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1. Preface 
 
This thesis is about the application of different machine learning techniques to the process of 
infiltration in the field of Geotechnical Engineering. It is a part of the project Klima Digital, 
which is a spin-off project of Klima2050 in collaboration with SINTEF. This report fulfils the 
requirements of TBA4900: Geotechn
International program in MSc Geotechnics and Geohazards at NTNU, Trondheim, during 
spring semester of 2020.  
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3. Abstract 
 

Machine Learning (ML) is showing promising results in various fields of science and 
engineering. In this thesis, idea to apply machine learning to the infiltration process in the soil 
is explored. In order to do this, two main Machine Learning techniques are identified, Long 
Short-Term Memory (LSTM) and Physics Informed-Neural Networks (PINN). Both of these 
techniques use very different concepts to achieve the same goal. LSTM is used for sequential 
or timeseries data, therefore values of water content , and pressure head  were calculated 
and arranged in space and time. PINN us
infiltration. Both techniques have their own drawbacks but in this study PINN proved to be 
better than LSTM. All the modelling was done using Python 3.6 in Sypder, Anaconda. 
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Chapter 1 
Introduction 

 

1.1 Background 
 

The knowledge of hydrophysical properties of soil is extremely valuable in several disciplines 
of science all the way ranging from agriculture to ecology [1]. Hydrophysical characteristics 
of soil i.e., water retention curve and hydraulic conductivity in saturated and unsaturated zones 
have been historically measured experimentally or estimated using mathematical or statistical 
models. However, due to the recent developments in the field of Artificial Intelligence (AI) 
and Machine Learning (ML), we have come closer to solve such intricate problems in the field 
of geotechnical engineering, using AI or ML. Moreover, due to our ever-increasing computing 

f data, these 
methods have gained significant importance in the recent times. This provides us with an 
opportunity to develop methods based on this data science of Machine learning, to compete or 
complement our knowledge/models of these physical processes.  

In Machine Learning, Artificial Neural Networks (ANNs) are used to identify patterns and 
trends in data which can be missed otherwise. Historically, this is implemented to solve several 
problems in the field of geotechnical engineering. Most of these applications were on 
liquification analysis, pile foundation, slope stability, particularly where finding analytical 
solutions were difficult [2][3]. Other applications included settlement of foundations, soil 
property estimation, site characterization, parameter estimation, prediction of the movement of 
slopes. Another technique called Convolutional Neural Network (CNN) which specialize in 
image recognition, has been used for grain size distribution using images, landslide 
susceptibility mapping etc. Similarly, there are other techniques in Machine Learning, which 
have been used in past to solve several other problems in geotechnical engineering. Table 1 
gives a list of research done with ML and AI techniques to solve geotechnical problems. In this 
thesis, the infiltration process in unsaturated soil has been studied by using Machine Learning.  

 

1.2 Objectives 
 

The main objective of this thesis was to develop a machine learning model which can replace 
the physical models to replicate the infiltration process in an unsaturated soil. Moreover, one 
of the major objectives of this research is also to explore the problems which can be addressed 
in geotechnical Engineering using Machine Learning. The objectives of this thesis are as 
follows: 
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 Identification of Different Machine Learning techniques which can be used to mimic 
infiltration process into the soil mass. 

 Modelling our data in a way which is suitable to the ML technique to process. 

 Identifying the potential and limitations of these techniques by studying the results. 

 Discussing other problems in geotechnical engineering, which can be addressed using 
these and other methods in ML.   

1.3 Limitations 
 

The scope of this study is limited to theoretically generated data. Therefore, performance of 
the models will be needed to be tested on experimental data, which is outside the scope of this 
thesis. Sometimes ML models are very specific to datasets. Therefore, they might need to be 
optimized in order to use them for another dataset. Moreover, the models suggested can be 
studied more given noise in the data, but ultimately it mainly boils down to the lack of time. 
Lastly, COVID-19 has definitely affected the work pace of this thesis. 

 

1.4 Approach 
 

Two Machine Learning techniques namely Long Short-Term Memory (LSTM) and Physics 
informed Neural Networks (PINNs) were identified to simulate infiltration. After a detailed 
understanding of these techniques data was generated using a Python code named as 
RichardsEquationdatagenerator.py. Then, the data was modelled to feed both the algorithms. 
Afterwards, results were studied separately of the individual techniques. Finally, they were 
compared to discuss which technique should be preferred.  

 

1.5 Structure of the Report 
 

The structure of the report is as follows: 

 Chapter 1 outlines the objectives of the study. 

 Chapter 2 gives a detailed understanding of the Machine Learning Techniques used. 

 Chapter 3 introduces to the background of Infiltration Process and Data Generation. 

 Chapter 4 introduces and explains the Python code and how does it address 
Infiltration through LSTMs and PINNs. 

 Chapter 5 presents and discusses the results produced by both techniques 

 Chapter 6 states the conclusions of the thesis.  
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No Researchers Data collection 
methods 

Techniques Results 

1 Pile driving records Reanalysed using neural networks 
Goh 1996 Actual pile 

driving records 
Back 

Propagation 
Neural 

Networks 

They indicated that the neural 
network predictions 
are more reliable than the 
conventional pile driving 
formulae 

2 Application of an Artificial Neural Network for Analysis of Subsurface 
Contamination at the Schuyler Falls 

Landfill, NY 
Rizzo and 
Dougherty 

1996 

Historical Data Artificial 
Neural 

Networks 

Applied and tested a new 
pattern method on a variety 
of site characterization 
problems, called  
(Site characterization using 
Artificial Neural 
Networks), Unlike the kriging 
methods, SCANN is 
data-driven and requires no 
estimation of a 
covariance function. It uses a 
feed-forward counter 
propagation training approach 
to determine a "best 
estimate" or map of a discrete 
spatially distributed 
field. 

3 Prediction of Pile Bearing Capacity Using Artificial Neural Networks 
Lee and Lee 

1996 
In situ pile load 
tests obtained 

from a 
literatures 

Error Back 
Propagation 

Neural 
Networks 

The results showed that the 
neural networks predicted 
values corresponding the 
measured values much 
better than those obtained from 

 
4 General regression neural networks for driven piles in cohesionless soils 

Abu-Kiefa 
1998 

Historical Data General 
Regression 
Network 

Concluded that the GRNNM is 
applicable for all 
different conditions of driven 
piles in cohesionless 
soils. 

5 Prediction of Pile Capacity Using Neural Networks 
Teh et al. 

1997 
Historical Data Back 

Propagation 
Neural 

Networks 

The study showed that the 
neural network model 
predicted the total capacity 
reasonably well. The 
neural-network-predicted soil 
resistance along the 
pile was also in general 
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agreement with the 
CAPWAP solution. 

6 Subsurface Characterization Using Artificial Neural Network And GIS 
Gangopadhya 
y et al., 1999 

Historical Data Multilayer 
perceptron 

using 
the 

backpropagat
ion 

algorithm 

The integrated approach of 
ANN and GIS, is shown 
to be a powerful tool for 
characterizing complex 
aquifer geometry, and for 
calculating aquifer 
parameters for ground-water 
flow modeling. 

7 Artificial intelligence techniques for the design and analysis of deep foundations 
Nawari et al., 

1999 
Historical Data NN, and 

Generalized 
Regression 

Neural 
Network 

Based on the results from this 
investigation, it 
appeared that the proposed 
neural network models 
furnish a pragmatic and a 
reliable alternative for the 
current analysis and design 
techniques of axial pile 
capacity and laterally loaded 
piles. 

8 Bayesian Neural Network Analysis of Undrained Side Resistance of Drilled Shafts 
Goh et al., 

2005 
Historical Data Bayesian 

neural 
network 

algorithm 

The developed neural network 
model provided good 
estimates of the undrained side 
resistance adhesion 
factor. Furthermore, one distinct 
benefit of this neural 
network model is the 
computation of the error bars on 
the predictions of the adhesion 
factor. These error 
bars will aid in giving 
confidence to the predicted 
values and the interpretation of 
the results. 

9 Undrained Lateral Load Capacity of Piles in Clay Using Artificial Neural Network 
Das and 

Basudhar, 
2006 

Historical Data Back 
Propagation 

Neural 
Networks 

The developed ANN model is 
more efficient compared to 
empirical models of Hansen and 
Broms. 

10 Prediction of Friction Capacity of Driven Piles in Clay Using the Support Vector 
Machine 

Saumi, 2008 Data Base SVM With the database collected by 
Goh (1995) the study 
shows that SVM has the 
potential to be a useful and 
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practical tool for prediction of 
friction capacity of 
driven piles in clay. 

11 Modelling Pile Capacity Using Gaussian Process Regression 
Pal and 
Deswal 
2010 

Actual piledriving 
records 

in cohesion-less 
soil 

Gaussian 
Process 

(GP) 
Regression 
and SVM 

The GP regression approach 
works well in predicting 
the load-bearing capacity of 
piles as compared to the 
SVM approach. Another 
conclusion from this study 
is that the Pearson VII function 
kernel performs well 
in comparison to the radial basis 
function kernel with 
both GP- and SVM-based 
approaches to model the 
pile capacity. The results of this 
study also suggest 
that GP regression works well 
as compared to the 
empirical relations in predicting 
the ultimate pile 
capacity. 

12 Prediction of Pile Settlement Using Artificial Neural Networks Based on Cone 
Penetration Test Data 

Nejad and 
Jaksa 
2010 

Database Back 
Propagation 

Neural 
Networks 

The results indicate that back-
propagation neural 
networks have the ability to 
predict the settlement of 
pile with an acceptable degree 
of accuracy (r=0.956, 
RMSE=1.06 mm) for predicted 
settlements ranging 
from 0.0 to 137.88 mm. 

13 Intelligent Computing for Modeling Axial Capacity of Pile Foundations 
Shahin 2010 Historical Data Artificial 

Neural 
Networks 

(ANN) 

The results indicate that the 
ANN models were 
capable of accurately predicting 
the ultimate capacity 
of pile foundations and compare 
well with what one 
would expect based on available 
geotechnical 
knowledge and experimental 
results. 

14 Neural Network Model for Predicting the Resistance of Driven Piles 
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Park and Cho 
2010 

data from 
dynamic piles 

load test 

Artificial 
Neural 

Network 
(ANN) 

The results showed that the 
ANN model served as a 
reliable and simple predictive 
tool to predict the 
resistance of the driven pile 
with correlation 
coefficient values close to 0.9. 

15 Neural Network Application in Prediction of Axial Bearing Capacity of Driven Piles 
Harnedi and 

Kassim 
2013 

Pile Driving 
Analyzer (PDA) 

Artificial 
Neural 

Network 
(ANN) 

The results showed that the 
neural network models 
give a good prediction of axial 
bearing capacity of 
piles if both stress wave data 
and properties of both 
driven pile and driving system 
are considered in the 
input data. 

16 Application of Artificial Neural Network for Predicting Shaft and Tip Resistances of 
Concrete Piles 

Momeni et 
al., 

2015 

Pile Driving 
Analyzer (PDA) 

Artificial 
Neural 

Network 
(ANN) 

Founded that a network with 
five hidden nodes in one 
hidden layer yields the best 
performance. 
Additionally, through a 
sensitivity analysis, it was 
founded/ that the pile length and 
cross sectional area 
are the most influential 
parameters in predicting the 
bearing capacity of piles 

17 Analysis of Ultimate Bearing Capacity of Single Pile Using the Artificial Neural 
Wardani et 

al., 
2013 

Full-Scale Pile 
Load Test and 

SPT 

Artificial 
Neural 

Network 
(ANN) 

The results showed that neural 
networks can be used 
for prediction of ultimate 
bearing capacity of single 
pile foundation and the model 
have the highest 
performance among the other 
methods, even though 
the difference is not too big. 

18 ANN Prediction of Some Geotechnical Properties of Soilfrom their Index Parameters 
Tizpa et. al 

2014 
Database Arificial 

Neural 
Network 
(ANN) 

Comparison between the results 
of the developed 
models and experimental data 
indicated that 
predictions are within a 
confidence interval of 95 %. 
According to the performed 
sensitivity analysis, 
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Atterbeg limits and the soil fine 
content (silt+clay) 
are the most important variables 
in predicting the 
maximum dry density and 
optimum moisture content. 

19 Load settlement modeling of axially loaded steel driven piles using CPT-based 
recurrent NNs 

Shahin 
2014a 

Pile Load Tests, 
and (CPT) Data 

Recurrent 
neural 

network 
(RNN) 

Founded that the developed 
RNN model has the 
ability to reliably predict the 
load settlement 
response of axially loaded steel 
driven piles, and 
thus, can be used by 
geotechnical engineers for 
routine design practice. 

20 Evolutionary-Based Approaches for Settlement Prediction of Shallow 
Foundations on Cohesionless Soils 

Shahnazari 
et. 
al 

2014 

Historical Data Polynomial 
regression, 

genetic 
programming 

(GP), 
& gene 

expression 
programming 

(GEP) 

In this study, the feasibility of 
the EPR, GP and GEP 
approaches in finding solutions 
for highly nonlinear 
problems such as settlement of 
shallow foundations 
on granular soils is also clearly 
illustrated 

21 State-of-the-Art Review of Some Artificial Intelligence Applications in Pile 
Foundations 

Shahin 
2014b 

Historical Data Artificial 
intelligence 

AI techniques perform better 
than, or at least as good 
as, the most traditional methods. 

22 Artificial Neural Network Model for Prediction of Bearing Capacity of Driven Pile 
Maizir et. al 

2015 
Pile Driving 

Analyzer (PDA) 
test data 

Artificial 
Neural 

Network 

The results show that the ANN 
model serves as a 
reliable prediction tool to predict 
the resistance of the 
driven pile with coefficient of 
correlation (R) values 
close to 0.9 and mean squared error 
(MSE) less than 
1%. 

23 Toward improved prediction of the bedrock depth underneath hillslopes: Bayesian 
inference of the bottom-up 

control hypothesis using high-resolution topographic data 
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Gomes et al. 
2016 

High-resolution 
topographic data 

Numerical 
modeling, 

and 
Bayesian 
analysis 

The results demonstrate that the 
proposed DTB 
model with lumped parameters 
mimics reasonably 
well the observed regolith depth 
data with root mean 
square error (RMSE). 

24 Determination bearing capacity of driven piles in sandy soils using Artificial Neural 
Networks 

Mazaher and 
Berneti 
2016 

Database MLP Neural 
Network 

The NN has very high 
efficiency in predicting load 
carrying capacity of metal piles, 
and it is concluded 
that soil internal friction angle, 
soil elastic modulus, 
pile diameter and pile length 
respectively have 
maximum effect on load 
carrying capacity of piles. 

Table 1 - Summary of some applications of AI and ML techniques in geotechnical engineering [3]. 
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Chapter 2 
Machine Learning Techniques to 

simulate infiltration 
 

In this thesis, an attempt was made to predict the pore pressure head, and the water content in 
unsaturated soil by two Machine Learning techniques. First technique is called Long Short-
Term Memory (LSTM). It is an extension of Recurrent Neural Network and has been explained 
in detail in the sections below. This technique required to pose this infiltration problem as a 
time-series prediction or sequential data problem.  

LSTM is a very powerful and proven technique whose applications can be seen for various 
timeseries data emanating from sensors, stock markets and government agencies. In addition 
to these, this technique is also pretty good at text generation, sequencing genomes, handwriting 
recognition, Natural Language Processing (NLP), and even at music generation [4]. Before 
proceeding on to the original data set, this technique was tested on opening price of google 
stocks on NASDAQ for the last 3.5 years. Then a prediction was made of the opening stock 
price of the same for the 20 days. Figure 1 below shows the values of opening stock price for 
the last 3.5 years and Figure 2 shows real vs the predicted price for the next 20 days. This can 
be refined and tuned to produce much better results than this. Furthermore, same technique was 
also tested on another two datasets. Figure 3 shows the result of the 1st dataset which is 
generated using a sine curve with some noise. In this case, model is trained from 0 to 200 
timesteps and predicts from 201 to 400 timesteps. Result of second dataset is shown in Figure 
4, where a damping equation is used to generate data without noise. Whereas, model is trained 
for 0 to 100 timesteps and predicts from 101 to 200 timesteps. 

 
Figure 1 - Opening Stock prices of google at NASDAQ for the last 3.5 years. 
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Figure 2 - Real vs predicted opening stock prices of google at NASDAQ for the next 20 days. 

 
Figure 3  Real vs predicted values of a sine curve with noise (0  200 training set, 201  400 testing/validation set)  

 
Figure 4  Real vs predicted values on a damping curve (0  100 training set, 101  200 testing/validation set). 
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After LSTMs, another ML technique, Physics Informed Neural Networks (PINNs), was tried 
to mimic infiltration. This technique helps us to move forward from an approach, in which 
huge amount of data is fed into deep learning algorithms, to extract knowledge and hidden 
patterns in the data. It is done in a manner, which is agnostic to the underlying scientific 
principles driving these variables, therefore techniques like LSTMs are also called Black Box. 
These black box models have been very successful and show very promising results in 
commercial problems, computer vison, speech recognition etc [5],[6]. However, these 

scientific data required for these models. Moreover, since these methods are black box 
methods, interpretability is very limited. This is very important especially in any scientific 
application, because that will be the basis for the further scientific research.  

We can better understand with the dichotomy ( Figure 5) between Theory  based data science 
models (PINNs) verses Data Science models [7]. X- axis represents the amount of data being 
used, and Y-axis represents the amount of theory utilized. In the green region, there are purely 
theory-based models, based on equations, scientific theories, numerical models etc. Despite 
their huge progress, they contain certain significant knowledge gaps, to describe certain 
processes that are either too complex to understand or too difficult to observe directly. In the 
blue, we have data science models, that have ample amount of data, but agnostic to the 
underlying scientific theories. Both green and blue zone make an ineffective use of knowledge 
of scientific theory and data. Therefore, there is a need for developing data science methods 
which can use both scientific knowledge and data on an equal footing. This is the paradigm of 
Theory-guided data science, that tries to take unique ability of data science methods to 
automatically extract knowledge and pattern from data but without ignoring the treasure 
accumulated in scientific theories. 

 
Figure 5 - Dichotomy between scientific models vs data-science models. 
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2.1. Recurrent Neural Network (RNN) and Long Short-Term 
Memory (LSTM) 

 

Long Short-Term Memory Networks or in short LSTM networks are an extension of Recurrent 
Neural Networks (RNN). In order to understand LSTM, we first need to know Neural 
Networks. 

Neural Networks are set of algorithms which are designed to closely mimic the working of a 
human brain to find and identify patterns in different forms of data (Figure 6 & Figure 7). This 
network comprises of several units of Neurons/Perceptrons, which are connected by synapses 
or weights. A biological neuron gives a response to a stimulus. This response is passed over to 
the next neuron in the network via synapses, and this continues. An artificial Neuron does the 
same by taking the input number as a stimulus. In response, it will perform a calculation on 
this number via some activation function like sigmoid. Then this result will be multiplied by a 
synaptic weight and passed on as an input (stimulus) to the next neuron in the network. It 
usually takes a network of multi-layer Neurons to successfully complete the training process 
and it is achieved by adjusting the synaptic weights in the network until a particular input leads 
to a target output. 

 

Figure 6 - Shows the biological Neuron (left) and mathematical Neuron (right) 

 
Figure 7 - Shows the mathematical equivalent of biological synapse 

 are the best suited algorithm for sequential data and have 

handwriting recognition, music generation etc. It is quite suitable for machine learning 
problems which involve sequential data, due to its ability to remember its input. Being recurrent 
in nature, it performs the same operation for every input, while the output of the current input 
depends on the previous computation. The produced output is then copied and sent back to the 
recurrent neural network as an input. To make a decision, it considers the current input and the 
output that it has learned from the previous input.  
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s can be understood easily by the following example of a perfect roommate (because he 
cooks everyday), which is inspired from a book Deep Learning: Grokking [8]
this perfect roommate is actually very organized and very methodical, and therefore he cooks 
in rotating sequence i.e., 1st day apple pie, 2nd day Burger, 3rd day chicken and then repeat. 
Therefore, it can be predicted what he is going to cook today based on what he cooked 
yesterday. Hence, his cooking schedule somewhat looks like Figure 8 starting with an apple 
pie on Monday. In Figure 9 we can see the output from last time, is being fed as an input for 
this time. Hence, this network is recurring in nature and therefore, called Recurrent Neural 
Network.  

 
Figure 8 - Shows Cooking schedule of the perfect roommate [8] 

 

 
Figure 9 - A typical RNN unit and its input 

s usually have two inputs: one is a present input and the other is the output of 
the last computation looped in as input. This also can be understood by a very similar example 
again inspired from the textbook Grokking Machine Learning [8]. Again, we have the example 
of this perfect roommate. He is still very methodical and organized, but now his rule for 
cooking is a combination of two rules. He still cooks in the same sequence of Apple pie, Burger 
and Chicken, but now his decision to cook also depends on t , he will 
go outside and enjoy the day and therefore, he will not be cooking and will just give the same 
thing as  next dish 
on the list. In Figure 10, we can see on Monday he made an apple pie. On Tuesday we checked 
the weather and its sunny, so we get the apple pie from Monday. And Wednesday turns out to 
be rainy, so we get the next thing on the list i.e., Burger. On Thursday its rainy again so Chicken 
and on Friday its sunny so we get the chicken from Thursday, and so on and so forth. Therefore, 
an RNN like this looks like the one in Figure 11.  
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Figure 10 - Cooking Schedule with weather [8] 

 
Figure 11  A typical RNN unit with two inputs 

In short, RNN has a short memory. While making a decision, it considers the current input and 
also what it has learned from the inputs it received previously. T
predicting sequential data. However, there are still two 
deal with, exploding gradients and vanishing gradients.  
 
Exploding gradients occurs when algorithm without much reason assigns an unreasonably high 
importance to the weights. Fortunately, this problem can easily be solved by truncating or 
squashing the gradients. On the other hand, vanishing gradient occurs when the value of 
gradient is very small, i.e., the learning rate of the model is practically zero. It was a major 
problem during 1990s and much difficult to solve than the exploding gradients. Fortunately, it 
was solved through the concept of LSTM by Sepp Hochreiter and Juergen Schmidhuber [4]. 
 

A mathematical perspective 

In order to proceed with LSTM, we should take a look at RNN and vanishing gradient problem 
from a mathematical perspective. Then, we can have a clearer picture how LSTMs are effective 

off with a basic formula of RNN and 
then visualize it. It works on the following recursive formula. 

                                                               (1) 

Where,  is the input at time step t,  is the state at time step t and  is the recursive function. 

ook at the simplest representation of RNN and call it a simple RNN ( Figure 12). In our 
example, the recursive function is a  function. In equation (2) we multiply the input state 

, with weights of X which is . While, the previous state  is multiplied with , which 
is a weight of State or S. The sum of the two values is passed through the activation function 

, which gives us the current or new state . In order to get an output vector, we multiply 
the new state with  as in Figure 12. 
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                                               (2) 

 
Figure 12 - A simple RNN 

 

In unrolled RNN ( Figure 13), we have a previous state , and the input at time step 1 is . 
The RNN calculates the new state , based on this recursive formula, and gives us the output 

, by multiplying it with the weight, . In the next time step, this new state , and  serves 
as the input and give the next state  and then the output . This same thing goes on for many 

e network 
i.e., , , and . In multilayer RNN, the output generated as , and  serves as input as 
shown in Figure 14.  

As we know RNN learns through backpropagation through time*. We calculate the loss using 
the output and go back to update the weights, by multiplying gradients. As can be seen in Figure 
15, 
to go back to each state and update the weights. To update the 1st state, the gradient will be 

. Therefore, the update in weights will be negligible, and thus the neural network 

is addressed by LSTM.  

*Backpropagation through time is a training algorithm used to update weights in recurrent 
neural networks like LSTMs. In order to do this, model completes the forward propagation to 
get the output, checks if the output is correct or not, to get the error, and then model goes back 
to find the partial derivatives of the error with respect to the weights, which enables it to 
subtract this value from the weights. Those derivates are then used by gradient decent 
algorithm to adjust the weights up or down, to minimize the error. This done over several 
iterations minimize a given function.  
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Figure 13 - A Unrolled RNN 

 

 
Figure 14 - Multilayer RNN 



22 | P a g e  
 

 
Figure 15 - A visual representation of vanishing gradient problem in RNN 

 

As stated earlier, ly extend the 
memory. 
information in a memory, which is quite similar to the memory of a computer from which 

 

This memory can be visualized as a gated cell, as the cell decides whether or not to store or 
delete information (i.e., if it opens the gate or not), based on the importance it assigns to the 
information. Importance is assigned through weights, which are learned by the algorithm. That 
means, the mo  

In an LSTM, you have three gates: input, forget or output gate. These gates determine whether 
or not to let new input in (input gate), delete the information because it is not important (forget 
gate), or let it impact the output at the current timestep (output gate). Figure 16 is an illustration 
of an RNN with its three gates.  

 

 
Figure 16 - Schematic Diagram for a LSTM Unit cell 
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The gates in an LSTM network are analog in the form of sigmoid, therefore they range from 
zero to one, instead just zero as one if it was digital. This enables them to arrange the 
information in the order of importance and enables it to perform much efficient 
backpropagation through time.  

In the following example, we can see how LSTM solves the problem of vanishing gradient. As 
stated before, LSTM comprises of three gates and one cell state, and these are additional 
interaction to an RNN. Mathematical formulation of all the gates have been given below. In all 
the gates, previous state  and  are takes as input and are multiplied with respective 
weights i.e., and then passed through a sigmoid activation function. One of the 
important things to note here is each gate has a different set of weights. Moreover, there are 
two different weights in one gate itself, one is to multiply with previous cell state and another 
for the input . But both are represented as one weight to reduce the level of complexity, in 
visualization.  is an intermediate cell state which can also be calculated just like these gates 
but with its own set of weights and then by passing through  activation function. And after 
that cell state is calculated by multiplying input gate with intermediate cell state and adding it 
to the product of previous cell state and forget gate. And then we pass the cell state through the 

 activation and multiply it with the output gate.  

 

In the Figure 17, it can be understood in a much better way. Here, we have our old state , the 
input , and our previous cell state which is  First, calculate the input gate by passing the 
previous state and input through sigmoid activation. Then, calculate our intermediate cell state 
by passing input and previous state through  activation. After that multiply the input gate 
to intermediate cell state and then similarly, calculate the forget gate and multiply it with the 
previous cell state . Then, add both of these products to obtain a new cell state  This gives 
the output gate and then it is multiplied with the new cell state  passed through  
activation. It gives us the new state  Finally, this new cell state  and the new state  are 
passed over to the next time step so it can be used for further calculation. By following these 
steps LSTM solves the problem of vanishing gradient and works better than RNN, in terms of 
accuracy. 



24 | P a g e  
 

 

Figure 17 - A visual representation of the working of LSTM. 

 

Backpropagation through time (BPTT) in RNNs 

After the output is generated in an RNN, we compute the prediction error and use the 
backpropagation through time algorithm to compute the gradient, which is change in prediction 
error with respect to the change in weights of the network (4). Gradients in all the time steps 
are added to find the final gradient and this gradient is used to update the model parameters. 
This learning process continues and is called gradient decent algorithm.  

 

 

 

Where,  is the total error,  

 is the error in a single time step,  is the weight and  is 
the coefficient to determine the change in weight. 

 a learning task that includes T time steps, then the gradient of the error 
on the kth time step is given by: 

 

(4) 
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Now, , 

So, 

 

 

Plug 6 into 5, 

 

The last expression tends to vanish when k is large, this is due to the derivative of the tanh 
activation function which is smaller than 1.  

So, we have, 

 

So, for some time step k: 

 

Therefore, the whole error gradient will vanish. 

 

hts update will be: 

 

In addition, no significant learning will be done in reasonable time.  

 

Backpropagation through time (BPTT) in LSTMs 

As in RNNs, the error term gradient is given by the following sum of T gradients (4). For the 
complete error gradient to vanish, all these T sub gradients need to vanish. If we think of it as 
a series of functions, then by definition, this series converges to zero if the sequence of its 
partial sums tends to zero. So, if we want the gradient not to vanish, our network needs to 
increase the likelihood that at least some of these gradients will not vanish.  

(5) 



26 | P a g e  
 

 

In LSTMs too, the gradient of the error for some time step k has a very similar form to the one 
in RNN: 

 

As we have seen , causes the gradients to vanish. 

In LSTM, cell state is represented as, 

 

And therefore, 

 

 

 

We can denote the four elements comprising the derivative of the cell state by: 

 

 

 

 

 

 

 

 

 

 

(8) 
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We write the additive gradient (8) as: 

 

Plug the value of    into the original equation 

 

parameters accordingly. 
This allows the network to better control the gradients values.  

situation as follows, 

 

Then, for the gradient not to vanish, model finds a suitable parameter update of the forget gate 
at time step k+1 such that, 

 

additive structure which allows the LSTM to find such a parameter update at any time step, 
 

 

2.2. Physics-Informed Neural Network (PINN) 
 

Physics Informed neural networks are quite unique and different than other Neural Networks. 
This technique provides a solution to the differential equations using Neural Networks. Due to 
a large amount of differential equations in engineering and science, this tool becomes very 
useful, in order to automatize these fields. One of the reasons of this being so unique is that, 
there is no training, testing or validation set. 

In this technique, we are essentially posing every ODE/PDE and converting into an 
optimization problem and trying to automatize the whole process by using Neural Networks 
instead of Finite difference methods. So here, Neural Network can solve as well as learn from 
the solution and hence, it is a step forward towards full automation for solving differential 

(9) 
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equations using Neural Networks. We can understand this properly by a simple example. So, 
have a function  differentiable in  and has a simple differential equation (10). 

 

with boundary conditions as:  

To solve the above equation using Neural Networks, we deploy a single hidden layer Neural 
Network, which takes x as an input and gives u as output (Figure 18). 

  

As Universal approximation theorem suggests, we can always approximate the solution of u 
arbitrarily closely by a neural network. Hence, Neural Networks are quite excellent function 
approximators.  

 
Figure 18  A typical neural network with single hidden layer consisting of 10 neurons with one input and one output. 

 assume, a very simple neural network.  As can be 
seen in Figure 19, It just have one input , one hidden neuron , activated by a sigmoid 

.  

 
Figure 19  A Neural network with one hidden layer made of 1 neuron. 

So, we can write the following 

 

 

 

Where,  is the weight in the neural network. 

(10) 

(11) 
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Similarly, we can calculate  

That means all derivates of u with respect to input x can be found. But it can be said that its 
only possible because, here we have just one single neuron in one single layer. But if we have 
multiple neurons or multiple hidden layers with multiple neurons, we can use autograd or 
automatic differentiation. The idea is similar to Backpropagation, we can always find out the 
difference of output using the difference of input, same as in backpropagation, and we use 
difference of loss function to the difference in weights. This automatic differentiation is present 
in TensorFlow package. Now using this, we can find out all the differential terms in the 
equation. Now, we can pose the whole problem as optimization problem, as shown in equation 
(12).  

 

ion but 
approximate it. Therefore, we can write it as follows 

 

Now, this is the cost function and we can minimize it using gradient descent. But we also need 
to accommodate the boundary conditions. We can do it buy adding that also to the cost function 
(14).  

 

We can see, this looks like an extremely clever way of posing the problem. The whole 
differential equation and all the boundary conditions together are now just an optimization 
problem.  

So, while solving it, algorithm tries various values of x, between 0 to 1. Calculate the 
differential terms and tries to minimize the above-mentioned loss function. So, we can see, in 
reality there is no training or testing set as in all the conventional Machine Learning or Neural 
Network problems.    

In Figure 20, and serves as inputs to the neural network, which figures out . Now, 
Automatic differentiation is used to calculate all the differential terms in the differential 
equation. This can be channelled to the loss function and can be minimized using 
backpropagation.  

(12) 

(13) 

(14) 
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Figure 20 - Schematic diagram to explain Physics informed Neural Network (PINN) 
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Chapter 3 

Theorical Background of 
Infiltration and Data Generation 

 

Infiltration process in an unsaturated soil is essentially a two-phase flow of two immiscible 
fluids  air and water. The process of infiltration of surface water through the upper layers of 
soil, enriches the soil moisture, and subsurface flow through soils, that are partially filled with 
air. The understanding of this infiltration process is important for geotechnical engineers 
because due to infiltration, unsaturated soil is transformed to saturated soil which is unstable 
due to reduced effective stress and the suction forces in soil. Mathematically, the flow of water 
in a v  

 

3.1  
 

Richard
Continuity equation in an unsaturated porous media having flow in one direction can be written 
as given below. 

 

Where,  is water content,  is the rate of flow,  is the time, and  is the depth. 

 

 

Where,  is hydraulic conductivity,  is the hydraulic gradient  and  is the hydraulic head. 

ne dimensional saturated flow. For unsaturated flow Hydraulic 
head can be split in Suction Head  and gravity head . Therefore, we get 

 

In addition, for unsaturated flow hydraulic conductivity ( ) is a function of both  and  
Therefore,  and  are intrinsically related as follows 
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Where,  is the gradient of water content in vertical direction and  is the specific water 

capacity or water storage constant. 

Hence,  

 

 

Defining,  

And  

Therefore, we get 

 

From continuity equation, 

 

Therefore, 

 

This is the Richards equation which is used to describe one dimensional flow in an unsaturated 
media. It can also be expressed in terms of pressure head (16) [10]. 

 

 

3.2 Soil Water characteristic curve (SWCC) 
 

A soil-water characteristic curve (SWCC) describes the amount of water retained in a soil under 
the equilibrium at a given matric potential. This water retained can be expressed in terms of 
mass or volume of water content,  or . A SWCC plays a very important role in 
understanding the hydraulic properties, which are related to size and connectedness of pore 
spaces. Hence, SWCC is strongly affected by soil structure and texture, and other constituents 
like organic matter etc. Modelling water distribution and flow in unsaturated soils requires an 
understanding of SWCC, therefore it holds great importance in water management, and solute 
and contaminant transport in the environment. Generally, SWCC is highly non-linear and is 
quite difficult to obtain accurately. Because matric potential extends over several orders of 
magnitude for the range of water contents commonly encountered in practical applications. It 
is often plotted on a logarithmic scale. Figure 21 shows a general SWCC for sand, silt loam 

(15) 

(16) 
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and clay, and it shows very clearly that there is a drop in matric potential with the increasing 
particle size of the soil grains, i.e., decreasing capillary and adhesive forces. 

 
Figure 21 - Typical soil-water characteristic curve for soils of different texture [9]. 

 

3.3 Soil Matric Potential or Pressure head  
 

Matric potential is related to capillary and adsorptive forces acting between the three phases 
i.e., solid, liquid and gas [10]. Capillary forces are generated due to the surface tension of water 
making an angle of contact or the contact angle with the solid particles. It means that in the 
non-wetting air phase, curved liquid-vapor interfaces (menisci) are formed within the porous 
soil system. However, in addition to capillary forces soil also exhibit some adsorption forces. 
In this process of adsorption soil particle is enveloped by a thin layer of water. In clayey soil it 
is an important process, as clay has a smaller particle size, hence more surface area. In sandy 
soil, adsorption is quite insignificant due to less surface area, and hence capillary effect 
dominates.  In general, however, matric potential is a combined effect of capillarity and surface 
adsorption, and hence two cannot be considered separately.  

 

3.4 Modelling SWCC 
 

Measuring soil water characteristics is a very laborious and time-consuming task.  pairs 
measured, are usually very fragmented and constitutes very few measurements over the 
wetness range of interest. Therefore, for modelling and analysis purposes, and for 
characterization and comparison between different soils and scenarios, it is quite common to 
represent SWCC in a mathematical continuous form. Several approaches, ranging from 
empirical parametric expressions to physically based models, with parameters derived from 
measurable medium properties can be employed to represent a continuous SWCC.  

One of the most effective and widely used parametric model for relating water content to matric 
potential is called van Genuchten model [11] and is denoted as VG (17). 
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Where  and  are the residual and saturated water content, respectively.  is matric potential 
or pressure head, and  and  are parameters directly dependent on the shape of  curve. 
A common simplification is to assume that  Thus, the parameters required for 
estimation of the model are  and .  is sometimes known and easy to measure leaving 
only the three unknown parameters  and  to be estimated from the experimental data in 
many cases.  

Following formulations from van Genuchten [10], [12] were used to calculate water content 
, hydraulic conductivity , water storage coefficient , and effective water content 
. 

 

 

 

 

Where,  is the saturated hydraulic conductivity and  is the specific storage coefficient. 

 

3.5 Soil type description 
 

Data presented in the Table 2 has been used in the Python code vanGenuchten.py to produce 
the values of Water Content , Hydraulic Conductivity ,  and Water Storage Coefficient 

. Two standard soils have been used to do this analysis.  

 

  r [m3.m-3] s [m3.m-3] -1]  [-] Ks [m/day] Ss [-] 

Hygiene Sandstone 0.153 0.25 0.79 10.4 1.08 1E-06 
SiltLoamGE3 0.131 0.396 0.423 2.06 0.0496 1E-06 

Table 2 - Shows the description of the soil type used in this study. 

 

 Hygiene Sandstone is a member of Pierre formation [13]. It is thick bedded and 
frequently cross-bedded. Much of it is dark greenish grey and gritty. The remainder is 

thering, takes a 
paler-greenish tint, and becomes friable. It frequently contains carbonaceous matter 
resembling small sticks of wood turned to coal. It also contains fossils of invertebrates, 
but its fauna is not yet known to be distinctive of this horizon.  shows the 
properties variation in hygiene sandstone with the change in pressure head 
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Figure 22 -  

 SiltLoamGE3 belongs from Touchet series. It consists of deep, moderately well 
drained soils formed in recent alluvium on flood planes at elevations from 150 to 300 
meters. It is typically found near Walla Walla River in Walla Walla County, 
Washington USA. It contains 10 to 18 percent of clay particles and have moderate 
permeability. Properties for this soil type is presented in the  below. 
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Figure 23 -  
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Figure 24 - SWCC for Hygiene Sandstone and SiltLoamGE3 

3.6 Data Generation 
 

As mentioned in chapter 2, Long Short-Term Memory (LSTM) networks, is a machine learning 
technique which is used to address time series problem or problems including sequential data. 
Therefore, to use this technique in this thesis, infiltration problem was modelled as a problem 
with sequential data and using a Python code RichardsEquationGenerator values of water 
content , and pressure head  were calculated at every 5 cm depth and 150 times a day 
for 10 days i.e., almost in every 10 minutes and was fed to the training algorithm. However, 
just to keep the figures below comprehensive, it was reduced to 10 times a day for 10 days.  
Moreover, it can be seen in the Figure 25, in the code snippet below, in line 148 infiltration 
flux can be changed. With line 149, 150 and 151 boundary conditions can be altered. Lines 154 
and 155 are used to define the grid in space, while, line 160 defines the grid in time. For analysis 
purposes, two sets of data are created for each type of soil, one is with closed drainage and 
another with open drainage condition.  

 

 
Figure 25 - Shows the setup of the model in the Python code. 
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Figure 26 shows the process of infiltration in HygieneSandstone with an influx of 0.01 m/day 
with closed drainage. In Figure 26(b), it can be observed, in the beginning the pressure 
distribution was hydrostatic, but as infiltration takes place it becomes constant to the depth, till 
the water reaches i.e., around 3.5 meters. In Figure 26(a), discharge began to rise at around 
60th observation, as soil approaches to its saturation value. 

 

 
Figure 26 - Shows the infiltration process of Hygiene Sandstone without drainage. 
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Similar to Figure 26, Figure 27 also shows the process of infiltration in Hygiene Sandstone 
with an influx of 0.01 m/day but with open drainage. Therefore, this time In Figure 27(b), it 
can be observed, in the beginning the pressure distribution was hydrostatic, but as infiltration 
takes place it becomes constant to around -1.5 meters throughout the depth of the soil i.e., 5 
meters. In Figure 27(a), we can observe that at the end, discharge becomes equal to the influx. 
It is because of the open drainage condition.  

 
Figure 27 - Shows the infiltration process of Hygiene Sandstone with open drainage. 
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Figure 28 shows the process of infiltration in SiltLoamGE3 with an influx of 0.03 m/day with 
closed drainage. In SiltLoamGE3 it was required to increase the influx as water penetration 
was not very significant with an influx of 0.01 m/day. Initial pressure distribution was 
hydrostatic in nature but, it can be observed in Figure 26 (b), that final pressure head is not 
constant as in previous case with Hygiene Sandstone. Moreover, in Figure 28 (b) it can be 
observed that, till around 85th time step, Rate of change of storage was equivalent to influx, 
and discharge was equal to zero. That means, there is accumulation of water in the soil with 
quite high build-up of pore water pressure. This can be a due to smaller particle size than that 
of the previous cases.  

 

 
Figure 28 - Shows the infiltration process of SiltLoamGE3 without drainage. 
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Figure 29 shows the process of infiltration for SiltLoamGE3 with an influx of 0.03 m/day with 
open drainage. As in closed drainage, In Figure 28(b), it can be observed, in the beginning the 
pressure distribution was hydrostatic, but as infiltration happens the final pressure head is not 
constant, it changes. In the top part, final pressure increases, while in the bottom part it 
decreases. The reason can be that as particle size decreases, adsorption forces start to dominate 
the matric potential or pressure head instead of capillary forces, therefore it becomes more 
unpredictable.  

 

 
Figure 29 - Shows the infiltration process of SiltLoamGE3 with open drainage. 
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Chapter 4 
Modelling with Python Code 

 

This chapter in the thesis is dedicated to explaining the Python code used to apply Long Short-
Term Memory (LSTM) Networks and Physics-Informed Neural Networks (PINNs) to the 
dataset to mimic the infiltration process. All the work has been done in Python 3.6, using 
Spyder from Anaconda. Anaconda is a free and open-source distribution, of the Python and R 
programming language for scientific computing. Spyder is the scientific Python Development 
Environment and it is a free Integrated Development Environment (IDE), that is included in 
Anaconda.  

In Data Science, while doing Machine Learning, a lot of libraries and packages are commonly 
used. Those used in the thesis are as follows. 

 TensorFlow: It is a free and open-source software library for dataflow and 
differentiable programming across a range of tasks. It is a symbolic math library and is 
also used for machine learning applications such as neural networks.  

 Keras: It is an open-source neural network library written in Python. It is capable of 
running on top of various libraries like TensorFlow, Microsoft Cognitive, Toolkit, R, 
Theano or PlaidML. It is designed to enable fast experimentation with deep neural 
networks, and it focuses on being user-friendly, modular and extensible.

 NumPy: It is a fundamental package for scientific computing with Python. This library 
adds support for large, multi-dimensional arrays and matrices, along with a large 
collection of high-level mathematical functions to operate on these arrays. 

 Pandas: It is a software library written for Python. It is used for data manipulation and 
analysis. In particular, it offers data structures and operations for manipulating 
numerical tables and time series.

 SciPy: It is a free and open-source Python library used for scientific and technical 
computing. It contains modules for optimization, linear algebra, integration, special 
functions, signal and image processing. It builds on NumPy array object and is part of 
NumPy stack which includes tools like Matplotlib, pandas and SymPy and an 
expanding set of scientific computing libraries. The whole NumPy stack has similar 
users to MATLAB, GNU OCTAVE, and Scilab. 

 Matplotlib: Matplotlib is a plotting library for the Python programming language and 
its numerical mathematics extension NumPy. 
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4.1 Long Short-Term Memory (LSTM) or Time series 
prediction 

 

Python code for LSTM was majorly divided in three parts as follows: 

 Part 1: Data Pre-processing 

 Part 2: Building the LSTM model 

 Part 3: Making prediction and plotting 

In Part 1: Data Pre-processing (Figure 30), NumPy, pandas and Matplotlib libraries were 
imported. Using pandas, training set was imported and stored in a variable dataset_train. Here 
training set includes the value of , at depths of 0.5 m, 1 m, 1.5 m, 2 m, 2.5 
m, 3 m, 3.5 m, 4 m, 4.5 m, 5 m over a period of 10 days. After that using feature scaling all the 
data is scaled between 0 to 1 for more accurate predictions. Then the data is arranged in 

 

 

The data in this series is arranged in n timesteps and the whole dataset has m observation, 
where . So, training set that will be fed to LSTM unit will be , 
and it will try to predict , then the next training set will be  and it 
will predict .  

 

 
Figure 30 - Part 1: Data pre-processing 



44 | P a g e  
 

In Part 2: Building the LSTM model (Figure 31), some modules of Keras are imported. After 
that, model is initialized, input layer has been defined in line 53. Then, several hidden layers 
are defined a hidden layer is defined at line 78. Number of Neurons are introduced in every 
layer, number of hidden layers and number of neurons in each layer can be changed to obtain 
good results. Moreover, in line 81, the model is compiled using adam optimizer and a loss 
function. Whereas, Adam optimizer is an optimizer that implements adam algorithm. It is 
stochastic gradient descent method that is based on adaptive estimation of first and second 
order moments. It is computationally efficient, occupies little memory, invariant to diagonal 
rescaling of gradients, and is well suited for problems that are large in terms of data/parameters 
[15]. In Figure 31, mean_square_error is used as a loss function, but other loss functions can 
also be used for example mean_absolute_error. At the end in line 84, number of epochs and 
batch_size is defined, that can also alter to improve the model performance. Moreover, batch 
size is a number of samples processed before the model is updated. While the number of epochs 
is the number of complete passes through the training dataset, the batch size should be more 
than or equal to one and less than or equal to the number of samples in the dataset.  

 

 
Figure 31 - Part 2: Building the LSTM model 



45 | P a g e  
 

In the last part or Part 3: Making prediction and plotting, predict function is used to predict the 
values using the model ( Figure 32), and Matplotlib is used to plot the values real vs predicted 
values.  

 

 
Figure 32 - Part 3: Making prediction and plotting 

Same Python code is used to make prediction for  values, with data 
arranged in same manner as . 

 

4.2 Physics-Informed Neural Network (PINN) 
 

Physics-Informed Neural Networks have 
of problems:  

 Interpolation Problem 

 Inference Problem 

Originally, it was planned to solve a third type of problem including these two called Inverse 
 to solve these problems, 

d into a loss function, which can be used by PINN. To do this, 
we can use equation (16).  

 

This equation can be reformulated as follows: 
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where, , is a water storage function: 

 

The derivative of  with respect to  is evaluated as follows: 

  

 

Then, the Loss function for the training of the Neural Network is then defined as:  

 

In both type of problems, most of the libraries used were same as were in LSTM except 
, 

a class called PhysicsInformedNN was formed. In that class, lower and upper bound values, 
values of hydraulic conductivity water storage constant analytically calculated value 

of , a list called layers, and the grid in space and time as values of  was passed as an 

argument. The list layers included the number of neurons in each layer. The process in that 
class is explained step wise as follows: 

 A Neural Network was set up which takes input as  and tires to give an output.

2.  This output is then used to find the differential terms in the loss function.  

 Then the interpolated values of  are put together with the differential 

terms in the loss function. 

4. After this process is repeated to minimize the loss function.  

In interpolation problem the values of , provided to the program were randomly from all 
over the domain, and using interpolation function to interpolate the values of 

 program gave a coloured contour map for the whole domain. In inference 

problem, boundary values of  were provided to the program and it gave a coloured domain 
for all the whole domain.  

 

 

 

 

 

 

 

 

(22) 
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Chapter 5 
Results & Discussions 

In this chapter, results from LSTM and PINN are presented and discussed. Python codes 
implementing LSTM and PINN were run several times with different configurations to 
optimize the model.  

 

5.1 LSTM 
 

For LSTM four datasets were chosen to implement the algorithm and was studied under 
different configurations.  

  dataset for Hygiene Sandstone with Closed Drainage

  dataset for Hygiene Sandstone with Open Drainage

  dataset for SiltLoamGE3 with Closed Drainage

  dataset for SiltLoamGE3 with Open Drainage

Four more datasets were produced with pressure head values  in Hygiene Sandstone and 
SiltLoamGE3 each with open and closed drainage conditions. These were produced to verify 
the results obtained from water content  datasets. LSTM was applied on all four 

 datasets and the performance of the model was studied by changing 
number of layers in the model, number of neurons in each layer, number of epochs and the size 
of training set for the model. Table 3 below shows the specifics of the standard initial model. 
This model was kept as a reference to compare with the other configurations of the model.   

 

Number of layers  
Number of Neurons in each layer 50 

Number of Epochs 50 
Length of training set 700 

Table 3 - Specification of Reference model for each dataset 

In first variation, number of neurons were fixed at 50, Number of epochs were fixed at 50, 
length of training set was 700, and three scenarios were tested with number of layers as 3,4 and 
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6 respectively. Since, feature scaling was applied to the dataset, all the values were squashed 
between zero to one. Therefore, all the predicted values are also between zero and one. In 
Figure 33, each red line in the graphs shows the water content build up at certain depth, and 
green lines are the predicted values on the same depths.  In Figure 33, (a), (b) and (c) are results 
of water content in Hygiene Sandstone with closed drainage, and (d), (e) and (f) are the results 
of water content in SiltLoamGE3 with closed drainage. In all the graphs in Figure 33, it can be 
observed very clearly that the model is not able to predict for the last four lines i.e., after time 
step 700.  

In Figure 34, graphs (a), (b) and (c) shows the water content in Hygiene Sandstone with open 
drainage, while (d), (e) and (f) shows the same in SiltLoamGE3 with open drainage. In Figure 
34, too it can be observed pretty clearly that the model fails to predict the values of water 
content after time step 700. Apart from that no major trend can be observed in the results. 
Sometimes predicted values exceeds the range of 0 to 1, but that is because the limit is not 
applied to the predictions, it exceeds because it tries to follow the trend.  

 

 
Figure 33 - Shows the result of LSTM for Hygiene Sandstone with closed drainage (a)  3 layers, (b)  4 layers and (c)  6 

layers. (d)  3 layers, (e)  4 layers, and (f)  6 layers shows the results for SiltLoamGE3 with closed drainage. 
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Figure 34 - Shows the result of LSTM for Hygiene Sandstone with open drainage (a)  3 layers, (b)  4 layers and (c)  6 

layers. (d)  3 layers, (e)  4 layers, and (f)  6 layers shows the results for SiltLoamGE3 with open drainage. 

In second variation, number of neurons in each layer was varied, while keeping number of 
layers, number of epochs and length of training set as fixed. In this case, three scenarios were 
tested with 30, 40 and 50 neurons in each layer and the results were presented in Figure 35 and 
Figure 36. Figure 35, (a), (b) and (c) are results of water content in Hygiene Sandstone with 
closed drainage, and (d), (e) and (f) are the results of water content in SiltLoamGE3 with closed 
drainage. Similarly, Figure 36, (a), (b) and (c) are results of water content in Hygiene 
Sandstone with open drainage, and (d), (e) and (f) are the results of water content in 
SiltLoamGE3 with open drainage. Again, just like Figure 33 and 34, In Figure 35 and 36 same 
patterns are observed, that the model is not able to predict for the last four lines i.e., after time 
step 700. This suggests that neither widening nor deepening the network is effective, in order 
to improve the model performance. 
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Figure 35 - Shows the result of LSTM for Hygiene Sandstone with closed drainage (a)  30 neurons, (b)  40 neurons and 
(c)  50 neurons. (d)  30 neurons, (e)  40 neurons, and (f)  50 neurons show the results for SiltLoamGE3 with closed 

drainage. 
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Figure 36 - Shows the result of LSTM for Hygiene Sandstone with open drainage (a)  30 neurons, (b)  40 neurons and (c) 

 50 neurons. (d)  30 neurons, (e)  40 neurons, and (f)  50 neurons show the results for SiltLoamGE3 with open 
drainage. 

 

For third variation, number of epochs was changed from 50 to 100, while keeping number of 
layers, number of neurons in each layer and length of the training set was kept constant. This 
type of variation is supposed to reveal if the original model is overfitting the dataset or 
underfitting it. But as seen in Figure 37 and Figure 38, increasing the number of epochs, too 

n the results.  

The last type of variation that is studied in this thesis is changing the length of training set. 
While, in this type number of layers, number of neurons in the layers and number of epochs 
are kept constant. Figure 39, (a), (b) and (c) are results of water content in Hygiene Sandstone 
with closed drainage, and (d), (e) and (f) are the results of water content in SiltLoamGE3 with 
closed drainage. While, Figure 39 (a) shows the result with 700 datapoints as training set, (b) 
shows 1000 and (c) shows 1500 datapoints as training set in Hygiene Sandstone with closed 
drainage. Similarly, Figure 39 (d) shows the result with 700 datapoints as training set, (e) 
shows 1000 and (f) shows 1500 datapoints as training set in SiltLoamGE3 with closed drainage. 
Moreover, Figure 40, shows the similar observations for open drainage condition in Hygiene 
Sandstone and SiltLoamGE3.  
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Figure 37 - Shows the result of LSTM for Hygiene Sandstone with closed drainage (a)  50 epochs and (b)  100 epochs. (c) 

 50 epochs and (d)  100 epochs show the results for SiltLoamGE3 with closed drainage. 

 
Figure 38 - Shows the result of LSTM for Hygiene Sandstone with open drainage (a)  50 epochs and (b)  100 epochs. (c)  

50 epochs and (d)  100 epochs show the results for SiltLoamGE3 with open drainage. 
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In Figure 39 and Figure 40, it can very well be noticed, that with the increase in the length of 
training set, performance of the model increases quite a lot. This can be explained by taking a 
careful look on the dataset. At every depth water content is taking quite a steep and sudden 
jump at a certain point in time. Therefore, the model gives good prediction till the point in time, 
it was tra
or less constant. Hence constant prediction for those depths. Figure 41 shows the result for 
pressure head  datasets, which are produced with 1500 datapoints as training set, 4 hidden 
layers and 50 neurons in each layer. Therefore, verifying the results produced in Figure 39 and 
40 are valid for pressure head too.  

 

 
Figure 39 - Shows the result of LSTM for Hygiene Sandstone with closed drainage (a)  700 length of training set, (b)  

1000 length of training set and (c)  1500 length of training set. (d)  700 length of training set, (e)  1000 length of training 
set, and (f) 
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Figure 40 - Shows the result of LSTM for Hygiene Sandstone with open drainage (a)  700 length of training set, (b)  1000 
length of training set and (c)  1500 length of training set. (d)  700 length of training set, (e)  1000 length of training set, 

and (f)  1500 length of training set show the results for SiltLoamGE3 with open drainage. 
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Figure 41 - Shows the results for pressure head with length of training dataset = 1500, number of layers = 4, number of 

neurons in each layer 50 and number of epochs = 50. (a) Hygiene Sandstone Closed drainage (b) Hygiene Sandstone open 
drainage (c) SiltLoamGE3 Closed drainage and (d) SiltLoamGE3 open drainage. 

 

5.2 PINN 
 

This section describes the results of the application of Physics  Informed Neural Networks on 
 collocation points were 

spread in the whole domain and this was called an Interpolation problem. Because at these 
collocation points values of Hydraulic conductivity, water content and water storage constant 
were provided. Using these, neural network was supposed to find the solution of Richards 
equation in the whole domain. This required to interpolate these properties in the domain. In 
the second application, these collocation points were provided on the boundary of the domain. 
Therefore, neural network 
domain, but this time it was called as an Inference problem.  

Figure 42 summarizes the result for Richards equation for interpolation problem. Specifically, 
given a set of 500 collocation points i.e., , and are randomly distributed all around the 

 layered deep neural network 
with 20 neurons in each layer. This configuration resulted in lowest loss value i.e., 

. Other configurations of the model were tried with different number of 
collocation points, number of layers and number of neurons in each layer, loss values of these 
are presented in Table 4, Table 5 and Table 6 
other significant trends can be observed in the Table 4, 5 and 6, except finding a best 
configuration with almost hit and trial like technique.   
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Figure 42 - Top: Predicted Solution for u (x, t) along with the training data Nu = 500.  Bottom: Comparison of the predicted 

and exact solution corresponding to the three temporal snapshots depicted by the white vertical lines in the top panel. 

Layers 
Neurons 

10 20 30 40 50 
2 4.90E-04 8.79E-04 1.67E-03 6.16E-04 1.10E-03 
4 6.20E-04 7.87E-04 8.51E-04 1.75E-03 5.54E-04 
6 9.63E-04 3.72E-04 5.01E-04 6.70E-04 1.26E-03 
8 3.32E-03 2.14E-03 1.77E-03 3.72E-03 7.63E-04 

10 7.86E-03 2.88E-03 1.84E-02 3.20E-03 1.06E-03 
Table 4 - Collocation points, Nu = 200 

Layers 
Neurons 

10 20 30 40 50 
2 1.46E-03 1.03E-03 1.80E-03 1.80E-03 1.35E-03 
4 2.00E-03 2.21E-03 9.70E-04 3.20E-03 1.90E-03 
6 2.11E-03 2.27E-04 1.02E-03 2.91E-03 1.89E-03 
8 2.80E-03 1.84E-03 2.01E-03 1.99E-03 1.87E-03 

10 2.55E-03 5.78E-03 8.82E-04 3.48E-03 3.33E-03 
Table 5 - Collocation Points, Nu = 500 

Layers 
Neurons 

10 20 30 40 50 
2 2.01E-03 2.59E-03 1.02E-03 2.20E-03 1.39E-03 
4 1.74E-03 1.16E-03 6.50E-04 2.78E-03 1.31E-03 
6 7.54E-04 1.21E-03 1.40E-03 1.29E-03 2.95E-03 
8 1.09E-03 2.01E-03 3.94E-03 5.11E-03 7.35E-04 

10 1.61E-03 6.59E-03 4.56E-03 4.91E-03 1.06E-02 
Table 6 - Collocation Points, Nu = 700 
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Result for the inference problem is summarized in Figure 43. It is generated with Nu = 100 and 
Nf = 4000, with a two layers deep neural network with 20 neurons in each layer. This set of 
100 datapoints is randomly distributed initial and boundary data. The top panel of Figure 54 
shows the predicted spatio- tion, along with the location of 
initial and boundary data. With this configuration an error of  is reported.  

To further analyse the performance of this method, some parametric study was done to quantify 
its predictive accuracy for different number of training and collocation points, for different 
neural network architectures. Table 7 reports the resulting error for different number of initial 
and boundary training data Nu and different collocation points Nf. While keeping the two layers 
deep neural network with 20 neurons in each layer constant. Though lowest error was 
encountered with Nu = 100 and Nf = 4000, but some results with lower loss were also found 
with Nf = 10000. Furthermore, Table 8 shows the resulting error for different number of hidden 
layers, and different number of neurons per layer, while the total number of training and 
collocation points is kept fixed to Nu = 100 and Nf = 4000. It is to be expected that as the 
number of layers and neurons is increased (hence the capacity of the neural network to 
approximate more complex functions), the predictive accuracy of the network should increase 

 

 

 
Figure 43 - Richard's Equation: Top: Predicted solution u (x, t) along with the initial and boundary training data. Bottom: 

Comparison of the predicted and exact solution corresponding to the three temporal snapshots depicted by the white vertical 
lines in the top panel. Error for this case was 5.081357×102. 
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Nu 
Nf 

2000 4000 6000 8000 10000 
20 1.28E-01 1.62E-01 2.11E-01 1.52E-01 1.24E-01 
40 1.17E-01 9.70E-02 9.32E-02 9.62E-02 1.30E-01 
60 1.67E-01 1.24E-01 2.25E-01 9.82E-02 6.48E-02 
80 1.37E-01 1.19E-01 1.90E-01 1.35E-01 1.86E-01 

100 1.36E-01 5.66E-02 1.06E-01 7.03E-02 8.46E-02 
200 1.24E-01 7.29E-02 9.48E-02 1.11E-01 6.81E-02 
Table 7 - Richards Equation: Error between the predicted and the exact solution u (x, t) for different number of initial and 
boundary training data Nu, and different number of collocation points Nf. Here the network architecture is fixed to 2 layers 

with 20 neurons per hidden layer. 

Layers 
Neurons 

10 20 30 40 50 
2 1.43E-01 5.08E-02 1.29E-01 9.45E-02 1.90E-01 
4 1.01E-01 1.04E-01 1.30E-01 9.86E-02 1.65E-01 
6 2.36E-01 1.10E-01 1.37E-01 1.07E-01 1.49E-01 
8 2.52E-01 1.04E-01 2.65E-01 1.25E-01 7.27E-02 

Table 8 - Richards Equation: Error between predicted and the exact solution u (x, t) for different number of hidden layers 
and different number of neurons per layer. Here the total number of training and collocation points is fixed to Nu = 100 and 

Nf = 4000, respectively.  

 

5.3 Discussion 
 

Throughout this chapter results from LSTM and PINN are presented. In case of LSTM, using 
a Python code RichardsEquationGenerator.py, four separate datasets of water content , in 
Hygiene Sandstone and SiltLoamGE3, with open and closed drainage conditions each were 
generated. In each dataset, value of water content was calculated using 
RichardsEquationGenerator.py, in 10 points in space along a depth of 0 to 5 meters with an 
equal interval of 0.5 meters. Both materials were subjected to an influx of 0.01 m/day of water, 
and water content was calculated in approximately every 10 minutes for 10 days, at every 
datapoint. Therefore, for each point in space there were 1500 sequential values of water 
content.  

These sequential datasets were fed to LSTM, a part of it was used as training set and rest of it 
was used for testing the prediction. After varying number of layers, number of neurons in each 
layer and epochs, only parameter to which the model seems to improve was change in the 
length of training set Figure 39 and Figure 40. This behaviour of LSTM can be attributed to 

-linear, and the data needed to train the LSTM 
was not quite sufficient. Since the model was trained in time and it was not interacting with 
different depths, 
from 0 to 1. Hence, if the model was trained till 700 timesteps, during prediction it successfully 
predicted the transition for the depths it was already trained for. Since, there was no learning 
between different depths, ew when the transition happens for rest of the depths. 
Hence, the model predicted constant or close to zero values for rest of the depths.  

If the dataset consisted of several cycles of wetting and drying, instead of just wetting, LSTM 
would have performed better. Model would have learnt more about the wetting and drying 
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characteristics of the material with certain amount of flow. Alternatively, using spatio  
temporal LSTM or ST-LSTM, this dataset can be trained in space and time [14], hence better 
prediction.  

In case of Physics-Informed Neural Net on was modelled as an 
optimization problem and was solved using neural networks. This was done by setting a neural 
network u (x, t). It takes x and t as inputs and give out a value u. Now, this u is used to find 
differential t , by differentiating w.r.t x and t, using automatic 
differentiation. Then, rest of the values of Hydraulic conductivity K, and water storage constant 
C, were provided, and then the loss function was calculated Equation (22). This process was 
repeated, in order to minimize the loss function.  

Results produced with PINN for Interpolation problem were quite good, as the error was quite 
low i.e., . However, in inference problem error was quite high i.e., in the 
magnitude of 10-2. Although there is good reason to believe that on further probing in terms of 
different combinations of Nu and Nf values with deeper neural network architecture, one may 
arrive at a lower error in inference problem i.e., in magnitude of 10-3 or 10-4. Moreover, key 
strength of physics informed neural networks is believed to be quite accurate and data efficient 
as the underlying physical law is encoded in the neural networks [15]. Hence, this technique is 
different from usual neural network technique and makes use of known physical knowledge 
along with high computational power of neural networks.  

Furthermore, LSTM is quite good and effective but for sequential and time series data. For 
solving ordinary differential equations or partial differential equations, which is often the case 
in science and engineering problem physics informed neural networks can perform better. 
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Chapter 6 
Conclusions 

 
This thesis explored the idea of applying machine learning to infiltration process in a soil. 
Machine learning techniques used in the process were vastly different in terms of working and 
nature from each other. First technique used in this thesis is called Long Short-Term Memory 
(LSTM). This technique specializes in sequential or time series data. Therefore, this technique 
is particularly good in predicting stock prices, weather patterns etc i.e., with sequential data. 
Hence, values of water content  and pressure head  in both the materials were arranged 
in sequential manner with 1500 datapoints at 10 different depths. Since, there was no learning 
between points at different depths, LSTM model treated sequential data in all the depths as 
totally different series. Therefore, in the result obtained model gave good prediction for those 
depths which transitioned from unsaturated to saturated phase within the training set.  

The second technique used is called Physics-informed neural networks (PINN). Whereas, 
LSTM was a very traditional Machine learning technique in which there are well defined 
training and testing sets, in PINN, there were no strictly defined training or testing sets. In this 
technique, the s encoded in 
the neural network. Therefore, collocation points inside the domain are used to train the 
algorithm, then solution of the differential equation was predicted for the whole domain. And 
collocation points can be any number of points chosen from the domain that can be used to 
train the algorithm. This technique gave quite good result, in case of interpolation problem it 
gave an error of , while in case of inference problem it gave quite high error 
in magnitude of 10-2. This high error in inference problem can most likely be lowered by 
increasing the number of datapoints i.e., Nu and Nf, and deepening and widening the neural 
network. If not then, this is a convergence and generalization problem of neural network i.e., 

match the exact solution of the equation [16]. Further work can be done in this direction, to 
investigate.  

Moreover, for this thesis PINN proved to be a much better method to mimic infiltration, as it 
Due to lack of time PI

to produce a SWCC graph, but an inverse problem using PINN can definitely be modelled to 
produce one. In this type of problem model will be predicting the values of water content and 
pressure head and hence producing SWCC.  

PINN is more suitable for this problem than LSTM because ultimately it can be developed to 
produce SWCC (though might need to figure out how to specify the material in the program), 
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but for LSTM we need to have a lot of sequential data to model and feed to the algorithm. And 
it would be very specific for the case. Moreover, PINN can be used much more widely in 
geotechnical engineering or engineering applications in general, due to the abundance of 
ordinary and partial differential equations. 

There are still many  convergence to the 
solution and generalization of the data. However, there is good reason to believe that PINN is 
a big step forward in the direction of automation to solve ODE and PDE, using theory driven 
data science. As this kind of approach allows to use the knowledge of scientific laws combined 
with the computational power of neural networks.  
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Appendix 1 
 

1.  
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2. RichardsEquationgenerator.py  Sourced from 
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3. Code for LSTM  Figure 30, 31 & 32.
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4. PINN  code for Interpolation problem (Integrated  as values of K, C and  were 
calculated in the code
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5. PINN  code for Inference 
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