520776 

gldm_DependenceNonUniformityNormalized_Base 112.956 
gldm_GrayLevelVariance_Base 0.055 

gldm_SmallDependenceHighGrayLevelEmphasis_Base -0.044455531 
The Radiomics features named as: Feature type_Feature name_Extraction area. WP: whole prostate. 

Table S5. The trained PROSTATEx - nnU-Net-2D model intercept and coefficients. 

Feature Coefficient 
Intercept 796.981 

firstorder_10Percentile_WP 0.29 
firstorder_Energy_WP 1.19916E-10 

firstorder_InterquartileRange_WP 0.636 
firstorder_Maximum_WP -0.109250329 
firstorder_Minimum_WP -0.694445779 

shape_Elongation_WP -24.70301357 
shape_Flatness_WP -14.17148864 

shape_MajorAxisLength_WP -0.718393217 
shape_Maximum2DDiameterColumn_WP -0.202531101 

shape_Maximum2DDiameterRow_WP -0.122970008 
shape_Maximum2DDiameterSlice_WP 0.092 

shape_Maximum3DDiameter_WP -0.208910964 
shape_SurfaceArea_WP 0.00044424 

shape_SurfaceVolumeRatio_WP -193.03525 
glcm_ClusterProminence_WP 2.61885E-05 

glcm_ClusterShade_WP 0.000594259 
glcm_Correlation_WP 5.482 

glcm_DifferenceVariance_WP -0.236450592 
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glcm_JointEnergy_WP 866.556 
glcm_MCC_WP -5.194276409 

glcm_SumSquares_WP -0.085176649 
glrlm_GrayLevelNonUniformity_WP 0.001755906 

glrlm_GrayLevelNonUniformityNormalized_WP 162.861 
glszm_GrayLevelNonUniformityNormalized_WP -933.9826575 

glszm_GrayLevelVariance_WP 0.026 
glszm_HighGrayLevelZoneEmphasis_WP 0.001439849 

glszm_SizeZoneNonUniformity_WP 0.000331595 
glszm_SmallAreaLowGrayLevelEmphasis_WP -1675.145157 

glszm_ZoneEntropy_WP -3.125394281 
ngtdm_Coarseness_WP 2096.677 
ngtdm_Complexity_WP -0.000475403 

ngtdm_Contrast_WP -121.8550695 
gldm_DependenceEntropy_WP -15.70114408 

gldm_DependenceNonUniformityNormalized_WP 178.047 
gldm_LargeDependenceLowGrayLevelEmphasis_WP 19.94 

gldm_LowGrayLevelEmphasis_WP 2135.631 
firstorder_Kurtosis_Apex -2.711844451 

firstorder_Minimum_Apex 0.129 
firstorder_Range_Apex -0.07191723 

firstorder_RobustMeanAbsoluteDeviation_Apex -0.1420014 
firstorder_Skewness_Apex 6.353 

firstorder_TotalEnergy_Apex 4.13619E-08 
shape_Elongation_Apex 3.668 

shape_Flatness_Apex -7.912707405 
shape_LeastAxisLength_Apex -0.10926489 
shape_MajorAxisLength_Apex -0.43237436 

shape_Maximum2DDiameterColumn_Apex 0.189 
shape_Maximum2DDiameterRow_Apex -0.073192134 
shape_Maximum2DDiameterSlice_Apex 0.178 

shape_Maximum3DDiameter_Apex -0.187472525 
shape_SurfaceArea_Apex 0.000530272 

glcm_ClusterProminence_Apex 2.77501E-05 
glcm_ClusterShade_Apex -0.000451384 

glcm_Contrast_Apex 0.254 
glcm_Correlation_Apex -1.619781061 

glcm_DifferenceEntropy_Apex -17.07934278 
glcm_DifferenceVariance_Apex 0.143 

glcm_Imc2_Apex -23.14455426 
glcm_JointEnergy_Apex -6212.219438 
glcm_JointEntropy_Apex -6.518581485 

glcm_MaximumProbability_Apex -120.8394487 
glrlm_GrayLevelVariance_Apex -0.036884918 
glszm_GrayLevelVariance_Apex -0.179393287 

glszm_HighGrayLevelZoneEmphasis_Apex 0.021 
glszm_LowGrayLevelZoneEmphasis_Apex -267.8410649 

glszm_SizeZoneNonUniformity_Apex -0.001044345 
glszm_ZoneVariance_Apex -0.006817436 
ngtdm_Complexity_Apex -0.001420348 

ngtdm_Contrast_Apex -17.76628766 
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gldm_DependenceNonUniformityNormalized_Apex -104.3249813 
gldm_GrayLevelNonUniformity_Apex -0.002647112 

gldm_LargeDependenceLowGrayLevelEmphasis_Apex 0.441 
gldm_SmallDependenceLowGrayLevelEmphasis_Apex 3108.422 

firstorder_Energy_Base 2.51608E-08 
firstorder_Entropy_Base -2.704729568 
firstorder_Kurtosis_Base -0.419054007 

firstorder_Skewness_Base 1.567 
firstorder_Uniformity_Base 82.544 

firstorder_Variance_Base 0.001343718 
shape_Elongation_Base -5.484035842 

shape_Flatness_Base -18.17738825 
shape_LeastAxisLength_Base 0.996 
shape_MajorAxisLength_Base -0.311083432 

shape_Maximum2DDiameterColumn_Base 0.425 
shape_Maximum2DDiameterRow_Base 0.102 
shape_Maximum2DDiameterSlice_Base -0.375341977 

shape_Maximum3DDiameter_Base 0.353 
shape_SurfaceArea_Base -0.001191261 

shape_SurfaceVolumeRatio_Base 19.444 
glcm_ClusterProminence_Base -2.03688E-06 

glcm_Correlation_Base -5.390434191 
glcm_InverseVariance_Base 37.919 

glcm_JointAverage_Base 1.506 
glcm_JointEntropy_Base 3.562 
glcm_SumAverage_Base 0.001159842 

glrlm_GrayLevelNonUniformityNormalized_Base 128.364 
glrlm_RunLengthNonUniformityNormalized_Base -388.4055959 

glszm_LargeAreaHighGrayLevelEmphasis_Base -3.98377E-05 
glszm_LowGrayLevelZoneEmphasis_Base -749.5529367 

glszm_SmallAreaHighGrayLevelEmphasis_Base -0.007953134 
glszm_ZoneEntropy_Base 2.794 

ngtdm_Busyness_Base -4.202338416 
ngtdm_Complexity_Base -0.001070331 

ngtdm_Contrast_Base 23.444 
ngtdm_Strength_Base -1.538993176 

gldm_DependenceNonUniformityNormalized_Base 135.232 
gldm_HighGrayLevelEmphasis_Base -0.01486939 

gldm_LargeDependenceEmphasis_Base 0.262 
gldm_LargeDependenceHighGrayLevelEmphasis_Base -0.001878785 
gldm_LargeDependenceLowGrayLevelEmphasis_Base -38.97542234 
gldm_SmallDependenceLowGrayLevelEmphasis_Base 4057.745 
The Radiomics features named as: Feature type_Feature name_Extraction area. WP: whole prostate. 

Table S6. The trained PROSTATEx - nnU-Net-3D model intercept and coefficients. 

Feature Coefficient 
Intercept 1309.623 

firstorder_10Percentile_WP -0.721142033 
firstorder_Energy_WP 1.11777E-08 

firstorder_InterquartileRange_WP 0.466 
firstorder_Kurtosis_WP -1.807098348 
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firstorder_Minimum_WP -0.414416705 
firstorder_RobustMeanAbsoluteDeviation_WP 0.343 

firstorder_Skewness_WP 2.235 
firstorder_TotalEnergy_WP 2.76743E-08 

shape_Elongation_WP -14.90949407 
shape_Flatness_WP 5.777 

shape_Maximum2DDiameterColumn_WP -0.02988986 
shape_Maximum3DDiameter_WP -0.108640637 

shape_MeshVolume_WP 0.000129798 
shape_SurfaceArea_WP -0.005093056 

shape_SurfaceVolumeRatio_WP -47.40701402 
shape_VoxelVolume_WP 3.04889E-05 
glcm_ClusterShade_WP 0.001115036 

glcm_Contrast_WP -0.362129542 
glcm_DifferenceVariance_WP -0.116939892 

glcm_Imc1_WP 117.02 
glcm_JointAverage_WP 0.944 

glcm_MCC_WP -10.81140584 
glcm_MaximumProbability_WP 50.582 

glcm_SumAverage_WP 0.045 
glrlm_GrayLevelNonUniformity_WP 0.001113064 

glrlm_GrayLevelVariance_WP -0.25316124 
glszm_GrayLevelVariance_WP -0.023530978 

glszm_LargeAreaHighGrayLevelEmphasis_WP -1.76798E-06 
glszm_LowGrayLevelZoneEmphasis_WP 2739.237 

glszm_SmallAreaEmphasis_WP 82.808 
glszm_SmallAreaHighGrayLevelEmphasis_WP 0.021 

ngtdm_Busyness_WP 1.076 
ngtdm_Coarseness_WP -0.939921946 
ngtdm_Complexity_WP 0.00427186 

ngtdm_Strength_WP -4.814057849 
gldm_DependenceVariance_WP -2.537048333 

gldm_SmallDependenceLowGrayLevelEmphasis_WP -4212.588098 
firstorder_10Percentile_Apex -0.466481814 

firstorder_InterquartileRange_Apex -0.114658415 
firstorder_Kurtosis_Apex -1.75226954 
firstorder_Median_Apex 0.33 

firstorder_Minimum_Apex 0.395 
firstorder_Range_Apex -0.065000378 

firstorder_Skewness_Apex 8.473 
shape_Elongation_Apex 1.819 

shape_Flatness_Apex -25.91600339 
shape_LeastAxisLength_Apex 0.661 
shape_MajorAxisLength_Apex -0.439242302 

shape_Maximum2DDiameterColumn_Apex 0.07 
shape_Maximum2DDiameterRow_Apex -0.177117185 
shape_Maximum2DDiameterSlice_Apex 0.144 

shape_Maximum3DDiameter_Apex -0.068137016 
glcm_ClusterProminence_Apex 1.65745E-05 

glcm_ClusterShade_Apex -0.000651419 
glcm_Correlation_Apex -28.7185583 
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glcm_DifferenceVariance_Apex -0.124905076 
glcm_Imc1_Apex -38.63027152 
glcm_Imc2_Apex 3.105 

glcm_InverseVariance_Apex -222.5726206 
glcm_JointEnergy_Apex 615.764 

glcm_MCC_Apex 1.043 
glrlm_LongRunLowGrayLevelEmphasis_Apex 370.289 

glrlm_ShortRunEmphasis_Apex -364.7467476 
glszm_GrayLevelVariance_Apex 0.014 

glszm_LargeAreaHighGrayLevelEmphasis_Apex -0.000126603 
glszm_SmallAreaEmphasis_Apex -61.04673102 

glszm_SmallAreaLowGrayLevelEmphasis_Apex -1246.855983 
ngtdm_Busyness_Apex 0.111 

ngtdm_Complexity_Apex -0.001052067 
ngtdm_Contrast_Apex 2.963 

gldm_DependenceEntropy_Apex 5.341 
gldm_DependenceNonUniformity_Apex -0.000773742 

gldm_DependenceVariance_Apex 4.539 
gldm_LargeDependenceHighGrayLevelEmphasis_Apex 0.00149014 
gldm_SmallDependenceHighGrayLevelEmphasis_Apex -0.00868048 

firstorder_10Percentile_Base 1.494 
firstorder_InterquartileRange_Base -0.297270611 

firstorder_Kurtosis_Base 0.841 
firstorder_Median_Base -1.129276822 

firstorder_TotalEnergy_Base 9.28406E-09 
firstorder_Uniformity_Base -967.8388438 

firstorder_Variance_Base 0.016 
shape_Elongation_Base -11.1824233 

shape_Flatness_Base -1.92091796 
shape_MajorAxisLength_Base -0.07769645 

shape_Maximum2DDiameterColumn_Base 0.035 
shape_Maximum2DDiameterRow_Base 0.177 
shape_Maximum2DDiameterSlice_Base 0.333 

shape_Maximum3DDiameter_Base -0.454223481 
shape_MinorAxisLength_Base -0.041608717 

shape_Sphericity_Base -54.66939797 
shape_SurfaceVolumeRatio_Base -48.9220416 

glcm_ClusterShade_Base -0.0007041 
glcm_ClusterTendency_Base -0.003726705 

glcm_Correlation_Base 27.166 
glcm_DifferenceVariance_Base 0.191 

glcm_Imc1_Base 16.911 
glcm_JointAverage_Base 2.628 

glcm_MCC_Base 5.967 
glcm_MaximumProbability_Base -591.1130396 

glcm_SumEntropy_Base -26.76138121 
glrlm_RunLengthNonUniformity_Base -0.000192395 

glrlm_RunLengthNonUniformityNormalized_Base -675.9008458 
glrlm_RunVariance_Base -172.7504116 

glszm_GrayLevelVariance_Base 3.21173E-06 
glszm_LargeAreaLowGrayLevelEmphasis_Base 1.932 
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glszm_SizeZoneNonUniformityNormalized_Base 71.564 
glszm_SmallAreaHighGrayLevelEmphasis_Base -0.040155764 
glszm_SmallAreaLowGrayLevelEmphasis_Base 139.748 

glszm_ZoneEntropy_Base 4.103 
ngtdm_Busyness_Base 1.303 

ngtdm_Coarseness_Base -364.9687301 
ngtdm_Complexity_Base -0.000170833 

ngtdm_Contrast_Base 49.398 
ngtdm_Strength_Base 2.141 

gldm_DependenceNonUniformity_Base -0.00106838 
gldm_DependenceVariance_Base -6.512468818 

gldm_LargeDependenceHighGrayLevelEmphasis_Base -0.002266611 
gldm_SmallDependenceLowGrayLevelEmphasis_Base 263.478 

The Radiomics features named as: Feature type_Feature name_Extraction area. WP: whole prostate. 

Table S7. The trained In-house - U-Net model intercept and coefficients. 

Feature Coefficient 
Intercept 58.793 

firstorder_10Percentile_WP -0.409826323 
firstorder_InterquartileRange_WP 0.105 

firstorder_Kurtosis_WP 0.115 
firstorder_Minimum_WP 0.642 

firstorder_Range_WP -0.010042831 
firstorder_Skewness_WP -1.126762793 
firstorder_Variance_WP 0.021 
shape_Elongation_WP 5.546 

shape_LeastAxisLength_WP -0.588233617 
shape_MajorAxisLength_WP -0.009761257 

shape_Maximum2DDiameterColumn_WP -0.287024615 
shape_Maximum2DDiameterRow_WP -0.084692949 

shape_Maximum3DDiameter_WP -0.35243464 
shape_MeshVolume_WP 0.000124765 

shape_Sphericity_WP 48.425 
shape_SurfaceVolumeRatio_WP 75.795 

shape_VoxelVolume_WP 0.0001127 
glcm_Autocorrelation_WP 0.065 

glcm_ClusterShade_WP -0.000371266 
glcm_ClusterTendency_WP -0.039895043 

glcm_JointAverage_WP 0.00043459 
glcm_JointEnergy_WP -3086.280781 

glcm_MCC_WP -0.682031328 
glcm_MaximumProbability_WP 1315.363 

glcm_SumAverage_WP 0.011 
glcm_SumSquares_WP -0.209410018 
glrlm_RunEntropy_WP -2.523579447 

glszm_GrayLevelNonUniformityNormalized_WP -1786.604709 
glszm_LargeAreaHighGrayLevelEmphasis_WP -4.08143E-07 
glszm_LargeAreaLowGrayLevelEmphasis_WP -0.076981146 

glszm_LowGrayLevelZoneEmphasis_WP 169.134 
glszm_SmallAreaHighGrayLevelEmphasis_WP -0.05355589 
glszm_SmallAreaLowGrayLevelEmphasis_WP 120.991 
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glszm_ZoneEntropy_WP -2.334812754 
glszm_ZonePercentage_WP -24.33033128 

ngtdm_Busyness_WP 1.616 
ngtdm_Coarseness_WP -31168.57073 
ngtdm_Complexity_WP -0.000218006 

ngtdm_Contrast_WP 17.704 
gldm_DependenceNonUniformity_WP 0.000725363 

gldm_DependenceNonUniformityNormalized_WP -202.4339009 
gldm_DependenceVariance_WP -5.690421242 

gldm_LargeDependenceHighGrayLevelEmphasis_WP -0.001691745 
gldm_SmallDependenceLowGrayLevelEmphasis_WP -2640.112347 

firstorder_10Percentile_Apex 1.024 
firstorder_Energy_Apex -5.20773E-08 

firstorder_Kurtosis_Apex -2.783838802 
firstorder_Maximum_Apex -0.152991221 
firstorder_Minimum_Apex -0.078605903 
firstorder_Skewness_Apex 4.895 

shape_Elongation_Apex -23.91431753 
shape_Flatness_Apex 44.268 

shape_LeastAxisLength_Apex -1.042189536 
shape_MajorAxisLength_Apex -0.180133877 

shape_Maximum2DDiameterColumn_Apex 0.037 
shape_Maximum3DDiameter_Apex 0.162 

shape_MinorAxisLength_Apex 0.638 
shape_Sphericity_Apex -1.663816303 

shape_SurfaceArea_Apex -9.66892E-05 
shape_SurfaceVolumeRatio_Apex -3.74923741 

glcm_ClusterProminence_Apex 1.20644E-05 
glcm_Contrast_Apex 0.237 

glcm_Correlation_Apex 3.756 
glcm_Idm_Apex 94.084 
glcm_Imc1_Apex 191.307 
glcm_Imc2_Apex -19.80854251 

glcm_JointAverage_Apex -0.165133348 
glcm_MCC_Apex 4.809 

glcm_MaximumProbability_Apex -592.7530633 
glcm_SumAverage_Apex -0.164328998 
glrlm_RunVariance_Apex 255.402 

glszm_GrayLevelNonUniformity_Apex -0.007447548 
glszm_GrayLevelNonUniformityNormalized_Apex -335.9868087 

glszm_GrayLevelVariance_Apex 0.054 
glszm_LargeAreaEmphasis_Apex 0.006333208 

glszm_SmallAreaLowGrayLevelEmphasis_Apex -582.8753445 
glszm_ZoneEntropy_Apex 32.543 

ngtdm_Busyness_Apex -4.009037279 
ngtdm_Complexity_Apex -0.001872825 

ngtdm_Contrast_Apex -76.42068449 
ngtdm_Strength_Apex 2.212 

gldm_DependenceEntropy_Apex -11.90863505 
gldm_DependenceNonUniformityNormalized_Apex 93.417 

gldm_LargeDependenceEmphasis_Apex 1.168 
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gldm_LargeDependenceHighGrayLevelEmphasis_Apex -0.001201862 
gldm_LargeDependenceLowGrayLevelEmphasis_Apex -9.513155846 

gldm_LowGrayLevelEmphasis_Apex 1653.482 
firstorder_90Percentile_Base -0.156919732 

firstorder_Energy_Base -5.6035E-08 
firstorder_InterquartileRange_Base -0.040518043 

firstorder_Kurtosis_Base 1.093 
firstorder_Maximum_Base -0.042287615 
firstorder_Minimum_Base -0.174962769 
firstorder_Skewness_Base -4.199818513 

firstorder_Uniformity_Base -218.3511658 
firstorder_Variance_Base 0.012 
shape_Elongation_Base -27.82042158 

shape_Flatness_Base 33.905 
shape_LeastAxisLength_Base -0.561529979 
shape_MajorAxisLength_Base 0.014 

shape_Maximum2DDiameterColumn_Base -0.164212242 
shape_Maximum2DDiameterRow_Base -0.122066823 
shape_Maximum2DDiameterSlice_Base 0.164 

shape_Maximum3DDiameter_Base -0.012223014 
shape_MinorAxisLength_Base 0.532 

shape_Sphericity_Base 25.803 
shape_SurfaceArea_Base 0.002999379 

shape_SurfaceVolumeRatio_Base -26.29355783 
glcm_ClusterProminence_Base 9.642E-06 

glcm_ClusterShade_Base -0.000269434 
glcm_Contrast_Base 0.045 

glcm_Correlation_Base -20.08108148 
glcm_DifferenceEntropy_Base -11.68204478 
glcm_DifferenceVariance_Base -0.164338494 

glcm_Id_Base -30.79271011 
glcm_Idm_Base -60.74166585 
glcm_Imc1_Base 63.589 
glcm_Imc2_Base 31.805 

glcm_InverseVariance_Base 90.95 
glcm_JointAverage_Base -0.251969859 
glcm_JointEnergy_Base 3.817 
glcm_JointEntropy_Base 1.812 

glcm_MCC_Base -25.5010576 
glcm_SumAverage_Base -0.005675909 
glcm_SumSquares_Base 0.15 

glrlm_LongRunEmphasis_Base -19.93426572 
glszm_GrayLevelVariance_Base 0.066 

glszm_LargeAreaHighGrayLevelEmphasis_Base 3.3941E-05 
glszm_LargeAreaLowGrayLevelEmphasis_Base -0.024327213 

glszm_LowGrayLevelZoneEmphasis_Base -139.2555514 
glszm_SmallAreaEmphasis_Base 44.033 

glszm_ZoneEntropy_Base 13.789 
ngtdm_Busyness_Base 0.17 

ngtdm_Coarseness_Base 1130.563 
ngtdm_Complexity_Base -0.001859765 
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ngtdm_Contrast_Base -20.48422515 
ngtdm_Strength_Base 0.192 

gldm_DependenceNonUniformity_Base -0.003340815 
gldm_DependenceNonUniformityNormalized_Base 57.677 

gldm_DependenceVariance_Base 1.992 
gldm_GrayLevelNonUniformity_Base -0.002678311 

gldm_GrayLevelVariance_Base -0.16360058 
gldm_LargeDependenceHighGrayLevelEmphasis_Base -0.001055181 
gldm_LargeDependenceLowGrayLevelEmphasis_Base 6.17 
gldm_SmallDependenceLowGrayLevelEmphasis_Base -1014.191344 

The Radiomics features named as: Feature type_Feature name_Extraction area. WP: whole prostate. 

Table S8. The trained In-house - V-Net model intercept and coefficients. 

Feature Coefficient 
Intercept -665.676 

firstorder_10Percentile_WP 0.607 
firstorder_Energy_WP -2.47051E-08 

firstorder_Kurtosis_WP -3.202042156 
firstorder_MeanAbsoluteDeviation_WP 0.823 

firstorder_Minimum_WP -0.060290664 
firstorder_Skewness_WP 6.37 

firstorder_Uniformity_WP 964.467 
firstorder_Variance_WP 0.022 
shape_Elongation_WP 2.541 

shape_Flatness_WP -11.00444747 
shape_LeastAxisLength_WP -0.185191432 
shape_MajorAxisLength_WP -1.024911096 

shape_Maximum2DDiameterColumn_WP 0.217 
shape_Maximum2DDiameterRow_WP 0.035 

shape_Maximum3DDiameter_WP -0.090905338 
shape_Sphericity_WP 161.442 

glcm_ClusterShade_WP -0.003112853 
glcm_DifferenceVariance_WP -0.185309313 

glcm_JointAverage_WP 0.219 
glcm_MCC_WP 37.95 

glcm_MaximumProbability_WP 867.141 
glcm_SumAverage_WP 0.008326982 

glrlm_GrayLevelNonUniformityNormalized_WP 812.002 
glszm_GrayLevelVariance_WP -0.001948064 

glszm_LargeAreaHighGrayLevelEmphasis_WP -7.69233E-06 
glszm_LargeAreaLowGrayLevelEmphasis_WP 0.033 

glszm_LowGrayLevelZoneEmphasis_WP -988.8339253 
glszm_SizeZoneNonUniformity_WP 0.002356206 

glszm_SizeZoneNonUniformityNormalized_WP 38.939 
glszm_SmallAreaLowGrayLevelEmphasis_WP -2355.458998 

glszm_ZoneEntropy_WP 11.398 
ngtdm_Busyness_WP -0.169001974 

ngtdm_Complexity_WP 0.002545098 
ngtdm_Strength_WP -4.096543889 

gldm_DependenceEntropy_WP 20.5 
gldm_DependenceVariance_WP -1.415300226 
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gldm_GrayLevelNonUniformity_WP -0.001548627 
gldm_LargeDependenceLowGrayLevelEmphasis_WP -22.42378295 
gldm_SmallDependenceLowGrayLevelEmphasis_WP 9605.562 

firstorder_Kurtosis_Apex -1.468692815 
firstorder_Mean_Apex -0.102365267 

firstorder_Minimum_Apex 1.103 
firstorder_Range_Apex -0.040394544 

firstorder_TotalEnergy_Apex 8.33531E-09 
firstorder_Uniformity_Apex -94.07051406 

shape_Flatness_Apex 12.813 
shape_LeastAxisLength_Apex -1.13644107 
shape_MajorAxisLength_Apex 0.061 

shape_Maximum2DDiameterColumn_Apex 0.058 
shape_Maximum2DDiameterRow_Apex -0.00670403 
shape_Maximum2DDiameterSlice_Apex -0.126244377 

shape_Maximum3DDiameter_Apex -0.170450804 
shape_MinorAxisLength_Apex -0.606954253 

shape_Sphericity_Apex -115.8931811 
shape_SurfaceVolumeRatio_Apex -47.23503452 

glcm_ClusterProminence_Apex -1.02783E-05 
glcm_ClusterShade_Apex 0.000543035 
glcm_Correlation_Apex -5.541639536 

glcm_Idm_Apex -30.61394688 
glcm_Imc1_Apex 76.203 
glcm_MCC_Apex 10.11 

glrlm_GrayLevelNonUniformity_Apex 0.008073803 
glrlm_LongRunLowGrayLevelEmphasis_Apex 59.78 

glszm_GrayLevelVariance_Apex -0.022018761 
glszm_HighGrayLevelZoneEmphasis_Apex 0.027 

glszm_SizeZoneNonUniformity_Apex -0.003308016 
glszm_SizeZoneNonUniformityNormalized_Apex -31.49718966 
glszm_SmallAreaLowGrayLevelEmphasis_Apex -980.0185665 

ngtdm_Busyness_Apex 6.393 
ngtdm_Coarseness_Apex -12137.96129 
ngtdm_Complexity_Apex -0.000147367 

ngtdm_Strength_Apex 7.118 
gldm_GrayLevelNonUniformity_Apex 0.007816823 

gldm_LargeDependenceHighGrayLevelEmphasis_Apex -0.000363938 
gldm_LargeDependenceLowGrayLevelEmphasis_Apex 17.551 

firstorder_90Percentile_Base 0.311 
firstorder_Energy_Base -5.24322E-08 

firstorder_InterquartileRange_Base -0.409002608 
firstorder_Maximum_Base -0.15112896 
firstorder_Minimum_Base -0.358450791 
firstorder_Skewness_Base -0.554905249 

shape_Elongation_Base 2.538 
shape_Flatness_Base 35.184 

shape_LeastAxisLength_Base -0.375346084 
shape_MajorAxisLength_Base 0.373 

shape_Maximum2DDiameterColumn_Base -0.204313436 
shape_Maximum2DDiameterRow_Base -0.418496704 
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shape_Maximum2DDiameterSlice_Base 0.048 
shape_Maximum3DDiameter_Base 0.025 

shape_Sphericity_Base -39.96665213 
shape_SurfaceArea_Base 0.003922066 

shape_SurfaceVolumeRatio_Base -14.51836726 
glcm_ClusterProminence_Base 4.57063E-06 
glcm_ClusterTendency_Base 0.012 

glcm_Correlation_Base -5.153969245 
glcm_DifferenceVariance_Base 0.176 

glcm_Idn_Base 404.812 
glcm_Imc1_Base -6.685165756 
glcm_Imc2_Base 1.258 

glcm_JointAverage_Base 0.925 
glcm_JointEnergy_Base -1718.336606 

glcm_MCC_Base 2.527 
glcm_MaximumProbability_Base -401.0091738 

glrlm_GrayLevelNonUniformity_Base 0.004031616 
glrlm_GrayLevelNonUniformityNormalized_Base 99.731 

glrlm_ShortRunLowGrayLevelEmphasis_Base 366.209 
glszm_GrayLevelNonUniformity_Base 0.00597847 

glszm_HighGrayLevelZoneEmphasis_Base -0.04705148 
glszm_LargeAreaEmphasis_Base 0.002089843 

glszm_LargeAreaHighGrayLevelEmphasis_Base -1.61651E-05 
glszm_LowGrayLevelZoneEmphasis_Base 36.704 

glszm_SmallAreaEmphasis_Base 98.631 
glszm_ZoneVariance_Base 0.003766068 

ngtdm_Busyness_Base 0.447 
ngtdm_Complexity_Base -0.00019638 

ngtdm_Strength_Base 1.893 
gldm_DependenceNonUniformityNormalized_Base -43.49194441 

gldm_LargeDependenceHighGrayLevelEmphasis_Base 0.000813639 
gldm_SmallDependenceLowGrayLevelEmphasis_Base -1314.284524 

The Radiomics features named as: Feature type_Feature name_Extraction area. WP: whole prostate. 

Table S9. The trained In-house - nnU-Net-2D model intercept and coefficients. 

Feature Coefficient 
Intercept -75.803 

firstorder_10Percentile_WP -0.952585663 
firstorder_InterquartileRange_WP -0.804508418 

firstorder_Kurtosis_WP 1.149 
firstorder_Maximum_WP 0.239 
firstorder_Minimum_WP 1.595 
firstorder_Skewness_WP -5.171647096 
firstorder_Variance_WP 0.016 
shape_Elongation_WP -14.52052431 

shape_Flatness_WP -9.36098304 
shape_MajorAxisLength_WP -0.448750298 

shape_Maximum2DDiameterColumn_WP -0.355542567 
shape_Maximum2DDiameterRow_WP -0.230861438 
shape_Maximum2DDiameterSlice_WP -0.13734098 

shape_Sphericity_WP 80.22 
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shape_SurfaceArea_WP 0.00059422 
shape_SurfaceVolumeRatio_WP 182.034 

shape_VoxelVolume_WP 0.000197024 
glcm_ClusterShade_WP -0.0002725 

glcm_Idmn_WP 133.637 
glcm_Imc1_WP -160.1112042 
glcm_Imc2_WP -52.75569003 

glcm_InverseVariance_WP -83.77687998 
glcm_MCC_WP -25.98528238 

glcm_MaximumProbability_WP 104.238 
glszm_GrayLevelVariance_WP 0.198 

glszm_LargeAreaLowGrayLevelEmphasis_WP 0.082 
glszm_LowGrayLevelZoneEmphasis_WP -109.501208 

glszm_SizeZoneNonUniformityNormalized_WP 2.242 
ngtdm_Busyness_WP -1.679498807 

ngtdm_Complexity_WP 9.96145E-05 
ngtdm_Contrast_WP -58.94837564 
ngtdm_Strength_WP -40.34304987 

gldm_DependenceNonUniformity_WP 0.001733947 
gldm_LargeDependenceHighGrayLevelEmphasis_WP 0.002343983 
gldm_LargeDependenceLowGrayLevelEmphasis_WP 32.69 

firstorder_Energy_Apex -2.25125E-08 
firstorder_Kurtosis_Apex -4.694483056 

firstorder_Mean_Apex 0.081 
firstorder_Median_Apex 0.2 

firstorder_Minimum_Apex 0.026 
firstorder_RobustMeanAbsoluteDeviation_Apex -0.612443446 

firstorder_Skewness_Apex 2.87 
firstorder_Variance_Apex -0.014627929 
shape_Elongation_Apex -1.486408625 

shape_Flatness_Apex -5.474652002 
shape_LeastAxisLength_Apex 0.322 
shape_MajorAxisLength_Apex 0.356 

shape_Maximum2DDiameterColumn_Apex 0.062 
shape_Maximum2DDiameterRow_Apex -0.120393147 
shape_Maximum2DDiameterSlice_Apex -0.306718435 

shape_Maximum3DDiameter_Apex 0.118 
shape_Sphericity_Apex -25.47544312 

shape_SurfaceArea_Apex -0.00115801 
glcm_Autocorrelation_Apex 0.00212524 

glcm_ClusterProminence_Apex 1.35505E-05 
glcm_ClusterShade_Apex 0.00023352 
glcm_Correlation_Apex -31.78202127 

glcm_DifferenceVariance_Apex 0.004458033 
glcm_Imc2_Apex -19.37831006 

glcm_InverseVariance_Apex -75.37312521 
glcm_JointEnergy_Apex -650.9100976 

glcm_MCC_Apex 30.236 
glcm_MaximumProbability_Apex 1369.891 

glcm_SumEntropy_Apex 23.394 
glrlm_GrayLevelNonUniformity_Apex -0.008937945 



Page 22 of 25 
 

glrlm_LongRunEmphasis_Apex -78.29580954 
glrlm_ShortRunEmphasis_Apex 340.148 

glszm_GrayLevelNonUniformity_Apex -3.15839E-07 
glszm_LargeAreaHighGrayLevelEmphasis_Apex 8.70944E-05 

glszm_LowGrayLevelZoneEmphasis_Apex -892.9189737 
glszm_SizeZoneNonUniformity_Apex 0.000268337 

glszm_SmallAreaEmphasis_Apex 68.688 
glszm_ZoneEntropy_Apex -1.497017078 

glszm_ZonePercentage_Apex -298.2110028 
ngtdm_Contrast_Apex 5.488 

gldm_DependenceEntropy_Apex -22.24853234 
gldm_LargeDependenceEmphasis_Apex -1.350096236 

gldm_LargeDependenceHighGrayLevelEmphasis_Apex -0.001367631 
gldm_LowGrayLevelEmphasis_Apex 1109.321 

firstorder_90Percentile_Base 0.038 
firstorder_InterquartileRange_Base 0.056 

firstorder_Maximum_Base -0.068806763 
firstorder_Median_Base -0.167674187 

firstorder_Minimum_Base -0.108160733 
firstorder_Skewness_Base -3.71693444 

firstorder_TotalEnergy_Base 4.37878E-08 
firstorder_Variance_Base 0.009403888 
shape_Elongation_Base 41.712 

shape_Flatness_Base -15.3874693 
shape_LeastAxisLength_Base 0.022 
shape_MajorAxisLength_Base 0.467 

shape_Maximum2DDiameterColumn_Base 0.034 
shape_Maximum2DDiameterRow_Base -0.106613069 
shape_Maximum2DDiameterSlice_Base 0.362 

shape_MinorAxisLength_Base -0.895357483 
shape_Sphericity_Base 1.776 

shape_SurfaceArea_Base 0.001371277 
glcm_Autocorrelation_Base -0.018914542 

glcm_ClusterShade_Base 0.000367885 
glcm_Correlation_Base 4.784 

glcm_DifferenceVariance_Base -0.13629786 
glcm_Imc1_Base 36.779 
glcm_Imc2_Base -27.53258125 

glcm_JointEnergy_Base 491.857 
glcm_JointEntropy_Base 3.118 

glcm_MCC_Base 10.865 
glrlm_RunEntropy_Base 15.824 

glrlm_RunLengthNonUniformity_Base -0.000408762 
glszm_HighGrayLevelZoneEmphasis_Base 0.026 

glszm_LargeAreaEmphasis_Base -0.034765993 
glszm_SizeZoneNonUniformity_Base -0.003023618 

glszm_SmallAreaLowGrayLevelEmphasis_Base 1459.157 
glszm_ZoneEntropy_Base -15.84480995 

glszm_ZonePercentage_Base -79.29353486 
ngtdm_Coarseness_Base 2348.112 
ngtdm_Complexity_Base 0.001814881 
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ngtdm_Contrast_Base 31.051 
gldm_GrayLevelVariance_Base -0.159526151 

gldm_LargeDependenceEmphasis_Base -0.042181185 
gldm_LowGrayLevelEmphasis_Base -834.1902871 

gldm_SmallDependenceLowGrayLevelEmphasis_Base -408.9185167 
The Radiomics features named as: Feature type_Feature name_Extraction area. WP: whole prostate. 

Table S10. The trained In-house - nnU-Net-3D model intercept and coefficients. 

Feature Coefficient 
Intercept -149.82 

firstorder_Energy_WP -2.47222E-08 
firstorder_InterquartileRange_WP -0.106069147 

firstorder_Kurtosis_WP -1.647215782 
firstorder_Mean_WP 1.313 

firstorder_Minimum_WP 1.037 
firstorder_Range_WP -0.165230167 

firstorder_Skewness_WP 25.027 
shape_Elongation_WP 0.561 

shape_Flatness_WP 12.073 
shape_LeastAxisLength_WP -0.288934047 
shape_MajorAxisLength_WP -0.02937799 

shape_Maximum2DDiameterRow_WP 0.013 
shape_Maximum2DDiameterSlice_WP 0.062 

shape_Maximum3DDiameter_WP -0.106485299 
shape_MinorAxisLength_WP 0.123 

shape_Sphericity_WP 100.511 
glcm_ClusterShade_WP -0.003130491 

glcm_ClusterTendency_WP 0.04 
glcm_Contrast_WP -0.000125038 

glcm_Correlation_WP 0.053 
glcm_DifferenceVariance_WP -0.198911163 

glcm_Imc2_WP -1.265234243 
glcm_InverseVariance_WP -20.32500725 

glcm_MaximumProbability_WP 717.81 
glrlm_ShortRunEmphasis_WP 345.005 

glszm_GrayLevelNonUniformity_WP 0.009552618 
glszm_LargeAreaHighGrayLevelEmphasis_WP -2.47514E-06 
glszm_LargeAreaLowGrayLevelEmphasis_WP -0.387610541 

glszm_LowGrayLevelZoneEmphasis_WP -459.4574471 
glszm_SizeZoneNonUniformity_WP 0.000138626 

glszm_SmallAreaHighGrayLevelEmphasis_WP -0.021041159 
glszm_SmallAreaLowGrayLevelEmphasis_WP -1052.318132 

glszm_ZoneEntropy_WP -12.53775801 
ngtdm_Busyness_WP 1.568 

ngtdm_Coarseness_WP -26321.58435 
ngtdm_Complexity_WP -0.001319323 

ngtdm_Strength_WP 14.672 
gldm_DependenceEntropy_WP 18.6 

gldm_LargeDependenceLowGrayLevelEmphasis_WP 69.318 
firstorder_10Percentile_Apex -0.157698579 

firstorder_InterquartileRange_Apex -0.299308216 
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firstorder_Kurtosis_Apex -4.023784202 
firstorder_Minimum_Apex -0.86249131 

firstorder_Range_Apex 0.109 
firstorder_TotalEnergy_Apex 8.38876E-08 

firstorder_Variance_Apex -0.012439016 
shape_Elongation_Apex 6.766 

shape_LeastAxisLength_Apex 0.205 
shape_MajorAxisLength_Apex 0.173 

shape_Maximum2DDiameterColumn_Apex 0.068 
shape_Maximum2DDiameterRow_Apex -0.05706543 
shape_Maximum2DDiameterSlice_Apex -0.269497398 

shape_Maximum3DDiameter_Apex 0.136 
shape_Sphericity_Apex 0.508 

shape_SurfaceArea_Apex -0.00020118 
shape_SurfaceVolumeRatio_Apex -9.955860422 

glcm_Autocorrelation_Apex 0.048 
glcm_ClusterProminence_Apex 1.80532E-06 

glcm_ClusterShade_Apex 0.000398695 
glcm_Correlation_Apex -21.41000414 

glcm_DifferenceEntropy_Apex -5.340768914 
glcm_DifferenceVariance_Apex -0.009513745 

glcm_Idm_Apex 193.115 
glcm_Imc2_Apex -5.607008112 
glcm_MCC_Apex 8.623 

glcm_MaximumProbability_Apex 9.281 
glcm_SumAverage_Apex 0.103 

glrlm_ShortRunLowGrayLevelEmphasis_Apex 599.045 
glszm_GrayLevelVariance_Apex 0.179 
glszm_LargeAreaEmphasis_Apex 0.085 

glszm_LargeAreaLowGrayLevelEmphasis_Apex -0.671634403 
glszm_SmallAreaEmphasis_Apex -110.3198284 

glszm_SmallAreaLowGrayLevelEmphasis_Apex -217.001015 
glszm_ZoneEntropy_Apex -26.84580904 
glszm_ZoneVariance_Apex 0.015 

ngtdm_Busyness_Apex 1.381 
ngtdm_Coarseness_Apex -2782.771041 
ngtdm_Complexity_Apex 0.000275014 

gldm_GrayLevelNonUniformity_Apex -0.011243202 
gldm_LargeDependenceHighGrayLevelEmphasis_Apex -0.005852267 
gldm_LargeDependenceLowGrayLevelEmphasis_Apex -4.484751303 

firstorder_10Percentile_Base -0.221789269 
firstorder_Energy_Base -2.31411E-08 

firstorder_InterquartileRange_Base -0.191553975 
firstorder_Kurtosis_Base 0.28 

firstorder_Minimum_Base -0.10033044 
firstorder_Uniformity_Base 511.824 

shape_Elongation_Base 9.012 
shape_Flatness_Base -22.76796896 

shape_LeastAxisLength_Base -0.491363729 
shape_MajorAxisLength_Base -0.023559668 

shape_Maximum2DDiameterColumn_Base 0.046 
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shape_Maximum2DDiameterRow_Base -0.017964975 
shape_Maximum2DDiameterSlice_Base 0.095 

shape_Maximum3DDiameter_Base -0.198770216 
shape_MinorAxisLength_Base -0.457096178 

shape_Sphericity_Base -2.336855096 
shape_SurfaceArea_Base 0.003600587 

shape_SurfaceVolumeRatio_Base -4.416308449 
glcm_ClusterProminence_Base -3.5651E-06 

glcm_Contrast_Base -0.171013698 
glcm_Correlation_Base 0.145 

glcm_Imc1_Base 35.684 
glcm_Imc2_Base -7.574759687 

glcm_JointAverage_Base 0.861 
glcm_JointEnergy_Base -958.2169646 

glcm_MCC_Base 7.3 
glcm_MaximumProbability_Base -734.7529329 

glrlm_RunVariance_Base -154.8836307 
glrlm_ShortRunHighGrayLevelEmphasis_Base -0.021418708 

glszm_GrayLevelNonUniformityNormalized_Base -628.9855369 
glszm_LargeAreaHighGrayLevelEmphasis_Base 0.000268432 
glszm_LargeAreaLowGrayLevelEmphasis_Base -2.395007695 

glszm_SizeZoneNonUniformity_Base -0.002338366 
glszm_SmallAreaEmphasis_Base 36.437 

ngtdm_Busyness_Base -0.888311909 
ngtdm_Complexity_Base 6.33956E-05 

ngtdm_Contrast_Base 50.932 
ngtdm_Strength_Base -0.323326191 

gldm_DependenceNonUniformityNormalized_Base -34.53125393 
gldm_LargeDependenceLowGrayLevelEmphasis_Base 37.811 

gldm_LowGrayLevelEmphasis_Base 371.773 
The Radiomics features named as: Feature type_Feature name_Extraction area. WP: whole prostate. 
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Abstract 
Volume of interest segmentation is an essential step in computer-aided detection and diagnosis 

(CAD) systems. Deep learning (DL)-based methods provide good performance for prostate 

segmentation, but little is known about the reproducibility of these methods. In this work, an in-house 

collected dataset from 244 patients was used to investigate the intra-patient reproducibility of 14 shape 

features for DL-based segmentation methods of the whole prostate gland (WP), peripheral zone (PZ) 

and the remaining prostate zones (non-PZ) on T2-weighted (T2W) magnetic resonance (MR) images 

compared to manual segmentations. The DL-based segmentation was performed using three different 

convolutional neural networks (CNNs): V-Net, nnU-Net-2D and nnU-Net-3D. The two-way random, 

single score intra-class correlation coefficient (ICC) was used to measure the inter-scan reproducibility 

of each feature for each CNN and the manual segmentation. We found that the reproducibility of the 

investigated methods is comparable to manual for all CNNs (14/14 features), except for V-Net in PZ 

(7/14 features). The ICC score for segmentation volume was found to be 0.888, 0.607, 0.819 and 0.903 

in PZ; 0.988, 0.967, 0.986 and 0.983 in non-PZ; and 0.982, 0.975, 0.973 and 0.984 in WP for manual, 

V-Net, nnU-Net-2D and nnU-Net-3D, respectively. The results of this work show the feasibility of 

embedding DL-based segmentation in CAD systems based on multiple T2W MR scans of the prostate, 

which is an important step towards the clinical implementation.  

 

Introduction  
Prostate cancer is the most detected cancer in men and the second most common cause of cancer 

related death for men worldwide1. An early diagnosis of prostate cancer is essential for a better disease 

management2. Following reasonable suspicion of prostate cancer, based on elevated prostate-specific 

antigen (PSA) levels in blood and a digital rectal examination, the patient, in many countries, is likely 

to be referred to a pre-biopsy magnetic resonance imaging (MRI) to guide the collection of biopsies3. 

To improve the diagnostic process, the use of multi-parametric MRI (mpMRI) has been established 

through international guidelines4-6. mpMRI has also been employed in active surveillance programs to 

follow up the patients with indolent lesions7, prostate cancer risk calculators8 and treatment response 

monitoring6,9. Currently, the mpMR images are interpreted qualitatively by a radiologist, which is 

expensive, time-consuming10 and reader opinion-dependent11,12. The resulting vulnerability to inter and 

intra-observer variability is problematic for clinical applications based on multiple scans in time, such 

as with active surveillance and response monitoring, where reproducibility of results is paramount. 

Automated computer-aided detection and diagnosis (CAD) systems have the potential to overcome the 

limitations of the traditional radiological reading by implementing quantitative models to automate, 

standardize and support reproducible interpretation of radiological images10,13-15.  

Segmentation is an essential step for prostate CAD systems14,15. It helps locate the volume of 

interest (VOI), enabling subsequent extraction of quantitative features for radiomics-based approaches. 
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Accurate segmentation is paramount as the following steps of a CAD system are dependent on it. 

Traditionally, the VOI segmentation is performed manually by a radiologist on T2-weighted (T2W) 

MR images. However, deep learning (DL)-based segmentation methods have shown promising 

performance16-20. Importantly, the inter-observer variability between DL-based segmentation methods 

and expert radiologists has been shown to be approximately equal to that between expert radiologists21. 

However, little is known about the reproducibility of DL-based segmentation methods for clinical MRI 

scans. To investigate the reproducibility of DL-based segmentation, radiomics shape features can be 

used. Shape features like prostate volume are already part of today’s clinical risk calculators for prostate 

cancer8 and will likely play an important role in future radiomics-based clinical applications. In 

addition, these features show high reproducibility between mpMRI scans during a short time interval22. 

In this work, we investigated the reproducibility of DL-based segmentations of the whole 

prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ; central, transition 

and anterior fibro-muscular zones, combined) by comparing radiomics shape features from T2W MR 

images acquired with short time intervals. 

Methods  
Dataset 

In this study, we used an in-house collected mpMRI dataset from 244 patients (median age = 

65; range: 44 – 76 years) examined at St. Olavs Hospital, Trondheim University Hospital, Trondheim, 

Norway between March 2015 and December 2017 due to suspicion of prostate cancer. All methods 

were carried out in accordance with the relevant guidelines and regulations. The study was approved 

by the institutional review board and The Regional Committee for Medical and Health Research Ethics 

(REC Central Norway, identifiers 2013/1869 and 2017/576). All patients signed informed consent prior 

to the initiation of the study. The dataset (T2W images) was split into a training set (N = 182), to train 

the DL-based segmentation networks, and an investigation set (N = 62), to investigate the 

reproducibility of shape features extracted from the segmented prostate masks. 

The investigation set was acquired at two different time points: first, at the initial visit for 

detection of prostate cancer (scan 1), and second, during an MR-guided biopsy procedure (scan 2). The 

interval between scans ranged from 1 – 71 (median = 7) days.  

T2W MRI was performed on a Magnetom Skyra 3 T MRI system (Siemens Healthineers, 

Erlangen, Germany) with a turbo spin-echo sequence. The scanning parameters details are given in 

Table 1.  
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Table 1. Summary of MRI scanning parameters.  

 Investigation set Training set 

 Scan 1 Scan 2 

Repetition time (ms) 4800 – 8921 5660 – 7740 4450 – 9520 

Echo time (ms) 101 – 104 101 – 104 101 – 108 

Flip angle (degree) 152 – 160 152 – 160 145 – 160 

Number of averages 3 3 – 6 1 – 3 

Matrix size 320×320 – 

384×384 

320×320 – 384×384 320×320 – 384×384 

Slices 24 – 30 17 – 24 24 – 34 

Slice thickness (mm) 3 3 3 – 3.5 

In plane resolution (mm2) 0.5×0.5 – 0.6×0.6 0.5×0.5 – 0.6×0.6 0.5×0.5 – 0.6×0.6 

 

Prostate Segmentation 
Manual segmentation of PZ and non-PZ for the in-house collected dataset was performed using 

ITK-SNAP23 by a radiology resident (E.S.) at St. Olavs Hospital, Trondheim University Hospital, 

Trondheim, Norway, under the supervision of a radiologist (S.L.) with more than 10 years′ experience 

in prostate imaging. PZ and non-PZ masks were used to generate the WP masks by merging. 

The DL-based segmentation was performed using three different convolutional neural networks 

(CNNs): V-Net19, nnU-Net-2D20 and nnU-Net-3D20. nnU-Net-2D performed the segmentation on a 2D 

slice-by-slice basis, whereas V-Net and nnU-Net-3D performed the segmentation on a 3D volume basis. 

Prior to segmentation, all images were pre-processed in accordance with the corresponding 

segmentation method. The segmentation pre-processing, training, and testing were performed on a 

single NVIDIA Tesla P100 PCIe 16 GB GPU in Ubuntu 18.04.4 LTS. V-Net was  implemented with 

PyTorch24 (version 1.4.0) using Python (version 3.6.9; Python Software Foundation, Wilmington, DE, 

USA) to generate two models for WP and PZ which were used to generate non-PZ masks by subtraction. 

nnU-Net-2D and nnU-Net-3D were implemented with PyTorch (version 1.7.0) using Python (version 

3.6.10) to generate both PZ and non-PZ, which were used to generate the WP masks by merging. The 

DL-based segmentations were post-processed to only keep the largest 3D connected component using 

a pixel connectivity of 26. 

 

Feature extraction 

Shape features were extracted from the 3D segmentation masks (Manual or DL-based) of PZ, 

non-PZ and WP using Pyradiomics25 (version 3.0; an open-source Python package). The following 14 
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shape features were extracted: Elongation, Flatness, Least Axis Length, Major Axis Length, Maximum 

2D diameter (Column), Maximum 2D diameter (Row), Maximum 2D diameter (Slice), Maximum 3D 

diameter, Mesh Volume, Minor Axis Length, Sphericity, Surface Area, Surface Area to Volume ratio 

and Voxel Volume. A detailed description of the features can be found at 26. 

 

Investigation of reproducibility 
Reproducibility is defined as the “variability in measurements made on the same subject, but 

under changing conditions”27. The variability and reproducibility are inversely related, i.e. the higher 

the variability, the lower the reproducibility. In this work, scan 1 and scan 2 were performed on the 

same patients, but at different time points and using different scanning procedures.  

To investigate the reproducibility, all extracted features from the two scans of 62 patients’ scans 

using the manual and post-processed DL-based segmentations were included. The reproducibility for 

each of the 14 shape features was investigated, separately, for each of the CNNs and compared to that 

of the corresponding feature from the manual segmentations. Furthermore, the DL-based segmentation 

performance and segmentation volume (Voxel Volume feature) in scan 1 and scan 2 were compared to 

those of manual segmentations. 

In addition, the reproducibility results were compared to the corresponding results where (1) 

the post-processing step was excluded and (2) patients with a poor segmentation quality score were 

excluded. To enable the last comparison, our previously proposed automated segmentation quality 

control system (SQCS)28 was implemented and the patients with a quality score less than 85 for scan 1 

or/and scan 2 were excluded from further analysis. As per 28, the SQCS was implemented using pre-

processed T2W images and WP segmentations. 

 

Statistical analysis 
The dice similarity coefficient (DSC)29 between manual and DL-based segmentations was 

calculated as a metric of segmentation performance.  

The two-way random, single score intra-class correlation coefficient (ICC)30,31 was used to 

measure the inter-scan reproducibility of each feature for each CNN and the manual segmentations. 

Statistical significance between features from manual segmentation and each CNN, and between 

features from including and excluding the post-processing step was based on overlapping 95% 

confidence intervals (CI)32.  

The paired Wilcoxon signed rank test33 followed by Benjamini-Hochberg correction for 

multiple testing34 was used to assess the differences in DSC, the ICC values between VOIs and 

segmentation volume between networks and scans. 
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The Bland-Altman analysis35 and Spearman’s rank test33 were performed to assess the 

correlation between the segmentation volumes for scan 1 and scan 2, and between the segmentation 

volumes of each of the CNNs and the manual segmentations in scan 1 and scan 2. 

 To assess the difference in feature reproducibility before and after implementing the SQCS, a 

permutation test33 with 1000 runs was performed for each CNN. In each of these 1000 runs, the ICC 

value was calculated after randomly excluding the same number of cases as excluded by the SQCS.  

The improvement in ICC after applying the SQCS was considered significant if less than 50/1000 

randomly permuted values were higher or equal to the ICC after the SQCS implementation.  

MATLAB R2019b (Mathworks, Natick, MA, USA) was used for statistical analysis. 

Results  
An example case segmented with the three investigated CNNs is shown in Figure 1.  

 

Figure 1. The middle slice for the whole prostate, apex and base of a randomly selected case segmented 

(peripheral zone (PZ) and the remaining prostate zones (non-PZ)) by different approaches for scan 1 

and 2. For each network, the dice similarity coefficient (DSC) of  the 3D segmented volume is reported 

for the whole prostate gland (WP), PZ and non-PZ. 

 

Figure 2 shows the performance of the investigated CNNs segmentations. The median DSCs 

were 0.781, 0.821 and 0.825 in PZ; 0.871, 0.916 and 0.917 in non-PZ; and 0.909, 0.937 and 0.940 in 

WP for V-Net, nnU-Net-2D and nnU-Net-3D, respectively, in scan 1, and 0.714, 0.788 and 0.798 in 
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PZ; 0.853, 0.896 and 0.904 in non-PZ; and 0.893, 0.917 and 0.929 in WP for V-Net, nnU-Net-2D and 

nnU-Net-3D, respectively, in scan 2. Median of DSC difference between the scans (scan 2 - scan 1) was 

-9.49%, -4.06% and -3.65% in PZ; -3.12%, -1.80% and -1.08% in non-PZ; and -1.98%, -1.95% and -

1.39% in WP for V-Net, nnU-Net-2D and nnU-Net-3D, respectively. V-Net performed significantly 

lower (p<0.001) than nnU-Net-2D and nnU-Net-3D in both of the scans and all of VOIs. nnU-Net-3D 

performed significantly higher (p<0.01) than nnU-Net-2D in scan 2 for all of VOIs. In addition, each 

of the CNNs performed significantly lower (p<0.001) in scan 2 compared to scan 1. 

 

 Figure 2. The performance (dice similarity coefficient - DSC) of the segmentation methods for the 

whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ). The 

Manual segmentations were considered as reference. 

 

Figure 3 shows the ICCs from the extracted shape features from scan 1 and scan 2, where the 

segmentation post-processing step was included and the segmentation quality control system was not 

implemented, demonstrating that the reproducibility of DL-based segmentation is comparable to 
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manual segmentation for all networks (14/14 features), except for V-Net in PZ (7/14 features). In both 

manual and DL-based segmentations, Elongation, Flatness and Sphericity had a remarkably lower ICC 

than the other features in WP and non-PZ. nnU-Net-3D showed higher reproducibility than the rest of 

the CNNs with a median difference in ICC equal to 54.03% and 9.06% in PZ; 3.95% and 0.38% in non-

PZ; and 0.95% and 1.09% in WP with V-Net and nnU-Net-2D, respectively. Additionally, in most cases 

feature reproducibility in the non-PZ and WP was higher than in the PZ. V-Net had significantly higher 

(p<0.01) ICCs in non-PZ and WP compared to PZ. 

Comparing reproducibility when including (Figure 3) and excluding (Figure A1) the 

segmentation post-processing step, while SQCS was not implemented in any of them, shows that the 

reproducibility is remarkably enhanced when including the segmentation post-processing step. The ICC 

after including the segmentation post-processing step was significantly better in (4/14) features for V-

Net in non-PZ; (14/14), (12/14) and (13/14) features for nnU-Net-2D in PZ, non-PZ and WP, 

respectively; and (13/14), (14/14) and (13/14) features for nnU-Net-3D in PZ, non-PZ and WP, 

respectively.  

Similarly, the reproducibility was increased with the SQCS implementation (Figure A2) 

compared to no implementation (Figure 3); the segmentation post-processing step was included in both 

cases. After implementing the SQCS, 10, 11 and 6 patient’s segmentations were excluded from V-Net, 

nnU-Net-2D and nnU-Net-3D, respectively. The ICC after implementing the SQCS was significantly 

better in (3/14), (2/14) and (3/14) features for V-Net in PZ, non-PZ and WP, respectively; in (7/14) and 

(2/14) features for nnU-Net-2D in non-PZ and WP, respectively; and in (1/14) and (5/14) features for 

nnU-Net-3D in non-PZ and WP, respectively.  

 

Figure 3. The single score intra-class correlation coefficient (ICC) with the 95% confidence interval 

(95%CI) of the shape features extracted from the whole prostate gland (WP), peripheral zone (PZ) and 

the remaining prostate zones (non-PZ) for the investigated methods, where the segmentation post-

processing step was included and the segmentation quality control system was not implemented. 
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The segmented volume (Voxel Volume feature) was further investigated, as it is an important 

and in-use biomarker for multiple clinical applications36-38. Its ICC score, when the segmentation post-

processing step was included and the SQCS was not implemented, was 0.888, 0.607, 0.819 and 0.903 

in PZ; 0.988, 0.967, 0.986 and 0.983 in non-PZ; and 0.982, 0.975, 0.973 and 0.984 in WP for manual, 

V-Net, nnU-Net-2D and nnU-Net-3D, respectively. Figure 4 shows that the segmented volume was 

significantly lower in scan 2 compared to scan 1 for all the methods in PZ and WP (p<0.001) and for 

nnU-Net-2D in non-PZ (p=0.003). Bland-Altman analysis shows a similar bias for manual and DL-

based methods (Figure A3). Median of volume difference between the scans (scan 2 - scan 1) was -

4.33%, -3.58%, -5.80% and -3.32% in WP for manual, V-Net, nnU-Net-2D and nnU-Net-3D, 

respectively. It also shows a small bias between the volumes of the DL-based and manual segmentations 

in scan 1 (Figure A4) and scan 2 (Figure A5). It was noticed that PZ has higher bias between scans and 

methods than non-PZ and WP. V-Net has also showed a slightly higher bias between scans and methods 

than nnU-Net-2D and nnU-Net-3D. 

 

Figure 4. The segmented volume of the whole prostate gland (WP), peripheral zone (PZ) and the 

remaining prostate zones (non-PZ) from the investigated methods in scan 1 and scan 2. 
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Discussion 
VOI segmentation is an essential step in CAD systems. DL-based methods provide good 

performance for prostate segmentation, but little is known about their reproducibility. The 

reproducibility of radiomics shape features can be used as an indicator of the segmentation 

reproducibility. Therefore, in this paper, we investigated the reproducibility of the shape features 

extracted from DL-based segmentations of the WP, PZ and non-PZ on T2W MR images acquired with 

short time intervals (median = 7 days), and compared them to those of manual segmentations. Prostate 

gland volume is proportionally related to benign enlargement39 and inversely related to prostate 

cancer40. Both of those conditions usually require long time to develop, thus no significant change in 

prostate gland volume is expected during a short time interval. Shape features like prostate volume, 

used to measure the PSA-density (PSA level/prostate volume)41, are already part of today’s clinical risk 

calculators for prostate cancer8 and will likely play an important role in future radiomics-based clinical 

applications. For clinical applications based on multiple scans in time, like active surveillance, it is key 

that extracted features are both accurate and reproducible.  

The DSC values were in line with those expected from the literature19,20, indicating that the 

trained networks have state-of-the-art performance. nnU-Net-3D had the best overall segmentation 

accuracy, while V-Net showed the lowest segmentation accuracy comparable to the manual 

segmentations. This work extends previous studies showing the excellent performance of nnU-Net, 

specifically the 3D volume basis model, on a wide variety of medical image segmentation tasks20. The 

DSC values were slightly lower in scan 2 compared to scan 1. This is probably due to the nature of the 

segmentation training set, which consisted of cases acquired with a scan protocol similar to that of scan 

1. 

Based on ICCs of the shape features, nnU-Net-2D and nnU-Net-3D were shown to have 

comparable reproducibility to manual segmentations in all VOIs. WP and non-PZ shown higher ICCs 

compared to PZ, which was expected due to the low PZ segmentation performance. nnU-Net-3D 

provided higher ICCs compared to the other CNNs, which was expected as it had the highest 

segmentation performance among CNNs. Overall, the results show that DL-based segmentation 

methods can generate highly intra-patient reproducible masks for T2W images of the prostate. Good 

reproducibility gives potential for picking up changes in the prostate when they appear, which is an 

important step towards the clinical implementation of prostate CAD systems based on multiple T2W 

MRI scans.  

Including a post-processing step to the segmentation, where only the largest connected 

component in 3D volume is kept, was shown to remarkably enhance the features reproducibility. 

Similarly, the implementation of the SQCS significantly increased the reproducibility. Therefore, the 

implementation of these two post-processing steps in a CAD system pipeline is recommended to assure 

highly reproducible shape features. In clinical applications, the cases with low segmentation quality 
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score, predicted by the SQCS, should be either referred to a radiologist for manual intervention or re-

segmented using another CNN. 

One possible explanation for the lower ICC of Elongation, Flatness and Sphericity in WP and 

non-PZ is that the prostate gland in scan 2 was potentially compressed due to a guiding probe for the 

biopsy needle inside the patient’s rectum during the image acquisition. Moreover, the patients were 

scanned in prone position during scan 2, in contrast to scan 1, where they were scanned in supine 

position. The probe and the prone position would indeed not alter the volume of the prostate but might 

deform its shape slightly. In their study, Osman et al.42 have investigated the endorectal coil effect on 

the WP volume and shape during prostate T2W MRI and concluded that despite shape deformation, 

there is no significant change in the WP volume between including and excluding the endorectal coil. 

Although the needle guiding probe differs from the endorectal coil, its impact may be expected to be 

similar. In addition, the prostate gland might deform between scans due to other factors e.g., different 

bladder/bowel loading, which were not taken into account in this study. The shape deformation may 

have had an impact on the decision of including or excluding a slice from the segmentation. We noticed 

that, overall, scan 2 had a lower number of segmented slices than scan 1. Median of the segmented 

slices number was 14, 14, 14 and 14 in WP for manual, V-Net, nnU-Net-2D and nnU-Net-3D, 

respectively, in scan 1 and  13, 13.5, 13 and 14 in WP for manual, V-Net, nnU-Net-2D and nnU-Net-

3D, respectively, in scan 2. Although the difference between the numbers is small (≈1 slice), it will 

influence the segmented volumes, which were indeed slightly lower in scan 2 than in scan 1. 

The reproducibility of the segmented volume might be the most important among the 14 

investigated features. WP volume is used by the radiologist to measure the PSA-density, which is part 

of today’s clinical risk calculators8 and can be used as a biomarker to evaluate prostate cancer 

progression and the need for re-biopsy 38. An alternative biomarker to the traditional PSA-density is the 

zonal adjusted PSA-density, which depends on the segmented volume from various prostate gland 

zones, i.e. non-PZ volume43,44. Our study shows that the segmented volume feature is highly 

reproducibility, and in agreement with manual volumes on both zonal and whole prostate-level. 

In their work, Schwier et al.22 used manual segmentations to assess the reproducibility of 

radiomics features on prostate T2W MR images. Their focus was mainly on the reproducibility of the 

radiomics textural features under different settings, but they have also included results on some of the 

shape features reproducibility. Although there is some similarity between their work and ours, our work 

focused on the reproducibility of DL-based segmentations. Like in our work, Schwier et al. showed that 

the reproducibility of shape features is high. Furthermore, they showed that the segmented volume 

reproducibility is higher in WP than in PZ, which was also in line with our findings. The high ICC 

values found in this work suggest that all the shape features, except for Elongation, Flatness and 

Sphericity, extracted using DL-based segmentation methods, can be used in clinical applications based 

on multiple scans without being concerned about their reproducibility. 
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In this work, we used a dataset from prostate cancer patients referred and scanned according to 

prevailing guidelines. Consequently, the results represent the reproducibility of the DL-based 

segmentations in a real clinical setting. Nevertheless, our study has some limitations. The patient cohort 

was relatively small and it was obtained from a single centre. Conducting a multicentre study in the 

future might give additional insight on the reproducibility of DL-based segmentation across institutions. 

Moreover, the manual segmentations in this study have been performed by one reader. A set of manual 

segmentations, where multiple readers included, will facilitate additional comparisons, which might 

provide us with more information, but this can be considered for a future work. 

Conclusion 
We investigated the reproducibility of the shape features extracted from DL-based 

segmentations of the prostate gland and zones on T2W MR images acquired with short time intervals. 

The reproducibility of the best-performing DL-based prostate segmentation methods is comparable to 

that of manual segmentations, which is important for clinical applications based on multiple scans in 

time.  
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Appendix 

 
Figure A1. The single score intra-class correlation coefficient (ICC) with its 95% confidence interval 

(95%CI) of the shape features extracted from the whole prostate gland (WP), peripheral zone (PZ) and 

the remaining prostate zones (non-PZ) for the investigated methods, where the segmentation post-

processing step was skipped and the segmentation quality control system was not implemented. 

 
Figure A2. The single score intra-class correlation coefficient (ICC) with its 95% confidence interval 

(95%CI) of the shape features extracted from the whole prostate gland (WP), peripheral zone (PZ) and 

the remaining prostate zones (non-PZ) for the investigated methods, where the segmentation post-

processing step was included and the segmentation quality control system was implemented. The 

patients with a quality score less than 85 for scan 1 or/and scan 2 were excluded. 



 
Figure A3. The Bland-Altman plots for the agreement between scan 1 and scan 2 volumes from the 

whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) for the 

investigated methods. 

 



Figure A4. The Bland-Altman plots for the agreement between manual and rest of the investigated 

methods volumes from the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate 

zones (non-PZ) in scan 1. 

 
Figure A5. The Bland-Altman plots for the agreement between manual and rest of the investigated 

methods volumes from the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate 

zones (non-PZ) in scan 2. 
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