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A B S T R A C T   

This paper studies the optimal harvesting decisions of a salmon farmer that faces the risk of harmful algal bloom 
as well as market uncertainty. The salmon farmer seeks to maximize the financial value of the fish farm by 
determining the optimal course of actions during the algal bloom, and the optimal time to harvest after the 
bloom. Specifically, we compare the options to perform an early harvest and to wait in order to learn about the 
true algal risk. We extend this framework by taking into account the option to move the salmon to an algal free 
location. To illustrate the results and investigate the robustness of our model, we present two case studies with 
realistic industry parameters from Norway and Chile. We find that there is a significant value associated with the 
ability of salmon farmers to actively learn about the true risk of losing the biomass. This value is strongly affected 
by the availability of frequent and reliable information about the algal risk emphasizing the importance of 
communication between industry actors, as well as facilitation of effective information flow by policy makers 
and research organizations.   

1. Introduction 

Harmful algal blooms present a growing global threat to marine 
aquaculture species. A harmful algal bloom is a rapid increase in the 
population of algae in aquatic environments that has detrimental effects 
on aquatic life in that they cause mortality and severe problems with 
animal welfare and growth, as well as ecology [37]. The frequency and 
severity of harmful algal blooms have increased dramatically on a global 
scale in recent decades, and this trend may continue due to climate 
change [2,55]. There is also consensus among scientists that the 
resulting economic losses are increasing [3] leading to adverse effects on 
the coastal communities causing bankruptcies and loss of livelihoods. 
Thus, better decision-making tools for minimizing economic losses 
during harmful algal are crucial for a sustainable development of 
aquaculture industry. 

In this paper, we address the problem of managing harmful algal 
bloom risk from the perspective of salmon farmers. Salmon farming 
industry has been affected by a large number of dramatic harmful algal 
blooms globally. For example, in 2016, a severe outbreak in the southern 
parts of Chile killed 39,000 tons of Atlantic salmon and trout [44]. The 
risk of losing millions worth of revenues forces small and large salmon 

farmers to make swift decisions regarding how they should respond to 
the threat. At the same time, salmon farmers receive information about 
the algal spread from research communities, as well as hearsay from 
nearby farms, which creates an incentive to wait in order to learn about 
the risk and make more informed decisions [23,35]. Although there 
exists a wide body of literature on optimal harvesting decisions of 
salmon [5,26], there is a clear lack of studies that explicitly account for 
the risk of losing the biomass. Among the few contributions that 
explicitly take into account the impact of diseases on the harvesting 
decisions is [1] that study lice infestations. However, potential lice im
pacts differ substantially from the consequences of a harmful algal 
bloom. This motivates the development of appropriate dynamic decision 
tools for salmon farmers that explicitly take into account the impact of 
harmful algal blooms, as well as and the possibility to learn about the 
likelihood of their occurrence, which we focus on in this paper. 

For an harmful algal bloom to take place, there must be enough 
nutrients and light for it to develop, however, as harmful algal blooms 
consume the nutrients it will naturally fade out after some time. This 
makes harmful algal blooms inherently time-limited events. In many 
cases, it is hard to foresee blooms, the reasons behind them, as well as 
their total duration. Nevertheless, it is important for fish farmers to take 
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immediate action if a harmful algal bloom is reported nearby or if the 
fish behave abnormally. In this paper, we focus on two potential miti
gation strategies that involve reducing the negative impacts of harmful 
algal bloom: performing an early harvest and/or moving the biomass. 

Early harvest entails losing the future growth of the biomass, and the 
possibility to harvest optimally at a later stage. In addition, the salmon 
price is increasing in weight class leading to a further loss of revenue by 
harvesting smaller fish [13]. When harvesting early, the salmon farmer 
faces a trade-off between securing revenues from the biomass at the 
current spot price before potential salmon deaths and further growing 
the fish taking the risk of harmful algal bloom arrival. During the 2019 
harmful algal bloom outbreak in Norway, SalMar, for example, decided 
to harvest 1,000 tons of salmon weeks before the planned schedule.1 

Moving biomass to a different location can be an effective alternative to 
early harvest in order to secure future biomass growth. This is supported 
by the findings in [47] that suggest that spatial diversification provides 
significant risk reduction related to diseases outbreaks. For example, in 
2019, Cermaq and Nordlaks were among the companies that chose to 
move their fish away from the harmful algal bloom to alternative loca
tions [22]. However, transporting fish under higher densities may lead 
to stress, which can affect feed conversion ratio (FCR) and mortality rate 
negatively [11,15]. In addition, this action is only available for large 
enterprises that operate multiple locations (i.e., companies with spatial 
diversification). 

The fundamental problem for farmers during harmful algal blooms is 
to choose the right action at the right time given that the true likelihood 
of that the algae arrival at their farms is not known. Once the Norwegian 
Food Safety Authority and the Directorate of Fisheries are informed 
about a harmful algal bloom outbreak, several organizations (SINTEF, 
Akvaplan-niva, and the Institute of Marine Research) are brought in to 
assist the salmon farmers with analysis of the harmful algal bloom risks. 
In addition, the Norwegian Meteorological Institute provides forecasts 
on sea water streams which could bring the harmful algal bloom to new 
locations [22]. These organizations provide farmers with information 
regarding the current and forecasted spread and density of the harmful 
algal bloom. However, the information flow is not organized by a single 
organization. This means that the salmon farmers receive information 
from multiple sources at unknown intervals during the harmful algal 
bloom. Furthermore, due to a high degree of collaboration in the in
dustry during the harmful algal bloom outbreak, the salmon farmers are 
able to share resources and information with each other [35]. The 
collaboration and involvement from research organizations gives 
salmon farmers the opportunity to make better-informed decisions. 

Another challenge that the farmers face when making their har
vesting decisions is that the price of farmed salmon is uncertain. Several 
recent studies investigate the salmon spot, forward and futures price 
dynamics (e.g., [6,17]). They find that innovations in the spot price 
influence forward and futures prices rather than the other way around, 
indicating that the salmon futures and forward markets are still imma
ture. It is well established in the literature that the static decision making 
tools such as discounted cash flow (DCF) analysis may lead to 
sub-optimal choices when applied to irreversible decisions under un
certainty [41]. Therefore, in order to account for the value of informa
tion for salmon farmers, we develop state-of-the-art dynamic real 
options models to analyze the optimal harvesting decisions in the 
presence of harmful algal bloom risk. In particular, the salmon farmer is 
considered to have an option to undertake mitigation measures when 
facing the risk of harmful algal bloom. The real options approach allows 
to quantify the value of these options, which represent the benefit of the 
flexibility to delay irreversible actions in order to gain more information 
about framework conditions [25,58]. 

The aim of this paper is, thus, to identify optimal harvesting 

strategies for small and large salmon farmers when facing the risk of 
harmful algal bloom arrival and stochastic prices. In order to do so, we 
develop three real options models. The first model, the General Single 
Rotation Model (GSR-model), finds the optimal time to harvest while 
facing uncertain prices without algal risk. The GSR-model quantifies the 
value of flexibility in the operations of a salmon farmer, and is also used 
as input into the more advanced models. The Early Harvest Model (EH- 
model) is the main focus of this paper. The EH-model finds the optimal 
harvesting strategy and quantifies the value of harvesting flexibility 
during a time-limited harmful algal bloom. The EH-model also accounts 
for the imperfect information farmers receive by assuming that salmon 
farmers learn about the uncertain arrival rate of harmful algal bloom 
through signals from research organizations. Based on these signals, 
farmers can actively update their beliefs about the algal arrival rate in 
accordance with Bayes’ rule. The third and final model, the Early 
Harvest-Move Model (EH-M-model), extends the EH-model and allows 
companies with spatial diversification to jointly evaluate the decision 
between early harvesting and moving. We apply the EH-M-model to 
investigate the option to move the salmon can bring additional value for 
farmers. We apply the models on two case studies, for Norway and Chile. 
This is of interest since the world’s two largest producers of farmed 
salmon operate under different production conditions. 

The remainder of this paper is organized as follows. Section 2 pre
sents a review of the literature relevant to our research questions. The 
three models and the solution approaches are described in Section 3. In 
Section 4, we quantify parameters for a Norwegian and Chilean case 
study. Results and discussion of the case studies are presented in Section 
5. Finally, Section 6 concludes the paper. 

2. Literature review 

There exists a wide body of literature focusing on optimal harvesting 
of salmon. Early work analyzes how different costs and growth curves 
affect the harvesting time, but does not include uncertainties in the 
model assuming salmon prices to be deterministic [12]. Further work 
extended this early literature in different directions. Arnason [4] ana
lyzes interdependence of optimal feeding schedule and harvesting time. 
Later, Forsberg [28] develops a harvesting planning model that has the 
ability to take all production restrictions into consideration. The har
vesting model in Forsberg [28] is later used to find the value of price 
information, based on different price scenarios by Forsberg and Gut
tormsen [29]. Forsberg and Guttormsen [29] extend former production 
planning models to also include forecasting of prices. Asche and 
Bjørndal [5] add to the existing literature by providing systematic eco
nomic analyzes based on more up-to-date Norwegian industry data. In a 
more recent study, Ewald et al. [26] consider the optimal harvesting 
problem for both single and infinite production cycle rotations. They 
build on findings from Asche and Bjørndal [5] and account for stochastic 
prices in a two-factor price model, using a large set of forwards contracts 
from Fish Pool exchange market to estimate prices. In line with Ewald 
et al. [26], we adapt and apply a two-factor price model to our problem 
using latest price information. Moreover, we follow Asche and Bjørndal 
[5] on their biomass growth assumptions, to be detailed in Section 3. 

None of these studies, however, have accounted for the risk of losing 
the biomass in the optimal harvesting models. In the aquaculture liter
ature, large efforts have been made in studying causes, detection, and 
economical impacts of harmful algal blooms rather than their impact on 
optimal harvesting strategies for salmon farmers (see, e.g., [55,40,33,3, 
44]). Among the few studies that consider the possible benefits of dis
ease triggered early harvest is [48] in application to pancreas disease 
(PD). They, however, do not focus on the risk of PD arrival, but rather 
apply a partial budgeting approach to compare scenarios with and 
without PD outbreaks inside a sea pen. In their harvesting strategy, they 
assume that the salmon farmer adopts a diagnostic screening program to 
monitor the virus levels in the farm. This data is used to forecast a PD 
outbreak, which for certain thresholds trigger an early harvest to avoid 

1 https://e24.no/boers-og-finans/i/8mOkkG/salmar-slakter-tusen-tonn-laks- 
for-aa-sikre-seg-mot-alger 
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disease losses. Unlike in the application of Pettersen et al. [48], salmon 
farmers facing harmful algal bloom threat can not use a device to 
monitor algae levels inside the pen, because the salmon dies shortly after 
the algal arrival. 

Another aspect that our paper adds to the existing literature is the 
possibility to actively learn about the harmful algal bloom risk. Learning 
within the aquaculture literature often appears in the context of tech
nology uncertainty and adaptation strategies. Several contributions, for 
example, account for a passive learning-by-doing effect, such as [46,51]. 
More recent studies incorporate passive learning about key uncertainties 
in a wait-and-see manner by utilizing real options approach [14,31]. 
These studies quantify the flexibility to delay the investment decision in 
new technologies by salmon farmers and by that gather more informa
tion about the evolution of key uncertainties. They conclude that the 
ability to delay the capital expenditure creates a significant value for 
salmon farmers. Our model, extends this stream of literature by incor
porating both active and passive learning in an optimal harvesting 
problem. The aspect of Bayesian learning has recently gained significant 
attention in the real options literature. Harrison and Sunar [32] make 
use of a continuous-time Bayesian framework for updating a firm’s be
liefs of the unknown project value. Another example is [19] that study 
how investment behavior in renewable energy is affected by updating a 
subjective belief on the timing of a subsidy revision. Both [32,19] as
sume that the signals arrive according to a continuous time stochastic 
process. Unlike Harrison and Sunar [32] and Dalby et al. [19], Thijssen 
et al. [57] assume that signals arrive discretely according a Poisson jump 
process. Thijssen et al. [57] investigate the decision of a firm to invest in 
a project while receiving imperfect signals about its true profitability. 
The firm uses these signals to update its valuations of the project and to 
form a decision rule. Similar to Thijssen et al. [57], we adopt the 
discrete-time process for signal arrivals. This is because in our problem, 
signals arrive at irregular intervals, and farmers have free access to the 
different learning modes (e.g., phone-based information from nearby 
farmers, reports, and forecasts from research organizations). Moreover, 
the farmer can neither influence the quality of the information, nor the 
arrival time of these signals. 

More generally, our paper contributes to the extensive literature on 
the risk management in salmon farming. Several contributions find ev
idence of a substantial increase in salmon price volatility over the recent 
years, which creates incentives for the salmon farmers to engage in 
financial hedging [8,47]. Recently, some studies investigated the salmon 
spot and forward price dynamics, as well as how financial salmon fu
tures can be used to reduce price risk (e.g., [6,43,53]). In addition to 
price risks, it is well established in the literature that salmon producers 
are exposed to significant production risks and are averse to these risks 
[9,36]. Among the tools that reduce production risk (including diseases, 
escapes, technical failure) available to salmon farmers are technological 
investments [14,51,52] and aquaculture insurance [49]. In our model, 
the salmon farmers reduce the production risk exposure the by active 
learning about the probability of harmful algal bloom arrival and, as a 
result, by adjusting their harvesting decisions. 

3. The models 

In this section, we develop three realistic real options models for the 
problems of (i) finding the optimal time to harvest in a basic, single 
production cycle while facing stochastic prices, (ii) finding the optimal 
time to harvest while also facing uncertain harmful algal bloom arrival 
risk, and (iii) finding the optimal course of actions when allowing for 
both early harvesting and moving the biomass. 

3.1. General single rotation model 

We consider a salmon farmer who seeks to maximize the value of his 
farm’s salmon biomass during a single production cycle. At each point in 
time, the salmon farmer must decide whether to harvest the fish now or 

to grow it further. By harvesting the fish, the farmer pays a one-time 
harvesting cost and receives the revenue from the harvested biomass. 
The fish farmer will make a profit of B(t)(S(t) − CH) at the time of har
vest, where B(t) denotes total salmon biomass at time t, S(t) is the salmon 
price at time t, and CH represents the fixed harvesting cost per kilogram 
fish. 

The total biomass B(t) is the product of the number of fish in the pen, 
denoted by R(t), and the average individual weight of the fish, given by a 
weight curve W(t). We denote the number of fish at time t = 0 by R0, and 
assume that W(t) follows a deterministic process described by a von 
Bertalanffy’s growth function, 

W(t) = w∞

⎛

⎝a − be
− c

(
t+tsea

365

) ⎞

⎠

3

, (1)  

where w∞ is the asymptotic average weight of an individual fish, a, b, 
and c are constants, and tsea is the time since the fish was introduced to 
the sea pen. The auxiliary parameter tsea is introduced to study how the 
optimal strategy is affected by the fish weight at the start of an algal 
outbreak. The von Bertalanffy’s growth function is commonly applied to 
model fish growth, see for instance (5,26). 

Since the salmon is not reproducing in pens, it is common to intro
duce a fixed mortality rate, M, to model a decreasing number of fish over 
time. Following [5], we find the number of fish in the pen at time t by 
solving R(t) = R0e− Mt. Hence, we can estimate the total biomass B(t) at 
time t by solving 

B(t) = R(t)W(t) = R0e− Mt

⎛

⎝w∞

⎛

⎝a − be
− c

(
t+tsea

365

) ⎞

⎠

3 ⎞

⎠ (2) 

As an alternative to early harvest, the salmon farmer can continue 
growing the fish and potentially receive a higher salmon price in the 
future, while incurring the production costs Cp(t). We assume that the 
variable production costs consist of feeding costs only. This is because 
feeding costs is the main cost driver for salmon farmers during the sea 
phase accounting for around 50% of the total production costs [7]. 

The total feed quantity required at time t is the amount of feed 
needed per fish multiplied with the amount of fish. To find this quantity, 
we multiply the feed conversion ratio (FCR),2 fr, and the weight growth 
of the fish, W′(t), together with the amount of fish, R(t), i.e., frW′(t)R(t). 
Then for a given feed price per kilogram, Cf, the production costs at time 
t is Cp(t) = frW′(t)R(t)Cf .. 

The optimal harvesting time, τ, of the GSR-model is thus the solution 
of the following optimal stopping problem 

FGSR(τ, Sτ) = sup
τ

E
[

B(τ)(Sτ − CH)e− rτ −

∫ τ

0
Cp(t)e− rtdt

]

, (3)  

where S(t) denotes the salmon spot price at time t. The first term in (3) 
represents the cash flow received from selling the biomass at the optimal 
time, less the cost of harvesting, discounted to time zero. The second 
term is the discounted production costs paid from time zero to the 
optimal harvesting time, τ. In (3), S(t) denotes the salmon spot price at 
time t. 

In line with [54], we use the two-factor model for simulations of 
salmon spot prices. In particular, we decompose the logarithm of the 
salmon spot price into the sum of two stochastic factors, i.e., 

ln(S(t)) = χ(t) + ξ(t), (4)  

where χ(t) represents short-term deviations in salmon prices and ξ(t) the 
equilibrium price level at time t. Changes in the short-term deviations, 

2 FCR is a common indicator of feed efficiency, defined as the ratio between 
input of the feed and the weight gain. 

S. Engehagen et al.                                                                                                                                                                                                                             



Marine Policy 129 (2021) 104528

4

χ(t), represent temporary changes in salmon prices and are assumed to 
revert to zero following an Ornstein-Uhlenbeck process, 

dχ(t) = − κχ(t)dt + σχdzχ(t). (5)  

Changes in the equilibrium price, ξ(t), represent fundamental changes 
that are expected to persist and are assumed to follow an arithmetic 
Brownian motion process 

dξ(t) = μξdt + σξdzξ(t). (6) 

The Brownian motion increments of dzχ(t) and dzξ(t) are correlated 
with ρχξdt = dzχ(t)dzξ(t). Parameter κ is a mean-reversion coefficient 
describing the rate at which short-term deviations are expected to 
dissipate, σχ represents the short-term volatility, μξ the equilibrium drift 
rate and σξ the equilibrium volatility. 

In the two-factor price model, the short-term deviations, χ(t), and the 
equilibrium price level, ξ(t), are unobservable. We use Kalman filtering 
in order to compute estimates for the short-term deviations and for the 
equilibrium price based on observations of spot and forward prices.3 Our 
resulting state variables and model parameter estimates are presented in 
Section 4.2. The closed-form solutions for the optimal stopping problem 
in (3) does not exist. Therefore, we solve (3) numerically by applying a 
least squares Monte Carlo (LSM) approach [18,30,39].4 

3.2. Early harvest model 

In this section, we extend the problem under consideration in the 
GSR-model and present the method to quantify the value of flexibility of 
harvesting while facing the risk of harmful algal bloom arrival. 

At time t = 0, a harmful algal bloom is reported by a nearby farm. We 
let the time period from t = 0 to t = T represent the maximum duration 
of the harmful algal bloom and denote the arrival time of harmful algal 
bloom by tHAB. The presence of harmful algal bloom at the farm is 
modeled as a binary variable, Γ(t). We let Γ(t) = 0 if there is no harmful 
algal bloom at the farm at time t. At the time of the harmful algal bloom 
arrival and for all subsequent times, t ≥ tHAB, it holds that, and Γ(t) = 1: 

Γ(t) =
{

0 before a harmful algal bloom arrival,
1 during and after the harmful algal bloom arrival

}

,

while Γ(0) = 0. 
The effect of the harmful algal bloom on the harvesting profit is that, 

if Γ(t) = 1, the salmon dies and cannot be sold. In other words, the value 
of the fish stock immediately goes to zero if the harmful algal bloom 
arrives at the farm. The farmer now needs to take this risk into account 
when choosing the optimal harvesting time. If Γ(t) = 0 indicating the 
harmful algal bloom did not arrive, the farmer may continue to grow the 
fish and harvest at the optimal weight and price. In such a case, the 
optimal harvesting time is given by the GSR-model in Section 3.1. 

As previously mentioned, the true risk of receiving a harmful algal 
bloom is difficult to predict. However, during the harmful algal bloom 
threat from t = 0 to t = T, the farmers receive information about algal 
spread from different sources, e.g. word of mouth from neighboring 
farms and reports from research organizations. Based on these signals 
farmers can form beliefs about the true algal arrival rate. Similar to [57], 
we assume that the signals arrive according to a Poisson process with 
intensity μ > 0. The signals are either good, representing state where the 
risk of getting the harmful algal bloom is low, or bad corresponding to 
the high risk state. The low and high states are denoted by L and H, 
respectively, and the arrival rates corresponding to these two states are 
denoted by λL and λH. The risk of harmful algal bloom arrival in H is 

higher than in L, i.e., λH > λL ≥ 0. The farmer does not know which risk 
state the farm is in when the harmful algal bloom is first reported at 
t = 0. However, the salmon farmer has a prior belief about the proba
bility of being in state H: P(H) = p0. Whenever a signal arrives, the 
farmer updates its belief about the true state. Moreover, the signals are 
known to be imperfect, and the farmer considers the probability of a 
signal being correct to be Pcs, see Table 1. 

We denote the cumulative sums of good and bad signals that have 
arrived up until time t as lt and ht, respectively. In addition, we introduce 
kt as the amount of bad signals in excess of good signals that has arrived 
from time 0 to time t, i.e., kt = ht − lt. By following Bayes’ rule, the belief 
that the world is in the high risk state H, can be formulated as a function 
of kt.5. 

p(kt) =
Pkt

cs

Pkt
cs +

1− p0
p0

(1 − Pcs)
kt
. (7) 

At time t = T, the harmful algal bloom risk becomes zero and the 
signals stop arriving. In this case, the optimal harvesting problem is 
reduced to the GSR-model in Section 3.1. 

In addition to actively learning from signals arriving, farmers are 
passively learning about the salmon price. Thus, farmers have an 
incentive to wait for more information in order to make better-informed 
decisions. However, the benefits of waiting for more information about 
the algal arrival rate and possibly a higher price, must be weighted 
against the risk of losing the current biomass altogether due to algae 
arriving. This is a realistic representation of the trade-off faced by 
salmon farmers in an event of harmful algal bloom. 

The optimal stopping problem the farmer faces can now be formu
lated as 

FEH(τ, Sτ) = sup
τ

E
[(

B(τ)(Sτ − CH)e− rτ −

∫ τ

0
Cp(t)e− rtdt

)

× (1 − Γ(τ))
]

,

(8)  

where τ is the optimal harvesting time. This optimal stopping problem is 
similar to (3), with the difference that now we take into account the 
possibility that in the event of the harmful algal bloom arrival the value 
reduces to zero. 

If the farmer endures the harmful algal bloom event without the 
harmful algal bloom arriving at his location, i.e., Γ(τ) = 0 and τ ≥ T, it is 
possible to grow the fish further and harvest at the optimal weight and 
price. In such a case, (8) is reduced to (3). 

Similar to (3), the analytical solution for (8) is not available and we 
solve the problem numerically using LSM approach. 

3.3. Early harvest move model 

In this section, we extend the EH-model above by including the op
tion to move the fish. We do so in order to emphasize that in some cases, 
farmers may have the opportunity to move their fish to another location 
without harmful algal bloom threat, as an alternative to early harvest
ing. We denote the extended model the EH-M-model. When moving the 
fish to another location, the farmer is able to harvest at the optimal time 

Table 1 
Probability of a signal indicating high or low harmful algal bloom risk, given the 
true state of the world.  

Risk/signal h l 

H Pcs 1 − Pcs 

L 1 − Pcs Pcs  

3 The details behind this procedure can be found in the electronic Appendix 
A. 

4 For more details behind the LSM application to our models see the elec
tronic Appendix B. 5 See [57]. 
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at the new location, similar to the GSR-model. However, the move may 
be stressful for the salmon resulting in a higher mortality rate and a 
higher FCR, which we denote by MM and frM, respectively. Furthermore, 
the move comes at a direct cost of renting a wellboat for fish trans
portation. We denote the total moving costs per kilogram fish by CM. 

As a result, the option value of moving is the value of harvesting 
optimally at the new location (without harmful algal bloom risk, but 
with the higher mortality and FCR), less the moving cost. This option 
value is compared to the value of waiting and receiving more informa
tion about the algal risk. The optimal stopping problem the farmer that 
considers the options to move the fish and harvest at the optimal time 
later can be formulated as 

FM(τ1, τ2, Sτ2 ) = sup
τ1 ,τ2 ,τ1<τ2

E
[((

sup
τ2

E
[

B(τ2)(Sτ2 − CH)e− r(τ2 − τ1)

−

∫ τ2

τ1

Cp(t)e− r(t− τ1)dt|F τ1 ] − CMB(τ1)

)

e− rτ1

−

∫ τ1

0
Cp(t)e− rtdt

)

× (1 − Γ(τ1))

]

(9)  

where τ1 is the optimal moving time and τ2 is the optimal harvesting 
time after moving. The innermost supremum of (9) represents the value 
of producing at the new location and harvesting optimally at time τ2, 
discounted back to the time of moving, τ1, conditional on information 
available at τ1, F τ1 . Next, we subtract the discounted cost of moving the 
biomass at time τ1 and the production costs incurred until τ1. Lastly, we 
take into account the probability that the harmful algal bloom reached 
the farm before moving, represented by Γ(τ1). 

The general optimal stopping problem the farmer faces when 
choosing between early harvest and moving can be formulated as 

FEHM(τ, Sτ) = sup
τ1 ,τ2 ,τ1<τ2

E[e− rτ1 max{FEH(τ1, Sτ1 ),FM(τ1, τ2, Sτ2 )}], (10)  

where τ is the time when the salmon farmer either moves or harvests the 
fish, whereas τ2 is harvesting time after moving. We solve this model 
numerically by applying LSM approach. 

4. Model parametrization 

In this section, we quantify and motivate the input values for our 
models. We present two case studies, for Norway and Chile. Our 
parameter estimations are based on relevant aquaculture studies from 
both regions, in addition to input from Norwegian and Chilean industry 
experts. 

4.1. General single rotation model parameters 

First, we present the input values for the GSR-model. These are 
related to production costs, harvesting costs, mortality, weight devel
opment and discount rate. The relevant parameters are summarized in  
Table 2. 

The discount rate, r, is set to 6% for the Norwegian case study and 8% 
for the Chilean. As suggested by Ewald and Taub [27], we choose the 
values that are consistent with capital asset pricing model estimates 
based on the industry betas (which are slightly lower than one for 

salmon companies) and country-specific market risk premiums for 
Norway and Chile [20,42]. 6 

We set the FCR, fr to 1.3 for the Norwegian case study based on the 
average values during the last ten production years reported by Direc
torate of Fisheries and Iversen et al. [21,34]. In the Chilean case study, 
the FCR is set to 1.2 to reflect the recent trend of Chilean FCR declining 
beyond the one in Norway. The feed price, CF, is set to 12 NOK/kg for 
both case studies based on the current feed price level and the increasing 
price trend over time [21,34]. Our harvesting cost estimate, CH, are 
based on cost studies undertaken by Directorate of Fisheries [21] and are 
set to 3.9 NOK/kg for Norway and 4.5 NOK/kg for Chile. We assume 
15% higher harvesting costs in Chile because of lower degree of auto
mation at processing plants and lower standard on infrastructure. The 
mortality rates, M, are set to 15% and 13% for the Norwegian and 
Chilean case studies, respectively. The former is determined based on 
the data on fish mortality and losses in production [10,24]. We assume a 
slightly lower mortality rate for the Chilean case study in line with the 
estimates of production losses from 2016 and 2017 in Iversen et al. [34]. 

We assume that the salmon weight function, W(t), follows the 
deterministic process described in Section 3.1. Similar to [26], we set the 
parameters of the von Bertalanffy’s function in Norway to be a, b, and c 
to 1.113, 1.097, and 1.430 respectively. We set the asymptotic average 
weight, w∞, to be 5.5 kg. Then, the salmon will reach a weight of 
approximately six kilogram after two years in the sea [56]. As salmon 
grows slightly faster in Chile due to higher water temperatures [45], we 
set b = 1.000 in Chilean case study. 

We let the time since the start of the sea phase, tsea, be either 200, 400 
or 600 days, representing the early, middle and late stage of the sea 
phase, respectively. Given that the maximum allowed biomass (MAB) in 
Norway is 780 tonnes per licence, we choose the number of recruits, R0, 
so that the total biomass reaches the MAB at the end of the sea phase 
(assumed to be 24 months). Table 3 shows the number of fish in the pen 
for different values of tsea, including corresponding individual fish 
weight and total biomass. These estimates will be used in both case 
studies to make meaningful comparisons. 

We set the maximum length of a single rotation sea phase, Tsp, to two 
years, or 730 days, in both case studies. This is done in order to account 
for the fact that no farmers operate on a single rotation basis, as keeping 
a single generation of fish for longer than two years is not viable 
economically. 

4.2. Parameter estimation for the two-factor salmon spot price model 

In the estimation of the two-factor model, we make use of historical 
salmon spot prices and forward contracts to estimate the model’s un
known parameters (κ, σχ, μξ, σξ, ρχξ, χt=0 and ξt=0). Our data consists of 
weekly observations of spot prices and forwards from Fish Pool, span
ning week 14, 2013 to week 18, 2020. The synthetic FPI spot prices are 
updated weekly. For the forwards, we let the closing price of the last 
trading day of a week represent the week’s closing price. We include 

Table 2 
Summary of relevant Norwegian and Chilean input variables for the GSR-model.  

Parameter Symbol Norwegian case 
study 

Chilean case 
study 

Discount rate r 6% 8% 
Feed conversion ratio fr 1.3 1.2 
Price per kilogram feed CF 12 NOK/kg 12 NOK/kg 
Harvesting cost per kilogram 

fish 
CH 3.9 NOK/kg 4.5 NOK/kg 

Mortality rate M 15% 13%  

Table 3 
Number of fish in the pen, R0 for different values of tsea, individual fish weight W 
(0), and total biomass B(0).   

Norwegian case study Chilean case study 

tsea R0 Weight Total biomass Weight Total biomass 
200 days 151,981 1.27 kg 193,372 kg 1.55 kg 236,215 kg 
400 days 139,989 3.81 kg 533,707 kg 4.07 kg 569,474 kg 
600 days 128,943 5.65 kg 728,205 kg 5.80 kg 747,506 kg  

6 These estimates are also in line with the discount rates used by key players 
in the industry [16,50]. 
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forwards with maturities ranging from one month up to a year, and with 
18 months, two, three, four and five years to maturity. This gives a total 
of 368 weekly price observations of spot prices and 17 different forward 
contracts as input for our parameter and state variables estimation.  
Table 4 presents the parameter estimates from the Kalman filter. 

In our model, we disregard the potential effects of size and envi
ronmental shocks on salmon prices (see, e.g., [8]), which is an inter
esting extension of our analysis. Intuitively, adverse effects of harmful 
algal bloom on prices would increase value of information even more, 
supporting the conclusions of our model. 

4.3. Harmful algal bloom models parameters 

In this section we discuss the variables that appear in EH-model and 
in EH-M-model. These are related to the signal and algal processes and to 
the consequences of moving the fish. Table 5 below summarizes the 
relevant input variables. 

In the low risk state, we set the algal risk to be zero during a harmful 
algal bloom: λL = 0. In the high risk state, we set it to λH = 0.07. This 
implies the expected arrival time of 14.3 days, and the probability of 
arrival in one day of 6.7%. The probability of the occurrence of harmful 
algal bloom within the maximum length of 21 days is 77%. The arrival 
intensity of signals is set to 2 and 1.5 for the Norwegian and Chilean case 
studies, respectively. This implies on average 2 signals per day in Nor
way and 1.5 signals in Chile. Table 6 shows the probability of receiving a 
given amount of signals in one day. 

Salmon farmers receive daily signals from various research organi
zations and policy makers the during harmful algal bloom event. These 
signals include results from water samples and algal spread simulations. 
Additionally, most farmers also perform their own sampling and 
communicate with neighboring farmers about their view of the situation 
[35]. During the 2019 harmful algal bloom in Norway, however, water 
samples were conducted and treated differently [35], which negatively 
affected the reliability of the results from the water samples and simu
lations. Hence, the probability of a signal being correct, Pcs, is set to 75% 
for Norway and 60% for Chile. In Chile, both the arrival rate of signals 
and the probability of correct signals are lower than in Norway due to a 
smaller degree of collaboration among the farmers and governmental 
organizations compared. 

We assume that moving the biomass to an alternative location is 
conducted through the use of wellboats.7 In line with Liu et al. [38], we 
assume that harvesting costs (including the use of wellboat) make up 
about 12% of the total production costs with wellboats accounting for 

4%. Given that the cost of an urgent move during a harmful algal bloom 
is larger than that of a planned move operation, we set total moving 
costs, CM, to be 3 NOK/kg and 2.8 NOK/kg in Norway and in Chile, 
respectively. The lower values for the Chilean case study are due to 
cheaper labor costs. The FCR is assumed to increase approximately by 
15% after moving the biomass to another facility, as higher fish densities 
during transportation, loading, and unloading is a source of increased 
stress levels which can cause higher FCRs [11,15]. Therefore, we set the 
value of FCR after moving, frM, to 1.5 and 1.4 for Norway and Chile, 
respectively. The mortality rate after moving, MM, is set to 20% and 18% 
for Norway and Chile, respectively. We assume that the mortality rate 
after transportation is increased by 5% points, due to potential disease 
spread as a result of higher densities and stress levels during the move 
[15]. 

Lastly, we set the maximum duration of the harmful algal bloom, T, 
to 21 days, which is equal to the duration of Norwegian harmful algal 
bloom in 2019 [35]. 

5. Results and discussion 

In this section, we present and discuss results from the Norwegian 
and Chilean case studies of the GSR-, EH- and EH-M-models. The 
objective of this section is to identify optimal choices for salmon farmers 
in Norway and Chile under the various models. In particular, we 
quantify the added value of flexibility under the GSR-, EH-, and EH-M- 
models for three different stages of the sea phase and discuss relevant 
policy insights. 

5.1. General single rotation model results 

Table 7 presents the GSR-model’s option values based on 200,000 
price simulations and with a weekly harvesting decision (Δt = 7). Re
sults are presented for different stages of the production cycle, tsea, 
representing early, middle, and late stages of the sea phase. We do this 
for both the Norwegian and the Chilean parameter sets. Planned harvest 
shows the harvesting value when it must be performed on the last day of 
the production cycle. The last two columns quantify the additional value 
of managerial flexibility in the harvesting timing, in comparison to 
planned harvest. 

It is evident from Table 7 that there is significant value in having the 
flexibility to optimally time the harvesting decision during the produc
tion cycle. This holds for all three stages of the sea phase in both Norway 
and Chile. Note that the value of flexibility is decreasing towards the end 
of the production cycle when there is less time to take advantage of this 

Table 4 
Parameter estimates for the two-factor price model. The sybmols *** and ** 
denote significance at 1% and 5% levels, respectively.  

Parameter Description Estimate S.E. 

κ Short-term mean-reversion rate 2.692*** 0.511 
σχ Short-term volatility 0.486*** 0.029 
μξ Equilibrium drift rate 0.074** 0.033 
σξ Equilibrium volatility 0.073** 0.033 
ρχξ Correlation in short-term and equilibrium 

process increments 
-0.372*** 0.149 

χt=0 Log short-term deviation at time t = 0 -0.26 NOK/ 
kg 

– 

ξt=0 Log equilibrium price level at time t = 0 4.18 NOK/ 
kg 

–  

Table 5 
Summary of relevant Norwegian and Chilean input variables for the models.  

Parameter Symbol Norwegian case 
study 

Chilean case 
study 

HAB arrival intensity in state i λi 0.07 0.07 
Arrival rate of signals μ 2 1.5 
Probability of signal being 

correct 
Pcs 0.75 0.60 

Moving cost per kilogram fish CM 3.0 NOK/kg 2.8 NOK/kg 
Feed conversion ratio after 

moving 
frM 1.50 1.40 

Mortality rate after moving MM 20% 18%  

Table 6 
Probabilities of receiving different amount of signals in one day for the two case 
studies.  

Case μ 0 signals 1 signal 2 signals 3 signals 4 or more 
signals 

Norway  2.0  13.5%  27.1%  27.1%  18.0%  14.3% 
Chile  1.5  23.2%  33.5%  25.1%  12.6%  5.6%  

7 We assume that reserve facility is already available for the farmer to 
transfer the fish. This is because in the times of harmful algae outbreak the 
farmers need to act quick to avoid losing the biomass. Then, the time associated 
with the set up of a reserve location will prevent the salmon farmer to move the 
fish on time and the move option becomes irrelevant. 
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flexibility. 
Fig. 1 shows the distribution of optimal harvesting time for the 

Norwegian and Chilean case studies. We see that the majority of the 
harvests still occur towards the end of the production cycle. We observe 
that salmon farmers in Chile generally will use the option to harvest 
earlier than planned more often than Norwegian farmers. This explains 
the slightly higher values of flexibility for the Chilean case study 
observed in Table 7. 

The Norwegian and Chilean exercise boundaries are represented in  
Fig. 2 by blue and red curves, respectively. The boundaries separate the 
two regions where one should harvest (on and above the lines) and 
where the farmers should continue farming (below the lines). Differ
ences between these boundaries come from the fact that the salmon 
grows faster earlier in the sea phase in Chile compared to Norway, which 
makes the value of harvesting higher. At the same time, the value of 
continuing growing the biomass is lower in the later stages. 

The peaks of the curves coincide with peaks of the biomass growth. 
Shortly thereafter, the exercise boundaries decline quickly, and on the 
day of expiry (day 530) the salmon is harvested for any spot price. 
Intuitively, the biomass is only harvested when the spot price is much 
higher than the equilibrium price early in the production cycle. This 
trend continues until the biomass growth starts diminishing when the 
mortality exceeds the salmon weight gain late in the growth cycle. When 
the biomass growth declines the benefit of growing the salmon further 
becomes smaller, which means that the exercise region gets more in
clusive. In other words, the exercise boundary decreases. This result 
indicates that under normal production conditions without algal risk, 
harvesting typically occurs towards the end of the production cycle. 

5.2. Early harvest model results 

Results from the EH-model are presented in Table 8.8 Immediate 
Harvest represents the value of the salmon farmer that decides to harvest 
immediately after the harmful algal bloom occurs (i.e., on the first day of 
the harmful algal bloom outbreak). No Early Harvest represents the 
value if the salmon farmer has no possibility to harvest during the 
harmful algal bloom. Alternatively, this can be interpreted as the value 
of the farmer that ignores the signals and accepts the risk of losing the 
biomass to the harmful algal bloom. The next column, EH-model, is the 
value of harvesting optimally during and after the harmful algal bloom. 
Finally, the Value of Early Harvest is the excess value of having the 
option to harvest during a harmful algal bloom compared to not having 
any managerial flexibility during the harmful algal bloom, and is 
calculated by subtracting the value of No Early Harvest from the value of 
the EH-model. We use the term option value and value of early harvest 
interchangeably throughout this section. 

It is evident from Table 8 that in the EH-model, the value of early 
harvest is positive for tsea = 400 and tsea = 600 for both case studies. 
However, the value of early harvest is zero for tsea = 200. This counter- 
intuitive result can be explained as follows. Early on in the sea phase, the 
biomass has the biggest potential for further growth. Given that in the 
high risk state the harmful algal bloom arrival rate is λH = 0.07, there is 
a 23% chance of surviving the harmful algal bloom.9 Thus, even if the 
farmer is perfectly certain that the true risk state is H at the beginning of 
the harmful algal bloom, there is 23% chance of getting the value of 

Table 7 
The results of GSR-model for the Norwegian and Chilean case studies.  

tsea Case Planned Harvest GSR-Model Value of Flexibility Percentage increase 

200 days Norway 38.70 MNOK 41.27 MNOK 2.57 MNOK 6.64% 
400 days Norway 42.96 MNOK 44.73 MNOK 1.77 MNOK 4.18% 
600 days Norway 42.38 MNOK 42.65 MNOK 0.26 MNOK 0.61% 
200 days Chile 40.25 MNOK 43.15 MNOK 2.90 MNOK 7.20% 
400 days Chile 43.97 MNOK 45.92 MNOK 1.95 MNOK 4.44% 
600 days Chile 42.81 MNOK 43.07 MNOK 0.26 MNOK 0.61%  

Fig. 1. Probability of optimal harvest time in the GSR-model for Norway and 
Chile with tsea = 200. 

Fig. 2. Exercise boundaries over time in the GSR-model for Norway and Chile 
cases for tsea = 200 and fixed equilibrium price ξt = ln(65.36). (For interpre
tation of the references to color in this figure, the reader is referred to the web 
version of this article). 

8 The results are based on 15,000 simulations of price, signals and harmful 
algal bloom. Furthermore, the results are obtained with Δt = 1, meaning that 
the farmer makes a daily decision during the harmful algal bloom. The com
pound option values are found by 10,000 simulations each, and Δt = 14.  

9 P(No arrival in 21 days∣High state) = e− 0.07×21 = 0.23. 
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harvesting optimally at a later stage, which amounts to a higher ex
pected value than the value of immediate harvest.10 This is why early in 
the sea phase, it more attractive to avoid early harvest. As we show later, 
if the probability of harmful algal blooms arriving in the state H is 
increased, early harvest has a positive value in the early sea phase as 
well. 

Fig.s 3 and 4 visualize the distribution of cash flows from Immediate 
Harvest, No Early Harvest and under the EH-model for the Norwegian 
and Chilean case studies from Table 8. The blue, red and green bars 
represent the values of cash flows from immediate harvesting, from 
ignoring the harmful algal bloom risk and from following the EH-model, 
respectively. 

For tsea = 200 in Figs. 3a (Norway) and 4a (Chile), we observe that 
the optimal choice in the EH-model coincides with No Early Harvest. 
Consequently, we observe that the value of early harvest is 0 MNOK for 
tsea = 200 in Table 8. For tsea = 400 and 600, the probability of losing 
the biomass to the harmful algal bloom when following the EH-model is 
reduced compared to doing No Early Harvest. The probability of getting 
the highest payoff is also slightly reduced. However, the value of the 
cash flow received as a result of early harvesting outweighs the reduc
tion in probability of getting the highest cash flows. Thus, for the middle 
and late stages of the production cycle, following the EH-model yields 
higher values than by ignoring the harmful algal bloom risk. In Fig. 4c 
for Chile, we observe that the EH-model suggests harvesting immedi
ately at the report of a harmful algal bloom. This occurs as a result of 
lower signal arrival rate and lower signal reliability, implying that it is 
more valuable to harvest early in the late stage of the cycle than to risk 
losing the biomass to harmful algal bloom while waiting for more 
information. 

Table 9 shows the probabilities of different outcomes under the EH- 
model, including the probabilities of losing the biomass to harmful algal 
bloom, performing an early harvest, and enduring the harmful algal 
bloom (i.e., survive the harmful algal bloom event and optimally harvest 
after the harmful algal bloom period).11 These are prior probabilities at 
the time of the first report of harmful algal bloom, i.e., at time t0 in the 
EH-Model with no signals received. 

Table 9 shows that by following the EH-Model, decision-makers can 
drastically reduce the probability of losing biomass to harmful algal 
blooms, creating an added value for risk management actions. For 
tsea = 200, the results are the same for Norway and Chile. For 
tsea = 400, the probability of losing biomass to harmful algal blooms for 
the Norwegian case study is lower than for the Chilean case study. The 
Norwegian salmon farmers also conduct early harvesting more often 
during the harmful algal bloom outbreak for this sea phase stage. This is 
due to more accurate and frequent information about the potential 
outbreaks in Norway. Therefore, they are able to make better-informed 
decisions compared to Chilean farmers. It is evident from Table 9 that 
there is 0% chance of the losing biomass to harmful algal bloom for the 
Chilean case study for tsea = 600, as the optimal choice is to harvest 
immediately. This result is again related to the availability of reliable 
information where the Chilean salmon farmers are worse off. 

Fig. 5 illustrates the distribution of early harvests on a given day 
during the harmful algal bloom duration of three weeks for both case 
studies when tsea = 400. 

We see that Norwegian salmon farmers are more likely to perform an 
early harvest the first days after harmful algal bloom detection 
compared to Chilean salmon farmers. This is because salmon farmers in 
Norway receive more reliable signals which serve as a better foundation 
for decision making. Fig. 5 shows that there is a decreasing probability of 
performing an early harvest as the number of days increases. Thus, our 
model suggests that the decisions regarding whether to harvest early 
should be undertaken in the beginning of the harmful algal bloom. 

In Fig. 6a (Norway) and b (Chile), we study how the exercise 
boundary evolves over time while keeping spot and equilibrium prices 
fixed. We fix the spot price to the last observed spot price from Fish Pool 
and the equilibrium price to the estimated equilibrium level from the 
two-factor price model. 

Fig. 6 illustrates the optimal harvesting strategies the first week of a 
harmful algal bloom outbreak for different stages of the sea phase. For 
example, in Norway one should perform an early harvest on day four in 
the middle stage of the production cycle (tsea = 400) if k is five or above 
(given the same spot and equilibrium prices), whereas in Chile this is the 
case if k is four or above. Note that at the late stage (tsea = 600), the 
exercise boundary for Chile is at k = 0 for the first four days. This in
dicates that it is optimal to harvest immediately in this case. This il
lustrates how the EH-model may be used to produce optimal harvesting 
strategies for different scenarios. 

5.3. Sensitivity analysis 

In this section, we summarize the results of the sensitivity analysis 
with respect to several model parameters.12 First, we focus on the reli
ability and frequency of the signals about the potential outbreaks. These 
parameters are highly relevant for industry organizations and policy- 
makers as they can directly influence the flow and the quality of infor
mation. According to our model, the salmon farmers are not sensitive to 
changes in the arrival rate of signals for the later stages in the sea phase 
whereas the early harvest choice is conducted with higher probability as 
the arrival rate increases. Therefore, it is crucial for salmon farmers to 
receive signals about the harmful algal bloom risk as early as possible, 
implying that policy-makers should enhance collaboration between 
salmon farmers themselves and companies with knowledge related to 
detecting harmful algal blooms. In addition, centralized reporting of 
harmful algal bloom events, as well as national or regional monitoring 
programs should be encouraged to improve harmful algal bloom 
detection. 

Furthermore, we find that the reliability of signals has a great impact 
on the early harvesting decision. More specifically, higher signal reli
ability implies that the farmer can make a better-informed decision 
earlier in the harmful algal bloom event. If the harmful algal bloom 
event happens during the middle stage of the sea phase, a higher reli
ability implies more early harvests in the first days. In the late stage of 

Table 8 
The results of EH-model for the Norwegian and Chilean case studies.  

tsea Case Immediate Harvest No Early Harvest EH-model Value of Early Harvest 

200 days Norway 8.91 MNOK 24.99 MNOK 24.99 MNOK 0 MNOK 
400 days Norway 24.74 MNOK 27.33 MNOK 31.24 MNOK 3.91 MNOK 
600 days Norway 33.82 MNOK 25.90 MNOK 35.02 MNOK 9.12 MNOK 
200 days Chile 10.84 MNOK 26.23 MNOK 26.23 MNOK 0 MNOK 
400 days Chile 26.14 MNOK 28.15 MNOK 29.47 MNOK 1.32 MNOK 
600 days Chile 34.31 MNOK 26.22 MNOK 34.31 MNOK 8.09 MNOK  

10 0.23 × 42.27MNOK = 9.5MNOK > 8.91MNOK.  
11 harmful algal blooms are expected to arrive in 38.5% of the realizations in 

both case studies (P(H) × P(HAB∣H) = 0.5 × (1 − e− 0.07×21) = 38.5%). 

12 More detailed results of the sensitivity analysis are available form the au
thors upon request. 
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the sea-phase, the opposite occurs. Intuitively, the cost of making a 
mistake by early harvesting is declining with time. Thus, the model fa
vors restrictive early harvesting in the middle stages of the sea phase and 
excessive early harvesting in the late stages of the sea phase. 

Interestingly, our model shows that when the signals are sufficiently 
reliable, it is worth taking the risk of losing the biomass in order to learn 
more about the true risk implying that the value of information 
increases. 

Lastly, we discuss the effect of changing the arrival rates in different 
states due to the high uncertainty surrounding these estimates. We find 
that the value of the option to harvest early is substantially higher for 
larger values of harmful algal bloom arrival intensity. As the optimal 
actions and values of performing early harvests are highly dependent on 
the actual risk of getting the harmful algal bloom, our results imply that 
it is essential for policy-makers and aquaculture organizations to 
contribute to improvements in accuracy and frequency of information 
signals. 

5.4. Early harvest-move model results 

Moving the salmon will lead to an increased mortality rate and feed 
conversion ratio. Consequently, more salmon will die and production 
costs increase after moving. This obviously leads to a decrease in the 
value of harvesting optimally at a later stage, if the farmer has moved the 
biomass compared to endured the harmful algal bloom at the existing 
location. Still, the possibility to move the salmon is found to be an 
attractive option with the introduction of harmful algal bloom risk.  
Table 10 shows the EH-M-model results based on 10,000 simulations of 
price, harmful algal bloom, and signal processes, with 7,500 compound 
GSR-model simulations at every time step. Here, the value of harvesting 
or moving immediately at the report of a harmful algal bloom outbreak 
is represented by the columns Immediate Harvest and Immediate Move 
show, respectively. No Move or EH shows the value without the flexi
bility to move or early harvest. EH-M-model shows the value under the 
EH-M-model, and Value of Move or EH denotes the added value from the 
flexibility to choose between moving and early harvesting. 

For all stages of the sea phase, the EH-M-model finds it optimal to 
move immediately at the report of a harmful algal bloom outbreak, 
hence the values in EH-M-model and Immediate Move columns are 
equal. This means that it is not worth risking losing the biomass while 
waiting for signals if the farmer has the option to move. As seen in 

Fig. 3. Histogram showing the distribution of Cash Flows Received for different strategies for the Norwegian case study.  

Fig. 4. Histogram showing the distribution of Cash Flows Received for different strategies for the Chilean case study.  

Table 9 
Probabilities of losing biomass to harmful algal bloom, performing an early 
harvest, and enduring the harmful algal bloom for the two case studies at 
different stages of the sea phase.  

tsea Case Lose to harmful algal bloom Early Harvest Endure 

200 days Norway  38.5%  0%  61.5% 
400 days Norway  15.4%  34.0%  50.6% 
600 days Norway  7.9%  48.0%  44.1% 
200 days Chile  38.5%  0%  61.5% 
400 days Chile  24.5%  25.5%  50.0% 
600 days Chile  0%  100%  0%  

Fig. 5. Probability of early harvests on a given day with tsea = 400 for Norway 
and Chile. 
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Table 10, the derived value of flexibility to move or early harvest is 
relatively large. This implies that it is highly beneficial for salmon 
farmers with alternative farming sites. Furthermore, we find these 
values to be very similar for Norwegian and Chilean salmon farmers. 

These findings imply that salmon farmers should seek to enable 
spatial diversification if possible. Typically, only the larger salmon 
farmers have multiple farming sites in different regions and hence the 
possibility to move their fish during harmful algal blooms. For policy- 
makers, this has two implications. First, processing of applications for 
moving the fish during a harmful algal bloom needs to be prioritized to 
allow for swift moving. Second, decision-makers should look into the 
possibility to establish a number of reserve fish farming sites in order to 
support small salmon farmers in the most endangered harmful algal 
bloom areas. This is of importance to secure workplaces for smaller 
salmon farming companies and local communities. 

The EH-M-model allows for joint consideration of early harvesting 
and moving, which is especially relevant for larger farmers. Compared 
to EH-model results in Table 8, we find that the option to move con
tributes to a significant increase in the value of the salmon farmer (see 
Table 10). As a consequence, we find that the option to move is domi
nating both the options to harvest early and to wait in the EH-M-model. 
Therefore, it is of interest to investigate special cases in which an im
mediate move is not optimal. Fig. 7 shows the distribution of optimal 
moves and early harvests in the EH-M-model for different moving costs 
in the Norwegian case study when tsea = 600. 

It is evident from Fig. 7 that the option to move dominates the option 
to harvest early for moving costs substantially higher than our baseline 
parameter value of at 7 NOK/kg. We observe from Fig. 7 that the per
centages of moves and early harvests are equal for a break-even level of 
moving cost CM = 10.68. Intuitively, the values of the option to move 
and the option to harvest early evaluated individually should be similar 
at this moving cost. Fig. 8 shows the values obtained by evaluating the 
options to move or early harvest individually, as well as the value found 

by the EH-M-model for different values of moving costs. 
Fig. 8 illustrates that when one of the mutually exclusive options is 

worth a lot more than the other, the value of evaluating them jointly 
converges to the option with the highest value. However, there is an 
excess value in evaluating them together. This implies that farmers that 
have both options should evaluate them jointly in order to maximize the 
value of their biomass. This is especially relevant in cases where the 
values of harvesting and moving are relatively similar, such as very late 
in the sea phase and with high costs of moving. 

6. Conclusion 

This paper studies optimal harvesting strategies for small and large 

Fig. 6. Exercise boundaries for the first week of the harmful algal bloom for Norway and Chile for the spot price of 50.40 NOK/kg and equilibrium price of 65.36 
NOK/kg. 

Table 10 
EH-M-model results presented for different stages of the production cycle for both the Norwegian and Chilean case studies.  

tsea Case Immediate Harvest Immediate Move No Move or EH EH-M-model Value of Move or EH 

200 days Norway 8.91 MNOK 35.61 MNOK 24.99 MNOK 35.61 MNOK 10.62 MNOK 
400 days Norway 24.74 MNOK 40.59 MNOK 27.33 MNOK 40.59 MNOK 13.26 MNOK 
600 days Norway 33.82 MNOK 39.55 MNOK 25.90 MNOK 39.55 MNOK 13.65 MNOK 
200 days Chile 10.84 MNOK 36.82 MNOK 26.16 MNOK 36.82 MNOK 10.66 MNOK 
400 days Chile 26.14 MNOK 41.66 MNOK 28.15 MNOK 41.66 MNOK 13.51 MNOK 
600 days Chile 24.41 MNOK 41.01 MNOK 26.22 MNOK 41.01 MNOK 14.79 MNOK  

Fig. 7. Plot showing the distribution of early harvests and moves performed 
during the harmful algal bloom for different values of the moving costs 
and tsea = 600. 
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salmon farmers when facing the risk of harmful algal bloom arrival and 
stochastic prices. More specifically, we focus on optimal harvesting 
decisions and quantify the value of managerial flexibility to harvest the 
fish early, while receiving imperfect information about the harmful algal 
bloom risk. In an extension to this framework, we introduce the op
portunity to move the fish and investigate how this affects the optimal 
course of actions. We present two case studies, for Norway and Chile, 
where we use realistic model parameters that have been identified from 
interviews with industry experts and existing literature. Our results are 
found to be robust to both geographical settings. Furthermore, we pro
vide several recommendations for policy-makers regarding how they 
can facilitate optimal decision-making for salmon farmers during 
harmful algal blooms. Our main findings can be summarized as follows. 

First, our model uncovers excess value when accounting for mana
gerial flexibility in the harvesting decision. By properly accounting for 
inherent uncertainties in their decision making process, salmon farmers 
are able to capitalize on timely information regarding price evolution 
and harmful algal bloom spread. This value, however, varies across the 
production cycle. In particular, the harvesting flexibility has little value 
in the early stages of the sea phase, but becomes more attractive for later 
stages. As a consequence, if the harmful algal bloom occurs early in the 
sea phase stage when the biomass is low, our model suggests that salmon 
farmers should ignore the signals and avoid early harvest. However, if 
the harmful algal bloom arrival intensity is sufficiently large, we find 
that the flexibility to harvest early is valuable even for the early sea 
phase stages. 

Second, we find that when the signals regarding the harmful algal 
bloom spread are sufficiently reliable, it is worth postponing harvesting 
decisions and, thus, taking the risk of losing the biomass in order to 
gather more information about the harmful algal bloom risk. 
Conversely, if the reliability of the signals is relatively low, salmon 
farmers late in the sea phase should harvest immediately on the report of 
a nearby harmful algal bloom event. Hence, an increase in the harmful 
algal bloom signal reliability leads to better-informed decisions and 
larger values. The frequency of signal arrivals has a similar effect where 
a larger signal arrival rate increases the values of salmon farmers. The 
main policy insight here is that in order to facilitate profitability of the 
salmon farming enterprises, the policy-makers should contribute to 
improved signal frequency and reliability by boosting regional testing 
capabilities, enhancing collaboration between salmon farmers and or
ganizations focusing on harmful algal bloom detection, and centralizing 
the information flow from the different research institutions. 

Third, the results from our case studies suggest that moving the fish 
out of harmful algal bloom risk areas is the most valuable option for 
salmon farmers with spatial diversification. If moving costs significantly 

increase in the future, the options of early harvesting and moving need 
to be considered jointly in order to avoid sub-optimal decisions. From 
the policy perspective this has the following implications. First, pro
cessing of applications for moving the fish during a harmful algal bloom 
event needs to be prioritized to allow for swift moving of fish. Second, 
decision-makers should look into the possibility to establish a number of 
reserve fish farming areas in order to support small salmon farmers in 
the most endangered harmful algal bloom areas. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.marpol.2021.104528. 
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