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Summary

Fatigue loads are the primary cause of turbine failure in hydro power machinery. Cyclic
loads from pressure pulsations can cause such fatigue loads. Gaining information on pres-
sure pulsations, and the interaction between the turbine and the waterways, could be used
to avoid premature failure of the turbines. The phenomenon could be studied through field
measurements. However, performing and assessing measurements for a hydro power sta-
tion is challenging, or can even be impossible. Accordingly, simulation tools could be
utilized to gain knowledge on the behaviour of the fluid transients. A compelling option
is to combine an efficient one-dimensional (1D) model with three-dimensional (3D) com-
putational fluid dynamics (CFD) for a coupled simulation. Currently, the documentation
on 1D-3D coupled models is a lacking field. The scope of this thesis the 1D model, and to
investigate how a 1D-3D coupled model can be realized.

The method of characteristics (MOC) was investigated as the 1D model. MATLAB
was used to code the MOC, and three different friction models were applied. Results from
the literature were used to validate the models. The simulations show that transient friction
must be accounted for when simulating a water hammer event in a thin pipe with a flow
of a low Reynold’s number. Furthermore, a newer study shows that the choice of friction
model is dependent on the size and Reynold’s number of the system.

To solve the problem of transferring data between the 1D and the 3D model, a 2D
velocity profile was generated using the pressure gradient from the 1D MOC as the source
term in the heat equation. The shape and behaviour of the velocity profiles seemed sat-
isfactory, however, the new velocity profile did not conserve the flow rate. This error is
likely related to the computed viscosity, or that the numerical solver is unable to accurately
capture the sudden and large changes related to a water hammer event.

A promising method is the partly overlapped coupling (POC) technique, a non-iterative
way of transferring data between the 1D MOC and 3D CFD. Due to time limitations,
application of this method is outside the scope of this thesis.

The overall perception is that there is a lack of experimental data and documentation
in this field. In order to further investigate 1D-3D coupled models, relevant experiments
should be conducted.
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Sammendrag

Utmattelsesbelastning er den primære årsaken til turbinskade i vannkraftverk. Syklisk
belastning fra trykkpulsasjoner kan forårsake slik utmattelsesbelastning. Tilegning av in-
formasjon om trykkpulsasjoner, og samspillet mellom turbin og vannvei, kan bidra til å
unngå tidlig svikt i turbinene. Fenomenet kan studeres gjennom feltmålinger, men å utføre
og vurdere målinger for vannkraftstasjon er utfordrende, og i enkelte tilfeller umulig.
Følgelig kan simuleringsverktøy benyttes for å undersøke fluidtransienters oppførsel. Et
forlokkende alternativ er å kombinere en effektiv endimensjonal (1D) modell med tredi-
mensjonal (3D) numeriske strømningsberegninger (CFD) i en koblet simulering. Foreløpig
er dokumentasjonen på 1D-3D-koblede modeller et mangelfullt område. Fokuset til denne
oppgaven er 1D modellen, og å undersøke hvordan en 1D-3D-koblet modell kan realiseres.

Karakteristikkmetoden (MOC) ble benyttet som 1D modell. Den ble kodet i MAT-
LAB, og tre forskjellige friksjonsmodeller anvendt. Modellene ble validert med resultater
fra litteraturen. Simuleringene viser at transient friksjon må benyttes i simulering av et
trykkstøt i et tynt rør med laminær strøm. Videre viser en nyere studie at valget av frik-
sjonsmodell er avhengig av størrelsen, og Reynolds tallet, til systemet.

For å løse problemet med overføring av data mellom 1D- og 3D-modellen ble en
2D-hastighetsprofil generert ved å bruke trykkgradienten fra 1D MOC som kildetermen
i varmeligningen. Formen og oppførselen til hastighetsprofilene virket tilfredsstillende,
men den nye hastighetsprofilen bevarte ikke volumstrømmen. Denne feilen er sannsyn-
ligvis relatert til den beregnede viskositeten, eller at den numeriske løsningen ikke er i
stand til å følge de plutselige og store endringene relatert til et trykkstøt.

En lovende metode, er en delvis overlappede koblings-teknikk (POC) for å overføre
data mellom 1D MOC og 3D CFD. På grunn av tidsbegrensninger, er anvendelsen av
denne metoden utenfor omfanget av denne oppgaven.

Den generelle oppfatningen er at det mangler eksperimentelle data og dokumentasjon
på dette feltet. Veien videre i studiet av 1D-3D-koblede modeller, bør inneholde relevante
eksperimenter.
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Nomenclature

ν Kinematic viscosity, [m2/s]

φ Sign-correcting coefficient, [−]

τ Dimensionless number describing the discharge coefficient times area opening at
a valve

A Cross-sectional area of pipe, [m2]

a Wave propagation speed, [m/s]

A∗, B∗ Parameters in the weighting function, ref Zielke’s model, [−]
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C+, C− Name for characteristic equations
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D Pipe diameter, [m]

Em Exponent of τ -equation, [−]

f Darcy-Wiesbach friction coefficient, [−]

g Gravitational constant, [m/s2]

H Piezometric head, [m]
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Hsub Piezometric head at point specified by subscript, [m]

k Friction coefficient in IAB model, [−]
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Chapter 1
Introduction

Pressure pulsations, often referred to as fluid transients, in hydro power machinery are
a well known phenomena. Such pulsations may lead to waterway resonance and fatigue
loads (cracks) on the turbine.

Usually, pressure pulsations are generated at the runner or in the draft tube. Due to
the compressible nature of water, the pressure pulses will propagate in the waterways un-
til reaching a reflection point and then return to the runner. This interaction between the
waterway and the turbine is of peculiar interest, and is the basis of this study. Ideally,
one would use experimental results to investigate this interaction, however it can be dif-
ficult to obtain data as it may be troublesome to mount measurement equipment on large
hydropower units. Even if measurements are conducted, they may be difficult, or even
impossible to assess as usually a large amount of noise is present. As a part of an ongoing
research project called Fatigue Loads in Hydro Turbines, transient behaviour at Kvilldal
hydropower station was investigated. Large amounts of noise in the measurements ren-
dered the report inconclusive [1]. Hence, strong and reliable simulation tools could pro-
vide insightful information on the behaviour of pressure pulsations, and how they cause
harm.

Several ways of numerically approximating transient fluid flow exist. Generally, three-
dimensional (3D) computational fluid dynamics (CFD) fully simulates fluid flow, and ac-
count for both transient and 3D effects. However, the accuracy of 3D CFD comes at a large
computational cost. Fully modelling both turbine and conduits with 3D CFD is simply un-
feasible and unnecessary. One-dimensional (1D) models have proven to be both accurate
and efficient for modeling transient events in water conveying systems where the axial
forces are dominating, such as pipe flow. In particular, the 1D Method of Characteristics
(MOC) is a widely used and documented method which is developed to model transient
events in pipe flow. Therefore it may be useful to divide the simulation into a 1D and a 3D
model.

Coupling the 1D MOC with 3D CFD will reduce the computational time, and could
prove to be an insightful way of studying how pressure pulsations from the runner interact
with the waterway. Consequently, issues related to a 1D-3D coupled model needs to be

1



concerned. The primary issues are listed underneath.

• The friction model used with the 1D MOC

For certain transient events, it may be challenging to compute the frictional loss in a 1D
model. Yet, there are ways of estimating the transient friction to high precision. Choosing
the correct friction model is necessary for the model to be accurate.

• How to realize the coupling between the 1D and 3D model

Coupled simulations is a relatively new field of study. Consequently, there is little docu-
mentation in the literature. The way information is transferred between the models will
largely impact the results.

• How to add compressibility to the 3D CFD model

3D CFD is usually simplified by assuming water is incompressible. However, the propaga-
tion of pressure pulsations is a consequence of the compressibility, and has to be accounted
for in the model.

1.1 Objective & Scope
The objective of this thesis is to investigate elements related to a 1D-3D coupled model.
Both 1D and 3D simulations are large fields of study by themselves, and all the aspects
will not be concerned in this work. The focus will be on the 1D model and how the flow
variables are transferred between the 1D and 3D model.

For the purpose of investigating the 1D model, a water hammer simulation will be per-
formed by using the 1D MOC. There are several ways of computing the transient friction
in the MOC. How the frictional loss is computed in a 1D model will affect a potential
1D-3D coupled model. To study the effects of transient friction, three different friction
models will be applied and validated against an experiment and simulations performed by
Bergant et al. [2]. Additionally, a literature study investigating transient friction will be
performed.

One of the main concerns in a 1D-3D coupled simulation is how to transfer the flow
variables between the models. A literature study will be conducted to investigate coupling
techniques.

Storli1 suggested an interesting technique for producing a 2D velocity profile, using the
pressure gradient from the 1D MOC. The 2D velocity profile is computed from a reduced
version of the Navier-Stokes (NS) momentum equation, on the form of the heat equation.
This could prove to be a useful technique for coupling 1D and 3D models and will be
investigated as part of this work.

All the work done is carried out with a coupled model in the back of the mind. Hope-
fully, it will serve as a stepping stone for future work in this field, and illuminate certain
critical considerations when modelling transient events in pipe flow.

1This method is not documented in the literature. Storli used the technique in a presentation at the 24th IAHR
Symposiom in Brazil 2008. The presentation was related to a publication by Storli and Nielsen [3].

2



1.2 Limitations
Initially, ANSYS Twinbuilder was suggested for the purpose of creating a 1D-3D coupled
model. A license for this program was obtained after a long and tedious process. Unfor-
tunately, the program could not work directly with CFD, and so it was unfit for the sake
of this work. Twinbuilder is a program based on Reduced Order Models for more efficient
simulations, and it is not in the scope of this study.

The CEL language, available in ANSYS CFX, appeared to be a viable option for set-
ting up a 1D-3D coupled model. However, this was realized too late to be applied in this
work.
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Chapter 2
General Theory

2.1 Pressure Pulsations

Pressure pulsations are disturbances propagating in the fluid domain, affecting the pressure
and flow rate of the system. They are caused by a continuously oscillating discharge
pressure, causing a non-steady pressure and flow to propagate in the waterways. The
response of the water conduit may be seen as a dependency between the pressure pulsation
and the flow pulsation. In such a way, the behaviour of pressure pulsations is governed by
three types of properties [4].

• Fluid inertia

• Compressibility

• Dissipation (friction)

During the operation of a Francis turbine, pressure pulses may be caused by a swirling
flow phenomenon, such as the draft tube vortex phenomena, or runner-casing interaction
such as rotor stator interaction (RSI). Another type of transient is the water hammer phe-
nomenon. This is a severe transient event, however it is relatively easy to set up in an
experiment and provides useful comparison for the simulation models which will be pre-
sented in this work.

High frequency pulsation phenomena may cause strong vibrations in the mechanical
structures of the runner, possible causing fatigue or failure in the mechanical components.
For example, RSI between runner blades and and inlet has been known for a long time
to cause runner failures or structural vibrations. Adequately simulating these phenomena
could provide insightful information, which could prevent harmful pulsations during the
operation of the runner.

5



2.2 Simulation Tools for Investigating the Transient Pro-
cess

For the sake of this work, modelling the fluids in hydraulic machinery is divided into two
parts, 1D models and 3D models.

The 1D models can provide an accurate description of the fluid in areas where the flow
is governed by axial forces, for example in long pipe sections. The Method of Characteris-
tics (MOC), developed by Wylie and Streeter [5], is such a method and will be thoroughly
described in chapter 4. Provided the wave propagation speed is known, the 1D model can
accurately simulate transient events in areas where 1D assumptions are valid.

The 3D CFD model is based on numerically solving the Navier-Stokes (NS) equations.
They are set up to model the fluid across three dimensions, providing a detailed and ac-
curate simulation tool at the expense of substantial computational resources. Commonly,
simplifications are used to make the simulation more efficient, such as the assumption of
incompressible fluid. However, the assumption of incompressibility cannot be used when
modelling pressure pulsations, and a compressibility model is needed. How to model pres-
sure pulsations using a 3D CFD model is presented in Appendix C, since it is not the scope
of this thesis.

Currently, the main limitations of 3D CFD is related to large computational cost.
Model order reduction (MOR) is a way of reducing the computational cost, and still pro-
vide accurate simulations. Details on MOR and how to handle the 3D simulation in a
coupled model is added in Appendix C.

2.3 Allievi’s Equations
Allievi’s equations are often referred to as the governing equations for pipe flow. The
derivation of these equations, adopted from Wylie and Streeter [5], can be found in Ap-
pendix F. These equations are derived based on simplifications justified by the following
assumptions.

• The fluid is of a low compressibility.

• The convective acceleration terms are negligible as the velocity is much lower than
Mach number unity.

Following these assumptions leads to Equation 2.1 and Equation 2.2. The method of
characteristics (MOC) solves these equations to compute the transient properties of pipe
flow. MOC will be thoroughly described in chapter 3.

gHx + Vt + f
V |V |
2D

= 0 (2.1)

Ht +
a2

g
Vx = 0 (2.2)

g is the gravitational constant,H is the piezometric head, the subscripts x and t denotes
the spatial and temporal partial derivative respectively, V is the bulk flow velocity, f is the
Darcy-Weisbach friction factor and a is the wave propagation speed.
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2.4 Wave Propagation Speed
The speed of a disturbance propagating in water is easily described in terms of the density
ρ and the modulus of elasticity (sometimes referred to as bulk modulus”) K.

a =

√
K

ρ
(2.3)

Using a density of ρ = 1000kg/m3 and a modulus of elasticity of
K = 2.1GPa gives a wave speed of 1449m/s, the normal speed of sound in water.
However, the wave speed in pipes or other waterways are effected by several other factors,
such as the elasticity of the wall and the presence of air. A steel penstock in a medium-head
plant would commonly have a wave speed around 1000m/s [4].

When modelling and investigating pressure pulsations, using the correct wave speed is
crucial. For pipes in controlled environments the analytical wave speed usually is accurate.
However, controlling everything quickly becomes difficult, even on a test bench. In hydro
power stations, there may be several factors affecting the wave speed, making it difficult or
impossible to predict. Perkunder et al. [6] applied a technique used in seismology called
Seismic Interferometry, to measure the wave speed. The technique proved successful when
tested in an experiment at NTNU’s Hydropower Laboratory. It was later attempted on a
large hydropower station with four parallel Francis runners. Unfortunately, too much noise
in the measurements rendered the method inconclusive.

2.5 Water Hammer Phenomenon
Water hammer is a phenomenon caused by sudden and complete closure of a valve down-
stream in a pipe, located as seen in Figure 2.1. The sudden closure stops the flow com-
pletely adjacent to the valve. There is still flow in the pipe which causes a large rise in
pressure travelling upstream with the speed of sound. An increase in pressure and a bulk
flow of zero will be trailing the pressure wave. Eventually, the wave front reaches the
reservoir. At this point, the pressure in the pipe exceeds the pressure of the reservoir,
and back flow will occur. A new pressure front will then travel downstream, trailed by a
negative velocity. This pressure will propagate between the reflection points of the pipe,
possibly causing serious harm to the hydro power station.

Reservoir

Pipe Valve

Figure 2.1: A simple system with a pipe connecting a reservoir and a valve
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Some important properties related to the water hammer is listed below.

• Tr = 2L
a

Tr, the reflection time, is the time it takes for the pressure wave to travel from the
valve, to the reservoir and back.

• ∆p = ρa∆v
∆p is the Joukowsky pressure, and it is the maximum pressure achievable, for the
given conditions.

• If the closing time TL of the valve is less then the reflection time Tr, Joukowsky
pressure will be reached, and there will be a water hammer event.

In the industry, water hammer is a worst case scenario and needs to be avoided. This
is done by altering the reflection points or the closing time of the downstream valve. One
does not necessarily need to run advanced simulations, including for example transient
friction, when dimensioning a hydro power station to prevent this. A transient friction
model may even lead to underestimating the pressure amplitudes. The main concern is to
avoid the worst case scenario. For this purpose a simple model, utilizing a quasi-steady
friction model, is usually sufficient.

Although an advanced friction model may be unnecessary for predicting the main fea-
tures of a water hammer in a hydro power station, it may have an impact on a 1D-3D
coupled model. Various types of friction models and their use will be discussed in chap-
ter 3.

2.5.1 Dynamics of Water Hammer
When the valve is shut and the pressure wave is travelling upstream, the bulk flow trailing
the pressure will be approximately zero. Hence, the mean velocity and acceleration will
be zero until the pressure wave returns. However, the velocity profile will still be present.
It is pushed back by the pressure wave in a way that results in large gradients near the wall,
as seen in Figure 2.2, resulting in a large skin friction.
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Figure 2.2: The changes of a velocity profile as a water hammer pressure pulse passes a section
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Frictional forces are computed from the shear stress, which is defined from the velocity
gradient.

τ = µ
du

dr
(2.4)

The added contribution from the time varying friction is easily understood and com-
puted in 2 dimensions. It is however more problematic to implement in a 1D model only
utilizing the section average flow, i.e. no velocity gradient. However, as the 2D and 3D
models tend to demand extensive computational resources, modelling the effects from
transient friction in 1D models has been extensively studied. Details on 1D models ac-
counting for transient friction will be presented in chapter 3.

The added frictional contribution have effects on attenuation of the pressure amplitude
and the wave shape for flow with a low Reynolds number in thin pipes. In addition, the
transient pressure, just upstream of a closed valve during a water hammer event, may take
on a slightly different form, depending on the choice of friction model [2, 7]. If transient
friction is not accounted for, the friction will have squared peaks, as seen in Figure 2.3.

Figure 2.3: Transient pressure adjacent to the closed valve during a water hammer, modelled with
no friction

Several ways of modelling transient friction have been developed. These types of
methods will compute the head loss differently which in turn will attenuate the pressure
amplitudes. In addition, shape of the pressure wave and plot may vary depending on the
friction model chosen. A transient pressure plot is illustrated in Figure 2.4. Note how
the peaks have less of a square shape than in Figure 2.3, where transient friction is not
accounted for. A study by Martins et al. [7] shows that the pressure plot from a 3D CFD
model will have a better match with the 1D model accounting for transient friction.

Figure 2.4: Transient pressure during a water hammer, modelled with a transient friction model
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2.6 Turbulence in Pipe Flow

Due to the large pipes and high flow velocities in hydro power stations, turbulent effects are
generally present. The randomness of turbulence makes numerically approximating flow
properties even more complicated. Several semi-empirical models have been developed in
order to provide closure to the equations of motion when accounting for turbulent stresses.
In some of the simpler turbulence models, the viscosity is modified in order to obtain a
more convenient representation of the turbulent shear stress. This was first introduced
by the French mathematician Joseph Boussinesq. The total shear stress when using eddy
viscosity to represent the turbulent shear has the following mathematical representation
[8].

τtotal = (µ+ µt)
∂ū

∂y
(2.5)

µt is the eddy viscosity and ū is the average velocity. Using this concept is very appealing,
however, it is of no practical use unless the eddy viscosity can be determined.

Eddy motion and thus eddy diffusivity is much larger in the core region of a turbulent
boundary layer. Closer to the wall, the eddy motion loses its intensity, and diminishes at
the wall due to the no-slip condition. Note, the molecular diffusivity of momentum is a
fluid property. Eddy viscosity, however, is dependent on the flow conditions. The value of
the eddy viscosity increases from zero at the wall to several thousand times the molecular
diffusivity in the core region [8].

2.6.1 Turbulent Velocity Profile

The expressions for turbulent velocity profiles are semi-empirical as they are based on
both empirical and analytical considerations. For pipe flow, u normally denotes the time-
averaged velocity in the axial direction. For laminar flow, the streamlines will be parallel to
the pipe wall, making it easier to analyze the flow. For turbulent flow, the streamlines take
on a more chaotic form, illustrated in Figure 2.5. Providing a mathematical representation
of the full turbulent region has proven to be difficult.

Figure 2.5: Laminar and turbulent pipe flow
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A non-dimensional analysis provides two equations, known as law of the wall and the
universal velocity profile for turbulent flow. Neither is able to model the full flow region.
In addition there is a buffer layer between the region close to the wall, and the outer flow
region where neither of the models are accurate.

There are numerous empirical velocity profiles exist for turbulent pipe flow. A simple
and well-known method is the power-law velocity profile. It is represented mathemati-
cally by the following equation.

u

umax
=
(

1− r

R

)1/n

(2.6)

In the above, r is the position from the pipe center andR is the radius of the pipe. The value
of n increases with increasing Reynolds number. The value n = 7 approximates many
flows in practice which has even given rise to the term one-seventh power-law velocity
profile. When n increases, the velocity profile becomes fuller, i.e. flatter, with steeper
gradients near the wall.

The maximum velocity over a cross-section can be determined from the section aver-
age velocity, ū.

umax = ū
(n+ 1)(2n+ 1)

2n2
(2.7)

The power-law profile cannot be used to compute the wall shear stress since it gives a
velocity gradient of infinite at the wall (r = R). In addition, the profile fails to give a zero
slope at the center of the pipe. Despite those discrepancies, it provides a quite accurate
overall presentation of the velocity profile, which can be useful when evaluating other
methods for producing a turbulent velocity profile [8].
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Chapter 3
1D Models & Unsteady Friction

The long-term objective of this work is to completely simulate transient events in hydro
power stations with complex waterway and multiple runners. For the model to accurately
replicate certain real-life events, the friction model in the 1D simulation may be of critical
importance. Sections 3.2 to 3.4 presents different models constructed for handling tran-
sient friction. In section 3.1, a literature study on the relevance of transient friction models
is presented.

Many existing models approximating transient friction are constructed based on lam-
inar flow assumptions. The friction models based on laminar flow can be validated and
improved when tested against experiments with laminar flow conditions, i.e. smaller pipes
and lower velocities.

For the sake of validating a model, it is favorable to have experimental results for
comparison. For example, when validating of a coupled model. Measurements from hydro
power stations are often polluted with noise, making them difficult to interpret. Smaller
experiments are less expensive, and provide results which are more easily assessed. Note
that the choice of friction model may depend on the size of the system, and type of transient
event. Several studies show that transient friction has to be accounted for in simulation of
a water hammer in a thin pipe with a low Reynolds number [2, 9, 10, 11, 12, 13]. Thus, a
transient friction model should be utilized for a qualitative comparison with such an event.
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3.1 Relevance of Unsteady Friction
In the literature, there are several studies substantiating the importance of transient friction
in order to precisely simulate transient phenomena [2, 9, 10, 11, 12, 13, 14, 15]. However,
the small pipes of experimental set ups, and the nature of the severe transients evaluated,
may have led to overestimating the importance of a transient friction model [16]. Even
though several unsteady friction models provide excellent fit compared to experimental
results, there are some issues that need to be considered. This project has the long term
goal of improving the simulation of transients in the waterway of hydro power stations,
and it is important to note that a hydro power station is of a completely different scale than
most experiments used for validating the 1D friction models.

Stephens et al. [17] compared a 1D the model to field tests in order to assess the con-
tribution of unsteady friction. For lower Reynolds numbers, the unsteady friction model
improved the performance considerably. However, the contribution from the unsteady
friction model was reduced with a higher Reynolds number.

The impact of the system scale has been evaluated in a study by Duan et al. [16]. The
authors were able to relate the relevance of the unsteady friction to system scale L/D, the
quasi steady shear stress f , the Reynolds number Re and the Mach number M . As the
product f ×Re increases, the importance of the dampening from unsteady friction models
is reduced. Unsteady friciton also becomes less significant as L/D increases. Duan et al.
came up with the criterion that for fML/D > 0.1, an unsteady friction model has little to
provide other than increased computational time. Note that this conclusion is drawn for a
system subjected to a sudden and complete valve closure causing a water hammer. This is
the most severe transient event, causing back flow and steep velocity gradients close to the
walls. For more complex systems exposed to milder transients, the criterion is probably
less than 0.1 [16].

For the sake of validating a coupled method, and evaluating how the 1D and 3D model
communicate, comparison with experimental results can be insightful. Most of the exper-
iments and simulations are for water hammer events in in small pipe systems. Diameters
in the range of tens of millimeters and pipe length in tens to hundreds of meters. This
necessitates the use of an unsteady friction model.

Another notable observation is that several friction models may model wave attenua-
tion and phase of the pressure wave correctly. However, the wave shape may be affected
by the choice of unsteady friction model [7]. In 3D CFD simulations the wave front takes
a characteristic S-shape [18]. In the coupled model this may prove significant and affect
the choice on how to model the friction in the 1D section.
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Governing Equations
The governing equations, also referred to as Allievi’s were presented in section 2.3, and
are repeated below.

Hx +
1

g
Vt + hf = 0 (3.1)

Ht +
a2

g
Vx = 0 (3.2)

H is the piezometric head, the subscripts x and t denotes the spatial and temporal partial
derivative respectively, g is the gravitational constant, V is the bulk flow velocity, hf is the
head loss per unit length and a is the wave propagation speed.

In transient events with rapid velocity changes and large velocity gradients, the velocity
profile near the wall will undergo dramatic variations with possible flow reversal. This
notable and rapid change in the velocity profile will affect the friction. In order to account
for the unsteady friction, the head loss hf is divided into a quasi-steady term hf,q, and an
unsteady term hf,u

hf = hf,q + hf,u = f
V |V |
2gD

+ hf,u (3.3)

f is the friction coefficient and D is the internal pipe diameter.
Above, the quasi-steady term is determined using the Darcy-Weisbach friction model.

Computing the unsteady term in an efficient and yet precise way is difficult. Subsequently
three methods for computing the unsteady term will be described, as presented by Storli
[9]. Storli and Vı́tkovskỳ et al. will be extensively cited in this section [9, 10].

3.2 Quasi-Steady Model
The quasi-steady (QS) model is the simplest of the models presented in this work. Neglect-
ing the unsteady term, hf,q, the frictional loss is purely computed by the Darcy-Weisbach
formula.

hf = hf,q = f
V |V |
2gD

(3.4)

Losses are computed purely from the section average velocity. This implementation is fast
and efficient. In addition, it is included for all the models. For upcoming models, it will
be added together with an unsteady term, hf,u.

In certain events, this model may be insufficient. Head loss is computed purely from
the instantaneous section-average flow velocity. It does not account for the velocity gradi-
ent, or the rate at which the velocity is changing.

3.3 Convolution Based Models
The Convolution Based (CB) models are based on the past history of bulk accelerations.
The name is given as the accelerations are applied in a convolution integral. Initially,
the model was developed by Zielke (1968). Since the original model require extensive
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computational time, the model has been subjected to modifications in order to reduce the
computational demand. Trikha [19] improved speed at the expense of accuracy, Kagawa
et al. [20] and Suzuki et al. [21] created implementations with both high accuracy and
high computational efficiency. Vardy and Brown [12] determined a set of weighting func-
tions for the CB approach for smooth pipe turbulent flows. This model has been further
improved and is referred to as the weighting function based (WFB) model. More recently,
Ghidaoui and Mansour [22] were able to implement Vardy-Brown weighting function with
the method of characteristics (MOC), as cited by Vı́tkovskỳ et al. [10]. The initial model
developed by Zielke is presented below.

hf,u =
16ν

gD2

∫ t

0

∂V

∂t
(u)W (t− u)du (3.5)

W is the weighting function, ν is the kinematic viscosity and u is the convolution time.
Typically, the simplifications consists of approximating the weighting function W , by

exponential functions. The WFB model has also been modified to be valid for smooth pipe
flow in the turbulent regime by several researchers [23, 22, 12]. As formerly stated, many
hydro power stations, such as Kvilldal, will have turbulent flow. Hence, it is crucial that
the friction model in the simulation is valid for turbulent flows.

A great advantage of WFB models is that they are not dependent on coefficients that
must be established in some way. Instead, it is based on physical considerations, making
the model generally applicable for fluid transients. However, the WFB model shows less
accuracy for continuously accelerating and decelerating flows, such as the water hammer
event [10, 9].

A study performed by Duan et al. [16] shows that since the WFB model implements the
flow history, it is able to resemble the shape of wave. In a transient pressure plot, a steady
state friction model will have approximately horizontal amplitudes at the Joukowsky pres-
sure level. The WFB model will reach a pressure of 90− 95% of the Joukowsky pressure
and then increase towards 100% before it drops. Martins et al. [7] compared the WFB
model to a CFD model, and the study shows that the two models produce closely match-
ing wave shapes. This could prove to be relevant when constructing a coupled model.

3.4 Instantaneous Acceleration Based (IAB) Models
Instantaneous Acceleration Based (IAB) models, fathered by Daily et al. [24] and further
modified and improved by Golia [25], Brunone et al. [26] and Bergant et al. [2], are com-
putationally fast and easy to implement. However, the models are dependent on one or two
coefficients that need to be determined in order to correctly compute the friction. The coef-
ficients are normally calibrated using experimental results. A mathematical representation
of the single coefficient unsteady friction model is presented subsequently [9, 10].

hf,u =
k

g

(
∂V

∂t
− a∂V

∂x

)
(3.6)

In Equation 3.6, k is the friction coefficient. When using an IAB model with a single
coefficient, the coefficient has been determined in various ways. It has been found from
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experimental results, analytical relations, and post calculated from more complex models,
such as Zielke’s CB model [27, 28, 11].

The IAB model has been further modified to include two coefficients, one for each of
the derivative terms. This introduces two coefficients to be determined, kt and kx, and the
new equation becomes

hf,u =

(
kt
g

∂V

∂t
+
kxaφ

g

∂V

∂x

)
(3.7)

A new coefficient, φ, is introduced to modify the equation to provide the correct sign of
the dampening for every position of the valve in the system. It is defined as

V
∂V

∂x
≥ 0 ⇒ φ = 1

V
∂V

∂x
< 0 ⇒ φ = −1

This representation of the head loss has shown to potentially give a more general represen-
tation of experimental results [9, 29]. Generally, the model represented by Equation 3.7,
is referred to as the Modified Instantaneous Acceleration Based (MIAB) model.

Analyzing the model has shown that the two different derivative terms are responsi-
ble for different behavior. The spatial derivative is responsible for dampening, and the
temporal derivative is exclusively involved in phase shifting [10].

Vı́tkovskỳ et al. [10] found that although the MIAB model gives a good representation
of valve closing events, it does not work well for valve opening events. A possible expla-
nation for this may be attributed to unrealistic choice of coefficients rather than a general
failure of the model. However, if the MIAB model is to be improved, it is probable that
the coefficient cannot be independent of time [9].

Storli and Nielsen [30] investigated the MIAB model using coefficients which vary
along the pipe length. The coefficients were determined based on the more complex and
accurate CB model. When compared to experimental results, the model showed good
agreement for Reynolds numbers of 2000 and 5800. However, the improvement of the
model was not general, but was only valid for for complete closure of a downstream valve
in a single pipeline at low Reynolds numbers.

Duan et al. [31] did an analytical analysis on IAB and WFB. In conclusion the IAB
model was able to better predict the transient envelope attenuation than the transient evo-
lution phase shape. Similar results were found by Martins et al. [7] when comparing the
two friction models to a CFD simulation. Overall, the WFB model provided better fit with
CFD results.

Once again, this may prove essential when setting up the coupled model. The IAB
and MIAB models are computationally faster and require less memory use than the WFB
model. However, in the set up of a coupled 1D-3D model, the difference between the
models may cause added numerical error or even spurious transients. Evaluating what 1D
friction model to use will depend on the type of flow, and the scale of the system.
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3.5 Summary of Friction Models
The pros and cons of the friction models presented in this section are briefly listed below.

• Quasi-steady

– The fastest of the models discussed in this chapter.
– The computational memory required is small, and only dependant the number

of reaches the pipe is divided in.
– Fails to model attenuation and phase shift of the transient pressure head during

a water hammer event, for laminar flow in a thin pipe.
– No coefficients need to be determined.

• MIAB

– Not as fast as QS, but still a relatively fast model.
– The amount of computational memory required is slightly more than the QS

model, but very close.
– Successfully models attenuation and phase shift of the transient pressure head

during a water hammer event, for laminar flow in a thin pipe.
– This method poses the need for interpolation, which adds another possible

source of numerical error
– Friction coefficients needs to be determined, either from other models or ex-

periments.

• Zielke

– This requres the most CPU time of the models presented.
– The memory load from this model may be very large, and it is proportional to

how long the simulation run for and how small the time step is
– Successfully models attenuation and phase shift of the transient pressure head

during a water hammer event, for laminar flow in a thin pipe.
– No need for interpolation or coefficients to be determined.

How the choice of friction model will impact a 1D-3D coupled model has not been
studied. The literature unequivocally consents that a transient friction model is required
for water hammer events in thin pipes with a low Reynold’s number. For such events, a
coupled model would be affected by the choice of friction model in the 1D segment, as
such all the 1D models presented will be utilized. In addition, a 3D CFD simulations with
a sufficiently fine mesh, also take on the same characteristics for these type of events.

As stated in section 3.1, the relevance of a transient friction model diminishes as the
scale of the pipe and Reynold’s number increases. If one were to set up an experiment
to investigate coupled simulations in NTNU’s hydro power laboratory, the friction model
would have to be considered separately before a coupled simulation could be conducted. In
addition, the nature of the water hammer phenomenon may also lead to overly estimating
the need of a transient friction model. Additional experiments with less severe transient
events than a water hammer could be useful, as the long term goal is to simulate a hydro
power station under operating conditions, and not water hammer events.
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Chapter 4
1D - Method of Characteristics

The partial differential equations governing unsteady fluid flow in pipelines does not have
a general solution. The equations can be transformed by the Method of Characteristics
(MOC) into total differential equations, which are integrated yielding finite difference
equations which are conveniently handled numerically.

MOC is by far the most used method. The method is accurate, efficient and is simple
to implement, which is the reason for its popularity [13]. Stability criteria are firmly
established, it is capable of handling complex systems, and has the best accuracy of the
finite differences methods [5].

Governing Equations

The governing equations for pipe flow, first presented in section 2.3, are repeated below
for the readers convenience.

Ht +
a2

g
Vx = 0 (4.1)

gHt + Vt + hf = 0 (4.2)

H is the piezometric head, the subscripts x and t denotes the spatial and temporal partial
derivative respectively, g is the gravitational constant, V is the bulk flow velocity, hf is the
head loss per unit length and a is the wave propagation speed.

4.1 MOC - Quasi-Steady Friction

A commonly used representation of the MOC is the quasi-steady model. The head loss
term, hf is modelled by using the Darcy-Weisbach friction factor f . How to implement
the MOC, as presented in [5], is described in this section.
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hf = f
V |V |
2gD

(4.3)

D is the internal pipe diameter in the above equation. This representation of the head loss
is computed in terms of the steady state conditions for a given velocity. The head loss
will be updated as the velocities in the pipe change, hence the name, quasi-steady friction
model.

4.1.1 Characteristics Equations

The continuity and momentum equations (4.1) and (4.2) form a pair of quasi-linear hy-
perbolic partial differential equations in terms of two dependent variables, velocity and
hydraulic-grade-line elevation, and two independent variables, distance along the pipe and
time. Skipping a few steps, the equations are formed into four ordinary differential equa-
tions by the characteristics method [5].

+ g
a
dH
dt + dV

dt + fV |V |
2D = 0

dx
dt = +a

}
C+

− ga
dH
dt + dV

dt + fV |V |
2D = 0

dx
dt = −a

}
C−

(4.4)

Equations (4.4) shows the change in position of a wave with related to the wave prop-
agation velocity dx/dt = ±a

Δx Δx

t0+Δt

t0+2Δt

t0+3Δt

t0

P

i
BA

i+1i-11 2 N N+1

C- C+

Δx Δx

C-C+

Figure 4.1: The characteristic lines in the xt plane

The ordinary differential equations (4.4) are valid along the characteristic linesC+ and
C−. This impose the need of initial values as x = ct − x0, for getting a solution for the
domain. A solution can be found using the finite-differences equations.

The equations can be integrated along the characteristics leading to the following equa-
tions, the pipeline area is also introduced.
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HP −HA +
a

gA
(QP −QA) +

f∆x

2gDA2
QA|QA| = 0 (4.5)

HP −HB −
a

gA
(QP −QB) +

f∆x

2gDA2
QB |QB | = 0 (4.6)

These two compatibility equations are basic algebraic relations that describe the tran-
sient propagation of pressure head and flow in a pipeline. Solving for HP the equations
can be written

C+ : HP = HA −B(QP −QA)−RQA|QA| (4.7)

C− : HP = HB +B(QP −QB) +RQB |QB | (4.8)

In which B = a/(gA) and R = f∆x/(2gDA2).
These equations must hold for steady flow where QA = QP = QB and RQA|QA| is

the steady-state friction term. If an exponential friction formula is preferred the last term
of (4.7) can be changed to R′QA|QA|n−1

The solution to a transient problem usually begins with steady-state conditions at time
zero, so that H and Q are known initial values. Then H and Q are found for each grid point
where t = ∆t, then t = 2∆t and so on. At any interior grid intersection point, section
i, the two compatibility equations are solved simultaneously for QPi and HPi . Equations
(4.7) and (4.8) may be written in a simple form,

C+ : HPi
= CP −BQPi

(4.9)

C− : HPi
= CM +BQPi

(4.10)

in which CP and CM are always known from the variables of the previous time step.

CP = Hi−1 +BQi−1 −RQi−1|Qi−1| (4.11)

CM = Hi+1 −BQi+1 +RQi+1|Qi+1| (4.12)

QPi
can be eliminated from (4.9) and (4.10) which leads to the following:

HPi = (CP + CM )/2 (4.13)

When HPi
have been determined, then QPi

can be determined from either (4.9) or (4.10).
Examination of the grid in Figure 4.1 shows that the end points of the system begin in-

fluencing the interior points after the first time step. As previously mentioned, this method
is dependent on knowing all values at a present time step before it can compute the next.
Thus, it is necessary to introduce appropriate boundary and initial conditions.
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4.1.2 Boundary and Initial Conditions

The end points of the system begin influencing the interior points after the first time step.
As previously mentioned, this method is dependent on knowing all values at a present
time step before it can compute the next. Thus, it is necessary to introduce appropriate
boundary and initial conditions.

At the endpoints of a pipe, only one of the compatibility equations are known. At
the upstream end, equation (4.10) holds, and at the downstream end, equation (4.9) holds.
Hence an auxiliary function that specifiesHP ,QP , or a relation between them, is required.

Upstream Boundary

An upstream reservoir keeping a constant head is described simply by equation (4.14).
There will be minor variations, but it is usually okay to assume this to be constant. In [5],
it is also described how to model minor changes in the reservoir.

HP1
= HR (4.14)

Downstream Boundary

The flow through a closing valve can be modelled in different ways. It can be modelled
to go to zero linearly, or by various other equations. Wylie and Streeter described the
following general equation which is applicable for a closing valve downstream [5].

QP =
Q0√
H0

τ
√

∆H (4.15)

The dimensionless valve opening, τ is defined so that τ = 1 for steady flow and τ = 0
for a closed valve. A system with closing time tc, can be simulated with the equation
τ = (1 − t

tc
)Em . A sinusoidal boundary can also be implemented be changing τ to a

sinusoidal function.
Solving equations (4.9) and (4.15) simultaneously gives the following relation.

QPNS
= −BCv +

√
(BCv)2 + 2CvCP (4.16)

The subscript NS is appended to the variables QP and HP such that QPNS
denotes

the last element of the pipe, adjacent to the outlet boundary. Cv is defined so that Cv =
(Q0τ)2/(2H0).

4.1.3 Complex systems

For the sake of this work, a single pipe system will be considered. However, for more
complicated systems, such as bifurcations and change in pipe diameter, Wylie and Streeter
[5] provides methods that are relatively easy to implement. As they could hold relevance
to possible future work, they are added to Appendix B.
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4.2 Stability and Alternating Wave Speed
A stability criterion for solving partial differential equations numerically is given by the
Courant-Friedrichs-Lewy (CFL) condition [32]. The condition creates a dependency be-
tween the temporal and the spatial step with the Courant number Cr. For the MOC, the
relation is Cr = a∆t

∆x . Keeping the Courant number, as close to unity as possible virtually
means having the characteristic lines crossing the time-lines as close to a computational
node as possible. The closer to a node the lines intersect, the smaller the numerical error
will be. Hence having small time step, and small ∆x will minimize the error from the
numerical computation. Normally for the MOC, the time step is decided for Cr = 1. For
the stability criterion the Courant number cannot exceed one. A numerical scheme with a
Courant number larger than one does not converge.

The CFL condition additionally implies that there is no extrapolation of values. All the
values used in the numerical scheme must be found through interpolation [33].

When there is a complex system with alternating wave speed, the slope of the charac-
teristic line may vary, meaning that the intersection point of the lines will not be exactly
at point P of the grid. This introduces the need to interpolate in order to find nodal point
values. Interpolation will introduce some added numerical error, and the size of the error
will depend on how fine the grid is.
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4.3 MOC - MIAB Friction
The method for solving the governing equations, Equation 4.1 and Equation 4.2, using
MOC with MIAB friction model is very similar to the quasi-steady friction model. The
differences spawn from the head loss term, hf . The MIAB head loss term, presented in
section 3.4, is repeated here.

hf,u =

(
kt
g

∂V

∂t
+
kxaφ

g

∂V

∂x

)
(4.17)

In the following section, the derivation of MOC with the MIAB friction model is briefly
presented. For a more thorough derivation, see Appendix A.

4.3.1 Characteristics Equations with MIAB Friction Model
The derivation of the characteristics equations for MIAB model is slightly different than
the quasi steady model as the friction term is different. Using a similar procedure, the
characteristic equations are obtained.

λdHdt + (1 + kt)
dV
dt + fV |V |

2D = 0
dx
dt = 2a

−φkx+
√
k2x+4(1+kt)

C+

λdHdt + (1 + kt)
dV
dt + fV |V |

2D = 0
dx
dt = −2a

φkx+
√
k2x+4(1+kt)

C−

(4.18)

C+ ⇒ λ =
−φkx +

√
k2
x + 4(1 + kt)

2a/g

C− ⇒ λ =
−φkx −

√
k2
x + 4(1 + kt)

2a/g

A notable difference between this method, and MOC with a QS friction model, is the
difference in the inclination of the characteristic lines, dx/dt. Not accounting for transient
friction, the characteristic lines would be given solemnly by the wave speed, dx/dt = ±a.
However the transient friction provides the slightly more complicated characteristic lines
seen in Equation 4.18.

The ordinary differential equations (4.18) are valid along the characteristic lines C+

and C−. This impose the need of initial values as x = ct − x0, for getting a solution for
the domain. A solution can be found using the finite-differences equations. The derivation
of the discretization is presented in Appendix A. Here the equations that are to be solved
by the program are presented.

C+ : HPi = CP −B+QPi (4.19)
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C− : HPi = CM +B−QPi (4.20)

As B+ and B− are introduced with different values, one cannot solve the equation the
same way as in the quasi-steady solution. Instead, HPi can be eliminated from (4.19) and
(4.20) which leads to the below equation.

QPi
=
CP − CM
B− +B+

(4.21)

WhenQPi
have been determined, thenHPi

can be determined from either (4.19) or (4.20).
The way the loss is modeled in the MIAB model causes the inclination of C+ and C−

to change. Figure 4.2 shows how the characteristic lines deviate when transient friction is
accounted for.
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P

i
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i+1i-11 2 N N+1

C- C+

Figure 4.2: The grid used with MOC and MIAB friction model

In a MOC model with a steady state friction model, all the characteristic lines have the
same inclination. The grid is then modified so that the lines hit the same point P for the
same ∆t. In the MIAB model however, this is not the case, and ∆t will vary and the QPi

and HPi computed from the characteristic lines does not align perfectly with the grid. A
solution to this problem is interpolation, however, this may impose some numerical error
on the model.

The full interpolation scheme is covered in detail in Appendix A. Interpolating affects
the efficiency as well as the added numerical error. However, it is still a fast and accurate
scheme.
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4.4 MOC- Zielke’s Friction
The implementation of the friction model first introduced by Zielke and presented in chap-
ter 3 is described subsequently.

Equation 4.2 and Equation 4.1 are solved with Equation 3.5. The head loss term is
repeated here.

hf = hs + 16
ν

gD2

∫ t

0

∂V

∂u
W0(t− u)du (4.22)

In which hf is the new friction term to be used with Equation 4.2, hs is the quasi-steady
component usually computed using Darcy-Weisbach friction formula and ν is the kine-
matic viscosity.

The weighting function given as W (τ) where τ = 4νt/D2, has been subjected to
numerous changes. A large variety is presented and assessed by Vı́tkovskỳ et al. (2004).
The one chosen for this model was developed for laminar and turbulent flow in smooth
pipe by Vardy and Brown.

W (τ) =
A∗e−B

∗τ

√
τ

(4.23)

For laminar flow B∗ = 210.08 and A∗ = 1/(2
√
π). The intended use for this model is a

simulation with a Reynolds number of 1870, which is well within the laminar regime. For
a turbulent case, A∗ and B∗ are computed from the viscosity and the Reynolds number.

The numerical implementation is done according to Equation 4.24. In the summation,
j denotes the spatial variable, and k is the temporal variable. As seen from the equation,
Zielke utilizes all velocities from all previous time steps. For large simulations with small
time step and grid, the memory required and computational time will be very large. For a
small and short simulation, however, it is efficient and precise.

hiu(k∆t) = 16
ν

gD2

k−1∑
j=1,2..

(V ij − V ij−1) ∗W [(k − j)∆t] (4.24)

The head loss term is easily implemented with the MOC. Even though the implemen-
tation is uncomplicated, the method quickly becomes time consuming as simulation time
increases. This is because the method computes the friction from all previous velocities in
every time step. But for small simulations it is a relatively fast and reliable method.
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Chapter 5
Concerning Coupling

5.1 1D Model
The 1D model, mathematically described by the Allievi’s equations presented in sec-
tion 2.3, is based on assumptions related to the 1D nature of the pipe flow. It was developed
for efficient and accurate simulation of transient phenomena occurring in the water con-
veying systems with a simple geometry. The 1D MOC has been widely used an validated
since the 50’s [5].

This paper focuses on the friction model of the 1D MOC, which has been thoroughly
presented in chapter 3. In addition, there is the question of the 1D nature of the flow
variables in this method, and how they translate to 3D. section 5.2 presents a literature
study on various coupling methods.

Using the pressure gradient from the MOC, a 2D velocity profile can be generated, and
possibly be used as an intermediate step between 1D and 3D model. The process will be
described in detail in section 5.3.

3D Model

The 3D CFD model is not utilized for the work in this thesis. Nonetheless, a literature
study on how to model compressibility in water was conducted. In addition model order
reduction was briefly researched. The interested reader can find information on this in
Appendix C.

5.2 Coupling Methods
The fundamental idea for a coupled model is to divide the computational domain into
different regions. The 3D CFD model will be applied in the sections where streamlines
change rapidly over a short distance, for example in a turbine. In the pipelines, the flow
variables change almost only along the central streamline, and can be simulated by a 1D
model, such as the MOC.
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The data exchange between the 1D and 3D model is of utmost importance when con-
necting the models. For the sake of coupling, numerous different methods are described in
the literature [34, 35, 36, 37, 38, 39], with applications in the biological world as well as
in hydropower. As different numerical methods have different stability criteria, time steps
may differ between schemes presenting the need for iterative coupling methods. Iterative
coupling methods will however provide an additional inaccuracy to the simulation. Hence,
the non-iterative methods are of greater interest.

Wang et al. [40] used a non-iterative method based on Riemann-invariants giving an
accurate and robust 1D-3D coupled model. The model accurately captures and transmits
the pressure surge at the boundary between 1D and 3D. The authors also assess the impor-
tance of the placement of the 1D-3D boundary. Ideally the 3D domain is limited in order
to save computational time. However, if the 1D-3D interface is too close to a region with
3D effects, the flow at the interface may not be 1D and could possibly affect the coupling.
Wang recommends that the distance between the coupling interface and the geometrically
non-1D region is not less than 5 times the cross-sectional dimension at the interface.

Wu et al. [41] set up a MOC-CFD coupled model for analyzing the fluid dynamic
interaction between water hammer and pump. Fluent code was used for the 3D CFD
model. The coupled model was compared to using MOC calculations alone. The transient
simulation demonstrated that the 1D-3D coupled analysis was closer to real conditions
because it considers the effect of fluid inertia. This is suggesting that 1D-3D coupling can
be a good option for simulating fluid transients in the penstock.

Zhang and Cheng [39] presented two models, namely, the Partly Overlapped Coupled
method (POC), and the Adjacent Coupling method (AC). For the AC method, the grids
are adjacent as depicted in Figure 5.1 (a). The goal is to compute the piezometric head,
Hn+1
P , and flow rate, Qn+1

P , of cell Pn+1. This could be done by using for example the
unsteady Bernoulli equation. This method makes sense physically, however, the method
is more complicated than the POC.

Figure 5.1: Illustration of (a) Adjacent Coupling (AC) and (b) Partly Overlapped Coupling (POC)
taken from [39]
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The POC is illustrated in Figure 5.1 (b). For this method, the node P is no longer the
downstream boundary. Thus, another characteristic line, C−, can be constructed and the
characteristic equations can be solved for the cell Pn+1.

C− : Hn+1
P = H

(n)
M +B

[
Q

(n+1)
P −Q(n)

M

]
(5.1)

In Equation 5.1, QM and HM are located inside the CFD domain, hence the name.
To use the values from the CFD to construct the characteristic line C−, the section aver-
age flow rate and head has to be computed. After finding Q(n+1)

P and H(n+1)
P , they are

designated as boundary conditions for the CFD simulation. Note that these methods are
non-iterative, implying that the solution from both schemes needs to be known at a given
time and numerical errors may cause spurious transients.

The conclusion of the 2012 study by Zhang and Cheng [39], is that both the methods
are valid and accurate. The POC requires more computational resources from the CFD,
however it is easier to implemented. In a newer study by Zhang et al. [42], the authors
stated that the POC holds superior efficiency and accuracy. It is safe to say that the method
is promising, and should be the subject of further studies and investigation.

5.3 1D to 2D; the Heat Equation
The 1D models use variables that are averaged over a cross section, while the velocity
and pressure will vary over the added dimensions in a 3D model. How the variables are
communicated between a coupled model is essential to the performance. An interesting
method, primarily suggested by Storli1, is reducing the Navier-Stokes(NS) equations until
it has the same form as the parabolic heat equation. The heat generation term, q, of the
heat equation can be replaced by the pressure gradient from the NS equation. Solving the
new differential equation will provide a velocity profile. The mathematical procedure is
presented below.

The heat equation in cylindrical coordinates,

∂u

∂t
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2

)
+ q (5.2)

The z-component of NS in cylindrical coordinates,

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

)
=

−∂p
∂z

+ µ

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

]
+ ρgz

(5.3)

In this equation the different subscripts for u denotes the velocity in the z, r or θ
direction. The z-component of NS is reduced based on laminar flow assumptions. The
simplification of the equations only contains the velocity, uz . Hereby u will be used to
denote the velocity in the z-direction.

1This method is not documented in the literature. Storli used the technique in a presentation at the 24th IAHR
Symposiom in Brazil 2008. The presentation was related to a publication by Storli and Nielsen [3].
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Reduced form of NS:

∂u

∂t
=
µ

ρ

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2

)
− 1

ρ

∂p

∂z
(5.4)

Reducing the heat equation similarly provides the following equation.

∂u

∂t
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2

)
+ q (5.5)

From the 1D solvers, the time history of the pressure and velocity can be obtained.
With this information, the reduced NS can be solved to produce a velocity profile. The
reduced NS equation can be solved in the same way as the parabolic heat equation.

Many commercial and non-commercial software provides a built in solver for the heat
equation. For this work, MATLAB’s solver, pdepe, will be used and the solver requires
the equation to be on the following form.

c
∂u

∂t
= x−m

∂

∂x

(
xmf(x, t, u,

∂u

∂x
)

)
+ S (5.6)

In order to match the input required, the NS is modified in the following manner.

1

ν

∂u

∂t
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

(
∂2u

∂z2
− 1

µ

∂p

∂z

)
(5.7)

Solving these equations numerically will provide a velocity profile.
Note that the reduction of the NS equation is based on laminar pipe flow. Using this

method to produce a velocity profile for turbulent pipe flow would produce wrongful re-
sults. A time averaged turbulent velocity could possibly be approximated by modifying
the viscosity, similar to the principles of eddy viscosity. This is the basis of the simulations
presented in subsection 6.3.1 and section 7.3.
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Chapter 6
Simulation Set Up

For the sake of validating the 1D models, and the friction models, the results from the
models have been compared to an experiment performed by Bergant et al. [2]. The exper-
iment was conducted to investigate unsteady friction in 1D models, and it will be used to
validate the 1D models in this work.

6.1 Physical Set Up

Figure 6.1: Illustration of Bergant’s experiment, taken from [2]

Bergant’s experimental rig consists of two tanks connected by a thin pipe of diameter,
D, and length, L. The tanks are pressurized, and regulated to keep a constant head. This
makes it possible to modify the reservoir pressure denoted Hr. The wave propagation
speed, a, was analytically computed by Bergant et al. [2]. tc denotes the closing time of
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the downstream valve and t is the full time of the recording. Re is the Reynolds number.
The properties related to the experiment is listed below.

• L = 37.23m
• D = 2.21 cm
• Hr = 32m
• V0 = 0.1m/s
• a = 1319m/s
• tc = 0.009 s
• t = 1.5 s
• Re = 1870

6.2 1D Simulation
Implementation of the 1D methods is described in detail in chapter 4. There are certain
properties that are vested to certain friction models, and those will be presented in this
section.

All of the models were coded in MATLAB R2020a. The full code of the various
friction models are added to Appendix D.

For all the 1D simulations, the pipe was divided in N reaches, resulting in N + 1 grid
points. Following properties were the same for all the friction models: the gravitational
acceleration, g, the Darcy-Weisbach friction factor, f and the density, ρ0. Note the density
ρ0 is the density for water at 15.5◦C. The values corresponding to the variables are listed
below.

• N = 1001
• g = 9.8066502m/s2

• f = 0.0345
• ρ0 = 999.057

6.2.1 Quasi-Steady Friction Model
No further info needed to model this one

6.2.2 MIAB Friction Model
This method introduces several new computational steps, as it requires an interpolation
scheme, however it only introduces two new variables as compared to the quasi-steady
model. The friction model is based of spatial and temporal derivatives of the velocity,
which requires one factor for each derivative. kt represents the temporal factor and kx the
spatial factor. Their values are listed below. Their values were found through trial and
error. The starting point, was the analytically determined value of 0.0345 from Bergant
et al. [2].

• kt = 0.04

• kx = 0.03
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6.2.3 Zielke’s Friction Model
The main difference between Zielke’s and the other friction models is that Zielke’s model
stores all the velocities of the previous times. This is because the friction model uses veloc-
ities of previous time steps to compute the head loss term, hf , as presented in section 4.4.
In addition, the model needs the parameters for the viscosity, ν, and the variables, A∗ and
B∗, for the weighting function, W . The viscosity ν is computed from the Reynold’s num-
ber given by Bergant et al. [2]. The values of A∗ and B∗ are the values for laminar flow
as presented in [23].

• ν = 1.1818...e− 06

• A∗ = 1/(2
√
π)

• B∗ = 210.08

6.3 Heat Equation
Matlab will be used to solve the parabolic partial differential equation, which is a simpli-
fied version of NS momentum equation. pdepe, a pre-programmed solver in MATLAB,
is used to obtain a solution. The method for using this solver is briefly described in this
section, and the full script will be added to Appendix E. As stated in section 5.3, the NS
momentum equation is modified so it is on the following form.

∂u

∂t
= c

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2

)
+ S

The variables which are taken from the simplified version of NS momentum equation
are listed here.

• c = 1
ν

• x = r

• m = 1

• S = ∂2u
∂z2 −

1
µ
∂p
∂z

The variable z denotes the lengthwise direction of the pipe, S is the source term and the
spatial variable, x, will cover the radius of the pipe. In MATLAB, the PDE-solver is called
upon by the following command.

sol=pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

• m is the symmetry constant, for cylindrical coordinates m = 1

• pdefun defines the equations being solved.

• icfun defines the initial conditions.
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• bcfun defines the boundary conditions.

• xmesh is a vector of spatial values for x, it represents the pipe diameter.

• tspan is a vector of the time values for the variable, t

This setup allows the user to define the equation to be solved, the boundary conditions,
initial conditions, as well as the grid on which it will be solved. For the pipe wall, a no-
slip condition was imposed, and the pressure gradient was used as a source term in the
equations.

Steady State

First the model was tested for a steady state case, in which the source term, S is constant,
and can be computed from the Darcy-Weisbach formula. The Darcy-Weisbach friction
factor was introduced for the 1D quasi steady MOC, and has the value, f = 0.0345. In
addition, the model needs information on the viscosity, the value for which was already
introduced for Zielke’s friction model, ν = 1.1818... × 10−6. At last, the density is
ρ = 999.057.

Unsteady Simulation

For the unsteady mode, the main change is the source term. This is no longer constant,
instead it is S = uzz − 1

µpz . All these values can be taken from any of the 1D models.
For the sake of comparing, simulations using data from all three friction models have been
conducted. The no-slip condition at the wall is still in effect. However, the tspan-vector
has to be adapted to fit with the variables taken from the MOC models. This is done simply
by using the same time step as in the MOC.

6.3.1 Turbulent Flow
Solving a reduced version of Navier-Stokes equation is an interesting way of generating a
2D velocity profile. Nonetheless, it holds little relevance to research related to hydro power
machinery, unless, it is applicable for turbulent flow. When reducing the NS equations, as
in section 5.3, there is only considered to be a velocity in the lengthwise direction of the
pipe. Turbulence, however, also implies radial motion. Solving the parabolic differential
equation from NS will not solve for this motion. However, using a modified viscosity,
as presented in section 2.6, the time-averaged velocity in the lengthwise direction can be
estimated.

For this test simulation, a diameter, D, and Reynolds number were chosen at random.
Viscosity and density was chosen water at 20◦C. Flow properties are summed up below.

• Re = 7000000

• f = 0.011

• ρ = 998.2kg/m3

• µ = 1.002 ∗ 10−3Pa/s
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• ū = 14.0602m/s, computed from Re, µ, ρ and D

Using the information above, combined with the Darcy-Weisbach head loss formula,
provides the necessary information to compute a pressure gradient for a steady state case.
However, solving the partial differential equation with a constant viscosity will return a
laminar profile with a flow rate several orders of magnitude greater than the actual flow
rate. This problem was solved by empirically creating a position dependent viscosity. Us-
ing symmetry around the centerline in the pipe, the viscosity was set to only vary along the
radius, r. The reverse S-shaped function with the following mathematical representation
was utilized for this purpose.

ν(r) =
C1

1 + expC2r − C3
− C4r (6.1)

C1, C2 and C3 are constants which needs to be determined empirically. Thus the sim-
ulation will be run several times, while changing the constants. The original flow rate
and the power law velocity profile will provide useful comparison when determining the
coefficients.
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Chapter 7
Results & Discussion

Bergant’s water hammer experiment [2] is used as base for the simulation. The details
of this experiment can be found in chapter 6. The first part of this chapter, section 7.1,
will compare the results from the 1D simulations to the results reported by Bergant et al.
[2]. The heat equation is tested and discussed in section 7.2, and section 7.3 applies the
heat equation to steady state turbulent velocity conditions. In section 7.4, coupling of 1D
and 3D models is discussed on the basis of the presented literature and work and possible
further work is considered

7.1 1D MOC Simulations
The 1D models were presented in chapter 4, and the specific properties used for this ex-
perimental set up were presented in section 6.2. In the 1D models, the water hammer
was actualized by letting the discharge, at the downstream outlet, go to zero over a clos-
ing time tc. Comparing the results to Bergant’s experiment [2] will provide information
on the models performance. In addition, the simulations can be compared and validated
against previous simulations. The main parameters to observe for the 1D models will be
the following.

• Attenuation of the pressure head.
The frictionless MOC is known not to be able to approximate the wave attenuation
correctly. Capturing the attenuation correctly is crucial for the friction model.

• Phase shift
The phase of the transient pressure is also heavily impacted by the choice of friction
model, and will be assessed.

• Computational time
The computational time from the various models will be presented. It is not the
main focus in this thesis, however, it should be kept in the back of the mind.
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The location from which data is observed and compared is the node adjacent to the
closed valve. For the 1D models consisting of N reaches and N + 1 nodes, it will be node
number N + 1, counting from the upstream inlet.

7.1.1 Quasi-Steady Model
Transient pressure head for the quasi-steady model, compared to Bergant’s experimental
results, is depicted in Figure 7.1. MOC with a quasi-steady friction model aligns well with
the experimental results for the two first rises in the pressure. After which, the models
show insufficient attenuation of the pressure head. Around 0.5s the phase shift becomes
clearly visible. Approaching 1.5s, the simulation fails to model both phase shift, and the
attenuation of the pressure head.
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Figure 7.1: MOC with Quasi-Steady friction model vs experimental results from [2]

As expected, the QS friction model fails to accurately attenuate the pressure ampli-
tudes, it also fails in modelling the phase shift. This is the same as the results of Bergant
et al. [2]. The QS model does not account for the effects of transient friction, and, as stated
in the beginning of chapter 3, transient friction has to be accounted for in small pipes with
flow of a low Reynold’s number.

7.1.2 MIAB Model
Figure 7.2 shows the transient pressure for the MOC with a MIAB friction model and
the experimental results. For this model, the coefficients, kt and kx, were based on the
analytical value found by Bergant et al. [2] for this set up. The coefficients were then
altered slightly to become the values presented in subsection 6.2.2. This model is able to
capture both the attenuation and phase shift. Out of the three friction models considered
for the given case, the MIAB model shows the best fit with the experimental results.
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Figure 7.2: MOC with MIAB friction model vs experimental results from [2]

The MIAB model shows the best fit among the three friction models. This is also in
accordance with Bergant et al.’s results, who used a model referred to as Brunone’s model.
Brunone’s model, is an IAB model with one friction coefficient, whereas Figure 7.2 shows
the transient pressure for a MIAB model with two friction coefficients. The results are
very similar, and the best fit of all three friction models tested for this specific case.

7.1.3 Zielke’s Model
Figure 7.3 shows MOC were the head loss term is modelled with Zielke’s friction model.
Compared to the experiment, this model shows discrepancy with both the phase shift, and
attenuation of the pressure head. The results are still close to the experimental data, but
the MIAB model clearly shows better match. In previous studies, similar results have
been found for the models [2, 10]. The computational time required for this model is quite
extensive as it takes in all the previous time steps when computing the head loss term.
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Figure 7.3: MOC with Zielke’s friction model vs experimental results from [2]

Zielke’s model show much better fit with experimental results than the QS model.
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However, it is not matching with experimental results as well as the MIAB model. Note
that the CPU time of Zielke’s simulation is approximately 4500 times more than that of
the QS model and 350 times that of the MIAB model.

Model CPU-time [s]
QS 1.25
MIAB 16.5
Zielke 5673

Table 7.1: Seconds CPU-time of the different friction models used with the MOC

Efficient simulations are crucial, and although the simulation time for this specific
experiment is low, it will quickly rise for larger systems such as hydro power stations. The
CPU time used by the MIAB model is approximately 350 times less then that of Zielke’s
model, and the QS model is around 4500 times less than Zielke’s. In addition, Zielke’s
model becomes slower and requires more memory the longer a simulation runs for. In
its full state the model would quickly become too slow and consume too much memory
for practical use. However, its efficiency can be improved by only using the most recent
time steps and not all time steps since the beginning of the simulation. The most recent
accelerations have the largest impact on the solution thanks to the weighting function.
After a certain time, the contribution of previous velocity changes will become negligible,
and can be dropped without loosing significant accuracy in the solution. This could save
large amounts of both CPU time and memory use. Although Zielke’s model is made more
efficient, it is less likely to become faster than the MIAB. It may still be a preferred option
as it does not have coefficients that need to be predetermined, as does the MIAB. The
modified Zielke’s model is an interesting option, and should be investigated further.

Once again, the experimental set up used for the various 1D models is taken from
Bergant et al. (2001). Additionally, simulations of the friction models applied in the pre-
vious section has already been documented for this specific set up the literature [2, 10].
These results serve to validate the 1D models used for the work in this thesis.

The transient pressure plots of the different friction models are all validated when
tested.

7.1.4 Discussion; 1D friction models
The purpose of a 1D-3D coupled simulation is to study the interaction between the runner
and the waterway. Pressure pulses are generated at the runner, and will then propagate in
the waterway. It is important that the simulation is able to conserve the correct pressure
amplitudes and frequencies. The coupled model cannot be more accurate than its 1D
and 3D components, and so it is crucial that the 1D model simulates the pressure pulse
accurately.

For the experimental set up considered, it is apparent that a model accounting for
transient friction is necessary, in order to achieve meaningful results. The different friction
models affects both amplitude and phase of the pressure pulse. In the simulations, the
frequencies and amplitudes of the pressure pulsations are of utmost importance, and it is
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crucial to choose a friction model which is able to capture these flow features correctly. In
terms of a 1D-3D coupled simulation, choosing the wrong friction model could lead to an
erroneous altering of the pressure wave amplitude and frequency as it passes through the
1D model.

It is important to note that these tests are done for laminar flow. Turbulence will largely
be present in actual hydro power stations, and as presented in section 7.3 the choice of fric-
tion model will change with an increasing Reynold’s number. In essence, experiments with
flow conditions closer to that of hydro power stations would certainly be recommended for
testing the friction models, as not a lot of data is available in the literature.

For a hydro power station, a water hammer simulation is a type of worst case scenario
simulation. An unsteady friction model may lead to underestimating the pressure peaks
and thus the impact from the water hammer. Simulating a water hammer may not even
be necessary, as it can easily be avoided by making sure the distance to the surge tank is
small enough to completely avoid the severe transient. Fatigue loads for turbines in hydro
power stations are usually related to normal operating conditions, accordingly, one would
be interested in simulations related to normal operating conditions. It is important for the
model to capture amplitudes and frequencies of the relevant pressure pulsations that occur
under normal operating conditions, not necessarily model a water hammer to perfection.
For pressure pulses of smaller amplitudes than a water hammer, the effect on the velocity
profile and its gradient will not be as large, and the relevance of unsteady friction is likely
to be less. It would be interesting to compare the different 1D friction models on how
they simulate pressure pulses of smaller amplitudes and higher frequencies than the water
hammer.
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7.2 Heat Equation for a 2D Velocity Profile
Results from the reduced NS momentum equation is presented in this section. As pre-
sented in section 5.3, the momentum equation is reduced until it is on the same form as
the heat equation. Then, the heat generating term is replaced by a pressure gradient taken
from the 1D model. Firstly, a simulation was run with a constant pressure gradient, to
obtain steady state conditions. After which, the transient pressure gradient from the 1D
models was added to the numerical scheme.

7.2.1 Steady State Simulation
For the steady state simulation, the initial conditions for the velocity were zero. The
scheme was then run until the velocity converged. Figure 7.4 shows the change of the
center velocity versus simulation time. When the simulation time is at around 150s, there
appear to be little to no change in the velocity.
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Figure 7.4: Convergence of center velocity

Figure 7.5, on the next page, shows the velocity profile produced from the steady state
simulation. Essentially, this is the velocity profile for the fully developed flow throughout
the pipe. The velocity profile has the form of a fully developed laminar profile, which
is meaningful as the Reynolds number is 1870. Additionally, the flow rate of the new
velocity profile is Q = 3.8652× 10−5m3/s, which is very close to the initial flow rate for
the MOC of Q = 3.8360× 10−5m3/s.
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Figure 7.5: Velocity Profile

In terms of producing a velocity profile for the steady state case, the heat equation was
successful. The flow rate was 1.0076 times the initial flow rate. The flow rate generated
using the heat equation is affected by the choice of viscosity and density, in addition to the
radial refinement. The flow deviates from the original flow rate by 0.76%. When compared
to a theoretical velocity profile for laminar flow, the profile produced by the heat equation
shows excellent fit.

Note that the error in flow rate is likely related to the viscosity. The viscosity was
computed based on the Reynold’s number of 1870, given by Bergant et al. [2].

7.2.2 Transient Simulation
The velocity profile presented in the previous section was used as initial conditions for the
transient simulation. For this simulation, the time step and pressure gradient term were
taken from the MOC simulation. With these conditions, the equations were solved in time
numerically. The pressure gradient is taken from a location 7.44m from the inlet, or node
number 200. The pipe is 37.23m from inlet to outlet and is divided into 1001 reaches.
At this location there is great variations in the velocity profile, so it serves well as an
illustration.

Figure 7.6 Shows what happens to the velocity profile when the first pressure rise
arrives, and the average velocity becomes zero approximately at t = 0.0282s. Although
the average velocity for the cross section is zero, there is still a velocity profile with both
negative and positive velocities. Eventually, back flow occurs as a result of over pressure
in the pipe, and the velocity becomes fully negative at t = 0.0451s. For the fully negative
velocity profile, the largest velocity is observed close to the pipe wall, with large velocity
gradients occurring near the wall.
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Figure 7.6: Transient velocity profile from t = 0.0225s to t = 0.0451s

Figure 7.7 shows the velocity profile as the flow transitions from negative at t =
0.0789s to positive at t = 0.101s. When the velocity returns to being positive, as it
was initially, the shape of the velocity profile is changed. The shape in the middle is close
to the same, however, there is another peak near the wall. Although it has a smaller veloc-
ity than the middle section, the velocity gradient near the wall is much steeper than in the
initial velocity profile.
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Figure 7.7: Transient velocity profile from t = 0.0789s to t = 0.101s

Figure 7.6 and Figure 7.7 shows the velocity profile generated based on the gradient
taken from node number 200 in the simulation. Figure 7.8 Shows the pressure related to
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the same node.
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Figure 7.8: Transient pressure of the same node as the velocity profile in Figure 7.6 and Figure 7.7

Notes on the Transient Velocity Profile

When the pressure gradient used in the heat equation is replaced by the transient pressure
gradient taken from the MOC simulations, a transient velocity profile is produced. As
expected, the velocity profile maintains its shape while its being pushed back, and very
steep velocity gradients occur near the wall. When the velocity returns to being positive,
the core still holds the shape of the initial profile while a new peak occurs near the wall.
The frictional forces exerted on a fluid are directly related to the velocity gradient near the
wall. Although the flow rate is approximately the same as it was for the steady state case,
the frictional forces will be substantially larger than in the initial case. A frictional model
purely based on the bulk velocity, such as the QS model, will be unable to capture this
effect. Additionally, when the bulk velocity is zero, there will still be a velocity profile,
and thus a frictional loss related. From the velocity profile, it is apparent why a transient
friction model is required for simulating this type of flow phenomenon.

7.2.3 Comparing Flow Rate to Original MOC
In order to evaluate the 2D velocity profile, its flow rate was computed and compared with
the flow rate of the MOC from which the pressure gradient was taken. Velocity profiles
and flow rates based on pressure gradients from the three different friction models were
constructed. When compared to the flow rate of their respective MOC, all the friction
models show large discrepancies.

Both plots in Figure 7.9 are related to the flow rate of the node adjacent to the outlet.
In essence, the flow rate should be zero, or approximately zero because it is right next to
the closed valve. Figure 7.9 (a) shows the flow rate of the heat equation based on data
from the QS MOC simulation and the original flow rate from the QS MOC. The flow rate
from the MOC goes to zero, and has minor peaks, both negative and positive, every time
the pressure wave passes. Unequally, the flow rate, computed from the heat equation, does
not go to zero and appears to increase throughout the simulation. At 1.5s the velocity is
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nearly 17% of the initial velocity. This is unacceptably large. In addition, it is unphysical
as no water can actually flow through the closed valve.
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Figure 7.9:
(a) shows flow rates for MOC (QS) and the respective heat equation. The flow rates are normalized
by the initial, steady state flow rate Q0

(b) shows the difference in flow rates between MOC and the heat equation for various friction mod-
els. The flow differences are normalized by the same initial, steady state flow rate Q0

Both figures are related to a node located 0.074m from the outlet

Figure 7.9 (b) shows the difference between the flow rate computed from the heat
equation and the flow rate of the MOC for the three different friction models. To clarify,
the plot shown for Zielke is (QheatEQ,Zielke − QMOC,Zielke)/Q0, and similar for the
other two friction models. Flow rates of all the various friction models show relatively
large discrepancies. Zielke’s friction model show a closer match to its origin, however the
difference is still substantial, being 5% and increasing still at the end of the simulation.

An important note from Figure 7.9, is that none of the heat equation models drops all
the way to zero during the initial valve closure. This is most visible in Figure 7.9, and is
common for all the models.

Investigating a Smaller Time Step

The error, between the flow rate of the velocity profile from the heat equation and the
MOC, could be related to the size of the time step used in the simulation. Hence, sim-
ulations were carried out for various time steps. In MOC the time step, dt, is directly
computed from the spatial step. To how a variation in dt would affect the heat equation,
three new MOC simulations with a QS friction model were conducted.

The pipe of the experiment was divided intoN = 1501, 501 and 101 reaches, which in
turn would be compared to the initial simulation of 1001 reaches. The smallest dt would
be related to N = 1501 and the largest to N = 101.

Figure 7.10 shows that the variation in dt has little effect on the flow rate. A result
which is quite surprising, as the expected outcome was that a finer time step would also
mean a smaller difference between the flow rates. Interestingly, the difference in flow rate
appear to increase slightly with a finer time step. Note that the difference between the
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three is still fairly small.
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Figure 7.10: Difference in flow rate between the heat equation and the MOC (QS) divided by the
initial flow rate, for a variation in time step

Further Flow Rate Investigation

Since refining the time step appeared to have little effect on the flow rate, the flow rate
of node number 200, located approximately 7m from the inlet, was investigated. From
Figure 7.11, the match is close to the initial MOC, but the error is present, and increasing
throughout the simulation.
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Figure 7.11: Relative flow rate of the flow obtained using the heat equation and the MOC with
Zielke’s friction model
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Zooming in on the first few amplitudes of the flow plot of Figure 7.11, a small offset
in the initial flow becomes visible, displayed in Figure 7.12 .
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Figure 7.12: Relative flow rate of the flow obtained using the heat equation and the MOC with
Zielke’s friction model, zoomed in

The initial offset, visible in Figure 7.12, could be the reason none of the flow rates go to
zero during the initial velocity stop. Whether it has a large effect on the error that increases
throughout the simulation should be investigated. Unfortunately, due to time limitations,
it will not be investigated in this thesis.

Additionally, refinement of the radial mesh was investigated, and shown to have little
effect on the flow rate error that increases throughout the simulation. Leading the author
to believe that the error is either related to the viscosity, or that the method is unfit for
simulation of water hammer events.

Discussion; Velocity Profile

Although the velocity profile was able to take on the characteristics that were expected, it
was unable to correctly model the flow rate. For all three friction models, the error related
to the flow rate was unacceptably large. None of the velocity profiles flow rates go down
to zero during the initial valve closure. Adjacent to a closed valve the flow rate should be
zero, or at least approximately zero. Then, the error was increasing throughout the simula-
tion for all the models. It appears to be converging towards an unknown value. However,
longer simulations would be needed to determine whether there is such convergence, and
the simulation length was predetermined by the experiment by Bergant et al. [2].

The cause of this error is supposedly related to the large and sudden changes of the
pressure. If one studies the transient pressure plots in Figure 7.1 to Figure 7.3, Zielke’s
model is more rounded whereas the two other models have squared peaks. Since the error
in Zielke’s model is much smaller than that of the others, it seems that the numerical
scheme more easily follows the softer pressure changes related to Zielke’s model.
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Considering the error seems to be related to the abrupt pressure changes related to a
water hammer, it is likely that the heat equation would perform much better when applied
to less severe transient events. Current results considered, applying this technique for a
water hammer simulation is not promising. However, the cause of the error should be
investigated further.

Another possible source of the error in the flow rate, could be related to the steady state
velocity profile, which is largely influenced by the viscosity. The viscosity was computed
from the Reynold’s number given by Bergant et al. [2], and it is possible that choosing
a better viscosity could impact both the steady state velocity profile, and the error that is
increasing throughout the simulation.
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7.3 Turbulent Velocity Profile

If the heat equation is to be applicable as a translator between 1D and 3D simulations of
hydro power stations, it needs to be valid for turbulent flow. This poses an immediate
challenge as the 2D profile is generated based on laminar flow assumptions.

The following results are based on the reduced version of NS momentum equation in
section 5.3, and values presented in subsection 6.3.1. Again, the values are chosen at will,
and so this simulation does not have experimental data for comparison. A velocity profile
was made by the power-law, presented in section 2.6. This was used as a reference to see
whether a time-averaged turbulent velocity profile could be made by numerically solving
the reduced NS momentum equation.

Modified Viscosity

The viscosity was modified empirically, and the constants of Equation 6.1 was altered
until the velocity profile from the heat equation matched with the velocity profile from
the power-law. The position dependent viscosity is graphically represented in Figure 7.13.
This specific set of coefficients was seen to work well for this specific simulation.
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Figure 7.13: Viscosity Relative to position from center

Velocity Convergence

The simulation run until the velocities related to all points along the radius converged.
Convergence is slowest in the center, and it is displayed in Figure 7.14.
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Figure 7.14: Velocity change at the center of the pipe cross-section

Velocity Profile Comparison

After testing out various values for the modified viscosity, the shape of the velocity profile
seems to be a decent approximation of a time-averaged turbulent velocity profile, as can
be seen in Figure 7.15. There are however some differences. First and foremost, both
cases are based of a set of conditions, including the original flow rate, Q0. The value of
the original flow rate, as well as the flow rate obtained by the PDE-solver Qpdepe, and the
power law Qpowerlaw is listed below.

• Q0 = 2.76071m3/s

• Qpdepe = 2.76073m3/s

• Qpowerlaw = 2.75856m3/s

At the pipe centerline, x = 0 in Figure 7.15, there is not a zero gradient for the power
law, according to the literature this is one of the points where the power law fails. For
the profile generated by the heat equation and the modified viscosity however, the velocity
gradient on the centerline is indeed zero. The flow rate from the heat equation velocity
profile is also closer to the initial flow rate than the power-law velocity profile.
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Figure 7.15: Comparing velocity profile constructed with heat equation and power law of n = 7

Discussion; Turbulent Profile

For this simulation, the viscosity was modified through trial and error until a velocity
profile was matching the initial results. Eventually, both flow-rate, was showing a good
match with the theoretical velocity profile, and the initial flow rate. However, when the
radial refinement was changed, the velocity profile no longer showed a good match, and
once again the viscosity required altering.

Although, the model appears to be somewhat accurate for a steady state case, it is of
little interest unless it also can handle a varying pressure gradient and still produce the
correct flow rate and velocity profile. The laminar simulations in this study show that for
the time varying pressure gradient, there is a large error in the flow rate from the velocity
profile. For a turbulent simulation, the same problem is likely to be reoccurring.
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7.4 Discussion

7.4.1 Heat Equation as Translator
The reason for using this method to produce a velocity profile with data from the 1D
model, is to possibly provide a method for transferring data from 1D to 3D in a coupled
model. If the velocity profile from this method is going to be used as a translator at the
boundaries, it is crucial that it preserves the flow properties.

From the results, this method produces a velocity profile which gives an erroneous
flow rate. The cause of the error could be that the numerical method is unable to follow
the large and abrupt changes related to the water hammer. It could also be related to the
viscosity, computed based on the Reynold’s number from [2]. The latter would have been
investigated further if more time was available to the author.

Although the heat equation has a large error for the water hammer simulation, as seen
in section 7.2, it should still be tested for less severe transient events. There is no docu-
mentation on how the model would fare with such conditions, and it would be interesting
to study. The objective of this project is to help simulations for investigating fatigue loads
on turbines. Fatigue loads can arise during a variety of flow conditions, but the loads that
occur during normal operating conditions are the most interesting. Perhaps a model does
not need to successfully all types of fluid events, such as a water hammer, if the purpose is
to investigate normal operating conditions.

7.4.2 Relevance of unsteady friction
In the set up by Bergant et al. [2], accounting for transient friction is necessary in order to
model a water hammer event correctly. Again, this is a water hammer in a thin pipe with
laminar flow conditions. The literature study presented in section 3.1 refers to a study
where a criterion based on the friction factor, size of the pipe and the speed of the flow
is established. According to the study, if the pipe system and Reynold’s number is large
enough, a transient friction model will only be good for increased computational time. It
may even lead to over-damping the pressure amplitudes in the case of a water hammer
simulation.

The criterion formulated by Duan et al. [16] is made for water hammer simulations.
During normal operating conditions, it is likely that the effects of transient friction will be
less or even negligible. Relevance, and how the friction model impact transient phenomena
that occur during normal operating conditions is not addressed, and would certainly be
interesting to investigate. Many problems that occur for hydropower stations are related to
fatigue loads inflicted during normal operation. If a simulation is designed for investigating
this, a QS friction model may be the best suited model.

NTNU’s hydro power laboratory has pipes of a smaller scale than a hydro power sta-
tion, but a larger diameter than the on used by Bergant et al. [2]. It would be interesting to
test the various 1D friction models against both water hammer, and flow with less severe
pressure pulsations, to see whether a transient friction model is necessary for a system of
this scale.

Initially, the transient friction models were introduced for more accurate modelling. If
a certain criterion related to system size and Reynold’s number is met, a transient friction
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model could prove to be nothing but extra computational load. In that case, using a QS
model would save computational time and possibly memory use depending on the transient
friction model considered.

The overall notion is that for a large system, such as a high head Francis turbine, a
QS model may be the better option. However, for intermediate scale systems, such as
the hydro power laboratory at NTNU, the choice of friction model should be based of
experimental results.

Validating the frictional model based on experimental results is a natural step before
proceeding with a coupled simulation. A coupled model cannot be more accurate than its
least accurate component, and if the friction model of the 1D model has not been tested,
assessing the potential coupled model would be increasingly difficult.

7.4.3 Coupling & Notion Towards Further Work
An obvious, and critical concern for coupled models, is the coupling technique. The partly
overlapped coupling (POC) used by Zhang and Cheng [39] appears to be the most viable
option. It does not require interpolation, and its author already obtained promising results.
The 1D and 3D model would still communicate section average variables to each other. It
is for this exact purpose the heat equation could be useful. Possibly the 2D velocity profile
could be used to produce a variation along a pipe-radius. Unfortunately, the results from
the heat equation models in this work had a large error related, and would probably make
a coupled model less accurate.

A Notion Towards Further Work

The documentation of 1D-3D coupled models is still lacking, and there are many angles
that demands consideration which has not been mentioned in this work. Further work
should consist of more testing as experimental comparison is dearly needed. If NTNU’s
hydropower laboratory is to be utilized, the testing should be divided into two main parts.
Firstly, the unsteady friction model of the 1D MOC should be inspected. This can be
done by testing for both a water hammer simulation, and a less severe transient event, for
example by small periodic variation of the flow rate. The notion from the literature study
is that accounting for transient friction becomes less relevant for larger pipe systems and
higher Reynold’s number, and so its relevance should be investigated.

Additionally, experiments for a waterway with a bifurcation could provide insightful
information. Many hydropower stations have complicated waterways, which provides
additional reflection points for pressure pulsations. A 1D model could completely cover
the waterway with a simple bifurcation, and would certainly be the most efficient way to
perform this type of simulation. However, this could also be used to test a 1D-3D coupled
model, using 3D CFD to cover the branching point. This would, hopefully, provide useful
information on the coupled models performance, and the results could be compared to both
experimental data and the pure 1D model. It would be interesting to see whether the model
would be able to conserve the frequencies and amplitudes of the pressure pulsations, or if
some information would get lost in translation.
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Chapter 8
Conclusion and Further Work

Simulations using the 1D MOC were successfully carried out with three different friction
models, QS, MIAB and Zielke’s model. The results were validated against a publication
by Bergant et al. [2]. The results showed that transient friction must be accounted for,
when conducting water hammer simulations for laminar flow in a thin pipe. However, a
study by Duan et al. from 2012 states that transient friction looses its relevance as the scale
of the system and Reynold’s number increases. In addition, severe transient events, such
as a water hammer, may exaggerate the need of a transient friction model. In conclusion,
the choice of friction model should be based on the criterion by Duan et al. [16], or ideally
based on experimental data.

A reduced form the NS momentum equation was applied to produce a 2D velocity
profile with data from the 1D MOC. The possibilities of using this method as a 1D-3D
translator was investigated. The transient pressure gradient was retrieved from the MOC,
and a time-varying velocity profile was generated. From the profile, the steep gradients
and back flow, that occur during a water hammer, were clearly visible. The flow rate was
not conserved in the new velocity profile in a satisfactory manner. Seemingly, the error
is related to the viscosity or the steep and abrupt changes of the pressure, and should be
investigated further. By the current results, the error related to the method is not tolerable.

The method described in the previous paragraph was also applied to produce a turbu-
lent velocity profile. In order to realize the turbulent profile, the viscosity was modified
by trial and error. The velocity profile was generated for steady state, fully developed pipe
flow. Arriving at the correct viscosity was a tedious process. Eventually, a steady state
velocity profile was produced, and it showed good match with the analytical profile, and
the initial flow rate. The modified viscosity appeared to only hold for the mesh size it was
produced for. Changing the radial refinement gave large variations in the results, for the
same viscosity function. In summary, the method does not appear promising for turbu-
lent flow, although it should be tested against transient conditions before being completely
disregarded.
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8.1 Further Work
One of the main limitations when setting up the simulations, was the lack of experimental
results for comparison. As such, the further work suggests a simple experiment which
could provide insightful information in terms of a 1D-3D couple simulation.

A system consisting of one inlet, one outlet and a blind tunnel could be considered.
Experiments should be performed for both a water hammer, and a periodic flow variation.
This would provide two types of transient events, which can be useful when evaluating
the simulation models. The blind tunnel provides an additional reflection point for the
pressure waves, which makes it more challenging for the simulation models. Firstly, the
experiment should provide information on the friction model of the 1D MOC. Thus, the
one should start by doing a full 1D simulation of the experimental rig. A precise friction
model is crucial if the 1D model is to be viable for a coupled simulation.

If the 1D model is able to successfully model the transient events, the bifurcation could
be replaced by a 3D CFD model, attempting a coupled simulation of the experimental rig.
Relevant results from the 1D simulation, in addition to the experiment would then be avail-
able, and the coupled 1D-3D model could be thoroughly investigated. For the set up of
the 1D-3D coupled model, the POC method by Zhang and Cheng [39] would be recom-
mended. In terms of software, it can be implemented in ANSYS CFX and FLUENT using
the CEL programming language. This is a very specific case, and there are certainly dif-
ferent approaches that could further the studies on 1D-3D coupled simulations. However,
the overall notion is that the field is in need of experimental investigation.
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[40] Chao Wang, Håkan Nilsson, Jiandong Yang, and Olivier Petit. 1d–3d coupling for
hydraulic system transient simulations. Computer Physics Communications, 210:
1–9, 2017.

[41] Dazhuan Wu, Shuai Yang, Peng Wu, and Leqin Wang. Moc-cfd coupled approach
for the analysis of the fluid dynamic interaction between water hammer and pump.
Journal of Hydraulic Engineering, 141(6):06015003, 2015.

[42] Xiao-xi Zhang, Yong-guang Cheng, Jian-dong Yang, Lin-sheng Xia, and Xu Lai.
Simulation of the load rejection transient process of a francis turbine by using a 1-d-
3-d coupling approach. Journal of Hydrodynamics, 26(5):715–724, 2014.

[43] Deyou Li, Xiaolong Fu, Zhigang Zuo, Hongjie Wang, Zhenggui Li, Shuhong Liu,
and Xianzhu Wei. Investigation methods for analysis of transient phenomena con-
cerning design and operation of hydraulic-machine systems—a review. Renewable
and Sustainable Energy Reviews, 101:26–46, 2019.

[44] JL Yin, DZ Wang, LQ Wang, YL Wu, and XZ Wei. Effects of water compressibility
on the pressure fluctuation prediction in pump turbine. In IOP Conference Series:
Earth and Environmental Science, page 062030. IOP Publishing, 2012.

[45] Erik Os Tengs. Numerical simulation of fluid-structure interaction in high head fran-
cis turbines. 2019.

[46] Kenneth C Hall, Jeffrey P Thomas, and William S Clark. Computation of unsteady
nonlinear flows in cascades using a harmonic balance technique. AIAA journal, 40
(5):879–886, 2002.

60



Appendix A

MOC with MIAB Friction Model

The governening equations, already presented in chapter 3, are repeated here [5, 9].

Hx +
1

g
Vt + hf = 0 (A1)

Ht +
a2

g
Vx = 0 (A2)

The subscripts x and t denotes the partial derivatives with respect to space and time. H is
the piezometric head, x and t are the space and time variables, respectively, V is the bulk
flow velocity, a is the wave propagation speed, g is the gravitational constant and hf is the
head loss per unit length.

The head loss, hf will be divided into a quasi steady, and an unsteady term, hf,q and
hf,u. Presented in section 3.4 and repeated here.

hf = hf,q + hf , u = f
V |V |
2gD

+

(
kt
g
Vt +

kxaφ

g
Vx

)
(A3)

Characteristics Equations

The continuity and momentum equations (A2) and (A1) form a pair of quasi-linear hy-
perbolic partial differential equations in terms of two dependent variables, velocity and
hydraulic-grade-line elevation, and two independent variables, distance along the pipe and
time. Skipping a few steps, the equations are formed into four ordinary differential equa-
tions by the characteristics method.

λdHdt + (1 + kt)
dV
dt + fV |V |

2D = 0
dx
dt = 2a

−φkx+
√
k2x+4(1+kt)

C+

λdHdt + (1 + kt)
dV
dt + fV |V |

2D = 0
dx
dt = −2a

φkx+
√
k2x+4(1+kt)

C−

(A4)
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C+ ⇒ λ =
−φkx +

√
k2
x + 4(1 + kt)

2a/g

C− ⇒ λ =
−φkx −

√
k2
x + 4(1 + kt)

2a/g

Not accounting for transient friction, the characteristic lines would be given solemnly
by the wave speed, dx/dt = ±a. However the transient friction provides the slightly more
complicated characteristic lines seen in Equation A4.

The ordinary differential equations (A4) are valid along the characteristic linesC+ and
C−. This impose the need of initial values as x = ct − x0, for getting a solution for the
domain. A solution can be found using the finite-differences equations.

Modifying Equation A4 the following relation is obtained.

C+ ⇒ dx

g
=

2a/g

−φkx +
√
k2
x + 4(1 + kt)

dt

C− ⇒ dx

g
=

−2a/g

φkx +
√
k2
x + 4(1 + kt)

dt

The above relation combined with Equation A4 produces the following relation for
C+ and C− respectively.

dH +
(1 + kt)2a/g

−φkx +
√
k2
x + 4(1 + kt)

dV + f
V |V |
2gD

dx = 0 (A5)

dH − (1 + kt)2a/g

φkx +
√
k2
x + 4(1 + kt)

dV + f
V |V |
2gD

dx = 0 (A6)

Introducing the cross-sectional pipeline area A and the average discharge Q = V ∗ A
Integrating the equations along the characteristic lines, from A to P for C+ and from B
to P for C−.

C+ : HP = HA −B+(QP −QA)−RQA|QA| (A7)

C− : HP = HB +B−(QP −QB) +RQB |QB | (A8)

These two compatibility equations are basic algebraic relations that describe the tran-
sient propagation of pressure head and flow in a pipeline. The notation of B+, B− and R
has been introduced to make the equations simpler.

B+ = 2
a

gA

(1 + kt)

(−φkx +
√
k2
x + 4(1 + kt))

B− = 2
a

gA

(1 + kt)

(φkx +
√
k2
x + 4(1 + kt))

R = f
∆x

2gDA2

II



These equations must hold for steady flow where QA = QP = QB and RQA|QA| is
the steady-state friction term.

The solution to a transient problem usually begins with steady-state conditions at time
zero, so that H and Q are known initial values. Then H and Q are found for each grid point
where t = ∆t, then t = 2∆t and so on. At any interior grid intersection point, section
i, the two compatibility equations are solved simultaneously for QPi and HPi . Equations
(A7) and (A8) may be written in a simple form,

C+ : HPi
= CP −B+QPi

(A9)

C− : HPi
= CM +B−QPi

(A10)

in which CP and CM are always known from the variables of the previous time step.

CP = Hi−1 +B+
i−1Qi−1 −RQi−1|Qi−1| (A11)

CM = Hi+1 −B−i+1Qi+1 +RQi+1|Qi+1| (A12)

HPi
can be eliminated from (A9) and (A10) which leads to the following:

QPi
=
CP − CM
B− +B+

(A13)

When QPi have been determined, then HPi can be determined from either (A9) or
(A10).

The end points of the system begin influencing the interior points after the first time
step. As previously mentioned, this method is dependent on knowing all values at a present
time step before it can compute the next. Thus, it is necessary to introduce appropriate
boundary and initial conditions.

Δx Δx

t0+Δt

t0+2Δt

t0+3Δt

t0

Δx+ Δx-

Δt'

P'

P

i
BA

i+1i-11 2 N N+1

C- C+

Figure A1: The grid used with MOC and MIAB friction model

Figure A1 shows how the characteristic lines deviate when transient friction is ac-
counted for. In a MOC model with a steady state friction model, all the characteristic
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lines have the same inclination. The grid is then modified so that the lines hit the same
point P for the same ∆t. In the MIAB model however, this is not the case, and ∆t will
vary and the QPi

and HPi
computed from the characteristic lines does not align perfectly

with the grid. A solution to this problem is interpolation, however, this may impose some
numerical error on the model.

For the interpolation, the following variables needs to be determined. ∆t′, ∆x+ and
∆x−. The first equation is obtained through geometric relations in Figure A1.

∆x+ + ∆x− = 2∆x (A14)

The second relation comes from Equation A4.

∆x+

∆t′
=

2a

−φkx +
√
k2
x + 4(1 + kt)

(A15)

∆x−

∆t′
=

−2a

φkx +
√
k2
x + 4(1 + kt)

(A16)

The subsequent equation is then found, eliminating ∆t′ from Equation A15 and Equa-
tion A16.

∆x+
(
−φkx +

√
k2
x + 4(1 + kt)

)
−∆x−

(
φkx +

√
k2
x + 4(1 + kt)

)
= 0 (A17)

Hence Equation A14 and Equation A17 can be solved to determine ∆x+ and ∆x−.
∆t′ can then be determined from Equation A15 or Equation A16.

With these values given, the values for H and Q can be found for the ∆t and ∆x
associated to the grid.

IV



Δx Δx

Δx+

Δt'

HP'

HP

HBHA

Δx2+ Δx2-

Δx-

Δt
C+

C-

Figure A2: Illustration of the offset of H ′P compared to HP

Figure A2 shows how the variation in the inclination of C+ and C− are unable to
match the ∆t and ∆x of the set grid. Hence interpolation is utilized to determine HP and
also QP .

The coefficients ∆x2+ and ∆x2− are found through geometry.

• ∆x2+ = ∆t
∆t′∆x

+

• ∆x2− = ∆t
∆t′∆x

−

The characteristic lines are then displaced so the solution of the equations arrive ex-
actly at the grid. As illustrated in Figure A3.

Δx Δx

HP

HBHA H+ H-

Δx2+ Δx2-

Δt C+
C-

HP'

Figure A3: Illustration characteristic lines from offset H values
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Figure A3 illustrates how the characteristic lines can be changed so that they provide
the solution exactly at the grid of ∆t and ∆x. However, the values of H± and Q± of the
previous time step has to be interpolated.

• If ∆x2+ > ∆x

H+ = Hi−2 +
2∆x−∆x2+

∆x
(Hi−1 −Hi−2) (A18)

Q+ = Qi−2 +
2∆x−∆x2+

∆x
(Qi−1 −Qi−2) (A19)

• If ∆x2+ < ∆x

H+ = Hi−1 +
∆x−∆x2+

∆x
(Hi −Hi−1) (A20)

Q+ = Qi−1 +
∆x−∆x2+

∆x
(Qi −Qi−1) (A21)

H− and Q− is determined in a similar fashion.
After all the values forH± andQ± are determined, the value ofHP can be determined

from Equation A4, providing a solution of HP exactly at the grid point. Nonetheless there
will still be an error from the interpolation. The error can be made smaller by using a finer
grid.

Boundary Conditions

Upstream Boundary
In the upstream reservoir there will be a constant head of HR. This is implemented in the
model by Equation A22.

HP1 = HR (A22)

However, the flow rate of the system still needs to be computed. Figure A4 again shows
the mismatch between the characteristic lines and the grid. At the upper boundary, only the
characteristic line, C− is available. The mismatch is present once again and interpolation
is necessary.

From Figure A4 and C− in Equation A4 the following interpolation scheme is de-
duced.

∆t′ =
φkx +

√
k2
x + 4(1 + kt)

−2a
∆x (A23)

Afterwards ∆x− is found through geometric relations seen in Figure A4. As the charac-
teristic line may be both steeper and less steep than the inclination ∆t/∆x, the point H−

may be either left or right of the point, H2. Hence, the interpolation has to be conducted
in the following manner.
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Δx

Δt'

Hp, Qp

H2H1

C-

Δx2-

Hp, Qp

H2H1

Δt
C-

H-

Figure A4: Illustration of upstream boundary mismatch, displacement of characteristic line C−

• If ∆t′ < ∆t

H− = H2 +
∆x2− −∆x

∆x
(H3 −H2) (A24)

Q− = Q2 +
∆x2− −∆x

∆x
(Q3 −Q2) (A25)

• If ∆t′ > ∆t

H− = H1 +
∆x−

∆x
(H2 −H1) (A26)

Q− = Q1 +
∆x−

∆x
(Q2 −Q1) (A27)

After the interpolation scheme is used to determine the values for H− and Q−, QP is
found using Equation A4.

Downstream Boundary
There exist several equations for describing the flow through a valve. The one used in this
model is deduced by Wylie and Streeter (1983). The outflow equations is presented below.

Q′ = −B+Cv +
√

(B+Cv)2 + 2CvCP (A28)

Cv is defined so that Cv = (Q0τ)2/(2H0). The dimensionless valve opening, τ is defined
so that τ = 1 for open valve steady flow and τ = 0 for a closed valve. How τ approaches 0
can be simulated with many different equations. For this model it goes from 1 to 0 linearly
with the equation τ = 1− t

tc
, in which tc is the closing time.

Similarly to the upstream boundary, the characteristic line used for may not match the
static grid, illustrated in Figure A5.

The mismatching characteristic line is once again modified, so it starts from a point
in the lengthwise direction, so it can be solved exactly at the point HP . Interpolation is
used to determine the value of H+. The interpolation scheme is mathematically presented
subsequently.
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Δx

Δt'

Hp, Qp

HN+1HN

C+

Δx2+

Hp, Qp

HN+1HN

ΔtC+

H+

Figure A5: Illustration of downstream boundary mismatch, and quantities for interpolation

The time step ∆t′ is determined from Equation A4, so that

∆t′ =
−φkx +

√
k2
x + 4(1 + kt)

2a
∆x (A29)

Obtaining ∆x is then done through geometric considerations, ∆x+ = (∆t/∆t′)∆x
Once again, H+ may be either left or right of HN depending on the inclination of the

characteristic line. This is accounted for by the following equations.

• If ∆t′ < ∆t

H+ = HN−1 +
2∆x−∆x+

∆x
(HN −HN−1) (A30)

Q+ = QN−1 +
2∆x−∆x+

∆x
(QN −QN−1) (A31)

• If ∆t′ > ∆t

H+ = HN +
∆x−∆x+

∆x
(HN+1 −HN ) (A32)

Q+ = QN +
∆x−∆x+

∆x
(QN+1 −QN ) (A33)

After H+ and Q+ has been correctly interpolated, the new Value for HP is computed
using Equation A4.
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Appendix B

Detailed explanation on how to treat pipe variations, bifurcations and change in diameter,
in the method of characteristics.

Complex Systems
For systems containing more than one pipeline, the interior section of each pipeline is
treated independently of other parts of the system at each instant of time. Each boundary
condition is treat independently of other parts of the system at each instant of time. The end
conditions of each pipeline must interface with adjoining pipelines or with other boundary
elements. This section covers multi-pipe systems and additional boundary conditions.

Series Connection

Figure B1: Series Connection redrawn from [5]

Figure B1 shows a pipeline with a change in diameter, however the method applies
equally well to a change in roughness, thickness or constraint condition. At the inter-
section, equation (4.9) is available for pipe 1 and equation (4.10) is available for pipe 2.
Continuity and the condition for a common hydraulic grade-line provide the following two
equations.

Q1,NS = Q2,1, H1,NS = H2,1 (B1)

Solving these together with equations (4.9) and (4.10) gives.

Q2,1 =
CP1,NS−1

− CM2,1

B1 +B2
(B2)
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Branch Connection

Figure B2: Branched junction redrawn from [5]

Figure B2 depicts a simple branched connection. To solve this system, the continuity
equation is used, a common head is assumed when minor effects area neglected, and the
compatibility equations, (4.9) and (4.10), are needed in each pipe. This gives the following
equations:

HP = H1,NS = H2,1 = H3,1

QP1,NS
= −HP

B1
+
CP1,NS−1

B1

QP2,1 = +
HP

B2
−
CM2,1

B2

QP3,1
= +

HP

B3
−
CM3,1

B3

A summation where the mass flow rates cancel out provides a simple solution for the
common head HP .
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HP =
CP1

/B1 + CM2
/B2 + CM3

/B3

1/B1 + 1/B2 + 1/B3
(B3)
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Appendix C

3D Simulation
In certain sections of a hydro power station, there will be sections where the efficient 1D
model falls short. Areas, such as the runner and the draft tube, will have strong 3D effects.
Therefore, doing a full 3D simulation on them is necessary. However, fully simulating
a hydro power station in 3D is unfeasible and probably unnecessary if one can combine
the 1D model of the conduits to the 3D model in the more complex sections. To reduce
computational costs, some researchers have focused their interest entirely on simulating
the hydraulic machine.

Start-up, shutdown and load variations are processes where transient events are present.
For accurate simulation of such events in 3D CFD, four issues arise [43].

• How to model turbulent flow
• Guide vane movement
• Unsteady boundary conditions at inlet and outlet
• Compressible simulation, state equation

Serious turbulent flow within the hydraulic machinery has a strong influence on the
accuracy of the transient flow simulation. According to Li et al. (2019) simpler turbulence
models are not accurate enough, and Large Eddy Simulation (LES) should be used to
simulate the unsteady turbulent flow.

Several methods to model guide vane movement exist, and commercially available
software such as ANSYS Fluent and CFX have a set of methods already programmed.

The accuracy of the model is influenced by the inlet and outlet conditions. In some
cases, experimental data is available, and the boundary conditions can be based of them.
This provides relatively high accuracy, however, one cannot always rely on experimental
data to be available. In the absence of experimental data, inlet and outlet the pressure is
set to be unsteady. Usually, total pressures at the inlet are approximately replaced by static
pressures at the inlet.

In 3D CFD, making the assumption of an incompressible fluid is often reasonable. That
is not the case for certain transient events such as water hammer. Yin et al. (2012) found
compressible simulations are able to capture large pressure fluctuations, and the lower
frequencies in the pressure signal. In conclusion, considering water compresssibility is
strongly recommended [44]. Therefore, an equation of state must be added.

Zhang and Cheng (2012) presented two methods for constructing these equations, by
defining a Density Function (DDF) and by Modifying the Ideal Gas Law (MIGL). The
latter method is relatively simple to implement. However, it is unreliable in terms of its
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physical meaning. Furthermore, it must be solved with the energy equation, demanding
more computational resources than the DDF. DDF is an explicit scheme, so it will have
good accuracy with sufficiently small time step. DDF was chosen as the preferred method
by the authors [39]. In DDF, the density is modelled as a function of the pressure. Ne-
glecting the pipe elasticity and the small changes in the wave propagation speed, a, the
equation of state is expressed mathematically in the following way.

ρ = ρ0e
(p−p0)/ρ0a

2
0 (C1)

ρ is the density, p is the pressure, and the subscript 0 denotes the reference value.

Model Order Reduction
The current bottleneck of 3D CFD is the computational demand. Increasing the efficiency
would provide a more practical model. Efficiency is usually gained at the cost of accuracy.
However, there are methods where one can exploit certain characteristics, such as peri-
odical effects or geometrical features, to provide a faster model without losing too much
accuracy.

The technique of Model Order Reduction (MOR) essentially reduces the complexity
of the simulation for the purpose of making it more efficient. MOR focuses on the input
and output parameters relevant to the project, constructing a transfer function which can
substitute for the actual simulation. The method requires large amounts of data. This tech-
nique is particularly well suited for structural analysis subjected to periodic effects. For a
fluid-structure-interaction simulation by Tengs (2019), the results were almost identical to
solving the full structure model. Although his research is promising, it is still a work in
progress [45].

Reducing the model in the CFD model is also possible, but more complicated. The
linear models used for structural analysis creates matrices that are easier to work with,
wherein the CFD holds many nonlinearities making MOR more complicated. However,
in turbomachinery, one can exploit the unsteady flow features that are periodic in time.
Hall et al. (2002) used Fourier series to represent the unsteady flow conservation vari-
ables. This assumption leads to a harmonic balance form of the Euler or Navier-Stokes
equations, which can be solved using CFD. In the analysis by Hall et al., the method
proved to be one to two orders of magnitude faster than conventional CFD simulations.
The computational results demonstrate that even strongly nonlinear flows can be modelled
to engineering accuracy. In some cases, it was also found that fluid nonlinearities area
found to be important for surprisingly small blade vibrations [46].
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Appendix D

Matlab Script for MOC QS friction
close all
clear all
clc

tic
cpuT=cputime;

%---------------Defining Variables------------------%
%%%%Re = 1870

N = 1001; %grid boxes
a = 1319; %wave propagation speed
Hr = 32; %reservoir pressure head for BC
D = .0221; %pipe diameter
A = .25*pi*Dˆ2; %crossectional area
g = 9.8066502; %gravitational const 9.8066502
L = 37.23; %Pipelength
f = .0345; %Darcy-Weisbach friction factor
NS = N+1; %number of grid points
tc = 0.009; %closing time
tend = 1.5;
rho0 = 999.057; %water density at 15.5 Celsius
dx = L/N;
dt = dx/a; %at the Courant boundary, could be smaller
tau = 1; %initial valve opening
t = 0; %time in the beginning
Em = 1.5; %taken from example in Streeter
R = f*dx/(2*g*D*Aˆ2);
B = a/(g*A);

Nvector = 1:NS;
x = 0:dx:L;

%---------------Initial values------------------%
V0 = .1;
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Q0(1:NS) = A*V0;
H0(1:NS) = Hr - f*dx*(Nvector-1).*Q0.*abs(Q0)/(2*g*Aˆ2*D);

figure(1)
subplot(2,1,1)
plot(x,H0);
title(’initial pressure through pipe’)
axis([0 L Hr*.999 Hr]);
subplot(2,1,2)
plot(x,Q0);
axis([0 L 0 Q0(1)*1.1]);
title(’initial volume flow through pipe’)

Q=Q0;
H=H0;

Qnew=zeros(1,NS);
Hnew=zeros(1,NS);

P=1;

timestep=1+floor((tend/dt));
time=linspace(0,tend,timestep);

for i = 0:dt:tend
%---------------Interior points------------------%
Cp = H(1:NS-1) + B*Q(1:NS-1) - R*Q(1:NS-1).*abs(Q(1:NS-1));
Cm = H(2:NS) - B*Q(2:NS) + R*Q(2:NS).*abs(Q(2:NS));
Hnew(2:NS-1) = .5*(Cp(1:NS-2)+Cm(2:NS-1));
Qnew(2:NS-1) = (Hnew(2:NS-1)-Cm(2:NS-1))/B;

%---------------Upper boundary------------------%
Hnew(1) = Hr;
Qnew(1) = (Hnew(1)-Cm(1))/B;
if t <= tc

tau=(1-(1/tc)*t)ˆEm;
else

tau=0;
end

%---------------Lower boundary------------------%
Cv = (Q0(1)*tau)ˆ2/(2*H0(NS));
if B*Cv+2*Cp(NS-1) < 0
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Qnew(NS) = -B*Cv - sqrt(abs((B*Cv)ˆ2+2*Cv*Cp(NS-1)));
else

Qnew(NS) = -B*Cv + sqrt((B*Cv)ˆ2+2*Cv*Cp(NS-1));
end

Hnew(NS) = Cp(NS-1) - B*Qnew(NS);

%---------------Values for plot------------------%
Hend(P) = Hnew(NS);
Qend(P)=Qnew(NS);

P = P + 1;
Q = Qnew; %changing the variables for the next iteration
H = Hnew;

t=t+dt;
end

e_cpuT=cputime-cpuT;
disp(e_cpuT)
toc

figure(2)
plot(time,Hend)
grid on;
title([’Transient head just upstream valve a=’, num2str(a,4)])
figure(3)
plot(time,Qend)
title(’volume flow as a function of time’)
axis([0 0.2*tend -Qend(1) Qend(1)]);

XVI



Matlab Script for MOC MIAB friction
close all
clear all
clc

tic
cpuT=cputime;

%---------------Defining Variables------------------%
N = 1001; %grid boxes
a = 1319; %wave propagation speed
Hr = 32; %reservoir pressure head for BC
D = .0221; %pipe diameter
A = .25*pi*Dˆ2; %crossectional area
g = 9.8066502; %gravitational const 9.8066502
L = 37.23; %Pipelength
f = .0345; %Darcy-Weisbach friction factor
NS = N+1; %number of grid points
tc = 0.009; %closing time
tend = 1.5;
rho0 = 999.057; %watrer density at 15.5 Celsius
dx = L/N;
dt = dx/a;
Nvector = 1:NS;
x = 0:dx:L;
%valve orifice
tau = 1; %valve opening
t = 0; %time in the beginning
Em = 1.5; %taken from example in Streeter

%---------------Initial values------------------%
V0 = .1;
Q0(1:NS) = V0*A;
H0(1:NS) = Hr - f*dx*(Nvector-1).*Q0.*abs(Q0)/(2*g*Aˆ2*D);
H00 = g*rho0*H0; %Pressure head in Pa

figure(1)
subplot(2,1,1)
plot(x,H0);
title(’initial pressure through pipe’)
axis([0 L Hr*.999 Hr]);
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subplot(2,1,2)
plot(x,Q0);
axis([0 L 0 Q0(1)*1.1]);
title(’initial volume flow through pipe’)

Q = Q0;
H = H0;
Qnew = zeros(1,NS);
Hnew = zeros(1,NS);

%----------Parrameters for MIAB Friction model---------------%
kx = .03;
kt = .04;
dt_ = zeros(1,N+1);
R = f*dx/(2*g*D*Aˆ2);

%-----------------Time Variables-----------------------%
P =1;
timestep=1+floor((tend/dt));
time=linspace(0,tend,timestep);

for i = 0:dt:tend

phi_p =sign(Q(2:NS).*(Q(2:NS)-(Q(1:NS-1)))/dx);
phi_m =sign(Q(1:NS-1).*(Q(2:NS)-(Q(1:NS-1)))/dx);
for j = 1:N

if phi_p(j) == 0
phi_p(j) = 1;

end
if phi_m(j) == 0

phi_m(j) = 1;
end

end
Bp = 2*a/(g*A)*(1+kt)./(-phi_p*kx + sqrt(kxˆ2 + 4*(1+kt)));
Bm = 2*a/(g*A)*(1+kt)./(phi_m*kx + sqrt(kxˆ2 + 4*(1+kt)));

alpha_p = -phi_p*kx + sqrt(kxˆ2 + 4*(1+kt));
alpha_m = phi_m*kx + sqrt(kxˆ2 + 4*(1+kt));

%%%% Finding dx,dt,.... for interpolation
dxp = 2*dx*alpha_m./(alpha_p+alpha_m);
dxm = 2*dx - dxp;
dt_(1) = -dx*alpha_m(1)/(-2*a);
dt_(2:N+1) = (dxp.*alpha_p)/(2*a);
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dx2p = dt*dxp./dt_(2:N+1);
dx2m = dt*dxm./dt_(1:N);

%%%% Finding H-,H+....
%-----------------Upstream Boundary-----------------------%
if dt_(1) < dt

Hm(1) = H(2) + (H(3)-H(2))*(dx2m(1)-dx)/dx;
Qm(1) = Q(2) + (Q(3)-Q(2))*(dx2m(1)-dx)/dx;

elseif dt_(1) > dt
Hm(1) = H(1) + (H(2)-H(1))*dx2p(1)/dx;
Qm(1) = Q(1) + (Q(2)-Q(1))*dx2p(1)/dx;

else
Hm(1) = H(2);
Qm(1) = Q(2);

end
%%% finne Qnew,Hnew(1) for finne Hp,Qp(1)

Cm(1) = Hm(1)-Bm(1)*Qm(1)+R*Qm(1)*abs(Qm(1));
Hnew(1) = Hr;
Qnew(1)=(Hnew(1)-Cm(1))/Bm(1);
if dx2p(1) > dx

Hp(1) = Hr;
Qp(1) = Q(1)+(Qnew(1)-Q(1))*(dt-dt_(2))/dt;

elseif dx2p(1)<dx
Hp(1) = H(1) + (H(2)-H(1))*(dx-dx2p(1))/dx;
Qp(1) = Q(1) + (Q(2)-Q(1))*(dx-dx2p(1))/dx;

else
Hp(1)=Hr;
Qp(1)=Q(1);

end
%-----------------Interior Points-----------------------%
for k = 2:N-1

if dx2p(k)>dx
Hp(k)=H(k-1)+(H(k)-H(k-1))*(2*dx-dx2p(k))/dx;
Qp(k)=Q(k-1)+(Q(k)-Q(k-1))*(2*dx-dx2p(k))/dx;

elseif dx2p(k)<dx
Hp(k)=H(k)+(H(k+1)-H(k))*(dx-dx2p(k))/dx;
Qp(k)=Q(k)+(Q(k+1)-Q(k))*(dx-dx2p(k))/dx;

else
Hp(k) = H(k);
Qp(k) = Q(k);

end
if dx2m(k)<dx

Hm(k)=H(k)+(H(k+1)-H(k))*dx2m(k)/dx;
Qm(k)=Q(k)+(Q(k+1)-Q(k))*dx2m(k)/dx;

elseif dx2m(k)>dx
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Hm(k)=H(k+1)+(H(k+2)-H(k+1))*(dx2m(k)-dx)/dx;
Qm(k)=Q(k+1)+(Q(k+2)-Q(k+1))*(dx2m(k)-dx)/dx;

else
Hm(k)=H(k+1);
Qm(k)=Q(k+1);

end
end
%-----------------Downstream Boundary-----------------------%
if dt_(N+1)<dt

Hp(N)=H(N-1)+(H(N)-H(N-1))*(2*dx-dx2p(N))/dx;
Qp(N)=Q(N-1)+(Q(N)-Q(N-1))*(2*dx-dx2p(N))/dx;

elseif dt_(N+1)>dt
Hp(N)=H(N)+(H(N+1)-H(N))*(dx-dx2p(N))/dx;
Qp(N)=Q(N)+(Q(N+1)-Q(N))*(dx-dx2p(N))/dx;

else
Hp(N)=H(N);
Qp(N)=Q(N);

end
%%% finne Qnew Hnew(N+1) for finne Hm Qm (N)

Cp(N)=Hp(N)+Bp(N)*Qp(N)-R*Qp(N)*abs(Qp(N));
if t <= tc

tau=(1-(1/tc)*t)ˆEm;
else

tau=0;
end
Cv = (Q0(1)*tau)ˆ2/(2*H0(NS));
if (Bp(N)*Cv)ˆ2+2*Cv*Cp(N)>=0

Qnew(N+1)=-Bp(N)*Cv+sqrt(abs((Bp(N)*Cv)ˆ2+2*Cv*Cp(N)));
else

Qnew(N+1)=-Bp(N)*Cv-sqrt(abs((Bp(N)*Cv)ˆ2+2*Cv*Cp(N)));
end
Hnew(N+1)=Cp(N)-Bp(N)*Qnew(N+1);
if dx2m(N)<dx

Hm(N)=H(N)+(H(N+1)-H(N))*dx2m(N)/dx;
Qm(N)=Q(N)+(Q(N+1)-Q(N))*dx2m(N)/dx;

elseif dx2m(N)>dx
Hm(N)=H(N+1)+(Hnew(N+1)-H(N+1))*(dt-dt_(N+1))/dt;
Qm(N)=Q(N+1)+(Qnew(N+1)-Q(N+1))*(dt-dt_(N+1))/dt;

else
Hm(N)=H(N+1);
Qm(N)=Q(N+1);

end

%-----------------Computing Qnew, Hnew-----------------------%
Cp = Hp + Bp.*Qp - R*Qp.*abs(Qp);
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Cm = Hm - Bm.*Qm + R*Qm.*abs(Qm);
%interior points 2:N
Qnew(2:N)=(Cp(1:N-1)-Cm(2:N))./(Bm(2:N)+Bp(1:N-1));
Hnew(2:N)=Cp(1:N-1)-Bp(1:N-1).*Qnew(2:N);
%Note: Boundaries already computed

%disp(t);
%-----------------Variables for plot-----------------------%
Hend(P) = Hnew(NS);
Qend(P)=Qnew(NS);

P = P + 1;
Q = Qnew;
H = Hnew;

disp(i)
t=t+dt;

end

e_cpuT=cputime-cpuT;
disp(e_cpuT)
toc

figure(2)
plot(time,Hend)
grid on;
title([’Transient head just upstream valve a=’, num2str(a,4)])
figure(3)
plot(time,Qend)
title(’volume flow as a function of time’)
axis([0 0.2*tend -Qend(1) Qend(1)]);

XXI



Matlab Script for MOC Zielke’s friction
close all
clear all
clc

tic
cpuT=cputime;

%---------------Defining Variables------------------%
N = 1001; %grid boxes
a = 1319; %wave propagation 1286 expremintal, 1319 mandair sim
Hr = 32; %reservoir pressure head for BC
D = .0221; %pipe diameter
A = .25*pi*Dˆ2; %crossectional area
g = 9.8066502; %gravitational const 9.8066502
L = 37.23; %Pipelength
f = .0345; %Darcy-Weisbach friction factor
NS = N+1; %number of grid points
tc = 0.009; %closing time
tend = .5;
rho0 = 999.057; %watrer density at 15.5 Celsius
dx = L/N;
dt = dx/a; %at the Courant boundary, could be smaller
nu = 1.18181818181818e-06;
timestep=1+floor((tend/dt));
time=linspace(0,tend,timestep);
Pmax=size(time);
Pmax=Pmax(2);

%valve orifice
tau = 1; %valve opening
t = 0; %time in the beginning
Em = 1.5; %taken from example in Streeter

%---------------Parameters for Zielkes model------------------%
R = f*dx/(2*g*D*Aˆ2);
B = a/(g*A);
Rc = 16*nu*dx/(g*A*Dˆ2);
A_z = .5/sqrt(pi);
B_z = 210.08; %laminar flow Vardy
Q_Z = zeros(round(tend/dt),NS);
h_u = zeros(1,NS);

%Weighting Function
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tauZ=4*nu*time/((D)ˆ2);
tauZ=tauZ+tauZ(2);
W=A_z*exp(-B_z*tauZ)./(sqrt(tauZ));

Nvector = 1:NS;
x = 0:dx:L;

%---------------Initial values------------------%
V0 = .1;
Q0(1:NS) = V0*A;
H0(1:NS) = Hr - f*dx*(Nvector-1).*Q0.*abs(Q0)/(2*g*Aˆ2*D);
H00 = g*rho0*H0; %Pressure head in Pa

figure(1)
subplot(2,1,1)
plot(x,H0);
title(’initial pressure through pipe’)
axis([0 L Hr*.999 Hr]);
subplot(2,1,2)
plot(x,Q0);
axis([0 L 0 Q0(1)*1.1]);
title(’initial volume flow through pipe’)

Q = Q0;
H = H0;
Qnew = zeros(1,NS);
Hnew = zeros(1,NS);

P=1;

for i = 0:dt:tend
%Parameters for Zielke
Q_Z(P,:)=Q;
for j=1:(P-1)

h_u = h_u+(Q_Z(j+1,:)-Q_Z(j,:))*W(P-j);
end
h_u = Rc*h_u;

%All Cp, Cv
Cp = H(1:NS-1) + B*Q(1:NS-1) - R*Q(1:NS-1).*abs(Q(1:NS-1)) - h_u(1:NS-1);
Cm = H(2:NS) - B*Q(2:NS) + R*Q(2:NS).*abs(Q(2:NS)) + +h_u(2:NS);

%Interior points
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Hnew(2:NS-1) = .5*(Cp(1:NS-2)+Cm(2:NS-1));
Qnew(2:NS-1) = (Hnew(2:NS-1)-Cm(2:NS-1))/B;

%upper boundary
Hnew(1) = Hr;
Qnew(1) = (Hnew(1)-Cm(1))/B;

if t <= tc
tau=(1-(1/tc)*t)ˆEm;

else
tau=0;

end

%lower boundary
Cv = (Q0(1)*tau)ˆ2/(2*H0(NS));

if B*Cv+2*Cp(NS-1) < 0
Qnew(NS) = -B*Cv - sqrt(abs((B*Cv)ˆ2+2*Cv*Cp(NS-1)));

else
Qnew(NS) = -B*Cv + sqrt((B*Cv)ˆ2+2*Cv*Cp(NS-1));

end

Hnew(NS) = Cp(NS-1) - B*Qnew(NS);

disp(i);
%Values for plot
Hend(P) = Hnew(NS);
Qend(P)=Qnew(NS);
Hmid(P) = Hnew(NS/2);
hfmid(P)=h_u(NS/2);

P = P + 1;
Q = Qnew;
H = Hnew;
h_u = zeros(1,NS);

t=t+dt;
end

e_cpuT=cputime-cpuT;
disp(e_cpuT)
toc

XXIV



figure(2)
plot(time,Hend)
grid on;
title([’Transient head just upstream valve a=’, num2str(a,4)])
figure(3)
plot(time,Qend)
title(’volume flow as a function of time’)
axis([0 0.2*tend -Qend(1) Qend(1)]);

figure(5)
hold on
plot(time,hfmid/max(hfmid))
plot(time,W/max(W))
xlim([0 .1])
title([’Unsteady Headloss at midpoint a=’, num2str(a,4)])
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Appendix E

The heat equation was used for all three friction models. The script will be the same
for all friction models, but the file containing the source terms will be different.

Matlab Script for the Heat equation
close all

clear all
clc

%------------Defining Variables-------------%
%spatial refinement
nx = 50;
D = .0221;
x = linspace(0,D/2,nx);
dx = x(2)-x(1);
%timevector
tend = 1.5; %end time
N = 1001; %grid boxes
a = 1319; %wave propagation 1286 expremintal, 1319 mandair sim
L = 37.23; %Pipelength
dt = (L/N)/a;
timestep=1+floor((tend/dt));
t=linspace(0,tend,timestep);
nt= size(t);
nt=nt(2);
m = 1;

Re = 1870;
rho0 = 999.057;
f = .0345;
A = .25*pi*Dˆ2;
V0 = .1;
Q0 = V0*A;
nu = V0*D/Re;
mu= nu*rho0;
dpdx=f*rho0*V0ˆ2/(2*D); %dpdz0 = 7.78259976244344; %different density?
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%----------------Source term from MOC-------------------%
global S_QSfric
load(’Sourceterm_QSfriction_n1001.mat’)

%----------------Solving the equations-------------------%
sol = pdepe(m,@heatcyl,@heatic,@heatbc,x,t);
u = sol(:,:,1);
u_end = u(nt,:);
%---------------Heat Equation Parameters----------------%
Q = 2*pi*(sum((sol(nt,:).*x)*dx));
V = Q/A;

%------------------PLOTS-----------------------%
figure(1)
surf(x,t,u)
xlabel(’x’)
ylabel(’t’)
zlabel(’u(x,t)’)
view(2)

figure(2)
plot(t,sol(:,1))
xlabel(’Time’)
ylabel(’Velocity u(0,t)’)
title(’Velocity change at center of disc’)

figure(3)
plot(x,sol(nt,:))
xlabel(’x’)
ylabel(’Velocity u(x) [m/s]’)
title(’Position from disc center’)
%------------For 3D hastighetsprofil-------------%
n=300;
for i = 1:n+1

X(i,:)=sin(2*pi*(i-1)/n)*x;
Y(i,:)=cos(2*pi*(i-1)/n)*x;
Z(i,:)=u_end;

end
figure(4)
surf(X,Y,Z)
xlabel(’x’)
ylabel(’y’)
zlabel(’u(r)’)
view(0,0)
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%------------Heat Equation-------------%
function [c,f,s] = heatcyl(x,t,u,dudx)
global S_QSfric
dt=2.81977310028864e-05;
nu=1.18181818181818e-06;
t_col=1+round(t/dt);
disp(t);
c = 1/nu;
f = dudx;
s = S_QSfric(t_col,1002);
end

%------------Initial Conditions-------------%
function u0 = heatic(x)
load(’initial_u_r50.mat’)
nx = 50;
D = .0221;
P = round(x/(.5*D/(nx-1)));
disp(P);
u0 = u_init_r50(P+1);
end

%------------Boundary Conditions-------------%
function [pl,ql,pr,qr] = heatbc(xl,ul,xr,ur,t)
pl = 0; %ignored by solver since m=1
ql = 0; %ignored by solver since m=1
pr = ur;
qr = 0;
end
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Appendix F

Governing Equations for Pipe Flow

The 1D model which will be presented later, are based on the governing equations for
1D pipe flow, namely, the momentum and continuity equations. The following section
presents and derives these equations, which ultimately are modified into Allievi’s equa-
tions.

Momentum Equation

The momentum equation describes change in the systems momentum resulting from the
forces acting on it. In the following section, the momentum equation for 1D flow in a pipe
is derived from a freebody diagram, Figure F1. Wylie and Streeter provide a more detailed
derivation [5].

H-z

pA+(pA)xδx

z

τ0πD
δx

δx

pA

x

α

Hydraulic gradeline

γAδx

H

(p+pxδx/2)Axδx

Figure F1: Freebody diagram showing the forces acting on a control volume

The equation is in terms of average velocity V , centerline pressure p, the discharge Q
and the piezometric head H . Subscripts x and t denotes partial derivatives with respect to
space and time.
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The force balance related to the freebody diagram in Figure F1 is represented mathe-
matically as

pA− [pA+ (pA)xδx] +

(
p+ px

δx

2

)
Axδx− τ0πDδx− γAδx sinα = ρAδxV̇

Small terms containing δx2 are dropped and the moment balance is reduced to

pxA+ τ0πD + ρgA sinα+ ρAV̇ = 0 (F1)

For the sake of this derivation, the shear stress will be computed in terms of the Darcy-
Weisbach friction factor. The transient calculations will then be determined from the cur-
rent ”steady” velocity. This way of modelling transient friction is often referred to as
quasi-steady.

τ0 =
ρfV |V |

8
(F2)

f is the Darcy-Weisbach friction factor in the above equation. In Equation F1, V̇ denotes
the acceleration of a particle in fluid with the velocity, V . Its mathematical representation
is below.

V̇ = V Vx + Vt (F3)

Applying Equation F3 and Equation F2, Equation F1 becomes

px
ρ

+ V Vx + Vt + g sinα+ f
V |V |
2D

= 0 (F4)

The pressure term p can be related to the centerline elevation z, and the piezometric head
H .

px = ρg(Hx − sinα) (F5)

Note Equation F5 is valid for liquids where the density ρ, is considered constant compared
to H and z. It is not valid for gases.

Finally, using Equation F5, Equation F4 becomes

gHx + V Vx + Vt + f
V |V |
2D

= 0 (F6)

Continuity Equation
For 1D pipeflow where ρ is the density, A is the cross-sectional area and V is the cross-
section average velocity, the continuity equation can be written in the following way

∂(ρA)

∂t
+
∂(ρAV )

∂x
= 0 (F7)

Introducing the material derivative, D
Dt = ∂

∂t +V ∂
∂x , and dividing Equation F7 by ρA,

the equation becomes the following

1

ρA

D

Dt
(ρA) + Vx = 0 (F8)
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Using a dot to denote the material derivative, so that Ȧ = DA
Dt , it can be written on the

form
Ȧ

A
+
ρ̇

ρ
+ Vx = 0 (F9)

In the next step, the following assumptions are listed below.

• The term Ȧ/A represents the expansion of the wall. The wall elasticity is negelcted
by setting this term to 0

• Poison’s ratio is introduced so that ρ̇ρ = ṗ
K

• The wave speed neglecting elasticity of pipe wall is a =
√
K/ρ

Applying these assumptions reduces Equation F9 to the following.

ṗ

p
+ a2Vx = 0 (F10)

This form will be the same if the pipe wall elasticity is included, however the wave prop-
agation speed, a, would be different. A thorough derivation of this is found in Wylie and
Streeter. As for the momentum equation, the continuity equation is written in terms of the
piezometric head.

ṗ = ρg(Ḣ − ż) = ρg(V Hx +Ht− V zx − zt)

The pipe has no transverse motion so that zt = 0 and zx = sinα. Similar to Equation F1, α
is the inclination angle of the pipe. Finally, we have Equation F11, the continuity equation,
conveniently represented by the average velocity V and the piezometric head H .

V Hx +Ht − V sinα+
a2

g
Vx = 0 (F11)

Allievi’s Equations
Both the momentum and continuity equations contains terms of lesser importance. Re-
moving these terms leads to version of the momentum and continuity presented below.
These are often referred to as Allievi’s equations, and they govern transient behaviour of
fluids in pipes. The method of characteristics (MOC) solves these equations to compute
the transient properties of pipe flow. MOC will be thoroughly described in chapter 3.

gHx + Vt + f
V |V |
2D

= 0 (F12)

Ht +
a2

g
Vx = 0 (F13)
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