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A B S T R A C T   

Closed fish cages have gained increased interest in marine aquaculture. However, knowledge on the seakeeping 
behaviour of a floating closed cage and the influence of the contained water inside the cage are still limited. In 
this paper, a coupled numerical model is developed for the simulation of closed rigid cages in waves. Numerical 
studies are conducted both in the frequency domain and in the time domain, and compared with scaled physical 
experiments. Special attention has been drawn to the coupling effects of sloshing on cage response and the 
resulting mooring line forces. The comparative analyses show that sloshing of the contained water has large 
influence on the coupled surge and pitch motions of the cage. Sloshing is also found to have significant effect on 
the mean-drift forces in regular waves. In the tested/simulated irregular waves, the mooring forces are found to 
be dominated by the slow-drift motions, which indicates that the slowly-varying wave drift forces need to be 
considered in the design of the mooring system for a floating closed cage.   

1. Introduction 

Fish farming in floating closed cages has gained increased interest in 
recent years as a strategy to mitigate the problems with sea lice and the 
negative environmental impact, which are often associated with the 
open net cage systems that are widely used for sea-based production of 
Atlantic salmon (Salmo salar). The existing concepts of closed fish cages 
can be categorised as flexible membrane structures (fabric), semi- 
flexible structures (glass fibre) and rigid structures (steel or concrete), 
based on the construction materials being used and to what degree the 
cage can deform (Kristiansen et al., 2018a). From a marine hydrody-
namics perspective, a closed cage represents a large volume structure 
filled with liquid. Ocean waves may excite free-surface oscillation of the 
contained water inside the cage causing sloshing, which is a complex 
phenomenon with relevance for many applications (Faltinsen and 
Timokha, 2009). The coupling effects of internal hydrodynamics on cage 
response and structural deformation, are important design consider-
ations for floating closed cages. However, knowledge on and experience 
with these problems are quite limited, as sea-based fish farming in closed 
cages is still a novel concept. 

Solaas et al. (1993) presented some important design parameters for 
closed flexible cages which are typically made of coated fabric. The 

flexible nature of these structures implies that hydroelasticity is 
important to consider in the marine environment (Løland, 1994). A 
study of drag forces and associated deformations of closed flexible cages 
was presented in Lader et al. (2015) and Strand et al. (2016), followed 
up by an experimental study on the wave-induced responses of the same 
closed flexible structure (Lader et al., 2017). A combined structural and 
hydrodynamic model was developed by Kristiansen et al. (2018b) to 
study the drainage and collapse of a closed flexible cage under specific 
operational conditions. A linear model of two-dimensional closed flex-
ible cage in waves was developed by Strand and Faltinsen (2019) to 
investigate the coupling effects of sloshing on cage response and struc-
tural deformation. This model was further developed for the analysis of 
semi-flexible cages, including the effect of bending stiffness (Strand and 
Faltinsen, 2020). Kristiansen et al. (2018a) presented a dedicated 
experimental study of cylindrical closed rigid cages in regular waves and 
comparison with numerical simulations using linear potential theory in 
the frequency domain. Sloshing of the contained water was shown to 
have large influence on the coupled surge and pitch motions of the cage. 
Tan et al. (2019) used a single-dominant multi-modal method for the 
simulation of sloshing and coupled rigid body motions of a cylindrical 
closed cage in regular waves. It was found that the multi-modal method 
was able to model the swirling waves inside the cage, which could lead 
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to violent cage motions even in the direction perpendicular to the 
incident waves. Liang et al. (2020) used a fully nonlinear time-domain 
harmonic polynomial cell (HPC) method (Shao and Faltinsen, 2014) to 
study the liquid sloshing problem in a circular cylindrical tank under 
periodic and transient excitations. The sloshing response in terms of 
free-surface elevation as well as hydrodynamic force and moments were 
evaluated and compared with analytical predictions from the weakly 
nonlinear multi-modal theory. In general, good agreement was found. 
Tsarau et al. (2021) presented experimental and numerical studies of a 
circular cylindrical tank filled with water and subjected to forced os-
cillations. A weakly nonlinear multi-modal method (Faltinsen and 
Timokha, 2009) was shown to be able to model both the planar and 
swirling waves with similar amplitudes to the experiments. Sloshing 
experiments with a rotating liquid were also conducted, and the results 
showed that the internal flows might significantly modify the sloshing 
regimes observed in the non-rotating liquid. 

As a continuation of the previous work (Kristiansen et al., 2018a), 
this paper presents an integrated numerical model for analysing the 
seakeeping behaviour of closed rigid cages and the mooring forces in 
regular and irregular waves. Numerical studies are conducted both in 
the frequency domain and in the time domain, and compared with 
scaled physical experiments. The time-domain simulation enables the 
implementation of nonlinear hydrodynamic models and offers the pos-
sibility for a complete system analysis (e.g. cage response, structural 
deformation, moorings and fish behaviour) that most of the existing 
simulation codes do not provide. A model for slowly-varying wave drift 
forces, which have great importance in the design of the mooring system 
for floating large volume structures, is implemented. Sloshing of the 
contained water inside the cage is modelled based on the weakly 
nonlinear multi-modal method (Faltinsen and Timokha, 2009). The 
coupling effects of sloshing on cage response and the resulting mooring 
line forces are investigated. 

2. Materials and methods 

2.1. WAMIT 

WAMIT is a state-of-the-art simulation code (distributed and licenced 
by WAMIT Inc., Massachusetts, USA) for analysing wave interactions 
with floating or submerged marine structures. The wave-induced 
response of a three-dimensional body in waves is simulated in the fre-
quency domain, by evaluating the hydrodynamic pressure and forces on 
the body surface, as well as the fluid velocities. The flow is assumed to be 
potential, free of separation or lifting effects, and the linearization of the 
problem permits the decomposition of the velocity potential into the 
radiation and diffraction components. In the present study, the so-called 
“low-order” method is used, where the geometry of the body is repre-
sented by an ensemble of flat quadrilateral panels and the solutions for 
the velocity potential are approximated by piecewise constant values on 
each panel (www.wamit.com/manual.htm). 

WAMIT provides the option to analyse the linear hydrodynamic 
parameters for a fluid inside an oscillatory tank, or to analyse the 
coupled problem where one or more tanks are placed within the interior 
of the body, including the dynamic coupling. This option is utilized in 
the present study to simulate the effect of the contained water with a free 
surface inside the closed cage. The tank geometry is defined in the same 
manner as for the exterior surface of the cage, using the “low-order” 
method. The solution for the velocity potential in the tank is computed 
simultaneously with the velocity potential in the exterior fluid domain 
outside the cage, using an extended linear system which includes all of 
the fluid domains. 

2.2. The FhSim framework 

FhSim is a software platform and framework for mathematical 
modelling and numerical simulation, with a focus on applications within 

fisheries and aquaculture (Reite et al., 2014; Su et al., 2019). It has been 
under continuous development at SINTEF Ocean since 2006, which 
features a large collection of mathematical models for time-domain 
simulations based on ordinary differential equations (ODEs). Model 
development in FhSim is modular, where complex systems are modelled 
as interconnected sub-models. In the present study, new sub-models are 
implemented in FhSim for the simulation of closed rigid cages and 
sloshing, which will be described in Sections 2.3 and 2.4. In the 
following, the existing FhSim sub-models for the simulation of waves 
and mooring lines are described in brief. 

2.2.1. FhSim sub-model for the simulation of waves 
FhSim contains implementations of sea environment models simu-

lating water current and wave fields, and a generalized interface for 
other sub-models to query about environmental features, such as sea 
depth, current velocity, wave elevation and wave induced particle ve-
locity at a specified point in the water volume. The implemented wave 
model supports both Eulerian and Lagrangian linear wave theories and 
realization of JONSWAP and ISSC wave spectra based on the super-
position principle. The generated wave field is, in general, assumed to be 
undisturbed by other sub-models. However, wave radiation and 
diffraction (Faltinsen, 1993) can be considered in other sub-models (see 
e.g. in Section 2.3) for the calculation of wave-induced forces. 

2.2.2. FhSim sub-model for the simulation of mooring lines 
A generic cable model in FhSim is used for the simulation of mooring 

lines which are attached to other sub-models (e.g. a fish cage) or a fixed 
point in space (e.g. an anchor point). The cable model is essentially a 
collection of 6 degrees-of-freedom (DOF) rigid bar elements which are 
connected with axial and angular constraints. The constraints are 
regularized through an elastic version of the Baumgarte stabilization 
method (Baumgarte, 1972). In effect the rigid bar elements can be 
thought of as connected with axial and angular springs like a traditional 
spring-mass-damper model, but without some of the numerical insta-
bility problems associated with high stiffness. The behaviour of the 
springs is regularized with three parameters: α, β and ε, where α is the 
damping factor, β controls the rate at which the constraint seeks towards 
equilibrium, and ε is the constraint compliance. The effective spring 
stiffness is a combination of β, ε, and the mathematical formulation of 
the constraint function. For the axial spring the effective stiffness is 
(β2 /ε)⋅EA/L, where E is the Young’s modulus of the material, A is the 
element’s cross-sectional area, and L is the element’s length. For the 
bending angular spring the effective stiffness is (β2 /ε)⋅ ≤ EI/L, where I 
is the element’s second moments of area for bending. For the torsional 
angular spring the effective stiffness is (β2 /ε)⋅GJ/L, where G is the shear 
modulus of the material, and J is the element’s second moments of area 
for torsion. 

The mooring lines are subject to gravity, buoyancy, hydrodynamic 
and viscous forces, and forces exerted by other sub-models attached to 
them. These forces are computed separately for each element 
comprising the cable, as well as the constraint equations providing 
desired structural properties for modelling the dynamic response. The 
cable model has been used for the simulation of a full aquaculture net- 
cage system in waves and current, and validated through comparison 
with experimental data (Endresen et al., 2014). A thorough description 
of the theoretical and mathematical background for the cable model can 
be found in Johansen (2007). 

2.3. Modelling of closed rigid cages 

The 6DOF motions (denoted by ηi, i = 1, …, 6) of a floating closed 
rigid cage are modelled in FhSim by Cummins’ equation (Cummins, 
1962) in time domain: 
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∑6

j=1

⎡

⎣
(
Mij +Aij(∞)

)
η̈j(t) +

∫t

0

Kij(t − τ)η̇j(τ)dτ+Cijηj(t)

⎤

⎦=FSum
i (t) (1)  

where Mijis the component of the generalized mass matrix, Aij(∞) is the 
added mass coefficient at infinity frequency, Kij is the impulse response 
function representing the fluid memory effects, Cij is the hydrostatic 
restoring coefficient, and FSum

i (t) represents the sum of wave excitation 
forces, slow-drift forces, nonlinear viscous damping, mooring forces, 
and forces induced by the contained water. Note that all the forces and 
coefficients are defined with respect to the cage-fixed coordinate system. 

In the present study, the added mass, damping, and hydrostatic 
restoring coefficients are obtained from the frequency-domain calcula-
tions in WAMIT (without internal tank) for a range of frequencies. The 
frequency-domain data are also used for a state-space approximation of 
the convolution term of Cummins’ equation and calculation of the wave 
excitation and slow-drift forces. 

2.3.1. State-space approximation of the radiation forces associated with 
fluid memory effects 

The convolution term of Cummins’ equation can be approximated by 
a linear state-space model (Kristiansen and Egeland, 2003; Fossen, 
2005): 

μij(t)=
∫t

0

Kij(t − τ)η̇j(τ)dτ (2)  

χ̇ij(t)=A
′

ijχij(t) + B′

ij η̇j(t) (3)  

μij(t)=C′

ijχij(t) + D′

ij η̇j(t) (4)  

where μij(t) is the output of the state-space model that approximates the 
impulse response function in DOF i to an impulse velocity in DOF j, χij(t)

is the state vector of the state-space model, A′

ij, B
′

ij, C
′

ij, and D′

ij are the 
parametric system matrices. As compared with the direct computation 
of the convolution integral, the state-space approximation has advan-
tages in terms of the computation speed, which can improve up to two 
orders of magnitude depending on the number of DOFs considered 
(Taghipour et al., 2008). 

In the present study, the vector fitting system identification method 
(Gustavsen and Semlyen, 1999; Gustavsen, 2006) is used to select the 
system matrices A′

ij, B
′

ij, C
′

ij, and D′

ij for each DOF combination (i = 1, …,

6; j = 1, …, 6) based on the calculated added mass and damping co-
efficients for a range of frequencies. A thorough description of the 
frequency-domain identification of parametric state-space models can 
be found in Kristiansen (2005) and Pérez and Fossen (2008). 

2.3.2. Convolution integral and state-space approximation of the excitation 
forces 

The first-order wave excitation force in time domain can be 
expressed as: 

FExc
i (t) =

∫t

0

hExc
i (t − τ)ξInc(τ)dτ (5)  

where ξInc is the incident wave elevation at the centre of the structure, 
and hExc

i is the impulse response function for the excitation force, which 
can be calculated using the inverse Fourier transform of the corre-
sponding force coefficient in frequency domain. Similar to the radiation 
force, a state-space model can be used to approximate the convolution 
integral for the excitation force (Yu and Falnes, 1995; Taghipour et al., 
2008). 

In the present study, the first-order excitation forces for long-crested 

irregular waves are evaluated based on the superposition principle: 

FExc
i (t)=

∑N

j=1
AjThi

j cos
(
ωjt+ εj

)
(6)  

where N is the number of regular wave components used for the time- 
domain realization of JONSWAP spectrum, Aj, ωj, and εj are the wave 
amplitude, circular frequency, and relative phase angle of wave 
component number j, and Thi

i is the transfer function of the wave exci-
tation force for DOF i which can be obtained from the first-order fre-
quency-domain solution for each regular wave component. 

2.3.3. Newman’s approximation of the slow-drift forces 
For a moored large volume structure, the restoring provided by the 

mooring lines leads to large resonance periods of the horizontal motions, 
and slow-drift motions can occur in the horizontal plane. In the present 
study, the Newman’s approximation (Newman, 1974) is used to calcu-
late the slowly-varying wave drift forces for long-crested irregular waves 
considering the second-order difference-frequency effects: 

FSD
i (t)=

∑N

j=1

∑N

k=1
AjAk

̅̅̅̅̅̅̅̅̅̅̅̅

Tdi
j Tdi

k

√

cos
[(

ωk − ωj
)
t+

(
εk − εj

)]
(7)  

where Tdi
j is the transfer function of the mean-drift force for DOF i, which 

depends only on the first-order frequency-domain solution for each 
regular wave component. For example, in WAMIT the mean-drift force 
can be evaluated based on either pressure integration or momentum 
conservation principle, without calculation of the second-order velocity 
potential. 

This expression is also valid for regular wave, i.e. these is only one 
wave component, in this case the calculated slow-drift force is equal to 
the constant mean-drift force. 

2.4. Modelling of sloshing 

A weakly nonlinear multi-modal method (Faltinsen and Timokha, 
2009), using the Fourier (modal) approximate solution of the 
free-surface elevation with time-dependent coefficients, is implemented 
in FhSim to simulate sloshing of the contained water inside a closed rigid 
cage. The cage is considered to be a vertical, cylindrical tank of radius R, 
which is partially filled with an inviscid incompressible liquid of depth 
h. 

2.4.1. Natural sloshing modes 
Following modal theory, the free-surface elevation ξ inside the cage 

is expanded as a series in terms of so-called natural sloshing modes 
χm,i,k(x,y): 

ξ(x, y, t)=
∑

m,i,k
βm,i,k(t)χm,i,k(x, y) (8)  

where βm,i,k are the generalized coordinates for liquid motion, which are 
infinite in number, and the sum goes over all β. According to linear 
potential flow theory, the natural modes for an upright circular cylinder 
in a cylindrical coordinate system (r,θ,z) read as 

χm,i,k(x, y)= χm,i,k(r cos θ, r sin θ) =
Jm
(
lm,ir

/
R
)

Jm
(
lm,i

) ×

{
cos(mθ)
sin(mθ) (9)  

where Jm is the Bessel function of the first kind of order m, and lm,i are the 
nondimensional roots of the equation J′

m(lm,i) = 0, and index k (= 1 or 2) 
corresponds to the cosine or sine mode terms, respectively. 

For each natural mode, the corresponding natural frequencies are 

σ2
m,i =

g
R

lm,itanh
(

lm,i
h
R

)

(10) 
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where g is the acceleration of gravity (9.81 m/s2), and m = 0, 1,2,…; 
i = 1, 2, … are the so-called azimuthal and radial mode numbers, 
respectively. 

2.4.2. Modal equations for prescribed tank motions 
When rigid-body motions ηi are known, the following ordinary dif-

ferential equations describe liquid motion in terms of the generalized 
coordinates 

β̈1,j,1 + σ2
1,jβ1,j,1 + 2σ1,jδ1,j β̇1,j +B1,j,1 = − Pj

[

η̈1 − gη5 − Sjη̈5

]

, (11)  

β̈1,j,2 + σ2
1,jβ1,j,2 + 2σ1,jδ1,j β̇1,j +B1,j,2 = − Pj

[
η̈2 + gη4 + Sjη̈4

]
, (12)  

β̈2,j,k + σ2
2,jβ2,j,k + 2σ2,jδ2,jβ̇2,j + B2,j,k = 0, k = 1, 2 (13)  

β̈0,j,1 + σ2
0,jβ0,j,1 + 2σ0,jδ0,j β̇0,j,1 + B0,j,1 = 0, (14)  

Pj =
2l1,jtanh

(
l1,jh

/
R
)

l2
1,j − 1

, (15)  

Sj =
2Rtanh

(
l1,jh

/
2R

)

l1,j
(16)  

where j = 1, 2, … ≤ Ir (number of the radial modes, here 2), m = 0,
1, 2 – the only azimuthal numbers that have a nonzero contribution, and 
index k (= 1 or 2) corresponds to the cosine or sine mode terms, 
respectively, and Bi,j,k are the nonlinear terms defined below. The linear 
damping term (with modal damping ratios denoted by δm,j) is introduced 
artificially in order to achieve steady-state solutions of the modal 
equations. Possible values of δm,j are discussed in Section 2.4.3. 

The nonlinear terms in the above modal equations for tank excitation 
frequencies close to σ1,1 was derived by Lukovsky (1990). Following 
Faltinsen and Timokha (2009), we use the traditional notations, p1 =

β1,1,1, r1 = β1,1,2, p0 = β0,1,1, p2 = β2,1,1, r2 = β2,1,2, such that the 
nonlinear terms read: 

B1,1,1=
d1

R2p1

(

p1p̈1+ ṗ2
1 +r1 r̈1+ ṙ2

1

)

+
d2

R2

(

r2
1 p̈1 +2r1 ṙ1ṗ1 − r1p1 r̈1 − 2p1 ṙ2

1

)

+
d3

R

(

p2p̈1+r2 r̈1 + ṙ1 ṙ2 + ṗ1ṗ2

)

−
d4

R

(

p1p̈2 +r1 r̈2

)

+
d5

R

(

p0p̈1+ ṗ1ṗ0

)

+
d6

R
p1p̈0

(17)  

B1,1,2=
d1

R2r1

(

r1 r̈1 + ṙ2
1+p1p̈1+ ṗ2

1

)

+
d2

R2

(

p2
1p̈1+2p1 ṙ1ṗ1 − r1p1p̈1 − 2r1ṗ2

1

)

−
d3

R

(

p2 r̈1+r2p̈1 + ṙ1ṗ2 − ṗ1 ṙ2

)

+
d4

R

(

r1p̈2 − p1 r̈2

)

+
d5

R

(

p0 r̈1+ ṙ1ṗ0

)

+
d6

R
r1p̈0

(18)  

B0,1,1 =
d10

R

(

r1 r̈1 + p1p̈1

)

+
d8

R

(

ṙ2
1 + ṗ2

1

)

(19)  

B2,1,1 =
d9

R

(

r1 r̈1 − p1p̈1

)

+
d7

R

(

ṙ2
1 − ṗ2

1

)

(20)  

B2,1,2 =
d9

R

(

r1p̈1 + p1 r̈1

)

−
2d7

R
ṙ1ṗ1 (21) 

The coefficient d1, … d10 in these nonlinear terms are tabulated by 
Faltinsen and Timokha (2009) for a range of h/R between 0.2 and 3.0. 
The presented model includes nonlinear terms only for the two primary 

excited modes ((1, 1,1) and (1, 1,2)) and the secondary modes ((0,1, 1),
(2, 1,1), (2,1, 2)). Thus, there is no coupling between the third-order 
modes and higher. 

2.4.3. Viscous energy dissipation 
Although potential theory assumes inviscid liquid, viscous energy 

dissipation in the liquid can be included in the modal equations for 
liquid motion, as shown in the previous section. In general, there is 
viscous dissipation in both the boundary layers and in the bulk of the 
fluid. However, bulk damping is often considered small relative to 
boundary-layer damping and is usually neglected (Faltinsen and Tim-
okha, 2009). Royon-Lebeaud et al. (2007) have shown that for dissipa-
tion at the boundaries of a circular-cylindrical tank, the damping ratios 
can be estimated using the following analytical expression: 

δm,n =
1

2R

(
ν

2σm,n

)1/2
[

2lm,n

sinh
(
2lm,nh

/
R
)+

2lm,ncosh2( lm,nh
/

R
)

sinh
(
2lm,nh

/
R
) +

1 +
(
m
/

lm,n
)2

1 −
(
m
/

lm,n
)2

−
2lm,nh

/
R

sinh
(
2lm,nh

/
R
)

]

(22)  

where ν is the kinematic viscosity of the liquid. Note, however, that 
Royon-Lebeaud et al. (2007) used this expression for smooth-wall cyl-
inders. Aquaculture cages for salmon production may have nonsmooth 
walls (e.g. due to biofouling) and are typically equipped with pipe sys-
tems for generating a liquid flow inside the cage, which may contribute 
to the viscous damping. 

2.4.4. Hydrodynamic force 
The total hydrodynamic force on the cage can be expressed via the 

generalized coordinates following Faltinsen and Timokha (2009): 

Fη1 = πρR2h
(

gη5 − η̈1 +
1
2

hη̈5

)

−
∑Ir

j=1

πρR3

l2
1,j

β̈1,j,1 (23)  

Fη2 = πρR2h
(

− gη4 − η̈2 −
1
2

hη̈4

)

−
∑Ir

j=1

πρR3

l2
1,j

β̈1,j,2 (24)  

Fη3 = − πρR2h
(

g+ η̈3

)

(25)  

where ρ is the liquid density. Likewise, the hydrodynamic moment can 
also be expressed via the generalized coordinates. For an axisymmetric 
cylinder, the expressions for the non-zero components reduce to 

Fη4 = −
πρR2h2

2

(
gη4 + η̈2

)
− J1

01η̈4

−
∑Ir

j=1

⎡

⎢
⎣

gπρR3

l2
1,j

β1,j,1 +

2πρR4tanh
(

h
2Rl1,j

)

l3
1,j

β̈1,j,1

⎤

⎥
⎦ (26)  

Fη5 = −
πρR2h2

2

(
gη5 + η̈1

)
− J1

02η̈5

+
∑Ir

j=1

⎡

⎢
⎣

gπρR3

l2
1,j

β1,j,2 +

2πρR4tanh
(

h
2Rl1,j

)

l3
1,j

β̈1,j,2

⎤

⎥
⎦ (27)  

J1
01 = J1

02 = πρR2

⎡

⎢
⎣

1
3
h3 −

3
4

hR2 + 16R3
∑Ir

j=1

tanh
(

h
2Rl1,j

)

l3
1,j

(
l2
1,j − 1

)

⎤

⎥
⎦ (28)  

where the non-zero components (J1
01 and J1

02) of the so-called Joukowsky 
inertial tensor are given as in Tan et al. (2019) after correcting the typo 
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in the original expression by Faltinsen and Timokha (2009). Note also 
that Eqs. 23–27 are given in the cage-fixed coordinate system with the 
origin in the centre of the equilibrium free surface of the liquid. 

2.5. Scaled physical experiment 

Physical experiments with a scaled model of cylindrical closed rigid 
cage were performed in the Ocean Basin of SINTEF Ocean. To ensure 
similarity of relevant physical parameters (e.g. velocities, forces and 
moments) between full scale and model scale, Froude scaling was 
applied with a chosen scale factor of 1:27. The basin is 80 m long, 50 m 
wide, and equipped with an adjustable floor. The depth was set to 5 m, 
equivalent to 135 m in full scale, thereby assuming deep water condition 
for the selected waves. 

The main dimensions and a sketch of the model are given in Fig. 1, 
where the ratio of cage depth to cage diameter is equal to 0.5 (h/ D =

0.5). The model was made of polycarbonate resin (Lexan), reinforced 
with aluminium plates (along the side wall) and steel tubes (exterior to 
the bottom) to reduce the flexibility of the cage. The cage tank was filled 
with water up to the design mean water line. The freeboard was 0.35 m 
from the mean water line to the top rim of the model. To ensure suffi-
cient stability and buoyancy, a torus shaped floating collar (made of 
plastic electrical tube and reinforced with two aluminium rings) was 
attached to the cage model. The model was located in the centre of the 
basin, with incoming waves generated in line with the global x-axis as 
shown in Fig. 1. The mooring configuration consisted of four equally 
spaced mooring lines which were attached to the floating collar, centred 
in the design mean water line of the cage. The other end of each mooring 
line was attached far away to a horizontal free-hanging coil spring. The 
stiffness of each coil spring was 60 N/m and a pretension of 45 N was 
applied to all mooring lines, yielding an equivalent horizontal stiffness 
(in x and in y directions as shown in Fig. 1) of 170 N/m for the system. 
The pretension in the mooring lines also provided an additional pitch 
restoring coefficient of 67.5 Nm/rad (approximated as the mooring line 
pretension multiplied by cage diameter). 

The model was tested in regular waves with the wave periods in the 
range between 0.63 s and 2.5 s (some of the test runs were not performed 
due to time constrains), corresponding to the relative wavelengths (i.e. 
the ratio of wavelength to cage diameter λ/D) in the range from 0.41 to 
6.5. Irregular wave tests were performed using a typical JONSWAP 
spectrum, with four different combinations of peak period (Tp) and 

significant wave height (Hs). Prior to the testing, the wave field was 
calibrated without the presence of the model and a wave probe (Wave2) 
was used to measure wave elevations in the centre of the basin (where 
the model would be located). All tests were performed with 100% filling 
ratio, such that the water level inside the model was same as the external 
mean free surface. 

In the testing, motions of the cage were measured using an optical 
positioning system where the positions of the reflective markers (Pos1- 
8) mounted along the cage side wall (32–328◦ with respect to the pos-
itive x-axis) were tracked from camera images. Three accelerometers 
(Acc1-3) were also mounted on the model for a benchmark check of the 
measured motions from the optical positioning markers. Sloshing of the 
contained water inside the cage and the wave elevation outside were 
measured by a set of wave probes (RW1-8: internal wave probe; RW9- 
16: external wave probe) distributed along the circumferential direc-
tion (22–337◦ with respect to the positive x-axis) of the cage and with a 
radial distance of D/40 from the side wall. Two more wave probes 
(Wave1 and Wave3) were installed 5 m away from the model to measure 
the front and side waves. Tensions in the mooring lines were measured 
by the uni-axial load cells (L1-4) installed between the cage and each 
mooring line. 

A thorough description of the model and instrumentation setup can 
be found in Shen et al. (2021), as well as the measurement accuracy (e.g. 
the specified measurement errors of the optical positioning marker and 
the wave probe were below 0.2 mm and 1.0 mm, respectively) and 
processing of the experimental data. These are not further discussed in 
the present paper, while the analysed data by Shen et al. (2021) are used 
for comparisons with the numerical simulation results. 

2.6. Simulation experiments 

The closed cage was modelled in WAMIT as a moored floating body 
in the water of infinite depth. The geometry of the physical model was 
discretized by an ensemble of flat quadrilateral panels (as shown in 
Fig. 2), where the geometrical representation of the floating collar was 
simplified to avoid numerical problems. Simplifications of the geometry 
representation were made such that the water-plane area and the 
displacement of the cage was conserved. An interior liquid tank (rep-
resented by the green panels in Fig. 2) was applied to model the coupling 
effects of the contained water on the rigid-body motions of the cage. The 
moorings were modelled as linear restoring forces with equivalent 

Fig. 1. Sketch of model geometry (h/D = 0.5) and instrumentation setup (Blue circles: internal and external wave probes; Cyan circles: optical positioning markers; 
Yellow circles: accelerometers; Red circles: force transducers). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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spring constants from the physical experiment. 
The time-domain simulation model in FhSim consists of the waves, 

the closed cage, the contained water and the mooring lines (as shown in 
Fig. 3), which were set up similarly to the physical experiment. The 
methods introduced in Sections 2.2 to 2.4 and the frequency-domain 
data obtained from the calculations with WAMIT were used to simu-
late the instantaneous responses of the cage and the mooring lines in 
both regular and irregular wave conditions. 

In a previous experimental study (Kristiansen et al., 2018a), two 
model configurations were tested, i.e. a “wet” model where the closed 
cage was filled with water and a “dry” model where the contained water 
was replaced by fixed weights to resemble “frozen” water. These two 
cage models were made of same materials and had same dimensions as 
in the present experiment, except for the depth (h/D = 0.25) which was 
1/2 of the present model (as shown in Figs. 3 and 4). The same mooring 
lines and pretensions were used for the “wet” and “dry” models, which 
provided an equivalent horizontal stiffness of 180 N/m, close to the 

present setup. Both of the “wet” and “dry” models were simulated in 
FhSim, as a supplementation to the present model for a better under-
standing of the influence of sloshing on the wave-induced responses of 
closed cages. 

3. Results 

The experimental data described in Section 2.5 and the corre-
sponding numerical simulation results are presented in this section, with 
a focus on the global response of the cage. The results of decay tests are 
presented in the first place, followed by the results in regular and 
irregular waves. All values are presented in full scale, i.e. scaled up by 
Froude scaling with a chosen scale factor of 1:27. 

3.1. Results of decay tests 

Free decay tests were performed to identify the natural periods of 
cage motions and the corresponding damping levels. The testes were 
started by giving the model an initial perturbation from equilibrium in 
the considered mode of motion, trying to minimize the coupling with 
other modes. The nonlinear viscous damping was considered in the time- 
domain simulations (FhSim) by using a drag coefficient of 0.6, which 
was evaluated based on the model test data of a similar cylindrical 

Fig. 2. Mesh of quadrilateral elements used in frequency-domain calculations 
with WAMIT. 

Fig. 3. Time-domain simulation setupfor the present model configuration 
(h /D= 0.5) in FhSim. 

Fig. 4. Time-domain simulation setup for the “dry” and “wet” model configu-
rations (h/D = 0.25)according to Kristiansen et al. (2018a). 

Fig. 5. Time series of the measured and simulated surge decay responses for 
the present model configuration (h/D = 0.5). 
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structure in current (Fokk, 2010). 
As shown in Fig. 5, the simulated surge decay responses are in good 

agreement with the experimental results. The surge natural periods 
obtained from the experiment and the time-domain simulation are 
116.4 s and 115.6 s, respectively. The corresponding damping ratios are 
0.026 and 0.024. The heave natural period obtained from the time- 
domain simulation (Fig. 6) is 10.6 s and the corresponding damping 
ratio is 0.055, while there is no experimental data on the heave decay 
response. The pitch natural period obtained from the experiment (Fig. 7) 
is 14.4 s, the simulation result is about 9% smaller, i.e. 13.1 s. The 
corresponding damping ratios are 0.095 and 0.066, respectively. The 
differences between the numerical and model test results (especially for 
the pitch response) are mainly attributed to the simplified body geom-
etry in the numerical model, where the hydrostatic restoring coefficients 
were assumed to be constant (corresponding to the mean water-plane) 
while it was observed in the model tests that the floating collar could 
easily go in and out of water due to small draft, causing time-dependent 
restoring force or moment (Shen et al., 2021). 

The decay tests do not provide information about the coupled natural 
periods between cage motions (surge and pith) and sloshing, as it takes a 
long transient phase with given forcing frequency to develop steady- 
state internal waves. The natural sloshing periods, Tm,i, associated 
with the first four azimuthal (m = 0,1, 2,3) and two radial (i = 1, 2) 
modes defined by the multi-modal method (Eq. (10)) are presented in 
Table 1, as well as the calculated natural periods of cage motions. 

3.2. Results in regular waves 

In the physical experiments, the incident waves were documented by 
wave calibration tests for all wave conditions with no model present in 
the basin. The generated incident waves at the model location were 
found to be in agreement with the wave parameters input to the 
wavemaker for the major part of the test wave conditions. Typical time 
series obtained from the regular wave tests and the corresponding time- 
domain simulations are presented in Figs. 8–10. For each test/simula-
tion, a time window was chosen from where steady-state values of 
incident wave height and corresponding rigid-body motion amplitudes 
were extracted. The calculated response amplitude operators (RAO’s) 
for surge, heave and pitch are presented in Figs. 11–13, respectively, 
where the steady-state motion amplitudes are normalized by the 
measured/simulated incident wave amplitudes. 

The obtained time series from the simulation and the calculated 
surge, heave, and pitch RAO’s are in good agreement with the experi-
mental results for wave periods shorter than 7 s. The increased de-
viations for longer wave periods are attributed to the difference in the 
pitch natural period predicted by FhSim (13.1 s) relative to that 

obtained from the experiment (14.9 s). The RAO’s obtained from the 
frequency-domain simulation (WAMIT) are also presented in 
Figs. 11–13, and they are in good agreement with the time-domain 
simulation results for the major part of wave periods. In addition, the 
surge, heave and pitch natural periods predicted by WAMIT coincide 
with those predicted by FhSim. Due to coupling effects, large surge 
motions are predicted around the pitch resonance period. By applying 
an additional pitch damping ratio (ζp + 0.05, added damping equal to 
5% of critical damping) in the time-domain simulation, the obtained 
surge RAO’s around the pitch natural period are more comparable with 
the experimental results. Fig. 14 shows the time series of the simulated 
pitch responses around the resonance period and comparison with the 
experimental results. The response amplitudes obtained from the 
experiment and simulation tend to be in the same range. However, the 
measured responses seem to be unsteady during the limited testing time 
and the dominant period is not associated with the wave period. 
Therefore, the pitch RAO is not calculated for this test wave condition 
(Period: T = 12.99 s; Steepness: H/λ = 1/60). The cage model used in 
the physical experiment was not fully rigid. This could have influenced 
the comparisons between the experimental and numerical results, as 
well as the nonlinear hydrodynamic effects that have not been consid-
ered in the numerical models. For example, submergence of local sec-
tions of the floating collar due to the waves will cause a time-dependent 
pitch restoring moment. This effect is not included in the present nu-
merical model where a linear restoring moment corresponding to the 
mean water-plane area is used. 

In the experiments, a nonlinear phenomenon of sub-harmonic 
response (in pitch) is observed for the wave period T = 12.99 s, as 
shown in Fig. 14. The same behaviour is not observed in the simulations. 
The pitch response in the first part of the measured time-series follows 
the wave period, while about 550 s after start-up, a process with the 
doubling of the response period is seen to emerge. Following the Fig. 6. Time series of the simulated heave decay responses for the present 

model configuration (h/D = 0.5). 

Fig. 7. Time series of the measured and simulated pitch decay responses for the 
present model configuration (h/D = 0.5). 

Table 1 
Calculated natural periods of cage motions and sloshing for the present model 
configuration (h/D = 0.5).  

Cage motions Sloshing 

Surge 115.6 s T0,1 4.61 s 
Heave 10.6 s T1,1 6.82 s 
Pitch 13.1 s T2,1 5.18 s   

T3,1 4.41 s   
T0,2 3.41 s   
T1,2 3.91 s   
T2,2 3.49 s   
T3,2 3.19 s  
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Fig. 8. Time series of the measured and simulated surge responses in regular wave (Period: T = 5.11 s; Steepness: H/λ = 1/45) for the present model configuration 
(h/D = 0.5). 

Fig. 9. Time series of the measured and simulated internal water surface elevations (at the measuring point RW2, i.e. 67◦ with respect to the positive x-axis and D/
40 from the cage side wall, as shown in Fig. 1) in regular wave (Period: T = 5.11 s; Steepness: H/λ = 1/45) for the present model configuration (h/ D = 0.5). 

Fig. 10. Time series of the measured and simulated mooring forces (mooring line L1) in regular wave (Period: T = 5.11 s; Steepness: H/λ = 1/ 45) for the present 
model configuration (h/D = 0.5). 
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doubling of the response period is a significant increase of the response 
amplitude. A typical example of sub-harmonic response in marine hy-
drodynamics is so-called parametric rolling (of ships), where a time- 
dependent “quasi-static” restoring moment in roll due to the waves 
causing a “parametric excitation”. This effect is not further discussed in 
the present paper, due to the limited experimental data (only for the 
wave period T = 12.99 s). 

3.3. Results in irregular waves 

The long-crested irregular wave tests and simulations were per-
formed using a standard JONSWAP spectrum (peakedness factor: 3.3), 
with four different combinations of the input peak periods and signifi-
cant wave heights: Tp = [5.0  s, 6.0  s, 7.8  s, 10.0  s]; Hs = [1.5  m,

2.0  m, 3.0  m, 3.0  m]. Examples of the time series obtained from the 
experiments and the time-domain simulations in irregular waves are 
presented in Figs. 15–18. The power spectra of the corresponding surge 
responses are shown in Fig. 19. 

The obtained time series from the simulation are, in general, com-
parable with the experimental results. The measured pitch motions 
(Fig. 16) and internal water surface elevations (Fig. 17) show a higher 
degree of nonlinearities, which can be attributed to the time-dependent 
pitch restoring coefficient and the ovalizing deformation modes of the 
cage, according to Shen et al. (2021). These effects are not considered in 
the present numerical models and remain to be further investigated. 

As shown in Fig. 19, the dominant low-frequency responses in 
irregular waves correspond to the resonance oscillations excited around 
the surge natural frequency (≈ 0.009 Hz) of the moored system, due to 
the slow-drift forces. The amplitudes of the slow-drift motions of the 
cage are found to be considerably larger than the first-order responses 
(associated with the incoming wave frequencies) in the four tested/ 
simulated irregular wave conditions. 

4. Discussions 

4.1. The influence of sloshing on cage responses 

Comparisons of obtained RAO’s from the experiments (Kristiansen 
et al., 2018a) and the corresponding numerical simulations (WAMIT and 
FhSim) with the “dry” and “wet” model configurations in regular waves 
show large impact of sloshing on the surge and pitch motions of the cage 
(Figs. 20 and 22) while no visible impact on the heave motion (Fig. 21). 
The heave RAO’s obtained from the experiments with the “dry” and 
“wet” model configurations were almost identical. This is consistent 
with linear potential flow theory that there is no influence of sloshing on 
the heave motion (Newman, 2005; Faltinsen and Timokha, 2009). 

As shown in Fig. 20, the surge response amplitudes are amplified by 
about 200% for wave periods around the natural period (T2,1 = 5.40 s) 
of sloshing corresponding to the symmetric mode shape σ2,1 (see the 
definition in Eq. (10)). However, according to linear potential flow 
theory, symmetric sloshing modes does not yield any surge force. The 
local maximum of the surge RAO around T2,1 = 5.40 s for the “wet” 
model is attributed to the frequency-dependent added mass of the con-
tained water being negative for the actual frequency and hence 
cancelling out parts of the inertia force (reducing the effective mass of 
the structure). By applying an additional modal damping ratio (ζm +

0.05) in the time-domain simulation (FhSim) with the “wet” model 
configuration, i.e. when sloshing was damped, lower surge RAO’s were 
obtained around this frequency. This result further indicates the influ-
ence of sloshing on the surge motion of the cage. 

In the experiments with the “wet” model configuration, a nonlinear 
effect of wave steepness on the surge response was observed around T2,1, 
which could not be captured by the linear (WAMIT) and weakly 
nonlinear (FhSim) sloshing models. It is noted that the nonlinearity 
appears as an excitation, causing the response to increase with 
increasing wave steepness. In the experiments, the cage model was also 

Fig. 11. Comparison of the measured and simulated surge RAO’s (η1/ A) in 
regular waves for the present model configuration (h/D = 0.5). 

Fig. 12. Comparison of the measured and simulated heave RAO’s (η3/ A) in 
regular waves for the present model configuration (h/D = 0.5). 

Fig. 13. Comparison of the measured and simulated pitch RAO’s (η5/ kA) in 
regular waves for the present model configuration (h/D = 0.5). 
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Fig. 14. Time series of the measured and simulated pitch responses in regular wave (Period: T = 12.99 s; Steepness: H/λ = 1/60) for the present model config-
uration (h/D = 0.5). 

Fig. 15. Time series of the measured and simulated surge responses in irregular wave (Peak period: Tp = 5.0 s; Significant wave height: Hs = 1.5 m) for the present 
model configuration (h/D = 0.5). 

Fig. 16. Time series of the measured and simulated pitch responses in irregular wave (Peak period: Tp = 5.0 s; Significant wave height: Hs = 1.5 m) for the present 
model configuration (h/D = 0.5). 
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observed to perform elastic deformations characterized by ovalizing of 
the water-plane cross-section for this case. 

As shown in Fig. 22, the pitch motion amplitudes of the “wet” model 
are largely reduced compared to those of the “dry” model around the 
pitch resonance period. This is because the presence of internal free 
surface has a destabilizing effect that increases the pitch natural period 
of the cage. For both the “dry” and “wet” model configurations, de-
viations were observed between the measured and simulated pitch 
motions. This is also attributed to the difference in the pitch natural 
period predicted by WAMIT and FhSim relative to that obtained from 
the experiment. The results obtained from the time-domain simulations 
(FhSim) are, in general, more comparable with the experimental results 
when an additional modal damping ratio (ζm + 0.05) was applied for 
longer wave periods, especially around the pitch natural period of the 
cage. 

4.2. Mean-drift forces in regular waves 

Comparisons of the measured and simulated time series of mooring 
line tensions in regular waves show that the mean-drift forces are 
considerable and influenced by sloshing (Fig. 23). In the experiments 

Fig. 17. Time series of the measured and simulated internal water surface elevations (at the measuring point RW5, i.e. 202◦ with respect to the positive x-axis and D/
40 from the cage side wall, as shown in Fig. 1) in irregular wave (Peak period: Tp = 5.0 s; Significant wave height: Hs = 1.5 m) for the present model configuration 
(h/D = 0.5). 

Fig. 18. Time series of the measured and simulated mooring forces (mooring line L1) in irregular wave (Peak period: Tp = 5.0 s; Significant wave height: Hs =

1.5 m) for the present model configuration (h/D = 0.5). 

Fig. 19. Power spectra of the measured and simulated surge responses in 
irregular wave (Peak period: Tp = 5.0 s; Significant wave height: Hs = 1.5 m) 
for the present model configuration (h/D = 0.5). 
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Fig. 20. Comparison of the measured (experimental data from Kristiansen et al. 
(2018a)) and simulated (WAMIT and FhSim) surge RAO’s (η1/ A) for the “dry” 
and “wet” model configurations (h/D = 0.25). 

Fig. 21. Comparison of the measured (experimental data from Kristiansen et al. 
(2018a)) and simulated (WAMIT and FhSim) heave RAO’s (η3/ A) for the “dry” 
and “wet” model configurations (h/D = 0.25). 

Fig. 22. Comparison of the measured (experimental data from Kristiansen et al. 
(2018a)) and simulated (WAMIT and FhSim) pitch RAO’s (η5/kA) for the “dry” 
and “wet” model configurations (h/D = 0.25). 

Fig. 23. Comparison of the measured (experimental data from Kristiansen et al. 
(2018a)) and simulated (WAMIT and FhSim) mean drift forces (F1/ρgA2D) for 
the “dry” and “wet” model configurations (h/D = 0.25). 
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with the “dry” and “wet” model configurations (Kristiansen et al., 
2018a), wave reflections from the side walls of the towing tank were also 
found to have large influence on the mean-drift forces and result in large 
scatter of the measurement results. These effects were negligible in the 
present experiments, as the ocean basin is considerably wide and 
equipped with absorption beaches along both the short and long basin 
sides which reduce wave reflections to a minimum. The present exper-
imental results (Fig. 24) show a clear influence of sloshing on the 
mean-drift forces when the surge response is amplified due to sloshing 
(for wave periods around 5.5 s, as shown in Fig. 11), which is consistent 
with the numerical results. Other effects that could have influenced the 
measured mean-drift forces were the precision of the load cells when 
measuring small quantities, the nonlinear hydrodynamic effects due to 
the in and out of water motion of the floating collar in waves, and the 
elastic deformation of the cage. 

4.3. Slow-drift forces in irregular waves 

The surge motion of the cage and the resulting mooring line forces 
were found to be dominated by the slow-drift effects in the four tested/ 
simulated irregular wave conditions. Fig. 25 shows the time series of the 
measured and simulated surge responses in the irregular wave (Tp =

7.8 s; Hs = 3.0 m), where the dominant frequency (≈ 0.009 Hz) corre-
sponds to the surge natural frequency of the cage (Fig. 26). Fig. 27 shows 
the time series of the simulated surge responses in a comparative regular 
wave condition (T = 7.8 s; H = 3.0 m), where the dominant frequency 
(≈ 0.128 Hz) is associated with the incoming wave frequency (Fig. 28). 
The amplitudes of the dominant slow-drift motions in the irregular wave 
are about 500% larger than the dominant first-order motions in the 
regular wave. The corresponding mooring forces are also considerably 
larger in the irregular wave (Fig. 29) as compared with the forces in the 
regular wave (Fig. 30). Fig. 31 shows the filtered time series of the 

Fig. 24. Comparison of the measured and simulated mean drift forces (F1/

ρgA2D) for the present model configuration (h/D = 0.5). 

Fig. 25. Time series of the measured and simulated surge responses in irregular wave (Peak period: Tp = 7.8 s; Significant wave height: Hs = 3.0 m) for the present 
model configuration (h/D = 0.5). 

Fig. 26. Amplitude spectra of the measured and simulated surge responses in 
irregular wave (Peak period: Tp = 7.8 s; Significant wave height: Hs = 3.0 m) 
for the present model configuration (h/D = 0.5). 

B. Su et al.                                                                                                                                                                                                                                       



Ocean Engineering 233 (2021) 109210

14

Fig. 27. Time series of the simulated surge responses in regular wave (Period: T = 7.8 s; Wave height: H = 3.0 m) for the present model configuration (h/ D = 0.5).  

Fig. 28. Amplitude spectra of the simulated surge responses in regular wave (Period: T = 7.8 s; Wave height: H = 3.0 m) for the present model configuration (h/
D = 0.5). 

Fig. 29. Time series of the measured and simulated mooring forces (mooring line L1) in irregular wave (Peak period: Tp = 7.8 s; Significant wave height: Hs =

3.0 m) for the present model configuration (h/D = 0.5). 

Fig. 30. Time series of the simulated mooring forces (mooring line L1) in regular wave (Period: T = 7.8 s; Wave height: H = 3.0 m) for the present model 
configuration (h/D = 0.5). 
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mooring forces (using band-pass filtering) in the irregular wave, where 
the calculated standard deviations of the low-frequency components 
(0–0.05 Hz) are found to be much larger than the high-frequency com-
ponents (0.1–0.15 Hz), and very close to the standard deviations of the 
total forces (original). This further indicates that the slow-drift forces are 
of great importance in the mooring system analysis for a closed cage 
similar to the present configuration. 

5. Conclusions 

In the present paper, the seakeeping behaviour of a closed rigid fish 
cage in waves has been studied by numerical modelling both in the 
frequency domain (WAMIT) and in the time domain (FhSim). The nu-
merical simulation results are compared with the measurement data 
obtained from scaled physical experiments. The main findings from the 
numerical and comparative studies are as follows:  

• The linear frequency-domain simulations with WAMIT are able to 
evaluate the coupling effects of sloshing on the wave-induced rigid 
body motions of closed cage. The predicted surge, heave and pitch 
RAO’s and mean-drift forces in regular waves are, in general, com-
parable with the experimental data.  

• The results obtained from the time-domain simulations with FhSim 
are in good agreement with WAMIT for all the tested model config-
urations in regular waves. In addition, the time-domain simulations 
are able to evaluate the slow-drift motions of closed rigid cage in 
irregular waves and the local instantaneous forces from each 
mooring line. The corresponding results are, in general, comparable 
with the experimental data.  

• The comparative analyses show that sloshing has large influence on 
the coupled surge and pitch motions of closed cage. Sloshing is also 
found to have significant effect on the mean-drift forces in regular 
waves, especially when the surge response is amplified due to 
sloshing.  

• The amplitudes of the dominant slow-drift motions in the tested/ 
simulated irregular waves are found to be considerably larger than 
the dominant first-order motions in regular waves, which indicates 

that the slowly-varying wave drift forces need to be considered in the 
design of the mooring system for a floating closed cage.  

• The weakly nonlinear multi-modal method implemented in FhSim is 
able to model both the planar and swirling waves inside a cylindrical 
tank (Tsarau et al., 2021). However, analyses of the surface wave 
patterns and the corresponding sloshing modes are not the focus of 
the present study.  

• The linear potential flow theory and the weakly nonlinear multi- 
modal method are not able to capture some nonlinear hydrody-
namic effects that might have influenced the comparisons between 
the numerical and experimental results. The present time-domain 
simulation model needs to be extended for considering the relevant 
nonlinear hydrodynamic effects, as well as the elastic deformation of 
a closed cage, i.e. the hydroelastic effects. 
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Fig. 31. Filtered time series of the measured and simulated mooring forces (mooring line L1) in irregular wave (Peak period: Tp = 7.8 s; Significant wave height: 
Hs = 3.0 m) for the present model configuration (h/D = 0.5). 
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