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Abstract
This paper presents a praxeological analysis, based on ATD (Anthropological Theory
of the Didactic), of the topic of Fourier series, as this topic is introduced and used in
mathematics and in electrical engineering, more precisely in signal theory. The analysis
is based mainly on one widely used textbook in mathematics for engineers, and a
textbook and video lectures in signal theory. The aim of the analysis is to investigate
possible differences in the motivation for introducing Fourier series in mathematics and
in signal theory, as well as differences in the techniques used, and the justifications
behind the techniques. This research is inspired by previous research showing lack of
connection between mathematics courses and engineering courses applying mathemat-
ics. To get a wider perspective, the exposition in the textbook in mathematics for
engineers is also compared to the exposition in more advanced books in mathematics.
To add to the perspective, the historical origin of Fourier series is also discussed. The
findings show that there are differences in the motivation for the topic both between
mathematics and signal theory, but also between basic and more advanced mathemat-
ics. Within mathematics there are also differences in the underlying theories.

Keywords Fourier series . Mathematics for engineers . Signal theory . ATD . Praxeology

Introduction

Mathematics taught as a service subject to engineering students is in many universities
a large enterprise, and engineering students are probably the largest group of students
taking part in mathematics classes at universities worldwide. Even if it is widely
recognised that engineering students should learn mathematics, there are several
answers to the questions of what the content of this mathematics should be for
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different groups of engineering students, how it should be taught, and who should teach
it. In a recent report, Alpers (2020) gives a state-of-the-art account of the role of
mathematics as a service subject at the tertiary level. Alpers shows that the question
of what mathematical content should be taught to students in the physical and natural
sciences goes back at least to a meeting organised by the International Commission on
Mathematical Instruction (ICMI) in 1911 (Alpers, 2020, p. 5). Later, questions have
become more diverse, to include questions about to what extent the mathematics could
or should be directly related to engineering subjects, how it should be taught, and by
whom (Bajpaj, 1985). It seems that still no unified answers to these questions have
been found (Flegg, Mallet, & Lupton, 2012). At many universities mathematics is
taught in courses specially designed for particular engineering programmes, by teachers
dedicated to teaching students at this particular engineering programme. This model
will provide good opportunities for including programme specific problems in the
mathematics teaching, and it is assumed that this will increase the perceived relevance
of mathematics (Alpers, 2008; Enelund, Larsson, & Malmqvist, 2011). At other
universities mathematics is taught to engineering students as part of a package of
general courses, often in the first two years, with engineering courses only appearing
later (Winkelman, 2009). It is claimed that this often leads to mathematics being taught
with a focus only on mathematical concepts and understanding and not on applications
(Loch & Lamborn, 2016).

In many countries, engineering programmes face high drop-out rates, and not coping
with mathematics may be an important reason for students dropping out. Many
engineering students see mathematics as irrelevant, as something that takes the focus
away from the engineering subjects (Loch & Lamborn, 2016). Also, many students
experience lack of connection between mathematics and engineering topics in the
beginning. When they later need mathematics in the engineering courses they find it
challenging to apply the mathematics they are supposed to have learned (Carvalho &
Oliveira, 2018; Harris, Black, Hernandez-Martinez, Pepin, &Williams, 2015). To learn
more about the reasons why students experience lack of connection it is of interest to
analyse mathematical topics taught to different student groups by asking questions like
“why is this topic taught to this particular group of students?”, or “what aspects of this
topic are important for this particular group of students?” My focus in this paper is on
questions of this type. I will compare the topic of Fourier series, as this is presented in
mathematics with the presentation of the same topic in electrotechnics, more specifi-
cally in signal theory. I will also compare the presentation in basic mathematics to the
presentation in more advanced mathematics.

I base my analysis on the Anthropological Theory of the Didactic, abbreviated ATD,
(Bosch & Gascón, 2014; Chevallard, 2006). In this theory, knowledge is seen as being
relative to the context, the institution, in which it appears (Bosch & Gascón, 2014).
Seeing mathematics and signal theory as different institutions I will investigate how
Fourier series are treated both in mathematics and in signal theory. In ATD terms this
can be expressed as investigating the praxeologies in these two institutions (Bosch &
Gascón, 2014). The investigation is based on how the topic of Fourier series is
presented in common international textbooks, both in mathematics and in signal theory.
Also, other learning resources (video lectures) in signal theory will be analysed. For a
better understanding of the situation, I will also take a brief look at the historical origin
of Fourier series, as well as the role of Fourier series in more advanced mathematics.
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This will, as it turns out, lead to the view that it may be reasonable to talk about several
institutions also within mathematics. Special emphasis will be put on analysing the
motivation for teaching Fourier series, and the reasoning and justification behind
important results, both inside mathematics and when mathematics is used in signal
theory. My aim is to answer the following research question: What characterises the
praxeologies connected to Fourier series in mathematics and in signal theory? Results
from such investigations can be useful when designing mathematics courses in engi-
neering education and may be valuable in order to bridge the gap between theory and
applications (Carvalho & Oliveira, 2018; Harris et al., 2015).

Theory

The Anthropological Theory of the Didactics (ATD) is a research programme where the
institutional aspect of teaching and learningmathematics is central. A central notion inATD is
the notion of praxeology, “the basic unit into which one can analyse human action at large”
(Chevallard, 2006, p. 23). A fundamental principle inATD is that no praxis, no human action,
can exist without being explained or justified in certain ways, i.e. without a logos. Chevallard
expresses this principle by stating that “[p]raxis thus entails logos, which in turn, backs up
praxis” (2006, p. 23). The praxis block (P) consists of two parts, types of tasks (T) and a set of
techniques (τ) to carry out the tasks. The logos block (L) also consists of two parts, a
technology (θ), or justification for the techniques used to carry out the tasks, and the theory
(Θ), which provides the basis and support for the technological discourse (Bosch & Gascón,
2014, p. 68). For short, the two blocks are written P = [T, τ] and L = [θ,Θ ]. For the whole
praxeology Iwill use the notation = [P/L] = [T, τ ,θ,Θ], often referred to as the 4 T-model.
In my analyses, notation in terms of signs and symbols will turn out to differ somewhat in the
praxeologies that I study. Signs and symbols are important tools to carry out tasks in
mathematics, and for this reason I will consider sign and symbols as part of the techniques,
τ .

A social situation is called a didactic situation

whenever one of its actors (Y) does something to help a person (x) or a group of
persons (X) learn something (indicated by a heart ♥). A didactic system S(X; Y; ♥) is
then formed. The thing that is to be learned is called a didactic stake ♥ and is made up
of questions or praxeological components. (Bosch & Gascón, 2014, p. 71)

In my case X can be seen as made up of students at an engineering programme where
signal theory is an important part. Y is made up of two components, YM and YE, where YM
consists of teachers and learning resources involved in the teaching and learning of
mathematics to X, and YE consists of the corresponding components in an engineering
course including signal theory as a topic, taught to the same group of persons X. The thing
to be learned is Fourier series, and this topic will be treated in the learning resources both
for mathematics and for the engineering course. I view the learning resources, and the
courses for which they are used, as situated in two different institutions, IM and IE, with
their corresponding didactic stakes♥M and♥E. Since the topic of Fourier series is explicitly
treated in IE and not just carried over from IM, it is reasonable to expect that♥E ≠♥M, even if
the topic is the same. Hence, there are two didactic systems, S(X; YM; ♥M) and S(X; YE; ♥E),
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and therefore two praxeologies, one for mathematics, M = [TM, τM, θM,ΘM], and another
for signal theory, E = [TE, τE, θE, ΘE].

According to Chevallard (2006), the purpose of praxeologies is that they are needed
to solve problems, or to answer questions: “The basic situation in this respect can be
summed up like this: a question Q is raised, and an answer A is searched for”
(Chevallard, 2006, p. 27). The question is dependent on the institution (I) it emerges
within and an answer to the question will be sought using an adequate praxeology =
[P/L]. I will refer to the question Q in a praxeology as the generating question. Since
the purpose of a praxeology is to solve a problem, it is important to have in mind what
problems in the praxeology a particular topic is expected to solve.

In this paper I will investigate the praxeologies connected to Fourier series in the two
institutions IM and IE to get an impression of how different they are. I will start by
discussing the first three Ts in the 4 T-model, T, τ, and θ, for the two praxeologies, and
later I will discuss the theory, Θ. An a priori assumption might be that the tasks are
different, TE ≠ TM, since the learning goals in the two subjects are different, and an
important purpose of tasks is to help students reach the learning goals. Regarding the
other Ts it is not so obvious to make an a priori assumption. I will also look at the
generating questions, QE and QM, in the two praxeologies to see which problems
Fourier series are intended to solve in signal theory and which problems they are
intended to solve in mathematics. Possible differences here may influence the perceived
relevance of the topic for students.

It turns out to be too simplistic to talk about one mathematical praxeology. I will
therefore distinguish between mathematics as taught to engineers and mathematics at a
more advanced level. I will refer to the institution connected to mathematics for
engineers by IBM (basic mathematics) and the institution where Fourier series appear
at a more advanced level by IAM (advanced mathematics). Corresponding to this, I will
refer to two mathematical praxeologies, BM = [TBM, τBM, θBM,ΘBM] and AM = [TAM,
τAM, θAM, ΘAM], with potentially two different generating questions, QBM and QAM. It
could be argued that even this is too simplistic, since there is also basic mathematics for
non-engineering students. However, my interest here is in engineering students, and
therefore I take BM to mean basic mathematics for engineering students.

Previous Relevant Research

Gueudet and Quéré (2018) raise the question about how teaching of mathematics can
answer to the needs of engineering courses, and what the features of such teaching
should be. Flegg et al. (2012) mention that there are different views regarding the
degree of rigour and formality in engineering mathematics. They argue that “[w]ithout
the explicit connection between theory and practice, the mathematical content of
engineering programs may not be seen by students as relevant” (Flegg et al., 2012, p.
718). They also claim that in cases where mathematics departments teach the mathe-
matical content to the engineering students, the engineering departments may have little
idea of what mathematical content the students are exposed to.

Biehler, Kortemeyer and Schaper (2015) investigated a first-year course in electrical
engineering, analysing tasks that required knowledge and cognitive resources both
from mathematics and from electrical engineering. They identified instances where
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there was a gap between the mathematics learned, at school or at the university, and the
mathematics needed for solving engineering tasks. Gueudet and Quéré (2018) empha-
sise the need for making connections and discuss connectivity on several levels. Here,
connectivity on the micro-level could be for example connections between different
topic areas, between different semiotic representations, and between different concepts.

Recently several researchers have shown how ATD can be a useful tool for investigating
mathematics for user groups, such as engineering students. Hochmuth, Biehler and Schreiber
(2014) discuss and contrast the use of modelling cycles with the use of ATD for studying
epistemic relations between mathematics in higher mathematics courses and mathematics in
engineering courses. They argue that ATD might be a relevant tool to use for example to
address questions like “[w]hich meanings are actualized in the context of specific tasks and
situations?” (Hochmuth et al., p. 697). Peters, Hochmuth and Schreiber (2017) usewhat they
refer to as the extended praxeological ATD-model to analyse the relationship between
different mathematical discourses in engineering courses, such as Signals and System
Theory. Here, the 4 T-model is extended in the sense that the techniques and technologies
are split in two branches, based on whether the justification comes from electrotechnical or
physical reasoning, or from mathematical reasoning. This is similar to my distinction
between the didactic systems and corresponding praxeologies BM and E.

Of particular relevance for my study are several recent papers by González-Martín and
Hernandes-Gomes (2017, 2018, 2019a, b). These authors have compared presentations in
Calculus textbooks with presentations in textbooks for professional engineering courses to
see to what extent the concepts and techniques from Calculus are required to cope with the
tasks in the engineering topics. I will now give a brief account of their work.

In the first of the range of papers (González-Martín & Hernandes-Gomes, 2017), the
authors look at the use of integrals in connection with bending moments in civil and
mechanical engineering. An important part of their analysis is based on analysing parts
of a textbook in Calculus and parts of a textbook in a Strength of Materials course, used
for the same students. They found that although the notion of integral was used to teach
the topic of bending moments in the engineering course, the techniques mostly relied
on geometrical considerations. They found that the textbook in the engineering course
avoided using notation and properties institutionalised in Calculus and concluded that
the way integrals are taught in the Calculus course follows mathematical praxeologies
that are too far from the way integrals are used in professional courses. In two other
papers, (González-Martín & Hernandes-Gomes, 2018, 2019a), the same authors inves-
tigate the use of integrals for computing first moments for plane regions in a civil
engineering course. Also in this case they found that the tasks and techniques devel-
oped in the engineering course did not arise from mathematics but from an engineering
discourse, and that it is only in the technology (θ) that integrals appear (González-
Martín & Hernandes-Gomes, 2019a, p. 283). In the most recent paper, (González-
Martín & Hernandes-Gomes, 2019b), the authors have extended their investigations to
the use of integrals in electromagnetism. It seems that the results also in this case point
in the same direction as in the previous investigations. Integrals are used to define the
notions in question, but the tasks can be solved using geometric considerations, tables
and ready-to-use formulas (González-Martín & Hernandes-Gomes, 2019b). Hence, it is
the conceptual aspects of the integral that are important, not the calculation techniques.

There are also interesting studies not using ATD comparing textbooks in mathe-
matics with textbooks used in engineering areas. As an example, Alpers (2017)
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investigated two textbooks in engineering statics, one from the US and one from
Germany, and compared the presentation in these books to what he described as “the
usual treatment in mathematics textbooks” (Alpers, 2017, p. 137). This means that he
did not consult one specific textbook in mathematics but he relied on his perception of
what would be the common treatment in mathematics books. Performing a document
analysis of the two textbooks from engineering, he found essential differences with
respect to the concept, construction and notation of vectors, as well as the usage of
differentials and the concept and notation of virtual displacements. He claims that the
differences between the presentation in the investigated textbooks and a standard
presentation in mathematics contain potential for cognitive mismatches between stu-
dents’ learning in mathematics and in statics (Alpers, 2017, p. 140).

The work on mechanical engineering mentioned above indicates a rather large gap
between praxeologies in mathematics and parts of engineering. I will add to the existing
literature by comparing praxeologies in mathematics and signal theory.

Methodology

My main sources of data for the analysis are two widely used textbook, one in mathe-
matics (Kreyzig, 2011), in its 10th edition, and one in electrotechnology (Nilsson &
Riedel, 2011), in its 9th edition. These two books have a wide international distribution,
and they have both been in use for a long time. This is an important reason for choosing
these books. Another reason is that they are used at my university, and, in particular
regarding the book by Kreyzig, that I know the book well. In addition, I have studied the
presentation in online lectures presented by Lars Lundheim in the course Design and
Analysis of Electronic Systems II at NTNU (Lundheim, 2019). To complement the
presentation in the book by Kreyzig I have looked at the presentation in another book
of a similar nature (O’Neil, 2018). The resources mentioned above are the main sources
for characterising the praxeologies BM and E. I will emphasise that although the book
by Kreyzig carries the word ‘engineering’ in its title, it is clearly a mathematical text,
however with examples showing applications in engineering, but with no particular
branch of engineering being foreseen. In the Preface of the book is written: “It is intended
to introduce students of engineering, physics, mathematics, computer science and related
fields to those areas of applied mathematics that are most relevant for solving practical
problems” (Kreyzig, 2011, p. vii). This shows that the book has a wide scope, and I see it
as meant to give students a foundation inmathematics, so that they can usemathematics in
engineering and science courses later. The book by O’Neil expresses a similar purpose by
focusing on providing mathematical topics “needed in the study and practice of engineer-
ing” (O’Neil, 2018, p. xv). I therefore see these books as relevant representatives of BM

with the understanding that BM means basic mathematics for engineering students. For

AM I have consulted several more advanced expositions of Fourier series, the most
important source being the book Fourier Series and Integrals by Dym and McKean
(1972), but I have also used the classical text by Rudin (1976). These books, although
old, are still used as reference books in advanced courses in analysis. Certainly, the range
of books could have been made much wider, and there are books that could be said to lie
between the books chosen, regarding the degree of rigour.
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I have performed a detailed analysis of the introduction to Fourier series in Kreyzig’s
(2011) book (Chapter 11) as well as the introduction to the same topic in the book by
Nilsson and Riedel (2011) (Chapter 16) and the section on Fourier series in the module
Spectrum of periodic signals in the lectures by Lundheim (2019). Based on data from
these sources, complemented with data from texts on more advanced mathematics, I
aim to answer the question: What characterises the praxeologies connected to Fourier
series in mathematics and in signal theory? I will also aim at identifying the generating
questions Q in the institutions under consideration. To get a better understanding of the
background for the generating questions and to put the topic in perspective, I find it
relevant to also look at the origin of Fourier series. In the next chapter I will give a brief
overview of the history of Fourier series.

History of Fourier Series

In the eighteenth century the concept of function was not yet well established. For
example, Euler, in his Introductio in analysis infinitorum from 1748, restricted a
function “of a variable quantity” to be “an analytical expression composed in any
manner from that variable quantity and numbers or constant quantities” (Kleiner, 1989,
p. 3; Rüthing, 1984, p. 72), without further defining the term “analytical expression1”.
At about the same time as Euler published his work, the interest in the so-called
Vibrating-String Problem developed, and this problem also involved a discussion of
the meaning of function (Edwards, 1979, p. 301; Kleiner, 1989, p. 4). Kleiner refers to
the following as “an ‘article of faith’ of 18th century mathematics: If two analytic
expressions agree on an interval, they agree everywhere” (1989, p. 4). In 1747,
d’Alembert presented a solution to the Vibrating-String Problem but Euler did not
believe that d’Alembert’s solution was the most general. Bernoulli, in 1753, presented a
solution in terms of a trigonometric series but this solution was contested by several
contemporaries because it did not comply with “the article of faith” (Kleiner, 1989, pp.
5–6). Kleiner, quoting Ravetz, refers to the debate around the Vibrating-String Problem
as a debate “between d’Alembert’s mathematical world, Bernoulli’s physical world,
and Euler’s ‘no-man’s land’ between the two” (Kleiner, 1989, p. 7). In the language of
ATD one may say that this debate is an example of different praxeologies involved in
finding the answer to the same generating question, how to describe the motion of a
vibrating string?

Although Bernoulli gave the solution of the Vibrating-String Problem in terms of a
trigonometric series, it was only through the work of Fourier that a comprehensive general
theory of trigonometric series was developed. Fourier published his book Théorie
Analytique de la Chaleur (The Analytical Theory of Heat) in 1822, having submitted his
work to the Paris Academy of Sciences already in 1807 (Kleiner, 1989, p. 289). In this book
he studied a steady-state temperature function u(x, y) on a region 0 ≤ x ≤ π, y ≥ 0, satisfying
the partial differential equation, with boundary conditions, known as the Heat Equation
(Edwards, 1979, p. 304). Fourier claims that any function on an interval (-l, l) can be
represented on this interval by a trigonometric series. Fourier also gave explicit formulas for
the coefficients of the series, in terms of integrals. These formulas correspond exactly to the

1 In Euler’s original words, “expressio analytica” (Rüthing, 1984, p. 72).
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formulas that are presented inmodern books, see (3). Issues that he needed to deal with were
to show that the coefficients could be calculated for any function and that any function could
be represented by its series in (−l, l). Kleiner writes that “Fourier accomplished all this using
mathematical reasoning that would be clearly unacceptable to us today” (1989, p. 8). Using
his method, Fourier obtained the series representation of a rectangular wave as

cosx−
1

3
cos3xþ 1

5
cos5x−

1

7
cos7xþ… ¼ ∑

∞

k¼0
−1ð Þk 1

2k þ 1
cos 2k þ 1ð Þx: ð1Þ

This series has the value π
4 for -

π
2 < x < π

2 and the value - π
4 for

π
2 < x < 3π

2 , and then
continues periodically with period 2π. For odd multiples of π

2, the series has the value
zero, whereas the function to which it converges is not defined for these x-values.
Hence, this is an example of a series composed of continuous functions converging to a
function which is not continuous. According to Katz (1998, p. 722), Fourier represent-
ed the series as a square wave, also drawing the vertical line segments at the odd
multiples of π

2 joining the horizontal line segments at distance π
4 above and below the

horizontal axis. Even though this curve would be continuous, in a naïve sense of the
word, it would not represent a function, since values at odd multiples of π2 would not be
uniquely defined. This did not seem to worry Fourier since he mainly was interested in
the physical problem, the praxis block, and not so much in the rigorous mathematics,
the logos block (Katz, 1998). The work of Fourier had significant implications for
further development of the concept of function, and for the concepts of convergence
and continuity (Edwards, 1979; Kleiner, 1989, 2012). To illustrate the phenomenon
described above, see Fig. 1 which contains two plots, made using Maple, of partial
sums of the series (1), for n = 5 (left) and n = 20 (right).

A Praxeological Analysis of Modern Expositions of Fourier Series

In this chapter I will look at Fourier series both from the perspective of mathematics
and from the perspective of signal theory to answer the question: What characterises
the praxeologies connected to Fourier series in mathematics and in signal theory?
First, I will look at the presentation in basic mathematics, then in signal theory, and at
the end I will turn to more advanced mathematics to get a wider perspective.

Fourier Series in Basic Mathematics

The chapter on Fourier analysis in Kreyzig’s (2011) book, Chapter 11, starts by
describing Fourier series as infinite series representing general periodic functions in
terms of sines and cosines. It is claimed that therefore “Fourier series are of greatest
importance to the engineer and applied mathematician” (Kreyzig, 2011, p. 474).
Applications, for example to forced oscillations are mentioned. The motivation for
introducing Fourier series seems to be to solve ordinary differential equations for forced
oscillations and to approximate periodic functions. Later, applications to partial differ-
ential equations are presented, much in line with the motivation behind Fourier’s
original work.
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The aim of the chapter is said to be to represent functions of period 2π in terms of
the sine and cosine functions. Based on this, I take the question, QBM, of the praxeology

BM = [TBM, τBM, θBM,ΘBM] to be “how can periodic functions be represented in terms
of trigonometric functions?” I will now turn to a discussion of the components TBM,
τBM, and θBM of BM. I postpone the discussion ofΘBM. The first worked example of a
Fourier series in Kreyzig’s book (2011, pp. 477–478) is a periodic rectangular wave,
given by

f xð Þ ¼ −k; −π < x < 0
k; 0 < x < π

�
and f xþ 2πð Þ ¼ f xð Þ ð2Þ

Nothing is said about the number k, but for the example to be of any value, k must be
assumed to be different from zero.

In the exercise section after section 11.1, there are several exercises of the type “find
the Fourier series of a given 2π-periodic function and graph partial sums of this series”.
Based on this, I take the task, TBM, to be to find the Fourier series of a given 2π-periodic
function and graph partial sums of this series. The techniques, τBM, can be seen in the
computations of the Fourier coefficients of the function in (2). Before these computa-
tions are performed the standard formulas for the Fourier coefficients, as Fourier also
had them, are presented, without proof (Kreyzig, 2011, p. 476):

a0 ¼ 1

2π
∫π−π f xð Þdx

an ¼ 1

π
∫π−π f xð Þcos nxð Þdx; n ¼ 1; 2;…

bn ¼ 1

π
∫π−π f xð Þsin nxð Þdx; n ¼ 1; 2;…

ð3Þ

Fig. 1 Partial sums of Fourier series of a rectangular wave (n = 5, left, and n = 20, right)
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These are then used on the function (2) to compute the coefficients, using standard
integration methods based on known facts about trigonometric functions.

There are however, several issues that come up when performing these techniques,
having to do with why the various operations may be performed. These issues are part
of the technology, θBM. In developing the formulas (3), the infinite series

a0 þ ∑∞
n¼1 ancosnxþ bnsinnxð Þ; ð4Þ2

after termwise multiplication with suitably chosen functions, is integrated term by term,
without justifying why this is allowed. It is just assumed that it is allowed.2 There is also no
argument to justifywhether the series converges. It is just claimed that if it converges, then its
sum will have period 2π, like each of the terms has. This shows that the technology θBM is
insufficient to justify the techniques, τBM. In the integration process, properties of trigono-

metric functions such as ∫π−πsin mxð Þsin nxð Þdx ¼ 0; m≠n are used. This, and similar
properties for the product of cosines and the product of sine and cosine, can be verified
directly by computation. Kreyzig (2011, p. 479) refers to this property as orthogonality of
the trigonometric system and mentions that this amounts to a generalisation of inner product
as this is known from vectors. However, the concept of orthogonality is not really needed at
this point, since only trigonometric functions are involved, and then the orthogonality
follows directly from basic properties of these functions.

Here two fundamental questions arise: Which functions can be represented in a series of
the form (4), and under which conditions, and to what, does the series converge? Kreyzig
(2011, p. 480) presents a theorem (Theorem 2) where a sufficient condition for such a
representation to exist is given: f is assumed to be piecewise continuous on the interval −π ≤
x ≤ π, and have a left- and a right-hand-side derivative at each point in the interval. Under
these conditions, the theorem states that the series converges to f, except at discontinuities,
where it converges to the average of the left- and right-hand-side limit of f(x). In the proof of
the theorem even further restrictions are made: “We prove convergence, but only for a
continuous function f(x) having continuous first and second derivatives. And we do not
prove that the sum of the series is f(x) because these proofs are much more advanced”
(Kreyzig, 2011, p. 481). The main step in the proof is that, because of the assumptions on
continuity, it follows that the coefficients an and bn will in absolute value be bounded by a
constant over n2, and then the convergence follows from the convergence of the series
∑∞

n¼1
1
n2. It should be noted that the function (2) is not continuous, and hence certainly not

differentiable onℝ, so the proof that is presented, does not even cover the example that I take
to be the fundamental motivating example for the concept of Fourier series. The presented
tasks, and the techniques to solve them are therefore not covered by the technology that is
presented.

There are many books available with the title “Advanced Engineering Mathemat-
ics”, and I have also looked at another book with this title (O’Neil, 2018). In this book,
the starting point for Fourier series is a bit different that in Kreyzig’s (2011) book.
O’Neil starts with differential equations known as Sturm-Liouville problems, and
discusses eigenvalues and eigenfunctions of such problems. Fourier series are

2 The concept uniform convergence is briefly mentioned on page 481, with reference to a later chapter in the
book.
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introduced as special eigenfunction expansions. As for the question of convergence,
O’Neil states that the Fourier series of a function f(x) that is piecewise smooth on an
interval [−L,L] converges on the open interval -L < x < L to 1

2 f x−ð Þð þ f xþð ÞÞ (mean
value of left- and right-hand-side limits), and at the endpoints to the one-sided limits.
However, there is no proof of this result, just a remark that for now “we have enough
background to use Fourier expansions to solve partial differential equations” (O’Neil,
2018, p. 134). So also here, a substantial technology to cover the tasks and techniques
is lacking.

Fourier Series in Signal Theory

In this section I will give a brief exposition of an introduction to Fourier series in signal
theory, following two sources; the book by Nilsson and Riedel (2011) and the video
lectures by Lundheim (2019). Nilsson and Riedel start the chapter on Fourier series
with what they refer to as a practical perspective, bandpass and bandreject filters. They
then state that “[i]n this chapter we will learn that any periodic signal can be represented
as a sum of sinusoids, where the frequencies of the sinusoids are comprised of the
frequency of the periodic signal and integer multiples of that frequency” (Nilsson &
Riedel, 2011, p. 627). Further, they motivate periodic signals by saying that such
signals can be used to test the quality of a bandpass or a bandreject filter, and they
mention that periodic signals are important in power generators, and also in nonelec-
trical systems. After an introduction with motivation for studying periodic signals, they
introduce Fourier series with reference to Fourier and his investigation of heat-flow
problems. The representation is given as

f tð Þ ¼ av þ ∑∞
n¼1ancosnω0t þ bnsinnω0t; ð5Þ

where ω0 = 2π/T is called the fundamental frequency of the function f with period T
(Nilsson & Riedel, 2011, p. 629). Integer multiples of ω0 are called the harmonic
frequencies. The formulas for the Fourier coefficients are here given in the same way as
in Kreyzig (2011), except for small differences in notation. Nilsson and Riedel (2011,
p. 630) write (compare 3)

av ¼ 1

T
∫t0þT
t0 f tð Þdt

ak ¼ 2

T
∫t0þT
t0 f tð Þcoskω0tdt

bk ¼ 2

T
∫t0þT
t0 f tð Þsinkω0tdt

ð6Þ

It is made a point of the fact that as long as the function is integrated over a whole
period, it does not matter where the starting point is. Lundheim (2019) makes the same
point by just writing T below the integral sign. Note also that instead of a0 in (3) the
constant term in (6) is denoted by av. The notation av is motivated by saying that the
value of av is the average value of f(t) (Nilsson & Riedel, 2011, p. 630). This is
completely in line with the mathematical definition of the average value of a function
over an interval, as the integral of the function over the interval divided by the length of
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the interval. No such interpretation of the constant term is given by Kreyzig (2011). In
signal theory, the constant term is also often referred to as the DC (direct current)
component of the signal, linking the role of the constant term even closer to the
physical reality. Nilsson and Riedel give a list of sufficient conditions, called Dirichlet’s
conditions, for a periodic function to have a convergent Fourier series and then state
that “[a]ny periodic function generated by a physically realizable source satisfies
Dirichlet’s conditions” (Nilsson & Riedel, 2011, p. 629). The formulas for the Fourier
coefficients are justified by direct integration, very much like it was done by Kreyzig
(2011), using elementary properties of trigonometric functions. A difference is that
whereas Kreyzig made a note that he assumed that termwise integration was allowed,
Nilsson and Riedel do not even mention that there might be problems with performing
termwise integration. The first worked example in the book by Nilsson and Riedel is to
find the Fourier series for a periodic voltage given by the function v tð Þ ¼ Vm

T t on the
interval 0 < t < T, and having period T. This is worked out using the formulas (6).

For the praxeology E = [TE, τE, θE, ΘE], it can so far be noted that parts of the
technique are very much like in BM, based on properties of trigonometric functions.
The main differences are in notation, which I also take to be part of the technique. As
for the technology, no attempts are made in E to prove that a function with certain
given properties has a convergent Fourier series. Only some sufficient conditions (the
Dirichlet conditions) are stated, without proof. As observed in the previous section, in

BM there is a proof, but the proof assumes much stronger conditions than the
functions that, according to the praxeology, are of most interest, satisfy.

From the introduction of Fourier series by Nilsson and Riedel (2011), it may seem
that the generating question is how to represent periodic functions in a series built up of
sines and cosines. However, from the section Practical Perspective (Nilsson & Riedel,
2011, p. 627), one gets the impression that there is more behind, namely that this topic
will be useful in order to work with bandpass and bandreject filters. A hint towards
applications is also given by referring to ω0 as the frequency of the signal. In the
lectures by Lundheim (2019) the generating question is more directly connected to
signal theory, as his motivation for Fourier series is to find the spectrum of a periodic
signal. He presents the Fourier series in its complex form,

x tð Þ ¼ ∑∞
−∞cke

jωk t; ck ¼ 1

T
∫T x tð Þe− jωk tdt; ωk ¼ 2π

T
k: ð7Þ

In accordance with the usage in electrical engineering, the imaginary unit is denoted by
j instead of i as is common in mathematics. After presenting the representation (7) he
gives an example (with a = 1/2) of the square wave represented by

x tð Þ ¼
1 for tj j < a

T
2

0 for a
T
2
< tj j < T

2

8><
>: ð8Þ

extended periodically to have period T. Now, using the formula for ck from (7)
Lundheim obtains (with a = 1/2)
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ck ¼ 1

2

sin πk=2ð Þ
πk=2

¼ 1

2
sinc k=2ð Þ; ð9Þ

where sinc(x) is defined as sinc xð Þ ¼ sin πxð Þ
πx . At this point he presents a graph of the

function 1
2 sinc k=2ð Þ and uses this graph to indicate the values of ck depending on

whether k is even or odd. Combining terms for k and -k, and pulling out the term for k =
0, Lundheim writes the series in (7) as

x tð Þ ¼ c0 þ ∑
∞

k¼1
cke jωk t þ c−ke− jωk t

Now, some arguments follow: First, Lundheim states that “it can be shown” that since
x(t) in (8) is an even function, the coefficients ck are real. Further, he observes that since
sinc(x) is even, ck = c−k. And finally, he states that “it can be shown” that since x(t) is
real, it follows that ck ¼ c*−k , (* here denotes the complex conjugate). In this reasoning,
part of the justification is hidden in the phrase “it can be shown”. On the basis of this,
he obtains

cke jωk t þ c−ke− jωk t ¼ cke jωk t þ c*ke
− jωk t ¼ 2 Re cke jωk t

� � ¼ 2 ckj jcos ωk t þ ∠ckð Þ;

where ∠ck is called the phase angle of ck, from then on denoted φk. This gives the
representation

x tð Þ ¼ c0 þ 2∑∞
k¼1 ckj jcos ωk t þ φkð Þ

Since ck is real, φk is either 0 or π. Lundheim refers to |ck| as the amplitude of the signal
and ωk as the frequencies. Hence, all the parameters in the representation of the Fourier
series are interpreted within E.

This way of seeing the Fourier series expansion is motivated by the generating
question about finding the spectrum of a periodic signal. Fig. 2 shows the amplitude
spectrum, |ck|, for the function x(t) in (8) with a = 0.2 and T = 1, for k = 0, 1, …, 20.
Figure 3 shows the actual values of the Fourier coefficients ck for k = 0, 1,…, 20. They

follow the graph of the function s xð Þ ¼ sin πaxð Þ
πax and take both positive (φk= 0) and

negative values (φk= π).
In the praxeologies that I have looked at so far, the question of whether a given

function has a Fourier series expansion is not dealt with in great precision. Kreyzig
(2011, p. 480) states a theorem in which some sufficient conditions are given. In the
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proof, however, he makes further assumptions, not even fulfilled by the functions
appearing in most of the examples and exercises. Therefore, the technology θBM can be
said to be insufficient for the tasks and techniques in the praxeology. In E the situation
is similar. One can even say that here the technology is weaker, as Nilsson and Riedel
(2011) just claim that the Dirichlet conditions are sufficient condition for a function to be
expressed in a convergent Fourier series. Lundheim (2019) leaves the theoretical issues to
a large extent to the subject of mathematics. It can therefore be said that in E the logos
block comes from some unspecified mathematical praxeology M.

Fourier Series in Advanced Mathematics

In this section I will dig a little deeper into both the theory and the technology to try to
identify some of the challenges that are involved when aiming for a higher level of
precision. As I have indicated earlier, Fourier’s own development of the theory was
also not very precise, and he was aware of that. The main sources for my analysis here
are two books, Dym and McKean (1972) and Rudin (1976). For lack of a better word, I
will refer to the praxeology represented by these two books as a praxeology of
advanced mathematics, AM.

Dym and McKean write that the key to further progress regarding Fourier series was
provided by the Lebesgue integral, and that “[t]he proper setting for Fourier series
turned out to be the class of ‘Lebesgue measurable’ functions f of period 1” (Dym &
McKean, 1972, p. 2). Later, Dym and McKean introduce the class L2(Q), the class of
all complex (measurable) functions f on a subinterval Q of the real numbers. They write
that this is the class of functions with which Fourier series are most naturally associated
(Dym &McKean, 1972, pp. 12–13). For such functions, the inner product is defined as

f ; gh i ¼ ∫Q f gdμ, where μ is the Lebesgue measure, and the norm of a Lebesgue
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Fig. 2 The amplitude spectrum
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integrable function is defined as fk k ¼ f ; fh i12 < ∞. A family of functions {φk} is
called orthonormal if ‖φk‖ = 1 and 〈φi, φj〉 = 0 for i ≠ j. The Fourier coefficients are

defined as bf kð Þ ¼ ∫Q f φkdμ, where {φk} is an orthonormal family. The formal Fourier

series is formed as the expansion ∑
∞

k¼1

bf kð Þφk and a question is then whether this series

converges, and if so, what does it converge to? Two results are important in this
context:

1. For any f in L2(Q), {φk} an orthonormal family, and any sequence of complex

numbers ckf g; f −∑n
k¼1

bf kð Þφk

��� ��� ≤ f −∑n
k¼1ck

�� φkk, where bf kð Þ are the Fourier

coefficients with respect to {φk}. (Dym & McKean, 1972, p. 23; Rudin, 1976, p.
187)

2. Let {φk} be an orthonormal family. If ∑∞
k¼1 ckj j2 < ∞ then there exists a Lebesgue

measurable function f such that f −∑n
k¼1ck

�� φkk →0 when n → ∞, and f can be
represented by the series ∑∞

k¼1ck φk . (Rudin, 1976, p. 330)

The result 1. states that the partial sums of the Fourier series give the best approximation in

L2 norm, and from 2. it follows, using the orthonormality of {φk}, that ck ¼ ∫Q f φkdμ. The
result 2. is often referred to as the Riesz-Fischer Theorem and is taken to be a fundamental
result in the theory of Fourier series. Dym andMcKean express the Riesz-Fischer theorem
as saying that there is a 1–1 map of the space of Lebesgue measurable functions onto the
space of square summable sequences of numbers, or in other words L2(Q) and L2(Z+) are
isomorphic (Dym & McKean, 1972, p. 3 and p. 26). As the first example of an
orthonormal family, Dym and McKean present the functions ek(x) = e2πikx on the
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Fig. 3 The Fourier coefficients
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interval [0, 1]. The crucial point here is that the series expansion uses an orthonormal
family as a basis. As mentioned in the subchapter on basic mathematics, also Kreyzig
(2011) introduces the concept of orthogonality of functions, but the concept has no real
significance in his exposition since he only considers trigonometric functions, and then the
orthogonality follows trivially by integration. In the praxeology AM however, orthogo-
nality (orthonormality) becomes a crucial concept. Lundheim (2019) uses the complex
form of the Fourier series but since the complex exponential can be written in terms of sine
and cosine functions, the orthogonality also here is granted.

In the praxeology AM the Fourier series of a function f is taken as a formal
construct and an important question is to characterise the functions f for which this
series converges to f. Finding these conditions can be seen as the first task in this
context. Dym and McKean (1972), after having established the fundamental results, go
on to applications of Fourier series, for example to partial differential equations, and
this can also be seen as tasks. I will not go into details about the proofs of the results
quoted above, but I will end this section with the remark that a significant difference
between the praxeologies BM and E compared to AM is that the theory, Θ, has
changed. In BM as well as in E the underlying theory is the Riemann integral, but in

AM the underlying theory is the Lebesgue integral. Therefore, ΘBM ≠ ΘAM.

Comparing the Praxeologies

In this section I will return to the research question “What characterises the praxeol-
ogies connected to Fourier series in mathematics and in signal theory?” and I will
summarise the answer to this question from two perspectives. First, I will compare the
praxeology in basic mathematics, BM, to the praxeology in signal theory, E. Then I
will compare the praxeology in basic mathematics, BM, to the praxeology in advanced
mathematics, AM. I will focus on the main differences between the praxeologies under
comparison.

The Praxeologies BM and E

I will start by discussing the generating questions in the two praxeologies BM and E.
The generating question QBM in BM I identified as how to represent and approximate
periodic functions by means of trigonometric functions. To do this, Fourier series are
introduced, and an important point that is made is that Fourier series approximate non-
continuous functions by means of continuous functions. This is also in line with the
initial interest in Fourier series in the nineteenth century. The main task (TBM) is to find
a series representation for a given function. The techniques (τBM) are based on
integration, using elementary properties of trigonometric functions (θBM). These tech-
niques give the Fourier coefficients and hence the series. The theory,ΘBM, although not
explicitly stated, is the Riemann integral.

Nilsson and Riedel also refer to periodic functions, and they motivate the interest in
such functions like this: “One reason is that many electrical sources of practical value
generate periodic waveforms” (Nilsson & Riedel, 2011, p. 626). In Lundheim’s (2019)
introduction to signal theory, the motivation for introducing Fourier series is more
explicitly expressed. He wants to define, in a precise way, the notion of the spectrum of
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the signal, also referred to as the content of the signal since it shows the frequencies that
the signal is built up of. Since Lundheim’s lectures are closer to the didactic system
S(X; YE; ♥E) that I am investigating than the book by Nilsson and Riedel, I take the
generating question in E, QE, to be how to find the spectrum of a signal. Figure 4
shows the spectrum of a pure sine wave set to frequency 440 Hz and Fig. 5 shows the
spectrum of a rectangular wave, corresponding to the one shown in Fig. 2 based on a
“theoretical” rectangular wave. The pictures are made using a frequency analyser. Such
tools are, in addition to computational techniques, used in E to obtain the spectrum
(Fourier coefficients), and can be seen as part of the techniques. The sine wave in Fig. 4
consists of only one frequency (and some noise) and the rectangular wave in Fig. 5
consists of several frequencies that can be read off from the picture. The height of the
peaks for each frequency represents the absolute value of the Fourier coefficients in the
Fourier series that makes up the rectangular wave. Both in BM and in E it is
important to find the Fourier series of a function but because the generating question
is different in the two praxeologies, the focus in BM is on the series and its
convergence properties, whereas the focus in E is on the coefficients. This indicates
a difference in the tasks in the two praxeologies.

For the actual computation of Fourier coefficients, the justification in E (θE) is
based on well-known properties of trigonometric functions. However, regarding the
issue of convergence of the series, only sufficient conditions are given, and this issue is
not dealt with in a precise manner in either of the praxeologies. I will therefore claim
that there are no significant differences in the technology between these two praxeol-
ogies, so θBM ≈ θE. Also the theory seems to be the same, ΘBM = ΘE, although it is not
explicitly stated. In the parts on basic mathematics and signal theory, I have described
differences in notation between BM and E, which then amount to differences in the
techniques. These differences are summarised in Table 1, based on Kreyzig (2011) and
Lundheim (2019), respectively. The notation in Nilsson and Riedel (2011) is in fact
closer to Kreyzig than to Lundheim, showing differences also within E.

The Praxeologies BM and AM

As discussed in the parts on basic mathematics and signal theory, neither of the praxeologies

BM or E gives a complete answer to the question about which functions can be
represented in a Fourier series. This question, however, I find to be very important in the
praxeology AM. Rudin writes that “[t]he natural question which now arises is…whether f
is determined by its Fourier series” (Rudin, 1976, p. 186). It may be too simplistic to take this
question as the generating question in AM. I will therefore regard this question as one
example of a generating question in AM. Both in BM and E the theory, ΘBM = ΘE, is
based on theRiemann integral, but to addressQAM, the Lebesgue integral is introduced as the
theory, so ΘBM ≠ ΘAM. An important technology in AM is that the basis for the Fourier
expansion is an orthonormal family. A further justification (see e.g. Rudin, 1976, p. 330) is
given in terms of the conditions that the Fourier coefficients should be square summable,

∑∞
n¼1 cnj j2 < ∞: In the part on basic mathematics, I quoted from the proof that Kreyzig

(2011) gives for convergence where he shows that the conditions he puts on the function,
imply that anj j < M

n2, whereM is a constant (similarly for |bn|). Therefore, the coefficients are
square summable (Kreyzig, 2011, p. 481). So square summability is important, but in AM
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this comes as a condition, whereas in BM, it comes as a consequence of much too strong
conditions on the functions under consideration.

Summary of the Praxeological Analysis

I will end this chapter by giving an overview of the most important elements that I have
discussed in the praxeologies under consideration. I present this overview in Table 2.

Discussion

The comparison of the praxeologies showed that between BM and E there is a
difference in the generating question, which in BM leads to a strong focus on the
whole series and its convergence properties, whereas in E the focus is more on the
Fourier coefficients, representing the spectrum of the signal. It also turned out that the
notation was somewhat different in the two praxeologies, meaning that the techniques

Fig. 4 Spectrum of a pure sine wave

Fig. 5 Spectrum of a rectangular wave
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at least to some extent, are different. In previous research, many authors have discussed
lack of connection between mathematics and engineering regarding relevance of
mathematics and also lack of connection regarding mathematical knowledge (Biehler
et al., 2015; Carvalho & Oliveira, 2018; Flegg et al., 2012, Gueudet & Quéré, 2018;
Harris et al., 2015). Alpers (2017) noticed also essential differences in the use of
concepts and in notation. This is supported in my investigations.

Much of the previous research has been connected to mechanical engineering
(González-Martín & Hernandes-Gomes, 2017, 2018, 2019a) and the concept of the
integral. In this context, an important finding was that the concept of integral was used
to define the notions in question, but that the tasks could be solved by simple
arguments, not using integration techniques. In the case of signal theory, this is
different. I have pointed to differences in the techniques, but these differences are
mainly connected to notation. When it comes to actual computation techniques, the
situation in mathematics (Kreyzig, 2011; O’Neil, 2018), is pretty much the same as in
signal theory (Lundheim, 2019; Nilsson & Riedel, 2011).

Peters et al. (2017) also used ATD to compare mathematics and signal theory. It seems
that their example shows a clearer separation of techniques and technology between
mathematics and signal theory than I have observed. Their example is a concrete example
from signal theory intended to show that a given envelope detector delivers a signal with
certain properties (the task). To solve this task, techniques and technologies both from

Table 1 Comparing notation between BM and E

BM E

Imaginary unit The letter i The letter j

Fourier series representation f xð Þ ¼ a0 þ ∑
∞

n¼1
ancosnxþ bnsinnxð Þ x tð Þ ¼ ∑

∞

−∞
cke jωk t

x tð Þ ¼ c0 þ 2∑∞
k¼1 ckj jcos ωk t þ φkð Þ

Fourier coefficients a0 ¼ 1
2π ∫

π
−π f xð Þdx ck ¼ 1

T ∫T x tð Þe− jωk tdt; ωk ¼ 2π
T k

an ¼ 1
π ∫

π

−π
f xð Þcos nxð Þdx; n ¼ 1; 2;…

bn ¼ 1
π ∫

π

−π
f xð Þsin nxð Þdx; n ¼ 1; 2;…

Table 2 Overview of the generating questions Q and the four Ts in different praxeologies

BM E AM

Q Represent periodic
functions in a series

Find the spectrum (frequency content)
of a signal

Characterise functions that can be
represented in a Fourier series

T Compute Fourier
coefficients to get the
Fourier series

Compute Fourier coefficients Find conditions for representation
and convergence of Fourier
series

τ Computations using
trigonometric functions

Computations using trigonometric
functions. Frequency analyser

Inner products. Norm.
Orthonormal families

θ Properties of trigonometric
functions

Properties of trigonometric functions.
Observations from the frequency
analyser

Properties of the space L2(Q)

Θ The Riemann integral The Riemann integral The Lebesgue integral
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mathematics and engineering are applied. My example is on a more basic level in the
engineering course. A hypothesis could then be, that the praxeologies BM and E will
differ more as the engineering course progresses. Therefore, it would be of interest to follow
the development of an engineering course over a longer period of time.

Regarding the mathematical praxeologies, BM and AM, it is worth noticing that there
is a significant difference in the theory, ΘBM ≠ ΘAM, and this difference is based on the
development from the Riemann to the Lebesgue integral. This difference also echoes the
historical development of Fourier series, in the sense that when Fourier series first were
introduced, the theory of the Lebesgue integral was not yet developed, which could explain
why Fourier and his contemporaries were not in the position to establish a rigorous
foundation for their results.
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