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Abstract

With the introduction of Fine Timing Measurement (FTM) protocol in IEEE 802.11,
WiFi now has a standardized way of estimating distance between an Access Point (AP)
and a client device that should provide 1 meter accuracy. While previous research into
indoor localization has achieved this accuracy and beyond, the ubiquity of WiFi could
significantly reduce the friction to indoor positioning.

Previous studies have found varying evidence for the 1 meter accuracy claim. This
thesis uses a Google Pixel 3a smartphone and 3 Google WiFi APs to attempt to verify the
accuracy using the network of indoor control points in the building of the Department of
Civil and Environmental Engineering. It also provides substantial background on previous
work on indoor positioning.

The study does not find compelling evidence for the 1 meter accuracy claim using the
minimal setup described. Median ranging accuracy is 2 meters, with 90th percentile of 6
meters. The localization error is 6.7 meters median, and 90th percentile of 10.8
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Sammendrag

Som følge av introduksjonen av den s̊akalte Fine Timing Measurement (FTM) protokollen
i IEEE 802.11 har WiFi n̊a en standardisert måte å estimere distansen mellom en tr̊adløs
basestasjon og en nettverksklient. Denne protokollen har en p̊ast̊att nøyaktighet p̊a 1
meter. Selv om tidligere forskning p̊a innendørs posisjonering har oppn̊add b̊ade denne
nøyaktigheten og bedre, har den vidstrakte bruken av WiFi potensiale til å gjøre po-
sisjonering betydelig enklere.

Tidligere studier har funnet varierende bevis for p̊astanden om 1 meters nøyaktighet.
Denne oppgaven bruker en Google Pixel 3a smarttelefon sammen med 3 Google WiFi
basestasjoner for å forsøke å verifisere nøyaktigheten. Dette gjøres ved hjelp av fast-
merkenettverket som finnes inne i bygningen til Institutt for Bygg og Miljøteknikk (IBM).
Den presenterer ogs̊a vesentlig bakgrunnsinformasjon p̊a tidligere studier om inndendørs-
posisjonering.

Oppgaven klarer ikke å finne gode bevis for p̊astanden om 1 meters nøyaktighet. Ved
estimering av distanse er den observerte feilen p̊a opp til 6 meter i 90% av tilfellene, med
en median p̊a 2 meter. Resultatene for posisjonering er 10,8 meter feil i 90% av tilfellene,
med en median 6,7 meter.
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Chapter 1

Introduction

Since their introduction, beginning with civilian use of GPS in the 1980s, GNSS systems
have become the de facto standard way of determining user position. A network of satel-
lites allows users to determine their location anywhere in the world, with high accuracy
and ease of use. This, combined with the rise of the smartphone, has paved the way for
a number of location aware services, ie. services where the location of the user is core
to its functionality. A good example is the recent rise in electric scooter rental services.
However, one well known limitation of GNSS systems is that they require a Line of Sight
(LOS) between the satellite and the receiver. This means that their accuracy is limited
in urban canyons, where signals are blocked by tall buildings and skyscrapers, as well as
in the indoor environment. This is because the satellite signal does not have the ability
to penetrate solid materials.

At the same time, people are spending a lot of their time indoors, in buildings that
are both large and complex. Being able to determine ones location in it represents a
clear benefit for the end user and, as described by Chen and Clarke (2019), will give
rise to new kinds of applications and value layers. To this end, a number of technologies
and techniques have been investigated in scientific literature, for use in indoor positioning.
Furthermore, a number of complete Indoor Positioning Systems (IPS) have been proposed
and developed.

One of the more recent advances is the addition of the Fine Time Measurement (FTM)
protocol to the IEEE 802.11 standard. This presents a standardized way to perform
localization using WiFi, considered a prime candidate for IPSs due to its ubiquitousness,
and promises meter level accuracy according to the WiFi Alliance (2017). On the Android
smartphone platform, measurements based on this standard is available to any application
running on compatible hardware as of Android 9 Pie.

The goal of this thesis is to: 1. Provide background on the various technologies,
techniques and systems presented in literature, and 2. Attempt to verify the claim of
meter level accuracy in FTM, using a Pixel 3a smartphone and Google WiFi Access
Points (AP), which both provide support for the standard.
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The thesis is structured as follows: Chapter 2 provides background, including the FTM
standard. Chapter 3 describes experimental setup and execution. Chapter 4 presents ex-
perimental results as well as discussions. Finally, chapter 5 provides concluding remarks.
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Chapter 2

Background

Section 2.1 and 2.2 will present techniques and technologies used in IPS, while the latter
will also mention specific systems. To this end they rely on the survey papers presented
by Liu et al. (2007), Yanying et al. (2009), Makki et al. (2015), and Zafari et al. (2019).
These all present various IPSs, as well background information on how they work. Then,
section 2.3 will present in more detail, preliminary work on time based ranging in WiFi.
Finally, section 2.4 will discuss work similar to this thesis.

2.1 Localization Techniques

There are a few different techniques for determining location that has been used in the
indoor environment, whether those are distance based or matches some observed variable
to a pre-measured one. What follows is an introduction to those methods that has been
suggested in literature.

2.1.1 Triangulateration

Many techniques are based on the principle of triangulateration, that is determining the
relative position of some unknown point based on the properties of triangles. This can be
achieved either by estimating the distances, called trilateration, or by estimating angles,
called triangulation. Several different such methods have been suggested for indoor use.

Time of Flight One possible method is observing the propagation time of a signal for
a number of known Reference Nodes (RN), known as Time of Flight (ToF) (Makki et al.,
2015; Zafari et al., 2019) or sometimes, Time of Arrival (ToA) (Liu et al., 2007; Zhu et al.,
2014). This method employs the simple relationship between signal travel time and the
distance

D = (t2 − t1) · v (2.1)

3



where (t2−t1) is the flight time of the signal, that is the time delta between departure and
arrival, and v is the signal propagation speed. With sufficient measurements the position
can be determined as the intersection of circles, for example by using the Least Squares
Method (LSM)

F (x) =
n∑

i=1
α2

i f
2
i (x)

where αi is a weight parameter and, assuming (xi, yi) is the position of the RN, (x, y) is
the unknown position, furthermore

fi(x) = Di −
√

(xi − x)2 + (yi − y)2

The ToF method has strict time synchronisation requirements between a RN and the
mobile target. For example in systems where the propagation speed in the speed of light,
3 nanoseconds equates to about 1 meter.

A special case of ToF is called Return Time of Flight (RToF) (Liu et al., 2007; Zafari
et al., 2019) or Round Trip Time (RTT). This method uses the ”there and back again”
principle. Assuming a signal was sent at t1 by node 1, the signal is then received by node
2, which immediately sends an acknowledgement. This is then received by node 1 at t2.
Then equation 2.1 becomes

DRT T = (t2 − t1) · v2
this reduces the need for time synchronisation between the nodes, since all time-stamping
done by node 1.

Time Difference of Arrival The Time Difference of Arrial (TDoA) is a localization
method that measures the difference of signal propagation time to/from several nodes,
either by having the tracked object sending a signal to the RNs, or by having the RNs
transmit simultaneously to the tracked object (Liu et al., 2007; Zhu et al., 2014; Makki
et al., 2015; Zafari et al., 2019). The first method is the most common, as the second
needs to overcome potential issues with signal collision.

Knowing these time differences, we know that for each measurement, the tracked
object must lie somewhere on the hyperbola of constant range differences, expressed as

Ri,j =
√

(xi − x)2 + (yi − y)2 −
√

(xj − x)2 + (yj − y)2

Again (xi, yi) and (xj, yj) is the known positions of the RNs. This can then be solved by
linear regression, or by linearizing using a Taylor series for an iterative solution.

This method still requires strict time synchronisation between the RNs, however, it
does not require any synchronisation with the tracked object.

4



Figure 2.1: DTDoA localization (Makki et al., 2015)

Differential Time Difference of Arrival Makki et al. (2015) also mentions Differ-
ential Time Difference of Arrival (DTDoA). This method is vaguely similar to TDoA,
however, the important distinction is that DTDoA only uses 1 RN, as illustrated in figure
2.1. The RN and receivers are all fixed and their position is known. The procedure starts
with the RN transmitting a packet and the receivers noting the ToA. This first step also
allows for time synchronisation between the APs. Then the tracked object transmits a
packed and again the ToA is recorded by the receivers. Essentially, the system has now
done two TDoA estimations, one for the RN and one for the tracked object. We can now
use this information to solve an equation on the form

∆Ri,j =
(√

(xj − xR)2 + (yj − yR)2 −
√

(xi − xR)2 + (yi − yR)2
)

−
(√

(xj − x)2 + (yj − y)2 −
√

(xi − x)2 + (yi − y)2
)

The main advantage with this method over basic TDoA, is that it does away with the
need for additional time synchronisation between the APs. However, as most time based
methods, it is prone to errors due to clock drift, especially if the delay between the RN
and the tracked object is large.

Figure 2.2: AoA based localization (Liu et al., 2007)

5



Angle of Arrival Angle of Arrival (AoA) is a method that estimates location based on
the bearing towards known points (Liu et al., 2007; Zhu et al., 2014; Zafari et al., 2019) as
illustrated in figure 2.2. The main advantages of this method is that only 2 RNs are needed
for a 2D estimation and, that it does not require any time synchronisation. However,
AoA based systems normally require specialized and often large hardware. Furthermore,
systems are very sensitive to errors, as any small error in angle estimation will result in a
large localization error.

Received Signal Strength Based Distance One of the simplest, and perhaps most
widely used methods is distance estimation based on the Received Signal Strength Indi-
cator (RSSI) (Liu et al., 2007; Zhu et al., 2014; Zafari et al., 2019). This is an estimation
of the power of the received signal, measured in decibel-milliWatts (dBm) or milliWatts
(mW), as reported by the hardware. There are various theoretical and empirical models
for the relationship between RSSI and distance, but a common one is

RSSI = −10n log10 d+ A

where n is a path loss exponent and A is the RSSI at reference distance. This equation
is then solved for distance d.

This method is both simple to implement and cost effective, as it does not require
any special hardware to function. However, the accuracy is often poor, due to multipath
problems, as the relationship between RSSI and distance is non-linear and is adversely
affected by obstacles such as walls.

2.1.2 Scene Analysis

Another possible localization technique is called scene analysis or fingerprinting (Liu et al.,
2007; Zafari et al., 2019). Normally, a number of fingerprint values, eg. RSSI or magnetic
field information, is collected in an offline phase. This creates a map of fingerprints that
online values, as observed by the tracked object, can be compared with. The offline
phase of this method is often considered its main downside, as it is time consuming and
therefore expensive. Additionally, it needs to be redone in every new location, as well as
after any changes to the environment. Therefore, Jang and Kim (2019) presents a survey
of systems which do not require this step by using methods such as inter/extrapolation
or crowdsourcing. There is also a few different algorithms used to compare the offline and
online values.

Probabilistic Method It is possible to consider positioning as a classification problem,
based on the likelihood that a tracked object is in some location (x, y) given the observed
values (Liu et al., 2007; Zafari et al., 2019). Consider a set of n location candidates

6



L = {L1, L1, . . . , Ln}, then for any observed vector of values O, we select Li as the
location if

P (Li|O) > P (Lj|O) for i, j = 1, 2, . . . , n and i 6= j

or, assuming that P (Li) = P (Lj), we can use Bayes theorem to instead get the likelihood
of vector O given location Li, thus selecting Li if

P (O|Li) > P (O|Lj) for i, j = 1, 2, . . . , n and i 6= j

The downside of this method is that it can only locate to discrete points, that is
the points that was measured during the offline survey. However, it is possible to use a
weighted average of positions instead, ie.

L̂ =
n∑

i=1

[
P (Li|O)(Li)

]

k-Nearest Neighbours In stead of calculating probabilities, k-Nearest Neighbours
(kNN) finds the position based on the average position of the k nearest candidates in
signal space (Liu et al., 2007; Caso et al., 2018; Zafari et al., 2019). The two important
considerations with such a method is the selection of parameter k and the selection of
similarity metric.

The most common similarity metrics are Root Mean Square Error (RMSE) or the
Minkowski distance (Dp). Assume a set of fingerprints F = {F1, F2, . . . , Fn} and an
observed vector O, then the similarity metrics between O and Fi is

RMSE =
√√√√ n∑

j=1

(oj − f i
j)2

n

Dp =
( n∑

j=1
|oj − f i

j |p
) 1

p

where oj and f i
j is the j-th element of O and Fi respectively. Typically, p = 1, ie.

Manhattan distance, or p = 2, ie. Euclidean distance.

Artificial Neural Networks Using techniques from machine learning, an Artificial
Neural Network (ANN) can be trained to predict the location based on O (Liu et al.,
2007; Zafari et al., 2019). The basic concept of a neural network is to find a set of weights
W that parameterizes a function HW such that the error of

L̂ = HW (O)

is minimized, through training on a set of pre-classified data (Russell and Norvig, 2016).
In the case of localization, this is the fingerprints from the offline survey and their corre-
sponding positions.
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The most common architecture of a localizing ANN is a multi-layer perceptron with
one hidden layer, according to both Liu et al. (2007) and Zafari et al. (2019). However,
this is not the only possible architecture, Shao et al. (2018) uses a Convolutional Neural
Network (CNN) for a deep learning approach to fingerprinting.

Support Vector Machine A Support Vector Machine is another technique from the
field of machine learning that can be used for localization purposes (Liu et al., 2007; Zafari
et al., 2019). They have been used for classification and regression purposes in a wide
variety of fields.

Smallest M-Vertex Polygon Smallest M-Vertex Polygon is a technique that searches
for candidate locations by considering each fingerprint source, such as a WiFi or Bluetooth
Access Point, individually (Liu et al., 2007). Each AP contributes at least one candidate,
and then polygons with m vertices are created by selecting one candidate from all m
sources. The average position of the smallest polygon is the estimated position.

2.2 Technologies & Systems

The previously mentioned techniques are not necessarily constrained to only one tech-
nology, in fact several different technologies have been investigated for use in indoor
positioning, each with their own strengths and weaknesses. A summary of all the systems
that are mentioned can be found in table 2.1.

Various sources divide systems into two main architectures (Liu et al., 2007; Yanying
et al., 2009; Zhu et al., 2014; Zafari et al., 2019). The first is Device Based Localization
(DBL). This architecture is characterized by the use of several transmitters in known
points, with the receiver having unknown position. Location estimation is then performed
on the device it self. This allows the mobile unit to ”own” its location resulting in better
privacy. However, a potential downside is the potential reduced computational power of
the receiver devices.

The other architecture is Monitor Based Localization (MBL). This can be considered
to be the reverse architecture of DBL, in that is uses receivers in known points, while
the mobile unit acts as a transmitter. The data is then sent to some central localization
server that computes the final location estimation. This setup is more common in scenarios
where the goal is to track inventory and/or personnel in some confined space. A common
example is tracking expensive equipment in a hospital. In this case the tracked device no
longer owns its own location, reducing potential privacy compared to DBL.

Liu et al. (2007) suggest that two additional architectures might exists. First is Indirect
Monitor Based Localization (I-MBL). This uses a similar setup as DBL, but the location
is then sent from the tracked device to a central server for storage, so that objects can

8



be tracked/monitored indirectly. This might alleviate some of the privacy concerns of
standard MBL, if the tracked object is in control of communication with the remote
server.

The other is Indirect Device Based Localization (I-DBL). This uses a similar setup as
MBL, however, the location estimate is then sent to the tracked device, and not simply
stored on the server, allowing the device to locate itself, just indirectly.

WiFi Also known as WLAN or IEEE 802.11, WiFi is an ubiquitous standard for high
bandwidth communication between devices that operates on 2.4GHz and 5GHz frequen-
cies of the Industrial, Scientific, and Medical (ISM) band (Liu et al., 2007; Zhu et al.,
2014; Makki et al., 2015; Zafari et al., 2019). It is considered one of the prime technolo-
gies for indoor localization, since it is be possible to reuse hardware that is found in most
buildings and devices today. However, it does have some problems with interference in
the ISM band, that might affect accuracy.

One of the first systems to use WiFi for localization, was RADAR, developed by a
Microsoft research group (Bahl and Padmanabhan, 2000). This system used the reported
RSSI in two distinct ways to locate the device. The first is offline fingerprinting with
a kNN algorithm. The other is modelling signal propagation using a Wall Attenuation
Factor and a Floor Attenuation Factor in order to model the impact walls and floors have
on RSSI. RADAR has a reported accuracy of 2-3 meters.

Horus (Youssef and Agrawala, 2008) is a fingerprinting based system that uses the
probabilistic method previously described. It produces position estimations that are
within 1.8 meters in 90% of cases, and a median accuracy as good as 39cm was achieved
for one of the test beds. However, the use of fingerprinting does make it sensitive to
changes in the environment.

Chronos (Vasisht et al., 2016) uses a single AP with multiple antennas to estimated
the device location, requiring both devices to be Multiple-Input Multiple-Output devices,
commonly known as MIMO. ToF is estimated to each of the AP antennas, and then an
error minimization process is used to estimate the location of the device based on the
geometric constraints of antenna configuration on the AP. Zafari et al. (2019) comments
on the fact that, while the system achieves a median accuracy of 65cm, it is not scalable,
and that it appears to have high power requirements.

Discussions about ToF based systems are left out of this section on purpose, as they
will be presented and discussed in more detail in section 2.4.

Bluetooth Another Radio Frequency (RF) based and ubiquitous technology is Blue-
tooth, also known as IEEE 802.15.1. Like WiFi, it operates in the 2.4GHz range of the
ISM band and is available on most phones and laptops (Liu et al., 2007; Zhu et al., 2014;
Zafari et al., 2019). The latest iteration, called Bluetooth 5 or Bluetooth Low Energy
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(BLE), can provide a data exchange rate of 24 Mbps and a range up to 100 meters.
Furthermore, Angle of Arrival was added to the standard, possibly allowing sub meter
accuracy in certain settings (Cominelli et al., 2019). But to date, most Bluetooth based
systems use RSSI for location estimation.

iBeacons are a type of beacons based on Bluetooth that was developed by Apple
Inc. specifically for proximity detection (Zafari et al., 2019). While using a protocol
designed for proximity detection is certainly a good candidate for localization, it is a
known limitation that, while the sampling rate is 50ms, only average RSSI is reported
every second. This is a privacy decision made in the design of the protocol.

Topaz (as cited in Liu et al., 2007; Yanying et al., 2009) is an IPS based on Blue-
tooth. It has 3 main components: a positioning server, wireless APs, and Bluetooth
tags. The Bluetooth enabled APs record the RSSI of nearby tags and forwards this to
the positioning server for calculation. It provides room level accuracy; 2 meters with 95%
reliability. However, a positioning delay of 15-30 seconds is incurred because of the system
architecture.

Zafari (2016) developed a system where RSSI values of different iBeacons is recorded
on the user device. This data is then forwarded to a server running 3 different algorithms;
Particle Filter, Kalman Filter-Particle Filter, and Particle Filter-Extended Kalman Filter,
used to improve the accuracy. The three approaches have a reported accuracy of 1.441m,
1.03m, and 0.95m respectively. The system is energy efficient but does suffer from a
significant delay according to Zafari et al. (2019).

Zigbee Developed by the Zigbee Alliance and built upon the IEEE 802.15.4 standard,
Zigbee is a low data rate, low cost, and energy efficient protocol for PNs, such as smart
home devices (Zafari et al., 2019). This makes it a possible candidate for localization in
Wireless Sensor Networks, however, it has not (yet) seen the same widespread use as WiFi
and Bluetooth in user devices, making it less favorable compared to these. Uradzinski
et al. (2017) uses Zigbee along with a fingerprint database to achieve sub-meter accuracy.

Radio Frequency Identification A technology used in many localization systems is
RFID (Liu et al., 2007; Yanying et al., 2009; Zafari et al., 2019). It is a technology for
transmitting and storing small data using electromagnetic transmission. Systems consists
of two parts, the RFID tag which stores and emits the data (often an ID), and a reader
that can read or write to the tags. It can be for example be used as a replacement for
barcodes.

Two basic variants exists, defined by the types of tags that are used. First is active
RFID that operate in the Ultra High Frequency, known as UHF, or microwave range. In
these systems, the tags have their own power source and periodically transmit their ID.
They have reasonable range and tags are easy to embed in devices.
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The second type is passive RFID, where tags do not have their own power source, and
as such are smaller, lighter, and cheaper than their active counterparts. Communications
is performed when the reader inducts current into the passive circuit, initiating transmis-
sion. This system has very limited range, 1-2 meters, making them mostly unsuitable for
indoor localization purposes.

WhereNet (as cited in Yanying et al., 2009) is a system developed by Zebra Technology
company. It uses a TDoA algorithm, where antennas in fixed, known locations receive
signals form active tags and forward this information to a central server for calculations.
The system has a reported accuracy of 2-3 meters.

LANDMARC (Ni et al., 2004) uses additional tags as reference points, to increase
accuracy without the need to increase the number of readers. Then the kNN algorithm
is used to estimate location on a central server. LANDMARC is energy efficient, and has
decent range. However, the system has high tracking latency. The median accuracy is 1
meter.

Shirehjini et al. (2012) propose a system that utilizes a carpet of passive RFID tags.
Readers on the mobile unit can read the information from nearby tags and uses it to
compute location. The proposed system is very accurate, with average errors of 6.5cm.
However, using low range tags necessitates the use of a large number of them.

Ultra Wide Band UWB uses ultra short pulses (> 1 nanosecond) and large bandwidth
(> 500MHz) allowing it to achieve low power consumption and, more importantly, be very
robust to the multipath problem, as the short pulses make it easier to identify the first
arrival of the signal while filtering out subsequent ones, caused by signal reflection (Liu
et al., 2007; Yanying et al., 2009; Zafari et al., 2019). This short pulse duration also allows
for accurate ToF estimations. Another significant advantage is that UWB does not suffer
from interference from RF signals, such as WiFi or Bluetooth, due to differences in signal
types, as well as the radio spectrum used. Furthermore, it can penetrate a wide variety
of materials, including walls, but does suffer from interference from liquids or metallic
materials. Furthermore, as a result of the slow progress on a UWB standard, it sees only
limited use in consumer products.

Ubisense (as cited in Liu et al., 2007; Yanying et al., 2009; Zafari et al., 2019) is a com-
mercial positioning system from the Ubisense Company that was founded by researchers
from AT&T Cambridge. It takes advantage of both the TDoA and AoA to estimate
location. The system consists of three parts: Sensors, Tags, and a proprietary software
platform. While it achieves an accuracy as high as 15cm, high cost is a limiting factor for
this system.

Ultrasound Best known as the mechanism used by bats to navigate in caves, ultrasound
have been investigated for positioning purposes (Liu et al., 2007; Zafari et al., 2019). These
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systems are generally based on ToF as the lower signal speed, ie. the speed of sound,
results in lower requirements for time fidelity. As seen in figure 2.3, ultrasound does not
penetrate walls like RF signals do, meaning that systems are very applicable to room level
tracking. Additionally, systems have been shown to have centimeter accuracy. Downsides
to such systems include being susceptible to reflected signals and noise caused by metallic
objects. Furthermore, the speed of sound will change depending on temperature and
humidity, requiring additional sensors to compensate.

Figure 2.3: Comparison between RF and Ultrasound propagation (Yanying et al., 2009)

Cricket (Priyantha et al., 2000) is an IPS that uses ultrasound and ToF to locate
a target. Emitters are mounted in known locations on walls and ceilings, while each
tracked object is fitted with a receiver, which also performs the triangulation. Localization
is performed by an emitter that concurrently transmits an RF signal and a ultrasound
pulse. When a receiver detects the RF signal, it then begins to listen for the ultrasound
pulse that arrives a little later. The difference in arrival time between these to signals is
then used to estimate the ToF. The reported accuracy of the system is 10cm.

The Bat system (Harle and Hopper, 2005) is developed jointly by AT&T Cambridge
and the University of Cambridge. It uses a system of active tags called bats that is worn
by the users. Upon receiving instructions to do so, a bat transmits an ultrasonic signal
that is then received by a matrix of receivers in the ceiling. Each receiver has a known
location, such that the location of the bat can be calculated. The positional accuracy has
been determined to be within 3cm in 95% of cases.

Audible Sound In a similar fashion to ultrasound, some positioning systems leverage
sound signals in the audible range (Yanying et al., 2009; Zafari et al., 2019). Systems
can either rely on tracked objects emitting an acoustic signal that can be detected by
microphones in the environment, or microphones on the tracked object can detect signals
emitted from RNs. Either way, both microphones and loudspeakers are ubiquitous on
smartphones and laptops, allowing for the reuse of these components. While Yanying
et al. (2009) argues that using signals that are perceivable to the human ear increases
privacy by making it explicit when an object is tracked, Zafari et al. (2019) argues that
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signals should be of low enough power to be imperceptible so that they do not cause noise
pollution.

Beep (Mandal et al., 2005) uses sound produced by a mobile device and the ToF
technique to locate objects. Acoustic sensors in fixed positions detect and forward the
signal to a central server which computes the location over WiFi. WiFi is also used in
order to time synchronize the sensors and the mobile device. The reported accuracy is
0.6 meters in 97% of cases.

Figure 2.4: The BeepBeep system (Peng et al., 2012)

Not to be confused with the previous system, BeepBeep (Peng et al., 2012) uses an
acoustic signal and commodity hardware to enable two way ranging. This enables ranging
to be performed between any two devices that have a microphone and a loudspeaker. As
shown in figure 2.4, the procedure has two steps. First device A will emit a sound to be
recorded by both A and B. Then device B will emit a different sound to be recorded by
both B and A. Each device now holds a recording containing both signals, and can use
this to compute the ToF to the other device. Reported accuracy is 1cm for ranging and
3cm for positioning.

GuoGuo (Liu et al., 2016) is an example of a sound based system that uses an acoustic
signal imperceptible to the human ear. To this end, it requires proprietary acoustic
transmitters, while the tracked device uses advanced signal processing in order to detect
the signals. The reported accuracy of the system is 6-15cm.

Infrared IR is a form of electromagnetic radiation that has been suggested for several
positioning systems (Yanying et al., 2009). On one hand, these systems are considered to
be very accurate, with tags that are small, light-weight and cheap. On the other, there
are some important disadvantages, including a LOS requirement and being susceptible to
interference from sunlight, as well as florescent lighting. And although tags are light and
low cost, the camera arrays used to detect them can be expensive, especially compared
to coverage area. Finally, IR was considered a good candidate because of its widespread
use in various devices. These days however, the use of IR is mainly limited to remote
controls.

Active Badge (Want et al., 1992) is another system developed by AT&T Cambridge.
Badges carried by users or attached to tracked objects transmit a unique IR signal every
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15 seconds, that is then detected by at least one sensor in the space. The accuracy of the
system is room level only.

Firefly (as cited in Yanying et al., 2009) is a motion tracking system, developed by
Cybernet System Corporation, that can be used for location purposes. It consists of tags,
a controller, and a camera array, and uses the IR light emitted by several tags that are
attached to the object. This allows the system to track and animate the motion of that
object. The tags are lightweight and small, but must be attached to the controller using
wires. Furthermore, the area covered by the camera array is small, about 7 meters. On
the other hand, the accuracy is reported to be about 3mm.

Visible Light Visible Light Communication is an emerging technology for high speed
data transfer (Zafari et al., 2019). It uses Light Emitting Diodes (LEDs) to emit visible
light in the 400-800THz range, which can be detected by sensors which can then estimate
the position of, and direction towards the LEDs, with AoA being considered to be the
most accurate method.

Other Besides the major technologies discussed above, there are also examples of sys-
tems that does not rely on either of them, or even some combination of them.

Shao et al. (2018) uses both WiFi and magnetic fingerprints to estimate location.
They create images from the fingerprint information of the two mediums and combines
them using a CNN. The reported accuracy is 1 meter in 95% of cases.

GROPING (Zhang et al., 2015) uses crowdsourcing to construct a geomagnetic map of
a floor or a building that can then be used to localize users. However, the cited accuracy
is 5 meters in 90% of cases, and the system uses 30 seconds to converge on this answer,
so it cannot work in real time.

Easy Living (Brumitt et al., 2002) is a vision based position system developed by a
Microsoft research group. It uses two cameras to track objects within an area. The benefit
of this method is that there is no hardware requirement on the user side. However, the
accuracy is only room level.

Lu et al. (2016) proposes a system that uses thermal imaging to estimate user location.
Thermal imaging has the benefit, as compared to traditional imaging, that the system
will function even in the absence of light, which might be useful in search and rescue
scenarios. The authors only report the classification accuracy of the system, it classifies
the correct location in about 97% of cases.
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2.3 Time Based Ranging in WiFi

As mentioned previously, WiFi is currently considered the prime technology for consumer
facing indoor positioning, because of its wide spread use both in buildings and on user
devices. While much of the work up until today has been focused around RSSI, such as
the previously mentioned RADAR, considered a pioneering work in the field, the accuracy
of such methods is known to be limited (Au, 2016). Therefore, work has also been done to
investigate the feasibility of a time based system using WiFi. This work culminated in the
Fine Timing Measurement protocol being added to in the IEEE 802.11-2016 amendment of
the WiFi standard (IEEE, 2016). This section will first introduce some of the preliminary
work on time based ranging in WiFi, then describe the official FTM standard, then a
least squares algorithm, used to estimate coordinate position from the distance ranges,
will be introduced. Finally, related work using FTM will be presented.

2.3.1 Preliminary Work

While there has been substantial work put into researching time based methods for WiFi,
this section will only focus on a subset of them. Makki et al. (2015) presents a more
varied survey of this work, as well as a good overview of the different iterations of the
IEEE 802.11 standard.

An important first step in enabling time based ranging, is the work of Gunther and
Hoene (2005), which proved that it was possible to use off-the-shelf WiFi hardware to
estimate range, despite the low resolution of the timestamps provided at that time. The
technique used the DATA and ACK (acknowledge) packets, as well as statistical methods
in the application layer. The reported mean ranging error is 8 meters, and required 1000
packet transmissions for the statistical methods to be effective.

Hoene and Willmann (2008) built on the work of Gunther and Hoene, using the
Request-to-Send (RTS) and Clear-to-Send (CTS) packets in addition to DATA and ACK.
This reduces the number of packet sequences required, while also increasing accuracy to
about 4 meters.

While these initial investigations into application level tracking showed that ranging
was indeed feasible, they are clearly limited in their accuracy, as well as requiring a large
number of packets. To address this problem, Izquierdo et al. (2006) presents a method
that works on the lower MAC level by using the built in 44 MHz clock of the WiFi card
to do time-stamping. This both increases the time resolution, as well as eliminating any
delay that might occur between receiving a result and that result being communicated
to the application layer. Furthermore, they only need to use the RTS and CTS packets.
Using 300 packet sequences and a least squares method, similar to the one presented in
2.3.3, they report an accuracy of 2 to 2.3 meters in 90% of cases.

Some of the authors expand on this work to use a Discrete Kalman Filter in dy-
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namic tracking environments (Ciurana et al., 2006). Using simulations, they find that the
tracking error of their Kalman filter is 1.4m in 90% of cases.

Ciurana et al. (2009) further explored using the Central Processing Unit (CPU) clock
instead of the WiFi card clock, by modifying the driver software to use the CPU Time
Stamp Counter (TSC). In general, the CPU is configured at a much higher frequency
than the WiFi card, normally > 1GHz, resulting in < 1ns time resolution. This method
uses the DATA-ACK packet sequences and is reported to have an accuracy better than 2
meters in LOS environments.

Schauer et al. (2013) similarly used the CPU clock, however they preferred to use
the NULL-ACK sequences for their ranging. Using only 30 RTT values, they achieved a
mean ranging error of 1.3 meters using an HP laptop in a optimal, ie. LOS, environment.
However, the same procedure on a Samsung laptop had a mean error of 27 meters. The
procedure was also tested in an office environment, where the respective systems produces
a mean error of 5.5 and 275 meters respectively. The results clearly show that the hardware
that is used has a significant impact on the accuracy, all things being equal.

Casacuberta and Ramirez (2012) compare the previously described method of using
the CPU clock, with a timestamp from the Timing Synchronisation Function (TSF) that
is used to coarsely synchronise WiFi equipment on the same network. They find that the
CPU TSC method is better, with a mean error 1.5 meters compared to 2.8 meters.

Ciurana et al. (2011) looked at the benefits to then then new IEEE 802.11v amend-
ment. First, the requirement for nodes to be associated or authenticated before exchanging
frames is removed, thus allowing any device to communicate with any AP in such a way
as to allow for ranging without delay. Second, the AP processing time, ie. the turnaround
time, is added to responses with an expected resolution of up to a tenth of a millisecond.
It is vital to know this delay, since the speed of light is approximately 0.3 meters per
nanosecond, so even a minimal delay will cause significant errors in the range estimation.
Previously, this delay had to be determined empirically by measuring the delay when
immediately next to the AP. Finally, 802.11v was expected to include timestamps of the
transmission and reception of frames. This became the Timing Measurement protocol,
the predecessor to FTM.

A slightly different, more low level method using a time-continuous Barker code is
introduced by König et al. (2010). This method uses signal processing rather than time-
stamping, estimating the ToF as the delay of the peak correlation of the Barker code.
The advantage of this is that it provides ”sub-sample” accuracy, that is accuracy beyond
the sampling rate of the WiFi card itself. The authors report an accuracy of 1.17 meters
in a LOS environment.
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2.3.2 WiFi Round-Trip-Time

To simplify and standardize time based localization using WiFi, the FTM protocol of the
802.11mc amendment was added to the WiFi standard in the 802.11-2016 revision (IEEE,
2016). This protocol provides a standardized way to estimate distances between nodes in
a WiFi network by measuring the RTT of a signal.

Figure 2.5: Basic overview of FTM protocol (Ibrahim et al., 2018)

Figure 2.5 illustrates the basic principle of the FTM protocol. An initiator, eg. a
smartphone, starts by sending a FTM request. This is acknowledged by the responder,
eg. a WiFi Access Point, indicating that the responder is ready to send FTM packets.
One request initiates one burst of n measurements.

The responder then sends a FTM packed with the exact time of departure t1 indicated.
Then, the initiator records the exact time of arrival t2 and immediately responds with a
packet containing these timestamps, as well as the time of departure for this packet t3.
Finally, the responder records the time of arrival t4. Assuming n such measurements the
RTT can be calculated as

RTT = 1
n

( n∑
i=1

t4(i)−
n∑

i=1
t1(i)

)
− 1
n

( n∑
i=1

t3(i)−
n∑

i=1
t2(i)

)
(2.2)

As mentioned before, it is important to know the processing delay to perform accurate
ranging. The FTM protocol handles this by recording the t2 and t3 timestamps in addition
to start and end times. As can be seen in equation 2.2, the processing delay can then be
subtracted, leaving only the actual flight time of the signal.

Now that we have the total flight time of the signal the range between the two nodes
can be calculated as

DRT T = RTT

2c
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where c is the speed of light.

2.3.3 Least Squares Method

Having obtained ranges to at least 3 AP’s, that is 3 known locations, we can use the process
of LSM in order to estimate the location of the receiver node (Dargie and Poellabauer,
2010). This is done by estimating the intersection of circles. Given the circle equation

x2 + y2 = r2

we can construct the following set of equations
(x1 − x)2 + (y1 − y)2

(x2 − x)2 + (y2 − y)2

...
(xn − x)2 + (yn − y)2

 =


r2

1

r2
2
...
r2

n


where (xi, yi) is the known position of node i, and ri is the estimated distance to the node,
ie. DRT T

i .
This system can be expressed as a linear least squares problem on the form

Ax = b+ v (2.3)

where v is the vector of residuals, and

A = 2 ·


(xn − x1) (yn − y1)
(xn − x2) (yn − y2)

... ...
(xn − xn−1) (yn − yn−1)


and the left hand side

b =


r2

1 − r2
n − (x2

1 − x2
n)− (y2

1 − y2
n)

r2
2 − r2

n − (x2
2 − x2

n)− (y2
2 − y2

n)
...

r2
n−1 − r2

n − (x2
n−1 − x2

n)− (y2
n−1 − y2

n)


and the solution to this least squares system is then

x = (ATWA)−1ATWb

where W is the weight matrix.
The weights can either be the identity matrix, equivalent to unweighted LSM, or it

can be weights based on the measurements. Dargie and Poellabauer (2010) suggest the
following formula

wi = 1/
√
σ2

distancei
+ σ2

positioni
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where σdistancei
is the reported standard deviation of the range to the ith AP, and σpositioni

is the standard deviation of the known position of the AP. Another alternative from
surveying is weighting on the measured distance, putting more emphasis on the results
from RNs that are closer. (Ghilani, 2010)

wi = 1/ri

This method is very useful for calculating an initial position for the unknown point,
however, this is not very accurate. In traditional surveying it is common to use a non-
linear least squares based on Newtons method in order to solve the problem iteratively
(Ghilani, 2010). This method takes an initial ”guess” for the location and iteratively
calculates corrections to the estimate, until the corrections are below some threshold.
While the individual equations change, the basic matrix representation has the exact
same form as equation 2.3

J∆x = k + v (2.4)

where J is the Jacobian matrix of partial derivatives, ∆x is the vector of unknowns, ie.
the corrections, k is a vector of constants, and v is the vector of residuals. Specifically for
our case we have that

J =



x̂− x1

r̂1

ŷ − y1

r̂1

x̂− x2

r̂2

ŷ − y2

r̂2... ...
x̂− xn

r̂n

ŷ − yn

r̂n


and

k =


r1 − r̂1

r2 − r̂2
...

rn − r̂n


where (x̂, ŷ) is the current best estimate for the unknown position, (xi, yi) is the known
position of the ith AP, ri is the range observed between the receiver and the AP, while r̂i

is the same range calculated using the known coordinates of the ith AP and the estimated
location of the unknown point.

The solution to this system is then

∆xj = (JTWJ)−1JTWk

and
x̂j+1 = x̂j + ∆xj

where x̂j is the jth estimation of the position.
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Using LSM we can also calculate the precision of our estimates, by calculating the
standard deviation (Ghilani, 2010). Remember that the two equations 2.3 and 2.4 have
the exact same form, so the following is valid for both methods, but will use the variable
naming from 2.3.

Equation 2.3 can alternatively be written as

v = Ax− b

giving us the residuals v of the current estimation. From this we can estimate the reference
standard deviation S0 as

S0 =
√
vTWv

n− e
where n− e is the number of observations minus the number of unknowns, ie. the degrees
of freedom in the system. We can then calculate the variance-covariance matrix as

S2
xx = S2

0 · (ATWA)−1 =


S2

x1 Sx1x2 . . . Sx1xn

Sx2x1 S2
x2 . . . Sx2xn

... ... . . . ...
Sxnx1 Sxnx2 . . . S2

xn


where Sxixj

is the covariance between the ith and jth unknowns, and S2
xi

is the variance
of the ith unknown.

2.4 Related Work

Naturally, the FTM protocol have been considered in various other works, both to verify
its accuracy, as this study will, or by fusing the results of FTM with other positioning
techniques.

Ibrahim et al. (2018) also attempts to verify the meter-level accuracy claim. They use
Intel Dual Band Wireless-AC 8260 and 8265 wireless chips in both client and AP mode,
as well as ASUS Wireless-AC1300 RT-ACRH13 APs. They conducted experiments both
in outdoor environments, as well as indoor. For our purposes, the indoor results are the
most relevant.

For distance observations, they observe a 2.6 meter median error, and a 6.5 90th
percentile error. They also propose a temporal filtering technique that improves the
results to 2.5 and 4.8 meters. They also check localization accuracy by using an iterative
non linear least squares algorithm similar to that previously presented in this chapter. In
this case, they report the accuracies for each type of AP separately. For the Intel cards,
the median accuracy is 5.2 meters and 90th percentile of 11.6. After applying the filtering,
these become 4.2 and 8.2 respectively. Using the ASUS APs, the reported accuracies are
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Ranging
Ranging
Filtered

ASUS
Location

ASUS
Filtered

Intel
Location

Intel
Filtered

Mean 2.6 2.5 3.8 3.5 5.2 4.2
90th 6.5 4.8 6.2 4.7 11.6 8.2

Table 2.2: Summary of Ibrahim et al. errors

3.8 median and 6.2 90th percentile. Again the filtering improves these results to 3.5 and
4.7 respectively.

Overall they conclude that, while meter level accuracy is possible in some specific
conditions, the accuracy in rich multipath environments does not seem higher than that
demonstrated by other systems. However, they note that FTM can deliver this accu-
racy with relatively few access points and minimal site survey, and that accuracy should
improve with a denser deployment of APs.

Šeleng (2019) compares range estimations of FTM with range estimations based on
Bluetooth and WiFi RSSI. As expected FTM outperforms these methods when tested on
a Google Pixel 2. The reported average error of FTM is 1.7 meters in one environment
and 1.2 meters in another. Location accuracy is not tested.

Xu et al. (2019) uses data from smartphone sensors to perform Pedestrian Dead Reck-
oning (PDR), and then use a particle filter to fuse these observations with FTM. The
PDR also helps detect outliers in the FTM data. The authors analyse both FTM ranging
errors, as well as comparing the localization errors of FTM and a linearized least squares,
PDR alone, and the proposed particle filter fusion method. In the study, a Google Pixel
3 smartphone is used, but no indication to the type of AP is given.

Using FTM ranging alone, the authors report an error less than 1.35 meters in 80%
of cases. However, they also observe errors as high as 4 meters in some Non-Line of Sight
(NLOS) scenarios. While for localization, the authors report a mean error of 1.65 meters
for PDR, 2.21 meters for LSM, and 0.89 for the fusion method.

The authors conclude that using PDR alongside FTM is a viable option for indoor
localization, and provides meter level accuracy using 2000 particles in the filter, with a
positioning delay of about 0.5 seconds.

Yu et al. (2019) present a similar approach, but using a Unscented Kalman Filter
instead. They report all errors to be within 2 meters.

Finally, Guo et al. (2019) proposes to combine FTM with classical RSSI scene analysis
methods, fusing them with a scalar Kalman filter. Their experiments used a Intel Dual
Band Wireless-AC 8260 WiFi card, and used both a Google Pixel and Google Pixel 3
smartphone.

While they test their algorithm in both outdoor and indoor environments, only the
results in indoor environment is interesting to this thesis. Using the raw data from FTM,
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they report a mean ranging error of 0.896 meters, as well as a 95th percentile error of
1.838 meters. Their proposed fusion method achieves 0.443 meters mean error, and 95th
percentile of 1.161 meters.

The authors also report on the localization accuracy of their proposed algorithm. In
this case the mean error using FTM only is 2.063, and less than 4.918 in 95% of cases.
The same metrics for their proposed algorithm is 1.435 and 2.761 respectively.
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Chapter 3

Experiment

In order to verify the accuracy of WiFi RTT, several test was conducted. At first, the
possibility to use the existing WiFi network at NTNU was investigated. Unfortunately,
the APs currently used in the network does not yet support FTM. Instead it was decided
to use a Google Pixel 3a mobile phone and 3 Google WiFi routers/APs, in combination
with the indoor network of benchmarks that exists in the building of the Department of
Civil and Environmental Engineering at NTNU. This chapter will describe the setup and
execution of these test.

3.1 Indoor Control Points

Figure 3.1: Example of benchmark on linoleum floor

In 2012, a network of control points was established in connection with previous exper-
iments on indoor positioning at the department (Midtbø et al., 2012). These are points
with known coordinates in a coordinate system specific to the building, and was therefore
used as ground truth values during the tests. The points are marked in the linoleum floor
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of the building with a physical imprint, as well as red enamel paint, as illustrated in figure
3.1

Figure 3.2: Locations of the control points within the building

During the Fall semester of 2019, renovations was started in some parts of the building,
and were still ongoing as of the Spring semester of 2020, during which work on this thesis
was performed. As a result of the renovations, a number of the control points was de-
stroyed or otherwise made unavailable. Figure 3.2 shows the location of all control points
within the building, including the aforementioned unavailable ones, which are indicated
with a grey cross. Furthermore, a larger version which includes point name labels can be
found in appendix A, along with the coordinates of each point.

3.2 Android Application

For the purposes of conducting the actual tests, an Android application was developed to
run on the Pixel 3a hardware. This smartphone was selected specifically because it is one
of few current models that is known to support the WiFi FTM protocol.
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3.2.1 RTT API

Android provides an API1 that allows you to do ranging based on WiFi FTM using
compatible mobile phones. This section will give a brief introduction to the API, with
code examples in the Kotlin programming language.

In order to use the API, a total of three permissions are required, as these inform and
protects the user’s privacy. On the Android platform, such permissions are declared in
AndroidManifest.xml as shown

Listing 3.1: Define permissions
<uses - permission

android:name =" android . permission . ACCESS_WIFI_STATE " />
<uses - permission

android:name =" android . permission . CHANGE_WIFI_STATE " />
<uses - permission

android:name =" android . permission . ACCESS_FINE_LOCATION " />

Furthermore, the ACCESS_FINE_LOCATION is considered a dangerous permission by the
system, and must therefore be explicitly requested at runtime, as shown

Listing 3.2: Check and request permission
private fun checkPermission (): Boolean

if (
ContextCompat . checkSelfPermissions (

context ,
Manifest . permission . ACCESS_FINE_LOCATION

) != PackageManager . PERMISSON_GRANTED
) {

// Permission not already granted
ActivityCompat . requestPermissions (

activity ,
arrayOf ( Manifest . permission . ACCESS_FINE_LOCATION ),
requestCode )

return false
} else {

// Permission was already granted
return true

}

This function will present the user with a dialog box, with options to grant or deny
location permission. In order to receive the result of this prompt, applications should
override the onRequestPermissionResult function, as shown

Listing 3.3: Capture permission result
override fun onRequestPermissionsResult (

requestCode : Int ,
permissions : Array <out String >,

1https://developer.android.com/guide/topics/connectivity/wifi-rtt
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grantResults : IntArray
) {

// Assuming ACCESS_FINE_LOCATION is the only dangerous
permission

if (
grantResults . isNotEmpty () &&
grantResults [0] == PackageManager . PERMISSION_GRANTED

) {
// Access granted

}
}

When the relevant permissions have been granted by the user, the application needs
to perform a scan for nearby access points that support the FTM standard. This is done
by constructing a callback receiver, registering for the relevant intent with the system,
and then requesting a scan to be performed.

Listing 3.4: Scan for compliant APs
private fun doScan () {

// Get WiFi system service
val wifiManager = activity . getSystemService ( Context .

WIFI_SERVICE ) as WifiManager

// Set up result receiver
val wifiScanReceiver = object : BroadcastReceiver () {

override fun onReceive ( context : Context , intent : Intent )
{

// We do no require subsequent results
context . unregisterReceiver (this)

// Check if scan was successful
val success = intent . getBooleanExtra (

WifiManager . EXTRA_RESULTS_UPDATED ,
false

)

if ( success ) {
// Filter scan results and save
networklist = wifiManager

. scanResults

. filter { it. is80211mcResponder }
} else {

// Handle scan error
}

}

}

// Register for the SCAN_RESULTS_AVAILABLE_ACTION intent
val filter = IntentFilter ()
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filter . addAction ( WifiManager . SCAN_RESULTS_AVAILABLE_ACTION )
context . registerReceiver ( wifiScanReceiver , intentfilter )

// Initiate scan
wifiManager . startScan ()

}

Note the ScanResult#is80211mcResponder field, which indicates whether the AP of
the corresponding ScanResult supports WiFi FTM. There is also a limit on how often
any application can initiate a scan, approximately 4 times over 2 minutes. Scanning more
often than this will result in a scan error.

Now that a list of the nearby compliant APs has been obtained, the application is
ready to perform ranging. To do this it uses the WifiRttManager to initiate a single
burst to each of the APs in networklist.

Listing 3.5: Perform ranging
private fun doRanging () {

if (! context . packageManager . hasSystemFeature ( PackageManager .
FEATURE_WIFI_RTT )) {

// RTT not available on phone
return

}

// Get RTT system service
val rttManager = context . getSystemService ( Context .

WIFI_RTT_RANGING_SERVICE ) as WifiRttManager

if (! rttManager . isAvailable ) {
// RTT disabled at the moment
return

}

// Build a request with all APs
val request = RangingRequest . Builder ().run {

networklist . forEach { addAccessPoint (it) }
build ()

}

// Create callback receiver
val callback = object : RangingResultCallback () {

override fun onRanginResults (res: List < RangingResult >) {
// Handle ranging result

}

override fun onRangingFailure (res: Int) {
// Handle ranging error

}

}
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// Perform SINGLE burst
rttManager . startRanging (

request ,
AsyncTask . THREAD_POOL_EXECUTOR ,
callback

)
}

3.2.2 Implementation

The application2 was developed using the built-in API that was presented in the previous
section. The simple application allows a user to scan for AP’s within range that support
the protocol and then select any number of them to perform ranging.

(a) Ranging view before starting (b) Ranging view during measurement

Figure 3.3: Example of ranging in application

When the relevant APs have been selected, the user is presented with a screen that
allows to set a name/description to the session, before selecting start. Ranging bursts are
then performed at the rate of once pr second. When ranging is stopped, the results are
saved in a predefined .csv file format in internal storage. The columns of the file are

mac address The mac address/BSSID of the AP in question

timestamp Time when the ranging was performed in millis since startup

attempted Number of rangings attempted in burst

successful The number of successful attempts in the burst
2https://github.com/choffa/RTT app
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distance Estimated distance, in millimeters

std dev The reported standard deviation of the ranging in question

rssi The reported signal strength of the AP at the time of ranging

Each row represents a single burst to a single AP. Furthermore, the name/description, as
well as ISO timestamp is recorded in the header section of the .csv file.

3.3 Measurements

The actual tests themselves was conducted over two weekends in early May 2020, later
than originally planned due to the closure of campus in the wake of the COVID-19 pan-
demic. As a result there was little to no activity in the building at this time.

A total of 98 sessions, consisting of 30 bursts each, was carried out. These were divided
into 16 1D scenarios, ie. using only 1 AP, with 2 sessions in each scenario, as well as 10
2D scenarios, and 12 3D scenarios, with 3 sessions in each. A complete overview of all
the sessions can be found in appendix B.

Sessions were set up by placing the AP’s over the relevant control point, aligning the
point with the center of the AP as best as possible. It is worth noting however, as it is not
known exactly where the antenna (and therefore the measuring point) is located within
the device, it is impossible to be exact. After the AP was placed in the assigned location,
power was was connected and some time was given to allow for complete startup, including
connections between the APs as they were set up in a mesh network configuration.

When the status indicators of all included APs indicated that startup had finished, the
measurements could commence. A test subject would hold the phone in a natural position
standing over the control point and start the ranging. When the application indicated
that 30 bursts had been performed, ranging would be ceased manually. Afterwards, the
scenario name would be noted, along with the positions of the phone, APs and the time
when ranging ended. Then the procedure started over with the next scenario.

3.3.1 Processing

In a post-processing step, the x and y coordinates of the AP was added to the .csv for
easier data handling down the line. Furthermore, the position of the mobile device was
also added to the header section of the file.

For the distance observations, the ranges from the 30 bursts are reduced into one
distance estimation using a weighted arithmetic mean

r̄ =
∑

i riσ
−2
i∑

i σ
−2
i

(3.1)
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In all scenarios the average ranges was then compared to the ground truth using a
Matlab script that takes a table corresponding to the .csv file as argument m, and the
ground truth coordinates as a vector gt, returning the arithmetic mean of the distance
dist as well as the difference between this and the ground truth distance error. In the
2D and 3D scenario case, m should be filtered to only include range estimations towards
a single AP.

Listing 3.6: Average distance and error estimation

function [dist , error ] = calc_distance (m, gt)
ap_pos = m(1, {’x’, ’y’});

% Remove bad meassurements
m = m(˜ isnan (m. distance ), :);
m = m(m. std_dev > 0, :);

% Calculate observed and ground truth distance
dist = (m.distance ’ * m. std_dev .ˆ -2) / sum(m. std_dev .ˆ -2);
calc_dist = sqrt (( gt (1) -ap_pos .x)ˆ2 + (gt (2) -ap_pos .y)ˆ2) *

1000;

% Calculate error
error = dist - calc_dist ;

end

For the 3D case, the LSM procedure described in 2.3.3 was implemented in another
Matlab script. The ranges from each bursts are not reduced before using this function.

Listing 3.7: LSM implementation

function [init_xx , xx , S] = LSM(r, x, y, std_dev )
% Create b vector
b = r(2: end).ˆ2 - r(1) .ˆ2 - (x(2: end).ˆ2 - x(1) .ˆ2) - (y(2:

end).ˆ2 - y(1) .ˆ2);

% Ensure expected form
if isrow(b)

b = b’;
end

% Create design matrix A
A = 2 .* [x(1) - x(2: end), y(1) - y(2: end)];

% Initial LSM estimation
init_xx = (A.’*A)ˆ-1 * A.’*b;

% Iterative estimation
i = 0;
xx = init_xx ;
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delta = [1e3 , 1e3];
W = diag( std_dev .ˆ -2);
while norm(delta) < 1e6 && norm(delta) > 10 && i < 1e3

i = i+1;
f = sqrt ((xx (1) - x).ˆ2 + (xx (2) - y).ˆ2);
J = [(xx (1) -x), (xx (2) -y)] ./ (f);
K = r - f;
delta = (J.’*W*J)ˆ-1 * (J.’*W*K);
xx = xx + delta;

end

% Empirical standard deviation calculations
v = J*xx - K;
sigma = (v.’*W*v) / ( length (K) - length (xx));
C = (sigma * (J.’*W*J)ˆ-1);
S = diag(C) .ˆ0.5;

end

This script returns both the initial position estimation as well as that estimated by the
iterative process, in order to compare the two. Note that the iterative process runs until
the corrections are less than 10mm, more than 1km, or 1000 iterations have occurred.
10mm was chosen as the lower bound, as it is well within the theoretical accuracy of the
system. The latter two was chosen to stop non-converging calculations, since a correction
of 1km is clearly unstable at this scale, while 1000 iterations should be more than enough
to converge on a solution, should one exist. Finally, the standard deviation of the iterative
method is calculated and returned.

Only the LSM procedure was applied to the data. As mentioned, some of the prelim-
inary work suggest using a Kalman filter to improve accuracy further, such as Ciurana
et al. (2006). However, this is primarily useful in dynamic scenarios, because of the
smoothing and predictive features of such a filter. In fact, they show that a Kalman filter
is more accurate than a non linear least squares method based on Newtons method in such
a scenario. However, all experiments presented here are static in nature, and therefore
Kalman filtering is of little use.

32



Chapter 4

Results & Discussion

4.1 Results

This section will present the results of the experiments. First, the distance results of the
distance estimations is discussed, then the position estimation results. Finally, results
will be presented without the weight parameters, to investigate the effectiveness of these.

4.1.1 Distance Estimation

1D 2D 3D Combined
Mean 1.9096 2.3865 3.0300 2.6550

Minimum 0.0958 0.0107 0.0455 0.0107
Median 2.0643 2.0019 2.0450 2.0376

90th 2.7646 5.1114 8.0244 6.1451
Maximum 4.1441 8.1401 13.1414 13.1414

Table 4.1: Absolute Errors of Distance Estimations [m]

Table 4.1 shows the important statistics about the absolute errors of the different
scenario types, while complete results are found in appendix C. It clearly shows that
the average and median error observed is above 1 meter for all of the scenario types.
Furthermore, errors are on average larger in 3D than in 2D, which again is larger than
1D. This is probably due to the increasing likelihood of NLOS propagation, and therefore
errors due to multipath, in these scenarios.

One interesting, and slightly confusing result can be seen in the 1D results, where 30 of
32 observations have negative errors. In other words, most of the distance estimations were
shorter than expected. However, given the basic FTM protocol, the estimated distance
should never be significantly to short. Signal propagation speed is fixed, but a distance
estimation that is shorter that expected would suggest that the signal arrived sooner than
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(a) Boxplot
(b) Cumulative distribution function

(Absolute)

Figure 4.1: Plots of Distance Errors

expected, ie. faster than the speed of light. Ibrahim et al. (2018) also encountered this
problem, particularly over shorter distances. They suggested that it might be a result of
multipath mitigation techniques applied at the hardware or firmware level. There does
not appear to be any form of whitepaper that describes the exact implementation of FTM
on the Pixel 3a, Google WiFi, or its wireless chips. Therefore, this explanation cannot be
ruled out.

Another explanation could be random clock errors. If this was the case, one would
assume that the errors are normally distributed E ∼ N (0, σ2), with expectation 0 and
unknown variance σ2. A left tailed t-test can be performed to check this assumption. We
test

H0 : µ = 0

H1 : µ < 0

for the 1D session errors. The test statistic is then

t = Ē − µ
s/
√
n

= −5.1913

with 31 degrees of freedom. This yields p = 6.205×10−6 and H0 is rejected. It is therefore
shown that clock errors cannot be the explanation, and multipath mitigation remains the
most likely explanation.

We can also perform a two-tailed t-test on the errors of all sessions combined, that is

H0 : µ = 0

H1 : µ 6= 0

In this case the test statistic t = 1.9066 has 201 degrees of freedom and p = 0.058. In this
case H0 is not rejected, as we would expect.
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4.1.2 Position Estimation

Similar problems with accuracy can be seem in the 3D adjustment results, which can be
found in table C.4. First, note that a value of NaN suggest that there was insufficient
successful measurements to at least one AP. This might happen when an AP is within
range of the WiFi scan, but the signal is not strong enough to reliably perform FTM
range estimation. These results are discussed more in detail in section 4.2.1.

Second, we observe larger errors than expected across the board, but especially in
sessions 3D-1 through 3D-6, which are clearly unstable. This can also be shown by
increasing the maximum allowed correction in listing 3.7, which causes a similar increase
in the error. One possible explanation is that these scenarios might be more prone to
multipath or poor geometry. This is further discussed in 4.2.2. However, these 6 sessions
will be considered outliers in further discussions.

With outliers Without outliers
Initial Iterative Initial Iterative

Mean 189.8990 304.9793 14.8937 6.8462
Minimum 4.0768 1.4908 4.0768 1.4908
Median 13.1885 7.5304 9.9851 6.7028

90th 866.7214 1504.7491 43.3733 10.7996
Maximum 1564.3748 1728.1652 50.0391 12.7218

Table 4.2: Errors of Position Estimates [m]

Table 4.2 shows the various statistics for the errors of the two methods, with and
without the previously discussed unstable outliers. The errors are defined as the Euclidean
distance from the estimation to the ground truth point. We observe that, as we would
expect, the iterative process reduces the errors and improves accuracy. In fact the error is
reduced in 19 of 24 sessions, with an average improvement of 10.6 meters in these cases,
with an average improvement of 8 meters overall. However, it is important to note that,
while accuracy improves, it is still far worse than the expected one meter accuracy.

Sx Sy

Mean 11.7403 39.2251
Minimum 4.6904 7.9755
Median 8.6703 22.3042

Maximum 33.3184 215.2045

Table 4.3: Standard deviations of Position Estimates

As for the standard deviations, shown in table 4.3 excluding outliers, they are some-
what high, but justifiable given the observed errors. However, it does indicate that the
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precision of the system is low.
Also, we note that the standard deviations are significantly higher in the y direction.

This can easily be explained by the geometry of the sessions. The most heavily used points
are P1-19 through P1-23, as well as P2-05 trough P2-09. As can be seen in appendix A,
these points have significantly more spread in the x direction, left to right on the figure,
than in the y direction, top to bottom on the figure.

4.1.3 Results Without Weighting

Un-Weighted Difference
Mean 6.0952 -0.7510

Minimum 1.6132 0.1224
Median 5.3624 -1.3404

90th 10.2940 -0.5056
Maximum 17.6852 4.9633

Table 4.4: Errors of Un-Weighted Position Estimates [m]

For comparisons sake, the position estimations was calculated without the weight
parameter. The results of this can be found in table C.5, and major statistics can be found
in table 4.4. Some interesting observations can be gleaned from here, then mean improves
by 75cm, while the median shows a full 1.3 meters of improvement when compared to
the weighted results. However, the change in mean does not reach statistical significance
when a two-sample t-test is performed

t = Êw − Êu√
S2

w

n
+ S2

u

n

= 0.7891

where Êw and Êu is mean error of weighted and un-weighted adjustments respectively.
This gives 43.0727 degrees of freedom and p = 0.4344. Thus we cannot conclude that
adjustments without weights are better, nor the other way around.

4.2 Discussion

Clearly some of the results in this survey are not quite what we would expect. Errors are
large and sometimes surprisingly so. However, there are potential sources of errors. For
example, the previously mentioned multipath mitigation, or bad geometry. Though, less
than optimal geometry might make for more realistic scenarios, as WiFi APs are rarely
deployed in such a manner as to take into account the optimal geometry from a geomatics
standpoint.
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Evidence of less than optimal geometry can also be found in the increased standard
deviation of the y coordinate. However, it is more difficult to argue that this represents a
more realistic setup. The survey was constrained to the control points that where already
established. Furthermore, points in the area with the highest density where no longer
available as they had been destroyed by the renovation work. Therefore, the survey was
limited to relatively low density areas and, more importantly, mainly corridors, where
control points would closely align with each other. In an actual deployment, some APs
should be available in some of the study halls and offices that line the corridor, ensuring
a better spread in both directions.

Furthermore, the height difference of the phone and the APs should result in a small
error in the distance estimations, causing the estimations to be biased towards overshoot-
ing. However, this error will decrease with distance.

In general the ranging errors are about on par with that is observed by Ibrahim et al.
(2018), but higher than those observed by the other papers presented in section 2.4. A
possible explanation could be differences in geometry. Šeleng (2019) for example, only
tests distances between 1 and 17 meters, with most tests being below 10 meters in distance.
The average ground truth distance in this study is almost 20 meters. The location errors,
on the other hand, appear to be worse than all of them.

4.2.1 Invalid Results

By comparing the position results that returned NaN with the individual distance esti-
mations in these sessions, we can begin to understand why these failed. There are two
specific failure conditions that arise, that should be discussed individually.

Session P1-06 P2-01 P2-04
3D-7 4.2105 8.7127 NaN
3D-8 -0.2372 6.1988 NaN
3D-9 -0.2310 5.1893 NaN

Table 4.5: Distance Errors of First Failure Condition

First is the failure found in scenarios 3D-7, 3D-8, and 3D-9, which errors are given in
table 4.5. In this scenario, APs were spread across two floors; P1-06, P2-01, and P2-04,
while the smartphone was placed in P1-09. This means that two of the signals had to
travel trough the concrete floor, something that the signal from P2-04 clearly fails to do.

Also observe the relatively large errors in the estimation to P2-01. Again this makes
sense, since the signal must travel trough the floor, but also because only the 2D coor-
dinates of each point is available, while most of the distance in this case comes from the
height component. This is not to say that using APs across floors is completely useless.
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Session Error
3D-22 1.3897
3D-23 0.7991
3D-24 1.4486
3D-25 0.0455
3D-26 1.2998
3D-27 0.0711

Table 4.6: Errors of APs on Different Floor

We can compare these results to sessions 3D-22 trough 3D-27, which all uses one AP on
a different floor than the target. The errors of the distance across floors is shown in table
4.6. The error is quite acceptable, with a mean of 0.84 meters. However, it should be
noted that these measurements where conducted in a more open space, next to an open
stairwell, resulting in more or less LOS to the AP.

Figure 4.2: Setups of Second Failure Condition

The second failure condition is found in sessions 3D-22, 3D-24, 3D-26, 3D-29, 3D-31,
and 3D-33. The setups of these scenarios are found in figure 4.2, where purple (solid)
is the setup of 3D-22, 3D-24, and 2D-26, while green (dotted) is the setup of the other
three.

The specific failure in this instance comes from P1-23. All sessions fail to obtain a
usable measurement. This could be explained by the many walls that are in the LOS path
of the signal. While this is one of the harder multipath problems in the study, others that
seem similiar in complexity still obtain usable measurements. However, the consistency of
failure over these 6 sessions seem to indicate that this scenario is somehow more complex.
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Figure 4.3: Setup of Outlier Sessions

4.2.2 Outliers

The results from sessions 3D-1 to 3D-6 are unstable. This might be a result of a partic-
ularly poor geometry in these sessions or the related multipath problem. The setups are
shown in figure 4.3, where blue (dotted) is the setup of 3D-1, 3D-3, and 3D-5, while green
(solid) is the setups of 3D-2, 3D-4, and 3D-6.

Session P2-01 P2-04 P2-05

Blue
(Dotted)

3D-1 9.2104 8.0335 -1.7587
3D-3 9.2115 7.8608 -1.5412
3D-5 9.1122 8.1242 -1.6007

Green
(Solid)

3D-2 -1.7856 -2.4311 -0.8188
3D-4 -1.7051 -2.2750 -1.6954
3D-6 -1.8855 -2.6191 -1.9060

Table 4.7: Outlier Distance Errors

Starting with the blue (dotted) scenario, there might be some problems with sub-
optimal geometry, as all APs more or less align. Furthermore, this is a hard multipath
scenario, especially since the large empty area in the middle of the map is in fact an
open sky atrium, so in LOS propagation the signal would have to travel trough two outer
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walls. This is unlikely. It is more likely that the signal followed the corridor. This is also
reflected in the errors of the distance estimations, as shown in table 4.7. We see that those
two points, P2-01 and P2-04, have particularly large errors. This would explain why the
LSM adjustment was unstable.

Moving on to the green (solid) scenario, observe that the measured point now also
aligns with the AP points, further exacerbating the poor geometry. Another interesting
observation is that all of the distance errors are negative. In fact, this is the only sessions
where this is the case. This is likely to have caused the LSM estimation to have no
solution.

It is hard to see how problems like this can be avoided without already knowing
the geometry of the problem, as would be the case in normal pedestrian navigation.
However, again the introduction of more APs could help, as this would make the LSM
estimation more robust to outliers. Another possibility would be to filter/weight on RSSI,
as this might give some indication to the ”multipathness” of the current measurements,
or otherwise include RSSI in the estimation, as proposed by Guo et al. (2019).
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Chapter 5

Conclusion

In general, this survey does not find compelling evidence for 1 meter accuracy using FTM
with Google Pixel 3a and Google WiFi in an office environment. In fact, median distance
errors where double that at about 2 meters. Position estimation resulted in even higher
errors, over 6 meters median. While some weaknesses of this study have been discussed,
they do not explain the higher than expected errors observed, especially the bias towards
underestimating the distance in simple LOS scenarios.

Future studies should investigate other platforms that comply to the standard, as well
as investigating the impacts of denser AP deployment. It would also be interesting to
test how this specific configuration performs in a more dynamic scenario where the user
is moving.

It is also shown that weighting does not significantly improve the results. Future work
could also test this on a larger scale, as well as look into the effects of other possible
weights.

Accuracy might also be further improved by employing fusion methods that combine
FTM with some other, more established method, as we already see some examples of in
literature.

Nevertheless, FTM is still a good candidate for indoor positioning. Even a minimal
deployment can achieve results that are usable at least in some contexts. And while some
fingerprinting systems have been shown to perform better, they still require the offline
survey step. This viability is also clear in the literature about FTM as well as time based
ranging using WiFi in general.
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F. Izquierdo, M. Ciurana, F. Barceló, J. Paradells, and E. Zola. Performance evaluation
of a toa-based trilateration method to locate terminals in WLAN. In 1st International
Symposium on Wireless Pervasive Computing, volume 2006, pages 1–6. IEEE, 2006. doi:
10.1109/ISWPC.2006.1613598.

B. Jang and H. Kim. Indoor positioning technologies without offline fingerprinting map:
A survey. IEEE Communications Surveys and Tutorials, 21(1):508–525, 2019. doi:
10.1109/COMST.2018.2867935.

S. König, M. Schmidt, and C. Hoene. Precise time of flight measurements in IEEE 802.11
networks by cross-correlating the sampled signal with a continuous barker code. In 7th IEEE
International Conference on Mobile ad-hoc and Sensor Systems, pages 642–649. IEEE, 2010.
doi: 10.1109/MASS.2010.5663785.

H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning techniques and
systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 37(6):1067–1080, 2007. doi: 10.1109/TSMCC.2007.905750.

K. Liu, X. Liu, and X. Li. Guoguo: Enabling fine-grained smartphone localization via
acoustic anchors. IEEE Transactions on Mobile Computing, 15(5):1144–1156, 2016. doi:
10.1109/TMC.2015.2451628.

43

http://dx.doi.org/10.1007/11422778_62
http://dx.doi.org/10.1109/ACCESS.2019.2957753
http://dx.doi.org/10.1109/ACCESS.2019.2957753
http://dx.doi.org/10.1145/1067170.1067194
http://dx.doi.org/10.1145/1067170.1067194
http://dx.doi.org/10.1109/PIMRC.2008.4699394
http://dx.doi.org/10.1145/3241539.3241555
http://dx.doi.org/10.1109/{IEEE}STD.2016.7786995
http://dx.doi.org/10.1109/ISWPC.2006.1613598
http://dx.doi.org/10.1109/ISWPC.2006.1613598
http://dx.doi.org/10.1109/COMST.2018.2867935
http://dx.doi.org/10.1109/COMST.2018.2867935
http://dx.doi.org/10.1109/MASS.2010.5663785
http://dx.doi.org/10.1109/TSMCC.2007.905750
http://dx.doi.org/10.1109/TMC.2015.2451628
http://dx.doi.org/10.1109/TMC.2015.2451628


G. Lu, Y. Yan, L. Ren, P. Saponaro, N. Sebe, and C. Kambhamettu. Where am i in the dark:
Exploring active transfer learning on the use of indoor localization based on thermal imaging.
Neurocomputing, 173:83 – 92, 2016. doi: https://doi.org/10.1016/j.neucom.2015.07.106.

A. Makki, A. Siddig, M. Saad, and C. Bleakley. Survey of WiFi positioning using time-based
techniques. Computer Networks, 88:218–233, 2015. doi: 10.1016/j.comnet.2015.06.015.

A. Mandal, C. V. Lopes, T. Givargis, A. Haghighat, R. Jurdak, and P. Baldi. Beep: 3d indoor
positioning using audible sound. In Second IEEE Consumer Communications and Networking
Conference, 2005. CCNC. 2005, pages 348–353, 2005. doi: 10.1109/CCNC.2005.1405195.

T. Midtbø, A. S. Nossum, T. A. Haakonsen, and R. P. V. Nordan. Are indoor positioning
systems mature for cartographic tasks?, 2012.

L. M. Ni, Y. Liu, C. L. Yiu, and A. P. Patil. Landmarc: Indoor location sensing using active
rfid. Wireless Networks, 10(6):701–710, 11 2004. doi: 10.1023/B:WINE.0000044029.06344.dd.

C. Peng, G. Shen, and Y. Zhang. BeepBeep: A high-accuracy acoustic-based system for ranging
and localization using cots devices. ACM Transactions on Embedded Computing Systems, 11
(1), 2012. doi: 10.1145/2146417.2146421.

N. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support system. In
6th Annual International Conference on Mobile Computing and Networking, MobiCom ’00,
pages 32–43. ACM, 2000.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education,
Harlow, England, 3rd edition, 2016.

L. Schauer, F. Dormeister, and M. Maier. Potentials and limitations of WiFi-positioning using
time-of-flight. In International Conference on Indoor Positioning and indoor Navigation,
pages 1–9. IEEE, 2013. doi: 10.1109/IPIN.2013.6817861.

W. Shao, H. Luo, F. Zhao, Y. Ma, Z. Zhao, and A. Crivello. Indoor positioning based on
fingerprint-image and deep learning. IEEE Access, 6:74699–74712, 2018. doi: 10.1109/AC-
CESS.2018.2884193.

A. A. N. Shirehjini, A. Yassine, and S. Shirmohammadi. An rfid-based position and orientation
measurement system for mobile objects in intelligent environments. IEEE Transactions on
Instrumentation and Measurement, 61(6):1664–1675, 2012. doi: 10.1109/TIM.2011.2181912.

M. Uradzinski, H. Guo, X. Liu, and M. Yu. Advanced indoor positioning using zigbee wireless
technology. Wireless Personal Communications, 97(4):6509–6518, 2017. doi: 10.1007/s11277-
017-4852-5.

D. Vasisht, S. Kumar, and D. Katabi. Decimeter-level localization with a single wifi access point.
In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16),
pages 165–178, Santa Clara, CA, Mar. 2016. USENIX Association.

R. Want, A. Hopper, V. Falcão, and J. Gibbons. The active badge location system. ACM Trans.
Inf. Syst., 10(1):91–102, Jan. 1992. doi: 10.1145/128756.128759.

WiFi Alliance. Wi-Fi CERTIFIED Location brings Wi-Fi indoor positioning capabilities, 2017.
URL https://goo.gl/BSUCdG.

44

http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.07.106
http://dx.doi.org/10.1016/j.comnet.2015.06.015
http://dx.doi.org/10.1109/CCNC.2005.1405195
http://dx.doi.org/10.1023/B:WINE.0000044029.06344.dd
http://dx.doi.org/10.1145/2146417.2146421
http://dx.doi.org/10.1109/IPIN.2013.6817861
http://dx.doi.org/10.1109/ACCESS.2018.2884193
http://dx.doi.org/10.1109/ACCESS.2018.2884193
http://dx.doi.org/10.1109/TIM.2011.2181912
http://dx.doi.org/10.1007/s11277-017-4852-5
http://dx.doi.org/10.1007/s11277-017-4852-5
http://dx.doi.org/10.1145/128756.128759
https://goo.gl/BSUCdG


S. Xu, R. Chen, Y. Yu, G. Guo, and L. Huang. Locating smartphones indoors using built-in
sensors and Wi-Fi ranging with an enhanced particle filter. IEEE Access, 7:95140–95153,
2019. doi: 10.1109/ACCESS.2019.2927387.

G. Yanying, A. Lo, and I. Niemegeers. A survey of indoor positioning systems for wireless
personal networks. IEEE Communications Surveys and Tutorials, 11(1):13–32, 2009. doi:
10.1109/SURV.2009.090103.

M. Youssef and A. Agrawala. The horus location determination system. Wireless Networks, 14
(3):357–374, 2008. doi: 10.1007/s11276-006-0725-7.

Y. Yu, R. Chen, L. Chen, G. Guo, F. Ye, and Z. Liu. A robust dead reckoning algorithm
based on Wi-Fi FTM and multiple sensors. Remote Sensing, 11(5):504–526, 2019. doi:
10.3390/rs11050504.

F. Zafari. iBeacon based proximity and indoor localization system. Master thesis, Purdue Uni-
versity, 2016. URL https://docs.lib.purdue.edu/open_access_theses/767.

F. Zafari, A. Gkelias, and K. K. Leung. A survey of indoor localization systems and
technologies. IEEE Communications Surveys and Tutorials, 21(3):2568–2599, 2019. doi:
10.1109/COMST.2019.2911558.

C. Zhang, K. P. Subbu, J. Luo, and J. Wu. Groping: Geomagnetism and crowdsensing pow-
ered indoor navigation. IEEE Transactions on Mobile Computing, 14(2):387–400, 2015. doi:
10.1109/TMC.2014.2319824.

L. Zhu, A. Yang, D. Wu, and L. Liu. Survey of indoor positioning technologies and systems.
In S. Ma, L. Jia, X. Li, L. Wang, H. Zhou, and X. Sun, editors, International Conference
on Life System Modeling and Simulation, volume 461 of Communications in Computer and
Information Science, pages 400–409. Springer, 2014. doi: 10.1007/9783662452837 41.
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Name x y
P0-01 5.91 118.32
P0-02 14.02 111.45
P0-03 13.05 99.19
P0-04 13.03 74.14
P0-05 21.20 74.13
P1-01 18.31 121.55
P1-02 28.37 119.97
P1-03 29.94 120.81
P1-04 25.18 116.43
P1-05 19.54 115.03
P1-06 12.75 129.38
P1-07 12.75 119.92
P1-08 14.07 110.46
P1-09 13.06 110.46
P1-10 13.91 99.39
P1-11 9.66 99.26
P1-12 5.41 99.27
P1-13 13.05 86.77
P1-14 19.92 83.69
P1-15 20.56 94.35
P1-16 16.79 85.27
P1-17 13.34 73.64
P1-18 20.76 74.15
P1-19 48.47 74.12
P1-20 62.22 73.99
P1-21 73.26 73.95
P1-22 84.63 73.63
P1-23 85.48 85.10
P1-24 49.54 92.69
P1-25 48.84 112.21
P1-26 45.20 116.19
P1-27 38.18 117.08
P1-28 36.60 112.73
P1-30 25.72 113.78
P1-31 31.79 110.08
P1-32 12.54 113.57
P2-01 15.98 117.20
P2-02 6.85 103.97
P2-03 13.45 107.97
P2-04 16.63 95.73
P2-05 17.12 81.47
P2-06 16.03 76.10
P2-07 30.72 80.51
P2-08 58.64 81.27
P2-09 76.97 81.28

Table A.1: Point Coordinates
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Appendix B

Scenarios

Name Phone AP1 AP2 AP3
1D-01 P2-08 P2-09 - -
1D-02 P2-07 P2-09 - -
1D-03 P2-08 P2-09 - -
1D-04 P2-07 P2-09 - -
1D-05 P2-05 P2-06 - -
1D-06 P2-07 P2-06 - -
1D-07 P2-05 P2-06 - -
1D-08 P2-07 P2-06 - -
1D-09 P2-06 P2-07 - -
1D-10 P2-05 P2-07 - -
1D-11 P2-06 P2-07 - -
1D-12 P2-05 P2-07 - -
1D-13 P2-08 P2-07 - -
1D-14 P2-09 P2-07 - -
1D-15 P2-08 P2-07 - -
1D-16 P2-09 P2-07 - -
1D-17 P1-20 P1-21 - -
1D-18 P1-19 P1-21 - -
1D-19 P1-20 P1-21 - -
1D-20 P1-19 P1-21 - -
1D-21 P1-22 P1-21 - -
1D-22 P1-23 P1-21 - -
1D-23 P1-22 P1-21 - -
1D-24 P1-23 P1-21 - -
1D-25 P1-19 P1-20 - -
1D-26 P1-21 P1-20 - -
1D-27 P1-19 P1-20 - -
1D-28 P1-21 P1-20 - -
1D-29 P1-22 P1-20 - -
1D-30 P1-23 P1-20 - -
1D-31 P1-22 P1-20 - -
1D-32 P1-23 P1-20 - -

Table B.1: 1D Experiment setups
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Name Phone AP1 AP2 AP3
2D-01 P1-20 - P1-24 P1-21
2D-02 P1-20 P1-19 - P1-21
2D-03 P1-20 - P1-24 P1-21
2D-04 P1-20 P1-19 - P1-21
2D-05 P1-20 - P1-24 P1-21
2D-06 P1-20 P1-19 - P1-21
2D-07 P1-21 P1-20 P1-23 -
2D-08 P1-22 P1-20 P1-23 -
2D-09 P1-21 P1-20 P1-23 -
2D-10 P1-22 P1-20 P1-23 -
2D-11 P1-21 P1-20 P1-23 -
2D-12 P1-22 P1-20 P1-23 -
2D-13 P1-24 P1-19 P1-25 -
2D-14 P1-24 P1-19 P1-25 -
2D-15 P1-24 P1-19 P1-25 -
2D-16 P2-08 P2-05 P2-09 -
2D-17 P2-07 P2-05 P2-09 -
2D-18 P2-08 P2-05 P2-09 -
2D-19 P2-07 P2-05 P2-09 -
2D-20 P2-08 P2-05 P2-09 -
2D-21 P2-07 P2-05 P2-09 -
2D-22 P2-07 P2-05 P2-04 -
2D-23 P2-06 P2-05 P2-04 -
2D-24 P2-07 P2-05 P2-04 -
2D-25 P2-06 P2-05 P2-04 -
2D-26 P2-07 P2-05 P2-04 -
2D-27 P2-06 P2-05 P2-04 -
2D-28 P2-05 P2-04 P2-01 -
2D-29 P2-05 P2-04 P2-01 -
2D-30 P2-05 P2-04 P2-01 -

Table B.2: 2D Experiment setups
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Name Phone AP1 AP2 AP3
3D-01 P2-07 P2-05 P2-04 P2-01
3D-02 P2-06 P2-05 P2-04 P2-01
3D-03 P2-07 P2-05 P2-04 P2-01
3D-04 P2-06 P2-05 P2-04 P2-01
3D-05 P2-07 P2-05 P2-04 P2-01
3D-06 P2-06 P2-05 P2-04 P2-01
3D-07 P1-09 P1-06 P2-04 P2-01
3D-08 P1-09 P1-06 P2-04 P2-01
3D-09 P1-09 P1-06 P2-04 P2-01
3D-10 P2-07 P2-08 P2-05 P2-06
3D-11 P2-07 P2-08 P2-05 P2-06
3D-12 P2-07 P2-08 P2-05 P2-06
3D-13 P2-09 P2-08 P2-05 P2-06
3D-14 P2-09 P2-08 P2-05 P2-06
3D-15 P2-09 P2-08 P2-05 P2-06
3D-16 P2-07 P2-08 P2-05 P2-04
3D-17 P2-07 P2-08 P2-05 P2-04
3D-18 P2-07 P2-08 P2-05 P2-04
3D-19 P2-07 P2-08 P2-06 P2-04
3D-20 P2-07 P2-08 P2-06 P2-04
3D-21 P2-07 P2-08 P2-06 P2-04
3D-22 P1-20 P1-19 P2-08 P1-23
3D-23 P1-21 P1-19 P2-08 P1-23
3D-24 P1-20 P1-19 P2-08 P1-23
3D-25 P1-21 P1-19 P2-08 P1-23
3D-26 P1-20 P1-19 P2-08 P1-23
3D-27 P1-21 P1-19 P2-08 P1-23
3D-28 P1-21 P1-19 P1-22 P1-23
3D-29 P1-20 P1-19 P1-22 P1-23
3D-30 P1-21 P1-19 P1-22 P1-23
3D-31 P1-20 P1-19 P1-22 P1-23
3D-32 P1-21 P1-19 P1-22 P1-23
3D-33 P1-20 P1-19 P1-22 P1-23
3D-34 P1-20 P1-19 P1-22 P1-24
3D-35 P1-20 P1-19 P1-22 P1-24
3D-36 P1-20 P1-19 P1-22 P1-24
3D-37 P1-20 P1-19 P1-22 P1-23
3D-38 P1-20 P1-19 P1-22 P1-23
3D-39 P1-20 P1-19 P1-22 P1-23

Table B.3: 3D Experiment setups
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Appendix C

Complete Results
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Session Distance Error
1D-1 17.1156 -1.2144
1D-2 44.0593 -2.1971
1D-3 16.2588 -2.0712
1D-4 43.9099 -2.3466
1D-5 3.8726 -1.6069
1D-6 15.2419 -0.0958
1D-7 3.4654 -2.0141
1D-8 15.2334 -0.1043
1D-9 14.9559 -0.3817
1D-10 11.5968 -2.0370
1D-11 14.9592 -0.3784
1D-12 11.6915 -1.9423
1D-13 25.1263 -2.8041
1D-14 44.7993 -1.4571
1D-15 25.2341 -2.6963
1D-16 44.5422 -1.7142
1D-17 8.7708 -2.2693
1D-18 22.8799 -1.9107
1D-19 8.8748 -2.1653
1D-20 23.3888 -1.4018
1D-21 9.3172 -2.0573
1D-22 16.0343 -0.5081
1D-23 9.2947 -2.0798
1D-24 15.3321 -1.2103
1D-25 11.0029 -2.7477
1D-26 8.4898 -2.5503
1D-27 11.0816 -2.6690
1D-28 8.5577 -2.4824
1D-29 20.3211 -2.0918
1D-30 29.1359 3.3588
1D-31 20.0134 -2.3995
1D-32 29.9213 4.1441

Table C.1: 1D session results
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Session Distance 1 Error 1 Distance 2 Error 2
2D-1 8.7151 -2.3250 27.0177 4.4240
2D-2 8.4413 -2.5988 13.2388 -0.5118
2D-3 9.1473 -1.8927 27.5557 4.9621
2D-4 8.5227 -2.5174 12.8413 -0.9093
2D-5 9.0042 -2.0359 26.7369 4.1433
2D-6 8.6009 -2.4392 13.2633 -0.4873
2D-7 20.8971 4.3547 8.1983 -2.8418
2D-8 22.0022 5.4598 8.3032 -2.7369
2D-9 10.2779 -1.2235 20.2704 -2.1425
2D-10 22.3290 5.7866 9.0722 -1.9679
2D-11 10.3221 -1.1794 20.6706 -1.7423
2D-12 22.6216 6.0792 9.1295 -1.9105
2D-13 10.1544 -1.3471 20.5941 -1.8188
2D-14 20.5794 1.0468 16.7747 -1.8261
2D-15 22.6875 3.1550 16.5626 -2.0382
2D-16 19.7336 0.2011 16.8394 -1.7614
2D-17 17.8261 -0.5039 41.5312 0.0107
2D-18 43.8643 -2.3922 12.9324 -0.7015
2D-19 19.5493 1.2193 41.1172 -0.4033
2D-20 44.1081 -2.1483 14.7105 1.0767
2D-21 21.6226 3.2926 40.8166 -0.7039
2D-22 43.9156 -2.3408 12.7366 -0.8972
2D-23 28.7343 7.9936 11.8802 -1.7536
2D-24 17.3659 -2.2733 3.5795 -1.9000
2D-25 28.7203 7.9796 12.0810 -1.5528
2D-26 17.0577 -2.5814 3.6861 -1.7934
2D-27 28.8808 8.1401 11.4889 -2.1449
2D-28 17.5077 -2.1315 5.5333 0.0538
2D-29 19.0624 -2.4175 34.0736 -1.6745
2D-30 19.2554 -2.2244 34.0088 -1.7394
2D-31 19.1510 -2.3288 34.0275 -1.7207

Table C.2: 2D session results
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Session Distance 1 Error 1 Distance 2 Error 2 Distance 3 Error 3
3D-1 48.7506 9.2104 28.7742 8.0335 11.8751 -1.7587
3D-2 39.3144 -1.7856 17.2081 -2.4311 4.6607 -0.8188
3D-3 48.7517 9.2115 28.6015 7.8608 12.0926 -1.5412
3D-4 39.3949 -1.7051 17.3642 -2.2750 3.7841 -1.6954
3D-5 48.6524 9.1122 28.8649 8.1242 12.0331 -1.6007
3D-6 39.2145 -1.8855 17.0201 -2.6191 3.5735 -1.9060
3D-7 16.0580 8.7127 23.1330 4.2105 NaN NaN
3D-8 13.5441 6.1988 NaN NaN 18.6854 -0.2372
3D-9 12.5346 5.1893 18.6915 -0.2310 NaN NaN
3D-10 17.9319 2.5942 12.0473 -1.5865 27.3497 -0.5807
3D-11 15.6901 0.3524 12.6553 -0.9785 27.5549 -0.3754
3D-12 17.8940 2.5564 12.1232 -1.5106 27.0081 -0.9223
3D-13 64.0123 2.8526 59.0830 -0.7673 16.4262 -1.9038
3D-14 63.7672 2.6075 59.1881 -0.6623 16.7289 -1.6011
3D-15 64.2531 3.0933 59.1454 -0.7049 16.3921 -1.9379
3D-16 29.0423 8.3016 11.8944 -1.7394 27.9894 0.0590
3D-17 28.7436 8.0029 12.6882 -0.9457 31.6229 3.6926
3D-18 29.8385 9.0978 13.3331 -0.3007 27.3794 -0.5509
3D-19 32.2667 11.5260 17.5144 2.1767 26.2564 -1.6739
3D-20 33.8821 13.1414 17.1490 1.8113 26.5449 -1.3854
3D-21 29.7165 8.9758 16.5010 1.1633 26.5521 -1.3783
3D-22 9.5023 1.3897 11.7640 -1.9866 NaN NaN
3D-23 18.7351 2.1927 17.1493 0.7991 22.4156 -2.3750
3D-24 9.5612 1.4486 12.8588 -0.8918 NaN NaN
3D-25 19.8119 3.2695 16.3956 0.0455 22.4097 -2.3809
3D-26 9.4124 1.2998 11.7383 -2.0123 NaN NaN
3D-27 19.9610 3.4186 16.4212 0.0711 22.6962 -2.0944
3D-28 20.1624 3.6200 8.9883 -2.3863 26.2256 1.4350
3D-29 20.4033 -2.0096 11.7344 -2.0162 NaN NaN
3D-30 22.1382 5.5958 8.8103 -2.5642 30.1926 5.4020
3D-31 20.4257 -1.9872 11.8884 -1.8623 NaN NaN
3D-32 19.8384 3.2960 8.8516 -2.5229 26.5067 1.7161
3D-33 20.5201 -1.8928 11.6573 -2.0933 NaN NaN
3D-34 25.8284 3.2348 23.0689 0.6560 11.3743 -2.3763
3D-35 27.0109 4.4172 29.7248 7.3119 11.2717 -2.4789
3D-36 26.8454 4.2518 26.7708 4.3579 11.3614 -2.3892
3D-37 31.8993 6.1222 20.3347 -2.0782 13.9768 0.2262
3D-38 32.0284 6.2512 20.3391 -2.0738 14.9441 1.1935
3D-39 32.1856 6.4085 20.2877 -2.1252 15.1013 1.3507

Table C.3: 3D Session Distance Results
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Session Inital Position Position Standard deviation Initial Error Errorx y x y x y
3D-1 1451.7077 113.8320 61.8383 -1360.4627 283.4834 15384.1817 1421.3783 1441.3086
3D-2 -312.6559 67.3861 -1711.5562 31.3696 76040.4514 2033.3253 328.8014 1728.1652
3D-3 1361.8424 110.9225 58.9040 -1264.1817 282.1175 14992.6437 1331.4697 1344.9870
3D-4 -275.8727 68.4875 -1267.6131 40.4456 797470.9325 23191.9246 292.0020 1284.1382
3D-5 1594.6308 118.6082 67.0169 -1487.2595 335.0340 19790.3712 1564.3748 1568.1896
3D-6 -385.7945 65.1714 -1601.5458 28.2627 535680.0485 16455.2707 401.9731 1618.2830
3D-7 NaN NaN NaN NaN NaN NaN NaN NaN
3D-8 NaN NaN NaN NaN NaN NaN NaN NaN
3D-9 NaN NaN NaN NaN NaN NaN NaN NaN
3D-10 30.8674 91.1527 30.3831 83.9433 5.8837 22.3023 10.6437 3.4498
3D-11 30.6809 84.5866 30.4620 81.9783 5.7890 25.0871 4.0768 1.4908
3D-12 30.9240 89.1328 30.2913 86.0170 4.7402 28.4393 8.6252 5.5237
3D-13 77.0151 124.8151 75.6071 91.9267 33.3184 160.2919 43.5351 10.7336
3D-14 77.1083 124.6351 76.0405 90.5013 20.4243 166.9263 43.3553 9.2680
3D-15 77.1487 131.3188 75.9361 88.7767 30.3046 215.2045 50.0391 7.5677
3D-16 30.3511 63.9047 30.9665 74.1783 5.1028 10.3515 16.6094 6.3365
3D-17 30.7706 67.2732 27.6373 73.4977 4.8896 7.9755 13.2369 7.6599
3D-18 30.9243 66.0102 30.5705 74.3178 4.6904 8.2244 14.5013 6.1940
3D-19 33.7897 72.2440 34.8090 69.8757 7.3521 11.9211 8.8176 11.3933
3D-20 33.0251 67.5737 34.7317 68.4372 6.6535 8.6039 13.1400 12.7218
3D-21 33.0224 70.6159 33.5307 71.8756 5.9825 10.1571 10.1585 9.0803
3D-22 NaN NaN NaN NaN NaN NaN NaN NaN
3D-23 73.8364 64.4558 71.4974 70.2537 8.5160 11.6597 9.5116 4.0951
3D-24 NaN NaN NaN NaN NaN NaN NaN NaN
3D-25 72.8268 66.4481 71.3163 71.0684 8.9398 11.4242 7.5144 3.4759
3D-26 NaN NaN NaN NaN NaN NaN NaN NaN
3D-27 71.1415 70.2039 71.3214 70.9837 12.0769 14.2186 4.3037 3.5436
3D-28 74.4292 66.9541 76.2298 69.3118 19.9442 34.0866 7.0929 5.5075
3D-29 NaN NaN NaN NaN NaN NaN NaN NaN
3D-30 75.4152 65.5753 77.8013 66.2934 9.6226 15.1128 8.6476 8.9021
3D-31 NaN NaN NaN NaN NaN NaN NaN NaN
3D-32 73.8255 67.7810 76.8900 67.9446 24.7456 23.4607 6.1948 7.0173
3D-33 NaN NaN NaN NaN NaN NaN NaN NaN
3D-34 61.0391 67.7000 61.6907 70.3837 7.6464 22.3061 6.3999 3.6450
3D-35 58.3571 67.9412 55.8757 66.1364 9.2786 23.4113 7.1770 10.0960
3D-36 60.2387 68.3600 58.4753 67.4997 8.3144 9.3135 5.9685 7.4931
3D-37 63.5802 56.2957 64.2198 67.9227 13.5259 38.0747 17.7465 6.3884
3D-38 63.4989 54.3877 63.4407 68.7764 8.8247 25.8257 19.6439 5.3546
3D-39 63.6272 54.0103 64.5097 66.9841 15.2013 37.0239 20.0292 7.3706

Table C.4: 3D Session Adjustment Results
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Session Position Standard Deviation Errorx y x y
3D-1 61.9170 -1340.4860 230.1649 15279.4461 1421.3384
3D-2 -2289.1823 14.3531 100957.4549 2777.4219 2306.0391
3D-3 58.9206 -1240.5525 196.0003 13439.1414 1321.3635
3D-4 -1400.6233 38.1866 83748.7354 2344.2387 1417.1606
3D-5 66.5944 -1472.3812 291.8858 18277.6586 1553.3055
3D-6 -4257.0470 -44.4202 218845.4021 6263.2968 4274.7762
3D-7 NaN NaN NaN NaN NaN
3D-8 NaN NaN NaN NaN NaN
3D-9 NaN NaN NaN NaN NaN
3D-10 30.6496 84.2256 6.7985 20.8755 3.7163
3D-11 30.4023 82.0916 5.7049 24.7313 1.6132
3D-12 30.6036 83.3599 6.3755 22.5032 2.8523
3D-13 89.0391 88.5151 47.3420 40.2866 14.0716
3D-14 80.1621 86.3188 28.9967 42.4570 5.9648
3D-15 79.5894 98.7701 11.0634 69.5779 17.6852
3D-16 30.4353 73.2146 5.9185 7.8945 7.3010
3D-17 30.4959 73.7110 5.7686 7.9513 6.8027
3D-18 30.9716 73.5380 5.7326 7.9558 6.9765
3D-19 33.0751 72.3832 5.2745 8.5882 8.4612
3D-20 32.6951 70.8353 5.5166 8.1934 9.8742
3D-21 32.5147 72.0985 5.3251 8.4410 8.6008
3D-22 NaN NaN NaN NaN NaN
3D-23 71.6370 71.4492 8.7005 15.3744 2.9813
3D-24 NaN NaN NaN NaN NaN
3D-25 71.4755 72.0447 8.7283 14.5616 2.6105
3D-26 NaN NaN NaN NaN NaN
3D-27 70.9878 70.6777 8.6598 13.3224 3.9838
3D-28 74.7287 69.9661 12.4590 20.4791 4.2460
3D-29 NaN NaN NaN NaN NaN
3D-30 75.5760 68.7271 13.2249 18.6216 5.7134
3D-31 NaN NaN NaN NaN NaN
3D-32 74.2999 70.8128 12.0950 21.7956 3.3050
3D-33 NaN NaN NaN NaN NaN
3D-34 60.8483 70.0167 6.9963 10.4977 4.2034
3D-35 58.8141 68.6066 7.2137 9.2884 6.3704
3D-36 60.1626 69.8133 7.0316 10.3399 4.6559
3D-37 62.8746 68.1051 8.6133 20.0308 5.9212
3D-38 62.9784 69.0362 8.3654 24.1517 5.0115
3D-39 63.6253 70.9347 8.2649 41.5669 3.3630

Table C.5: Un-Weighted Position Results
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