


Abstract

Geographical data is important to understand spatial relations. Many of to-
day’s open-source databases for GPS and spatial queries contains little to no
information of the spatial context in an intersection. By increasing the infor-
mation in an intersection, one can replace the need to process the surrounding
environment one-the-fly through object detection by using preprocessed data
stored in each intersection. This can reduce the limiting factor of compu-
tational resources, as the field of object detection and enormous databases
constantly are made more and more complex.

This paper proposes a framework that can be used to estimate the position
of detected objects in images from one of the worlds largest spatial street-
view image database Mapillary. The framework first proposes an overview of
the current state-of-the-art technologies for object detection, and the chooses
the best suited network architecture to train a network to recognize traffic
signs in images. From these detected object, a monocular depth estimation
is performed on the image using a pretrained network, which is used to calcu-
late the depth disparity in the pixel space. In addition, several assumptions
about the sizes of known objects, in order to propose a pixel-per-meter algo-
rithm for calculating the position of the detected objects. One an image is
processed and given a position, the image is either placed in an existing inter-
section, or a new intersection is made by exploiting the information available
in open-source spatial database APIs. The information retrieved through
this framework is return as a map layer in the form of a GeoJSON object.
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Sammendrag

Geografisk data er viktig for å forst̊a romlige relasjoner. Mange av dagens
open-source databaser for GPS og romlige spørringer inneholder lite, til ingen
data om den romlige konteksten i vegkryss. Ved å øke informasjonen i et
vegkryss kan man i stede for å prosessere omgivelsene on-the-fly gjennom
objektgjenkjenning, bruke ferdig prosessert data knyttet til hvert vegkryss og
potensielt redusere behovet for enorme beregningsressurser, ettersom feltet
innenfor objektgjenkjenning og enorme databaser konstant gjøres mer og mer
kompleks.

Denne oppgaven fremlegger et forslag p̊a et rammerverk som kan brukes
til å beregne posisjonen til objekter funnet i bilder fra en av verdens største
romlige street-view bildedatabaser Mapillery. Rammeverket fremlegger først
en analyse av dagens state-of-the-art teknologier for bildegjenkjenning, og
velger den beste av disse for å trene opp et nettverk for å kjenne igjen traf-
fikskilter i bilder. I tillegg brukes et ferdid trent nettverk for å lokalisere
traffiklysene i bilder. Utifra disse objektene, utføres en monokulær dybdeesti-
masjon gjennom et trent nettverk, som brukes til å beregne en dybdeforskjell
i pixelrommet. Videre fremstilles det antagelser for størrelser for kjente ob-
jekter for å beregne en pixel-til-meter algoritme for å kalkulere posisjonen til
det gjenkjente objektet. N̊ar bildet er ferdig prosessert og objektene er gitt en
posisjon, plasseres det i et enten eksisterende vegkryss, eller det opprettes et
nytt vegkryss ved å benytte seg av informasjon fra open-source vegdatabase
APIer. Informasjonen innhentet igjennom rammeverket returneres som et
kartlag i form av et GeoJSON objekt.
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Chapter 1

Introduction

In this chapter, the motivation and background of the paper is presented,
as well as the research goals. An outline of the rest of the paper is also
presented.
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1.1 Background and motivation

With increased research in the machine learning field, many tasks can be
solved autonomously, and the expectations of machine learning algorithms
to automate day-to-day tasks is only increasing. This has put a huge pres-
sure on the field in terms of both making machine learning algorithms more
efficient, as well as the need for more data in order to continuously make
model architectures more robust.

With the introduction of AlexNet by Krizhevsky et al. in 2012[2], ob-
ject detection and feature extraction through supervised learning became
commonly used to solve recognition problems, and has helped push the field
of extraction important features a long way. Object detection classifier are
used in for example autonomous vehicles, but with many of these computa-
tions being done on-the-fly, the computational power is a bottleneck because
fast decision making requires fast processing. Pre-processing these feature
extractions can reduces computational resources needed.

By peeking into open-source spatial databases, there is a lot of data yet
to be generated. In terms of intersections, many of these databases, such as
Open Street Map[29], an intersection is only represented as a single point
with no information about the surrounding spatial environment. With more
and more data becoming available, images with geospatial information can
easily be accessed. The Mapillary open-source database[19] contains millions
of geo-tagged, street-level images. By combining such available images with
the research of object detectors, several research goals can be derived.

1.2 Research goals

(1) Analyze the current state-of-the-art network architectures in order to
train a network and predict traffic signs through object detection in images.

(2) Apply a monocular depth prediction model to the images and estab-
lish an algorithm to predict an object’s position without knowing the interior
orientation parameters.

(3) Propose a map layer using the framework proposed from the previ-
ous research goals for traffic intersections containing spatial and temporal
properties for each intersection.
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1.3 Limitations

Due to the advanced nature of the recent state-of-the-art network archi-
tectures and the pre-trained models being trained of many computers, the
computational resources from a single computer limits the work and experi-
mentation of the paper. In addition, assumptions made during the research
phases causes errors in the estimation and limits the performance.

1.4 Outline

The structure of the paper is separated into three parts; Part 1: the theory
and related work, Part 2: the implementation, methodology and results and
Part 3:the discussion and conclusion. Each part is built up by chapters.

For part 1 consists of chapter 2 and 3. Chapter 2 consists of the theory
and history behind the techniques used for the methodology and implemen-
tation. The chapter consist of a detailed explanation of how the object de-
tection algorithms work and how the depth of an image is derived. Chapter
3 introduces and explains the datasets used during the implementation.

Part 2 consists of chapters 4 and 5. Chapter 4 explains the methodology
and research behind the selected technologies, as well as a deep dive into how
each method is implemented. Chapter 5 presents the results of the methods
used as well as the results of the proposed framework.

Part 3 consists of chapters 6 and 7. Chapter 6 discussed the results
presented in chapter 5, and the effects of the assumptions and choices made
during the process. In chapter 7, the conclusion is presented as well as some
thoughts about future work.
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Part I

Theory and related work
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Chapter 2

Theoretical background

This chapter dives into the theory behind the presented methods in chapter
4.
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2.1 Artificial neural networks

Artificial neural networks(ANN) has throughout the year become more and
more popular when it comes to many prediction tasks. The basic concept
is to replicate the way the human brain works. An ANN’s fundamental
principle is to build a network of many simple units, called neurons[10][14].
A ANN consists of input, output and hidden layers, and is defined by how
many neurons, layers and connections between the layers. The connection
between each layer is called weights, which is used to store the network. The
goal of an ANN is to transform the input so that the output layer can perform
a prediction.

2.1.1 Artificial neurons

An artificial neuron, or node, is a mathematical representation of how the
neurons in the human brain works, see figure 2.1. A networks input serves
as the dendrites and are, together with the weights and a bias, processed in
what is called a transfer function as the cell body. The bias is a constant
scalar value that is added to ensure as least some of the neurons are activated.
The transfer function is the bias added to then added to the weighted sum
of the inputs. The output of the transfer function is then processed in the
activation function (see the next section).

Figure 2.1: An artificial neuron[4]
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2.1.2 Activation functions

Activation functions are mathematical equations that defines the output of
neural network[14]. Compared to the biological neurons, the activation func-
tion is representing the axioms, which determines the rate of a cell is firing.
An activation function normalizes a neuron’s output often between 0 and 1
or -1 and 1[23]. The simplest of activation functions returns a binary value
given some threshold and decides if the neuron is firing or not. Most modern
neural networks are learning from more data and therefore uses non-linear ac-
tivation functions. An important aspect of activation function is that it must
be computationally efficient because they are calculated across all neurons,
which there can be millions of. Non-linear functions makes backpropagation
possible to create deep neural networks due to the functions having deriva-
tives. The most common non-linear activation functions are:

Sigmoid Sigmoid uses smooth grading, which normalizes the output val-
ues to probabilities which ranges from [0,1]. A disadvantage of this function
is that is can cause vanishing gradients, which is that for very high or low
values of X, there is almost no change in prediction. This can cause the
network to stop learning further. The mathematical expression as follows:

σ(z) =
1

1 + e-z

TanH The hyperbolic tangent activation function also uses smooth grad-
ing, which represent the ratio between the hyperbolics of sine and cosine and
returns values withing the range of [-1, 1]. An advantage for this function is
that is is zero centered, which makes it easier to map out extreme positives
and negatives. This too is considered computational expensive and can cause
vanishing gradients. Below is the mathematical expression:

σ(z) = tanh(z)

Softmax Softmax is a normalized and generalization of the logistic ex-
ponential function. The function sqeezes a K-dimensional vector z of K real
numbers and normalizes it into a probability distribution of K probabilities
between [0,1]. The component probabilities will sum up to 1. Therefore, the
Softmax activation function has the advantage to handle multiple classes and
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is often used in the final layer of a neural network to get the probability of
each of the predicted classes. Below is the mathematical expression:

σ(z)j =
ezj∑K
k=1 e

zk

for j=1,..,K where j is the index in the list of the input vector.

ReLu ReLu, or Rectified Linear Unit, rectifies negative values to 0, mean-
ing the network will only learn from positive outputs. A disadvantage of this
activation function is the ”dying ReLu problem”, which means that if the
output of a neuron is negative or 0, the network cannot perform backpropaga-
tion on that neuron. This activation function is considered computationally
efficient and allows for the network to converge quickly. Although it looks
linear, the derivative of the function allows for backpropagation. Below is
the mathematical expression:

σ(z) = max(0, z)

Swish The Swish activation function is a newly researched activation
function discovered by Google. Swish is simply a self-gated version of the
sigmoid activation function. Swish has an advantage of being considered
computationally efficient. Looking at figure 2.2, the graph shows that the
graph follows similar traits as ReLu, meaning it can converge quickly, but
normalizes negative values instead of setting them to 0, which lets the net-
work learn from those as well. Below is the mathematical expression:

σ(z) = z ∗ 1

1 + e-z

Figure 2.2: The Swish activation function.
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2.1.3 Feed-forward neural networks

Feed-forward neural networks is the most common ANN and is often added
on top of more advanced networks for prediction purposes. A feed-forward
neural network[35] consist of three base components in order to produce an
output; the input layer, one or more hidden layers, and an output layer. An
example of a multi-layer feed-forward network is shown in figure 2.3. In order
to use hidden layers, non-liner activation functions are necessary. A feed-
forward network without hidden layers are called a single layer perceptron,
which uses linear activation function, while a feed-forward network with many
hidden layers is considered a shallow or deep neural net. A network where
each neruon from one layer outputs a connection weight to all of the neurons
in the next layer is called a fully connected feed-forward neural network.

Figure 2.3: A fully connected feed-forward network.

2.1.4 Training a neural network

There exists many type of machine learning methods and researchers are
constantly figuring out ways to improve machine learning. Some of the most
popular methods used are supervised learning, which is where one shows the
network the correct answer, letting it adjust based on if it was right or wrong.
This requires labelled data, which is often considered a bottleneck as a net-
work often requires a lot of data in order to produce good results. Another
is unsupervised learning, which allows for the model to train itself. Another
popular method is called reinforcement learning, where the model don’t get
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to know the answer during training, but instead is based on a reward system.
For this paper, the focus will stay on the supervised learning method using
ANNs.

The way a supervised ANN actually learns is by adjusting the connections
in form of weights and biases between each neuron and determine the impor-
tance of that said neuron, both positive and negative. In supervised learning,
the weights are adjusted after the output layer has been processed. Given
the supervised nature of having the correct answer, an error, or loss, can be
calculated through something called a loss function, which is explained in
the next section 2.1.5.

2.1.5 Loss functions

In order for a neural network to learn, each node in each layer must know
if they contributed to a better or worse result. This is the job of the loss
function and is where the actual learning come into picture. The processed of
having and input, run in through the network, and return an output is called
forward propagation. After a forward propagation is done, the loss func-
tion calculates the difference between the predicted value and the truth label
(the correct prediction). This calculated value is then sent back through the
system to correct the weights. This process is called backpropagation (see
secton 2.1.6). Intuitively, the goal of training an ANN is to minimize the
loss. There exists many more loss functions, but the ones listed are those
relevant for this paper. Mainly, there are two different types of loss func-
tions;classification and regression loss[41]. The main difference between the
two is that the classification loss functions predicts a continuous value in
the form of a probability for each predicted class and evaluated by accuracy,
while the regressions loss functions predicts discrete values in form of integers.

Classification loss functions:
The truth labels for classification losses are on-hot encoded, meaning the
every class except the correct one has a value of 0. That is, if the model
is trained on recognizing [cat, dog] and it processed an image of a cat, the
one-hot encoded vector would look like [1,0], meaning that the probability
of it being a cat is 1, and 0 for a dog. For all classification loss functions,
layer before the loss is calculated must use the Softmax activation function
in order to output the predicted probabilities.
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Cross-entropy The cross-entropy loss function measures the perfor-
mance of a classification model between each predicted probability and the
true probability. The loss is measured by the negative sum of all entropies
between the predicted probability and the actual value. The entropy for each
prediction is calculated by multiplying the truth label by the logarithm of
the predicted probability. Below is the mathematical expression:

L(p, y) = −
∑
i

yilog(pi)

for i=0,..M, where M is the number of classes, y is the truth labels and p is
the predicted probabilities.

Focal The Focal loss is a version of the cross-entropy loss function and is
meant to help ease predictions where there are unevenly balanced training
set, as well as for sparse data, which means that is is great for big dataset
with many classes. The focal loss was first introduced for loss in dense object
detection. Using normal cross-entropy, the model will get a high certainty
of common cases, but will be very unsure of uncommon cases. To solve this,
a weighted class α -balanced focal loss is introduced. α is a scaling factor
which is decided based on the balancing of the dataset. The focal loss has
the purpose of down-weighing easy examples and let the focus of the training
stay on the hard negatives. The down-weighing is decided by a modulating
factor 1-pγi , where pi for a certain class and gamma is a focusing parameter
that smoothly adjust the rate of down-weighing. This focusing parameter is
a usually a constant value. Below is the mathematical expression:

FL(pt) = −αt(1− pt)γlog(pt)

for i=0,..M, where M is the number of classes and p is the predicted
probabilities.

Regression loss functions:
Unlike the classification loss functions, the labels for regression does not need
to be one-hot encoded, meaning that the goal of the network given an input
and truth label is to figure out that single truth.

Mean square error Mean square error (MSE) is the most commonly
used regression loss function. MSE is simply the sum of squared distances
between the target variable, and the predicted values. As the error is squared,
a problem with the mean square error loss function is that wrongly predicted
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values will result in extremes, meaning the loss is usually either very high
or very low, making it vulnerable to outliers. Below is the mathematical
expression:

MSE =

∑n
i=1(yi − ypy)2

n

for i=0,..n, where n is the number of inputs from the previous layer and p is
the predicted probabilities at index i.

Mean Absolute Error Mean absolute error (MAE) is considered more
robust as the MSE, as it doesn’t square the difference between the predicted
value and truth label, making it less susceptible for extremes. The absolute
difference measures the average magnitude of errors in the set of predictions.
Below is the mathematical expression:

MAE =

∑n
i=1 |yi − ypy |

n

for i=0,..n, where n is the number of inputs from the previous layer and p is
the predicted probabilities at index i.

Smooth L1 The smooth L1 loss function is also called the Huber loss
and is a combination between the MSE and MSE. As the goal of training
a network is to minimize the loss, the MSE is good for values less than 1
or some selected threshold δ, as this minimizes the loss even more for good
predictions. Therefore, the Smooth L1 loss function uses a similar version of
MSE below some value δ, and similar version of MSE above it. Below is the
mathematical expression for a single prediction:

Lδ(y, f(x)) =

{
1
2
(y − f(x))2 for|y − f(x)| ≤ δ

δ|y − f(x)| − 1
2
δ otherwise.

where f(x) is the predicted probability and y is the truth label.

The total loss of an output is then:

SmoothL1 =
n∑
i=0

Liδ,

where i=0,..,n and n is the number of predicted values
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2.1.6 Backpropagation

So far, the metric for determining how the model so far performs is explained.
This section will explain the networks learning process given some loss. The
way the network is trained is by passing the estimated loss backwards, letting
the weights adjust based on some optimization method. The most commonly
used optimization method is called Stochastic Gradient Decent (SGD). More
about optimizers in the next section. The backpropagation is based on a rule
called weight update rule, which simply states that the new weight equals the
old weight added the learning rate and some estimated adjustment calculated
using the loss function. Figure 2.4 shows an example of a backpropagation on
a small network. The next section will discuss the formulas used for different
optimizers to adjust the weights and biases.

Figure 2.4: A simple illustration of a SGD backpropagation

The general update rule of each weight and bais is shown below, but some
optimizers also adaptively scales the learning rate.

wk → w
′

k=wk − η∇L

bk → b
′

k=
¯
k − η∇L

2.1.7 Optimizers

The task of an optimizer is to determine a how the weight Some are used
to determine how to process the backpropagation using the error in order
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to adjust the weights and biases, while some are used to adaptively update
hyper-parameters. The explained optimizers to come are the ones relevant
for this paper. All hyperparameters mentioned in this section is further
explained in section 2.1.8.

Stochastic Gradient Decent As mentioned before, the Stochastic
Gradient Decent (SGD) is the most commonly used optimizer used for back-
propagation and stands as the classical foundation of using gradient de-
scents[27]. The objective of the using gradient descents are in basic words to
descend the slope of the derivative, i.e. to find and push the weights towards
an approximate minimum. SGD uses the gradients of the loss function ∇L
with respect to the weight for a small sample of randomly chosen training
inputs and uses the average gradient to quickly get a good estimate of the
overall gradient. ∇L and the learning rate η are used as follows:

1. SGD randomly picks out a small number of m randomly chosen training
inputs as a mini-batch m = [X1,X2,..Xm].

2. Apply ∇Lxj on the sample size and return the average value. As long
as the sample size m is large enough, ∇Lxj is esimated to be roughly
equal to the average overall ∇L.

∇L=
∑m

j=1∇LXj

m
≈

∑
x∇Lx

n

3. This approximate gradient is then used in the update rule explained in
the previous section for all nodes and biases.

AdaGrad The learning rate being a hyperparameter is a constant set
before training and is often set to a low value. This could cause a problem
resulting in some neurons not learning quickly enough. As a result of this,
AdaGrad was introduced by Duchi et al.[3]. The basic principle is to adap-
tively scale the learning rate to the gradient. The equation of AdaGrad’s
weight adjustment Θt+1 a certain time-step t is as follows:

Θt+1 = Θ− η√
εI + diag(Gt)

gt

where η is the initial learning rate, ε is some small value to a void division by
zero, I is the identity matrix, gt is the gradient estimate in time-step t and
Gt is the sum of the squared outer products of the gradients until time-step
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t.
Adagrad i especially effective in sparse datasets due to the scaled learning
rate making frequent examples, but could for some cases cause the network
to stop learning as the learning rate becomes really small.

RSMProp RMSProp is short for Root Mean Square Propagation and
is similar to the SGD, but uses the momentum hyperparameter as well as
adaptively updating the learning rate. The goal of an optimizer is as explain
to adjust the weights and reduce the loss. Using standard gradient descent
the adjustments using the gradients will oscillate back and forth moving
closer and closer to the approximate minimum. The goal of RMS drop is to
minimize this oscillation. Below is the mathematical formula:

vt = νvt1 + (1− ν)g2
t

Θt+1 = Θt −
η√
vt + ε

gt

where η is the initial learning rate, ν is the momentum, gt is the gradient at
time t, vt is the exponential average of the squares of the gradients along the
weights.

RMSProp remove the problem of AdaGrad with deminishing learning rates
as it uses the momentum to slowly adjust the learning rate. RMSProp also
supports mini-batches, which speeds up the gradient descent.

Adam Adam, or Adaptive Moment Optimization, combines the prop-
erties of AdaGrad and RMSProp and uses multiple hyperparameters to con-
trol the exponential reduction of the moving averages. The moving averages
is a set of gradients at time t. Adam compute the exponential average of the
gradients vt as well as the squares of the gradient st for each neuron. The
learning rate is then multiplied with the exponential average of the gradi-
ents, and then divided by the root mean square of the exponential average
of square gradients.

vt = β1vt−1 − (1− β1)gt

st = β2vt−1 − (1− β2)g2
t

Θt+1 = Θt − η
vt√
st + ε

gt

where β1 and β2 are hyperparameters.
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2.1.8 Hyperparameters

The general nature of hyperparameters statically set the foundation of how
the network should behave and are decided before the training starts.

Epoch The epoch has the function of telling the network the number
of iterations it should train on the dataset. Due to the large nature of many
dataset, it is normal to let each epoch choose a randomly shuffled sample set
with a specific batch size to serve as a mini-batch, to try and generalize the
gradients and speed up the learning process. The model is the train on the
the dataset with for a certain number or steps each epoch.

Learning rate The learning rate is what defines how quickly a model
is learning and is considered the step size of each updated weight. A large
learning rate will make the gradient descent fluctuate back and forth around
the approximate minimum, while a too small learning rate will take too long
to reach it. Smaller learning rates are still used due to the nature of it
moving towards the minimum. Mentioned in the above section, there are
several ways to adaptively adjust the learning rate for each node, but the
initial learning rate is still often adjusted during the training to push the
network into even further reduce the loss. A typical method is by after a
number of epochs, reduce the learning rate by some factor to anneal it over
time. This method is called stepwise annealing . Another annealing method
is the cosine annealing, which reduces the learning rate with the number
of epochs based on the cosine function. Another much used method is the
cycling learning rate, which given some boundaries during the epochs reduces
the learning rate down to a minimum, and then jumps it to its initial value.
This method solves the problem of a method getting stuck in local minimums,
which is good for the generalization of the model.

Momentum As mentioned above, the momentum is used during the
optimization process of the model. The momentum is often referred to as
the learning rate of the learning rate. During gradient descent, the learning
rate will cause the loss to oscillate towards a minimum. Looking at the loss
space (see figure 2.5), the learning rate will make the gradient oscillate in
one axis, but the momentum will push the loss closer to the minimum in the
other axis, making the learning process faster.
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Figure 2.5: Learning rate and momentum in loss space

As both the momentum and learning rate could cause the model to over-
shoot the minimum, Nesterov Accellerates gradient (NAG) is introduced to
solve this problem by making the momentum smarter. It uses the knowledge
of the previous gradient step and moves it in the direction of the previous
gradient instead (see figure 2.6).

Figure 2.6: Shows how NAG uses the previous gradient step to push it in
the right direction.

2.2 Convolutional neural networks

So far the general perception of training an artificial neural network has been
explained, that is, for each iteration, some weights are adjusted to minimize
the loss from the truth label. This process is called the classification process.
A convolutional neural network (CNN) analyzes the input through feature
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learning and can successfully capture the spatial and temporal dependencies
in a dataset through relevant filters and kernels[45].

In the recent years, convolutional neural networks has show to be best
suited to train models of a big input sizes. In a traditional fully-connected
neural networks, a weight is passed from each neuron in one layer to each
neuron in the next. Now, if the model processes inputs of thousands of
nodes, each layer would have to process the weights of all of these inputs,
which would require huge resources as well as time-consuming. Therefore,
instead, a CNN processes multi-dimensional inputs. For an image this means
that instead of processing a flattened image, the CNN process each image
in 3D, the width, height and channels. The number of channel decides how
many values each pixel contains - 3 for a RGB image.

By maintaining the spatial structure of the input, the CNN can be used
to recognize specific features in for this case which makes them very well
suited for processing images. A CNN uses the output of the convolutions to
predict the classification through a fully-connected neural network applied
at the end.

Architecture A CNN contains of three main parts, the input layer,
the features extraction and classification, and the output layer. Ever since
the first CNN’s were designed, the goal of the architecture is to optimize
the feature extraction both in form of evalution metrics, but also speed.
Figure 2.7 shows an example of a convolutional neural network. Famous CNN
architectures such as LeNet, AlexNet and VGGNet has been the backbone
for newer state-of-the-art model architectures and is still used today.

Figure 2.7: An example of a CNN’s architecture.

Filters and kernels A convolution means to apply some function
(filter) on some values in a kernel and produce some new value. The kernel
is simply a window of size kxk which is slided across the input data applying
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the chosen filter for each kernel. The filter is what actually decides how
the input data should be processed and is considered the activation function
of the convolution. The filter aggregates the values in the kernel, pass it
though the function and returns the value to the next layer. A common
filter is ReLU, and same as for ANN, simply return the maximum value of
the kernel. By combining it with a scale α ≤ 0, the ReLu filter becomes
scale-invariant. The function is as follows:

f(a, x) = max(0, ax)

ReLU, when used in CNN, keeps all the same advantages and disadvantages
as for traditional ANNs.

Figure 2.8 shows an example of a random filter applied to a kernel. The
stride of a kernel decides the interval between neighboring kernels, e.g. a
kernel with stride 1 convolulutes each neighboring kernel.

Figure 2.8: A kernel applied to an image.

As one can see in the figure above, without applying further rules, the
output of a kernel with a stride reduces the image size by leaving one row
and column empty. A padding can be applied by adding zeroes in said
positions. The objective of the convolutional operation is to extract the high-
level features from the input image. With multiple convolutional layers,the
architecture adapts to the convoluted features as well.
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Figure 2.9: Example filters learned by Krizhevsky et al. Each of the 96 filters
shown here is of size [11x11x3], and each one is shared by the 55*55 neurons
in one depth slice[2]

Pooling layers Similar to the convolutional layer, thepooling layeris
responsible for reducing the spatial size of the convolved feature. This is
to decrease the computational power required to process the data through
dimensionality reduction. Furthermore, it is useful for extracting dominant
features which are rotational and positional invariant, thus maintaining the
process of effectively training of the model. The most used pooling is the
max pooling. This returns the maximum value from the portion of the row.
Max pooling also reduces the noise of the data, as only the dominant features
are extracted.

Upsampling layers As the pooling layers reduces the spatial size of
the image, the upsampling layers has the function of increasing the size of
the image to the desired size. The most common way to do this is by using
interpolation and resampling such as nearest neighbor.

The result of the convolutions and pooling and upsampling layers will serve as
the input layer for a fully connected layer in a feed-forward neural network. In
order to get the correct dimensionality before feeding it into a fully-connected
layer, the convolutional output layer is flattened into a nfeatx1 array. The
output layer must be reduced to the same number of nodes as the number
of potential classes, e.g. if the model predicts three classes, the output layer
must be a 3-neuron layer. Based on the optimization method chosen, the
loss of the function is computed, and the weights are updated.
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2.3 Object detection

Compared to the image detection classifiers, where the goal is to predict the
class of one object in an image, object detection also involves identifying
the position of one or more objects predicted in the image. Object detection
classifiers produces a list of objects presented in the image with corresponding
scores, as well as an aligned bounding box indicating the position and scale
of every object. Using CNNs in object detection trains two networks, one for
classifying the objects in an image, another for fitting the box around each
object and given that this is supervised learning, the training data needs
both truth labels for each object, as well as the location in the image in form
of the bounding box. The truth label for the bounding box is call ground
truth box.

2.3.1 Evaluation metrics

In order to know if a model is well trained or not, several evaluation metrics
are defined based on the predictions. A simple classification task is simple
to evaluate, but accounting for the object detection, a confidence score is
introduced for each bounding box of the object detected[1].

IoU Intersection over Union is an evaluation metric that quantifies
the similarity between the predicted bounding box and the ground truth box
(gt) in form of a probability measure. The higher the IoU score, the closer
the two boxes are to each other. The IoU measures the overlap/intersection
of the bounding boxes divided by the union.

Figure 2.10: An example of the IoU between two bounding boxes[1].
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Predictions To decide if the bounding box prediction is good enough
or not, the IoU is measured, and based on a set threshold, values above this
threshold is considered positive predictions, and those below are vise versa
negative predictions. If the next sections, some evaluation metrics are calcu-
lated using true positives(TP), true negatives(TN), false positives(FP) and
false negatives(FN). A true positive denotes that the object is there, and
the IoU is above the threshold. True negatives denotes that the object isn’t
there, and the model does not detect it. False positives denotes that the
object is there, but the IoU is below the threshold. False negatives denotes
occurrences where the object is there, but the model doesn’t detect it, mean-
ing the predicted bounding box has no prediction.

Accuracy The accuracy is the percentage of true positives plus true
negatives divided by every prediction. This is often misleading when dealing
with imbalanced datasets.

Accuracy =
TP + TN

TP + FP + TN + FN

Precision The precision is the probability of the predicted bounding
boxes with respect to the actual ground truth boxes. This metric is in other
words the probability of when an object is detected, the model is correct.

Precision =
TP

TP + FP

Recall The recall is the rate of true positives, often referred to as the
sensitivity of the predictions. It measures the probability of ground truth
objects being correctly detected, i.e. how many of the actual objects did the
model detect.

Recall =
TP

TP + FN

Average precision AP The average precision is an evaluation metric
that measures the performance of the model as it returns a single value that
accounts for both the precision and recall. The average precision is also
known as the area under curve (AUC) and measures sum of the maximum
precision p for any recall r̃ multiplied by the change in recall ≥ r̃.

AP =
∑

(rn+1 − rn)pinterp(rn+1)

pinterp(rn+1) = max(p(r̃))r̃≥rn+1
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Mean Average precision mAP The mean average precision is sim-
ply over N classes, the mAP averaged the AP over all the N classes, i.e. the
total performance for all classes.

mAP =
1

N

N∑
i=1

APi

2.3.2 Feature extraction

The research in object detection is still an ongoing porcess. I order to avoid
having to train a network from scratch every time on either new datasets,
finetuning a model towards the same dataset, or introducing new model
architectures, one can use already general and robust pretrained networks
to help speed up the process of learning. Using a pretrained network as a
foundation for what the new task is, is called using a backbone. When it
comes to object detection in images, as explained in the previous sections,
the goal is to fit a bounding box around a classified object. The CNN has as
a task to extract features of an image, and learn the model on those instead
of the input images directly. Using an already robust and generalized model
as a backbone and extract the most important features of it will make the
new keep the important features of said backbone, and make the process of
both detection and localization of objects much faster. ImageNet[15] is one
of the most used backbones today as the network is trained on over 14 million
images containing almost 22 000 classes. Another commonly used backbone
are models CoCo dataset. CoCo stands for Common Objects in Context and
contains of both training and validation data of over 120 000 images with
multiple bounding boxes for each image for around 100 common objects.

The difference between fine-tuning a model and feature extraction in gen-
erally speaking either to, train the model further using similar data with the
corresponding classes, typically a sample set of the classes already used in
the model, or extract the important features from the network and use that
as a foundation for training a new network. The first is called fine-tuning.
A typical example using the MS CoCo dataset, is to fine-tune the model on
new data to make it better at predicting less classes, e.g. busses, instead
of all the 100 classes. Feature extraction[9] reduces the dimensionality of
the original input data so it is more manageable for further training which
is more commonly used when training on new datasets with new classes so
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that the model already has a common opinion of what to look for both in
terms of classification and localization of the bounding boxes.

2.4 Depth estimation

In order to convert the position of an object in an image to real distances,
depth estimation is needed. There are several ways to approximate the depth
of an image. In recent years, many have tried to estimate depth using deep
learning networks as a lot of data can be collected using cameras and Li-
DAR[36] combined. The camera take a picture of the environment, and the
LiDAR obtain the distance of each point.

2.4.1 Stereo rectification

Stereo rectification[7] the more traditional of obtaining distance to an object
and is the task of using two images, detect the same feature in both objects
and calculate the distance. In computer vision, the stereo vision uses trian-
gulation based on epipolar geometry to determine the distance to an object.
One of the tasks while using multiple cameras is to find the corresponding
feature in both cameras. This problem is knows as the correspondance prob-
lem. If the images has no geometric distortion, i.e. is in the same epipolar
plane, the calculation is made through linear transformation. In general,
affine transformations are made done by rotating X and Y axis to put the
images on the same plane, scaling the image to the same size and rotate the
Z axis to skew the image making the images align directly. If each camera
is calibrated, i.e. the intrinsic orientation parameters (IOP) are knows, the
essential matrix provides the relations between the cameras. If the cases
lacks this essential matrix, a fundamental matrix is derived by using at least
some point correspondence. Below are two figures [2.11][2.12] to show the
rectification and the transformation.
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Figure 2.11: Image rectification
using epipolar lines

Figure 2.12: Transformation of the
images.

2.4.2 Supervised depth estimation

Using labeled data, supervised depth estimation models have shows proving
results in learning the models the relationships between color images and
their corresponding depth. Different approaches are used in order to ob-
tain good results, such as combining local predictions, non-parametric scene
sampling which is a method of using scene parsing[30], i.e. spatial segmen-
tation through CNNs, to try and classify the spatial correlation of pixels in
an image, see figure 2.13.

Although the LiDAR data can serve as the ground truth for the distance,
one can see from just the scene sampling that the distance alone is not enough
to learn the spatial correlation in an image, which results in a lot of data
need to be manually labeled, and serves as a bottleneck for fully-supervised
methods.
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Figure 2.13: Top left: Query image; Top right: ground truth;bottom left:
Superparsing method; bottom right:Sampling parsing method[30]

As a result of this, there has increasingly been proposed methods that
exploits weakly supervised training data with other spatial correlations, such
as object size, sparse ordinal depths, appearing matching and synthetic data
generation in addition to the depths alone.

Recent work has shown that conventional structure-from-motion (SfM)
pipelines can generate sparse training data for both the camera pose and
depth[20]. SfM is typically run as a pre-processing step before the learning
process is begun. SfM is a photometric range imaging technique for estimat-
ing three-dimensional structure from two-dimensional images. The principle
of the technique is to find the correspondence between images in form of
features such as corners. One of the most used feature detectors is the SIFT
algorithm[32], which is a scale-invariant feature algorithm.

2.4.3 Self-supervised depth estimation

To help solve the problem of not having enough ground truth data, an al-
ternative is to let the model use image reconstruction for the supervision.
For this the model is given a set of images as input, either in the form of
monocular sequences, or as stereo image pairs. By hallucinating the depth
for each image and projecting it into nearby views, the model is trained by
minimizing the image reconstruction error. I other words, the model tries
to reconstruct the image by trying to figure out the spatiality between the
pixels.
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Self-supervised monocular training For a monocular self-supervised
training model, temporal frames in the form of videos are used as the training
data. In addition to predicting the depth, it also proposes a model to predict
the camera pose, which is used during training to help constrain the depth
estimation. This can be challenging in the occurrences of moving objects.

The basic principle of a monocular training technique is to apply some
motion explanation mask allowing the model to ignore specific regions that
violates the assumption of rigid scene motions. Later models have proposed
more sophisticated motion models using multiple motion masks as well as
learn from the occurrences of both rigid and non-rigid components to derive a
flow estimation. In addition to this, self-supervised training typically relies on
making assumptions about the appearance and material properties between
frames. By also considering these properties with by optimizing the local
structure based appearance loss, the model can predict the appearance in
one image, with the view point of another image. This process is called an
image synthesis.

Self-supervised stereo training Self-supervised stereo training has
the input of two images in a stereo pair and is used during training to predict
depth disparities, that is a pixel representation of the depth in an image.
These disparities together with a left-right depth consistency term, can be
used to train a monocular model. These stereo-based approaches has been
extended with semi-supervised data, such as mentioned above for additional
consistency and temporal information. The result of self-supervised stereo
training models can be used for real-time depth predictions.

2.4.4 Self-supervised monocular depth estimation

This section describes the steps of using the introduced training methods
to predict a depth estimation. By combining the process of image synthesis
with the predicted depth disparity, the model extracts an interpretable depth
for each pixel from the network. The depths are not certain, meaning that
each depth interpretation could contain a large amount of possible incorrect
depths per pixel which could, in principle, reconstruct the image correctly
given the relative pose between two images. This is where the combination
of the mono and stereo self-supervised training methods are combined, as the
stereo methods typically addresses this ambiguity by enforcing a smoothness
in the depth maps, as well as computing photo-consistency when solving
per-pixel depth through global optimization[46].
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One of the monitored loss of the model is called the photometric repro-
jection loss and is measured by expressing the relative pose for each image
It′ with respect to the target pose of image It, where the time/interation
interval is Tt′→t. With the prediction of the depth map Dt, the model se-
lects the minimized error for each pixel, giving the minimized photometric
reprojection loss:

Lp = min(pe(It, It′→t))

where
It′→t=I

t
′ 〈projection(Dt,Tt′→t,K)〉

Here, pe is the photometric reconstruction loss e.g. the Manhattan[11]
distance in pixel space. proj() are the resulting 2D coordinates of the pro-
jected depths Dt in It′ and 〈6 is the sampling operator. K is the in this case
is the notation used for the pre-callibrated IOPs.

The photometric reconstruction loss between the input and the ouput is
calculated as follows:

pe(It, It′→t) =
α

2
(1− SSMI(It, It′→t) + (1− α)‖It − It′→t‖

SSMI is short for Special Sensor Microwave Imager and is the data product
of a Remove Sensing System e.g. LiDAR and used unified, physically based
algorithms[40].

The last of the losses measured is the loss of an edge-aware smoothing:

Ls = |δxd∗t |e ∗−δxIt +|δyd∗t |e−δyIt

where d∗t = dt
d̄t

and is the mean-normalized inverse depth.
Figure 2.14 shows the proposed pipeline in[6] for a self-supervised monoc-

ular training depth estimation network.

Figure 2.14: [6](a)Depth network: Uses a standard fully-convolutional net-
work to predict depth. (b)Pose network: Predicts the pose between a pair
of frames. (c)Per-pixel minimum reprojection: Matches each pixel to the
view in which it is visible, leading to a sharper result. (d)Full-resolution
multi-scale
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Chapter 3

Datasets in neural networks

The following chapter presents the datasets used for object detection, depth
estimation and testing.
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3.1 Object detection

A we now know, the goal of an object detection classifier is not only to clas-
sify image, but also predict the object with a bounding box. This requires
labeled data with corresponding ground truth boxes. For many years, dif-
ferent companies and associations have tried to develop huge, generalized
datasets. Among them are the PASCAL VOC dataset, which the latest ver-
sion from 2012 contains more than 20 classes for more than 9000 labelled
images containing one or more objects. The most common way to evaluate
each iteration of a dataset is through challenges, where developers and re-
searchers can try and optimize models in order to reach the highest possible
score, often through the mAP metric over all predictions.

COCO Briefly mentioned in section 2.3.2, the COCO dataset stands
for Common Objects in Context and was introduced my Microsoft in 2015[42]
with a goal of advancing the state-of-the-art object detection models by gath-
ering images of complex everyday scenes in a natural environment. The
dataset contains photos of 91 object types with a huge amount of 2.5 million
labeled instances in 328k images. The dataset was collected through a crowd
worked environment using an interface to the user to categorize the image.
For this paper, the COCO dataset pretrained model is used to recognize the
traffic lights, and used as training data for the selected backbone.

MTSD MTSD[5] was newly introduced by Mapillary in 2019 and is
the current largest traffic sign database with over 300 000 labeled instances
in over 100 000 images with more than 300 traffic sign classes. This dataset
is the most diverse traffic sign dataset containing images across the whole
world and is evaluated to be a strong baseline for detection and classifica-
tion. In addition to the large scale of the dataset and unlike many other
traffic sign databases, it also contains attributes, which can be included in
the input layer during a training process. The dataset is freely available for
academic research and can be requested through their website. A note to-
wards the dataset is that it contains large, natural images with traffic signs
in it, requiring more resources to process than some other datasets. Due to
the traffic signs varying across different countries, there is a traffic sign class
taxonomy. To account for this, the labels with the initial same purpose is
labeled into the same class with a taxonomy notation behind it. An example
of this is for is regulatory–stop–g1, where g1 is the notation of taxonomy.

GTSRB The GTSRB is short for the German Traffic Sign Recognition
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Benchmark and was first introduced in 2010 and has more than 50 000 images
for more than 40 classes. The image database consists of really small images
of only a size 30x30, with corresponding bounding boxes. The dataset is
freely available for download through their website[25].

3.2 Depth estimation

KITTI The KITTI takes advantage of their autonomous driving platform
Annieway to retrieve their data[12]. The car used for data collection uses
two high-resolution color and greyscale video cameras and a Velodyne laser
scanner for ground truth distances as well as a GPS localization system.
The car drives in the mid-city of Karlsruhe, Germany, on highways and rural
areas. For each image, up to 30 pedestrians and 15 cars are available per
image. An optimized version towards depth estimation will serve as the
dataset for the monocular network to predict the depths for this paper’s
proposed map layer.

3.3 Test dataset

Mapillary In addition to the traffic sign dataset, Mapillary also has a
huge crowd-sourced street-level image database from all over the world[19].
This is available for developers through an API and makes requests based on
area, a certain sequence or a single image possible. The return of the request
is if the form of GeoJSON[13] . These images contains geospatial properties
as well as the camera angle of the image. As the image database consists of
crowd-sources images, the quality of the images varies a lot, often resulting
in a lot of distortion. The proposed model architectures proposed in the next
chapter will predict on these images and used for geospatial location of the
image. A note to this dataset is that it does not contain the IOPs nor any
labels, it is purely an image taken with a timestamp and location.

State Highways Authority As the goal of this paper is to produce a
map layer for intersections, the Norwegian State Highways Authority API is
used to find the closest intersection for the processed. The default map pro-
jection of this API is UTM zone 33[31] with the geodetic datum WGS84[37]
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Part II

Methods and implementation
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Chapter 4

Methodology

This chapter dives into detail on how the methods work and what parameters
are used in the implementation, as well as some comparisons of how the
techniques perform up against one another.
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4.1 Network architecture

4.1.1 Brief history of object detection

Object detection is a widely researched topic even before deep learning got
introduced by Krizhevsky et al. in 2012[47]. Early object detectors were
based on manually crafted features. The sliding window classifiers were one of
the first object detector, such as Haar-features, Non-maximum suppression,
Histograms of gradients and more. After several years, Uijlings et al. in 2013,
proposed a better algorithm based on regional proposals, the selective search.
Instead of a sliding window, the proposed regions with high ”objectiveness”
were chosen. In the same era, the first deep learning neural networks were
proposed by Krizhevsky et al., introduction AlexNet. The first deep learning
neural network object detectors were based on a two-stage method, with
a pipeline of given an input image, propose the regions and classify the
proposed regions in form of an output.

An architecture called R-CNN[33] was proposed by Girshick et al. in
2013 and stood as a big step towards a new direction as up until then, other
object detection architechures had plateued trying to train on the PASCAL
VOC dataset. R-CNN was the first region based CNN architecture. R-CNN
combines two key techniques; apply a high-capacity CNN to the bottom-up
selection search region proposals in order to localize the object and then
fine-tune a supervised pre-trained neural net towards their domain.

In 2015, Fast R-CNN was proposed by the same team which used a CNN
to both the proposed selective search regions as well as the classification. The
same year, Faster R-CNN was proposed by Ren et al.[34] which introduced
the first architecture to use a CNN to fully propose the regions, as well as
the classification, meaning no more selective search.

In the later years state-of-the-art architectures such as Single-shot de-
tectors (SSD) and YOLO - You Only Look Once have been designed. The
unique approach of the Single-shot detectors is that it through several fea-
ture extraction CNN layers, proposes both the classification as well as the
location of the object in the same network. SSD is considered a generally
fast and moderately accurate model. YOLO uses the basic principle of only
looking at just a single scale of features and a fully connected layer, and is
considered one of the fastest architectures.

In the recent years, the use on advanced CNN architectures has blown
up due to the large access of training data, which further requires good and
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robust network architecture both in terms of computational resources, as
well as the predictions. The next section will look into the performance of
different architectures.

4.1.2 Review of network architectures

The list of potential networks to use for a traffic sign detection purpose
could be endless, but looking at recent research papers comparing different
architectures, some of the current famous and best will be compared. As
a baseline for the architectures, the mAP will be used as the performance
metric on the COCO dataset. For most part, the architectures proposed are
designed by companies like Google Research Brain, Microsoft Research and
Facebook AI Research.

Figure 4.1: The current best performing network architectures on the COCO
dataset (accessed 25.06.2020)

Figure 4.1 shows the current best performing network architectures at
the moment. Now, as the model shows, there are a lot of variations using
the same essential principles. For the comparison below, only some pros and
cons with the architectures will be , but the paper will only go further into
detail for the selected architecture.

Mask R-CNN Mask R-CNN was first proposed in 2017 by the Facebook
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AI research team[17]. The basic principle of a mask R-CNN is to efficiently
detect objects in an image while simultaneously generating a high-quality
segmentation mask for each instance. In addition to detection classes and
bounding boxes, the mask R-CNN network can easily generalize other tasks,
such as estimating poses. The year of release, the mask R-CNN outperformed
all proposed networks in the COCO suite challenges in 2016.

RetinaNet Following the year of the mask R-CNN, the Facebook
AI Research team proposed yet another network architectures, the Reti-
naNet[44]. RetinaNet moved away from the current best performing two-
step region-based approach. Instead, the model proposes a one-stage detec-
tor that is applied over a regular, dense sample of possible locations. This
proves to be much faster than the two-stage architectures. In addition, the
architecture was the first to propose a the focal loss, instead of the standard
cross-entropy loss function. The results of Retinanet shows that it is faster,
but still surpassing the other state-of-the-art detectors in terms of accuracy.

ResNet ResNet was proposed in 2015 by the Microsoft research team[18].
The model proposes a residual learning framework that are much deeper, e.g.
more layers, than previously proposed methods. The network reformulates
the network’s function of a layer by using an output of a layer as learning
residuals referenced to other layers, i.e. the output of a layer is not only
passed to the next, but several layers down. This improves the relative im-
provement of each layer. A ResNet network is often used combined with a
number, e.g. ResNet18. This number represent the number of layers in the
network. Although the deep nature of the network, the relative improvements
speeds up the learning process. Building upon the deep residual networks,
many architectures has been design, performing well in terms of accuracy
and speed.

EfficientDet The EfficientDet model design is one of the most re-
cent additions of state-of-the-art model architectures. It was proposed late
2019 by the Google Brain Research team[22]. The architecture proposes a
weighted bi-directional feature pyramid network (BiFPN)4.1.3, which allows
for easy and fast multi-scale features fusion. In addition the network uses
compound scaling to uniformly scare the resolution, depth and widths for all
backbone, feature network and class predictions at the same time. Tested on
the COCO dataset, figure 4.2 shows that EfficientDet perform better than
the above mentioned networks both in terms of latency, accuracy and the
number of input parameters.
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Figure 4.2: Different performance metrics for different network architectures.
The latency is measure with a batch size one on the same machine.

Although the ResNet50 model architecture has been used to train traffic-
sign detectors[5], as research goal 1.2 states, the goal is to try and implement
the current best state-of-the-art network to solve the problem. Therefore,
the EfficientDet network architecture is chosen for this paper.

4.1.3 Feature pyramid networks

Before dwelling further into the EfficientDet network architecture, the feature
pyramid network needs to be explained[43].

A feature pyramid network (FPN) is a feature extractor designed as a
pyramid to produce multiple feature map layers. The FPN uses a bottom-up
and top-down approach. The bottom-up pathway is the usual convolutional
network for feature extraction applied for different resolutions. The convo-
luted outputs are not only propagated through each layer, but is also passed
to the top-down pathway for the same resolution. The feature map level in
a stage of the pyramid uses the notation of Pn, where n is the level in the
pathway.
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Figure 4.3: The general bottom-up, top-down FPN

4.1.4 EfficientDet

The basic principles of the EfficientDet network was briefly explained above.
The EfficientDet network proposes the new type of FPN is the weighted
bidirectional feature pyramid network (BiFPN). BiFPN use a more efficient
way to aggregate features in one level of the pyramid and then output the list
of new features. The BiFPN uses cross-scale connections between the nodes
having more than one input edge. In addition to the cross-scale connection,
an edge from the original input resolution is added to the output node of the
same resolution. Unlike the traditional FPN’s that only uses one top-down,
bottom-up pathway, the BiFPN treat each top-down, bottom-up path as one
feature layer and repeat the same layer multiple times. This helps enable
more high-level feature fusions. Figure 4.4 visualizes the BiFPN layer.

Figure 4.4: The evolution of the FPN from a towards the BiFPN in d

Unlinke the other FPN, the BiFPN treates each input at different res-
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olutions with different weights, as the observations shows that the input of
different resolutions contribute to the output feature unequally. To address
these weights, a fast normalized fusion is proposed:

O =
∑
i

wi
ε
∑

j wj
Ii

where wi is the learnable weight for image i and wj are the all the j weights.
ReLu is applied to ensure wi ≤ 0.

The full network architecture is shown in figure 4.5. The backbone of a
model means using the feature extraction network of a selected model as an
encoder of the input image, i.e. the backbone extracts features to a certain
feature representation. The EfficientDet network is then basically the last
steps of the entire model, efficiently extraction more high-level features. The
BiFPN network serve as the feature network of the model, which takes 3-7
features P3, P4, .., P7 and repeatedly apply top-down, bottom-up bidirectional
feature fusion. By the way, the weights are shared across all levels of features.
The feature fusions are fed as an input to the box and class network for
prediction.

Furthermore, the EfficientDet network adresses the issue of resource con-
straints by proposing compound scaling. Traditionally, when wanting to scale
up the network to try and increase performance, only the size of the back-
bone is scaled. EfficientDet proposes a family of scaling factors that jointly
scale up the backbone in the form of width, depth and the image resolution.
The compound scaling coefficient is φ. Note, that due to the computational
resources being a limitation for this paper, only φ = 0 will be used, but know
that the number of BiFPN, box and class layers used is scales with φ. The
BiFPN scales exponentially.

Figure 4.5: The EfficientDet architecture. It uses EfficientNet[21] as a back-
bone. The entire model is shown in A.1
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4.2 Training the model

As mentioned φ = 0 is used for the training due to the limitation of computa-
tional resources. This means that the network will be trained on the smallest
possible version of EfficientDet. Using φ = 0 set the following training pa-
rameters; Image resolution = 512, BiFPN input channels = 64 with a depth
= 3 BiFPN layers and the depth of the box/class networks with a depth = 3
for each network. The pretrained weight used for the network is trained us-
ing the COCO dataset, as explained in section 3.1, contains over 2.5 million
training instances. Although the prediction output are completely different
classes, the network extracts the important features from the backbone and
further train the network towards the new dataset with corresponding classes.
A quick insight of the hyperparamters used for the pretrained weights; SGD
optimizer with the normal momentum of 0.9, the learning rate linearly scales
from 0 to 0.16 for the first epoch and is annealed using the cosine cycling
decay rule, the activation function used is swish, the focal loss was used as
a loss function for the classification, the model was trained for 300 epochs
with a batch size of 128 on 32 TPU and evaluated with using the Normalized
Mean Square (NMS) loss function.

Before explaining the experiment further, the impact of the computa-
tional resources needed will be addressed.

Computational resources As mentioned computational setup for
the pretrained weights, the proposed model is trained on 32 TPUs. Dur-
ing this experiment, only 1 GPU is available, with only 16GB of potenitial
CPU RAM. Although using φ = 0 might seem like it makes the model archi-
tecture small, it is not. Processing the input data when training a network
for object detection is usually done using data generators. The purpose of
the generator is to distribute the computing power among both the CPU
and the GPU. The learning process and the actual training of the network is
done using GPU, but the data management and network memory is handled
in the CPU. As the proposed networks used for training in this experiment,
that is, the GTSRB and MTSD datasets, are way to big and contains way
to many classes in order to run a full network. In general, the computational
overhead stops at a batch size of 4 using the MTSD dataset, meaning only
4 images will be processed for each step. The step is a hyperparameter that
decides how many input groups of the size of the batch size should be pro-
cessed each epoch. If you want to train on the full dataset each epoch, the
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step size is the number of training images divided by the batch size, but as
reducing only the step size while still using the full dataset kind of defeats
the purpose of learning, as each epoch would consist of a randomly selected
dataset each epoch. Therefore, the dataset is reduced drastically.

Reducing the dimensionality As the the image sizes of the GTSRB
dataset is only 32x32 images and only contains 43 classes, a batch size of 16
was possible, which made it possible to train using the whole dataset. More
about the results of the training of GTSRB in chapter 5. For the MTSD
dataset only a fraction of the dataset was used for training. See the next
section.

Proposed dataset There are two dimensionality reductions to pre-
pare the data for training the network. In section 3.1, the MTSD contains
over 300 classes, where some of these classes were taxonomy versions of each
other due to the difference of signs across the world, which makes the dataset
less relevant for this experiment. The first dimensionality reduction is to re-
duce the number of predicted classes. Reading the documentation from the
Norwegian State Highways Authority, especially three types of signs are as-
sociated with intersections, see figure 4.6. Based on this knowledge, the
number of classes is reduced from over 300 to 5, using only the g1 taxonomy.
These five classes are the following; yield, turn-left, turn-right, no-left-turn,
no-right-turn. Unfortunately, the training network proposed in the results
will therefore not recognize any other signs than these five. The no-u-turn
class is not included due to the low number of instances compared to the
other.

Figure 4.6: Norwegian State Highways Authority associated with intersec-
tions.

The second dimensionality reduction is the number of training samples
used. Knowing that the pretrained weights are trained for 300 epochs, using
all occurances of the selected classes is still too many. A sample size of
around 800 images containing these classes are used. More about this is the
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result section. As the model learns to recognize these signs on such a small,
an occurrence of overfitting might be the case. The validation dataset used
was reduces in the same way, resulting in about 50 images.

Training parameters Now that the dataset has been reduces to a
smaller sample, the actual training of the network can begin. The general
procedure of training the network goes as follows:

(1) The network is trained for maximum of 50 epochs or until the network
converges on a batch size of 4 for the whole dataset freezing all the weights of
the backbone up until the feature extraction layers used in EfficientDet, that
is the BiFPN layer P3, P4, .., P7. Freezing the weights for a layer means that
these weights won’t be adjusted. The optimizer used is the Adam optimizer,
as it proved to be much faster and yielding better results than the SGD opti-
mizer. Same as the backbone, the smooth focal loss is used for classification
loss, and the NMS is used for regression. The learning rate for this step is
0.001, but reduces when the mAP evaluation metric stops increasing.

(2) The network uses the trained weights after step (1). Now, the back-
bone is unfrozen, meaning the whole network will be trained on the sample
dataset. The hyperparameters used in this section are the same except the
batch size being changed from 4 to 1, and the learning rate reduced to 0.0001.
The model is run for 50 epochs, or until the model converges.

(3) The last step is to train the model yet again on the same dataset,
using an even lower learning rate, until the network converges.

The result of training the network is shown in the result chapter.
Traffic sign detection For the case of prediction the traffic signs, the

EfficientDet trained on COCO is already trained to detect traffic signs, an
inference using their pretrained weights are used.

4.3 Estimating depth

Using the theory explained in section 2.4.4, This section will cover the im-
plementation and architecture used to solve this task.

The actual implementation of the theory derived by Godard et al.[6] is
retrieved from an existing github repository implemented by nianticlabs[26],
and for this paper, the result of the trained models are used to predict depths.
Due to the lack of additional training data for this specific task, no further
training is done.
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The realization of the theory is the Monodepth2[6] model. The net-
work is based on the U-net model architecture[28] for both the depth and
pose networks. The U-net architecture uses the basic principle of processing
multi-channel feature maps for many convolutional layers of different dimen-
sionality and propagate each feature map of a certain level through the entire
model (see figure 4.7). The U-shape is created by an almost balanced down
and upsampling, but often loses some spatial size during the upsampling.
The downsampling can be referred to as the encoding of the data, while the
upsampling can be referred to a the deconding of the downsampled features
maps.

Figure 4.7: The U-net model architecture. Each box corresponds to a multi-
channel feature map. Each multi-channel feature map is propagated through
the entire network.

The Monodepth2 model use a ResNet18[18][4.1.2] model as an encoder,
i.e. the first half of the U-net. The number behind ResNet stands for the
amount of layers in the network. Using only 18 layers speeds up the process
compared to using a bigger network. There is a slight difference between
the depth estimation network and the pose network. This difference is the
number of channels used for the input layer. As the pose is estimated though
a pair of images, the number on channels used in the input layer is two times
that of the depth network. Before training the ResNet18, the pretrained
weights of ImageNet is loaded.

For the right-hand side of the network, the decoding of the feature map
retrieved through the ResNet18 encoding. Figure 4.9 shows the architecture
of the upsampling process. k is the kernel size, s is the stride, chns is the
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number of output channels for each layer, res is the downsampling factor for
each layer relative to the input image. The input corresponds to the input
of each layer where ↑ is a 2x upsampling nearest-neighbor convolutions. The
output of the activation function is sigmoid, while elsewhere, the activation
function for the convolutions is ELU, is a version of the ReLu activation
function, but maps negative values along -1, instead of flat 0. in The final
sigmoid probabilities to depth by D = 1

ασ+b
, where a and b are chosen to

constrain the depth between 0.1 and 100 units.

Figure 4.8: The standard
ResNet18 network architecture.

Figure 4.9: The upsampling
neighbor convolutions between
each layer.

The model is trained on the Kitti Eigen split, which is an already pro-
cessed depth dataset[8]. The format of the input data is fed into the network
in the form of monocular sequences (i.e. monocular and monocular+stereo)
After static frames and removed, the result is a training dataset of 39 810
monocular triplets with 4 424 validation examples. The IOPs during training
is the same for all the images, that is the focal length and baseline between
the images are constant. The focal length is set to be the average all fo-
cal lengths in the Kitti Dataset. The average focal length used in the Kitti
Dataset is set to 716.44 pixels.

The model is implemented in pytorch and trained for 20 epochs using the
Adam optimizer, with a batch size of 12 and an output resolution of 640x192.
The learning rate is set to 10−4 for the first 15 epochs and is reduced to 10−5

44



for the last 5 epochs. One training process was approximately 15 hours using
the monocular+stereo models. The result of the trained network has shown
to prove better than other models with the goal of a prediction depth in
monocular images[6].

4.3.1 Estimating position of the objects

As the goal of this paper is to predict object, estimate the depth, and place
the object in a map layer, the variation of IOPs in different cameras make is
so that the trained model of Monodepth2 can’t directly be applied to estimate
the depth of the images retrieved from the Mapillary database. The output
of the monocular depth estimation returns scaled depths in meters, but since
these depths are scaled by the image width, the pixel-wise depth estimation
can be obtained by multiplying the image width with the inverse of the depth:

dp =
imagewidth

D

As the depth estimation can be converted to pixel space, the bounding
boxes of the predicted objects can be resized to the same size of the depth
estimation output size, that is to fit a 640x192 image. Now, in order to
actually estimate the position of the detected objects, some assumptions
about size has to be made.

The Norwegian State Highways Authority has documented the size of
common traffic objects. The size of a traffic light (TL) is determined by
how many LED-lamps there are[38]. Each lamp should have the cubic size of
200x200. Unfortunately, the number of lamps per traffic light is not detected.
Although, most intersections in Norway uses three lamps, i.e. a red, yellow
and green lamp. Therefore, the expected size of a traffic light is 600x200mm
+ some padding. The padding is set to 30mm around each lamp.

SizeTL = 690x230mm

The Norwegian State Highways Authority defines three sizes of traffic
signs (TS). LS, MS and SS, which in English is small size, medium size and
big size[39]. The size of the traffic sign always denotes the width of the
virtual square bounding box around the sign. The sizes of LS, MS and SS is
600mm, 800mm and 1000mm respectively. For intersections specifically, LS
is the imposed traffic sign size.
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SizeTS = 600x600mm

Figure 4.10: A simple illustration visualizing the depth cube in pixel space

The proposed method to derive the geospatial location of each object uses
the assumptions about known object sizes to derive meters per pixel ratio
of every predicted object, but strongly generalizes each case towards a fixed
size, meaning there will be some error through the distortion of the image.
Each depth can be visualized like a cube of depth layers shown i figure 4.10,
where each layer represent a depth value along axis d. Each object will be
represented in a single depth layer.

Figure 4.11 is figuratively speaking an eye-to-thumb illustration of how
the position in pixel space is transformed to real distances and uses the basic
principles of photography to derive the real-world distance. The dimensions
of the conversion between the image pixel space as the real world is swapped
in order to make the visualization easier, i.e. of course, the real world image
should be much larger than the pixel image. In general, capital letters notates
the real world values, while the lower case letter notates the pixel values.
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Figure 4.11: The proposed model for converting the pixel values to real world
distances.

From the prediction, the pixel position of the bounding box is known.
By dividing the known size for each object(o) side with the number of pixels
it is represented by, a meter per pixel ratio (mpp) is calculated in both
dimensions, x and y. The pixel width and height of the bounding box is

47



notated with w and h
mppx =

ox
w

,

mppy =
oy
h

Usually the focal length is known, making this process of converting val-
ues from pixels to meter more robust, but in the case of only having the
length from the focal point to the object, the distance d from the focal point
to the center on the depth layer is measured mathematically. From the
depth estimation model, the value l is known. x and y are the value from
the center of the image to an anchor estimated to be the midpoint along
oxandthebottomoftheboundingbox.Thefollowingmathematicalformulasarecalculatedinorder, andoutputstherealworlddistancetothepointL.hyp =√
x2 + y2,

d =
√
l2 − hyp2 =

√
l2 − (x2 + y2)

, Using the rule of shape similarity D is measured.

D

d
=
X

x
⇒ D =

X

x
d

, where X = mppxx and Y = mppyy. The real world distance is measured.

L =
√
D2 +HY P 2 ⇒ L =

√
D2 +X2 + Y 2

To calculate the relative angle a of the new position, the angle between
the focal distance d and x is calculated.

a = arctan(
x

d
)

The relative angle a can be added the the camera angle ca to get the
correct direction of the point each object. The camera angle is the angle
from true north, called the azimuth. The relative angle is converted to an
angle from the azimuth. The new angle is called α. Both the coordinates
and the location of each image is requested using the Mapillary API3.3.
The coordinates are represented in latitude and longitude in the geodetic
datum WGS84[37]. As the default map projection used in State Highways
Authoritys API is UTM33 with WGS84, the coordinates in the image is
transformed to the same projection using Pyproj’s python library[16].

The final coordinates are measured is simply measured by calculating the
displacement from the image position for each axis in the projection, using
the new calculated angle.
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Coordobject = [posix + Lcos(α), posix + Lsin(α)]

,
In the cases of traffic lights, the Norwegian State Highways Authority de-

fines a fixed height of the pole where the traffic light is attached. This height
is set to 1.5 meter, which can be used to project the estimated position down
to the ellipsoid. Unfortunately, there is no fixed height of traffic signs, as it
is measured using the surrounding topography, and the estimated position
will have a additional error through height.

4.4 Defining the intersection

As explained earlier, the Mapillary images comes with an initial position.
Depending on whether an already existing list of intersections, from now
on called list of features, is present, the image iterates through the list of
features and checks if it’s position is inside the feature polygon. In the case
of the image not being bounded by an existing intersection, or no existing
list of features exists, the script will request all nearby intersections and pick
the one that is closest and creates an entirely new intersection, and processes
the image through the prediction networks at the same time. The nearby
intersections is an iterative process where the algorithm iteratively increases
the search range. As one of the image properties is the camera angle, the
algorithm decides the closest in the direction of a 45 degree field of view.
This is done by measuring the relative angle from the position of the image
with each intersection inside the search area, and in the same matter at the
relative angle was explained in the above section. If the relative angle to the
camera angle is equal or less than 45 degrees, the intersection is kept as a
potential closest intersection. Then, the closest intersection is chosen based
on the euclidean distance. The field of view in this process is just a fixed
value in order to remove non-potential intersection.

The nearby intersections is retrieved using the Norwegian State Highways
Authority API querying all intersection inside a bounding box, as well as the
speed limits inside the area. If there are multiple speed limit in an area,
the maximum value is returned. The size of the bounding box is chosen by
the speed limit times the preperation time. The preperation time means the
amount of time needed to plan ahead in an intersection. For this paper, 7
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seconds is chosen. The are in it self is then generated to as a square bounding
box around the center point being the position of the closest intersection.

4.5 Proposed map layer

As a last step, after all chosen input images are processed, the list of features
is proposed as a map layer in the form of a GeoJSON[13] file. The GeoJSON
is a json standard for storing geometric data. The GeoJSON Working Group
is responsible to sustain or update the standard. The latest form of GeoJSON
is the verison RFC7946 and was published in 2016, updating the old standard
established in 2008.

An intersection contains multiple geometric properties, that is, the geom-
etry for the bounding box of the intersection, but also the geometry for each
detected object. The following GeoJSON format is proposed:

{
type : FeatureCo l l e c t i on ,
f e a t u r e s : [
{

type : Feature ,
geometry :{

type : GeometryCol lect ion ,
geometr i e s : [

# The f i r s t geometry o f the l i s t must always
be the bounding box o f the i n t e r s e c t i o n
{

type : Polygon
coo rd ina t e s : [ ul , l r ]

} ,
# the r e s t o f the ob j e c t geometr i e s
i s the geometry o f the pr ed i c t ed o b j e c t s
{

type : Point ,
c oo rd ina t e s : [ x1 , y1 ]

} ,
type : Point ,
c oo rd ina t e s : [ x2 , y2 ]

} ,
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. . . ]
} ,
p r o p e r t i e s :{

id : id ,
o b j e c t s : [

#I t i s important that the index ing o f the se
ob j e c t cor responds to the index ing+1 in the
geometr i e s l i s t
{

key : image key1 ,
c l a s s : p r ed i c t ed c l a s s ,
s i z e s : ob ject assumpt ions ,
ob j e c t : o b j e c t t y p e

} ,
{

key : image key2 ,
c l a s s : p r ed i c t ed c l a s s ,
s i z e s : ob ject assumpt ions ,
ob j e c t : o b j e c t t y p e

} , . . .
]

} , . . .
]

}

It is important to note that this proposed structure upholds all the standards
proposed in the current GeoJSON standard (RFC7946).
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Chapter 5

Results

This chapter presents the results of the methods used in terms of performance
metrics with different variations of the methods as well as presenting the final
results of the framework. The discussion of the results will be discussed in
the next chapter.
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5.1 EfficientDet

GTSRB dataset As mentioned section 4.2, the model was trained on
the full dataset for 43 classes. The training used the pretrained weights of
the EfficientDetD0 network over 50 epochs with a step size of 10 000 took
22 hours and 1 minute. The following charts shows the different losses with
respect to the epoch. The loss for the training data is marked in blue, and
the validation dataset is marked in red. A smoothing factor is applied to the
loss history to make outliers less visible and helps interpret the graphs.

Figure 5.1: GTSRB total loss over 50 epochs

Figure 5.2: GTSRB classification loss over 50 epochs
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Figure 5.3: GTSRB regression loss over 50 epochs

The above figures shows the training losses during the time of training.
The first of the figures shows the total loss of the training session. Already
after 10 epochs, the both the training and the validation loss starts converging
towards the minimum loss. In general, this a good time to stop the training
process, change the hyperparameters and training the model again. Below
are some test sample result after an inference.

Figure 5.4: GTSRB inference to a Mapillary test image.

The training data consists of many, small images with one single bound-
ing box per image, almost always covering the entire image. Running one
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inference on one of the Mapillary test images, the result shows that the model
can neither predict the traffic signs, as well as the bounding box. Running
an inference on one of it’s own test examples, the model performs next to
perfect in both terms of fitting the bounding box, as well as predicting the
class.

Figure 5.5: GTSRB inference on one of it’s own test data

The GTSRB was only trained one time, not following the three-step train-
ing process proposed in the last chapter. This is due to the inference on the
Mapillary test image clearly showing that the dataset is not suited for object
detection in images for more than just the traffic sign. As this image contains
many desired object, it will be used in each following section for context. The
overall evaluation metric of the class and box prediction resulted in a mAP
after 50 epochs of 0.962.

MTSD dataset The three step process explained in the methodology
is used during the training of the network. Each session is trained until the
training loss converges. Normally, it is the validation loss that decides how
long the model should train, but due to the small size of the validation, and
the dataset being a random sample of its original size, the validation is in
this current situation not fit for that purpose.
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Session mAP Time

1 0.0363 1h 5min

2 0.1497 2h 18min

3 0.2031 1h 2min

Table 5.1: The mAP and time spent training for each session

The losses for the initial session uses the frozen backbone, and uses the
BiFPN features layer network to predict the outputs. As the figures for the
first session shows, the training loss converges after 20 epochs. The validation
loss converges slower than the training loss, which is expected behavior. The
initial hyperparameters for the first session is explained in section 4.2, but the
key of the first session is the learn the high level features of the dataset, using
the existing features extracted through the backbone using a larger batch size.
Table 5.1 shows the mean average precision for each of the sessions run. The
result of the first session, run for 1 hour and 5 minutes, is very low of only
0.0363, meaning the network almost never achieves to predict the correct
class/box. Given the size of the dataset, these are expected results.

Figure 5.6: The total loss of
the training over 20 epoch during
stage 1

Figure 5.7: The regression loss of
the training over 20 epoch during
stage 1

The next session is then run with updated hyper parameters, that is,
reducing the batch size and unfreezes the backbone. As the model now
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tries to learn the whole network the features of the small image size, the
predictions on the validation dataset as one can see from the graph below,
gets really unpredictable. Although the learning rate is reduced 10, learning
rate=0.0001 times from the previous session, the loss still fluctuates a lot
more than the that of the previous session. After 62 epochs, the total loss
converges and the training stops. Session 2 war run for 2 hours and 18
minutes, and resulted in a mAP of 0.1497, which is a significant increase
compared to the previous session.

Figure 5.8: The total
loss of the training over
62 epoch during stage
2

Figure 5.9: The total
regression loss of the
training over 62 epoch
during stage 2

Figure 5.10: The total
classification loss of the
training over 62 epoch
during stage 2

The only adjustments made for the last session is the learning rate being
decreased even further, learning rate=0.00001. Instead of statically reducing
the learning rate for this step, the cosine cycling annealing steps were tested
using the same learning rate as the previous session, but is only caused the
network to fluctuate even more, which is why the learning rate is set statically.
The EfficientDet architecture still uses some learning rate decay throughout
the epochs, but this is not cycling, meaning the expected behavior of this
session is to converge quickly, as it is only used as a fine-tuning of the previous
session. Session three resulted in a further increase in the mAP to 0.2031.
The session lasted for 1 hour and 2 minutes.
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Figure 5.11: The total
loss of the training over
27 epoch during stage
3

Figure 5.12: The total
regression loss of the
training over 27 epoch
during stage 3

Figure 5.13: The total
classification loss of the
training over 27 epoch
during stage 3

Below is the output of an inference on the Mapillary images. As one can
see, there are for some cases redundant and wrong predictions, meaning that
there are definently room for further experiments with the architecture.

Figure 5.14: Good class and box
predictions.

Figure 5.15: Redundant class and
box predictions.

Traffic light For prediction the traffic lights, the pretrained weights of
φ = 0 is used, producing the following results:
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Figure 5.16: The result of an inference using EfficientDet-D0 pretrained
weights on the COCO dataset

In addition to detecting the traffic lights, other classes of the COCO
dataset can be detected, e.g. a person in the test image above. The predicted
bounding boxes of the other detections are not used when estimating the
depth. The score threshold for returning a detected object is set 0.2, as the
expected mAP for the pretrained weights is 0.332.

5.2 Localization of the objects

This section used the proposed method of size assumption-based pixel-to-
meter transformations to derive the position of the predicted objects. The
monocular depth estimation is visualized by the inverse depth map matrix is
form om a disparity heat map, where bright areas are considered close, and
dark areas are considered far away. In context of comparison, the depth map
and the predicted objects are pair-wise represented.
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Figure 5.17: The depth map result from the Monocular depth estimation.

Figure 5.18: The detected traffic
lights for the image.

Figure 5.19: The detected traffic
signs

The above example is the output of all three prediction networks used in
this proposed method. The method proposed in section 4.3 of converting the
depth of in the pixel space to real-world distances. The following results are
some extremes of a good and bad depth estimation.

In order to estimate if the projected distance was good or not, a ground
truth distance quickly by retrieving the coordinates of the actual object
through the State Highways Authority API and measure the euclidean dis-
tance between the points and compare it to the measured distance by the
proposed techniques.

The first example a case of a good estimated depth and projected position.
The euclidean distance between the position of the Mapillary image and left-
hand traffic sign in the image is measured to 6.107 meters. The calculated
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distance to the traffic light was measured to be 6.147 meters, yielding an
error of only 4 cm, which is comparable to RTK measurements estimating
an error of 2cm±1ppm[24]. The State Highways Authority is not guaranteed
to have geospatial information of the detected object, and for this image,
this traffic light was the only available position. Looking at the disparity
map, the traffic light at the left-hand size is very bright, meaning that it is
considered closer to the camera.

Figure 5.20: The depth disparity
map where the results were good.

Figure 5.21: The predicted traffic
lights of a good example.

The next example is an extremely bad depth estimation. The distance
between the Mapillary image and the predicted traffic sign is estimated to be
47.638 meters. The depth estimation model calculates the real world distance
to be 369.371 meters, i.e. the gross error of 321.723 meters. Looking at the
depth disparity of the image. The area of the predicted is totally dark,
i.e. the monocular depth estimation model consider it as the sky, or too far
away using the maximum depth thresholds explained in section 4.3, that is,
a maximum distance of 100 real-world meters.
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Figure 5.22: The depth disparity
map of an extremely bad example.

Figure 5.23: The traffic signs de-
tected in the image.

Due to the lack of ground truth distances, an iterative approach to com-
paring the predicted depth estimations towards the real distance is impos-
sible, which is why no statistical analysis of the calculations are presented,
but the general consensus is that closer i.e. brighter areas results in a more
accurate depth calculations.
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Part III

Discussion and conclusion
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Chapter 6

Discussion

This chapter discusses what went wrong, the magnitude of errors and changes
that could have been made.
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6.1 The model architecture

The choice of the model architecture in it self showed through training the
network using the GTSRB dataset that it can efficiently train a network based
on a large dataset and produce very good results for a specific task. Due
to the computational resources limitations, this paper could not delve into
experimenting with other network sizes. As the benchmark on the COCO
dataset shows an increase in performance as the network gets bigger, it would
most likely be the case for this paper as well.

The fact that the model converged in about 10 epochs while trained on
the whole dataset shows the potential of the model architecture being ef-
ficient, as well as yielding a high result on the GTSRB dataset. In order
to compare the result of the model trained on MTSD, figure 6.1 shows some
resulted mAP perfomances using the ResNet model architecture. Comparing
the results shown in the last chapter, the performance of the ResNet architec-
ture outperformes the papers resulting network, but, when considering the
number of training instances used during their network, the results does not
encourage the power of the EfficientDet model. The perfomance metrics used
for the ResNet model was 30 epochs, using a batch size of 16 along 4 GPUS,
meaning a batch size of 4 is run at each GPU. This makes the processing
power of the training much faster, as the batch size can make the network
learn quicker each during each iteration. In order to really compare these two
model architectures trained of the MTSD dataset, a lot more computational
power is needed.

A proposed method for increasing the computational power is by imple-
menting so that it runs on cloud-based services. Such cloud-based services
can distribute the work-force over many nodes, meaning no computation has
to be run locally.
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Figure 6.1: The result of using ResNet50 on the MTSD dataset. These
metrics was proposed by the Mapillary’s own reasearch team[5]

6.2 Prediction results

The fact that the GTSRB dataset lacking the spatial context of the image
resulted in it not being fit for detecting objects in the Mapillary test images,
for both fitting the bounding box as well as classifying object. The reason for
the high mAP or 0.962 is due to the overfitting of the network. The model
was trained for 50 epochs on the full dataset for 22 hours, but reached the
convergence loss in only 10 epochs at 5 hours, meaning that every epoch after
than made the model better and better at detecting only its own dataset.
This might have caused the model being so bad at detecting object in any
other image. The theory of this could have been tested by applying some
early stopping monitoring in order to stop the model automatically once it
reaches convergence. In addition of trying to make the network more robust
could be to use a cross-validation during training, which for each iteration
spilts the dataset into k folds training and validation, which lets the model
train on every single instance, as well as validating the model on a different
dataset each iteration. The low amount of distortion in the images could
also be a potential factor of why the robustness of the network was so low.
Although the fitting of the anchor was bad, the detection of the object could
in theory still be possible, as the BiFPN structure of the architecture learns
the network to recognize features at different resolutions.
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The low prediction scores after the network was trained for 3 sessions is
defiantly due to the reduction of the dataset. Due to time constraints at the
end, there was no time to test this theory, but is an available task for future
work. The reason for choosing such a small sample set of the original dataset
was firstly to, as explained earlier, reduce the computational resources needed
for train the network, the other was to reduce the number of classes towards
the relevant classes for this task only. Especially for the mAP performance
metric, such a small amount of training data could basically cause the model
to guess the class and box prediction. From the results in the previous
chapter, the model fortunately learned enough from the feature extraction
to make some predictions in the Mapillary images, making the pipline of
the proposed framework complete, although as shown, the redundant boxes
causes the depth for each object being calculated several times. As of now,
there is no evaluation considered when storing the objects in the intersection.

As for the recognition of the traffic lights, no further training was applied
to the EffiecientDet pretrained weights. The fact the the overall mAP on the
2.5 million COCO instances is 0.338 speaks for the robustness of the network,
but doesn’t mean that the prediction of the traffic lights are especially good.
To fix this issue, some fine-tuning of the network could be done by either
extracting only the traffic lights from the COCO dataset, and use that to
further train the network to only detect traffic lights, or a totally new dataset
of traffic lights could be used.

6.3 Depth estimation

The task of estimating depths is in general a very difficult task. The approach
for this paper was to use a monocular depth estimation convolutional neural
networks to solve this problem mostly due to the lack of IOP’s for each image,
that is, for each camera used for each image in the Mapillary dataset. The
training data of the model was based on the KITTI dataset, which uses a
highly calibrated cameras with a high resolution. This in it self is very good
to train a good model, but when low-resolution images are fed through the
network, the result becomes less reliable. Therefore the error in the dataset
could cause the depth estimations to be bias towards the dataset used for
the pretrained weights.

In addition to the input images already being at a disadvantage, the
generalization of the assumptions made about size does not directly account
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to the distortion of the images. Each object detected are expected to be of
the same size in every occurrence, but this is of course not true in a real
life scenario. The proposed real-depth calculations from pixel space scales
the fixed size of the object, making it an OK assumption, but it does not
take into consideration the rotation angle of the object nor the vertical or
horizontal displacement of the object. The biggest error is probably in the
generalization of the assumptions made, but an addition to the increase in
wrong predictions the trained network can fit the box around the object.
Towards the proposed intersection, a mis-prediction will make the ratio of
the actual size and the bounding box wrong, further increasing the error of
the estimated distance. When explaining the implementation and method of
the pixel-to-meter framework, the final distance L to the object is the square
root of polynomial of the assumption-based values, meaning that the error
in the pixel space will propagate with a power of 2.

If intrinsic orientation parameters had been the same for each camera in
the Mapillary database, a scale factor from the disparity map to the real
world distances could have been calculated by

D =
focallength ∗ baseline

disparity

which is the formula used when the images given their calibration matrix
is measured. Another approach the could be tackled to measure real world
depth without the IOP for each camera is to obtain this scale by empiri-
cally generalize the depth factor for all the cameras used in the Mapillary
dataset. It would be interesting to see how this would perform compared to
the approach proposed in this paper.

As mentioned many times, the task of estimating depth is hard due to the
inconsistency of images. The proposed network in [26] uses a pretty shallow
network to encode the features from the input image. In a similar way as the
fine-tuning of the traffic light prediction using EfficientDet could increase the
performance of recognizing traffic lights, the tuning of the encoder network
could cause the network to estimate even better depth disparities. As an
example, it would be interesting to apply the EfficientDet model architecture
instead of the ResNet18 model.
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Chapter 7

Conclusion

This chapter presents the final conclusion of the paper and suggests some
future work.
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7.1 Conclusion

The motivation of the paper was to answer three proposed research goals. (1)
Analyze the current state-of-the-art network architectures in order to train
a network and predict traffic signs through object detection in images. (2)
Apply a monocular depth prediction model to the images and establish an
algorithm to predict an object’s position without knowing the interior orien-
tation parameters. (3) Propose a map layer framework for traffic intersections
containing spatial and temporal properties for each intersection.

Through excessive research of the current state-of-the-art object detec-
tion networks, EfficientDet was selected. Due to the limitations of com-
putational power, this model architecture was implemented and trained on
both the GTSRB and MTSD traffic sign dataset benchmarks and resulted
in two completely different results. Both networks were trained using the
EfficientDet-D0 pretained network with tuned hyperparameters. Due to the
scale difference and spatial context in the training data, the GTSRB dataset
could not be used to predict traffic signs in for the Mapillary images, even
though a high mean average precision was achieved. In order to train a net-
work using the MTSD dataset, a dimensionality reduction of the dataset had
to be made by reducing the amount of training data, as well are predicted
classes. This was used as the traffic sign detector on the Mapillary images
and helped get further towards solving the first research goal.

By proposing a method to convert the depth disparity of the image space
to real world, assumptions were introduced as a baseline for the algorithm.
The depth disparity is derived by using a monocular depth estimation model
that encodes the features of the images and decodes it by reconstructing
the image though several CNNs approaches. The two methods combined
resulted in many edge-case scenarios of good as well as bad results, but the
best results can be compared to the accuracy of the RTK gps measurements,
and is significantly faster and automated. This proposal was meant to issue
research question number two, but due to the inconsistencies of the result,
did not prove to solve it.

The last of the research goals combined the other two and represents the
framework proposed in the paper. The proposed map layer consists of a
multi-geometry feature collection and stored in form of a GeoJSON object
where each intersection is holds the properties of predicted object as well as
the calculated position.
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7.2 Future work

Derived from the discussion chapter, there are several things to be consid-
ered for future works, as this paper only had the time to take a step towards
creating a road intersection map layer. The biggest source of error derived
from this paper is the error and uncertainty in the estimated depth frame-
work. More research has to be done in this field. An important feature of the
approach proposed in this paper is that the IOPs are not available for the
images processed. Due to the fixed size assumptions for the objects a step
in the right direction would be to apply some affine transformations to the
predicted bounding box and translate the fixed size to the shape of distorted
object. An example of a method that could be used for this is edge detection
algorithms to measure the relative size of the distorted image.

Another important step for the future is to further train the EfficientDet
model on a larger dataset. In order to solve the problem of being locally
limited by computational resources, as suggested in the discussion, support
towards cloud-based services can be implemented in order to remove the local
restraints.

Due to the time restrictions of this paper, a post-processing step of the
predicted object position should be added in order to remove bad, or out of
bound points.
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Appendix A

Appendix

A.1 The full architecture of the EfficientDet

network
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