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Abstract

This thesis tests usage of research milestones from Deep Learning, i.e. neural networks,
to perform cartographic generalisation. Generalisation is typically performed with
defined algorithms on maps (vector data). Neural networks learn to perform tasks that
are represented by the start and end product, and two particular neural networks are
used, each with one added variation. Five different tasks are given, represented by
five datasets of maps. By representing generalisation problems with maps, four neural
networks are trained to perform cartographic generalisation. One of them — CycleGAN
— shows competitive results. This thesis contributes evidence to support the quality
and robustness of said network, among other contributions, and makes comparisons
with related work.

Sammendrag

Denne oppgaven eksperimenterer med bruk av milepæler innenfor «Dyp læring» (Deep
Learning), dvs. nevrale nettverk, for å utføre kartografisk generalisering. Dette
utføres typisk med veldefinerte algoritmer for kart (vektordata). Nevrale nettverk
lærer å utføre oppgaver ved hjelp av eksempler på start og slutt i utførelsen, og to
nevrale nettverk brukes, med én ekstra variant per stykk. Fem typer oppgaver blir
gitt, representert av fem datasett av kart. Ved å representere et generaliseringsproblem
med kart, trenes fire nevrale nettverk for å utføre kartografisk generalisering. Én av
disse — CycleGAN — gir konkurransedyktige resultater. Oppgaven bidrar med bevis
for kvalitet og robusthet til nettopp denne, blant andre bidrag, og sammenligner med
relatert arbeid.
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1. Introduction

1.1 Thesis structure

This chapter begins with motivations, and objectives, research questions resulting from
these.

Ch. 2: Theory describes prerequisite knowledge required for the thesis, divided into
two main parts: cartographic generalisation and Deep Learning.

Ch. 3: Related Work is largely concerned with generalisation methods from cartog-
raphy, and research papers from Deep Learning.

Ch. 4: Methodology describes the specific applications used to perform experiments,
other material required, equipment used, and additional technical details.

Ch. 5: Results describes the observed performance during and after experiments.

Ch. 6: Discussion discusses the experiments, observations made, and limitations on
conclusions.

Ch. 7: Conclusion makes a statement on answering the research questions asked,
and suggestions for future work.

1.2 Motivation

In the last two decades, artificial neural networks (NNs) have gained increasing
amounts of attention from academics and industries. This computational technique has
many applications, including classification and generation of arbitrary types of content,
all with surprisingly high levels of realism or precision. In recent years, these have
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become so powerful that related ethical concerns are no longer hypothetical, but very
real problems to consider. NNs are still progressing in solving tasks previously considered
solvable by humans only. Already, medical applications have been found [RFB15], and
in the car industry, Tesla’s autopilot function [Tes20] has become a prominent feature
that is at least on par with human performance, if not clearly superior [Ele19].

Figure 1.1: Demonstration of how Tesla Autopilot AI observes objects; screenshot from [Tes20].
Objects such as cars are marked with boxes, and the boundaries on the road are clearly marked
with green, yellow and red lines. The stop sign is also detected, indicating a restricted area, as

evidenced by the text on the left part of the image.

The driving forces behind NNs are 1) large amounts of data available, and 2)
computation speed, from development of computer hardware. As research on NNs
progresses, novel architectural approaches have proven to be essential for solving
increasingly difficult problems or radically improving performance. As one of many
toolboxes found in the field of Machine Learning, NNs notably present a very different
paradigm for problem-solving: this method produces a model that translates input to
desired output, fulfilling a desired process A−→B, where humans might not be able
to formulate any such algorithm at all. Rather than requiring humans to provide strict
instructions about what to do, it requires only that humans implement methods for
learning arbitrary processes and provide relevant examples.

Meanwhile, in cartography, there is an ongoing development of methods for car-
tographic (map) generalisation — how to best present data in a meaningful, visually
informative way that provides the user with easily available and useful information,
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Figure 1.2: Human faces generated by Nvidia’s ProGAN. Figure from the article [Kar+17].

filtering away insignificant details and prioritising visibility of interesting data. User
tests, development methods, and finalised tools resulting from this field of research are
frequently based on traditional methods such as algorithm design, software develop-
ment frameworks, and other approaches that rely on rules and conventions, with a the
common theme being that rules are already made, unlike NNs were rules are instead
developed. It is constantly adapting to a new societal and technological landscape.

With this in mind, a certain type of NNs is of particular interest for the purpose
of applying cartographic generalisation: generative adversarial networks (GANs).
One impressive feature of GANs is that they can generate objects of given types with
high authenticity, such as human faces. Another is that these can apply an arbitrary
style from a source image to a target image, and yet retaining the content; a task called
style transfer.

Figure 1.3: The style from Vincent van Gogh’s Starry Night, applied to an image of some
buildings. Figures from [Iso+17]

W.r.t. cartography and abstraction of any kind of data, it is also particularly
interesting to see how satellite images can seemingly be converted to maps on the fly,
as seen in fig. 1.4.

At a glance, it seems that fulfilment of such tasks requires some level of under-
standing that separates underlying content from presentation. With these technological
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Figure 1.4: Image-to-image translation: satellite image vs. map, using Pix2Pix. Figure from
[Iso+17].

achievements in mind, this thesis will investigate the capability to perform the following
task: rather than using any methodical, algorithmic design philosophy for cartographic
generalisation, the focus is instead on using the data-driven, computational method of
NNs to generalise maps.

1.3 Objectives

The main objective of this thesis is to perform cartographic generalisation exclusively
through the use of NNs, providing results, insights and problems for future research on
this particular generalisation method.

There are various limitations and restrictions for this project further outlined
later in the thesis. Two types are explored: «zoom-out generalisation» and «content
generalisation». The following research questions can be asked and will be focused on.
• How do selected NNs perform, given the generalisations that are found in a given

dataset?
• How robust are the specific methods used? I.e. to what extent is performance
largely independent of properties for any given dataset, such that even diverse
information can be handled without errors?

This thesis is best read on a computer, where figures can be magnified. Certain figures
may be hard to inspect visually on paper.
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Figure 1.5: Image translation problem: going from a larger scale to a smaller scale. Michelin
maps. Details from (zoom level) z = 17 on the left vs. details from z = 16 on the right. Note how
most buildings are no longer rendered at all, and that only a handful of highlighted locations

remain.

Figure 1.6: Image translation problem: generalising elements presently in a map. OSM Mapnik
(left) vs. Michelin (right). Many details are removed altogether such as buildings and road labels,

and various road/streets in the left image are classified but not consistently.
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2. Theory

2.1 Cartographic generalisation

Before outlining cartographic generalisation, the prerequisite should be defined, namely
maps.

Like many other ubiquitous products and services, maps are subject to design
principles and pragmatism, and must be adapted to specific requirements. According to
the International Cartographic Association (ICA), «a map is a symbolised representation
of geographical reality, representing selected features or characteristics, resulting from
the creative effort of its author’s execution of choices, and is designed for use when
spatial relationships are of primary relevance.» [Int14]

Figure 2.1: Trondheim in Google Maps, a very recognisable map design (copyright by Google).

The principles and methods that govern map design are many, but it is easy enough
for anyone to recognise when a map is satisfying or not. A good map can be used
instantly for its intended purposes, but a bad one may be messy, requiring too much
time from the reader to find the objects of interest, leading users to discard such maps.
ICA defines cartography as «the discipline dealing with the conception, production,
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dissemination and study of maps» [Int14], and one thing in particular is clear with
the average person’s idea of a map: it is not a perfect representation of reality. Most
maps for practical uses are not satellite images, focusing instead on zoomed-out, simple
representations of the world, such as in fig. 2.1. «A pure photographic reduction of the
original scale leads to an illegible map.» [All13].

Map design has changed over the last decades. In the past it was a specialised skill,
but with computer technology, the methods and the objects have changed. Map design
can be performed with algorithms, or specified by users on user-friendly websites. The
underlying data has exploded in quantity too, following the general trend that digital
data in the world is growing at an exponential rate.

Cartographic generalisation is motivated by various problems: excessive details,
overlap, irrelevance, visibility, perception, and so on. The extent of generalisation and
the methods employed depend on the task at hand. E.g. a map for travelling across
distant regions has no good reason to highlight particular buildings in any populated
area, rather than highlighting said area. Basic questions may have basic answers but
representing them is a different matter. Quantity alone can lead to major problems if the
density of some object is much too high; see fig. 2.2. But even representational methods
such as dot density maps may be misleading. Figure 2.3 is useful in showing dense
population centres but makes parts of the USA seem devoid of human life, demonstrating
the need for gradual representation rather than binary, simplistic methods.

Figure 2.2: Churches in Poland. Each
individual church is represented. Figure

from [Twi17].

Figure 2.3: Population in USA shown by a
dot map. Figure from [All10].
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2.1.1 Map traits

In measuring the design of a map, or acquiring a notion of its utility, some traits can be
distinguished and evaluated separately, even if the requirements for these vary based on
the specific map and the cartographer’s purposes. According to [All13], the following
should be in mind when designing a map:

Structure. Contents must be prioritised with respects to the map’s purpose, scaled to
the size of the map itself and the content. Object grouping, clustering and such must
make sense, while also distinguished in reasonable ways. E.g. buildings may be joined
when sufficiently zoomed-out and distances between them approach negligible values,
especially if individual buildings are of minimal interest.

Legend. Symbols and textures used to represent spatial objects and information should
be expressive and associative, such that these are recognisable and familiar to the user.
E.g. Christian churches may be represented by a Latin cross *, while drugstores may be
represented by green Greek crosses such as '. By common convention, green surfaces
typically denote forests, parks and other naturally green scenes. All at the same time,
colours must respect rules surrounding perception. Strong, saturated colours typically
demand more attention than background colours.

For some maps, an explicit legend is not needed. In this case, maps should adhere
to common designs and principles found in publicly available domains; e.g. all kinds of
waters should be coloured blue, green areas simply given the same green colour, and
roads marked with background colours. Populated areas may be marked simply with
some background colour such as a gentle yellow or beige, with no particular buildings
drawn.

Generalisation level. A map becomes increasingly generalised when information is
removed or abstracted into simpler forms. The extent to which a map should be
generalised depends greatly on the map’s scale and purpose. E.g. for a greater city
map, all kinds of forestry and parks may be grouped into a single category as green
leisure areas. An example of heavily generalised maps are metro maps, e.g. fig fig. 2.4,
where the only information presented is topological relationships between the stations,
keeping a very weak relationship to the geographical reality.
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Figure 2.4: The 2020 Berlin metro map, Figure from [map20]. An entirely topological map.

Selection/filtering. Maps have purpose, and any information that is totally irrelevant
or useless in fulfilling said purpose should usually be discarded. With that in mind,
landmarks still remain useful.

Accuracy. When possible, the position on the map should correspond with real life
position. However, geometric accuracy is less important than informative positioning
on the map; if accuracy comes at the price of usefulness, that would defeat the purpose
of a map. This is best demonstrated by how roads and highways are marked on smaller
scale maps: these are typically drawn wide enough to be visible at a glance, even if they
only have two lanes. Highways are typically drawn so wide that one could mistakenly
infer that there are more than six, if taken at face value.

Realism. As time passes, some facts of reality may change; an intersection may have
turned into a roundabout, roads may be rearranged entirely, objects may be demolished
and re-purposed. Outdated maps are of course less useful. Labels and legends should
be appropriate and self-explanatory or described.

Legibility. Anything else than the map, should not be needed for reading the map,
such as magnifying glasses. To this end, objects in the map cannot be so small that
they cause clutter, or show details that can be ignored or lack informative value. There
is clearly a trade-off between accuracy and legibility, but the latter still comes first.
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Graphical representation. Legends should be short and concise. Unusual objects
should typically be highlighted to give the correct impression, whereas common, su-
perfluous objects (e.g. buildings in urban areas) should be generalised by means such
as grouping them together into larger objects. All at the same time, the means for
generalisation should remain consistent. Relations, dependencies (e.g. overlapping
objects, symbols) should be considered in designing a map.

2.1.2 Visual variables

Information can be represented in various ways but there are preferences for how this is
done, also outside of cartography. Deceptive representations, illusions, indistinguishable
representations, may well be used.

And in much the same way as outlined in the previous section, cluttering can also
be an issue. Pie charts with many, many categories may be impossible to learn anything
useful from, especially if the distribution among these is rather even [Kry18].

According to (sources in) [Bjø05], there are eight visual variables to consider in
designing a map: x coordinate, y coordinate, size, brightness, texture, colour (hue),
direction, and symbolisation (shape). The latter six variables usually do not influence
each other, with some exceptions, such as fig. 2.5 and fig. 2.6. The human mind observes
with some kind of context, not necessarily with objectivity, and it is prone to being
misled.

Figure 2.5: This still image seems to move.
Figure from [Wor11].

Figure 2.6: A and B seem to be different
colours, but they are not. Figure from

[Wor11].

There are various properties in these variables; they may be quantifiable, ordered,
selective, distinct, and associative, all to varying degrees.

All the variables are selective to some degree, with difficulty arising from smooth
sequences and small differences. (Otherwise they would not be worth mentioning as
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Variable Quantifiable Ordered Selective Distinct Associative
Location (x,y) +++ +++ +++ !

Size +++ +++ +++ $

Brightness +++ +++ $

Texture + +++ ! +
Colour (hue) +++ ! +++
Direction ++ ! +

Symbolisation (shape) + ! +++

Table 2.1: Properties for visual variables. Original table from NTNU TBA4240.

Figure 2.7: Cutout of the ISOM 2017 legend. Orienteering maps use texture to indicate terrain
type, and many different symbols. Notably, green is associated with vegetation and used for no

other purpose. Figure from [ISO17]

properties.) Congestion and cluttered visuals however can make direction and shape
less useful overall, as can be evidenced by any basic, naive visualisation of huge amounts
of map data; e.g. using a whole country’s worth of geometrical data is not going to
produce anything readable..

Location is the essence of any map. Distances can be estimated on a map, points
along a path can be ordered; obviously points are both selective and distinguishable.

While size is quantifiable and can be ordered, these can be rendered indistinguishable
if the arrangement has a similar effect such as fig. 2.6.

Texture is commonly used to denote different land use or terrain. In orienteering
maps especially, terrain type is particularly important for optimising one’s path. It
is disputable whether these can be ordered, but visual density is something to go by.
With finer details, differences may be hard to see at a glance, requiring a closer look
instead.
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Colour and brightness are typical traits to adjust in map design. Common design
principles would have permeating objects (forestry, urban environments) be given
background colours that do not demand attention; contrasting hues should be used
to distinguish different objects, and strong/saturated colours in general are mostly
reserved for foreground objects.

Additionally, colours are associated with values, feelings, objects in most cultures.
Green is typically associated with nature and vegetation, blue with all watery things,
and so these two colours are often reserved exclusively for representing such objects.

Figure 2.8: This choropleth map of the US 2016 presidential election, while detailed and
accurate in its own respects, emphasises geography more so than the local results. It misleads

viewers to assume a one-sided election. Figure from [Fie18]

Figure 2.9: An adjusted version of the above map, accounting for population distribution,
providing a more accurate idea of the US 2016 election outcome. Figure from [Fie18]
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But even colours must be used carefully. In making a choropleth map, severity of
some phenomenon is typically shown in ranked groups along a colour scale, often using
dark shades to indicate severity, and with a small number of groupings, in the range of
5-7. Even these can be rather deceptive, however. Technical accuracy may deprive the
map of usefulness, and the human mind observes things in context. An interpolated
image of some phenomenon, may end up only showing exceptional changes and dominant
areas, such as heavily concentrated population centres vs. mostly uninhabited areas.

While symbolisation may seem selective at first glance, it requires proper spacing.
That said, appropriate usage is easily found on tourist maps that typically require
proactive reading anyway, or on services such as Google Maps (fig. 2.1).

Figure 2.10: Symbolisation requires spacing or additional methods used. Original figure from
NTNU TBA4240, colourised in addition.
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2.1.3 Methods & Workflow

In generalisation, there are a number of processes used to modify a map, all of which
can be well defined such that implementations can be made based on explicit algorithms.
However, «as the generalisation of one element will affect the generalisation of others,
it is necessary to follow the procedure, in the correct sequence» [All13]. Various sources
and education material describe the following methods or similar things, and the correct
sequence may vary.

Selection. This is in general the first step in making any map. There is an overwhelm-
ing abundance of data available these days, and only some is relevant; either to provide
the immediate information of interest, or to assist as contextual information. E.g. a city
map for tourist attractions should show the locations of interest, but it loses usefulness
if it does not relate those locations to the street networks, landmarks, etc. For any
navigation map for vehicles, buildings in particular may be redundant, especially when
driving across larger regions, past cities and other inhabited areas. Closely related is
deselection, namely hiding all data of a given category.

The following generalisation methods can be categorised as either semantic or
geometric generalisation. Semantic usually comes first and is concerned with simplifying
representation of data so information is unambiguously; in particular, classification,
aggregation, exaggeration and symbolisation are related. Geometric generalisation is
related to simplification, omission, and spatial reorientation.

Simplification. It is often enough not useful to provide data at the lowest level of
detail, as this does not give a more informative picture of reality; even worse, this may
defeat the purpose of a map, by making it impossible to read. Even in the most detailed
data, geometric properties are typically simplified in some way w.r.t. reality. Common
simplifications include point removal, e.g. reducing the complexity of a polygon or
poly-line representing objects in space. Like most other processes, this is dependent on
the map’s purpose. The most extreme form of simplification can be found in metro
maps such as fig. 2.4, where the main information of interest is connectivity.
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Figure 2.11:
Omission: the
green boxes
would remain.
Figure from
[All13].

Omission. The distinguishing characteristic of omission vs. selection,
is that omission is performed on data that is still considered necessary,
but by leaving out individual, excess elements. E.g. when zooming out
on an interactive map, a cluster of buildings should be represented by yet
another cluster but with fewer buildings, using the same symbolisation
and retaining the spatial relations between them if possible, i.e. they
should have about the same pattern; see fig. 2.11.

Exaggeration. If maps were to be truly representative of reality, a
variety of narrow roads would be illustrated as very slim lines, such
that they are nearly impossible to see on any map. If roads on maps
today were taken at face value, using the scale for the map, one might be tempted
to believe that any visible road on the map has several lanes, though the truth is
obviously that they are exaggerated. As such, it is necessary to put emphasis on some
objects by exaggerating them. The same can be said for streets and alleyways in city
maps, otherwise they might be indistinguishable from lines meant to separate buildings.
Small, significant objects generally may need to be enlarged.

Figure 2.12: Roads
are commonly

exaggerated. Figure
from norgeskart.no

Spatial reorientation. If elements overlap, especially after ex-
aggeration, they must be moved away from each other. A loss of
technical accuracy is generally an acceptable price for elevated
usefulness. Some spatial properties however may be so small that
there is no loss in usefulness in collapsing these. E.g. angles
at 44◦ may as well be snapped to 45◦ since the differences are
illegible, and if minimum distances are used in the generation of a
generalised map, objects too close to each other may be connected
rather than separated or distinguished, such as adjacent stores
in the same building.

Classification. The most typical example of classification is to
colour water bodies blue and vegetation green, with or without
different shades and textures to distinguish different types. In
general there are two types of classification: qualitative and quantitative. The former
typically identifies properties that are incomparable, such as land use, by using different
hues. The latter latter is used to deal with phenomena that can be ordered and grouped,

norgeskart.no
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such as average temperatures, and often for the purpose of making choropleth maps
such as fig. 2.8, fig. 2.9, displaying the severity of some phenomenon w.r.t. predefined
geographical boundaries. W.r.t. the HSV colour model, shading typically indicates
severity, with hue denoting entirely different phenomena.

Figure 2.13: Provide both quantitative and qualitative information. Figure from [Ori18]

Aggregation. Though somewhat related to simplification, aggregation is used to
replace several objects with the same representation but on a larger scale, such that
a single symbol represents duplicates. E.g. a cluster of buildings may be replaced
by a building that occupies their bounding box. A cluster of trees may be replaced
by a singular tree. If this area is instead represented as a green area, it is classified,
not aggregated. Similarly, there is also typification: representing many symbols with
fewer.

Symbolisation. In reducing reality to a simpler overview, a map should make use of
associations where possible. Some objects are associated with certain symbols, and
therefore it makes sense to use said symbols. But pictorial symbols may also be used, i.e.
miniature drawings or caricatures of their real-world counterparts. A Christian church
may be represented by a Latin cross or a miniature drawing. Frequently, abstract
symbols are used instead to highlight interesting locations, such as solid red dots
marking tourist attractions on maps.

As mentioned already, these cannot be done arbitrarily without considering the order
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of procedures. According to GITTA [All13], a typical order deals with the following
objects in the given order: water bodies, contour lines and heights, specific locations
and correcting their positions, objects related to populated areas, and lastly, land use
and vegetation.

Additionally, generalisation is typically performed by a combination of 1) generalising
map elements, and 2) reducing the scale of the map elements, in either order, according
to one’s priorities. For a complex map, it is better to generalise first and then reduce
scale, whereas a reduction first may produce a better map at that scale. This may come
at the price of correctly applied generalisation, however.

Lastly: generalisation can be performed on original data or pre-processed data, i.e.
maps/data that have already been generalised to some scale. It is generally preferable
to generalise on original data since pre-processed maps are subject to decisions that may
be untraceable and impossible to recover from. There is also the notion of «garbage in,
garbage out», w.r.t. any algorithm or procedure: functions of all kinds presume some
kind of structure in what they are dealing with, and will not work for inappropriate
inputs. Using an already generalised map can lead to subtle errors in the generalisation
process.
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2.2 Deep Learning

Within the field of Machine Learning, there is Deep Learning, specialising on solving
visual tasks through artificial neural networks (NNs). The term was coined when NNs
with many layers proved to be rather effective, giving rise to the notion of depth as a
property.

2.2.1 Neural Networks basics

The inspiration for NNs is human neurology, or rather human nerve cells. Signals can
be transmitted between them, manipulated, and passed along to others for further
processing. This can be regarded as a computational process where inputs are passed
to some function whose output becomes the input for various other functions, such as
in fig. 2.14.

Figure 2.14: Human nerve cells can be formulated as computational graphs such that nodes take
weighted inputs, apply some function and then output the results. Figure from Stanford CS231n

[12320].

At first glance this may not seem like it amounts to anything particularly complex.
But they key in NNs is not that these solve tasks instantly, but rather that these can
simulate a computational method that learns, that becomes increasingly adapted to
solving a given set of tasks; it is an entirely different paradigm of solving problems,
where no methods are made explicit aside from general learning capability. To emphasise
this even more, it can be shown that NNs can model arbitrary functions, given arbitrary
computational power [Nie15]. And in recent years, the progress made has reached
astounding levels such that problems considered solvable mostly by humans, can be
solved without explicit instructions, unlike traditional, well-defined algorithms. For
examples of state-of-the-art performance, see chapter 1.

Essentially, we want to adjust the parameters of some NN such that it maps every
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input x to a desired output y, as though it were a long mathematical formula magically
capable of fulfilling our intentions. By using a sufficient amount of training examples,
each composed of corresponding input and output, a NN can «learn» to solve the set of
problems given to it. If this set of problems can sufficiently cover the intended problem
that we want the NN to solve, and the NN solves all these problems as intended, then
the NN is said to be generalised well across the domain of its problem. At this point,
the NN is a model, as it can translate input from one domain to a target codomain; e.g.
perform classification.

Basic computational unit: the neuron

The basic computational unit of a classical NN is a neuron, shown on the right side of
fig. 2.14 as a node in a graph; each node has a bias b, which is some real number. The
node takes inputs x, weighs them according to values that make up w (represented by
the connecting edges), and uses the sum z = w ·x+ b as the input for its function f ; w
and x are (column) vectors, w ·x denotes the dot product and is interchangeable with
the matrix product wTx. Lastly, the neuron outputs the activation a= f(z); f is an
activation function with a defined derivative, often squashing its input to a small
range, such as [−1,1]. The bias b shifts this function. These will be explained in further
detail later.

Using the neuron in fig. 2.14 as an example: suppose it is fed one training example, it
should only output the value of x0, and that f(z) = z. Repeated training examples would
use input vectors x with random values, and the correct output value is the corresponding
x0. In order to keep track of performance, (in)correctness is measured numerically
across every training example. Functions such as the mean square error (2.1) can be
used to measure that. Other functions can be used too, and these measurements are
interchangeably referred to as loss or cost functions, penalising incorrect computations.
Typically, 0 is the best possible loss, such that all wrongly computed answers increase
the loss. So, let f be the linear function and:

loss L= MSE = 1
2N

N∑
i

(ŷ−y)2 (2.1)

... where ŷ is the desired output and y is the computed output of the entire network,
i.e. in this case we have ŷ = x0 and y = a= f(z) = w ·x+ b. This example uses N = 1,
because only one training example is used at a time.

With only the above in mind, there is no guarantee that we have the correct solution
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to this simple problem, since the initial weights w are not defined. With this example,
it is easy enough to see how we can achieve a perfect loss of 0 with w = [1,0,0...0]
and b = 0, but for any non-trivial case, we do not know the optimal parameters in
the beginning. This is where the mechanisms of NNs kick in and reach a solution
automatically (hopefully).

Training a single neuron

The idea of training is: based on a loss function that measures performance, we can
compute a partial derivative w.r.t. the parameters used. Using it, we can tell how much
any given parameter contributes to the total loss, and make adjustments against that.
This is known as gradient descent. To ensure stable convergence towards correctness,
these adjustments are typically multiplied by a small factor η known as the learning
rate, frequently in the range of 10−2 to 10−5.

In implementations, the initial values for w can be distribution-based values in some
given range, such as drawing random samples from the standard normal distribution.
In any case, weights are typically small non-zero numbers.

It should be noted that a computational graph can be constructed, splitting up the
computations needed for C and its derivative. This is because C is a function of y,
which is a function of z, which is yet another function of w.

Figure 2.15: Computational graph for a neuron unit.

In adjusting any parameter of a NN, the partial derivative of the output w.r.t. said
parameter is used to improve it by using the downwards slope, to reduce the loss L:

θ :⇐ θ−η∂C
∂θ

(2.2)

Keeping in mind the computational graph, the partial derivative for C w.r.t. a given
parameter θ can instead be written as chained derivatives. By using the chain rule for
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Figure 2.16: NN with 1 hidden layer, a basic perceptron. Original Figure from [Nie15].

differentiation and the definitions in fig. 2.15, we obtain:

wi :⇐ wi−η
∂C

∂wi
= wi−η

∂C

∂y

∂y

∂z

∂z

∂wi
= wi−η(y− ŷ)xi (2.3)

b :⇐ b−η∂C
∂b

= b−η∂C
∂y

∂y

∂z

∂z

∂b
= b−η(y− ŷ) (2.4)

... and given enough training, this neuron would eventually result in w = [1,0, ...0] and
b= 0, so that any output to is simply y = a= f(z) = z = w ·x+ b= [1,0...0] ·x+ 0 = x0.

Perceptrons

It takes only a little amount of random experimentation to see that a singular neuron has
limited usefulness. For example, one neuron is insufficient for computing Boolean logic
with exactly 0 and 1 as output; e.g. AND, OR, NAND logical gates require multiple
neurons. Neurons can be placed side-by-side and plugged into one another, so that
outputs can be fed as inputs to other neurons. With these two architectural decisions,
and different functions used, NNs can be trained to distinguish hand-drawn digits on
greyscale images [Lec+98], with a decent level of correctness. This is an instance of
image classification, one of various tasks under the category of object detection. (Object
detection subtasks are distinguished by 1) visual precision, e.g. classify the whole image,
regions, pixel-level precision a.k.a. masks; and 2) quantity of objects to detect, i.e. one
or multiple objects in the image.)

Such NNs are known as perceptrons. With these changes, various new features and
concepts should be outlined, with more to come later.

Loss functions. Mean squared error is also known as L2 loss, whereas L1 loss replaces
the squared error with the absolute error |ŷ−y|. These are typically used for regression
tasks, and MSE is unfit for data where anomalies result in huge variance. Various
functions are better suited to select purposes. E.g. cross entropy (eq. 2.5) is suited for
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binary classification, whereas the softmax function (eq. 2.6) is considered to convert
NN outputs from a dense layer to multiple probabilities, beyond two classes.

Cross entropy loss L=− 1
N

N∑
i

[yi log ŷi+(1−yi) log(1− ŷi)] (2.5)

Softmax loss L(yi) = eyi∑
j e
yj

(2.6)

Activation functions. The output from individual neurons are called activations.
There are many of these, with variations built upon them:

Sigmoid(x) = 1
1+ e−x

(2.7)

ReLU(x) = max(0,x) (2.8)

Leaky ReLU(x) = x if x > 0, otherwise 0.01x (2.9)

... and there are various desired properties for such functions: non-linear, finite range,
continuously differentiable, monotonic (also in the derivative) [DHS00].

Layers. In fig. 2.16, there are three layers. The input layer is the first column of nodes,
and the output layer is the last node. «Hidden layer» denotes every layer between.
Each layer has a set number of computational units, and for perceptrons, every node in
one layer is connected to every node in the adjacent layers. Each layer can vary in the
number of inputs and outputs.

Matrix notation. The typical input for this perceptron can be a vector. However,
multiple inputs can be fed simultaneously if we instead use matrices. When computing
the output y (which may be a vector too), matrices can be used instead, with special
indexing such that wlj,i denotes the weight (or the edge) in layer l, connecting node j in
column l+1 with node i in column l; «to-from» indexing, so to speak, with the leftmost
layer starting at index 1; now, z = wx+b, where z,x,b are column vectors. E.g. w1

3,1,
w2

2,2 and w3
1,2 correspond to the red, green and blue edges in fig. 2.16. In the same vein,

zli denotes z for node i in layer l. Activation functions may now be vectorised such that
a function f(zl) simply outputs a = [f(zl1),f(zl2)...f(zln)].
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Forward pass, backpropagation, gradient descent. The cascading computations
leading up to the calculation of loss/error, is known as a forward pass. The outputs
in the first layer affect the output of the following layers, so the partial derivatives of
earlier layers depend on the partial derivatives of the following layers. This means that
some of the computation is already done by the time we update the parameters of the
earliest layers. By using the chain rule and defining selected parts of the derivatives,
the following formulas can be used in a manner likened to dynamic programming, to
compute the parameter adjustment in the immediately preceding layers precisely once,
rather than wasting time on repeated computations [Nie15]:

δL =∇aC�f ′(zL) = ∂C

∂aL
�f ′(zL) (2.10)

δl = ((wl+1)T δl+1)�f ′(zl) (2.11)

∂C

∂blj
= δlj (2.12)

∂C

∂wljk
= al−1

k δlj (2.13)

... where L is the index for the last layer, � denotes the Hadamard product; i.e.
[2,3]� [1,4] = [2×1,3×4] = [2,12]. These formulas provide a notion that a parameter’s
update depends on its input, and the resulting error that is propagated thereafter.

This type of update method is gradient descent. In literature it is called stochastic
when each training example individually updates parameters. In DL, batches of
varying sizes are generally used, where simultaneously computed training examples
have their parameter updates aggregated, further processed in some way (such as batch
normalisation), and then applied. Other variants use the previously computed gradients
in addition to a newly computed one; this is gradient descent with momentum, and
such variations are commonly used to deal with the problems inherent to «standard»
gradient descent [Rud16]. (Fundamentally different update methods, such as genetic
algorithms, are used not in Deep Learning but in other types of Machine Learning.)

These layers of neurons are also known as fully connected layers or dense layers.
Equations eq. (2.10) to eq. (2.13) apply to such layers, and are shown to illustrate that
backpropagation is a general strategy for computing parameter updates.
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2.2.2 Convolutional neural networks (CNNs)

The perceptron was introduced back in 1958, but the development of power NNs began
with usage of convolutional layers [Lec+98], and increasing computational power.
When feeding a NN with images as input, they can be flattened into vectors such that
perceptrons such as fig. 2.16 can be used, with entire images being given as input to
one layer of neurons. There is an inherent flaw in this however: spatial structures are
not recognised, so perceptrons are lacking in capacity to capture complex patterns.
But other operations can be performed, such as convolution, which does not use this
flattening.

Figure 2.17: The receptive field in the human eye vs. convolution in NNs. Figure from
TDT4265 Computer Vision & Deep Learning.

Convolution serves as a visual method to detect patterns, somewhat similar to
the human visual system. Convolutional filters such as the 3×3 kernel in fig. 2.18
look for specific patterns, and output activation maps where patterns are detected.
Visually speaking, these can look like heatmaps, highlighting something like an ear,
or a nose. Like neurons, there can be multiple of these in the same layer, resulting in
filters looking for various patterns. These kernels can converge such that they recognise
certain patterns such as edges, corners, and so on. Given the right architecture, they
can distinguish all kinds of features, ranging from basic elements like edges and corners
to complex structures like human faces, where a visual hierarchy exists.

Afterwards it is common to use pooling; it makes more sense when the input image
is notably large such as 28x28, or greater. This downsampling operation is typically used
to compress information and reduce NN/model complexity; it also has no parameters
of its own, and therefore does not contribute to increased memory consumption when
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Figure 2.18: Convolution operation. Filter size = 3×3, padding=0, stride=1. Figure from
[Pel20]

training a NN.

Figure 2.19: Max pooling is commonly used.

At this point, some more concepts and terms should be introduced.

Filter size. Convolutional filters are typically odd in size: 1x1, 3x3, 5x5. A con-
volutional layer may contain multiple filters, usually of the same size. Each filter is
constructed of parameters that can be updated. A filter has weights N ×N +1 bias, so
a full layer with K filters usually has K×C×N2 +K learnable parameters. C is the
number of channels in the input image. E.g. colour images have channels red, green,
and blue, so C = 3.

Padding. Before performing convolution, the original image may be appended on
each side with a number of pixels, to account for the dimension reduction inherent to
convolution as shown in fig. 2.18. E.g. to get the same output size when using a 3x3
filter, the input image must be padded with 1 pixel in all four directions. Zero-padding
is the most commonly used version, i.e. the new pixels are given 0 in value, but this
may vary.

Strides. When computing convolutions, the filter may skip possible locations, which
also reduces the size of the output image. Stride = x means that every x locations are
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used to compute an output. E.g. stride = 2 outputs an image that is approximately
half the size of the input image.

Feature map. A conv. layer with K filters produces K feature maps, also known as
activation maps. These correspond to the right-most layer in fig. 2.18. These feature
maps feed may feed their output to yet another conv. layer, but this is typically done
after a pooling layer, which serves to reduce the size of the outputted images and
number of parameters.

Architecture and complexity. NNs have specific architectures, with details such as
layers chained together in given manners, loss functions used, resolution specified. The
number of parameters between fully connected layers of neurons, is very high: for a
28x28 image, there are 784 weights + 28 biases, which is about 800 parameters to
update. Using 8 convolutional filters of size 3x3, the number of weights are reduced to
8×3×3+8 = 80. Convolution is one of various techniques used to produce better NNs,
with greater complexity for low(er) computational demands.

More about NNs

There are various problems, terms, notions, techniques, and additional details surround-
ing NNs.

Supervised vs. unsupervised learning. In the context of DL, supervised learning
means that a desired output is defined, and used to enable learning; the method of
learning is also explicitly defined. E.g. the input-output relation y = F (x), should
be learned by a NN by humans explicitly giving information about y, i.e. labelling
data, and using an error function. However, there are ways to emulate an unsupervised
setting, to be demonstrated later in section section 2.2.3.

Batch & epoch. One iteration through all the available training data, is called an
epoch. NNs are typically trained on several thousands of examples, but even these are
reused, by training NNs for several epochs. During training it is common to compute
parameter updates resulting from multiple training examples at the same time; the
number of such parallel computations is the batch size.
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Regularisation. The loss function used at the output layer can vary, as they have
different capabilities. A scaled, weight-dependent function is frequently appended to
the loss function such that the total loss L′ = L+λ

∑
i |w| or L′ = L+λ

∑
iw

2, where i
iterates over a given batch, and λ is the regularisation rate. Using |w| is known as L1
regularisation, while w2 is called L2 regularisation.

Data for NNs. For a generic task, there is a training set, validation set, and a test
set. The training set, as implied, is used to train a NN so it hopefully learns to solve
a given task. The validation set is a fraction of the full training data, not used for
training (i.e. parameter updates) but rather to check performance; it helps in detecting
overfit. Loss is calculated when validation data is used to input, and used as a measure
of performance on unseen data. After all the training is completed — depending on
some user-defined criteria — there may be a test set. Test sets are typically intended
to be representative of future data, i.e. benchmark testing the application of a NN.
Sometimes there may not be test data available, however.

Additionally, the quality of a NN depends on the data it is trained on. If the training
set does not adequately describe the problem to solve, the NN cannot be expected
to generalise well on all possible future data. This illustrates the general principle of
«garbage in, garbage out».

Data augmentation can also be used to increase the size of a dataset. This means
to make small variations based on the original data; images can be mirrored, rotated,
and so on. However, this is not appropriate when the problem to solve barely has any
such cases; e.g. frontal images of human faces are generally aligned with eyes above the
mouth and ears aligned at the same height, at the sides of the image. Forcing a NN to
account for orientation in addition to other tasks, is pointless (especially if this can be
done by other, computationally cheaper methods).

Optimisation. NNs use not only mathematically proven but statistically proven meth-
ods, in order to find the optimal parameters for solving a given problem. However,
convergence towards the optimal solutions — i.e. parameters that give the minimal
loss — are not always guaranteed to reach the global loss minimum. When a given NN
is training and instead finds a local minimum, it may be stuck if the learning method is
not fit to handle this. Variations of gradient descent using previous parameter updates,
are common [Rud16]. Additionally, lower loss does not imply a better solution, because
no dataset can fully describe a problem. Optimisation also requires that parameter
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changes are meaningful, i.e. not zero over longer periods of training.

Gradient problems. The backpropagation method is based on computing chained
derivatives. When these numbers are all smaller than 1 (in magnitude), a sufficient
number of factors smaller than 1 will leads to a very small product. Parameter updates
near 0 change nothing, leading to no learning. This is called the vanishing gradient
problem, frequently leading to underfit problems and bad optimisation; «deeper» NNs
with more layers tend to be more exposed to this problem, though there are solutions
to this [He+15]. On the other end there is the problem of chained derivatives generally
larger than 1. The product can become very large, and this is known as the exploding
gradient problem, where the learning process has gone off the rails entirely, and the
problem of overfitting occurs.

Figure 2.20: Left to right: underfit, proper generalisation, overfit. Figure from sci-kit learn
[dev19].

Overfit and underfit. A good NN is said to be generalised. But a NN that is not, is
typically suffering from either overfitting or underfitting. Overfitting means that the
NN has grown too complex. Rather than learning to solve a given type of problem, it
instead solves the exact problems given to it, like it has learned to memorise the given
examples instead of generalise the intended problem; at this point, the NN is also said
to have low bias and high variance.

Underfitting means that it never even came close to generalising, i.e. the NN’s
capacity for modelling the problem was not utilised or it is insufficient for modelling a
solution to the given problem that is represented by the training data.
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Figure 2.21: Loss changes during training. The test minimum marks the best state of the NN
during training. Consistent increases in validation loss while training loss keeps decreasing,

typically indicates overfitting. Original igure from [Bro18].

Figure 2.22: Batch normalisation
algorithm. Figure from [IS15]

Normalisation. Between layers in a NN, various
problems with inputs may occur. When inputs
gain too much variation or large offsets, the inter-
nal covariate shift problem arises [IS15]. This
in turn leads to saturation, which further results
in the vanishing gradient problem. Batch normali-
sation is believed to handle this problem, and also
often used. There are also other kinds of normal-
isation.

Upsampling. Some tasks in DL require that NNs
not only analyse the input images, but return information about regions of interest;
one such task is image segmentation; i.e. precisely mark and distinguish segments in an
image, possibly per pixel. However, NNs typically condense information and reduce
image size when using convolution and downsampling methods. Data reconstruction
becomes necessary. This is typically performed with transpose convolution, which
aims to perform the convolution process in reverse. This is a learned upsampling
method, as opposed to naive methods such as attempting to do reversed max-pooling,
that suffer from loss of information.
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Hyperparameters. These are properties defined before any amount of training, typ-
ically kept constant throughout the training phase. Some of these are: batch size,
input dimensions, output dimensions, learning rate, regularisation rate. For certain
architectures and modes of training, such as ProGAN [Kar+17] or variations of gradient
descent [Rud16], these can be adjusted during training.

Figure 2.23: Conv. filter activations, when testing a NN tasked with detecting cats. Top to
bottom: layers 5, 7, 8, with 32 filters shown from each. The deeper layers are increasingly

abstracted away, with some filters entirely inactive.

Visualisation of NNs processing. An obvious question to ask is: what happens in the
middle of input-output, during the feedforward process? What happens in the hidden
layers? This is not necessarily easy to grasp, even if some meaningful visualisations can
be made. E.g. activation maps in early or even middle layers of a deep NN designed
to detect cats, may well highlight traits such as ears, eyes and cranial outline. The
deeper layers become increasingly abstract however: they may well show a heatmap
that highlights the cat only, but later, the abstractions become unintelligible.

Further reading for backpropagation through convolution and other functions such
as transposed convolution are less consequential for understanding how NNs work, and
is left to external resources [Jef16] [lab20] [ODO16].

2.2.3 Generative Adversarial Networks (GANs)

The original formulation for GANs by Goodfellow et al. [Goo+14] describes the following
scenario, designed to make a NN that produces realistic images of some kind: consider
a game where a generator G forges some items, and a discriminator D compares these
to the «real» thing. D is supposed to distinguish between the real and forged items,
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and is told the correct answer after evaluation. Based on whatever judgements made by
D, G adjusts its own methods, but D is also updating its evaluation method. Ideally,
D and G learn together so that G eventually learns how to make the real thing, such
that D may as well do a coinflip instead of making qualified judgements. In literature,
discriminators are also called critics.

This can be formulated as a minimax game or zero-sum game, where G and D are
working against each other. In this article, G and D were (multilayer) perceptrons,
such that only D used a loss function, but also functioned as a loss function for G,
since it made adjustments based on D and only indirectly used the loss function. It
can therefore be said that GANs provide an indirect method of estimating a way to
discern the real images from the fake ones; D acts as a learned loss function, to G. This
also transforms the setting to an unsupervised one: G learns according to D, not any
human-made labels; the labels are also trivial. G is also not meant to generalise well
unto new data. (Using components from supervised learning is insufficient reason to
call this supervised.)

In this paper, the following loss function, known as GAN loss or adversarial loss, is
used:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2.14)

... but in practice, when training the generator, logD(G(z)) is maximised rather than
minimising log(1−D(G(z))); i.e. gradient ascent is used on the generator. This is
because early on, the generator output is easily distinguished from real data, such that
log(1−D) saturates and thus leads to bad learning.

The general idea with such NNs is that they take some input — a latent vector
z, from an N-dimensional vector space — and output a «translation» of the input,
x=G(z), which should be virtually indistinguishable from «real» images. The generated
output constitutes a density distribution, and the «real» data constitues yet another
distribution.

In the GAN paper, Goodfellow et al. [Goo+14] experimented with the MNIST
dataset i.e. hand drawn digits, and successfully produced realistic fake samples. Another
discovery was that an interpolated vector in the vector space of z (e.g. weighted averages),
would present an interpolated result in the output space G(z). In a later paper, this
was done with human faces instead [RMC15], showing that such vector spaces are used
in meaningful ways by generator NNs.
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Figure 2.24: Green curve: density distribution of generator output x = G(z). Blue curve:
discriminative distribution. Black curve: density distribution of the «real» items, pdata. (a)

Training scenario near convergence. (b) D converges to D∗(x) = pdata(x)
pdata(x)+pg(x) . (c) G converges

such that pg is closer to pdata, i.e. x = G(z) is more likely to be classified as legitimate data. (D)
G has successfully converged such that pg = pdata, and at this point, D(x) = 1/2; i.e. it cannot

tell which one is real. Figure from [Goo+14].

Figure 2.25: Goodfellow et al. found that interpolated images G(z) could be generated by
interpolating through the input space. Figure from [Goo+14].

This framework established a new paradigm in the problem of generating realistic
images. GANs gained much popularity within just a few years, and it is one of various
techniques that could be feasibly used for creating «deepfakes», e.g. fake images and
«photoshopped videos», where faces are replaced seamlessly; the latter is created more
so with other techniques [Ade20], due to limitations with GANs.

Various findings have followed. Some «newfound» applications for GANs are: super-
resolution (upscaling), high-resolution generation [Kar+17], style transfer [Iso+17]
[Zhu+17] (and by extension, reversing pixel-level classification of images); i.e. semantic
image synthesis [Par+19], see fig. 2.26. All of these are variants of image translation,
and have been achieved with contributions from research in «classical» object detection
tasks such as image classification [He+15], i.e. say what is in the image but not where;
and image segmentation [RFB15], i.e. classify every pixel as part of something.

Like other NNs, however, GANs also have problems. Goodfellow et al. discovered
mode collapse: G starts to mislead D on what a real item really is. An indicator of
this is when G produces approximately the same output for (many) different inputs.
Another problem is artifacts, patterns that show up repeatedly in completely unwanted
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Figure 2.26: Image synthesis using a GAN produced by Nvidia. This GAN takes labelled pixels
as input, «undoing» semantic labelling of images by returning what could have been the original
image. Each colour corresponds to a given class; e.g. blue = water, cyan = sky, green = general

terrain, brown = rocky surfaces. Figure from [Par+19].

manners, such as unintelligible symbols placed on maps for no apparent reason.
Validation sets are a somewhat invalid concept when it comes to GANs, as these

are supposed to generate data instead of making some conclusion on given data. Also,
the loss values observed during training, do not indicate anything beyond relative
performance; this is can be made very apparent in training, especially if the learning
efficiency between G and D is matching. In such a scenario, their losses would oscillate
and be near the same average.

Key innovations (and implementations) for this thesis are the following GANs:
CycleGAN, Pix2Pix, and WGANs, presented later in chapter 3.
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3. Related Work

3.1 Map generalisation

Comparisons with methods in the following papers is not necessarily viable; some use
algorithmic, well-defined methods. GANs learn such methods implicitly and define them
internally without any clear translation to instructions for replication. NN mechanisms
may be difficult to interpret at any given step. Additionally, «traditional» methods are
typically based on vector data, whereas GANs use raster data. The results are more
relevant than the methods themselves, as benchmarks for comparison.

3.1.1 Transferring multiscale map styles using GANs [KGR19]

The theme of this research article is the closest to this thesis’ theme. The authors use
two datasets with approximately 870 and 1850 training images (substantially fewer
than this thesis), but these datasets are also not particularly diverse.

Figure 3.1: Map generalisation applied on simple styled maps using Pix2Pix, to the Google Maps
equivalent, on zoom levels 15 (left) and 18 (right). Figure from the article.

Kang et al. use the GANs Pix2Pix [Iso+17] and CycleGAN [Zhu+17] to translate
«simple styled maps» based on OpenStreetMap (OSM) data, to Google Maps. Papers
on these two will be introduced later in chapter. In a sense, this is generalisation of raw
data to maps.
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Various problems are likely inherent to the authors’ method: labels, symbols, text-
like artifacts are generated in incoherent ways or simply absent, generally because the
input data contains no such things, so there is no clear input-output relation. CycleGAN
produced less consistent geometry, but areas such as lakes and grasslands were not
reliably translated. The authors note that colour diversity may improve when expanding
geographic extents and hence diversity of data.

Three generalisation methods are noted, and likely employed by the generators
of both GANs: enhancement (or exaggeration), selection (or omission), typification
(representing multiple points of interest with one).

3.1.2 Building generalization using Deep Learning [SFT18]

In this paper, the authors use a NN that is very similar to U-Net, to perform generalisa-
tion, choosing to stop down-sampling at a higher resolution. Worth mentioning is that
this does not use a discriminator, and is therefore not a GAN. It is used to perform
semantic segmentation, i.e. pixel-level classification.

The experiments of this paper are limited to binary images based on OSM data.
The output is compared to generalisations made using a generalisation program called
CHANGE. The target map scales are 1:10 000, 1: 15 000, and 1:25 000. The authors
intend for their NN to successfully integrate the following operations in a holistic
manner: selection, trimming/simplification, aggregation, exaggeration, displacement,
and «typification» (change of representation).

Figure 3.2: Left: original input. Centre: generalisation by CHANGE. Right: experiment result.
Figures from the article.

The authors use output from CHANGE as a baseline for measuring performance
quantitatively; pixel-level intersection-over-union (IoU = A∩B

A∪B ) is used to capture
meaningful accuracy values, as opposed to pixel-based accuracy (related to true/false
positives/negatives), i.e. terms used in confusion matrices. This is because IoU ignores
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areas without buildings; blank spaces should obviously not contribute to a generalisation
metric.

The authors conclude that their NN fails only in producing outputs that are
regularly rectangular or parallel; i.e. non-sharp edges are a consistent difference between
CHANGE and their NN. While the authors suggest post-processing to remedy this issue,
it defeats the purpose of using NNs to perform all generalisations. Still, the authors
note the following observations in their results: simplification, omission, aggregation,
trimming (of rough edges).

3.1.3 A heuristic approach to the generalization of complex build-
ing groups in urban villages [YZZ19]

The focus of this paper is aggregating tightly clustered buildings for multiscale generali-
sations. These clusters are referred to as «urban villages» by the authors. The heuristic
method used relies on Delaunay triangulation so that it «aggregates and simplifies
each building group separately». The heuristics used are «polygonal area (PA) and
length of face-to-face boundaries of adjacent buildings (LFBAB)»; both are derived from
Delaunay triangulation. This method deals with various superfluous details such as
minor angular offsets, small polygons, trims jagged boundaries, and uses a gap space
determined from the Delaunay triangulation method.

Figure 3.3: (a) Regular neighbourhood vs. (b) urban village. Figures from the article.

The authors work on only two specific regions, but note that the building-to-building
spacing is usually less than 0.2 mm on map scales 1:10 000. Traditional distance
indicators are fit for regular neighbourhoods, and would merge entire urban villages as
a singular block.

In this procedure, buildings are joined together (aggregation), followed by some
simplifications, and then trimming jagged boundaries. The last step is performed by
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Figure 3.4: Left: input. Middle: buildings aggregated, with «skeleton lines» drawn on remaining
streets. Right: trimming performed with a buffer around skeleton lines, resulting in exaggeration

for streets. Figure from the article.

using a buffer for «skeleton lines»; these lines mark the middle of remaining streets.
This therefore results in exaggeration too, as smaller streets are given more space in the
map. Some small, individual buildings are removed entirely, so some level of omission
has taken place.

3.1.4 Specifying Map Requirements for Automated Generalization
of Topographic Data [Sto+09]

In this paper, Stoter et al. aim experiment with producing a generalisation process
that does not require human interaction in any intermediate step, and begin by using
available 1:10k data from the Dutch national mapping agency (NMA), the Kadaster.
This data is object oriented, and does not distinguish database- vs. cartographic
representation.

The vector datasets used already have some level of generalisation applied, such as
exaggeration and displacement of motorways. The distinction between such operations
as a matter of modelling or cartography is lacking, so the authors integrate requirements
for model- and cartographic generalisation. Additional precision can be acquired by
simply using more accurate data such as 1:10k datasets, referred to as TOP10NL. The
maps produced by the authors are referred to as TOP50, which is namely at the scale
1:50k.

The experiments focused on the following topographic classes: buildings, roads, and
land use, with the rationale that automating these types of generalisation would be
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very efficient for all future production of maps. The authors also argue that quality of
the final result of a generalisation process is also mostly based on these features, and
that these must be generalised in a holistic manner because the processes interact with
one another.

Figure 3.5: Generalisation example. Left: TOP10NL. Middle: TOP50 vector data. Right:
TOP50 maps produced automatically. Figure from the article.

During production, the authors use various means to discover requirements and also
find how data may be in an undesirable format: in the construction of TOP50vector
data, roads are shown by centerlines, whereas in TOP10NL, each centerline is an
individual lane. This was one of various data problems to deal with.

In the results, various types of generalisations are made: road polygons may be
collapsed to polylines, connected polygons may be aggregated, some objects are exag-
gerated and others are moved to make space, and colouring varies depending on context
(classification). In fig. 3.5, roads are classified with 5 unique colours.
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3.1.5 Fully automated generalization of a 1:50k map from 1:10k
data [Sto+14]

This paper focuses on presenting a workflow using more traditional methods to develop
a fully automated process; additionally, the result was considered an acceptable replace-
ment for existing 1:50k maps. It is arguably a continuation of the previous paper, with
the same lead author but a different team. The tools included were ArcGIS Desktop
10.0, FME tools, and self-made tools in Python. Data is reclassified, road representation
ignores lane count, (road/street) networks are pruned, «enclosing holes» are closed (e.g.
gaps in roads), etc.

Figure 3.6: Generalisation example: 1:10k to 1:50k. Figure from article.

In total, the authors use 200 generalisation operations in a «context-aware»
model (e.g. urban vs. rural environments are treated differently), to generalise the
entirety of the Netherlands. All the types of generalisation mentioned in chapter 2 are
used.

The generalisation method in this paper is very comprehensive; processing all the
TOP10NL data requires 50 hours for the Netherlands, which is about 2GB [Kad13]
on unspecified hardware. The authors also note that user input was crucial for the
development of particular methods used. User-centric requirements such as «currency
and recency of geographical information», as opposed to fulfilling cartographic guidelines,
were considered more valuable.

3.2 GANs

The following sections present the most significant contributions relevant for this thesis,
i.e. methods to perform image translation and hopefully cartographic generalisation.
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3.2.1 Conditional GANs (cGANs) [MO14]

Goodfellow et al. mention the possibility of producing conditional generative models in
the original GAN paper [Goo+14]; various researchers have made such attempts since
then.

Figure 3.7: Diagram for conditional
GAN. Figure from the article.

In this paper, the authors use the desired out-
put y to enable «conditioning» of the model (in the
NN). The generator is given two inputs simultane-
ously: a random noise vector z and «real» image
y, such that it outputs x=G(z,y), where x should
mimic «real» data. The discriminator is given
both G(z,y),y. The authors tested this on the
MNIST dataset, and produced promising results,
while admitting that these results were «extremely
preliminary».

The authors used this GAN also to annotate
images with descriptive tags, e.g. a picture of a
river being tagged with «river, waters, creek».

3.2.2 Pix2Pix [Iso+17]

Also building upon the idea of conditional GANs, Isola et al. compare an encoder-
decoder architecture vs. U-Net, with and without a conditional setting; i.e. for every
input, generated output should take the form of pre-determined output. The task is to
convert images of one format to another.

Encoder-decoder architectures (not to be confused with auto-encoders) attempt to
efficiently compress information to a more «compact» representation. This is then
followed by upsampling to rebuild the original data, with perfect recreation being the
desired goal.

U-net is in part based on the architecture of encoder-decoders. U-net has the
benefit of using skip connections in the generator, presented in the ResNet paper
[He+15]. When using skip connections, the outputs of one layer are passed along to
the next layer of matching input dimensions. E.g. skipping one layer provides an input
xi+1 = F (xi)+xi, where F can be some function like convolution.

Meanwhile, the discriminator D in this setting is a 70× 70 PatchGAN classifier,
penalising structure in patches sized at 70×70 pixels [LW16]. D can also be described
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Figure 3.8: NN architectures tested by Isola et al: encoder-decoder vs. U-net. Figure from the
article.

as a CNN, and the size of these patches is implicitly determined by the architecture
[Iso17].

The authors did indeed show that putting GANs in a conditional setting improved
image translation performance. However, they found that z was outright ignored, and
promptly discarded it. Instead, noise was simulated through dropout; a mode of training
where some neurons in fully connected layers, are turned on and off during training,
enabling better learning at the price of requiring more training.

A problem discovered with the usage of transpose convolution in GANs, however,
is grid-like artifacts. These may arise naturally due to the arithmetic of transpose
convolution layers; output pixel cells may overlap, such that some pixel cells are given
two values added together rather than just one. This is particularly visible on bright
pixels. Such artifacts may be handled by well trained GANs to the point that these
are impossible to see at first glance, but it is an issue inherent to «naive» transpose
convolution, whereas alternative methods could help with this [ODO16].

3.2.3 CycleGAN [Zhu+17]

In the task of image translation, an analogy can be made regarding languages. Given
sufficient capacity, objects from different sets can be translated back and forth fully
intact. In that sense, bijective translations describe a scenario where two functions F ,
G and domains X, Y operate as follows: G :X −→ Y and F : Y −→X. In this paper,
the goal is to produce such translations, indicated when x≈ F (G(x)) and y ≈G(F (y)).

In this scenario, two pairs of generator-discriminator are trained at the same time,
using a least-squares GAN loss. To enforce the notion of information preservation after
fulfilling a cycle, i.e. comparing x vs G(F (x)), a «cycle consistency loss» is appended
to the loss function. The authors also find use for of an identity loss which enforces the
notion that, if G :X −→ Y is given an input y ∈ Y , it should still output y.
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Figure 3.9: CycleGAN concept. Figure from the article.

Figure 3.10: Left: WGAN with DCGAN architecture without batch normalisation. Right:
standard GAN, which has failed completely to learn anything. Figure from the article.

3.2.4 Wasserstein GAN (WGAN) [ACB17]

In this paper, a different loss function is suggested, which is the defining trait of WGANs.
The inspiration for this is a metric known as the Earth Mover distance, which can be
described as: the minimum loss required to change one distribution to another, or by
analogy, the minimum required to change one pile of dirt to another. The formulation
for this distance is as follows:

W (P1,P2) = inf
γ∈Π(P1,P2)

E(x,y)∼γ [ ||x−y|| ] (3.1)

... where P1,P2 are density distributions of generated and desired output, and γ(x,y)
describes the amount of mass that must be transported from x to y.

The authors test this with the following architectures: DCGAN [RMC15], DCGAN
without batch normalisation and using a constant number of filters across conv. layers,
multi-layer perceptrons (MLPs, with ReLU). The experiments show that Wasserstein
distance can outperform «adversarial loss» as defined by Goodfellow et al [Goo+14], on
the LSUN dataset [Yu+15]. Using a DCGAN with batch normalisation, both WGAN
and adversarial loss perform well, but the comparison changes with architecture, with
WGAN beating adversarial loss.

The authors note that the Wasserstein distance can be approximated by using NNs
in «compact spaces», i.e. the weights must be in some small range [−c,c]; this also
implies that the full function that the NN represents, is K-Lipschitz, i.e. the derivative
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Figure 3.11: Left: WGAN on a MLP architecture. Right: standard GAN using a MLP
architecture, demonstrably suffering from mode collapse, i.e. the same outputs are produced

multiple times. Figure from the article.

of said function is, in magnitude, always smaller than K, which in turn depends on
the compact space. The authors suggest limiting weights with c= 0.01 to enforce the
constraint of compact space, though they admit that this is a terrible method. The
next paper improves upon this issue.

A inherent benefit of using such a loss function, however, is that it is now meaningful
beyond merely relative performance for generator and discriminator. The objective is
fulfilled when the loss function is zero, i.e. when the generated output has a virtually
indistinguishable distribution compared to the desired output. For «adversarial loss»
eq. (2.14), the loss terms show only relative performance.

3.2.5 Improved Training of Wasserstein GANs [Gul+17]

Building upon the work of the previous paper, the authors introduce another method to
enforce constraints inherent to Wasserstein distance: gradient penalty (GP). In this
method, weight clipping is dismissed in favour of an additional loss term, that favours
parameter updates where the Euclidean norm is equal to 1. It is formulated as:

C = Ex̃∼Pg [D(x̃)]−Ex∼Pd
[D(x)]]︸ ︷︷ ︸

Wasserstein distance

+λEx̃∼Px̃ [(||∇x̂D(x̂)||2−1)2︸ ︷︷ ︸
Gradient penalty

(3.2)

... where ||x|| denotes Euclidean norm. The authors recommend using λ= 10.
The authors argue by presenting experiments on toy datasets, i.e. relatively simple

datasets, used for visualisation and lighter experiments. Weight clipping is a serious case
of unused modelling capacity in NNs, and makes NNs biased to learning «very simple
approximations», thus failing to learn about «higher moments» in the given datasets.
Additionally, weight clipping requires careful tuning to avoid gradient problems, whereas
GP avoids this problem altogether, resulting in stable learning for complicated NNs.

A particular result is a comparison of 4 types of GANs, where WGAN-GP is the
only loss function across 7 architectures that manages to learn well, with minimal
hyperparameter tuning. The authors even show that in a conditional setting (such as
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Figure 3.12: DCGAN vs. LSGAN vs. WGAN (clipping) vs. WGAN-GP. This is the largest
architecture tested by the authors and only WGAN-GP manages to learn succesfully.

Pix2Pix), WGAN-GP beats most competitors at the time of writing. The sole exception
is SGAN, where a main pair of GANs are trained against an ensemble of GANs; each
GAN in the ensemble learn in isolation and exist only to help the main GANs.

A peculiar benefit of WGAN-GP was found in the discriminator’s failure to learn from
a 1000-image fragment of the MNIST dataset [Lec+98]: the training loss may increase
while validation decreases, thus indicating overfitting (usually switched premises). When
using weight clipping, both losses keep decreasing, which gives an illusion of learning in
progress.
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4. Methodology

As mentioned in the introduction, zoomout and content-wise generalisations are tested.
Zoomout generalisation includes content-wise generalisation, but not the other way
around.

Type 1: zoom-out generalisation. Using map tiles at zoom level z vs. level z+ 1,
the problem can be illustrated as in fig. 4.1. The «reconstructed» image on the left is
made by using the 4 «underlying» tile images at zoom level Z+1, constituting a 512x512
image, and then using bilinear interpolation back to the original resolution 256x256.

Figure 4.1: Image translation problem: going from details present in a larger scale (left) to a
smaller scale (right). Michelin maps. The image contents respectively belong to zoom levels 17

and 16.

Type 2: content generalisation. Using tiles from different tilesets instead, with
different levels of detail, the goal is that the more detailed maps are converted to simpler
maps, one such example being OSM Mapnik into Michelin maps. See fig. 4.2. This is
conceptually somewhat similar to style transfer [KLA18].
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Figure 4.2: In this example, the goal is to generalise from the detailed OSM Mapnik format (l),
to Michelin map format (r), using data from the same zoom level.

4.1 GANs & specifications

CycleGAN and Pix2Pix were used, using most of the original hyperparameters for
training. The original architectures were used, and alternative versions with Wasserstein
distance and gradient penalty were also tested. The implementations used are from
code provided by the authors at the official GitHub repository, based on PyTorch
rather than the original frameworks. A spring 2019 version was used, and WGAN-GP
variations were made for both, henceforth referred to as Pix2Pix-GP and CycleGP. The
only architectural difference is use of a different cost function, nothing else.

There are multiple reasons for using resolution at 256x256 rather than 512x512:
GANs are demonstrably capable of «fixing» resolution issues [Led+16] in the direction
of blurry-to-sharp, so there is a possibility that unclear elements in general may be
treated correctly. Computation costs and time may also become prohibitive, so a limit
must be set. Other techniques of training may also be prohibitive, such as progressive
growing of NNs [Kar+17].

4.2 Datasets

Datasets used are made of RGB images with a resolution of 256x256, that are predomi-
nantly static images from tilesets. Said tilesets use the same zoom levels. These were
collected from the following sources: Mapbox, the Wikimedia Foundation, and Michelin
maps. The tilesets all share the same projection, EPSG:3857 or WGS 84/Pseudo
Mercator, so individual tiles have equivalents in other styles with the exact same
geographical extents. Pix2Pix in particular absolutely requires this.

The datasets used can be viewed on https://mc.bbbike.org/ under the following

https://mc.bbbike.org/
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Figure 4.3: Tileset samples.

names and the given zoom levels. Specific urban locations were used such that each
image contains plenty of information to generalise; otherwise there would be a risk
of using predominantly homogeneous, low-entropy training samples such as images
showing vegetation or waters only, where no generalisation is applied.

Tileset Zoom levels used
Mapbox transport 15, 16
Michelin maps 15, 16, 17
OSM Mapnik 17
OSM no labels 15, 16
Wikimedia Int 17, 18

Table 4.1: Tilesets and zoom levels used.

Country Locations
Germany Berlin
Japan Kyoto, Nagoya

United Kingdom London
USA Boston, Long Island, Los Angeles, Miami, New York City

Table 4.2: Tileset locations. Extents were selected to avoid spaces lacking visual content, i.e.
blank or uniform areas.

Some tilesets are useless and were not used. E.g. Nagoya on Michelin maps is useless.
Other tilesets were not used due to various issues such as lack of generalisation when
zooming out, highly conflicting data (e.g. ESRI), different projections (e.g. Baidu
tilesets), subscription requirement (Google maps), lack of data (national datasets), and
so on.

The tilesets were used to construct the datasets using the combinations in table 4.3,
with the given zoom levels. The goal is to enable a good translation from tileset A to
B. For most aligned datasets, i.e. Pix2Pix datasets, this means that two images are put
next to each other. Unaligned versions can be made, i.e. a CycleGAN dataset, where
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images are split into groups/folders A and B. The other way around can be fulfilled in
the context of this thesis.

During dataset construction, all unaligned datasets for CycleGAN were made from
aligned datasets for Pix2Pix. This is not at all required for training unaligned datasets,
but is done to ensure comparisons can be made when testing.

From ... to ... Referred to as Dataset size (imgs)
Mapbox transport-16 Mapbox transport-15 Mapbox 5 200

OSM Mapnik-17 Michelin-17 OSM Mapnik-Michelin 2̃1 700
Michelin-16 Michelin-15 Michelin 2̃ 300

OSM no labels-16 OSM no labels-15 OSM-no-labels 4̃ 200
Wikimedia Int-18 Wikimedia Int -17 Wikimedia 3̃ 900

Table 4.3: Datasets made and used for testing.

4.2.1 Dataset properties.

The input vs. desired output in these datasets have some relations that can be explained
as follows, as though these methods were used to generalise the tilesets from one to the
other. The datasets fit into either type 1 or type 2 generalisation.

Type 1: Mapbox. Buildings are unlikely to be generalised to any extent since they
are only rendered differently between scales. Buildings are not generalised between the
given zooms 16, 15, not even aggregated. Streets, paths, highways and such objects
should be exaggerated further, as is the case in this data. Small symbols should be
removed, including possible landmarks, but larger ones stay and be enlarged to maintain
visibility. Waterbodies have horizontal wave-shaped textures. At a glance, this dataset
does not appear to be too challenging.

Type 2: Mapnik-Michelin. Buildings may be omitted entirely from an image; or
rather deselected. This dataset is inconsistent on whether to render buildings. If
rendered, they should at least be aggregated across boundaries if not spatial gaps. Most
text labels should generally be removed and replaced by whatever they are blocking.
Other objects may also be moved. Various objects should be given different colours,
i.e. classified differently, including roads and buildings. Because both input and target
output is at the same scale, streets and such are not expected to be enlarged. Instead a
relation should be determined, such that objects are rendered as the «corresponding»
category, which may define properties such as colour and geometry.
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Type 1: Michelin. Buildings will generally be deselected, but attractions may remain,
particularly those marked with (Michelin?) stars on their labels. Streets should be
enlarged, but small, green streets should be omitted. Symbols should be enlarged if
they are not removed instead.

Type 1: OSM-no-labels. Adjacent buildings should be aggregated across boundaries,
but not spatial gaps. Streets and such should be enlarged according to their relative
significance and may in fact be reduced in size, to avoid distracting from the more
important ones. Some types of streets are consistently removed. Textures such as trees
regularly spaced on vegetation should be appropriately rescaled, whereas most symbols
should be removed altogether. This dataset is somewhat distinct from all the others in
that it has no text.

Type 1: Wikimedia. Adjacent buildings should be aggregated across boundaries but
not spatial gaps. Those belonging to larger polygons denoting things like hospital areas,
are turned to darker shades rather than having the standard building colour, so these
are simultaneously reclassified. Streets and paths should generally be enlarged. Symbols
should be enlarged and retain their labels. This dataset is also not one with significant
demands, to the naked eye.

Ideally, these generalisations will be observed, but inconsistent patterns may result
in inconsistent behaviour. There is always a problem in using not-self-made datasets,
as treatments applied may be impossible to know. This is especially the case for
Mapnik-Michelin, which is a particularly large dataset.

Datasets were not mixed with different tilesets in the case of type 1 generalisation,
because the generalisations found in any given tileset can vary. Furthermore, it may
be required to use many different tilesets rather than only five, to construct datasets
representing the problem of style-independent generalisation. Presently, each dataset
used for training represents generalisations for that particular dataset, such that datasets
lacking aggregation are unlikely to produce a NN that performs aggregation.

No toy datasets have been used, such as datasets with significantly greater difference
between input and output.
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4.3 Hardware & software environment

Most of the training of NNs has been performed remotely on a Linux desktop PC with
2x Nvidia GeForce GTX 1080. Testing was done on a local Windows laptop with Nvidia
GTX 1050 Ti, since testing has much lower requirements for swift performance.

The remote desktop used to train GANs for this project used Ubuntu 18.04 (Linux)
as the OS. Python 3.7 from Anaconda 4.7.12 was the only programming language used,
and all code is based on the PyTorch library, developed for computing with neural
networks. Nvidia CUDA 10.1 was used, installed through Anaconda. PyTorch with
GPU computation enabled is necessary for sufficient computation speed during training.

The laptop used an equivalent software environment.

4.4 Performance evaluation

Due to the inherent difficulty of evaluating GANs quantitatively, especially if errors
arise, the results are evaluated by hands-on inspection, with criteria given in table 4.4.

While cost graphs for GANs may not necessarily indicate good performance, they
may indicate bad performance if there is a trend of increasing cost. Note that whatever
the discriminator does, that is not of interest. The purpose of GANs is to train a good
generator, and the discriminator is only a method to do so.
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Cartographic considerations Observations
Buildings Are these aggregated, simplified, etc? Rendered correctly,

distinctly, where they should be, or even omitted/deselected
appropriately?

Roads, paths, etc Exaggerated, resized, or omitted? Are these still intelligible?
Geometric precision Are edges straight where they should be? Do objects retain

width, length and curvature correctly? Are polygons closed?
Symbols Enlarged, omitted? E.g. hospital symbols are generally

enlarged.
Land use Water bodies, vegetation, landmarks, highlighted areas

correctly rendered? Are some even ignored entirely i.e.
rendered as background?

Miscolouring Are some objects mistakenly given a wrong colour, and by
implication a different classification? E.g. blue is reserved
for water bodies usually.

Text labels Though text is not expected to be intelligible due to results
in [KGR19], can text be a problem from the input? How
does it interact with other elements?

Technical aspects Observations
Noise/blur Does the output suffer from random graphical noise/jitter?
Artifacts Are there certain patterns that make no sense but show up

repeatedly in generated images?
Misinterpretations Is anything rendered as something entirely different, indi-

cating all-encompassing issues?
Mode collapse Is the input consistently transformed to a mistaken type of

output, partially or entirely? The above technical details
are used to judge this.

Table 4.4: Performance metrics for NNs, based on properties from datasets used.
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5. Results

Test samples for each dataset are generated and used by each NN specification. One
test set with 50 input images is made per dataset, for a total of 250 test images, to
compare NNs on the same images when possible. Images shown here may be cropped
for presentation purposes.

During testing of Pix2Pix(-GP), images shown by the test code are, left to right:
input image, generated image, and target output image. The second is naturally
used to evaluate NN performance.

For CycleGAN there are three outputs that are of interest, when translating images
from set A to set B: real_A (original image), fake_B = G(real_A), and rec_A =
F (fake_B). Generally speaking, fake_B is used to evaluate CycleGAN(-GP). There is
one exception to this for CycleGAN alone, for unknown reasons: the Michelin dataset
seems to have no generalisations applied to fake_B but instead to rec_A; the same
applies in the translation direction B to A. For pragmatic reasons, rec_A will be used
in that specific case.

In the figures presenting cost graphs, note that a local minimum need not indicate good
performance, and that some numerical values are severe indicators. This is especially the
case if there is still a severe disparity between generator vs. discriminator performance.

For implementations using WGAN-GP, it is possible to converge at minimums
because such a NN tries to minimize differences. However, minimums may be local
rather than global, and rather bad too.

For Pix2Pix, the cost G_GAN (in in blue) is of interest, and if it is above 1, generated
output is likely bad. If G_GAN is competitive with D_real and D_fake, performance
could be good;

For CycleGAN, the cost G_A (in orange) is of interest, primarily. Costs D_B, G_B,
cycle_B, idt_B, are left out for visibility and because only the generalisation process
is of interest, not the other other way around. cycle_A relates to the error between the
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original image x and its cycle-translated counterpart x̂= F (G(x)).

5.1 Pix2Pix

Cartographic aspect Observations
Buildings Buildings can be aggregated but edges seem to be

smoothened in general. Aggregation could be a byproduct
rather than intentional.

Roads, paths, etc Generally enlarged properly.
Geometric precision Varies, but not impressive, partially due to noise. Street

polygons are frequently not closed at dead ends.
Symbols While these were enlarged, artifacts showed up on these.
Land use Vegetation and waters generally suffer from grid artifacts.
Miscolouring In the case of Mapnik-Michelin, coloured foreground such

as water and vegetation objects are misclassified.
Text labels Text is unintelligible as expected, but landmark labels are

either replaced by blanks or text-like symbols with rather
specific, repeated patterns. Text may even be outputted in
senseless locations.

Technical aspect Observations
Noise/blur Lots of noise; details are unintelligible. There is enough

noise that aggregation for buildings can be doubted.
Artifacts Grids, blurred patches with dots; see fig. 5.3. The Mapbox

dataset in particular has dots on the boundary of every
image.

Misinterpretations Fringe cases such as almost only vegetation, can be rendered
entirely incorrectly. See fig. 5.4

Mode collapse In a limited sense, yes. A large fraction of generated images
contain artifacts, to the point of questionable usefulness.
Certain elements cause artifacts more so than others.

Table 5.1: Performance for Pix2Pix.

Overall, Pix2Pix is neither adequate nor robust. At minimum there are issues like
graphical noise. Imprecise geometry in the images, and artifacts show up across all test
sets, and in some these are very predictable. Text labels may be drawn in some parts,
despite none being present in the input image. The cost graph in fig. 5.2 tells a similar
story, for all datasets used: generator cost diverges.

Good generalisations are largely limited to roads and streets being enlarged appro-
priately; Mapbox and Wikimedia have the best geometry, but other issues still ruin
performance.
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Figure 5.1: Pix2Pix cost graphs. All generators diverged.

Figure 5.2: Pix2Pix on Mapnik-Michelin. Performance at epoch=200 was no better, if not worse
than epoch=50. Note bad omission increasing along a given direct, rather than deselection, bad

geometry and misclassification of bottom-right vegetation.

Figure 5.3: Left to right: input, generated, target image. Artifacts in OSM-no-labels can be seen
in the middle image (zoom in). The generated images frequently have grid problems. The top box
shows repeated artifacts, and the right box shows a blurred patch formed like an L rotated 180◦,

which is also an artifact.

Figure 5.4: Also from OSM-no-labels. While structures like paths and the green texture are still
recognised, it is exceptionally bad to interpret vegetation (and more) like this case.
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Figure 5.5: Pix2Pix: misclassification.

Figure 5.6: While the cost graphs seem to be upper-bounded, WGAN-GP does not seem to
improve convergence so well.

A particular case of errors is Mapnik-Michelin. In this dataset, buildings should be
deselected or kept. What Pix2Pix has done is likely a poor compromise to satisfy both
outcomes at the same time, thus rendering some buildings but not others, while also
losing geometric precision. Also, misclassification can be seen in fig. 5.5

5.2 Pix2pix-GP

Pix2Pix-GP provides only minimal improvements compared to Pix2Pix. Its best
improvement is a reduction in graphical noise. While it may have lesser issues than
Pix2Pix overall, it still fails to solve these problems to substantial degrees. The best
cost graph oscillates but averages at around the same level throughout most of training,
while the worst ones continue to diverge.

Other problems found include grid patterns on waters especially, but grids can be
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Figure 5.7: Like Pix2Pix on Mapnik-Michelin (fig. 5.2), a compromise between absence and
presence of buildings is attempted rather than one or the other. Note substantial loss of geometry
and a blue artifact in the generated image; street polygons are frequently not closed at their ends.

Figure 5.8: OSM-no-labels. The blurred patch with various colours is found repeatedly in the
same area, on most images from OSM-no-labels.

Figure 5.9: Mapnik-Michelin. Though buildings are deselected as intended, green roads are
rendered with artifact-like elements, lacking in geometric precision too at intersections. The

highlighted artifact is particularly bad and blocks other content. The H symbol is rendered badly
too.

Figure 5.10: Pix2Pix-GP: misclassification.
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Cartographic aspect Observations
Buildings Mixed results. Adjacent structures were aggregated but not

across gaps. Noise has made this unintelligible at times.
Roads, paths, etc Enlarged properly in spite of noise.
Geometric precision Good for most objects. Street polygons are frequently not

closed at dead ends, as with Pix2Pix.
Symbols While treated correctly, they may be rendered as graphical

artifacts. OSM-no-labels consistently deselected symbols as
intended.

Land use Vegetation, water bodies and highlighted land use may
suffer severe grid patterns or text-like artifacts.

Miscolouring
Text labels Text can be misinterpreted to be hiding streets or blanks,

as opposed to hiding whatever is nearby; street name-like
symbols are placed sensibly but are unintelligible.

Technical aspect Observations
Noise/blur Graphical jitter is mostly found when artifacts arise but

can be seen when zooming in closely.
Artifacts Grids are still unavoidable, but to varying extents between

the datasets. Severe artifacts may show up on labels such
as signs showing «A 111», even on objects like actual roads.

Misinterpretations Less serious than Pix2Pix, such as fig. 5.4.
Mode collapse Largely similar problems as Pix2Pix.

Table 5.2: Performance for Pix2Pix-GP.

seen if looking for them, on most images. Mapbox in particular has grid problems on
the edges of the image.
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5.3 CycleGAN

Cartographic aspect Observations
Buildings Treated as expected as according to section 4.2.1, except

for of OSM-no-labels: a handful of times, buildings are
rendered despite the input having no buildings in these
areas, which suggests some overfit.

Roads, paths, etc Enlarged appropriately where applicable. Green streets are
translated into «normal» streets, though they should have
been omitted. A few times, street polygons are not closed.

Geometric precision The best among NNs tested; almost as precise as target
output.

Symbols Generally enlarged and intelligible, and accompanying
text was could be partially meaningful.

Land use Texture patterns with a width of 1 pixel are treated almost
correctly, blurring accounted for. Certain symbols are ac-
companied by text-like artifacts. Vegetation, water bodies
and other highlighted areas are generally well rendered.

Miscolouring Michelin dataset: green streets are rendered like normal
streets.

Text labels Text is sometimes intelligible, even if this is outside of
the scope of this thesis. Labels could also interfere, being
interpreted as though they were hiding background.

Technical aspect Observations
Noise/blur Negligible amounts of blur.
Artifacts Only for some symbols: text-like artifacts.
Misinterpretations In the Mapnik-Michelin dataset, highway labels/signs could

be rendered as buildings.
Mode collapse None at all.

Table 5.3: Performance for CycleGAN.

Graphical tokens similar to «strAße» can be found, i.e. the German word for «street».
Unlike the other NNs, CycleGAN can output labels with some level of correctness (even if
this could be done in other ways, by using datasets without labels and adding labels as a
final procedure). Textured surfaces such as tree symbols on vegetation are replaced with
something similar and appropriate spacing, despite being a «high-resolution texture»
with lots of space between these symbols. There are minimal problems with water
bodies, vegetation or even highlighted areas; these are overwhelmingly dominated by
correct treatment.

The most egregious error made by CycleGAN is to treat small, green streets (often
with dead ends) as though they were any other «normal» road, rather than deselect
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Figure 5.11: Though cost graphs were hardly improving during training, CycleGAN performed
well on all datasets. One indicator that is much in favour of CycleGAN here, contrary to all other

NNs tested, is that the generator has a consistent cost below 1.

Figure 5.12: CycleGAN does not compromise on buildings appearing or not, unlike Pix2Pix and
Pix2Pix-GP. It can even output intelligible text, such as numbers. Labels on top of certain objects
may be misunderstood to hide background colours or other objects such as buildings. Colours are

correctly applied.

Figure 5.13: OSM-no-labels: CycleGAN avoids hiding the entire pattern of 1 pixel wide lines,
and performs excellently in other regards.
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them and close off the connecting street.
Though it is not entirely relevant for generalisation purposes, it seems the original

information can be recovered after image translation. Omission of symbols and labels,
aggregation, and deselection of buildings seen in fig. 5.12, are all essentially undone
in rec_A despite their apparent absence in fake_B. It is not at all obvious how the
original data is reproduced, however.

5.4 CycleGP

Nothing is generalised. Egregious grid artifacts are produced instead, overlaid on the
original input. CycleGP produces nothing despite relatively good performance on cost
graphs, though the repeated loss of performance likely indicates a systemic problem.
Figure 5.14 and fig. 5.15 shows the general trend of using CycleGP; grid patterns were
found in the overwhelming majority of test images, the other artifact being small, round
blanks.

In spite of this, CycleGP learned to remove grid artifacts, evidenced by rec_A in
fig. 5.16, though this is generally an uninteresting result.

Figure 5.14: General trend of cost measurements while training CycleGP on the Michelin
dataset. Convergence is usually followed by a spike in cost. Throughout training, no

improvements are observed.
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Figure 5.15: Severe failure on the Michelin dataset. A darker shade was applied. Grid artifacts
showed up, despite the absence of transpose convolution in this architecture.

Figure 5.16: Severely pronounced grid artifact on OSM-no-labels, with no other effect. rec_A is
slightly blurry, and yet mostly the same as the input.
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6. Discussion

6.1 Generalisation capabilities

Pix2Pix and Pix2Pix-GP seem to have minor differences with lackluster results, that do
not motivate usage of either. Ambiguity in generalisations are badly handled by way of
compromise rather than decisiveness. Artifacts seem to be unavoidable problems, and
w.r.t. visual sharpness, neither are particularly impressive, suffering from noise, blur or
inability to process fine details. Both are capable of exaggeration of street elements,
and to lesser extents, aggregation of buildings and omission of symbols. Classification
on the Mapnik-Michelin dataset was simply bad, where the generated output often
would use colours found in neither input nor target output.

CycleGAN outperforms the other NNs substantially, demonstrating that even pixel-
level precision could be achieved while applying most forms of generalisation found
in the datasets. It achieved good performance in most metrics most of the time, and
most notably, it performs deselection in the Mapnik-Michelin dataset despite that it
is ambiguous when to perform it, whereas Pix2Pix(-GP) does not even learn how to
deselect/omit data. Its results also show aggregation, exaggeration, classification.

CycleGP is by all means hopeless, as it does not do anything.
In comparison to traditional methods using explicitly defined algorithms, the best

method/results — i.e. CycleGAN — may provide some level of competition. Its best
cases are near indistinguishable from the target output, but its worst cases fall short.
The average case is absolutely usable, but also imperfect.

Compared to other work on generalisation through Deep Learning/NNs, the results
for CycleGAN show not only quality performance but also robustness, adaptability. The
research by Kang et al. [KGR19] which shares the theme of this thesis, uses CycleGAN
too, but not for as many datasets, nor do they attempt generalisation retaining the
same overall style. The findings here on the Mapnik-Michelin dataset, support their
quantitative conclusion that CycleGAN performs better than Pix2Pix on datasets
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that make great changes on the styling. One caveat worth noting, however: Pix2Pix in
this thesis, is not performing significantly better than in their research. At no point
has Pix2Pix(-GP) shown especially usable results, unlike CycleGAN (in this thesis).

6.2 Limitations

Some of the limitations here are mentioned to draw lines on what conclusions can be
made, or answer questions pre-emptively. They may also outline possibilities for future
work, which is explicitly mentioned in the next chapter.

Representation/data encoding. The tilesets in this thesis use 3 layers of colour
information to encode various data, which must be interpreted by GANs. Raster data
isolating each type of information in a separate layer could be preferable, though such
datasets would likely have to be converted from vector data.

Labels, symbols. Text in particular has been a problem, due to various inconsistent
behaviours. Text has been replaced by all kinds of elements across NN-dataset combi-
nations. Datasets without labels produce no artifacts similar to text, and also avoid
the issue of forcing a NN to guess what is hidden by a label, though it may still occur
with symbols and other possible overlapping content instead. Alternatively, labels and
symbols could be treated better by having them in the last steps of rendering processes,
bypassing these problems entirely.

(Lack of) quantitative analysis. Admittedly, this thesis presents no numerical method
to evaluate results, relying instead on visual comparison to input, generated output and
known target output. Most of it is described rather than shown.

One possible method to deal with this is to use yet another NN, which is the method
described in [KGR19]. Inception score may be considered [Sal+16], though it is designed
to evaluate generation of diverse objects. Map generalisation of the types in this thesis,
may not quite fulfil this trait as strongly as other problems would.

Datasets used. As mentioned already, the Mapnik-Michelin dataset shows inconsistent
deselection on buildings. No dataset in this thesis is immune to inconsistency in the
underlying data, even if they are based on the same data. The procured tilesets are files
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Figure 6.1: CycleGAN trained on Wikimedia, used on Mapbox data instead. Lower saturation is
one of various unintended effects.

Figure 6.2: Pix2Pix arguably tried to compromise between deselection and retaining objects,
resulting in incoherent omission with a substantial loss of geometrical precision. It also produced

unintelligible artifacts such as the bottom left box.

saved on servers and may well be outdated and therefore missing data. Only selected
areas were used.

The tilesets are also very different. In general, a NN trained to work with one
particular dataset, cannot be expected to work with another with different characteristics.
See fig. 6.1.

The producers of these tilesets may also simply have treated data differently, just as
in [Sto+09]. E.g. Mapbox does not aggregate buildings whereas other datasets might
do that, but such information cannot necessarily be recovered without external data.

These tilets are already treated in some way that is intractable and thus irreversible.
All at the same time, this can be a method to test robustness to anomalies, diversity,
and to see if inconsistency can indeed be trained rather than landing at a poor middle
point. E.g. in training a GAN to achieve inconsistent deselection as opposed to omission,
a poorly trained GAN generator may try to satisfy the discriminator by presenting
smaller/a subset of buildings. This was indeed found to be the case in Pix2Pix(-GP)
with Mapnik-Michelin; even worse, buildings may be generated where there is only
background, and quite badly too. See fig. 6.2.

Architecture, settings, hyperparameters. Throughout this thesis, the default prop-
erties have been preferred where no significant changes are motivated, such as learning
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rate and network initialisation (setting initial values for parameters). Default archi-
tectures were used. Flipping images to artificially augment (size of) datasets was not
used, because the datasets were already sufficiently large (compared to related work),
and some elements could cause problems this way; it makes no sense to train NNs for
unrealistic problems like upside-down labels or symbols.

Exploring alternatives and recommended methods would greatly increase the scope
of this thesis. The only changed setting is batch size, for increased computation speed.
For Pix2Pix(-GP) it was set to 16, and CycleGAN(-GP) used 4. Researchers have found
different performance depending on this, such as BigGAN [BDS18], but this requires
much resources.

The authors of the WGAN-GP paper use no normalisation layers in their experiments,
and recommend layer normalisation to replace batch normalisation. Neither options
were used in this thesis. Pix2Pix uses batch normalisation, which runs only when
training. CycleGAN uses instance normalisation, which runs at all times.
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7. Conclusion

7.1 Study objectives

The research questions in this thesis were:
• How do selected NNs perform, given the generalisations that are found in a given

dataset?
• How robust are the specific methods used? I.e. to what extent is performance
largely independent of properties for any given dataset, such that even diverse
information can be handled without errors?

Compared to the generalisation-through-Deep-Learning papers presented in 3.1, the
methods used here use more data and more complex input data to train NNs with. One
of those papers uses the same NNs, and those are the most prominent and powerful
among the presented.

Pix2Pix and Pix2Pix-GP can perform generalisation in some ways, but the methods
used are not so precise that the end result can be expected to be viable or even useful.
Considering how badly these two also performed on the Mapnik-Michelin dataset,
where geometry was exceptionally bad, it seems futile to use these two in the tested
implementations; so they are not at all robust, nor do they perform too well with the
given datasets. Usage of CycleGP cannot be defended in any sense.

CycleGAN produces competitive output samples that could feasibly be mistaken for
real output, especially its best results. Its performance across different datasets suggests
that it is indeed robust; for the type 2 generalisation, where significant style change
occurs, the results of Kang et al. [KGR19] are corroborated, showing that CycleGAN
can perform rather well, and better than Pix2Pix. Even better performance may have
been found, compared to their research, evidenced by possibly better performance
but also in the face of more diverse data. This could also be argued against, because
different generalisation methods are observed or tested for.

It appears that CycleGAN in particular is a viable technique for the given generali-
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sations of the datasets used, especially for those with consistent patterns. The other
NNs fall short of conventional demands. Any confident statement on more types of
generalisation, however, in isolation or in combination, cannot be made based on these
findings. A NN trained on a given task, should not be used for or evaluated based on
other tasks.

7.2 Future work

There are many ways to expand upon the work done here, also mentioned in the
previous chapter. An obvious idea is to use newer, more capable NNs suited for image
translation.

Raster datasets. Traditional, well defined generalisation methods mostly use vector
data. If these could be converted to raster datasets and laid on top of each other, this
could provide datasets with much more specialised training, such that each layer in any
given input image contains information about one type of object, such as buildings. E.g.
if 10 types of data exist as binary or numerical data in separate layers, then perhaps
this could be easier for a NN to interpret rather than arbitrarily defined colours. One of
the more obvious benefits is the possibility of using data without labels, as these could
always be added in post-processing (after using NNs). (Note that all such data must
follow the same format, the layers cannot be switched around.)

Mixing datasets. Generalisation is not a process limited to any one map of a given
style, but it is context dependent. To enable a generalisation method that largely takes
whatever map is input but generalises it while retaining that same artistic style, this is a
possibility. But, this may be unnecessary or already possible with NNs like [Liu+19]; in
this paper, the authors generalise from one domain to another (e.g. switching between
animal species) with very, very few samples of the codomain.

Change settings. This thesis has used mostly the default architectures of Pix2Pix
and CycleGAN. There is always a possibility that alternative configurations would
lead to noticeable change. Testing the «hyper-parameter space» is best done with
much stronger hardware, however. Time spent training each combination of neural
network-dataset, in this thesis, extended well beyond 24 hours.
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