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Abstract 
Extreme events with multiple landslides can cause major economic costs, damage, and loss of life. While 
a single landslide can be destructive, multiple landslides are often the culprit of major losses. They can 
isolate communities and overwhelm emergency response by blocking transportation arteries and 
disrupting power and communication lines in several locations. In Norway, no red level warnings have 
been issued from 2015-2019, despite at least three events with severe damage and ≥20 landslides. Early 
warnings greatly benefit in mitigating the consequences of landslides. Due to the uncertainty in 
forecasting rare, high consequence events, improved understanding of past events is needed. This study 
aimed to (1) improve the landslide inventory and (2) analyse forecasting tools and warnings given for 
past events with multiple landslides, to assist in issuing more reliable warnings in the future.  

21 Norwegian and four international multiple landslide case studies between 2015-2019 were 
investigated. Selected Norwegian case studies included days with ≥10 registered, geographically 
clustered, soil landslides. Two satellite landslide mapping techniques were tested using Sentinel-1 (SAR) 
and Sentinel-2 (δNDVI) images. Detection of registered landslides was attempted, and additional 
unreported landslides were mapped. Only 10% of landslides were detectable using SAR. Limiting factors 
of detection of selected landslides using SAR intensity, phase, and coherence, included snow, slope 
aspect, and spatial resolution. 45% of selected landslides were detectable using δNDVI. However, if only 
considering ideal conditions, the detection rate increased to 94%. In ⅓ of cases, δNDVI mapping nearly 
tripled the landslide inventory. δNDVI-mapping is hindered by snow and cloud cover, low sun angle, 
short daylight hours, and landslide size (>1000 m2). International test sites in arctic, urban, tropical, and 
monsoon conditions showed great potential for δNDVI-mapping, but limited success using SAR. 

Forecasting tools, including the HYDMET threshold model, susceptibility maps, geology maps, rainfall 
and snowmelt, were analysed for the selected Norwegian case studies to identify correlations. Published 
warnings and warning evaluations of case studies were compared, in order to determine the main 
challenges in forecasting. Finally, the temporal and spatial trends of multiple landslide events were 
identified. Forecasting tools for the selected cases revealed varied usefulness. The HYDMET model 
underestimated hazard levels in 67% of cases. 84% of landslides occurred in high or very high 
susceptibility zones and have quaternary geology mapped as till, colluvium, or bare bedrock. Rainfall and 
snowmelt were the ultimate instigator of all selected cases, with normalized 24-hour water supply 
between 2.4% and 8.5% of mean annual precipitation. Return periods of 1, 3, and 24-hr water supply are 
≤5 years in 11 cases and ≥100 years in six cases. Peak water-supply may not be captured by models or 
observed by rain gauges. The most challenging forecasting days are 1) uncertain high return period 
rainstorms and 2) spring melt with wet antecedent conditions. ⅓ of case studies were under-warned 
according to NVE evaluations. Days with ≥10 landslides are most common in Western Norway, due to a 
tempered climate and high precipitation, and rare north of Trondelag due to lower rainfall and cold, 
stable winters. These days occur nearly five times/year, with ¾ occurring in September to January. 

Using δNDVI, landslide inventories in Norway could be drastically improved, albeit limited by cloud, 
snow, daylight, and landslide size. Improved inventories would help develop more reliable thresholds. 
However, this analysis indicates that despite a strong correlation in the majority of selected cases, 
rainfall and snowmelt alone cannot predict landslides. Better understanding of the role of the other 
influencing factors could reduce the number of under-warned multiple landslide events.   
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1 Introduction 
Landslides are a natural hazard, present on earth for all of history, and ubiquitous in steep terrain. While 
they are common hazards, found throughout the solar system on Mars (Lucchitta, 1979), Mercury, and 
the Moon (Brunetti et al., 2015), they only cause disasters on earth where vulnerable people and man-
made infrastructure are in their path (Kelman, 2020). Landslides worldwide annually incur losses of 
hundreds of millions in damages (Clague & Stead, 2012) and thousands of fatalities (Foude & Petley, 
2018). From 2004 through 2016, at least 55,997 people were killed by landslides worldwide (Foude & 
Petley, 2018). An analysis of recorded fatal landslides around the world hypothesizes that there has 
been an increase in landslides associated to extreme rainfall and population distribution in the past two 
decades (Haque, et al., 2019).  

In Norway, landslide incidents are frequent and widespread due to steep mountainous terrain and high 
precipitation. Over the past 150 years, it is estimated that there have been 125 landslide related 
fatalities in Norway (Colleuille, et al., 2017). 25 of these deaths occurred from 1995-2014, 12 of which 
were snowmelt and rainfall induced landslides (5 debris flows and 7 slushflows) (Haque, et al., 2017). 
Due to climatic changes increasing the frequency and severity of precipitation and increasing the 
proportion of precipitation falling as rain rather than snow, consequences from landslides are expected 
to increase unless properly managed (Jaedicke, et al., 2008), (Hannsen-Bauer, et al., 2017).  

Early warning systems (EWS), alongside a well-informed population, can drastically reduce vulnerability 
to landslides, letting natural processes take place but avoiding disasters (Kelman, 2020). The Norwegian 
landslide early warning system (NLEWS) has been operational since 2013 with its main goal being the 
reduction of economic and human losses caused by landslides (Krøgli, et al., 2018).  

This research is a part of KLIMA 2050, an initiative funded by the Research Council of Norway and 
consortium partners intending to reduce societal risks associated with climate change within the built 
environment. As part of the KLIMA 2050 program, research is being carried out on Early Warning 
Systems for landslides induced by heavy rainfall.  

1.1 Landslide Early Warning Systems 
The United Nations International Strategy for Disaster Risk Reduction (UNISDR) defines early warnings 
systems as, “the set of capacities needed to generate and disseminate timely and meaningful warning 
information to enable individuals, communities and organizations threatened by a hazard to prepare 
and to act appropriately and in sufficient time to reduce the possibility of harm or loss” (UNISDR, 2009). 
The UNISDR emphasizes the four key elements of the system are: knowledge of the risks, forecasting, 
communication, and response.  

When other mitigation solutions are not feasible, Landslide Early Warning Systems (LEWS) are becoming 
an increasingly common tool used as a cost-effective solution to reducing exposure to extreme events 
(Calvello, 2017). Warning systems can, if executed well, decrease vulnerability and educate citizens 
about the natural hazards they live near (Kelman, 2020). They are used on both local scales (a single 
slope) and regional scales (ranging from a basin to an entire nation) (Calvello & Piciullo, 2016). Regional 
LEWS are sometimes referred to in literature as a territorial LEWS (Piciullo, et al., 2018). LEWS have 
three main categories, alarm, warning, and forecasting (Calvello, 2017). In a recent study of 26 territorial 
LEWS, Guzzetti et al., describes landslide forecasting as “a difficult and uncertain task that lays at the 
fuzzy boundary between science, technology, and decision making”, pointing out that the success of 
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forecasting landslides is not only dependant on quality and quantity of data, but also largely dependant 
on experience and judgement (Guzzetti, et al., 2019).  

 Thresholds 
A threshold is defined as a quantitative condition, expressed in terms of a mathematical law, that when 
exceeded results in a change of state of a system (White, et al., 1996). LEWS are designed under the 
assumption that landslides are predictable, given correct data of past landslides is collected (Meyer, et 
al., 2012). Thresholds indicating the likelihood of a landslide, can thus be statistically derived using 
known past events. To create a threshold a dataset must include: a period of analysis, source of 
landslide data, landslide number and type, source of rainfall, rainfall timescale, and spatial density of 
rainfall measurements (Segoni, et al., 2018). The most common threshold parameters include (Segoni, 
et al., 2018): 

• intensity-duration (ID): peak, mean, and combinations of intensity 
• antecedent rainfall: 30-day, 15-day, 3-day, 1-day, and degree of saturation 
• total rainfall during an event: defined, often, with limits of 48-hour and 96-hour dry periods  

Among many variables (e.g. snowmelt, Jökulhlaup, seismicity, volcanic activity, wind), rainfall is the main 
trigger of landslides worldwide (Guzzetti, et al., 2007). Rainfall thresholds were first introduced in 
literature by (Endo, 1969), further developed by (Caine, 1980), and have since been thoroughly 
researched and documented, including a review of international literature by (Guzzetti, et al., 2007), 
(Guzzetti, et al., 2008),and more recently by (Segoni, et al., 2018). Such studies conclude that the most 
crucial inputs of rainfall thresholds are the landslide database and the rainfall data. Often, the validation 
process is not completed due to the low number of inventoried landslides (Segoni, et al., 2018). 
Improvements to landslide databases are therefore of utmost importance to the improvement of 
initiation thresholds.  

 Landslide Inventories 
Landslide risk assessments and LEWS thresholds inherit the quality of the database they are created 
from (Foude & Petley, 2018), (Segoni, et al., 2018). A high-quality landslide database is essential in 
producing susceptibility maps, rainfall thresholds, hazard maps, and to validate new landslide mapping 
methods. Landslide inventories are also essential in quantifying the performance of a LEWS (Piciullo, et 
al., 2017). Landslide mapping is still commonly performed using first-hand accounts, media reports, and 
aerial photographs, but developments over recent decades have increased the use of remote sensing in 
creating landslide inventories (Fiorucci, et al., 2019).  

 Extreme Landslide Events 
Landslides can be labelled “extreme” for many reasons, including size, consequences, and number or 
landslides. Herein, extreme refers to the number landslides that occur due to a common trigger. 
Extreme landslide events are defined, in this study, as those days with more than ten soil landslides 
recorded in the NVE database, with at least five within 40 km radially of one another. The landslides 
selected are classified in the database as shallow soil landslides, including debris flows, debris floods, 
debris avalanches, soil slides, unspecified landslides in soils, and slushflows. Slushflows are included, 
despite being a type of snow avalanche, to test if they can be detected using the studied satellite 
mapping methods.  
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An individual landslide can have enormous consequences, and there is no shortage of examples to prove 
this point (e.g. Huascaran Debris Fall, Peru, 1962, destroyed a town and killed 4,500 people). The large 
majority of deadliest landslide events in history are, however, a series of multiple landslides with the 
same trigger (Oishimaya, 2017). Landslides are frequently induced by regional phenomena, such as 
earthquakes and rainstorms, resulting in regional consequences; loss of power and communication 
infrastructure, isolation from blocked or destroyed transportation routes, and insufficient emergency 
response resources turn even small isolated landslides into catastrophes.  

On July 30th, 2019, dozens of landslides were triggered in Jølster, Norway, by intense heavy rainfall 
exceeding the magnitude 200-year 24-hour precipitation event (NVE, 2019b). The landslides resulted in 
damage to infrastructure, private property and one fatality of a man whose car was swept into the lake. 
Five large debris flows (10-25,000 m3) and at least 40 smaller debris flows/floods occurred, and although 
each were devastating, the scale of the consequences of this event are due to the sequence of events 
and the sheer number of landslides that occurred. Figure 1 includes photographs of two of these large 
debris flows.   

 

Figure 1. Landslides at Jølster on July 30, 2019, Slåtten (left), Årnes (right) (photo credit: NGU) 

Three large landslides ravaged the slopes of Slåtten at 15:00 (left in Figure 1) sending emergency 
response to the region. Three hours later, the main town had a large debris flow and many slides on the 
north side of the lake washed out two bridges and cut off road access, trapping vehicles, including an 
ambulance, overnight and eventually requiring boat evacuation (NTB, 2019). With communication lines 
down, and only satellite phones, road authorities, opened the re-opened road on the south side of the 
lake to evacuate the area (Torheim, 2019). At 21:00 a debris flow washed a car into the lake on the 
south side of the lake, taking the life of one man (Rubensdotter, 2019). This fatal decision was the 
product of a complex series of events, each exacerbating the crisis. 

Jølster is one of several case studies of extreme landslide events in Norway that are investigated in this 
report. Only a level yellow warning was given, in what should have been an orange or red hazard level, 
revealing that such events are challenging to forecast (NVE, 2020a). Previous studies demonstrated that 



4 
 

the number of landslides was drastically under-reported, highlighting the need for systematic landslide 
mapping to build a complete inventory used to improve tools for landslide forecasting 
(Rouault, et al., 2020). The landslide event in Jølster is the canary in the coal mine (i.e. the early warning) 
of the potential of devastating and the challenges in forecasting landslides in changing climate.  

1.2 Research Problem 
Extreme multiple landslide events in populated areas cause widespread effects and damage. These 
events have the ability to isolate communities and overwhelm emergency response efforts by blocking 
transportation arteries in landslide prone areas of Norway. Due to the scale of potential destruction and 
capacity to devastate an area, events with numerous landslides require more research. 

While rare, such events are challenging to forecast, and often go under-warned in Norway (Devoli, 
2019). Landslide early warning systems rely on historical landslide inventories to reliably forecast future 
events. Unfortunately, the Norwegian landslide database is spatially biased toward transport routes, 
limiting the success of the warning system. More knowledge of extreme multiple landslide events in 
Norway is needed, to help landslide forecasters give more reliable warnings for these low frequency, 
high consequence events. Using case studies of recent multiple landslide events in Norway, the 
following research questions will be answered:  

1. In what conditions can landslide inventories be improved with the use of two remote sensing 
change detection techniques? An optical method (δNDVI) and a synthetic aperture radar 
method (SAR), using Sentinel-2 and Sentinel-1 satellite imagery, respectively, are tested to 
determine their limitations and opportunities. What are the limitations of the current landslide 
database and can the proposed methods address these limitations? 

2. When and where are extreme multiple landslide events recorded in Norway in the past five 
years? How do forecasting tools, including HYDMET threshold model, susceptibility maps, 
geology maps, and weather, rain gauge and snow melt, correlate with selected cases? Are these 
landslide events warned at the appropriate level? Which events are most challenging to 
forecast?  

1.3 Limitations 
There are many high consequence landslides in Norway. While it only takes a single landslide to destroy 
an entire community, multiple landslides in a small area are of interest due to the frequency they occur 
in Norway, their complex consequences, and that they are generally understated. This report is limited 
to landslides under a strict limitation of soil slides and flows, registered in the NVE landslide database, 
categorized as 140, 142, 144, and 133: unspecified landslides in soils, debris flows/floods/avalanches, 
soil slides, and slushflows, respectively. Selected cases occur on a day with at least ten landslides in 
Norway, five of which occurred within a 40 km radius of each other. The landslides that occurred on the 
same date are collectively named an extreme landslide event, herein.  

The communication of warnings is not addressed, despite being essential, if not the most critical piece of 
any warning system. Additional research is needed in this field to improve the effectiveness of landslide 
warning systems.  

Landslide triggers are complex, and ultimately require in-depth geotechnical field investigations to fully 
explain. In the absence of such investigations, the most important weather indicators reported in 
literature of shallow soil landslides triggers in Norway were investigated to assess their correlation. This 
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is not to undermine the importance of geotechnical soil properties, frost, groundwater, de-foresting, 
construction, or any other factor that may lead to landslides in Norway.  

Finally, the remote sensing methods considered are two of many techniques available. They are 
intended to test and compare possibilities of optical and radar satellite mapping techniques that could 
be implemented nearly anywhere in the world on a small budget. They are simple to conduct and utilize 
free ESA Copernicus software and satellite imagery. Other than those registered in the NVE database 
and many of those investigated at Jølster (case 19), the landslides mapped using remote sensing 
methods are not confirmed in the field in this work. 

1.4 Contributions 
These research questions were developed with the four advisors and built off the investigative work 
completed by the author with Erin Lindsay in autumn 2019 for a specialization project on the debris 
flows in Jølster, Norway (Rouault, et al., 2020).  

A literature review was completed independently by the author, the results of which are written in 
Section 2 – Background. Techniques for literature review and literature sources were provided by the 
four advisors.  

All data was collected and downloaded by the author, with permission as cited, including all satellite 
images (ESA, 2020c), GIS files (geology (NGU, 2019), roads, bodies of water (NGU, 2019), NVE landslide 
database (NVE, 2020c),, digital elevation model (NGU, 2019), cloud cover (Wilsom & Jetz, 2016)), 
landslide warnings (NVE, 2020b), HYDMET model results (NVE, 2020c), rain gauge data (Meteorologisk 
institutt, 2020b), intensity-duration-frequency (IDF) curves (Meteorologisk institutt, 2020a). Data 
provided by NVE includes the catchment level susceptibility maps (.shp), seNorge v2.0 rainfall and 
snowmelt (.csv), and daily evaluation of landslide warning assessments (.pdf) (NVE, 2020a).  

The analyses the author personally completed are the following: 

• Landslide database statistical analysis: downloaded NVE landslide database, with the 
programming language Python, and performed a statistical analysis to determine the temporal 
and spatial trends of shallow soil landslides. These results were used to choose the Norwegian 
case studies. Additionally, the four international test sites were chosen by researching 
interesting landslide cases with varied conditions on the Landslide Blog (Petley D. , 2020a).  

• Remote sensing landslide mapping: The selection of the satellite mapping techniques drew 
upon the master’s thesis written by Mads Fjeld in 2018 (Fjeld, 2018). The author was taught the 
δNDVI method by Erin Lindsay and the SAR method in a RUS Copernicus seminar. Both methods 
were completed on all cases (Norwegian and International) entirely by the author, using SNAP 
7.0 (ESA, 2020e) and ArcGIS (ESRI, 2019).  

• Forecasting tools: completed a statistical analysis of the catchment level susceptibility map 
from NVE (NVE, 2020a) and quaternary geology maps from NGU (NGU, 2019) using ArcGIS and 
Python code.  

• Weather analyses: calculated mean annual precipitation, absolute 1, 3, 12, 24-hour, 1 and 3-day 
antecedent precipitation values and normalized water supply for each event and plotted each 
in ArcGIS. The absolute water supply was plotted on IDF curves to determine return periods 
and, finally, categorized the events based on my own description of the weather.  
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• Landslide warning evaluations: completed a visual interpretation of the HYDMET model results 
from xgeo.no and calculated the number of warnings of each warning level from 2015-2019. 
The NVE evaluations were compared for each Norwegian case study with two quantitative 
evaluations defined in work by others.  

All climate change projections and conclusions regarding landslides are the work of others, which are 
have included to highlight their importance in LEWS.  

All maps, figures and tables, and appendices are self-made, in ArcGIS and Microsoft Excel, unless 
explicitly stated otherwise. All code is included in Appendix A. This report was written entirely the 
author, with comments and guidance from advisors.  

1.5 Structure 
This report takes the reader through an introduction of LEWS, the motivation for research, and the 
research problem. It then delves into background and literature review of the NLEWS, the NVE landslide 
database, and the remote sensing techniques that are tested for mapping landslides in Norway. An 
investigation of extreme multiple landslide events in Norway is conducted, with the methods used, 
followed by results and discussion. International test sites are included only to test the limitations of the 
mapping techniques. Figure 2 illustrates the structure of this study. 

 

Figure 2. Report Structure 
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2 Background 
2.1 Norwegian Landslide Early Warning System 
The Norwegian Landslide Early Warning System (NLEWS) is a territorial LEWS. It was developed starting 
in 2010 and became operational in 2013 as a joint initiative of Norwegian Water Resources and Energy 
Directorate (NVE), Norwegian Meteorological Institute (MET), the Norwegian Public Road 
Administration (NPRA), and the Norwegian Rail Administration (Bane NOR). (Krøgli, et al., 2018). It is run 
in conjunction with the flood and avalanche warning systems and is operated by NVE and MET (NVE, 
2020d) who collaborate in daily meetings to ensure clear and consistent communication across their 
platforms (Devoli, 2019). 

The NLEWS was originally developed to alert the road and rail authorities so that they could allocate 
appropriate emergency responses. Although it is publicly available, it continues to be designed for 
decision making authorities. Surveys to users were conducted in 2009, 2016, and 2019 (Colleuille & 
Engen, 2020). Respondents include emergency responders, municipalities, and infrastructure owners. In 
the 2019 survey one third of the respondents were members of the general public. The survey results 
show that most users find the service to be “useful or very useful” and have “quite or very much 
confidence with the warning notifications” (Colleuille & Engen, 2020). Members of the general public 
had the lowest opinion of the NLEWS and emergency responders in the transport sector had the 
highest.   

Four areas of improvement were suggested by Krøgli et al. (2018) to increase accuracy, precision, and 
usefulness of the Norwegian LEWS: hazard assessment, weather forecasts and hydrological models, 
better verification of landslide events, and increased communication and build the user’s capacity.  

It is proposed that the third suggestion, verification of landslide events, can be drastically improved with 
a relatively low cost and effort with the use of remote sensing techniques. While eyewitness accounts 
and field investigations cannot be replaced, the landslide inventory can be augmented using remote 
sensing mapping, especially in those more remote locations where landslides might otherwise go 
unnoticed.  

 Warning Levels 
The NLEWS has four hazard levels that relate roughly to the number of landslides anticipated in one day 
within an area of 10,000 – 15,000 km2 (Piciullo, et al., 2017). The warning levels used in the NLEWS and 
their respective description and consequences are included in Table 1. The colour coded warning is 
delivered alongside a description and suggested precautions in order to give the public and 
administration as much information as possible. There is no estimate of uncertainty associated with the 
warning. Adding an uncertainty estimate could both make the warning more difficult to understand due 
to complexity and be more explicit and clearer due to the transparency of the warning.  
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Table 1. Awareness level for flood and landslide forecasting and warning colour legend (NVE, 2019a) 

Warning 
Colour 

Description Flood 
Return 
Period 

Consequences 

Green 

 

Generally safe conditions. <2 Yr • No consequences 
• Very few, small landslides caused by local rain 

showers 
Yellow 

 
Situation that requires vigilance 
and may cause local damages. 

Moderate landslide hazard. 

2-5 Yr • Expected some landslide events, certain large events may 
occur. 

• Local flooding and/or erosional damage due to rapid 
increase of discharge in streams/ small rivers, ice drift, ice in 

streams/rivers and frozen soil. 
• High flow/water level in comparison to normal seasonal 

variations. 
Orange 

 

Severe situation that occurs 
rarely, requires contingency 

preparedness and may cause 
severe damages. High landslide 

hazard. 

>5 Yr • Expected many landslide events, some with considerable 
consequences. 

• Extensive flooding, erosional damage and flood damage to 
certain prone areas. 

Red 

 

Extreme situation that occurs very 
rarely, requires immediate 

attention and may cause severe 
damages. Very high landslide 

hazard. 

>50 Yr • Expected many landslide events, several with considerable 
consequences. 

• Extensive flooding, erosional damage and flood damage to 
buildings and infrastructure. 

 

Landslide warnings are given for regions of varying area. In many cases, uncertainty in the weather 
forecast merits a warning for a very large area, causing large disruptions and use of resources. 
Additionally, weather systems do not align with municipal boundaries as the warnings do (Piciullo, et al., 
2017). The subdivisions that make up the smallest areas for a landslide warning were downloaded from 
NVE (www.atlas.nve.no) and are illustrated in Figure 3.  

http://www.atlas.nve.no/
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Figure 3. Warning regions of the Norwegian Landslide Early Warning System, figure made using NVE data (NVE, 2020c) 

 Weather Conditions 
Debris flows in Norway are most commonly triggered by rapid snowmelt and intense rainfall (Nadim, et 
al., 2009). One study considered 41 meteorological elements found that soil landslides in Norway have 
the strongest correlation to precipitation, both short and intensive (<1 day) and rain accumulation up to 
15 days, and snowmelt (Jaedicke, et al., 2008). These triggers lead to high soil saturation, high pore 
water pressures, low effective shear strength, and surface erosion. Another study found the strongest 
correlation to shallow soil landslides is 24-hour precipitation (Devoli, et al., 2017). 
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The largest rainfall events occur in late autumn and early winter, while the heaviest rainfall events occur 
in late summer and early autumn (Devoli, et al., 2017). There are three main types of rainfall, which can 
all induce landslides. A description of each follows (S-Cool, 2020):  

• Frontal – when two air masses of different temperatures meet, the warmer less dense air rises 
over the colder one, it cools as it rises and condensates, producing moderate to heavy rainfall 
and various clouds 

• Convective – the earth is heated by the sun, as the air rises it cools and condensates, producing 
heavy rainfall, cumulonimbus clouds, and often thunderstorms. Common in late summer and 
autumn 

• Relief – prevailing winds pick up moisture from the sea, the moist air rises, cools and condenses 
due to orographic lifting when it hits the mountainous coast. In Norway will cause higher 
precipitation on the west facing slopes and is common along the coast.  

Precipitation ranges widely across Norway, from less than 300 mm to greater than 4000 mm per year 
in Norway (see Figure 4). Snow cover ranges from zero days, in some locations along the west coast, up 
to 200 days, inland and above 800 masl.  

 

Figure 4. Mean annual precipitation in Norway (reference period 1971-2000), figure reprinted from (Meteorologisk institutt, 
2020a) 
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A study was conducted to correlate large-scale synoptic weather types and landslides in southern 
Norway. Using the SynopVis Grosswetterlagen (SVG) classification, anticyclonic westerly (SVG 1) and 
anticyclonic southwesterly (SVG 5) are the weather classes that induce landslides most often (Devoli, et 
al., 2017). Zonal ridge across central Europe (SVG 10) has the highest predictive probability of weather-
induced landslides, with 90% of such weather systems inducing landslides. Landslides in Western 
Norway have the highest correlation with weather, and in Eastern Norway, the lowest correlation 
(Devoli, et al., 2017). 

Ultimately, the relative water supply (rainfall and equivalent snowmelt) over a period up to 15 days can 
be used as an indicator of the likelihood of shallow soil landslides. Normalized values can use mean 
annual precipitation (MAP), precipitation day normal (PDN), calculated as MAP/average days of 
precipitation per year, or a relative saturation of the soil. Thresholds calculated in previous studies are 
summarized in Table 2. This list is not exhaustive, and rather, is intended to illustrate the variety and 
general range of water supply needed to initiate landslides in Norway according to a selection of 
previous studies.  

Table 2. Summary of landslide initiation water supply thresholds in Norway by various authors 

Threshold Notes Author 
>8% [mm/day]/PDN Relative value of debris flow initiation 

in Norway 
(Sandersen, Bakkehøi, Hestnes, & Lied, 

1996) 
2.18 – 8.66% [mm/day]/PDN Relative value of debris flow initiation 

in Norway 
(Meyer, Dyrrdal, Frauenfelder, 

Etzelmuller, & Nadim, 2012) 
15-107 mm/day  Absolute value of debris flow initiation 

in Norway 
(Meyer, Dyrrdal, Frauenfelder, 

Etzelmuller, & Nadim, 2012) 
20-30 mm/hr or 50-100 mm/day Absolute value of infrastructure 

damage from geohazards in Europe 
(Groenemeijer, et al., 2016) 

17 mm/day Absolute value of debris flows initiation 
in the Norangselva catchment 

(Cepeda, Høeg, & Nadim, 2010) 

 

The relative thresholds calculated by Meyer, et al., 2012 are illustrated in Figure 5.  

 

Figure 5. Normalized water supply intensity thresholds plotted on log-log axes, figure reprinted from (Meyer, Dyrrdal, 
Frauenfelder, Etzelmuller, & Nadim, 2012) 
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 Current Norwegian Thresholds 
The Norwegian system uses minimum, medium, and maximum thresholds of relative water supply and 
relative groundwater conditions that are calculated based on real-time hydro-meteorological 
observations that inform a 1 km square grid precipitation-runoff model (Pecoraro, et al., 2019). The 
hydro-meteorological (HYDMET) model is used by NVE to inform landslide forecasters of a landslide 
index calculated from water supply (rainfall and equivalent snowmelt) and soil saturation, weighted at 
0.61 and 0.39, respectively (NVE, 2020c). This value is then weighted according to susceptibility 
mapping. The resulting indices range from one to four, corresponding to the hazard levels of the NLEWS 
on a 1 km square grid.  

Notably, thresholds are not only relative to normal local conditions, but vary between both different 
regions and different types of landslides (Krøgli, et al., 2018). Regional refinement is ongoing, including 
studies combining local and regional LEWS (Pecoraro, et al., 2019). Although the thresholds have been 
calculated from historic events, a lack of registries and errors in the landslide inventory add to the 
uncertainty of thresholds (Krøgli, et al., 2018). The national thresholds, used where local refinements 
have not been made, are illustrated in Figure 6. 

 

Figure 6. Landslide warning based on relative degree of soil water saturation thresholds, figure reprinted from (Krøgli, et al., 
2018) 

 Susceptibility Maps 
Landslide susceptibility maps give and indication of the likelihood of a landslide occurring in an area 
(Corominas, et al., 2013). These subdivisions aid in the initial phase of landslide hazard and risk 
assessments, landslide awareness and education, land planning, and spatial resolution of rainfall 
thresholds (Devoli, et al., 2019). NVE’s catchment level susceptibility map of landslides in soils was 
created using catchment areas, historic landslide events, quaternary geology maps, land cover, rainfall, 
runoff properties, and slope properties derived from a 15 x 15 m DEM, in a Generalized Additive Model 



13 
 

(GAM). Not only was the map used directly in the development of updated landslide thresholds 
(HYDMET), it is used by local authorities to know where to except landslides (Devoli, et al., 2019).  

 Quaternary Geology Maps 
Norway has a rugged terrain, with deep fjords, and mountainous U-shaped valleys. It has been shaped 
by several glaciations over the past 2-3 million years, eroding and depositing glacial sediment, shifting 
tectonics due to loading and unloading of ice pressure (NGU, 2013). As an example, Jølster is made up of 
deep valleys with steep slopes that were once fjords connected to the sea. These bedrock-controlled 
valleys have steep slopes, climbing to elevations from 100 to 1200 masl, and a shallow soil cover on their 
slopes with deep lakes at their base. Soil depth increases downslope, from thin pockets in bedrock 
crevices, to several metres thick at the base of the slopes (NGU, 2019).  

The soil cover of a slope is indicative of the likelihood, triggers, and types of landslides occurring. High 
risk soils include fine grained soils and colluvium. Soils with high fines content (ablation till, marine clays, 
moraine till), can build up higher pore water pressures resulting in lower effective shear strength when 
saturated. Colluvium is a product of past slope movement, revealing likely locations of future slope 
movement. Low risk soils include coarse grained soils and bedrock. Course grained soils (fluvial, 
glaciofluvial, marine beach) are well drained and have a higher shear strength. The presence of bare 
bedrock negates the possibility of a soil landslide, in the absence of soil.  

 Warning Communication 
Warnings are published on varsom.no, yr.no, halo.met.no, twitter (@meteorologene) and to anyone 
who subscribes to the free email service via Crisis Information Management (CIM), a Norwegian 
emergency communication software system (NVE, 2020d). Users can choose to receive an SMS, email, 
or both, with a link to the warning bulletin (Krøgli, et al., 2018). The communication of the LEWS is 
designed to have redundant communication avenues, each varying in effectiveness by demographic, and 
in technology in the event that the internet is down and/or mobile network is down. Since 2017, 
warnings are published in CAP format, an international data format for emergency messages created to 
improve effectiveness of emergency communication around the world. As of January 2018, warnings are 
published in Norwegian and English (Krøgli, et al., 2018). 

In the event of orange or red warning, CIM is used to inform the county’s emergency personnel, MET, 
NPRA traffic service, and NVE regional offices via email (NVE, 2020d). The county governor and road 
authorities must respond to confirm receipt of the warning and are responsible to convey the message 
to the municipality and road traffic centres (NVE, 2020d). Municipal emergency plans are then followed. 
Yellow warnings are sent to subscribers and warnings of all levels are always published on 
www.varsom.no, with no required response. A schematic of the sequence of communication is included 
in Figure 7. 
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Figure 7. Communication sequence of the NLEWS , figure reprinted from (Krøgli, et al., 2018) 

 Performance 
(Krøgli, et al., 2018) report a 96% accuracy of the Norwegian Flood and Landslide Early Warning System. 
When the values are disseminated to determine the accuracy by warning colour, however, it becomes 
evident that the system is underestimating severe storms. Considering only the challenging days, during 
snow melt and high rainfall (25-30% of the year), there is an 88% accuracy of warnings. This may be due 
to the risk tolerance of the individuals or a systematic bias of the model or decision-making process. 
When a red warning is delivered, there must be certainty that the storm will have severe consequences 
for the public. It is costly and problematic if a false red warning is released; as a result, decision makers 
are reluctant to deliver such a warning when there is such great uncertainty in their models. Throughout 
the entire duration of the Norwegian LEWS, only one red warning has been issued, in 2013.  

The threshold models used by NVE have changed several times over the duration of the LEWS lifetime, 
making it more difficult for the forecaster to be confident in modelling results (Devoli, 2019). 
Furthermore, the Norwegian LEWS thresholding lacks objectivity, is highly dependent on staff training 
and consistency, and, hence, difficult to reproduce results (Krøgli, et al., 2018).  

2.2 National Landslide Database 
Norway has a crowdsourced and public landslide and avalanche database created in 2001 
(www.skredregistrering.no) and can be downloaded from NVE (www.atlas.nve.no) (Jaedicke, et al., 
2009). The database serves as an essential tool for future landslide prediction and is used as the basis 
for determination of warning thresholds for the NLEWS (Krøgli, et al., 2018).  

 Landslide Classification 
Registered landslides are categorized into seven classifications. Table 3 translates the category code to 
the Norwegian terminology and the closest English translation as defined by the updated Varnes 
classification (Hungr, et al., 2014). The database classifications are not only broad, each including many 
subclassifications, classifications may also be erroneous (Krøgli, et al., 2018).  

http://www.skredregistrering.no/
http://www.atlas.nve.no/
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Table 3. Norwegian landslide database classification system (NVE, 2018) 

Code Norwegian Term English Term 
133 Sørpeskred Slushflow 
140 Løsmasseskred Landslide in soils, unspecified 
142 Flomskred Debris flow/flood 
144 Jordskred Debris/soil slide/avalanche 
143 Leirskred Clay slide 
111 Steinskred Landslide in rocks 
160 Utglidning Debris/earth slump 

 

2.3 Remote Sensing  
Remote sensing is a common tool used to map landslides. It is powerful due to the large areas that can 
be surveyed, valuable in both population dense regions and in remote locations of the world that have 
low accessibility. Methods to identify and map landslides using synthetic aperture radar (SAR) and 
optical methods are becoming increasingly common with the availability of free satellite data from the 
European Space Agency (ESA) Copernicus Sentinel-1 and -2 missions, respectively. Two satellite mapping 
methods, SAR and δNDVI, are investigated herein.  

 SAR Theory 
SAR mapping techniques make use of the change in SAR C-bands to detect differences in intensity, 
phase, and amplitude between two images, measured using two-way travel time of radar signals from a 
satellite. C-bands are part of the electromagnetic spectrum in the microwave range, with frequencies 
between 4 to 8 GHz (Peebles, 1998). C-bands are also used in Wi-Fi, microwave ovens, satellite T.V., and 
weather radar (USGS, 2020).  

SAR techniques are well established and has proved successful in many geohazard applications including 
volcanoes, earthquakes, land subsidence (USGS, 2020), avalanches (Wiesmann, et al., 2002), deep-
seated landslide monitoring (Riedel & Walther, 2008), and rapid shallow soil landslides around the world 
(Mondidi, et al., 2011). DInSAR (Interferometric Synthetic Aperture Radar) is a method of mapping 
ground deformations, the height and displacement of the Earth surface, to create a DEM (USGS, 2020). 
InSAR has been cited over the past two years, as the “most exciting advancement in landslide sciences” 
(Petley D. , 2020b).  

Optical images are often not available directly after a landslide takes place due to the weather that 
induces them; for example, monsoon season causes the majority of landslides in the Himalayas, but 
during this season it rains nearly every day from June to September (Surendranath, et al., 2008). This 
makes radar techniques, such as SAR, much more attractive than optical methods, such as δNDVI, for 
applications, such as emergency response and continuous monitoring programs (e.g. landslides, 
earthquakes, or volcanos), that need reliable monitoring in all weather. SAR can, however, be affected 
by weather, but to a lesser extent than optical images (ESA, 2007).  

SAR images contain pixels with intensity and phase, with which amplitude is estimated (Lopez-Martinez, 
et al., 2005). Intensity is the proportion of microwaves backscattered and is a function of ground 
roughness, soil moisture content, and the incidence angle. The higher the roughness and the higher the 
moisture content, the higher the intensity. However, water, or flooding, reduces intensity. In landslide 
mapping, intensity may increase or decrease depending on the conditions, making landslide signatures 
complex. Phase is a function of the optical path travelled by the radar wave and is expressed as an angle 
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(Closson & Milisavljevic, 2017). Coherence is an index of how well the amplitude of the master and slave 
images match, ranging between 0 and 1. A high coherence, is caused by a large change, such as a body 
of water or a landslide. An interferogram is the image produced representing the deformation between 
two SAR images, herein as intensity, phase, and coherence (Closson & Milisavljevic, 2017). A complete 
background of SAR technology and methods is included in the textbook, Bistatic Sar System and Signal 
Processing Technology (Wang & Yunkai, 2017) and a practical application guide is written by the ESA 
(ESA, 2007).  

 δNVDI Theory 
The Normalized Difference Vegetation Index (NDVI) is a vegetation index obtained from optical images. 
It was first cited in literature by (Kriegler, et al., 1969), shortly followed by (Rouse, et al., 1973) who 
developed the index in the Great Plains study, following the launch of Landsat-1 in 1972, to examine the 
vegetation spring green-up and autumn dry-down across the North American Plains. They made use of 
the visible/near infrared and short wave infrared spectral range (SWIR) bands of satellite images to 
assess regional changes. Its success as a standard index is in large due to the simplicity and swiftness of 
calculation. For this same reasoning, it has since been utilized for many applications including landslide 
inventory mapping (Nichol & Wong, 2005), landslide susceptibility mapping (Weirich & Blesius, 2007), 
and more recently the development of semi-automatic landslide mapping (Mondidi, et al., 2011). 
Despite these developments in landslide mapping, NDVI and the change of NDVI between two optical 
images, δNDVI, have often been overlooked due the limitations of cloud cover, shadows and daylight. In 
dark, cloudy regions, like Norway, the opportunities of optical satellite methods are, thus, unexploited.  

The δNDVI change detection method utilizes four 10 m spatial resolution bands in the visible and visible 
near infra-red spectrums: B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) of Sentinel-2 pre- and 
post-event images, to visually identify areas where there has been a loss of vegetation. Each pixel of the 
Sentinel-2 satellite image contains the magnitude of reflectance of the earth’s surface, i.e. the spectral 
response, making it possible to classify and differentiate between surfaces (CCMEO, 2013). Green lush 
vegetation has high reflectance in near-infrared wavelengths (NIR) (centered at 0.842 m) and low 
reflectance in visible red wavelengths (VIR) (centered at 0.665 μm). The reflectance of different surfaces 
is illustrated in Figure 8.  
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Figure 8. Spectral response from different vegetation surfaces, figure reprinted from (Clark, 1999) 

 

The equation for NDVI, as defined by CCMEO, 2013, is included in Equation 2-1: 

Equation 2-1. Normalized difference vegetation index (NDVI) (CCMEO, 2013) 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
NIR −  VIR
NIR + VIR

 
 

 

This results in a normalized value between -1.0 to +1.0 where perfectly lush green vegetation is close to 
+1.0. Soil or bare bedrock, which have similar NDVI values, are around 0 or slightly negative. Water and 
can be as low as -1.0 (CCMEO, 2013).  

For landslides that occur when no snow is present, the pre-event surface has a higher NDVI (green 
vegetation surface) than the post event surface (dark brown soil) (Clark, 1999). When snow is present, 
the change is, in theory, reversed, but often unclear due to snowmelt. In ideal conditions, the difference 
between the NDVI value of the pre-event imagery and the post-event imagery produces a clear signal 
where there has been a loss of vegetation compared to surrounding unchanged areas.  
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3 Methods 
3.1 Case Study Selection 

 Norway 
The landslides studied herein were registered as unspecified landslides in soil, debris flows/floods, and 
soil slides (codes 140, 142, 144) in an attempt to encompass all shallow soil landslides, simply referred to 
in this report as landslides. Additionally, slushflows, code 133, are included in the analysis as they show 
similar geomorphological signatures as debris flows and there was interest in the potential of detection 
using the remote sensing techniques used in this study. Slushflows have similar meteorological trigger 
types as debris flows, however, they are a type of snow avalanche and differ from debris flows in their 
preconditions, initiation thresholds, and flow properties (Jaedicke, et al., 2013). High velocities, 
densities, and long runouts make slushflows, debris flows/floods/avalanches particularly destructive and 
of concern for landslide forecasters (Hestnes E. , 1998), (Dowling & Santi, 2014). Careful attention is thus 
paid to them in this research.  

To select case studies of multiple landslide events in Norway, the NVE landslide database was filtered for 
days with more a combined ten or more soil landslides, codes 140, 142, 143, 144, and slushflows, 133, 
as classified in Section 2.2.1. Events were further filtered for those with Sentinel-1 and Sentinel-2 
satellite imagery available, between July 1, 2015 and December 31, 2019. If subsequent days fit the 
aforementioned criteria, they were merged into one single event. Spatial limitations were used, only 
including an event if it has at least five registered landslides overlapping with a 20 km radius buffer 
around each (i.e. a group of five with no more than 40 km between each). This spatial limitation is based 
on the proximity of landslides in Jølster on July 30, 2019. In cases with several clusters, those achieving 
the most geographic variety and highest landslide concentration were chosen in order to be 
representative of the whole of Norway. The NVE database was downloaded from 
www.nedlasting.nve.no/gis/. Analysis of the NVE landslide database was completed using ArcGIS using 
the Python ArcPy module package (ESRI, 2020). The Python code written is included in Appendix A.  

 International  
In order to test the two satellite mapping methods, SAR and δNDVI, it is useful to consider sites outside 
of Norway. Landslide events, with greater than ten landslides, were selected from ‘The Landslide Blog’ 
(www.blogs.agu.org/landslideblog/) (Petley D. , 2020a), news articles, and scientific papers. Test sites 
with the following conditions, that differ from Norway, were sought:  

• Slow growth and low density vegetation  
• High growth and high density vegetation  
• Permafrost soils 
• Residual soils 
• Urban environment 
• Tropical climate and vegetation 
• Monsoon influenced 
• Slopes with frequent landslides and many scars from previous events 

http://www.nedlasting.nve.no/gis/
http://www.blogs.agu.org/landslideblog/
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3.2 Landslide Inventory 
The two specific methods were chosen to compare radar and optical change detection methods. SAR 
intensity and coherence change detection was chosen as it is the leading radar technique used in 
literature for landslide detection. δNDVI was chosen as it had the best results in the optical methods 
study in a previous NTNU master’s thesis (Fjeld, 2018). His results found that change detection was 
superior to simply using the spectral signature of post-event images. Sentinel-1 and -2 imagery is freely 
available from Copernicus Open Access Hub (www.scihub.copernicus.eu) (ESA, 2020c) and all pre-
processing of images was completed with ESA’s free software, SNAP 7.0 (ESA, 2020e). 

 Sentinel-1 
Sentinel-1 is satellite constellation made up of two SAR satellites that share the same orbital plane (ESA, 
2020b). It is a part of the ESA Copernicus Programme, launched on April 3, 2014, with the intention of 
monitoring natural hazards. Sentinel-1 obtains C-band synthetic aperture radar images, operating day 
and night, and unaffected by weather. It has a repeat frequency (i.e. two images in the same orbit of the 
same location) of approximately 6 days, a revisit frequency (two images of the same location, regardless 
of orbit) of three days at the equator, decreasing to the poles. Spatial coverage is worldwide, varying 
temporally and in acquisition mode, but focused on Europe (ESA, 2020b).  

Sentinel-1 satellite images are retrieved for pre- and post-event, as near to the date of landslide 
occurrence as possible. The favourable orbit is descending for eastward exposed slopes, ascending for 
westward facing slopes, and impartial for north and south facing slopes in order to reduce 
foreshortening (a shortening of features due to perspective) (ESA, 2007), but temporal proximity of 
satellite data to the landslide events is prioritized over acquisition mode to determine if SAR can be used 
for emergency purposes. SAR is limited in detecting landslides on north and south facing slopes using 
Sentinel-1 due to the orbit orientation; the orbit is pole to pole with the instrument antenna facing right, 
and thus has a poor perspective of north and south facing features.  

All pre-processing was executed following the ESA tutorial (ESA, 2020a). Images are acquired in 
Interferometric Wide swath (IW) sensor mode with a 5x20 m spatial resolution in single look. Each 
contains three swaths and nine bursts, with the Terrain Observation with Progressive Scanning SAR 
(TOPSAR). Each burst can be processed as an independent image decreasing the size. This is the primary 
Sentinel-1 data acquisition mode and ensures alignment of interferometric pairs from pass to pass, 
essential for change detection (ESA, 2020b). The images are in Level-1 Single Look Complex (SLC) mode. 
They have VV-polarization, are geo-referenced with orbit and altitude and include amplitude and phase, 
the two main change detection parameters used for landslide detection (Mondidi, et al., 2011).  

 SAR Pre-Processing 
With SNAP 7.0, the images are coregistered using S1 TOPS ESD Coregistration to the GETASSE30 digital 
elevation model (DEM) using the subswath and burst(s) of interest. Coregistration ensures that both 
master and slave images refer to the same pixel (ESA, 2007). GETASSE30 is a composite DEM with 
worldwide coverage and a 30 arc second resolution in longitude and latitude (Bouvet, 2020). Nearest 
neighbour interpolation with the pre-event image as the master and post-event image as the slave.  

Subsequently, the coregistered image is processed to create an interferogram using the Graph 
Processing Tool with the following executions: TOPSAR-Deburst, topo phase removal, radar multilook (to 
obtain a mean square pixel near28 by changing range looks), and Goldstein phase filtering (using 128, 

http://www.scihub.copernicus.eu/


20 
 

higher for steeper topography). A complete guide to the processing steps is described in the ESA InSAR 
guidelines (ESA, 2007).  

Viewing the coregistered image in RGB, with red = intensity before, green = intensity after, blue = null, 
the landslide should appear slightly green, meaning the pixels from the post-event image are more 
intense. Yellow indicates image intensity is the same before and after, and red indicates the pixels from 
the pre-event image are more intense. 

Viewing the interferogram, the landslides should have low coherence values (dark, near zero), meaning 
the phase cannot be correlated between pixels of the pre- and post-event images. Phase of the landslide 
should appear random (like a rainbow) as phase was not able to be created, and the surrounding area 
should appear uniform.  

Finally, a range doppler terrain correction is applied to export the intensity, phase and coherence source 
bands, on the original GETASSE30 DEM, as a georeferenced raster file (geotiff), for mapping in ArcGIS.  

 Sentinel-2 
Sentinel-2 is a Copernicus Programme satellite constellation, consisting of two polar-orbiting satellites, 
launched on June 23, 2015 by the ESA supporting Copernicus core services: land monitoring, emergency 
management, security and climate change (ESA, 2020d). It is a single multi-spectral instrument (MSI) 
with 13 spectral channels in the visible/near infrared and short wave infrared spectral range (SWIR). 
Sentinel-2 has coverage around the world on all continental land surfaces from 56° south to 84° north, 
with a minimum a five-day combined constellation revisit frequency (ESA, 2020d). 

Sentinel-2 images with a maximum of 30% cloud cover were chosen, with a minimum time before and 
after the landslide event date. For events that cloud-free images are not available within the same 
season, images with optimal vegetation conditions can alternatively be chosen, from the summer before 
and after, as close to the same date as possible. A maximum of one before and one after image are used 
in each case study, so in many cases, not all registered landslides are analyzed.  

 δNVDI Pre-processing 
Images are pre-processed in SNAP 7.0 with the following procedure:  

1. Spatial subset: Keep only GRB and NIR bands B2, B3, B4, B8 so that all pixels are square 10 m 
resolution of the same area in both pre- and post-event images. 

2. Collocate: collocate pixels of the images such that the post-event image is the master and the 
pre-event image is the slave. 

3. Band maths: perform δNDVI calculation on the collocated image using Equation 3-1: 

Equation 3-1. Equation for δNDVI using band maths operator in SNAP 7.0 software 

 δ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
B8_M −  B4_M
B8_M + B4_M

 −  
B8_S −  B4_S
B8_S + B4_S

 
 

 

The resulting δNVDI value ranges from -2 to 2 where negative values indicate a loss of vegetation. δNVDI 
is exported as a georeferenced raster file (geotiff), for mapping in ArcGIS.  
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 Landslide Detection 
3.2.5.1.1 Norway 
Using the δNVDI and SAR processed images, a search is completed for the registered landslides in the 
NVE database. Each registered landslide is scored to indicate the following: 

• Y (yes) – detectable and mappable with high confidence, without knowing its location 
• M (maybe) - detectable and mappable with low confidence, knowing its location 
• N (no) - not detectable, even knowing its location 
• D (duplicate) – landslide registered more than once 

Landslides scored Y and M are together deemed “detectable.” For those cases that have registered 
landslides that are scored Y or M, an attempt is made to map landslides that occurred but were not 
registered in the area. The factors inhibiting landslide detection and ideal conditions are recorded. 
Wherever possible, a polygon is drawn to map the extent of the landslide to create an inventory of 
landslides not registered.  

3.2.5.1.2 International 
Location maps, descriptions, and photos of the international extreme landslide events are used to 
search for landslides that are known and extending the search to those that are not known but are 
visible. When possible, landslides are mapped with polygons and a total number of mappable landslides 
is recorded for both methods, SAR and δNDVI.  

 NVE Landslide Database Limitations 
Each landslide in the NVE database is assigned an assortment of metadata to record important 
information about the landslide. The Norwegian landslide database often has duplicate reports of the 
same event from several sources and can have erroneous landslide classification, trigger, and time of 
event (Krøgli, et al., 2018). These inconsistencies and errors make it challenging to correlate mass 
movement types with pre-conditions and triggers for forecasting purposes (Devoli, et al., 2017). The 
landslide types, uncertainty of time of occurrence, uncertainty in landslide location, the date and 
location of registries are all investigated for errors and limitations.  

3.2.6.1 Spatial Bias 
Landslide registries that are known to be predominantly located along transportation routes as a 
consequence of the large majority of landslides being reported by the road and rail authorities. To 
quantify this spatial bias in the selected landslide events, the landslides registered in the NVE database 
from the Norwegian case studies are mapped on the network of roads downloaded from 
kartkatalog.geonorge.no (Kartverket, 2016). The proximity of landslides from the centreline of a road is 
recorded for all landslide registered in the NVE database. 

It is possible that most landslides in Norway intersect transportation routes and that this phenomenon is 
not a systematic recording bias. To determine if the proximity to roads is a reporting bias or a true 
representation of landslides that occur in Norway, the distance of roads to the landslides in the NVE 
database is compared with to the distance of roads to the landslide polygons mapped using remote 
sensing methods. This assumes that in the best cases, the landslides mapped using remote sensing are 
near complete inventories of the landslides that occurred.  
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3.3 Landslide Forecasting 
 Landslide Database Trends 

A statistical analysis of the landslide database was completed for a better understanding of soil 
landslides across the country and trends by season. This analysis excludes slushflows to ensure it is not 
biased to events during winter. Seasons are defined by months, inclusively, as follows:  

• Spring: March – May 
• Summer: June – August 
• Autumn: September – November 
• Winter: December - February 

Seasonal trends of all registered landslides and of multiple landslide events are then compared, where 
multiple landslide events are defined as days with ten or more landslides (codes 140, 142, 143, 144).  

The spatial distribution of landslides by season is determined by mapping the Norwegian case studies to 
determine where they are most commonly located and if certain areas show a susceptibility to 
landslides in specific seasons. 

 Susceptibility Mapping 
The catchment level landslide susceptibility level map of Norway was provided by NVE (NVE, 2020a). 
These maps are used directly in the HYDMET threshold model (Devoli, et al., 2019) and by local 
authorities to allocate emergency response (Krøgli, et al., 2018). It is expected that the majority of 
landslides occur in high and very high susceptibility levels, with few events in medium and low levels. 
The usefulness of the susceptibility level can therefore be quantified by determining the number of 
landslides that occur in each level. The catchment level susceptibility map of Norway is presented in 
Figure 9 (NVE, 2020a).  
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Figure 9. Catchment level susceptibility map of Norway, figure made using NVE data (NVE, 2020a) 

The susceptibility level of each of the registered landslide points and the polygons mapped with δNVDI 
are recorded. A histogram of these intersections is calculated indicate their usefulness in predicting the 
location of landslides.  

 Quaternary Geology Mapping 
Quaternary geology shapefiles mapping the quaternary geology of Norway were downloaded from NVE 
(www.atlas.nve.no) at a scale of 1:1,000,000 and from NGU (www.ngu.no) at a scale of 1:250,000, 
hereafter named large and small scale, respectively. The latter is the map used in the development of 
the susceptibility map presented in Section 3.3.2. The large-scale quaternary geology map is illustrated 
in Figure 10. 

Susceptibility Class 

http://www.atlas.nve.no/
http://www.ngu.no/
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Figure 10. Quaternary geology map of Norway, figure made using NVE data (NVE, 2020c) 

For the Norwegian case studies, the landslides registered in the NVE database will be mapped as points 
on the quaternary geology maps to determine the soil type that they are located in. The point location is 
not altered from the database. For the polygons mapped using remote sensing techniques, the soil types 
that they intersect are recorded. Each polygon can therefore have several intersections. The quaternary 
geology types that are most likely to have a shallow soil landslide are then determined, and these results 
interpreted. This interpretation aids in determining if the use of large- and small-scale geology maps 
helps or hinders landslide forecasting. A comparison of the two scales is made.  

 Weather  
3.3.4.1 Data  
Rainfall and snowmelt data are collected at two different scales: 1) point data from weather stations, 
and 2) area data from an interpolated model, seNorge v2.0. Both data sources are retrieved for the 
three days prior and the day of each selected landslide event. The two scales are used to compare how 
well they each relate to landslide initiation.  

The first data source is from the MET weather stations. Rain gauge with 1-hour precipitation data 
nearest the landslides for each event is selected using xgeo.no. When available, a gauge at a high 



25 
 

elevation is chosen to represent precipitation in the area of initiation. Unfortunately, most gauges are 
located near communities, in valleys at low elevations. 1-hour precipitation, undercatch corrected by 
MET, and 1-hour temperature data are collected for each from seklima.met.no (Meteorologisk institutt, 
2020b). The mean annual precipitation (MAP) for each rain gauge is retrieved for all years on record. 24-
hour snowmelt from the NVE Snow Map Model was retrieved from xgeo.no at the weather station.  

The second data source is an interpolated dataset. seNorge v2.0 is a 1 km square gridded dataset of 1-
hour precipitation and 1-hour temperature based on observations which are used to simulate a 3-hour 
equivalent snowmelt (Lussana, et al., 2018). seNorge v2.0 is based on a dataset of over 30 years and is 
considered sufficiently long to statistically capture rare events (Lussana, et al., 2018). The average and 
maximum grid values over the area of each case study were provided by NVE and are available online 
(senorge.no) (NVE, 2020a). Neither the average nor the maximum represents a physical value, but they 
serve as useful indicators of how concentrated precipitation fell and an approximate upper bound of 
each parameter.  

Additional weather indicators were collected using xgeo.no. Modelled values including frost depth 
compared to normal, groundwater level compared to normal, and the degree of soil saturation data 
(volumetric as a percentage of maximum) are collected from a grid cell at one of the registered 
landslides. All values are compared relative to that day and location average across 1981-2010 value. All 
xgeo.no data retrieved is owned by NVE.  

3.3.4.2 Normalized Water Supply 
The water supply required to initiate landslides has been found by others to be relative to the 
precipitation in the region, as discussed in Section 2.1.2. Water supply, calculated as the cumulative 
precipitation and snowmelt, from both data sources, weather stations and seNorge v2.0, are normalized 
using the average annual precipitation values from rain gauges, for consistency. Normalized 24-hour 
water supply for landslide initiation is calculated using the following equation, presented as a 
percentage of mm/24-hrs: 

Equation 3-2. Normalized water supply for landslide initiation  

 Normalized Water Supply mm/24hr % =
24ℎ𝑟𝑟 𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  24ℎ𝑟𝑟 𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑆𝑆 𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 𝑥𝑥 100 

 

   

3.3.4.3 Return Periods 
Return periods are another common expression of landslide initiation thresholds. Return periods of 1-, 
12-, and 24-hour precipitation are determined using intensity-duration-frequency (IDF) curves taken 
from the nearest long-term and verified station (all greater than 10 seasons). IDF curves are downloaded 
from klimaservicesenter.no (Meteorologisk institutt, 2020a). Return periods are calculated as:  

Equation 3-3. Return period of a given water supply  

 Return Period [yrs] =
1

𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟 𝑠𝑠𝐴𝐴𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟
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3.3.4.4 Weather Categorization 
With the use of the precipitation data collected, calculations of normalized water supply, return periods, 
and weather radar from xgeo.no, weather that triggered each event is categorized. Average and 
maximum seNorge v2.0 precipitation and snowmelt over the entire area studied are used as indicators 
of the concentration of water (i.e. even widespread rain or intense local rain). Loosely based on weather 
systems commonly associated with landslides and floods in Norway by (Roald, 2008), categories of 
weather are defined, herein, as:  

• A:Remnants of tropical cyclone: occur from August to November bring warm and humid air from 
the Atlantic, Caribbean Sea, or Gulf of Mexico causing heavy rainfall as they hit Norway due to 
orographic lifting. 

• B: Intense concentrated rainstorm: common in late summer and autumn and may be convective 
rain. 

• C: Heavy widespread rainstorm: high magnitude rainfall common in late summer and autumn 
from moisture swept off the Atlantic that falls on the coast due to orographic lifting. 

• D: Rapid spring melt: warm spring air temperatures cause intense melting and a partially frozen 
ground induce high runoff and high surface water levels. 

• E: Wet antecedent conditions and moderate rain: warm spring air temperatures cause wetter 
than usual antecedent conditions including groundwater levels and soil saturation followed by 
moderate rain.  

• F: Rain on snow: Mild and humid air across the Atlantic in the winter cause rain and snow and 
widespread snowmelt, often for long durations and at high intensities. May cause slushflows at 
high elevations that turn into debris flows and floods. Two subcategories include: 

o F1: With frost present 
o F2:Heavy rain 
o F3: Heavy rain and with frost present 

 HYDMET Model 
The observed daily HYDMET model results from NVE are made publicly available on xgeo.no (NVE, 
2020c). The online interactive map was used to extract HYDMET results for the multiple landslide event 
case studies across Norway. Each pixel of the square grid has an indexed hazard level. Using the defined 
area of the 21 case studies, the maximum hazard level and the most common hazard level (mode) of the 
pixels are recorded. This process is completed by visual inspection in the absence of a more quantifiable 
method. It should be noted that these are the model results using weather observations, rather than 
forecasts, whereas the landslide forecaster only had the benefit of weather forecasts.  

 Landslide Warnings 
3.3.6.1 Published Warnings 
The hazard level published for each day of the year from 2013-2019 are recorded and were provided by 
NVE. A histogram of the number of days at each hazard level is calculated. 

For each case study, landslide warnings are retrieved from NVE (www.varsom.no) for six days in the 
county in which the event took place, including three days prior, the main day of the event, and the two 
subsequent days.  
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3.3.6.2 NVE Warning Evaluation 
Daily internal notes are provided by NVE that include a daily retrospective correction of what hazard 
level should have been warned. These corrections are partially quantitative, taking into account of 
landslides registered as of the end of day, but also have a subjective component that is challenging to 
reproduce. The corrected hazard levels were collected from NVE for the date of each case study in the 
appropriate county. 

3.3.6.3 Quantitative Warning Evaluation 
Quantitative thresholds are useful as they are reproducibly and objective. Two quantitative thresholds 
defined by others are used to compare to NVE evaluations. The first threshold is based strictly on the 
number of reported landslides within the defined event area, with intervals from the NVE hazard level 
definitions (NVE, 2020a). It is simple and reproducible but does not consider the volume, area, or 
damages of the landslides. The second threshold uses the normalized 24-hour water supply at weather 
stations, with intervals defined in a previous study of debris flow thresholds by Meyer et al., 2012. 
Hazard levels will be determined for the 21 case studies based on the two proposed thresholds. The 
intervals for each hazard level are presented in Table 4.  

Table 4. Quantitative thresholds for landslide warning hazard levels 

Hazard Level Landslides per 10-15,000 
km2 (NVE, 2020a) 

Normalized 24-hr Rainfall & Snowmelt at Weather Station (%) 
(Meyer, Dyrrdal, Frauenfelder, Etzelmuller, & Nadim, 2012) 

1 - Green 0 <2.18 
2 - Yellow 1-5 2.18-4.14 
3 – Orange 6-19 4.15-8.65 

4 - Red ≥20 ≥8.66 
 

3.3.6.4 Proposed Area Thresholds 
Rain gauge data is reliable, but it is accurate only for only one location. The selected landslides each had 
their own water supply that in most studies is collected as point data from an interpolated grid to 
develop initiation thresholds. Landslide warnings are, however, published for large areas and not points, 
requiring a landslide forecaster to interpret a grid of point data.  

In this study, area thresholds, rather than traditional point thresholds, are proposed in order to capture 
the appropriate regional landslide hazard level. This experimental approach will be tested by assigning 
thresholds for each hazard level, assigning a level based on the average and maximum water supply over 
the entire area studied, and comparing these values with the landslide warnings of each case study.  

While this water supply value is not a representation of a physical parameter, it is an index of water 
supply over the entire area. It is hypothesized that an average value could be more representative of the 
total consequences over the warning area. Landslide warnings in Norway are not predicting the 
likelihood of any one given slope having a landslide, but rather, they forecast the total consequences 
over the area. This “area” threshold attempts to account for the spatial and intensity uncertainty of 
weather forecasts and represent the regional nature of warnings. Threshold levels are defined by hazard 
level using average and maximum normalized seNorge v2.0 24-hr precipitation and snowmelt in the 
defined case study areas.  
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4 Results & Discussion  
4.1 Case Studies 

 Norway 
A total of 25 extreme multiple landslide events were recorded in the NVE landslide database from July 
2015 through December 2019. In three cases, events took place on subsequent days and were merged. 
Two events were rejected because they were too widespread and did not have a cluster of five 
landslides. Only one event was recorded north of Trondelag (case 8). For geographic representation of 
the whole of Norway, one event was added in Northern Norway (case 20) that had only six landslides on 
one date, rather than ten, but fulfils all other criteria. The 21 Norwegian case studies are detailed in 
Table 5 and illustrated in Figure 11. The case studies are made up of 416 landslides registered in the NVE 
database, which are included in Appendix B.  

Table 5. Norwegian multiple landslide event case studies 

ID  Date(s) 
YYYYMMDD County  Landslides in 

Database on Date 
Landslides in 
Event Area  

Event 
Area 
(km2) 

Season  

1 20150917 Vestfold 12 5 2022 Autumn  

2 20151126/27 Sogn og Fjordane  36 11 8275 Autumn  

3 20151205/06 Rogaland 36 7 3988 Winter 

4 20161125 Møre og Romsdal  11 5 2605 Autumn  

5 20161204/05 Trøndelag 35 11 6434 Winter 

6 20161230 Sogn og Fjordane  19 9 6964 Winter 

7 20170120 Møre og Romsdal  11 9 5576 Winter 

8 20170126 Nordland 17 5 3770 Winter 

9 20170518 Hedmark  11 9 1295 Spring 

10 20170724 Oppland 13 10 2593 Summer 

11 20171002 Vest Adger 29 7 4314 Autumn  

12 20171123 Hordaland 11 8 4126 Autumn  

13 20171207 Hordaland 23 21 7570 Winter 

14 20171223 Hordaland 30 9 3338 Winter 

15 20180418 Oppland 22 7 3596 Spring 

16 20180926 Hordaland 12 6 4712 Autumn  

17 20190104 Trøndelag 11 8 6724 Winter 

18 20190606 Oppland 12 9 2346 Summer 

19 20190730 Sogn og Fjordane  42 30 3100 Summer 

20* 20191204 Troms og Finnmark  6 5 2205 Winter 

21 20191229 Sogn og Fjordane  17 8 4843 Winter 

* Event was selected for geographic representation in Northern Norway, despite not meeting selection criteria  
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Figure 11. Map of selected case studies in Norway 

It is evident that multiple landslides events are most frequent in Western Norway, even with the 
geographic variety selection bias. This is owed to high mean annual precipitation and orographic lifting 
when moist air from the Atlantic reaches the Norwegian coast. Extreme multiple landslide events are 
likely rare in Northern Norway due to stable winter temperatures with fewer freeze thaw events and a 
larger proportion of precipitation falling as snow.  

A notable result from this analysis are the high proportion of autumn and winter events, with two 
events in spring, three in summer, six in autumn, and ten in winter. 

 International 
Four international multiple landslide events were used to test landslide mapping with the δNDVI and 
SAR methods in various conditions. Test sites A, B, and C and information about each were chosen from 
‘The Landslide Blog’ (www.blogs.agu.org/landslideblog/) (Petley D. , 2020a). Site D was chosen 
specifically to test remote sensing methods in the high north and information was retrieved from 
(Christiansen, et al., 2016). Details of these events are included in Table 6 and a location map is included 
in Figure 12.  

http://www.blogs.agu.org/landslideblog/
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Table 6. International δNDVI landslide mapping test sites 

ID Location Date DD-MMM-YY 
A Nyempundu, Burundi 04-Dec-19 
B Wenchuan, China 17-Aug-19 
C Baixada Santista, Brazil 03-Mar-20 
D Longyearbyen, Svalbard 15-Oct-16 

 

 

Figure 12. Map of international test sites 

4.2 Landslide Inventory 
 SAR 

Acquired Sentiel-1 images have an average of five and three of days before and after the selected 
landslide events, respectively. This short time frame is short enough to be used for emergency response 
in extreme circumstances, but not in day to day response protocols. A list of Sentinel-1 images used are 
included in Appendix C.  

There is a total of 415 landslides registered in the 21 Norwegian case studies. Of those 415, 23 are 
duplicates and 246 are not covered in the Sentinel-1 satellite images chosen. The remaining 150 
landslides were analyzed and coded as follows: 

• 20% are coded Y, detectable and mappable with high certainty without knowing their location,  
• 25% are coded M, detectable and mappable with low certainty knowing their location, and  
• 55% are coded N, not detectable.  
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Landslides coded Y and M are grouped together and termed “detectable” for simplicity. Only 10% of all 
landslides are detectable, with 90% undetectable even knowing their location. Table 7 is a summary of 
the scoring of the 150 analyzed landslides organized by case study using SAR.  

 

Table 7. Sentinel-1 SAR landslide mapping results for Norwegian case studies 

ID 

Landslides in 
Database in 
Search Area 
(including 

duplicates) 

Database 
Landslides 
Detected 

% Detected 
(excluding 
duplicates) 

Landslides 
Mapped Season 

Trigger 
(R = rain, 

S = snowmelt) 

1 5 0 0 0 Autumn  R 
2 12 2 17 0 Autumn  R&S 
3 7 0 0 0 Winter R&S 
4 5 0 0 0 Autumn  R&S 
5 7 0 0 0 Winter R&S 
6 8 2 25 0 Winter R&S 
7 6 0 0 0 Winter R&S 
8 7 0 0 0 Winter R&S 
9 9 0 0 0 Spring R&S 

10 2 0 0 0 Summer R 
11 6 0 0 0 Autumn  R 
12 7 1 14 0 Autumn  R&S 
13 18 0 0 0 Winter R&S 
14 3 0 0 0 Winter R&S 
15 8 0 0 0 Spring S 
16 3 0 0 0 Autumn  R 
17 7 0 0 0 Winter R&S 
18 10 0 0 0 Summer  R 
19 22 6 35 1 Summer R 
20 4 0 0 0 Winter R&S 
21 14 3 21 0 Winter R&S 

 

Case 19 had the best conditions for SAR of the case studies selected, likely due to the magnitude of 
landslide area. Even in these conditions, only six of the 22 landslides analysed in this event are 
detectable. Figure 13 illustrates case 19 SAR intensity, phase, and coherence.  



32 
 

A

 

B

 
C

 

D

 
Figure 13. Comparison of A: Sentinel-2 natural colour image and Sentinel-1 SAR with registered landslides identified with white 
points and detectable landslides identified with white arrows on B: intensity, C: phase, and D: coherence interferograms (case 

19, July 30, 2019, Sogn og Fjordane) 

Both phase and coherence show no clear indication of landslides in any of the selected cases. In a 
weather induced landslide event, it is likely that the surrounding change has undergone too much 
change for small landslides to stand out. Figure 13C and D show the lake and surrounding area show the 
most change (in speckled rainbow and black, respectively) and the least change at the mountain tops (in 
striped rainbow and white, respectively). The landslides are likely too shallow (<1 m deep) and small 
(<0.1 km2) to be identified, even knowing their location.  

Intensity, a function of soil moisture and ground roughness, is the most reliable tool for landslide 
detection of selected cases using SAR. Within the landslide scar, the vegetation has been removed, thus 
substantially changing both roughness and moisture. The most clear and distinct landslide of all selected 
cases is a debris flow with an area of approximately 0.06 km2 that occurred on a forested northwest 
facing slope in case 19. In this example, intensity increases due to an increase of moisture content 
despite the decrease in intensity due to the decrease in roughness. A few days later this landslide is 
likely not detectable as the moisture content would have decreased. Additionally, if the scar was 
flooded, which it may have been initially, the intensity would have been reduced. This is the only 
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landslide, of the 150 analysed, that is clear enough to be coded “Y” and is confidently mapped using 
SAR. The optical Sentinel-2 image is shown in comparison with the SAR intensity of the Sentinel-1 image 
in Figure 14. 

 

Figure 14. A: Optical image and B: SAR intensity of a debris flow with an approximate area of 0.06 km2 (case 19, July 30, 2019, 
Sogn og Fjordane) 

The main issues with using SAR to map landslides in the selected case studies is the deformation of their 
shape and location, the landslide depth and area being too small, and the overall terrain change being 
too significant for landslides to stand out.  

Deformation 
When detectable, landslides are distorted in both orientation and shape due to the acquisition mode 
and reference system conversion. Distortion could be to the steep slopes and narrow valleys in the 
chosen acquisition orbit, where ascending is the favourable orbit for west facing landslides and 
descending the favourable for east facing landslides (and equal for north and south facing). If a landslide 
is on a west facing slope, it will be foreshortened (will appear shorter than it is) in an ascending 
acquisition mode, when the antenna is facing right. This is the case in case 19. Note the clear signature 
of the landslide scar in Figure 14, above, and the deformation of shape and location compared to the 
optical image. Using SAR, it is mapped over 400 m away from its actual ground location, using the same 
reference system. Ideally, both ascending mode and descending mode should have been analysed for 
each case study due to the variety of slope exposures in each.  

Landslide Size 
The small magnitude of area of landslides in the selected cases, as is typical in Norway, hinders their 
detection using SAR. A study of rapid landslides around the world using SAR amplitude changes found 
that larger landslides were easier to detect, with those cases under 0.001 km2 not detectable or only 
detectable if their location is known (Mondidi, et al., 2011). In the selected cases, the landslides 
detected with SAR intensity, phase, and coherence are all estimated to be greater than 0.01 km2.  
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Table 8. Sentinel-1 SAR change detection landslide mapping results by landslide type(Y = mappable, M = mappable if location is 
known, N = not detected, Y/M = detectable) 

  % of analyzed landslides  

  Y M N Y/M 

La
nd

sl
id

e 
Ty

pe
  All 0.7 9 90 10 

140 0.0 3 97 3 
142 0.0 15 85 15 
144 1.5 6 92 8 
133 0.0 22 78 22 

 

Moisture Increase and Snowmelt Noise 
There is not enough confidence in detected landslides to attempt mapping. The primary issue with 
mapping landslides in the selected case studies is the noise in surrounding areas. There is no clear 
landslide signature because the surrounding terrain appears significantly changed in intensity, phase, 
and amplitude. Coherence of forested areas is not sufficient level of coherence, even for a weeklong 
interval, and the resulting interferogram are therefore distorted by noise. In summer events, vegetation 
is too significantly changed, and in winter, the snow cover is too significantly changed. Coherence values 
can also be affected by local weather, including rain, strong winds, and hot weather (ESA, 2007). 
Weather is likely causing noise in many cases, as the majority of cases had rain when the pre-event 
image was acquired. Freeze and thaw of the ground surface also causes coherence changes and noise in 
interferograms.  

The selected landslides differ greatly from other mass movements that are easily mapped using SAR, 
such as snow avalanches in sub-zero temperatures (i.e. no snowmelt), rock landslides where the 
surroundings are stationary and easily referenceable, or deep-seated soil landslides that are not 
triggered by torrential rainfall.  

Despite unavoidable coherence noise, the selection of Sentinel-1 imagery is likely not ideal in many 
cases, and this would ideally be reconsidered and chosen more careful, rather than prioritizing a short 
temporal window. Additionally, a DEM with higher resolution would improve results. The pre-processing 
steps used should all be more carefully re-visited for conditions in Norway to ensure they are optimized.  

 δNDVI 
On average, pre- and post-event images are 36 days before and 35 days after the landslides took place, 
respectively, excluding the two events where an image was taken the summer before and after. A 
complete list of the pre- and post-event Sentinel-2 satellite images chosen for the 21 case studies is 
included in Appendix D. 

There is a total of 415 landslides registered in the 21 Norwegian case studies. Of those 415, 24 are 
duplicates and 231 are not covered in the Sentinel-2 satellite images chosen. The remaining 160 
landslides were analyzed and coded as follows: 

• 20% are coded Y, detectable and mappable with high certainty without knowing their location,  
• 25% are coded M, detectable and mappable with low certainty knowing their location, and  
• 55% are coded N, not detectable.  
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Landslides coded Y and M are grouped together and termed “detectable” for simplicity. Table 9 is a 
summary of the scoring of the 160 analyzed landslides organized by case study.  

Table 9. Sentinel-2 δNDVI landslide mapping results for Norwegian case studies 

ID 

Landslides in 
Database in 
Search Area 
(including 

duplicates) 

Database 
Landslides 
Detected 

% Detected 
(excluding 
duplicates) 

Landslides 
Mapped Season 

Trigger 
(R = rain, 

S = snowmelt) 

Primary Reason for 
Non-detection 

1 5 1 33 1 Autumn  R Clouds 
2 20 9 53 73 Autumn  R&S Clouds 
3 14 1 11 1 Winter R&S Landslide size 
4 0 3 60 4 Autumn  R&S Snow 
5 5 3 50 5 Winter R&S Landslide size 
6 6 2 50 2 Winter R&S Snowmelt  
7 4 1 14 2 Winter R&S Snowmelt  
8 7 2 40 2 Winter R&S Snowmelt  
9 8 0 0 0 Spring R&S Landslide size 

10 9 6 60 43 Summer R Landslide size 
11 10 3 75 3 Autumn  R Shadows/clouds 
12 5 4 57 11 Autumn  R&S Snowmelt 
13 7 0 0 0 Winter R&S Clouds/Snow 
14 9 1 20 19 Winter R&S Snowmelt 
15 5 3 50 3 Spring S Snowmelt 
16 7 4 100 23 Autumn  R N/A 
17 4 1 17 1 Winter R&S Landslide size 
18 7 0 0 0 Summer  R Landslide size 
19 8 23 96 137 Summer R N/A 
20 30 1 25 1 Winter R&S Clouds/Snow 
21 4 5 63 9 Winter R&S Clouds/Snow 

 

Shallow soil landslides are found to have a significant change in NDVI but are only detectable in the 
correct conditions. When favourable conditions are combined, a success rate of up to 94% is achieved. 
These conditions include: 

• landslide trigger, indicating if snow was present or not;  
• the number of days between images, indicating cloud cover, lighting, and vegetation changes, 

and; 
• landslide type, indicating the size of area affected.  

Landslides of each condition are summed and presented as the percent detected. The overall detection 
rate of selected landslides is 45%. Success rates for conditions that were found to be the most significant 
are presented in Figure 15.  
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Figure 15. Sentinel-2 δNDVI landslide detection success for various conditions as a percentage of landslides per category with 
the absolute number in brackets as (landslides detected/total landslides in category) 

In seven cases conditions made it possible to map more landslides than were registered. In these cases 
(2, 10, 12, 14, 16, 19 and 21), the average increase of landslides mapped is 2.8 times the number 
registered. δNDVI images with all mapped polygons are included in Appendix D for these seven cases. 
Case 19 had the best conditions, taking place in summer, with relatively large rainfall induced landslides, 
mostly debris flows/floods/avalanches. Figure 16 illustrates the Sentinel-2 image in natural colours, false 
colour infra-red, and δNDVI with and without mapped polygons. While some landslides are obvious in all 
images, others reveal themselves clearly in δNDVI only. In the first two images it is challenging to 
differentiate bare bedrock and old landslide scars from new landslides, but they stand out clearly in 
δNDVI.  
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*Note that only landslides from one Case (19) fall under this criteria
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Figure 16. Comparison of satellite image with A: natural colours, B: false colour infra-red, C: δNDVI, and D: δNDVI with 
landslides mapped in case 19 (July 30, 2019, Sogn og Fjordane)  

Three cases had snow present (12, 14, 21) making it challenging to map the extents of the landslides 
with certainty and requiring judgement to differentiate snowmelt from landslides. Extents of landslides 
are mapped with high confidence in the four events with no snow present (2, 10, 16, 19). Nearly all 
landslides mapped are less than 0.1 km2 (100,000 m2) and over half are less than 0.01 km2 (10,000 m2). 
The number of landslides mapped are listed by area in Table 10.  

Table 10. Landslides mapped with δNDVI method, by area 

Area (km2) No. of Landslides % of Landslides 

<0.01 188 53 

< 0.1 & > 0.01 162 46 

> 0.1 6 2 
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Other processes and objects that have a significant change in NDVI can be challenging to differentiate 
from landslides. Changes in agriculture crops, snowmelt, elongated bodies of water, and clouds or cloud 
shadows can hide landslide scars or appear to be landslides, as illustrated in Figure 17. River erosion, 
flooding, and construction can also cause a significant change in NDVI.  

A

 

B

 
C

 

D

 
Figure 17. Processes and objects causing a significant change in NDVI obstructing landslide detection: A: agricultural crops 
(case 10, July 24, 2017, Oppland). B: snow melt (case 15, April 18, 2018, Oppland). C elongated lakes and rivers (case 16, 

September 26, 2018, Hordaland). D: clouds (case 19, July 30, 2019, Sogn og Fjordane)  

Three factors are found to be the main inhibitors of landslide detection using NDVI in Norway:  

• Snow: widespread melt, altering the NDVI of a large area, or new snow covering landslide scars 
• Cloud cover: result in a large window between before and after images, often with differing 

lighting and vegetation, or cloud shadows altering reflectivity 
• Landslide size: not enough pixels exhibit a change in NDVI, and smaller landslides are therefore 

not detectable 

The percentage of landslides detected by landslide type is presented in Table 11. 
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Table 11. Sentinel-2 δNDVI change detection landslide mapping results by landslide type (Y = mappable, M = mappable if 
location is known, N = not detected, Y/M = detectable) 

    % of analyzed landslides  

  

 Y M N Y/M 

La
nd

sl
id

e 
Ty

pe
  All 20 25 55 45 

140 7 35 58 42 

142 43 24 33 67 

144 15 18 67 33 

133 22 33 44 56 

 

Snow 
The δNDVI method performs best for landslide detection when landslides occur in highly vegetated 
areas while the vegetation is green and healthy, typically in summer months. In cases with lush greenery 
before (around 0.6 to 0.8), the NDVI drops to just above zero (0.2 for bare soil or 0.1 for bedrock). In 
cases where landslides occurred when the ground was covered in snow, a landslide results in an 
increase of NDVI, from 0 to slightly above zero (0.2 for bare soil or 0.1 for bedrock). This small change in 
NDVI makes it extraordinarily difficult to detect landslides when snow is on the ground, as is the case for 
much of the year in Norway, and the majority of selected landslide events. 

Slushflows are snow avalanches that have high velocity and power, entraining the underlying soil in the 
flow, creating geomorphological signatures similar to debris flows after the snow melts. Interestingly, 
slushflows (133 in Table 11, above) have a higher detection rate than unclassified landslides in soils or 
soil slides. This is likely owed to their size and long runout. They alter the NDVI only slightly, but over a 
large area, that is easier to detect. The size of landslide is, therefore, a more significant factor in 
detection than snow cover.  

Clouds and Daylight 
Optical landslide detection relies on low-cloud or cloud-free days before and after the landslide, as close 
as possible to when it takes place. There is a relatively high number of days in Norway, with a mean 
annual cloud cover of 60-90% well spread throughout the year (see Figure 18) (Wilsom & Jetz, 2016).  
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Figure 18. Norwegian cloud cover presented as mean annual frequency, ranging from 60-90% (left) and seasonality, slightly 
weighted to May through August (right), figure adapted from (Wilsom & Jetz, 2016). 

For two events (cases 2 and 5), images from the summer before and after were chosen in the absence of 
cloud free images close to when the landslides took place and to avoid snow cover masking landslide 
scars.  

Although using images one year apart makes it impossible to determine the date a landslide occurred or 
differentiate between two events in the same location, it proved to yield superior results than the 
nearest closest cloud free day due to shadows and snow in these two cases. It is unfortunately not 
possible to determine the exact date of the landslides in any case, and only that it occurred between the 
two image dates. Knowing the weather data and given a narrow window of images, an educated guess 
can be made for the date of occurrence, as soil slides are nearly always precluded by heavy rainfall. That 
being said, in five of the cases, the peak 24-hour rainfall occurred one to three days prior, and not the 
day of occurrence.  

The spatial and temporal proximity and limited images due to cloud cover required that cases 4 and 7 
and cases 12 and 14 use the same Sentinel-2 images, respectively. This makes it challenging to 
differentiate between events, highlighting that the exact time, let alone date, is not possible to 
determine using δNDVI and Sentinel-2 images. Even with satellite imagery with higher temporal 
resolution.  

Norway is located geographically in a sub-polar region. The selected case studies are located between 
58° and 70° North, and thus, have long daylight hours in the summer and short daylight hours in the 
winter. Cases that occur in dark periods of the year, with short or zero daylight hours and with very low 
sun angles causing long shadows, have obscured or no optical satellite images available. This may 
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explain the challenges in detecting even large landslides with no snow that take place in autumn and 
winter.  

Landslide Size 
Due to the spatial resolution of the satellite imagery (10 m square pixels), the detection limit is found to 
be an area of approximately 1000 m2 or 10 pixels. This limitation likely explains why debris flows/floods 
and slushflows have higher detection success than other landslide categorizations. A large number of 
landslides registered as uncategorized landslides in soils (140) are small erosional sluffs on roadside 
banks and are too small to detect. The percentage of landslides detected by landslide type is presented 
in Table 12. 

Table 12. Sentinel-2 δNDVI change detection landslide mapping results by landslide type (Y = mappable, M = mappable if 
location is known, N = not detected, Y/M = detectable) 

    % of analyzed landslides  

  

 Y M N Y/M 

La
nd

sl
id

e 
Ty

pe
  All 20 25 55 45 

140 7 35 58 42 

142 43 24 33 67 

144 15 18 67 33 

133 22 33 44 56 

 

 International Test Sites 
Four international test sites were used to test various conditions. All four were rainfall triggered debris 
flow events with over 20 landslides in a concentrated area. The climate, geography, and vegetation of 
the four sites are summarized in Table 13.  

Table 13. Climate, geography, and vegetation of international test sites 

ID Climate  Geography  Vegetation  

A Hot, humid, equatorial climate Metamorphic mountains with mafic 
intrusions Deforested agricultural land 

B 
Monsoon summers and cold 

cloudy winters 
Sedimentary mountains, Tibetan 

plateau 
Mixed forests disturbed from 

past geohazards 

C Tropical rainforest climate Urbanized coastal hills, residual soils Urbanized lush rainforest 

D Dry arctic climate Sedimentary mountains, tundra, and 
continuous permafrost Moss and small shrubs 

 

4.2.3.1 SAR 
Sentinel-1 satellite images chosen for the four international sites are included in Appendix C with the 
images of the intensity SAR processed images. Similar to the Norwegian cases, the terrain has likely been 
altered too much for landslides to stand out. Just one landslide was detectable, but only knowing its 
location, of all the landslides in the four sites, and its shape was not mappable (see Figure 19).  
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Figure 19. Detectable landslide, knowing its location, marked by the white arrow, using SAR intensity, at site D (October 15, 
2016, Longyearbyen, Svalbard) 

It is possible that if the exact location of landslides were known, it would have made it possible to detect 
more. These test sites demonstrate that SAR has limited potential for small rainfall induced landslides in 
the conditions tested.  

4.2.3.2 δNDVI 
Pre- and post-event Sentinel-2 satellite images chosen for the four test sites are included in Appendix D. 
Conditions in all four sites allowed for mapping an extensive landslide inventory. The number of 
landslides mapped and the challenges with using δNDVI for each are included in Table 14 and the 
mapped landslides on δNDVI images illustrated in Figure 20, Figure 21, Figure 22, and Figure 23.  

Table 14. Number of landslides mapped and Sentinel-2 δNDVI challenges for international test sites 

ID Landslides Mapped Landslide Area (min-max km2) Challenges with δNDVI 
A 237 0.0008 – 0.08 Cloud cover, agricultural changes 
B 60 0.001 – 0.4 Cloud cover, other erosional processes present 
C 68 0.0004 – 0.03 Urban environment 
D 14 0.001 – 0.02 Low vegetation mass, low sun angle, cloud cover 
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Figure 20. δNDVI images with mapped landslides at Site A (December 4, 2019, Nyempundu, Burundi) 

 

Figure 21. δNDVI images with mapped landslides at Site B (August 17, 2019, Wenchuan, China) 
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Figure 22. δNDVI images with mapped landslides at Site C (March 3, 2020, Baixada Santista, Brazil) 

 

Figure 23. δNDVI images with mapped landslides at Site D (October 15, 2016, Longyearbyen, Svalbard) 
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Clouds 
Sites A and C have ideal conditions for δNDVI landslide mapping, with cloud free post-event images 10 
and 4 days after, respectively. Site B in a region that is notoriously cloudy, boasting the least sunshine 
hours per year in the whole of China (Wilsom & Jetz, 2016). It was therefore necessary to use a wide 
window for pre- and post-event images, making it impossible to differentiate between landslides that 
occurred on different dates. Site D occurred in a cloudy region, two weeks before the polar night began 
(24 hours of darkness) (Time and Date AS, 2020), making the window to acquire a cloud free image very 
narrow, so images from the summer before and after were used instead. On average, and the pre-event 
images are taken 63 days before the event and the post-event images are taken 18 days after, excluding 
site D, or 98 days after including site D.  

Vegetation and Erosion 
Sites A, B, and C had lush green vegetation, showing a clear landslide signature. In site B, it is challenging 
to differentiate river erosion from debris flows, but this shows the usefulness of δNDVI in mapping river, 
shoreline, or coastal erosion. On the slopes in site A, a large landslide appears fresh in false colour infra-
red but is clearly differentiable as a previous event using change detection. The usefulness of δNDVI, 
rather than simply using false colour infra-red is illustrated clearly in this case, as seen in Figure 24.  

 

 

 

Figure 24. Comparison of false colour infra-red before and after, and δNDVI change detection, with arrows pointing to a large 
landslide scar from a previous event (Site A, December 4, 2019, Nyempundu, Burundi) 

Urban Environment 
Urbanization was not found to be a significant obstruction in mapping site C, likely because the NDVI 
changed significantly in the path of the debris flow, removing all infrastructure in its path. δNDVI proves, 
in this case, to be highly successful in an urban environment. Sites A and B, while less densely urbanized, 
also had no hinderance from the urban environment.  
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Arctic Conditions 
Conditions in site D were moderate, despite obvious limitations of the arctic. The largest landslides are 
easily detectable using the δNDVI change detection method. Low vegetation mass, high cloud cover, and 
very low sun angles causing large shadows, make small landslides stand out less, but many advantages 
benefit the use of δNDVI in the Arctic. Slow vegetation regrowth on landslides scars, the evenness of the 
vegetation cover, and a moderate number of cloud free days in summer. The arctic is also relatively free 
from construction and man-made changes in landscape. This method shows high potential in the arctic 
due to the added benefits of remote sensing in regions with low population and access. As permafrost 
continues to thaw, and mild conditions bring a larger portion of precipitation as rain (NCSS, 2019), 
landslides are expected to be an increasingly common hazard in the arctic (Hestnes, et al., 2016). δNDVI 
could be used to create an inventory of landslides over arctic regions, and in turn calculate a landslide 
triggering threshold.  

 Method Comparison & Opportunities 
δNDVI has far superior landslide detection and mapping success compared to SAR in the 21 selected 
case studies and four international test sites. Despite SAR having a significantly shorter temporal 
window of image acquisition (5 days before and 3 days after, on average), being unaffected by cloud 
cover and lighting, it is able to detect only 15 of 150 landslides. SAR was not successful in any conditions, 
but results do indicate that larger landslides are more easily detected, but it is likely that typical soil 
landslides with shallow soil cover on steep slopes, are too shallow and small in area to be detected. 
δNDVI was able to detect 73 of 161 landslides, despite the relatively long temporal window of image 
acquisition (36 days before and 35 days after, on average). It performs poorly when snow is present, and 
it is significantly hindered by poor lighting, cloud cover, and if the size of landslide is extremely small 
(>1000 m2).  

In the best conditions for both methods, a relatively large landslide, in a forest, on a NW facing slope, 
with no snow present, a debris flow in case 19 was mapped using both methods. Figure 25 illustrates 
that SAR intensity is able to detect the landslide, but it is not able to accurately map the size or location, 
and δNDVI is able to accurately map the landslide scar in detail.  

 

Figure 25. Comparison of δNDVI SAR mapped landslide(in white) on natural colour optical image(left), δNDVI (centre), and SAR 
intensity (right) in case 19 
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In remote or inaccessible regions, such as the arctic, war zones, or high alpine terrain, remote sensing 
has added value. Not only can it reduce costs, it can increase coverage compared to traditional mapping 
methods. δNDVI has been proven successful in a wide range of extreme conditions and could be used 
for landslide detection in essentially any inaccessible region.  

The δNDVI technique is time consuming. The author found that it takes under one hour to download 
and process satellite data and identify a single landslide using a known location, but to download and 
map an entire satellite image tile (1500 km2), it takes approximately four to six hours. The time needed 
is lowest in cases with extremely clear landslide scars (such as case 19). This warrants the development 
of an automation process. A semi-automatic landslide inventory using δNDVI is deemed highly viable for 
rainfall induced soil landslides >1000 m2 in Norway. The δNDVI value identifying landslide scars studied 
have an inexact signature that generally range between +0.2 to -1.0 in the studied cases. The δNDVI 
value based largely on the vegetation present before, the proportion of each pixel affected, and the 
time that has passed between images. By additionally using the shape of landslides mapped and 
overlaying slope, geology, and susceptibility maps, a more unique signature would be obtained. The 
automation process would be also improved with object identification, the removal of clouds and 
waterways. The landslides mapped in this study could be used as data input to train a machine learning 
model to detect landslides.  

 NVE Landslide Database Limitations 
While the Norwegian landslide database is advanced compared to those available in other regions of the 
world, it still has many limitations. Most notable limitations are a temporal bias, a spatial bias, and 
reporting errors or limitations.  

4.2.5.1 Temporal Bias 
Recorded landslides are heavily weighted to the 21st century, with 70% of the inventory after the year 
2000, although there are events registered that occurred hundreds of years ago. This is mostly due to 
the systematic approach to landslide records that have been introduced as well as the challenges of 
collecting non-digital records. The recency bias makes conclusions regarding trend analyses over time 
generally unreliable. It is challenging to address with the proposed remote sensing techniques due to 
the lack of satellite data.  

4.2.5.2 Spatial Bias 
The inventory of landslides in the NVE database are primarily recorded by the Norwegian road and rail 
authorities. The landslides are consequently spatially biased to those visible from, or damage road and 
rail infrastructure, rather than proximity to population density or landslide severity. This spatial bias 
results in an incomplete landslide database for future landslide forecasting. A systematic record of all of 
Norway would greatly improve the usefulness of the database for landslide forecasting (Devoli, et al., 
2017).  

Landslides registered in the NVE database show a clear spatial bias to transportation routes. Of the 
landslides studied, 91% lie within 100 m of a road. Figure 26 is a road map with the landslides registered 
in the NVE database in case 2 in the county of Sogn og Fjordane, with a clear spatial bias to roads. It is 
therefore expected that recorded events represent only a fraction of the landslides that have occurred.  



48 
 

 
Figure 26. Road map with landslides registered in NVE landslide database in case 2 (November 26, 2015, Sogn og Fjordane) 

(road data downloaded from kartkatalog.geonorge.no (Kartverket, 2016)) 

In contrast, only 45% of the landslides mapped with δNDVI lie within 100 m of a road. In case 19, which 
had the best conditions for δNDVI mapping, just 16% were within 100 m of a road. These statistics 
indicate that the use of δNDVI mapping could substantially reduce the spatial bias of landslides to 
transportation routes. A histogram of landslides registered and mapped and their respective distance to 
a road is presented in Figure 27.  

 
Figure 27. Distance of registered and δNDVI mapped landslides from road centreline 
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4.2.5.3 Metadata 
Each registry has 36 metadata of recorded information about the landslide. The landslide type, 
uncertainty of time and location of occurrence are inspected for information on potential difficulty in 
mapping incomplete or incorrect registries.  

A third of the studied landslides are classified as type 140, an unspecified landslide in soil. While this is 
not in error, and superior to an erroneous classification, the use of an unspecified classification reduces 
the value of the database entry. It is challenging to make conclusions regarding landslide processes and 
triggers without proper classification. A summary of registered landslide types for the Norwegian case 
studies is included in Table 15.  

Table 15. Landslide types in Norwegian case studies 

ID 
Mass Movement Type   

Landslide in Soil, 
unspecified (140) 

Debris Flow 
(142) 

Soil Slide 
(144) Slushflow (133) Total No. of 

Landslides Dominant Type 

1 5 0 7 0 12 Soil Slide 

2 15 7 12 2 36 Landslide in Soils 

3 11 6 13 6 36 Soil Slide 

4 2 6 1 2 11 Debris Flow 

5 8 10 16 1 35 Soil Slide 

6 9 4 4 2 19 Landslide in Soils 

7 5 4 2 0 11 Landslide in Soils 

8 10 0 7 0 17 Landslide in Soils 

9 1 1 9 0 11 Soil Slide 

10 9 2 2 0 13 Landslide in Soils 

11 17 5 7 0 29 Landslide in Soils 

12 4 0 1 6 11 Slushflow 

13 10 3 10 0 23 Landslide in Soils 

14 15 4 11 0 30 Landslide in Soils 

15 4 0 15 3 22 Soil Slide 

16 0 4 8 0 12 Soil Slide 

17 0 0 11 0 11 Soil Slide 

18 0 1 11 0 12 Soil Slide 

19 1 23 18 0 42 Debris Flow 

20 0 5 0 1 6 Debris Flow 

21 0 12 4 1 17 Debris Flow 
 

Registered landslides have fields for uncertainty of location and time of occurrence. Of the 418 selected 
registered landslides, 50 have an uncertainty of location of 100 m or greater, making it problematic to 
confirm their location when mapping. Fourteen of these were analyzed using δNDVI and nine (64%) 
were undetected. Notably, three are landslides in case 14. Another 33 have undocumented uncertainty 
in location, 24 (73%) of which were not detected using either mapping method. Documentation of the 
uncertainty of time of occurrence has only two events with uncertainty greater than one day. Eleven 
landslides had an undocumented uncertainty of time. 
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In conditions that allow δNDVI mapping, the uncertainty of location can be reduced entirely. The 
uncertainty of time, however, may worsen when using δNDVI alone, due to the long temporal window 
of pre- and post-event images. An estimate of landslide area could be automatically generated, as was 
completed in this study. With a known location, it is also much easier to classify the landslide type 
properly. Although landslides were not re-classified in this study, it is believed that all unspecified 
landslides could be recategorized when δNDVI mapping is possible. Improving landslide classification 
would make it possible to create thresholds for different types of landslides.  

4.3 Landslide Prediction 
 Landslide Database Trends 

The 8490 registered shallow soil landslides in the NVE database are divided nearly equally by season. 
When considering only days that had ten or more landslides occur, there are significantly more events 
occurring in autumn and winter. Days with ten or more landslides have occurred, on average, 4.6 times 
per year for the past five years, over half of which occurred in winter and over three quarters in winter 
or autumn. Similarly, the majority of flood events in Norway occur from August to December as a result 
of intense rainfall from remnants of tropical storms, convective rainstorms, and snowmelt in mild 
temperatures (Roald, 2008). The seasonal distribution of landslides registered and days with >10 soil 
landslides that have occurred over the past two decades are illustrated in Figure 28. A comparison is 
made between those recorded in 2000-2014 and 2015-2019.  

 

Figure 28. Seasonal distribution of landslides registered in the NVE landslide database from 2000-2019 

An increased proportion of registered winter landslides is observed in 2015-2019 compared to 2000-
2014. This is observed in and an even more substantial increase exists when looking only at days with 
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more than ten landslides. This increase could be attributed to external factors, such as an increase in 
reporting, but it is hypothesized that this change reflects recent climatic changes that increase the 
likelihood of landslides during colder months. There has been an increase of precipitation falling as rain 
in winter, milder winter temperatures, and warmer spring air temperatures resulting in warmer ground 
temperatures, shallower frost depth, shorter winters, and early melt (NCSS, 2019), all of which increase 
the probability of shallow soil landslides. Caution is taken in the conclusion that the increase of winter 
events is climate change related due to the recency bias discussed in Section 4.2.5.1.  

Multiple landslide events also have spatial trends by season. An analysis of the 21 case studies illustrates 
that spring events are restricted inland, where temperatures are cold throughout the winter and 
springtime thaw combined with frontal precipitation trigger landslides. Summertime events occur all 
throughout Southern Norway and have the least spatial bias. Autumn events are restricted to the coast 
in southern Norway and are often storms that lose most of their moisture when they precipitate due to 
orographic lifting as they hit the west coast. Winter events are restricted to the west coast but are 
common across the length of Norway. Figure 29 illustrates the spatial distribution of the selected 
landslide case studies that occurred in each season.  

 

Figure 29. Spatial distribution of selected case studies, identified by season 

 Susceptibility Mapping 
Susceptibility classes of terrain in Norway are divided into thirds with very high (31%), high and medium 
(13% and 23%), and low (33%). For the Norwegian case studies, both the registered landslides and the 
δNDVI mapped polygons were mapped on the catchment level susceptibility map to quantify how much 
they can aid in predicting where landslides will occur. Figure 30 is a histogram of the number of 
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landslides falling into each of the four classes, showing that the large majority of landslides are in the 
very high susceptibility class.  

 

Figure 30. Histogram of landslides recorded and mapped in the catchment level landslide susceptibility classes 

84% and registered landslides and 86% of δNDVI mapped landslides are located in zones mapped as high 
or very high. These results indicate that the catchment level susceptibility maps are extremely well 
calibrated and are a very useful tool for landslide forecasters, emergency responders, urban planning, 
and for education for the public.  

 Quaternary Geology Mapping 
Using the large-scale quaternary geology map, a similar ratio of the mapped landslides and registered 
landslide points fall into each classification. Surprisingly, over 50% of landslides are within bare bedrock 
polygons, indicating that soil mapping at this scale is not helpful to a landslide forecaster. The mapped 
polygons are 78% in bare bedrock polygons, and registered landslides points are 55% in bare bedrock 
polygons. The latter is lower as a consequence of the point location, which is most often on a road at the 
end of the runout, and more likely to have a thick soil cover. Bare bedrock suggests that a soil landslide 
could not be initiated. While the bedrock mapped could be deceiving, it does inform the forecaster of 
high runoff in these areas. Bare bedrock polygons, at this scale, should instead be understood as high 
runoff areas, with sufficient regolith for mass movement. Notably, the ratio of the entire map that is 
bare bedrock is exactly 50%. Till and colluvium are the second and third most common soil types 
landslides are mapped in large-scale, both having potential for a rapid increase in pore water pressures 
due to their fine-grained component. 

The mapping may be correct at a large scale, a smaller scale would reveal a thin sporadic cover, often 
with enough volume to have large, high consequence, soil landslides. The small-scale map also had 
similar ratio of quaternary geology types between the mapped landslide polygons and registered 
landslide points, but these differ greatly from the large-scale map. With the added precision, till makes 
up nearly half of the intersections, followed by colluvium and bedrock at approximately one fifth each. 
The glaciofluvial and fluvial intersections make up a combined approximate 10-15%. This is likely an 
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indicator of terrain that is prone to landslides, rather than soil stability. It is, again, likely that the 
bedrock polygons have pockets of organics and till.  

An example of a debris flow initiated in an area mapped as bare bedrock at both large and small scales is 
illustrated in Figure 31. Substantial pockets of moss covered till can be seen. This debris flow intersects 
colluvium and till at lower elevations, entraining significant material volume.  

 

Figure 31. Debris flow initiation zone with quaternary geology mapped as bare bedrock at a scale of 1:250,000 (case 19, July 30, 
2019, Sogn og Fjordane) (Photo credit: Lena Rubensdotter, NGU) 

See Figure 32 for a complete histogram of the number of intersections of landslides with each soil type.  

 

Figure 32. Large- and small-scales quaternary geology map intersections with registered and δNDVI mapped landslides 
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The analysis of large-scale quaternary geology maps shows limited usefulness, and rather, that they can 
be potentially misleading. In the absence of small-scale quaternary geology maps, which are often 
unavailable in remote or low populous areas, a large-scale map is little to no aid in landslide forecasting. 
Small scale geological mapping, that is often completed for more densely populated areas, should be a 
priority along infrastructure and low populous areas to improve susceptibility mapping, threshold 
models, and the resulting landslide forecasts. The 1:250, 000 scale maps clearly show that till and 
colluvium are the most landslide prone quaternary geology types, but the high proportion of landslide 
intersections with bare bedrock illustrates the need for more precise soil mapping.  

 Weather 
4.3.4.1 Data 
All 21 cases are induced by rainfall and/or snowmelt. Six cases are rainfall induced only and fourteen 
cases are rainfall and snowmelt induced. Case 15 is the only event with no rain (under 1 mm). 

Rain gauge precipitation, snowmelt from the NVE Snow Map Model at the weather station, and mean 
annual precipitation for all years on record for the selected case studies are presented in Table 16, with 
information about the years on record and weather station location included in Appendix E.  

Table 16. Precipitation during event (1-, 3-, 24-hr) and mean annual precipitation from rain gauges (Meteorologisk institutt, 
2020b) 

  
ID  

Rain gauge (mm) 

Weather Station Mean Annual 
Precipitation (mm) 

Snow Map Model 

1 hr 3 hr 24 hr 
Snowmelt in 

equivalent water 
(mm) 

1 7.5 15.9 53.3 Gvarv-Nes 841 0 
2 6.5 17.7 88.6 Ørsta-Eitrefjell 1924 8 
3 8.9 24.1 139.2 Elk-Hove 2596 10 
4 7.1 14.2 41.9 Innerdalen 1396 10 
5 4.5 9.9 29.2 Trondheim-Voll 851 10 
6 8.1 23 90 Myrkdalen-Vetlebotn 1171 9 
7 5 13.4 56 Innerdalen 1396 11 
8 5.4 13.7 79.7 Glomfjord-Skihytta 1993 10 
9 6.6 18.5 45.7 Rena-Ørnhaugen 687 3 

10 10.5 29.5 52.4 Skåbu 692 0 
11 11.7 31.9 75.9 Åseral 1684 0 
12 10.6 18.8 83.9 Sauda 2164 6 
13 9.1 25.1 82 Kvamskogen-Jonshøgdi 3128 7 
14 11.3 29.3 125.7 Sauda 2164 15 
15 1 2 2 Vest-Torpa II 860 19 
16 15.7 45.7 138.8 Gullfjellet 3128 0 
17 2.3 5.3 23 Trondheim-Voll 851 11 
18 15.1 25.5 35.6 Hamar II 1154 0 
19 22.8 43.6 113.6 Haukedal 2157 0 
20 4 7.6 37.6 Malangen-Pålfinnmoen 1064 10 
21 5.3 12 76.2 Vangsnes 1171 10 

 

Snowmelt, when present, is a small proportion of water supply. It plays an important role, however, 
hence its presence in two thirds of cases. Snowmelt causes widespread pore water pressures to rise, 
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generates high overland flow and surface water, and leads to increased erosion. The contribution of 
mid-winter thaw events, and the role of snowmelt to the initiation of landslides is difficult to quantify 
with water supply alone. Further study of this concept is required.   

The mean annual precipitation, for all years on record, and the absolute water supply, the sum of 
precipitation and snowmelt, at selected weather stations, are illustrated in a map of Norway in Figure 
33.  

  

Figure 33. Mean annual precipitation at weather station for all years on record (left) and 24-hour water supply at weather 
station from rain gauge and snowmelt model (right) 

A clear correlation of initiation water supply to the mean annual precipitation can be seen (i.e. the west 
coast has higher MAP and 24-hour precipitation than the east, and vice versa). This indicates that 
absolute water supply required to induce landslides is relative to the local precipitation. The combined 
precipitation and equivalent snowmelt from the seNorge v2.0 model results are presented in Table 17.  
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Table 17. seNorge v2.0 24-hr precipitation and equivalent snowmelt maximum and mean of grid over case study area data from 
(NVE, 2020a) 

 seNorge v2.0 24-hr Combined Precipitation 
and Equivalent Snowmelt 

ID  Mean (mm) Maximum (mm) 

1 62 112 
2 61 140 
3 112 187 
4 33 88 
5 30 89 
6 22 107 
7 26 101 
8 55 143 
9 30 60 

10 47 97 
11 123 196 
12 30 121 
13 72 164 
14 101 187 
15 17 29 
16 75 153 
17 22 71 
18 23 81 
19 33 168 
20 15 67 
21 45 146 

 

These values are mean and maximum of all pixels in the defined case study area. Areas are as illustrated 
in Section 4.1.1. The mean ranges from 15-123 mm and the maximum ranges from 29-196 mm. This 
wide range suggests that absolute values cannot be used as thresholds for landslides in Norway due to 
the variety in conditions. It is expected that had point values been taken for each landslide, as is done in 
threshold studies, the results would be more narrow.  
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Other weather and hydrological conditions recorded for each event are included in Table 18.  

Table 18. Weather and hydrological factors recorded for Norwegian case studies from a selected case study landslide on xgeo.no 
relative to reference years 1981-2010 

ID Degree of Soil 
Saturation 

Groundwater level 
compared to normal 

Frost depth compared 
to normal (depth) 

1 >90% Very high No frost 
2 70-80 Very high No frost 
3 >90% Very high No frost 
4 70-80 High No frost 
5 80-90 Very high No frost 
6 80-90 Very high No frost 
7 80-90 Very high Normal (Shallow) 
8 >90% Very high No frost 
9 >90% Very high No frost 

10 <60% Very high No frost 
11 >90% Very high No frost 
12 70-80 High No frost 
13 >90% Very High Normal (Shallow) 
14 >90% Very high Normal (Partly frozen) 
15 >90% Very high Deep (Moderate) 
16 70-80 High No frost 
17 80-90 Very high No frost 
18 60-70 Very High No frost 
19 <60% Very High No frost 
20 60-70 High Normal (Shallow) 
21 >90% Very High Shallow (Partly frozen) 

 

Degree of soil saturation varies but is generally high and above 80%. Soil saturation is challenging to 
accurately estimate and may not be reliable. It is, however, an extremely important variable in landslide 
prediction. As soil saturation rises, friction between particles is reduced by water in the pores, and the 
effective strength of the soil is reduced. For fine grained and poorly draining soils, such as the till that is 
smeared on many slopes in Norway, pore water pressures rise rapidly and are slow to drain. This 
indicates, again, that geological mapping is of high importance for landslide forecasting. In the absence 
of reliable soil saturation estimates, instruments to measure soil saturation at the slope scale could be 
used to calibrate regional models or monitor vulnerable areas.  

Groundwater level compared to normal for that day of the year is an extremely strong predictor, given 
that it is High for four cases and Very High for seventeen cases. Groundwater levels can reliably be 
measured where piezometers are installed and are directly related to surface water measurements and 
may be a reliable indicator of landslide susceptibility.  

Frost is only present in seven cases, despite snow being present in fifteen. In those cases that frost is 
present, the ground is only partly frozen or shallow in all but one. It is surprising that soil landslides can 
occur at all when frost is present, and even more surprising given the number of landslides triggered. It 
is possible, given the shallow depth of frost, that the failure plane is located below the frost, and that 
the frozen layer acts as a cap to saturate the water below. Frost may play and important role and more 
attention should be given to landslides that occur when the ground is frozen.  
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4.3.4.2 Normalized Water Supply 
Absolute values for landslide initiation water supply in the selected case studies vary widely. Normalized 
water supply is therefore calculated to determine if it has a closer relationship with landslides. The 
normalized water supply values of both point values at the weather stations and area values taken 
across the case studies, mean, maximum, and difference between mean and maximum, are presented in 
Table 19.  

Table 19. Normalized 24-hr Water Supply from weather stations points and mean and maximum seNorge v2.0 areas 

ID  
Normalized Combined 24-hr 
Rain Gauge and Equivalent 
Snowmelt (point data) (%) 

 Normalized seNorge v2.0 24-hr Combined Precipitation and 
Equivalent Snowmelt (area data) 

Mean (%) Maximum(%) Maximum-Mean (%) 

1 6.3 7.3 12.6 5.3 
2 5.0 3.3 6.7 3.4 
3 5.7 4.1 7.2 3.1 
4 3.7 2.9 6.3 3.4 
5 4.6 3.6 10.5 6.8 
6 8.5 3.9 9.1 5.2 
7 4.8 3.2 7.2 4.1 
8 4.5 3.6 7.2 3.5 
9 7.1 4.3 8.7 4.4 

10 7.6 6.9 13.4 6.5 
11 4.5 7.1 11.1 4.0 
12 4.2 2.4 5.6 3.2 
13 2.8 2.2 5.2 3.0 
14 6.5 4.9 8.6 3.8 
15 2.4 2.0 3.4 1.4 
16 4.4 2.3 4.6 2.3 
17 4.0 2.3 8.3 6.1 
18 3.5 2.2 6.7 4.5 
19 5.3 1.6 7.3 5.6 
20 4.5 2.7 6.3 3.6 
21 7.4 5.4 12.5 7.1 

Range 2.4 – 8.5 1.6 – 7.3 3.4 - 13.4 1.4 – 7.1 
 

The point data value is between the mean and maximum values in the large majority of cases (19/21). 
The two cases that it does not (case 1 and 11) demonstrate the importance of not relying on point data 
for water supply, as they not only don’t capture the peak, they don’t even capture the average. 
Interpolated datasets, such as seNorge v2.0, take into account all available point data to create a 
smoothed grid.  

It is possible, however, that the peak of the storm is not captured in either data source. For example, a 
weather station at the base of a valley would not capture the additional snowmelt on south facing 
slopes compared to north facing slopes, nor would it capture the rainfall shadow on the leeward side of 
a mountain peak. These factors can be captured by a weather model, but in highly concentrated 
rainstorms, the peak can be missed. This is especially possible in convective rainfall, where rainfall is 
highly concentrated. The difference between the maximum and mean water supply, included in Table 
19, is an indicator of how the spatial concentration of water supply. Values higher than five are 
considered “concentrated”, those less than 3.5 are considered “even”.  
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Calculated normalized water supply from point source at weather station and the mean and maximum 
over the case study areas are illustrated in Figure 36. The scales have the same number of equal 
divisions with different values to illustrate that the values differ but are mostly in the same relative 
order and thus colour.  

                                          A 

 
B 

 

C 

 
Figure 34. Normalized 24-hr initiation water supply from A: weather station rain gauge and modelled snowmelt B: mean 

seNorge v2.0 and C: maximum seNorge v2.0  
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Normalized 24-hour precipitation, calculated as a percentage of the annual mean precipitation, has a 
clear relationship with landslide occurrence. Three cases (13, 15, and 18) have very low normalized 24-
hour water supply and stand out as outliers in their initiation threshold, and thus more challenging to 
forecast. Cases 15 and 18 occurred in the spring in Eastern Norway, and despite having low 24-hour 
precipitation and snowmelt, can be better explained by having a high water table, elevated from the 
spring melt, which occurs more seldom through the year. These are challenging to forecast as they were 
induced by insignificant absolute and relative water supply. It is expected that many landslides in 
Eastern Norway are induced by very low absolute water supply and the region would have many false 
alarms if thresholds were reduced to accommodate them. Regional thresholds have been implemented 
in some regions to account for these differences (Krøgli, et al., 2018). Case 13 had an especially high 
antecedent rainfall and snowmelt. It occurred in December and had a 3-day antecedent water supply 
over twice in magnitude than the 24-hour water supply.  

Previous studies found the correlation of relative rainfall stronger than absolute rainfall (Meyer, et al., 
2012) and that absolute rainfall severely underestimated landslides (Groenemeijer, et al., 2016). 24-
hour precipitation is found to be the strongest correlating weather factor by others (Devoli, et al., 2017). 
Both of these results are confirmed in this study. Snowmelt is an important factor, but rainfall has a 
much more significant role. Antecedent conditions, particularly groundwater level relative to normal, is 
a very strong indicator, and is high or very high in all selected cases. Absolute water supply for initiation 
has an extremely wide range in these cases, and while normalized water supply is more indicative, it is 
not always exceptionally high. This result indicates that rainfall and snowmelt alone cannot predict 
landslides, despite a strong correlation in the majority of selected cases.  

4.3.4.3 Return Period 
Return periods of the combined rain gauge rainfall and equivalent snowmelt model are obtained for 1-, 
3-, and 24-hour durations, and the highest value is selected. These show that not all case studies 
experienced extreme intense rain or snowmelt. Five cases have return periods 200 years or more, but 
thirteen cases have return periods of five years or less. The return periods of all case studies are 
included in Table 20 and IDF curves are included in Appendix E.  
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Table 20. Return period of rainfall and snowmelt of case studies 

ID Return Period of combined 
rainfall and snowmelt (years) 

1 2 
2 100 
3 50 
4 5 
5 <2 
6 2 
7 25 
8 >200 
9 25 

10 200 
11 5 
12 <2 
13 5 
14 10 
15 <2 
16 >200 
17 <2 
18 2 
19 >200 
20 >200 
21 2 

 

Due to the fact that IDF curves are found to be strongly correlated to landslide initiation in other studies, 
these results are deemed unreliable. It is expected that the weather stations chosen to collect 
precipitation and snowmelt are too far or have dissimilar conditions to the IDF curves used. Many 
weather stations have too few years on record (minimum ten years) to capture extreme highs and lows 
to create a reliable IDF. The reference IDF’s chosen were deemed the most reliable data available but 
illustrate that an IDF curve should be used with caution. In theory, an IDF cannot not be interpolated 
further than the number of years used to build it, and they should not be extrapolated regionally unless 
conditions are consistent.  

4.3.4.4 Weather Categorization 
Weather is grouped into six main categories, as defined in Section 3.3.4.4. The categorizations for the 
Norwegian case studies are presented in Table 21.  
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Table 21. Weather categorization and storm name for Norwegian case studies 

ID Storm Name Weather 
Code Weather Categorization 

1 Petra B Intense concentrated rainstorm 
2  F2 Heavy rain on snow 
3 Synne F2 Heavy rain on snow 
4 Urd F2 Rain on snow 
5  F2 Rain on snow 
6  F2 Heavy Rain on snow 
7 Following Vidar F2 Rain on snow 
8 Following Vidar F2 Heavy rain on snow 
9  E Wet antecedent conditions and moderate rain 

10  B Intense concentrated rainstorm 

11 Remnants of tropical cyclones 
Maria and Lee A Remnant of tropical cyclone 

12 Ylva F Rain on snow 
13 Aina F1 Rain on snow with frost 
14 Birk F3 Heavy Rain on snow with frost 
15  D Rapid spring melt 
16  C Heavy widespread rainstorm 
17  F2 Heavy rain on snow 
18  E Wet antecedent conditions and moderate rain 
19  B Intense concentrated rainstorm 
20  F3 Heavy rain on snow with frost 
21  F3 Heavy Rain on snow with frost 

 

The most common weather type is F: rain on snow, accounting for 13/21 cases. These are 
subcategorized into those with intense rain, those with frost, and those with both. Only one event is a 
known A: remnant of a tropical cyclone, although there may be more that are not identified. The 
spring/early summer events are notably different and are categorized into D: rapid snowmelt and E: wet 
antecedent conditions and moderate rain. D is a rare event, as ground frost is still present, and the soil is 
relatively strong. For such an event to trigger landslides, extremely intense snowmelt must occur. E is 
the more common spring landslide case, in which the soil is vulnerable to even moderate rainfall due to 
extremely wet antecedent conditions leading to high runoff volumes. Rain can be C: evenly distributed 
or B: concentrated, both leading to different challenges in landslide forecasting. Even events require a 
large area to be on alert whereas concentrated events are difficult to predict accurately. Convective 
rainstorms are known to be highly concentrated and challenging for landslide forecasting. The eye of the 
storm can cause devasting consequences (e.g. Kvam 2014, Utvik 2017, Jølster 2019), but is relatively 
unpredictable.  

The weather categorizations vary immensely between cases and demonstrate that many weather types 
can cause multiple landslide events. Those that are most challenging to predict for landslide forecasters 
will be identified in Section 4.3.6.  

A reverse analysis, considering days that reach a threshold water supply, to evaluate if they induce 
landslides, was not completed. It is expected, based on return periods and normalized water supply that 
water supply thresholds are frequently exceeded without triggering landslides. It would be valuable to 



63 
 

consider days with specific weather types and how often they induce landslides. Of particular interest 
are days with rain on snow, which occur seldom in some areas, and are the most frequent weather type 
to induce the selected landslide events.  

4.3.4.5 Landslides in a Changing Climate 
Projected climatic changes are predicted to increase the frequency of landslides in Norway, primarily 
due to an increase in total rainfall and rainfall intensity (Jaedicke, et al., 2008). An increase in air 
temperature results in the ability of air to carry more moisture, with the potential to induce heavier 
rainfall. Heavy rainfall is projected to increase in both magnitude and intensity in most of Norway, with 
the highest percent increases to be seen in the driest parts of the country (inland) (Sorteberg, et al., 
2018). These changes in rainfall in could result in landslides in new locations.  

Relative to 1971-2000, there has been shorter and milder winters, an increase of precipitation falling as 
rain in winter (rather than snow), more freeze thaw events, rain on snow events, and warmer spring 
resulting in warmer ground temperatures, reduced frost penetration, and early melt (NCSS, 2019). These 
trends are all predicted to continue under climate scenarios RCP 8.5 (business as usual), and RCP 4.5 
(reduction of greenhouse gas emissions after 2040) (NCSS, 2019). Shallow soil landslides are therefore 
expected to increase in the winter months, with the largest changes projected in Northern Norway 
(Jaedicke, et al., 2008). Although a decrease in avalanches is projected, due to a decrease of snow, an 
increase of slushflows is anticipated due to rain on snow (Jaedicke, et al., 2013).  

One study of extreme weather in northern Scandinavia projected that in climate change scenario 
RCP 8.5, a 10-yr return period event will have a return period of 2-3-yr (i.e. occur over three times more 
frequently) (Groenemeijer, et al., 2016). They also concluded that extreme precipitation will increase by 
6-7% in intensity in RCP 8.5 due to the higher moisture capacity of warmer air but have no increase in 
duration. In the Norwegian case studies, a direct relationship of landslide initiation water supply to the 
local MAP is observed. This observation suggests that landslide occurrence may temporarily increase but 
should eventually decrease to background levels. The threshold to initiate landslides, should thus, 
increase. Based on this conclusion, threshold values should continuously be adjusted to adapt to current 
conditions.  

In Norway, the majority of soil landslides are of glacial origins, meaning the sediment budget, from 
erosion and transportation, is likely not in equilibrium with mass wasting from landslides. Increased 
precipitation may only lead to a surge of landslide occurrence, that eventually return back to historical 
background levels, due to the lack of available soil. This pattern has been recorded in other parts of the 
world. Landslides in Nepal show a cyclicity of occurrence that mirrors that of monsoon strength in SE 
Asia and an overall upward trend of occurrence from 1978-2005 (Petley, et al., 2007). A spike in 
landslides are similarly recorded at the end of the Little Ice Age in Western Norway, associated with an 
increased sediment budget (Grove, 1972). Additionally, it is possible that post deforestation of 
Norwegian slopes is largely responsible for a current period of higher landslide occurrence rates, as is 
found to be the case in New Zealand (Glade, 2003).  

 HYDMET Model 
The maximum and modal (i.e. most common) hazard level over the defined area for the 21 case studies 
areas are presented in Table 22.  
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Table 22. HYDMET Model Results (data from xgeo.no) 

ID 
HYDMET Geo Model Results (xgeo.no) 

Maximum Mode 

1 3 3 
2 3 2 
3 3 2 
4 3 2 
5 3 2 
6 4 2 
7 2 1 
8 1 1 
9 3 3 

10 1 1 
11 1 1 
12 1 1 
13 3 2 
14 3 2 
15 3 1 
16 1 1 
17 3 1 
18 1 1 
19 3 1 
20 1 1 
21 4 3 

 

Images of the model results are included in Appendix F. The HYDMET Model results from Case 2 are 
illustrated in Figure 35 as an example.  
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Figure 35. HYDMET Model results for case 2 (November 26, 2015, Sogn og Fjordane) where maximum hazard level is orange and 
the modal hazard level is yellow 

It is clear that using the mode of the HYDMET model over an area would significantly underestimate 
hazard levels. Using the maximum reveals that seven cases would still have been missed altogether (i.e. 
are entirely green). Thresholds used in the HYDMET model produced many false alarms in the first two 
years of operation (8.5% and 14.5% of days in 2013 and 2014, respectively) and have since been 
adjusted (Krøgli, et al., 2018). The thresholds can therefore not simply be increased, as the hydro-
meteorological conditions that exist when landslides take place are reached too frequently, resulting in 
no landslides.  

 Landslide Warnings 
4.3.6.1 Published Warnings  
A summary of the landslide hazard levels published for all days by NVE over the duration of the NLEWS 
is included in Table 23. Note that only one red warning has been issued and it was in the first year of 
operation.  

Table 23. Percentage of days with landslide hazard levels warned in 2013-2019, data from (NVE, 2020a) 

    Hazard Level  

    Green (1) Yellow (2) Orange (3) Red (4) 

Ye
ar

 

2013 81.7 16 2 0.3 
2014 83 15 2 0 
2015 90.4 8.5 1.1 0 
2016 93 7 0 0 
2017 89.8 8 2.2 0 
2018 86.6 13.2 0.3 0 
2019 86.6 12.3 1.4 0 

2013-2019 87.3 11.4 1.3 0 
 

Surveys have been conducted in 2009, 2013, and 2019 with positive results (Colleuille & Engen, 2020). 
Respondents were predominantly emergency responders. While the NLEWS is designed for emergency 
responders and transportation authorities, it is also publicly available to the public. The system functions 
well for its target audience, but more emphasis on how warnings are perceived by the public is 
recommended to assess the NLEWS performance. Education on landslides and how they can affect the 
public has proven in other locations around the world to decrease vulnerability by empowering 
communities to make educated decisions on risk (Kelman, 2020). Improving public education on the 
NLEWS would also increase the capacity of citizen science. This could increase the number of landslides 
reported by members of the public on regobs.no. By extension, it could also increase the number of 
private weather stations (e.g. Netatmo) (Netatmo, 2019), which in past cases have had the nearest 
precipitation observations to estimate landslide initiation water supply (Meteorologisk institutt, 2019).  

For the 21 Norwegian case studies, the collected warnings published by NVE are included in Table 24. In 
three of the events the landside hazard level was not lifted from a green (1) warning, meaning the event 
was missed altogether. There was no level red (4) warnings and just three orange (3) warnings, with the 
remaining fifteen events being level yellow (2) warnings.  
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Table 24. Published landslide warnings by NVE for Norwegian case studies (data from www.varsom.no) 

ID 
County Warning  

3 days before 2 days before 1 day before Day of Event  1 day after 

1 1 1 2 2 1 

2 1 1 1 1 2 

3 1 1 2 3 3 

4 1 1 1 2 1 

5 1 1 1 2 1 

6 1 1 1 2 1 

7 1 1 2 2 1 

8 1 1 3 2 1 

9 1 1 1 1 1 

10 1 1 1 1 1 

11 1 3 3 2 1 

12 1 1 2 2 1 

13 1 3 3 2 2 

14 1 1 3 3 1 

15 1 1 2 2 2 

16 1 1 2 2 2 

17 1 1 2 2 1 

18 1 1 1 2 2 

19 1 1 1 2 2 

20 1 1 2 2 1 

21 1 1 1 3 2 

 

High hazard level warnings cause large disruptions, evacuations, and economic loss from closing roads 
and railways. Landslide warnings are published on a regional level, further causing a reluctance to 
increase the hazard level without a high degree of uncertainty. Unfortunately, days with high 
uncertainty often result in high consequences. The hazard levels issued, included in Table 24 above, 
strongly suggest a reluctance to over-warn. As these are some of the most challenging days to forecast, 
it would be useful to include a degree of uncertainty with landslide warnings. The uncertainty could be 
communicated similar to the percent chance of precipitation in a weather forecast, giving the user an 
additional piece of information to make educated decisions. Uncertainty in landslide forecasting is 
largely due to uncertainty in weather forecasts, and thus, could explicitly carry this information to the 
user. It is also suggested that warnings be issued for smaller regions to promote issuing higher hazard 
levels.  

4.3.6.2 NVE Warning Evaluation 
The landslide warnings published on the date of each date were collected and compared to the 
observed HYDMET model and the corrected hazard level according to an NVE evaluation. To visualize 
the comparison, the hazard levels of each are plotted together in Figure 36.  
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Figure 36. Landslide warnings from model results, published results, and corrections based on NVE and number of landslides 

This comparison reveals that the mode of the HYDMET model is lower than the published warning in 
over half of cases (12/21), under the corrected warning in two thirds of cases (14/21), and over the 
corrected warning in only two cases It is therefore essential with the current model for a landslide 
forecaster to use their judgement to increase the hazard level from the model. The same comparison 
with the maximum pixel HYDMET model hazard level, rather than the modal, shows that there are seven 
cases where not even one pixel warranted a landslide warning above a green (1) level and resulted in a 
yellow (2) or orange (3) level events. The requirement of a human component in landslide forecasting 
lacks objectivity and reproducibility. It also relies on highly trained individuals and is vulnerable to 
changes in staff. Continued improvements to objective indicators to determine warning hazard levels 
are needed to reduce the unreliability of human decision making.  

One third of all events were under-warned based on the NVE post event evaluation and not a single 
event was over-warned. The warnings are semi-qualitative, but they do not directly consider losses. The 
two events with highest consequences are case 13 and 19. One death was recorded in each with 23 and 
42 landslides registered in the NVE database, respectively, but in neither were re-evaluated as a red 
warning. This is evidence of a reluctance to alert a red warning. In fact, a summer rainstorm in 2013 is 
the only red warning that has ever been alerted in the NLEWS (Krøgli, et al., 2018).  

A further analysis of the under-warned events shows that there are no clear trends of why these were 
missed. They vary by season, region, and weather. They vary largely in magnitude and intensity of water 
supply both in absolute and relative values and in their respective return periods. Previous studies have 
found that west facing slopes of the Norwegian mountain ranges have a hydro-meteorological regime 
that makes landslides more likely to be missed by water supply thresholds (Meyer, et al., 2012). While 
that is the case of some events, it is not determined to be a significant trend, and most events have 
landslides on slopes in all aspects. Details of these seven under-warned events are included in Table 25.  
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Table 25. Details of selected case studies that were under-warned according to NVE post-event evaluations 

ID Date County Season 
Return 
Period 
(yrs) 

Trigger 
(R = rain, 

S = snowmelt) 

Weather Categorization 

2 20151126/27 Sogn og Fjordane Autumn 100 R&S Heavy rain on snow 
5 20161204/05 Trøndelag Winter <2 R&S Rain on snow 

9 20170518 Hedmark Spring 25 R&S Wet antecedent conditions and 
moderate rain 

13 20171207 Hordaland Winter 5 R&S Rain on snow with frost 
15 20180418 Oppland Spring <2 S Rapid spring melt 
16 20180926 Hordaland Autumn >200 R Heavy widespread rainstorm 
19 20190730 Sogn og Fjordane Summer >200 R Intense concentrated rainstorm 

 

Surprisingly, the weather categorizations of all seven under-warned cases differ. The only two case 
studies that occurred in Spring were under-warned. These case studies (9 and 15) are located in Eastern 
Norway where fewer landslides take place. Rainstorms with high return periods (≥100 years) also have a 
high percentage of under-warned events (case 2, 16, and 19). Thresholds are determined using historical 
landslide events, therefore, it is hypothesized that the less frequent landslides occur, by location, 
season, or return period, the less likely they are to be predicted.  

4.3.6.3 Quantitative Warning Evaluation 
Using two quantitative thresholds, the hazard levels for each case study were determined and compared 
to the NVE evaluations. All three evaluations agree in six cases. Strictly using number of reported 
landslides results in a higher hazard level than the NVE evaluation in eleven cases, lower in none, and 
agrees in ten. Using the water supply correction thresholds, the level is over the NVE evaluation in eight 
cases, under in two cases, and agrees in nine. Below, in Figure 37, the NVE corrected hazard levels are 
compared to the two quantified thresholds.  

 

Figure 37. Corrected hazard levels based on NVE evaluation, reported landslides, and average water supply as a percent of 
annual average precipitation 

The water supply thresholds again confirm that weather is indicative of vulnerability but that it alone 
cannot predict landslides. Even with observed water supply, rather than weather forecasts, the water 
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supply thresholds disagree with the NVE evaluations, both too high and too low. If the water supply 
were directly from the landslide initiation point and not a nearby weather station, these evaluations 
may be more similar.  

Three cases warranted a red warning based on the number of landslides reported. Many landslides are 
reported the day after or in some cases, several days later. It is likely that if the warnings were re-
evaluated well after the event, rather than the day of, the NVE evaluations would be higher. This could 
explain why the NVE evaluations are consistently lower than the evaluation based on number of 
landslides alone.  

4.3.6.4 Proposed Area Thresholds 
The proposed area thresholds are based upon the mean and maximum normalized seNorge v2.0 
precipitation and snowmelt presented in Table 19. The defined intervals, as defined herein, 
corresponding to hazard levels are presented in Table 26. 

Table 26. Proposed area water supply thresholds using seNorge v2.0 

Hazard Level Normalized mean 
Area Threshold 

Normalized Max Area 
Threshold 

1 <1.5 <3 

2 1.5-3.9 3.0-7.9 

3 4.0-6.9 8.0-11.9 

4 >7.0 >12 

 

The area thresholds yield hazard levels that differ more from the NVE evaluation than simply using 
weather stations, and more importantly, over-warn in the wrong cases. Using the mean, the hazard level 
agrees with the NVE evaluation in twelve cases. Using the maximum, it agrees in ten cases. The 
calculated hazard levels for the Norwegian case studies are included in Table 27.  
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Table 27. Hazard level based on proposed area thresholds 

ID 
Hazard Level based on Mean 

Normalized 24-hr seNorge v2.0 
Water Supply 

Hazard Level based on Maximum 
Normalized 24-hr seNorge v2.0 

Water Supply 
1 4 4 
2 2 2 
3 3 2 
4 2 2 
5 2 3 
6 2 3 
7 2 2 
8 2 2 
9 3 3 

10 3 4 
11 3 3 
12 2 2 
13 2 2 
14 3 3 
15 2 2 
16 2 2 
17 2 3 
18 2 2 
19 2 2 
20 2 2 
21 3 4 

 

This exercise is deemed unfavourable compared to the existing HYDMET model grid as using weather 
statistics over the area reduces the information available to the landslide forecaster at no benefit. This 
method intended to simplify hazard levels in a similar fashion as avalanche or forest fire hazard levels 
while capturing the regional hazard. Instead, they are found to over-simplify a complex problem. 
Overall, Area thresholds would produce hazard levels that are more challenging to disseminate. 



71 
 

5 Conclusions 
Events with multiple landslides can cause major damage, loss of life, and economic costs. Early warnings 
greatly benefit emergency responders in mitigating damage. Rare, high consequence landslide events 
are challenging to forecast. This study aimed to (1) improve the landslide inventory and (2) analyse 
forecasting tools and warnings given for past events with multiple landslides, in order to assist in issuing 
more reliable warnings in the future. The following main conclusions are drawn: 

• Road and rail authorities report the majority of landslides in Norway. Consequently, the NVE 
landslide database registries are biased to transportation routes. 72% of the landslides studied 
are within 10 m of a road. The database is also temporally biased, with 70% of the inventory 
occurring after the year 2000. Uncertainty exists in landslide categorizations and time and 
location of landslides. Improvements to the database are essential in the development of more 
reliable thresholds and many limitations could be reduced using remote sensing techniques. 

• δNDVI could dramatically improve the Norwegian landslide inventory for rainfall induced soil 
landslides >1000m2. The method is hindered by snow cover, size of landslide (<1000 m2), cloud 
cover, daylight hours and sun angle. Change detection of SAR intensity, phase, and coherence 
have little potential in the cases studied due to detection limits of size and depth landslides and 
the amount of noise present in the surrounding terrain. Similar results were found in Norwegian 
case studies and international test sites. 

• In Norway over the past five years, over half of days with ≥10 soil landslides occurred in 
December and January. The are widespread across the country but are most common in 
Western Norway and rare in Northern Norway. The have occurred nearly five times per year, on 
average.  

• Forecasting tools for the selected cases revealed varied usefulness. The HYDMET model 
underestimated hazard levels in 67%  of cases. 84% of registered landslides occurred in locations 
accurately mapped as very high or high susceptibility levels, highlighting the value of 
susceptibility maps. At both 1:1,000,000 and 1:250,000 scales, registered landslides occur most 
commonly in areas mapped as till, colluvium, and bedrock, but at vastly different ratios (18%, 
6%, 55% and 44%, 18, 16%, respectively). These results illustrate the value of small-scale 
quaternary geology mapping for landslide forecasting.  

• Selected Norwegian case studies are all induced by rainfall or snowmelt, and over half by a 
combination of both. 24-hour rainfall is the strongest predictive factor, but snowmelt plays an 
important role. 11/21 Norwegian case studies had water supply return periods of ≤5 years. This 
result suggests that the water supply at the landslide initiation may not be observed or 
modelled, and, moreover, that weather alone cannot predict landslides.    

• 1/3 of cases are under-warned, 2/21 of which were missed (i.e. warned at green (1) level). If 
strictly considering the number of landslides, 2/3 of cases are under-warned, 3/21 of which 
were missed. Under-warned and missed cases are highly varied by season, trigger, location, and 
return period. The most challenging forecasting conditions are 1) uncertain high return period 
rainstorms and 2) spring melt with wet antecedent conditions. Notably, both conditions are 
rare, and therefore contribute less to thresholds.  
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5.1 Landslide Inventory 
21 Norwegian and four international case studies were selected to test the potential of two remote 
sensing techniques to improve landslide inventories. Norwegian case studies are days with ten or more 
registered soil landslide with a geographic cluster of five or more. International case studies are events 
with over ten debris flows in varied regions, including arctic, urban, tropical, and monsoon influenced 
conditions. Remote sensing techniques using Sentinel-1 (SAR) and Sentinel-2 (δNDVI) satellite images 
are tested with mixed results.  

Results in mapping soil landslides with SAR show little potential. Although change detection of SAR 
intensity, phase, and coherence have proven useful in other studies for landslide mapping, and many 
other geohazard applications, this study found only 10% of landslides analyzed are detectable, and only 
one out of 150 landslides is mappable. SAR intensity has the most clear landslide signature, and SAR 
phase and coherence interferograms have too much noise for landslides to stand out. The studied 
landslides are likely too shallow and small in area to be identified using SAR. Noise in the surrounding 
terrain caused by vegetation, freeze and thaw, local weather, and changes in moisture, renders 
landslides ambiguous. Sentinel-1 images were chosen to reduce the temporal window of pre- and post-
event images; however, the window is likely too long for emergency response use (on average 5 days 
before and 3 days after), and the acquisition mode is found to be a much more important factor. 
Landslides are best identified on east and west facing slopes in descending and ascending mode, 
respectively, in order to reduce foreshortening. SAR is limited in detecting landslides on north and south 
facing slopes due to the pole to pole orbit of Sentinel-1 satellites, on which the instrument antenna is 
directed to the right. Images and DEM should be more carefully selected for each event to ensure they 
are optimized. In all case studies, more than one slope aspect is present, and it is therefore 
recommended to analyse images in both ascending and descending acquisition modes.  

δNDVI using Sentinel-2 images has promising results. Optical satellite landslide detection is often 
impeded by cloud cover, shadows, and short daylight hours. This is especially true in regions, like 
Norway, at high latitudes with a high concentration of cloud cover. For this reason, optical landslide 
detection methods have been overlooked as a promising technique in such regions. This study uncovers 
the potential of δNDVI using Sentinel-2 images in a cloudy region that is frequently plagued by 
landslides. Sufficiently sized landslide scars (>1000m2), can be detected with an image acquisition 
window of over a year with the same lighting conditions and no snow cover, despite long cloudy 
periods. Of the 161 landslides analysed in Norway, 45% are detectable using δNDVI. If only considering 
rainfall induced debris flows/floods, however, the detection rate increases to an impressive 94%. The 
main factors affecting the effectiveness of this method, in order of significance, are snow cover, size of 
landslide (<1000 m2), cloud cover, daylight hours and sun angle. Noise caused by agriculture, 
waterways/higher water levels, construction, and other mass movements can hinder landslide 
detections and increases directly with time between images. 

In seven cases, conditions allowed for landslide mapping in addition to those registered in the database. 
Nearly three times the number of landslides registered are mapped, indicating that in proper conditions, 
landslide inventories in Norway could be drastically improved using δNDVI with Sentinel-2 satellite 
imagery. The time required to download, process, and map a Sentinel-2 1500 km2 image tile using 
δNDVI and the method described herein, is approximately four to eight hours, warranting the 
development of an automated process. A semi-automatic landslide inventory using δNDVI is deemed 
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highly viable for rainfall induced soil landslides >1000 m2 in Norway. The automation process would be 
improved with object identification to remove clouds and waterways and the use of a DEM and 
susceptibility maps.  

With the availability of free Sentinel-2 satellite imagery, even at a spatial resolution of 10 m, the use of 
δNDVI images show great promise in inexpensive landslide mapping across the globe. Various conditions 
were tested, including continuous permafrost arctic tundra, a tropical urban centre, a cloudy 
mountainous monsoon influenced region, and an equatorial climate plagued by frequent mass 
movements. All test sites were successful in mapping a large landslide inventory. The arctic case proved 
that δNDVI can be successful even with low vegetation mass and long dark winters due to the slow 
regrowth in landslide scars and infrequent human alteration of the terrain (e.g. construction, 
agriculture, forestry). At a reduced cost and increased coverage, compared to more traditional methods, 
δNDVI could be a valuable tool to build landslide inventories in remote and inaccessible locations.   

Temporal, spatial, and data limitations were identified in the Norwegian landslide database. In the 
studied Norwegian cases, a clear spatial bias of registered events to transportation routes was 
confirmed. 91% of the studied registered landslides lie within 100 m of a road. In comparison, only 16% 
of the mapped landslides are within 100 m of a road in the case which had the best conditions for 
mapping a complete inventory with δNDVI (case 19). This bias could be significantly reduced using 
δNDVI in proper conditions. Many key metadata, including uncertainty of location, landslide size, and 
landslide type could be improved using δNDVI. Conversely, the uncertainty of time, may worsen. Precise 
time or even date cannot be acquired using δNDVI alone. Additionally, in the event that many landslides 
follow the same path, they will not be accounted for. The NVE database is also limited by a recency bias 
which cannot be addressed with the proposed remote sensing techniques.  

5.2 Landslide Forecasting 
A statistical temporal and spatial analysis of days with ≥10 soil landslides registered in the NVE database 
over the past five years in Norway revealed that over half occurred in December and January. The 
highest density of such days is in Western Norway due to a tempered climate and high precipitation. 
They occur rarely north of Trondelag due to lower mean annual rainfall and stable winter temperatures. 
Of selected case studies in Norway, those that occur from April to June are predominantly inland, those 
that occur from September to January are restricted to the coast, and events in June to August are all 
located in Southern Norway.  

Of the 21 case studies, six are rainfall induced, one was triggered by snowmelt, and fourteen are 
induced by combined rainfall and snowmelt. Rain is nearly always present in these events, but snowmelt 
is also a major contributing factor. Snowmelt causes widespread pore water pressures to rise, generates 
high overland flow and surface water, and leads to increased erosion. The water supply needed to 
trigger the selected landslide events is found to be proportional to the amount of annual precipitation. 
Some events were triggered by short, intense rainfall (<24 hours), while others had moderate rainfall 
and snowmelt over a long duration (1-15 days). Normalized water supply ranges from 2.4% and 8.5% of 
mean annual precipitation, agreeing with the range of thresholds of debris flows in Norway calculated 
by Meyer et al. (2012), but return periods of 1, 3, and 24-hour water supply are lower than expected, 
with ≤5 years in 11 cases and ≥100 years in six cases. This suggests that initiation water supply may not 
be observed, and that weather alone is insufficient in predicting shallow soil landslides. 
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Climate change projections are uncertain, but the projected trends increase the likelihood of landslide 
activity in Norway. Western Norway currently has the highest density of extreme landslide events and is 
projected to have a minor increase in landslide activity, despite increases in intensity and duration of 
extreme rainfall. The greatest increase of landslide activity is expected to be in Northern Norway, where 
more mild winters will bring a greater proportion of precipitation as rain and more frequent freeze-
thaw, and in Eastern Norway, the driest part of the country, where the greatest increase of precipitation 
is projected (Jaedicke, et al., 2008). Western Norway will continue to host the most frequent landslides.  

In over half of the case studies, basing the landslide warning on the mode (i.e. most frequent) hazard 
index alone would have resulted in a level green warning. In a third of the cases, using the maximum 
pixel in the area would also yield a green warning. These results illustrate that while threshold models 
are useful, they are insufficient to warn of extreme landslide events alone. Landslide forecasters 
drastically improve the accuracy of hazard levels of warnings for the selected landslide events compared 
to the HYDMET threshold model. The mode of the hazard levels of the HYDMET Model in the area of the 
landslide was less than the published value in 12/21 cases and over the NVE evaluation value in just 
2/21 cases. Even still, one third of all events were under-warned based on the NVE post-event 
evaluation and not a single event was over-warned. When strictly considering the number of landslides, 
two thirds of events were under-warned, and none were over-warned.  

A reluctance to issue false alarms or over-warn exists, despite clear internal messaging that false alarms 
are favourable to missed events. In the seven years of operation, the NLEWS has only once published a 
level red (4) warning, despite at least three events studied having severe damage and over 20 reported 
landslides. A decrease in the size of warning areas or communication of uncertainty may reduce under-
warned events. Continued improvements to objective indicators to determine warning hazard levels are 
needed to reduce the inconsistency of human decision making.   

5.3 Future Studies 
Fields requiring more research based on the results of this study include the following:  

• To test the full potential of δNDVI, a study should be completed exclusively on ideal conditions 
(i.e. rainfall induced debris flows and floods). The accuracy should also be tested by comparing 
to more traditional method (e.g. field mapping or photogrammetry with aerial photographs).  

• The δNDVI signature of landslides mapped in this study, in addition to existing landslide 
indicators, such as slope angle, geology, susceptibility mapping, degree of soil moisture, and 
groundwater level, could be used as data input to train a machine learning model to 
automatically detect landslides for inventory building.  

• Snowmelt and frost play an important role in triggering landslides that requires more research. 
Rain on snow events, which are becoming more frequent with climate change (Hannsen-Bauer, 
et al., 2017), are the most common trigger of days with more than 10 landslides in Norway.  

• Suggested improvements to the NLEWS that should be further researched include a stronger 
focus on communication to the general public, adopting smaller warning regions to promote 
higher hazard levels in uncertain conditions, and communication of uncertainty in warnings. 
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Appendix A – Python Code 

#Filter NVE Landslide Database 
#Written by Christy Rouault, February 2020 
import arcpy 
 
arcpy.env.overwriteOutput = True 
arcpy.env.workspace = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database' 
 
# filters for soil landslides and slushflows and events that occurred after 20150630 and before 20200101 
ls_db_table = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Export_DB_Filtered.shp' 
outpath = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database' 
 
arcpy.MakeFeatureLayer_management(ls_db_table,'ls_db_layer') 
arcpy.SelectLayerByAttribute_management('ls_db_layer', "NEW_SELECTION", '"skredType" > 139') 
arcpy.SelectLayerByAttribute_management('ls_db_layer', "SUBSET_SELECTION", '"skredType" < 150') 
arcpy.SelectLayerByAttribute_management('ls_db_layer', "ADD_TO_SELECTION", '"skredType" = 133') 
arcpy.SelectLayerByAttribute_management('ls_db_layer', "SUBSET_SELECTION", '"Date" > 20150630') 
arcpy.SelectLayerByAttribute_management('ls_db_layer', "SUBSET_SELECTION", '"Date" < 20200101') 
#arcpy.SelectLayerByAttribute_management('ls_db_layer',SWITCH_SELECTION) 
arcpy.FeatureClassToFeatureClass_conversion('ls_db_Layer', outpath, 'LS_filtered') 
 
LS_filtered = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\LS_filtered.shp' 
 
# Within selected features, further select only those events which occur on the same day as 10 other 
landslides 
def unique_values(table, field): 
    with arcpy.da.SearchCursor(table, [field]) as cursor: 
        return sorted({row[0] for row in cursor}) 
vals = unique_values("ls_db_layer","Date") 
 
ls_count = [0]*len(vals) 
index = 0 
Dates_of_interest = [0] 
 
for i in vals: 
    arcpy.MakeFeatureLayer_management(LS_filtered, 'selection', """ "Date" = {} """.format(i)) 
    countS = str(arcpy.GetCount_management('selection')) 
    ls_count[index] = int(countS) 
    if ls_count[index] > 9: 
        Dates_of_interest.append(int(i)) 
    index = index + 1 
 
# add event from Troms 
Dates_of_interest.append(int(20191204)) 
#Dates_of_interest.append(int(20161015)) 
print(Dates_of_interest) 
 
# create shapefile with just the landslides with more than 10 events on a given day in the time period of 
interest 
arcpy.MakeFeatureLayer_management(LS_filtered, 'LS_filtered_layer') 
for i in Dates_of_interest: 
    arcpy.SelectLayerByAttribute_management('LS_filtered_layer', "ADD_TO_SELECTION", """ "Date" = {} 
""".format(i)) 
arcpy.FeatureClassToFeatureClass_conversion('LS_filtered_layer', outpath, 'Landslide_Day_w10'.format(i)) 
 
print len(Dates_of_interest) 
 

 

#Buffer Landslides selected 
#Written by Christy Rouault, February 2020 
 
import arcpy 
import numpy as np 
 
arcpy.env.overwriteOutput = True 
arcpy.env.workspace = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database' 
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Landslide_Day_w10 = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide 
Database\Landslide_Day_w10.shp' 
arcpy.MakeFeatureLayer_management(Landslide_Day_w10, 'LS_Day_w10_layer') 
outpath = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database' 
 
 
# Buffer areas of impact around landslides with more than 10 in a day with 20 km 
landslides = 'LS_Day_w10_layer' 
LSBuffer = "LS_Day_w10_buffer" 
distanceField = 20000 #buffer radius in metres 
arcpy.Buffer_analysis(landslides, LSBuffer, distanceField) 
 
 
# Add an ID field to the landslides to group multi-day events 
# arcpy.AddField_management(Landslide_Day_w10, "ID", "SHORT") 
with arcpy.da.UpdateCursor(Landslide_Day_w10, ['Date', 'ID']) as ID_cursor: 
    for x in ID_cursor: 
        if x[0] == 20150917: 
            x[1] = 1 
        elif x[0] == 20151126: 
            x[1] = 2 
        elif x[0] == 20151127: 
            x[1] = 2 
        elif x[0] == 20151205: 
            x[1] = 3 
        elif x[0] == 20151206: 
            x[1] = 3 
        elif x[0] == 20161015: 
            x[1] = 4 
        elif x[0] == 20161125: 
            x[1] = 5 
        elif x[0] == 20161204: 
            x[1] = 6 
        elif x[0] == 20161205: 
            x[1] = 6 
        elif x[0] == 20161230: 
            x[1] = 7 
        elif x[0] == 20170120: 
            x[1] = 8 
        elif x[0] == 20170126: 
            x[1] = 9 
        elif x[0] == 20170518: 
            x[1] = 10 
        elif x[0] == 20170724: 
            x[1] = 11 
        elif x[0] == 20171002: 
            x[1] = 12 
        elif x[0] == 20171123: 
            x[1] = 13 
        elif x[0] == 20171207: 
            x[1] = 14 
        elif x[0] == 20171223: 
            x[1] = 15 
        elif x[0] == 20180418: 
            x[1] = 16 
        elif x[0] == 20180926: 
            x[1] = 17 
        elif x[0] == 20190104: 
            x[1] = 18 
        elif x[0] == 20190606: 
            x[1] = 19 
        elif x[0] == 20190730: 
            x[1] = 20 
        elif x[0] == 20191204: 
            x[1] = 21 
        elif x[0] == 20191229: 
            x[1] = 22 
        else: 
            x[1] = 0 
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        ID_cursor.updateRow(x) 
 
# Within selected features, further select only those events which occur in the same event as 10 other 
landslides 
ID_vals = np.arange(1, 23) 
ls_count = [0]*len(ID_vals) 
index = 0 
ID_of_interest = [] 
LS_in_envelope_count = [] 
LS_envelope_ID = [] 
for i in ID_vals: 
    arcpy.MakeFeatureLayer_management(Landslide_Day_w10, 'selection', """ "ID" = {} """.format(i)) 
    countS = str(arcpy.GetCount_management('selection')) 
    ls_count[index] = int(countS) 
    if ls_count[index] > 9: 
        ID_of_interest.append(int(i)) 
    index = index + 1 
ID_of_interest.append(4)    # add event from this date due for geographic coverage (Troms) 
ID_of_interest.sort() 
 
# selects only features that overlap with events in the same event using hand-drawn polygons 
Cluster_PYG = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Cluster_PYG.shp' 
arcpy.MakeFeatureLayer_management(Cluster_PYG, 'Cluster_PYG_layer') 
outpath = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Results\LS_Polygons.shp' 
 
for i in ID_vals: 
    arcpy.MakeFeatureLayer_management(Landslide_Day_w10, 'Landslide_{}', """ "ID" = {} """.format(i)) 
    # arcpy.SelectLayerByLocation_management('Landslide_{}', "INTERSECT", 'Landslide_{}', "", 
"NEW_SELECTION") 
    # Create envelope around landslides that are overlapping if there are more than 4 events overlapping 
    arcpy.SelectLayerByAttribute_management('Cluster_PYG_layer', "NEW_SELECTION", """ "ID" = {} 
""".format(i)) 
    arcpy.MakeFeatureLayer_management('Cluster_PYG_layer', 'Cluster_PYG_layer_{}', """ "ID" = {} 
""".format(i)) 
    arcpy.SelectLayerByLocation_management('Landslide_{}', "INTERSECT", 'Cluster_PYG_layer_{}', "", 
"NEW_SELECTION") 
    count = str(arcpy.GetCount_management('Landslide_{}')) 
    count = int(count) 
    if count > 3: 
        landslides = 'Landslide_{}' 
        LSBuffer = "{}_Envelope".format(i) 
        distanceField = 20000 #buffer radius in metres 
        sideType = "FULL" 
        endType = "FLAT" 
        dissolveType = "LIST" 
        dissolveField = "ID" 
        arcpy.Buffer_analysis(landslides, LSBuffer, distanceField, sideType, endType, dissolveType, 
dissolveField) 
        LS_in_envelope_count.append(int(count)) 
        LS_envelope_ID.append(int(i)) 
    else: 
        LS_in_envelope_count.append("None") 
        LS_envelope_ID.append("None") 
 
arcpy.Append_management(["1_Envelope.shp", "2_Envelope.shp", "3_Envelope.shp", "4_Envelope.shp", 
"5_Envelope.shp", "6_Envelope.shp", "7_Envelope.shp", "8_Envelope.shp", "9_Envelope.shp", 
"10_Envelope.shp", "11_Envelope.shp", "12_Envelope.shp", "13_Envelope.shp", "14_Envelope.shp", 
"15_Envelope.shp", "16_Envelope.shp", "17_Envelope.shp", "18_Envelope.shp", "19_Envelope.shp", 
"20_Envelope.shp", "21_Envelope.shp", "22_Envelope.shp"], outpath) 
# TESTS 
print ID_of_interest 
print len(ID_of_interest) 
print LS_in_envelope_count 
print len(LS_in_envelope_count) 
print LS_envelope_ID 
print len(LS_envelope_ID) 
print ID_vals 
print len(ID_vals) 
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#Determine Susceptibility Class of landslides 
#Written by Christy Rouault, March 2020 
 
import arcpy 
import numpy as np 
 
arcpy.env.overwriteOutput = True 
arcpy.env.workspace = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Analysis' 
outpath = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Analysis' 
 
S_CL_Map = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Geology\Catchment Level Susceptibility 
Mapping\Norway_ls_susc_Regine_complete.shp' 
#LS_points = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Landslide_Day_w10.shp' 
NDVI_pyg = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide 
Database\Results\S2_Polygons_Merge2.shp' 
arcpy.MakeFeatureLayer_management(NDVI_pyg, 'NDVI_pyg_layer') 
#arcpy.MakeFeatureLayer_management(LS_points, 'LS_points_layer') 
classes = ['very high', 'high', 'medium', 'low'] 
arcpy.AddField_management('NDVI_pyg_layer', "Sus_Cl", "TEXT") 
 
# Check which points intersects catchment level susceptibility and add an attribute with L/M/H/VH 
for x in classes: 
    arcpy.MakeFeatureLayer_management(S_CL_Map, 'S_CL_Map_layer', """ "susc_class" = '{}' """.format(x)) 
    arcpy.SelectLayerByLocation_management('NDVI_pyg_layer', "INTERSECT", 'S_CL_Map_layer', "", 
"NEW_SELECTION") 
    arcpy.FeatureClassToFeatureClass_conversion('NDVI_pyg_layer', outpath, 'LS_susc_{}'.format(x)) 
    class_count = arcpy.GetCount_management('NDVI_pyg_layer') 
    print class_count 
    with arcpy.da.UpdateCursor('NDVI_pyg_layer', ['Sus_Cl']) as S_cursor: 
        for i in S_cursor: 
            i[0] = '{}'.format(x) 
            S_cursor.updateRow(i) 
 

#Determine Geology of landslides 
#Written by Christy Rouault, March 2020 
 
import arcpy 
import numpy as np 
 
arcpy.env.overwriteOutput = True 
arcpy.env.workspace = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Analysis' 
outpath = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Analysis' 
 
Geol_Map = r'C:\Users\crouault\Documents\4 
NTNU\Thesis\Data\Geology\LosmasseN1000\LosmFlate_N1000_20200227.shp' 
arcpy.MakeFeatureLayer_management(Geol_Map, 'Geol_Map_layer') 
LS_points = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Landslide_Day_w10.shp' 
arcpy.MakeFeatureLayer_management(LS_points, 'LS_points_layer') 
NDVI_pyg = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide 
Database\Results\S2_Polygons_Merge2.shp' 
arcpy.MakeFeatureLayer_management(NDVI_pyg, 'NDVI_pyg_layer') 
geology = [14, 0, 31, 50, 73, 41, 42, 11, 81, 90] 
arcpy.AddField_management('NDVI_pyg_layer', "Geology", "TEXT") 
 
# Check which poolygons intersects with geology map 
print 'polygons' 
for x in geology: 
    arcpy.MakeFeatureLayer_management(Geol_Map, 'Geol_Map_layer', """ "jordart" = {} """.format(x)) 
    arcpy.SelectLayerByLocation_management('NDVI_pyg_layer', "WITHIN", 'Geol_Map_layer', "", 
"NEW_SELECTION") 
    #arcpy.FeatureClassToFeatureClass_conversion('NDVI_pyg_layer', outpath, 'Geol_{}'.format(x)) 
    class_count = arcpy.GetCount_management('NDVI_pyg_layer') 
    print class_count 
    #with arcpy.da.UpdateCursor('NDVI_pyg_layer', ['Geology']) as S_cursor: 
     #   for i in S_cursor: 
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      #      i[0] = {}.format(x) 
       #     S_cursor.updateRow(i) 
 
# Check which pointss intersects with geology map 
print 'points' 
for x in geology: 
    arcpy.MakeFeatureLayer_management(Geol_Map, 'Geol_Map_layer', """ "jordart" = {} """.format(x)) 
    arcpy.SelectLayerByLocation_management('LS_points_layer', "WITHIN", 'Geol_Map_layer', "", 
"NEW_SELECTION") 
    class_count = arcpy.GetCount_management('LS_points_layer') 
    print class_count 
 

#Determine distance from landslide to the nearest road 
#Written by Christy Rouault, March 2020 
 
import arcpy 
 
arcpy.env.overwriteOutput = True 
arcpy.env.workspace = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Analysis' 
outpath = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Analysis' 
 
Roads = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Results\vbase_Road_Merge.shp' 
arcpy.MakeFeatureLayer_management(Roads, 'Roads_layer') 
LS_points = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide Database\Landslide_Day_w10.shp' 
arcpy.MakeFeatureLayer_management(LS_points, 'LS_points_layer') 
LS_polygons = r'C:\Users\crouault\Documents\4 NTNU\Thesis\Data\Landslide 
Database\Results\2_S2_Polygon.shp' 
arcpy.MakeFeatureLayer_management(LS_polygons, 'LS_polygon_layer') 
 
# Check if each landslide points intersects roads with a 10 m buffer 
 
 
LS_count = arcpy.GetCount_management('LS_polygon_layer') 
arcpy.SelectLayerByLocation_management('LS_polygon_layer', "WITHIN_A_DISTANCE", 'Roads_layer', "10 
meters", "NEW_SELECTION") 
Road_int_count = arcpy.GetCount_management('LS_polygon_layer') 
print LS_count 
print Road_int_count 
 
arcpy.SelectLayerByLocation_management('LS_polygon_layer', "WITHIN_A_DISTANCE", 'Roads_layer', "25 
meters", "NEW_SELECTION") 
Road_int_count = arcpy.GetCount_management('LS_polygon_layer') 
print Road_int_count 
 
arcpy.SelectLayerByLocation_management('LS_polygon_layer', "WITHIN_A_DISTANCE", 'Roads_layer', "50 
meters", "NEW_SELECTION") 
Road_int_count = arcpy.GetCount_management('LS_polygon_layer') 
print Road_int_count 
 
arcpy.SelectLayerByLocation_management('LS_polygon_layer', "WITHIN_A_DISTANCE", 'Roads_layer', "100 
meters", "NEW_SELECTION") 
Road_int_count = arcpy.GetCount_management('LS_polygon_layer') 
print Road_int_count 
 
arcpy.SelectLayerByLocation_management('LS_polygon_layer', "WITHIN_A_DISTANCE", 'Roads_layer', "200 
meters", "NEW_SELECTION") 
Road_int_count = arcpy.GetCount_management('LS_polygon_layer') 
print Road_int_count 
 
arcpy.SelectLayerByLocation_management('LS_polygon_layer', "WITHIN_A_DISTANCE", 'Roads_layer', "1000 
meters", "NEW_SELECTION") 
Road_int_count = arcpy.GetCount_management('LS_polygon_layer') 
print Road_int_count 
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Figure A1. Landslides Registered in NVE database on dates of selected case studies, including those 
outside of clusters, identified by .  
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Landslide ID Type Time noyTidspkt noyPosisjo regStatus ID dNDVI InSAR 
7911766B-B05E-4AE8-881F-

 
140 20150917 Eksakt Eksakt Godkjent kvalitet C 1 D D 

C72B0094-470E-44CC-B566-
 

140 20150917 Eksakt Eksakt Godkjent kvalitet C 1 D D 
EC395ABB-0FD8-410D-91FA-

 
140 20150917 Ukjent nar pa 

 
Eksakt Godkjent kvalitet C 1 M N 

E87BEB46-95CB-4AD6-B0B2-
 

144 20150917100000 Eksakt Ikke reg Registrert 1 NA NA 
C3223833-511A-4A2C-B61F-

 
144 20150917100000 Eksakt Ikke reg Registrert 1 NA NA 

696A7AAE-DBD3-44C6-8D6B-
 

144 20150917092800 Eksakt Ikke reg Registrert 1 NA NA 
87F0ACFE-FE7F-4C24-B775-

 
144 20150917092800 Eksakt Ikke reg Registrert 1 NA NA 

4E3D1212-E4AE-41F9-9006-
 

144 20150917135400 Eksakt Ikke reg Registrert 1 NA NA 
C596F2DE-23E5-4A18-B4AD-

 
140 20150917 Ukjent nar pa 

 
Eksakt Godkjent kvalitet C 1 NA NA 

1DC33EC2-663D-465C-9D08-
 

140 20150917 Ukjent nar pa 
 

Eksakt Godkjent kvalitet C 1 NA NA 
B3122AA4-E66E-4038-93E3-

 
144 20150917120200 Eksakt Ikke reg Registrert 1 N N 

10EFE29C-BCF4-4688-A1C4-
 

144 20150917110600 Eksakt Ikke reg Registrert 1 N N 
CD76C2BE-5E96-49EE-9900-

 
142 20151127203000 Eksakt Ikke reg Registrert 2 M N 

7188E8A0-AB13-4FEE-BEF1-
 

144 20151127203000 1 time Ikke reg Registrert 2 D D 
518794F7-CBFA-42CC-AD2B-

 
140 20151126 Eksakt Eksakt Godkjent kvalitet C 2 D D 

2CEAD8FE-66DC-47F5-8147-
 

140 20151127 Eksakt 50 m Godkjent kvalitet C 2 D D 
64C37B20-274B-4FCF-B212-

 
144 20151127173000 1 time Eksakt Godkjent kvalitet B 2 M N 

C3FE1BB7-7344-4394-AD52-
 

142 20151127010000 Eksakt Ikke reg Registrert 2 NA NA 
C3E308F2-BA62-4E5F-8F29-

 
142 20151126203000 Eksakt 50 m Godkjent kvalitet B 2 NA NA 

A13F72FA-213F-4B6F-8583-
 

142 20151126220000 Eksakt 50 m Godkjent kvalitet B 2 NA NA 
F1B30FC3-0A21-4A7A-95B3-

 
142 20151126220000 Eksakt 50 m Godkjent kvalitet B 2 NA NA 

F04F4597-136C-4DB3-B3E7-
 

142 20151127143000 1 time Eksakt Godkjent kvalitet B 2 Y N 
D331A134-94EA-4265-ABFD-

 
140 20151127065100 Eksakt 10 m Godkjent kvalitet C 2 M NA 

D71283CD-B6A6-47E6-A5FB-
 

140 20151127065800 Eksakt 10 m Godkjent kvalitet C 2 M NA 
163AE39D-3048-4692-9F27-

 
140 20151127093500 Eksakt Eksakt Godkjent kvalitet C 2 M N 

B4907FF5-D525-4FFD-B7D9-
 

140 20151127082300 Eksakt Eksakt Godkjent kvalitet C 2 N NA 
431B459A-61BC-4CE2-A3D3-

 
140 20151126080000 30 min 10 m Godkjent kvalitet C 2 N NA 

2D6B16B4-369A-49F4-A152-
 

140 20151126 Eksakt Eksakt Godkjent kvalitet C 2 N NA 
9C109C6F-7F6A-422B-B0E4-

 
140 20151127082300 12 timer Eksakt Godkjent kvalitet C 2 N NA 

67FCA6B4-DBB1-4C22-99A2-
 

140 20151126 Ukjent nar pa 
 

Eksakt Godkjent kvalitet C 2 N NA 
013A5A4C-9720-4437-BA90-

 
140 20151126 Ukjent nar pa 

 
10 m Godkjent kvalitet C 2 N  

2D36A6B4-E7C4-4E81-8872-
 

133 20151127124400 Ikke registrert 10 m Registrert 2 NA NA 
797542E2-F8E0-4329-AD13-

 
144 20151126210000 Eksakt 1000 m Godkjent kvalitet C 2 NA NA 

EA91C6B0-347C-4710-9951-
 

144 20151126090000 1 dag Ikke reg Registrert 2 NA NA 
C7EDBDFB-23E2-4CFB-95A7-

 
144 20151127 1 dag Ikke reg Godkjent kvalitet C 2 NA NA 

076D5E29-3AC3-4672-BA4B-
 

144 20151127185500 1 time Ikke reg Registrert 2 NA NA 
DB57F928-6E3B-44E8-8FD1-

 
144 20151127180029 4 timer Ikke reg Registrert 2 NA NA 

B5F2325F-0FA1-44C8-9EB7-
 

144 20151127154600 Eksakt Ikke reg Registrert 2 NA NA 
EEAC934A-3C22-4B13-983A-

 
144 20151127183500 Eksakt Ikke reg Registrert 2 NA NA 

3E8A0D40-1BA9-480A-BEBC-
 

140 20151127 Eksakt 10 m Godkjent kvalitet C 2 NA NA 
6AB0F6CB-1311-4B32-99DB-

 
140 20151127 Eksakt 5000 m Godkjent kvalitet C 2 NA NA 

E11EF3D9-2915-4B62-B985-
 

140 20151127010000 30 min Eksakt Godkjent kvalitet C 2 NA NA 
9A607753-2E15-4FEC-AAF0-

 
140 20151127 Eksakt 10 m Godkjent kvalitet C 2 NA NA 

BB27980C-23F2-4A9C-9BD6-
 

144 20151126215400 Eksakt 50 m Godkjent kvalitet B 2 Y N 
427A9707-10F4-4164-9FF9-

 
133 20151126180000 12 timer Ikke reg Registrert 2 N N 

DD5EA755-A111-4DE3-BA4D-
 

144 20151127090000 12 timer Ikke reg Godkjent kvalitet C 2 N NA 
BFA66D5F-35B9-437D-9F4C-

 
142 20151127001000 Eksakt Ikke reg Registrert 2 Y M 

ED847045-0EB6-4DAF-8E36-
 

144 20151126080000 1 dag Ikke reg Godkjent kvalitet C 2 Y M 
E9013D28-B170-4647-8A5B-

 
144 20151206 Eksakt Ikke reg Registrert 3 M   

FD35B743-DCB8-4BCA-8837-
 

144 20151205040000 4 timer Eksakt Godkjent kvalitet A 3 D   
80DE0DAA-68FF-4336-93ED-

 
140 20151205 Ukjent nar pa 

 
Eksakt Godkjent kvalitet C 3 D   

D39D03D1-21B0-4B09-9CCA-
 

140 20151206 Ukjent nar pa 
 

Eksakt Godkjent kvalitet C 3 D   
BAE0E43B-48B4-4853-807A-

 
140 20151206 30 min Eksakt Godkjent kvalitet C 3 D   

CEA6E393-DED7-4C43-93DF-
 

140 20151206 30 min Eksakt Godkjent kvalitet C 3 D   
46709102-037C-43ED-810C-

 
142 20151205110000 1 time 10 m Godkjent kvalitet C 3 NA   

0B6A2CD2-AE8D-437C-8DB2-
 

142 20151206060000 12 timer 50 m Godkjent kvalitet B 3 NA   
E0658259-1400-4020-9937-

 
142 20151205090000 4 timer 1000 m Godkjent kvalitet C 3 NA   

3F1066D5-2929-43AE-82B9-
 

142 20151205052900 4 timer 50 m Godkjent kvalitet B 3 NA   
9EF21484-9D8B-4BFD-93CC-

 
144 20151205040000 4 timer Eksakt Registrert 3 N   

438154CD-0DC3-4D4A-B71F-
 

144 20151206120000 Eksakt Ikke reg Registrert 3 N   
0FF42562-725A-42F3-A3B8-

 
142 20151205093000 30 min 10 m Godkjent kvalitet B 3 NA   

10B6BAC9-3A95-42F2-9543-
 

140 20151205024100 4 timer 5000 m Registrert 3 N   
F2AD7B16-20CC-404E-B4FC-

 
142 20151205060000 4 timer 500 m Godkjent kvalitet B 3 NA   

3AF7AAE5-8C47-405D-A25A-
 

140 20151205 Ukjent nar pa 
 

Eksakt Godkjent kvalitet C 3 N   
00F4DA9E-C40C-4803-81A0-

 
140 20151206051500 Eksakt Eksakt Godkjent kvalitet C 3 N   

55485F82-4535-4FFC-A6BA-
 

144 20151206230000 Eksakt Ikke reg Registrert 3 N   
D895D9A7-06E9-41BB-AD98-

 
133 20151205105800 12 timer Ikke reg Registrert 3 NA   

6803A83E-CA26-4105-9F58-
 

144 20151205135816 Eksakt Ikke reg Registrert 3 NA   
31B5A3F4-3E53-45F1-8D20-

 
144 20151205090000 Eksakt Ikke reg Godkjent kvalitet C 3 NA   

13CEEE46-E418-445C-9127-
 

144 20151206000052 Eksakt Ikke reg Registrert 3 NA   
51572960-2289-4705-AE56-

 
144 20151205030000 12 timer Eksakt Godkjent kvalitet A 3 NA   

D8C598B6-5247-401C-9E91-
 

144 20151205120000 12 timer 1000 m Registrert og 
 

3 NA   
15E21DDA-5923-4388-B58B-

 
140 20151205053900 Eksakt 50 m Godkjent kvalitet C 3 NA   

3452503E-A3F0-446A-B5B9-
 

133 20151205 12 timer Eksakt Godkjent kvalitet B 3 NA   
74745F2E-CD6F-40D5-9000-

 
133 20151205103000 Eksakt 50 m Godkjent kvalitet B 3 NA   

650DFE77-013F-4EE7-B589-
 

133 20151205073400 1 time 100 m Godkjent kvalitet C 3 NA   
BF096A6B-CCD5-4672-89BF-

 
144 20151205 Eksakt Ikke reg Registrert og 

 
3 NA   

85E002A5-3D71-4C0F-8274-
 

133 20151205 12 timer Eksakt Godkjent kvalitet A 3 NA   
51D22A0A-9980-42AF-80E5-

 
133 20151205090000 12 timer Eksakt Godkjent kvalitet B 3 NA   

7BC5942D-05C1-4264-A4DC-
 

140 20151205 Ukjent nar pa 
 

10 m Godkjent kvalitet C 3 NA   
2AACFF8B-4D43-4627-A4C8-

 
140 20151205090000 4 timer 500 m Godkjent kvalitet C 3 NA   

D4C32598-7670-4B0F-8E27-
 

140 20151206 30 min Eksakt Godkjent kvalitet C 3 NA   
6332D3FB-8849-4ED3-8051-

 
144 20151205 Eksakt Ikke reg Registrert 3 N   

24E94625-F68C-4A90-98A6-
 

144 20151205120000 12 timer Ikke reg Registrert 3 N   
0CA6C132-2558-4D5C-8C93-

 
142 20161125220000 Eksakt Ikke reg Godkjent kvalitet C 4 M  

B9615339-8086-47EC-B2E4-36EFB8F4F027 140 20161125223000 Eksakt 10 m Godkjent kvalitet B 4 M  
77DBE730-0A84-4BDA-B63E-

 
142 20161125213000 15 min 1000 m Godkjent kvalitet C 4 M  

133C145C-61E9-44DD-807E-
 

142 20161125190000 4 timer 500 m Godkjent kvalitet C 4 NA  
73180EE8-C350-4F0F-9B70-

 
142 20161125060000 1 time 50 m Godkjent kvalitet A 4 NA  

21BD827E-FE68-4EF6-BC2E-
 

142 20161125 Ukjent nar pa 
 

50 m Godkjent kvalitet B 4 N  
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Landslide ID Type Time noyTidspkt noyPosisjo regStatus ID dNDVI InSAR 
9B9D4324-A852-4BE7-8FBC-

 
133 20161125170000 4 timer Ikke reg Registrert 4 NA  

2B048FCB-8E7F-4602-8A8F-
 

133 20161125170000 4 timer Eksakt Godkjent kvalitet B 4 NA  
85E9717C-44A3-4BE6-B917-

 
144 20161125180000 4 timer 10 m Godkjent kvalitet B 4 NA  

DEBF1FE3-BE52-4C09-BF19-
 

140 20161125 Eksakt Eksakt Godkjent kvalitet C 4 NA  
D8EFF615-7942-420A-8F89-

 
142 20161125220000 Eksakt Ikke reg Godkjent kvalitet C 4 N  

ED0BB870-0183-421E-8D8E-
 

142 20161205100000 4 timer Ikke reg Godkjent kvalitet C 5 M  
E99E99EF-AB20-4AD8-B8B7-

 
133 20161205050000 Ikke registrert Eksakt Registrert 5 M  

1B1BCADD-879D-486D-8896-
 

144 20161205140100 Eksakt 50 m Godkjent kvalitet B 5 M  
7D4033AA-0928-4AEB-9E8C-

 
144 20161204 Eksakt 50 m Godkjent kvalitet B 5 N  

BDBCAE21-FF8A-431D-8656-
 

140 20161205140000 30 min Eksakt Godkjent kvalitet B 5 N  
5711F824-50D1-400B-80F6-

 
142 20161204150000 4 timer 500 m Godkjent kvalitet C 5 NA  

87C8C22A-B914-4406-AC41-
 

142 20161204180000 4 timer Ikke reg Godkjent kvalitet C 5 NA  
268BBD30-1A3C-4654-8635-

 
142 20161204200000 4 timer Ikke reg Godkjent kvalitet C 5 NA  

9947A59C-A149-4907-A7CE-
 

142 20161204200000 30 min 50 m Godkjent kvalitet B 5 NA  
0F6D2D0A-BDE8-4670-98E8-

 
142 20161204200000 1 time Ikke reg Godkjent kvalitet C 5 NA  

AEF702B9-2293-4367-8A15-
 

140 20161204 Eksakt Eksakt Godkjent kvalitet C 5 NA  
53247770-8CEC-46A4-A49C-

 
140 20161204 Eksakt 50 m Godkjent kvalitet C 5 NA  

C8C5AB0E-42C3-46C7-BF5B-
 

140 20161205 Ukjent nar pa 
 

Eksakt Godkjent kvalitet C 5 NA  
0CF1D03A-D793-4064-A288-

 
140 20161204173000 Eksakt Eksakt Godkjent kvalitet C 5 NA  

D8F93E9C-E895-45B2-8B33-
 

140 20161205112400 Eksakt Eksakt Godkjent kvalitet C 5 NA  
21948F15-D825-45FA-BF91-

 
140 20161205133000 Eksakt 50 m Godkjent kvalitet C 5 NA  

BD7F9B11-44A8-4FF3-9AB5-
 

140 20161205080000 30 min 50 m Godkjent kvalitet C 5 NA  
959A5927-D221-4135-A487-

 
144 20161205 12 timer Ikke reg Godkjent kvalitet C 5 NA  

A24CEF1A-164E-4A4A-9D34-
 

144 20161204220000 12 timer 50 m Godkjent kvalitet B 5 NA  
29BCD7C1-0AC3-4BCD-85B4-

 
144 20161204173000 Eksakt Ikke reg Registrert 5 NA  

A9E0E43D-7D7C-407D-811E-
 

144 20161205 1 dag Eksakt Godkjent kvalitet C 5 NA  
E02FA5E5-4F9B-476A-A8D0-

 
144 20161204210028 12 timer 10 m Registrert 5 NA  

858B6E7D-08DC-47FB-81CF-
 

144 20161205000018 Eksakt Ikke reg Registrert 5 NA  
DF6BC832-FBA7-40D0-B197-

 
142 20161204200000 30 min 50 m Godkjent kvalitet B 5 NA  

D5CFE33E-55CE-41D4-A990-
 

142 20161205060000 Eksakt Ikke reg Godkjent kvalitet B 5 NA  
31149E54-E89A-49D1-A68F-

 
142 20161205040000 30 min 10 m Godkjent kvalitet C 5 NA  

70B0BD2C-519C-4345-8F9F-
 

142 20161205100900 Eksakt Ikke reg Godkjent kvalitet C 5 N  
A0BDC24D-A81B-4DBF-9F7B-

 
144 20161204160000 Eksakt Ikke reg Godkjent kvalitet B 5 NA  

10D8767F-F15E-4F66-9797-
 

144 20161205060000 Eksakt Ikke reg Godkjent kvalitet B 5 NA  
21192D3E-0E8C-4534-9ED1-

 
144 20161204145100 Eksakt Ikke reg Godkjent kvalitet B 5 NA  

EC832B0C-C92C-45B6-889E-
 

144 20161205040000 Eksakt 10 m Godkjent kvalitet A 5 NA  
99D96BBE-4EF9-433C-B862-

 
144 20161205120000 12 timer 10 m Godkjent kvalitet A 5 NA  

36000669-E468-4CF3-A62D-
 

144 20161205040000 12 timer 10 m Godkjent kvalitet A 5 NA  
D6A25823-3538-4549-AABA-

 
144 20161205040000 30 min 10 m Godkjent kvalitet A 5 NA  

3CAD8ED8-743B-4E59-8C0F-
 

144 20161205050000 30 min 50 m Godkjent kvalitet B 5 NA  
B163C410-BF43-4FF5-81AF-

 
140 20161230 Eksakt 10 m Godkjent kvalitet C 6 M   

F7460E9F-7D07-4A84-A359-
 

140 20161230 Eksakt 10 m Godkjent kvalitet C 6 N   
B6F57A6D-C526-44DC-BA53-

 
140 20161230 30 min 50 m Godkjent kvalitet C 6 N   

816534FB-F5B8-4147-A9A0-
 

133 20161230140000 Ikke registrert 10 m Registrert 6 NA   
AC7D2FB2-0684-46AC-8937-

 
140 20161230 30 min Eksakt Godkjent kvalitet C 6 NA   

8F8D9329-E46C-4A71-A1F2-
 

140 20161230060000 Ukjent nar pa 
 

10 m Godkjent kvalitet C 6 NA   
161BD9C6-7058-4026-8474-

 
140 20161230 Eksakt Eksakt Godkjent kvalitet C 6 NA   

F247C084-736E-49A4-9E36-
 

140 20161230014000 Eksakt 10 m Godkjent kvalitet C 6 NA   
E0D8AE10-755E-4A97-8945-

 
140 20161230 Ukjent nar pa 

 
50 m Godkjent kvalitet B 6 NA   

6BEF5BD4-2362-47CE-80C0-
 

133 20161230 Ukjent nar pa 
 

Eksakt Godkjent kvalitet B 6 NA   
2A6838C9-7617-4983-9903-

 
140 20161230104300 Eksakt Eksakt Godkjent kvalitet C 6 NA   

58C5D746-9CBB-4A69-9876-
 

144 20161230100000 Eksakt Ikke reg Registrert 6 NA   
43D97D45-342C-41CB-AD69-

 
144 20161230104300 Eksakt Ikke reg Registrert 6 NA   

802C1F06-4BDC-499B-B41B-
 

144 20161230014000 Eksakt Ikke reg Registrert 6 NA   
F1518DA9-34D0-4FDD-B9E1-

 
142 20161230111500 4 timer Eksakt Godkjent kvalitet B 6 NA   

2CD72B31-4165-4134-BEC7-
 

142 20161230113000 30 min Eksakt Godkjent kvalitet A 6 NA   
D838BFBC-BF31-41A3-BB2A-

 
142 20161230110000 4 timer Eksakt Godkjent kvalitet B 6 NA   

C0492D20-D98B-4891-A901-
 

142 20161230133000 10 min Eksakt Godkjent kvalitet B 6 Y   
25A203EC-4EFD-4FFB-B0C2-

 
144 20161230123200 12 timer Eksakt Godkjent kvalitet A 6 NA   

5D1056CB-0703-46E0-AE5C-
 

144 20170120060000 30 min Eksakt Godkjent kvalitet A 7 M   
4E9F0086-AF0F-43E6-8AFE-0C24C4CF80E6 144 20170120 12 timer Eksakt Godkjent kvalitet A 7 N  

83AE2CC9-8833-40C9-85C7-
 

140 20170120 Ukjent nar pa 
 

10 m Godkjent kvalitet C 7 N  
B48B4446-5E30-45A0-AD33-

 
140 20170120100000 30 min 10 m Godkjent kvalitet C 7 N  

FA94E920-870C-4D45-9787-
 

140 20170120080000 30 min 10 m Godkjent kvalitet C 7 NA  
67479095-7466-455E-83B1-

 
140 20170120040000 30 min Eksakt Godkjent kvalitet C 7 NA  

CD0AAD35-ADA8-4438-A9E7-
 

142 20170120090000 Eksakt Ikke reg Registrert 7 NA  
5A634ED9-5F2A-435A-BBC7-

 
142 20170120120000 12 timer Ikke reg Godkjent kvalitet C 7 N  

9B37EFE3-0C52-4643-A84A-
 

142 20170120120000 12 timer Ikke reg Godkjent kvalitet C 7 N  
BB187284-4BA7-4D1B-A670-

 
142 20170120040000 Ukjent nar pa 

 
100 m Godkjent kvalitet C 7 N  

4EE3852B-0148-4368-8171-
 

140 20170120110000 30 min 50 m Godkjent kvalitet C 7 NA  
7F004324-3656-4B3F-8B45-

 
144 20170126053800 Eksakt Ikke reg Registrert 8 M   

D972EAC1-21AF-4E5C-A838-
 

140 20170126112400 Eksakt Eksakt Godkjent kvalitet C 8 D   
27631745-39FC-4811-8842-

 
140 20170126075100 Eksakt 50 m Godkjent kvalitet C 8 D   

A71208C1-F5A9-425E-BC66-
 

140 20170126053800 Eksakt 50 m Godkjent kvalitet C 8 D   
E8D644B4-1DCE-4E02-98CF-

 
144 20170126075100 Eksakt Ikke reg Registrert 8 N   

21D8F344-8DD1-42D8-AB7C-
 

144 20170126112400 Eksakt Ikke reg Registrert 8 N   
90AAABC8-B462-4B6F-B71A-

 
140 20170126032300 Eksakt 10 m Godkjent kvalitet C 8 N   

A53B87E3-7811-47EE-B4ED-
 

140 20170126 Eksakt Eksakt Godkjent kvalitet C 8 NA   
2945EE00-0EA4-408E-B2C8-

 
140 20170126000600 Eksakt 50 m Godkjent kvalitet C 8 NA   

AA99E63D-BED6-442D-844B-
 

140 20170126080200 Eksakt 50 m Godkjent kvalitet C 8 NA   
209B5028-FD6F-4608-8986-

 
140 20170126100900 Eksakt 10 m Godkjent kvalitet C 8 NA   

6A67A400-C5BD-4DC6-8FC3-
 

140 20170126010000 30 min Eksakt Godkjent kvalitet C 8 NA   
5508AA9A-D7BA-46DF-9B2C-

 
144 20170126230000 Eksakt Ikke reg Registrert 8 NA   

DADE1E69-190C-4FAC-945E-
 

144 20170126102200 Eksakt Ikke reg Registrert 8 NA   
2CAD7861-E028-466D-9BD9-

 
144 20170126010000 Eksakt Ikke reg Registrert 8 NA   

F3B7ABA5-D270-4187-8294-
 

144 20170126080200 Eksakt Ikke reg Registrert 8 NA   
D7559800-66DD-4334-936E-

 
140 20170126032500 Eksakt Eksakt Godkjent kvalitet C 8 Y   

72943879-10F5-4567-9E12-
 

144 20170518000013 Eksakt Ikke reg Registrert 9 N   
2B759847-9205-48B0-9EB9-

 
144 20170518000046 Eksakt Ikke reg Registrert 9 D   

750FC2CB-F79A-4336-AA4F-
 

144 20170518000057 Eksakt Ikke reg Registrert 9 D   
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FDF7E2F0-F7B7-4F7B-B2DA-

 
144 20170518000035 Eksakt Ikke reg Registrert 9 N   

916E0141-C919-4FC1-B0E8-F3FB2EF5629E 144 20170518000042 Eksakt Ikke reg Registrert 9 N   
9AFDE450-06D2-4766-ADB6-

 
144 20170518000045 Eksakt Ikke reg Registrert 9 N   

27B8E9C2-B4FF-485B-B5B4-
 

144 20170518000057 Eksakt Ikke reg Registrert 9 N   
72B6F735-9F28-436A-8A27-

 
144 20170518000048 Eksakt Ikke reg Registrert 9 N   

D0FC6E47-FD4D-4BC0-AFFC-
 

144 20170518000052 Eksakt Ikke reg Registrert 9 N   
786F3360-4581-4822-9333-

 
142 20170518120000 12 timer 10 m Godkjent kvalitet A 9 NA  

2D091467-882A-4270-B6F3-
 

140 20170518 Ukjent nar pa 
 

10 m Godkjent kvalitet C 9 NA  
E236773C-2076-44FA-A1DD-

 
140 20170724013000 Eksakt Eksakt Godkjent kvalitet C 10 M  

85884C50-834B-4F2D-96ED-
 

140 20170724012700 Eksakt Eksakt Godkjent kvalitet C 10 M  
27919135-C1AF-4BC1-90D6-

 
140 20170724013000 Eksakt Eksakt Godkjent kvalitet C 10 M  

8F6684CC-EF57-4603-81B0-
 

140 20170724013000 Eksakt 10 m Godkjent kvalitet C 10 M  
D16FD90F-0B71-4594-9639-

 
140 20170724013000 Eksakt Eksakt Godkjent kvalitet C 10 N  

68DDC8FF-7D03-49A0-8CF4-
 

140 20170724013000 Eksakt 10 m Godkjent kvalitet C 10 N  
5BFC8924-67CE-4EA7-A32D-

 
140 20170724013000 Eksakt 50 m Godkjent kvalitet C 10 N  

51165437-C452-4DCC-B251-
 

140 20170724012900 Eksakt 500 m Godkjent kvalitet C 10 N  
A464C603-7051-48ED-B5CD-

 
144 20170724195000 Eksakt 10 m Godkjent kvalitet B 10 NA  

173A9592-23D4-4309-913A-
 

142 20170724060000 4 timer 1000 m Registrert 10 NA  
16D6EAEC-6E78-46B9-819E-

 
142 20170724003000 1 time Ikke reg Godkjent kvalitet C 10 NA  

6DCE6781-84A3-4301-A2CF-
 

140 20170724013000 Eksakt 10 m Godkjent kvalitet C 10 Y  
CE136F95-9EC4-4145-B696-

 
144 20170724013000 Eksakt Ikke reg Registrert 10 Y  

80F5000A-1389-4A46-AD80-
 

144 20171002120000 4 timer Ikke reg Godkjent kvalitet A 11 N  
77C38343-892F-4FF6-B83D-

 
144 20171002060000 30 min 10 m Godkjent kvalitet A 11 D  

8133233D-03EA-4E4B-8A18-
 

140 20171002 Ukjent nar pa 
 

Eksakt Godkjent kvalitet C 11 M  
5076EE53-4A30-4BC1-AFDC-

 
140 20171002 Ukjent nar pa 

 
Eksakt Godkjent kvalitet C 11 M  

B90CE240-EFF9-4D4C-822D-
 

140 20171002061100 Eksakt Eksakt Godkjent kvalitet C 11 M  
D331FA37-8E16-49C5-ABCF-

 
140 20171002131900 Eksakt Eksakt Godkjent kvalitet C 11 NA  

46C602D1-813B-4F78-A142-
 

140 20171002101300 Eksakt 10 m Godkjent kvalitet C 11 NA  
522317C0-A84E-45D9-8C1C-

 
140 20171002121000 Eksakt Eksakt Godkjent kvalitet C 11 NA  

B5FEE3EB-112D-47C8-B71C-
 

140 20171002114000 Eksakt 10 m Godkjent kvalitet C 11 NA  
4643142B-2CA4-4155-BE9D-

 
140 20171002080000 30 min Eksakt Godkjent kvalitet C 11 NA  

145D34C0-73A1-4D5C-A1FC-
 

140 20171002053700 Eksakt Eksakt Godkjent kvalitet C 11 NA  
E148D52D-F271-4791-AE5A-

 
140 20171002063600 Eksakt Eksakt Godkjent kvalitet C 11 NA  

4EA8D9B2-9E58-41AC-884E-
 

140 20171002150000 30 min 10 m Godkjent kvalitet C 11 NA  
97125981-EB60-4B5B-97E9-

 
140 20171002122000 Eksakt Eksakt Godkjent kvalitet C 11 NA  

753B3720-8DF1-4C2E-B5D1-
 

140 20171002170500 Eksakt 10 m Godkjent kvalitet C 11 NA  
BEEC730C-18B3-4556-B99F-

 
144 20171002041200 4 timer 500 m Registrert 11 NA  

F54FDE66-D0FB-4ECD-8EE3-
 

144 20171002050000 4 timer Ikke reg Registrert 11 NA  
393C05DB-8972-4797-97B7-

 
144 20171002050000 12 timer 1000 m Godkjent kvalitet A 11 NA  

582B23D7-65D4-408B-97BB-
 

144 20171002082800 12 timer Ikke reg Registrert 11 NA  
213C58F5-4764-46FB-A1BC-

 
140 20171002150800 Eksakt 10 m Godkjent kvalitet C 11 NA  

85D4977B-5FAD-46EC-B27B-
 

144 20171002 Eksakt Ikke reg Registrert 11 NA  
0086845E-0A06-4915-9F16-

 
142 20171002050000 1 time 500 m Registrert 11 NA  

E3B237BC-9142-4F95-B56F-
 

142 20171002041600 4 timer Ikke reg Registrert 11 NA  
4CF05A08-34C9-4755-BAFC-

 
142 20171002 12 timer Eksakt Godkjent kvalitet B 11 NA  

1ED5FADD-B618-4EFE-91C4-
 

142 20171002070000 1 time Eksakt Godkjent kvalitet B 11 NA  
80B072F3-9A7F-4FA4-AAD0-

 
142 20171002040000 4 timer Eksakt Godkjent kvalitet B 11 NA  

0CF6C22A-A469-4FE0-96F2-
 

140 20171002 Ukjent nar pa 
 

Eksakt Godkjent kvalitet C 11 NA  
E1447176-7A6F-44B9-AFFB-

 
140 20171002142100 Eksakt Eksakt Godkjent kvalitet C 11 NA  

B0EA0A1C-E56E-4315-9BAC-
 

140 20171002092200 Eksakt Eksakt Godkjent kvalitet C 11 NA  
E36AA0F6-82EE-4741-A5EF-

 
133 20171123073000 30 min Eksakt Godkjent kvalitet B 12 M  

D16EE0FE-E247-4585-8AAC-
 

140 20171123145400 Eksakt Eksakt Godkjent kvalitet C 12 M  
BEBA5161-A1DA-4829-964C-

 
133 20171123120000 12 timer 10 m Registrert 12 N   

DCF8A973-6BD8-44F5-9832-
 

133 20171123100000 30 min 500 m Registrert 12 N  
E6B602B0-1E1F-4C40-9C8E-

 
133 20171123120000 12 timer 10 m Registrert 12 N  

1EB89D4A-4319-4201-9CF1-
 

133 20171123073700 Ikke registrert Eksakt Registrert 12 Y  
B7523C34-1EE3-4202-AE45-

 
140 20171123110000 30 min Eksakt Godkjent kvalitet C 12 NA  

82FB424F-228F-4498-B059-
 

140 20171123045400 Eksakt Eksakt Godkjent kvalitet C 12 NA  
89FE319C-1780-4F1A-A01C-

 
140 20171123170100 Eksakt Eksakt Godkjent kvalitet C 12 NA  

7B34D7B7-8AB2-46CB-9BFB-
 

144 20171123110000 Eksakt Ikke reg Registrert 12 NA  
66AA1C2D-EF1F-418F-8641-

 
133 20171123073000 15 min 100 m Registrert 12 Y  

B32F86B4-9CCF-48C7-B3AB-
 

144 20171207110000 5 min Ikke reg Registrert og 
 

13 N  
B2A166DD-663D-4EB2-96FB-

 
144 20171207060000 1 dag Eksakt Godkjent kvalitet B 13 N  

1BF54803-525D-47A2-A302-
 

144 20171207 16 dager 10 m Godkjent kvalitet C 13 N  
C7D60733-2434-441A-88AF-

 
144 20171207 6 maneder 100 m Godkjent kvalitet C 13 N  

6820EE2C-2227-418D-B77A-
 

140 20171207070000 30 min 10 m Godkjent kvalitet C 13 N  
77BBB73A-68E4-4899-800D-

 
144 20171207110000 1 time Eksakt Godkjent kvalitet B 13 N  

6843E784-0B36-48DC-BA5D-
 

140 20171207092400 Eksakt Eksakt Godkjent kvalitet C 13 N  
4B08019B-AE60-4D14-8054-

 
140 20171207133000 Eksakt Eksakt Godkjent kvalitet C 13 N  

C5B64AB1-63E8-41A5-8513-
 

140 20171207110000 30 min Eksakt Godkjent kvalitet C 13 N  
F9882611-145A-47B9-A6D3-

 
140 20171207110600 Eksakt Eksakt Godkjent kvalitet C 13 N  

82950BB6-5C46-470D-BBF3-
 

140 20171207120700 Eksakt 50 m Godkjent kvalitet C 13 NA  
67DAE41A-1594-41B1-B629-

 
140 20171207215100 Eksakt 10 m Godkjent kvalitet C 13 NA  

B0137858-5E8A-407A-A691-
 

140 20171207070000 30 min Eksakt Godkjent kvalitet C 13 NA  
1A5479D6-5A7E-41AF-A4B4-

 
140 20171207094600 Eksakt Eksakt Godkjent kvalitet C 13 NA  

75693B83-8321-4721-9944-
 

144 20171207062500 Eksakt Eksakt Godkjent kvalitet A 13 NA  
F8BE1810-5C5E-416D-9EA8-

 
144 20171207112000 Eksakt Eksakt Godkjent kvalitet C 13 NA  

5BD31BBB-F69D-4611-B130-
 

140 20171207115300 Eksakt Eksakt Godkjent kvalitet C 13 NA  
7D8B2900-BD7B-4C71-9C84-

 
144 20171207100000 4 timer 1000 m Godkjent kvalitet C 13 NA  

9706B09A-D268-47EB-AD58-
 

144 20171207090000 4 timer 500 m Godkjent kvalitet C 13 NA  
D3AC23E4-FBB6-4616-8EF2-

 
142 20171207110000 Eksakt 100 m Godkjent kvalitet C 13 NA  

82E645E9-0E18-46EC-9564-
 

142 20171207110000 Eksakt 100 m Godkjent kvalitet C 13 NA  
A90BA486-BC25-4B60-8CA2-

 
142 20171207110000 12 timer 50 m Godkjent kvalitet B 13 N  

EAC0D872-DD1C-47ED-949C-
 

144 20171207154500 Eksakt Eksakt Godkjent kvalitet A 13 NA  
53251EA7-1F6C-443D-99C7-

 
144 20171223060000 12 timer Ikke reg Registrert og 

 
14 M  

2C889BD5-38AA-4ED3-8789-
 

144 20171223090000 12 timer 1000 m Godkjent kvalitet C 14 N  
530C5C48-B2C9-457A-9489-

 
144 20171223090000 12 timer 1000 m Godkjent kvalitet C 14 N  

7DD52B34-BABE-4389-9B39-
 

144 20171223140000 4 timer 1000 m Registrert 14 N  
FE348A43-D7F6-4C41-8AAA-

 
140 20171223100400 Eksakt Eksakt Godkjent kvalitet C 14 N  

61F1C5C4-2A02-4025-9549-
 

140 20171223125500 Eksakt 10 m Godkjent kvalitet C 14 NA  
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005C9B41-E387-401C-B5C5-

 
140 20171223 Ukjent nar pa 

 
50 m Godkjent kvalitet C 14 NA  

48C25964-023C-4478-B5EC-
 

140 20171223125200 Eksakt 10 m Godkjent kvalitet C 14 NA  
759671B8-B690-4ECE-9248-

 
140 20171223125600 Eksakt Eksakt Godkjent kvalitet C 14 NA  

435C3EF9-31C6-4EBF-8F54-
 

140 20171223124000 Eksakt Eksakt Godkjent kvalitet C 14 NA  
23BDE429-47F8-43C6-99C2-

 
140 20171223030000 4 timer Eksakt Godkjent kvalitet B 14 NA  

D9054FE6-57ED-48B4-B3C0-
 

140 20171223123700 Eksakt Eksakt Godkjent kvalitet C 14 NA  
07F9CBD1-1B31-46D4-A45B-

 
140 20171223124800 Eksakt Eksakt Godkjent kvalitet C 14 NA  

5985BD5C-F640-4C2D-B4A9-
 

140 20171223124600 Eksakt Eksakt Godkjent kvalitet C 14 NA  
EE7E2160-72B4-4096-B4F3-

 
140 20171223125700 Eksakt Eksakt Godkjent kvalitet C 14 NA  

24B23B3C-FAD1-4517-9CE4-
 

140 20171223143900 Eksakt Eksakt Godkjent kvalitet C 14 NA  
6AFA5278-8A6E-4DD3-9AA6-

 
140 20171223195300 Eksakt 50 m Godkjent kvalitet C 14 NA  

79EA3C67-71CA-4081-A3F3-
 

144 20171223130000 4 timer Eksakt Godkjent kvalitet B 14 NA  
6ED3328D-4942-4E5F-8197-

 
144 20171223160000 Eksakt Ikke reg Registrert 14 NA  

02250695-7634-4F60-9C2D-
 

144 20171223 16 dager Eksakt Godkjent kvalitet C 14 NA  
87F69345-40D5-4EFA-BAC0-

 
144 20171223050000 4 timer 1000 m Godkjent kvalitet C 14 NA  

686D4BD4-A766-4D43-958A-
 

144 20171223110000 4 timer 500 m Godkjent kvalitet C 14 NA  
7A0A2CF8-C408-4B9C-B5CD-

 
144 20171223060000 12 timer Ikke reg Godkjent kvalitet C 14 NA  

3420FC7B-DD51-44E8-B4A5-
 

144 20171223030000 12 timer 500 m Godkjent kvalitet C 14 NA  
47EC5CB8-7942-4121-8355-

 
140 20171223160000 30 min 10 m Godkjent kvalitet C 14 NA  

E3F7297E-D28F-4C9A-9A3D-
 

142 20171223101800 12 timer Eksakt Godkjent kvalitet B 14 NA  
3D9FD6A2-D7BB-4CE8-94BD-

 
142 20171223090000 4 timer 5000 m Godkjent kvalitet C 14 NA  

6322AAFF-ADCD-45DF-922C-
 

142 20171223120000 12 timer 1000 m Godkjent kvalitet C 14 NA  
B75CF348-20C2-47DF-A10A-

 
142 20171223070000 12 timer Eksakt Godkjent kvalitet B 14 NA  

08185520-E51E-4FCE-87DC-
 

140 20171223090800 Eksakt Eksakt Godkjent kvalitet C 14 NA  
0CCD61FB-F3D3-4B3E-AC13-

 
144 20180418150000 Eksakt Ikke reg Registrert 15 N   

E4BCC684-CD77-4096-8EDC-
 

140 20180418 Ukjent nar pa 
 

Eksakt Godkjent kvalitet C 15 D  
73DEA5EE-0802-4640-AF0B-

 
144 20180418143010 30 min Eksakt Registrert 15 M  

A8255BA7-C25C-4095-9741-
 

144 20180418152400 Eksakt Eksakt Registrert 15 N  
18F0EF79-05D7-43B2-B118-

 
144 20180418200000   Eksakt Registrert 15 N  

5BCE8111-66B2-4F0A-B77F-
 

133 20180418053000 Eksakt Ikke reg Registrert 15 NA  
7E03C99E-8AD0-4592-BCEE-

 
133 20180418060000 4 timer 100 m Registrert 15 NA  

2C82903E-EC57-471D-85BC-
 

133 20180418210000 Ikke registrert 100 m Godkjent kvalitet C 15 NA  
B1B1DF4B-5C86-41D7-B8AE-

 
144 20180418163000 30 min 100 m Registrert 15 NA  

3FDCCD1D-87E4-4D86-A0A3-
 

144 20180418150000 4 timer 50 m Registrert 15 NA  
D9FD0B0E-77B4-485E-AA77-

 
144 20180418144000 1 time Ikke reg Registrert 15 NA  

E63C34CB-4337-49D4-8141-
 

144 20180418080000 12 timer Ikke reg Registrert 15 NA  
ED06CCB7-CD20-49F0-B226-

 
144 20180418122200 4 timer Eksakt Registrert 15 NA  

9C302F4F-2D23-4910-A61D-
 

144 20180418 2 dager Ikke reg Registrert 15 NA  
29AA39B6-D0C3-4751-AA20-

 
144 20180418072800 Eksakt Ikke reg Registrert 15 NA  

CB29F15E-FC09-49BA-8679-
 

144 20180418193600 Eksakt Ikke reg Registrert 15 NA  
79FF5F96-2CF9-4A0A-A2EC-

 
144 20180418190100 Eksakt Ikke reg Godkjent kvalitet B 15 NA  

C92496C4-8055-415A-AFDF-
 

144 20180418115600 Ikke registrert Eksakt Registrert 15 NA  
0B6B0AA7-7A8E-4341-8EDE-

 
140 20180418085000 Eksakt Eksakt Godkjent kvalitet C 15 NA  

74334D28-8EDA-406B-A4A1-
 

140 20180418 Ukjent nar pa 
 

Eksakt Godkjent kvalitet C 15 NA  
74A9F04D-86FF-4290-968B-

 
144 20180418110040 4 timer 10 m Registrert 15 Y  

26A76758-D93E-4B3E-9518-
 

140 20180418 Ukjent nar pa 
 

50 m Godkjent kvalitet C 15 Y  
09F8D876-1419-4DB4-B4E1-

 
144 20180926060000 4 timer 10 m Godkjent kvalitet B 16 M N 

081B8A39-B8A5-4DD6-A09C-
 

144 20180926110000 Ukjent nar pa 
 

10 m Godkjent kvalitet B 16 M N 
A8D0E7EA-B9BC-4BC8-A9B1-

 
144 20180926060000 8 dager Eksakt Godkjent kvalitet C 16 M N 

E619AA9F-0DF4-451E-88ED-
 

144 20180926 64 dager 50 m Godkjent kvalitet C 16 NA NA 
FF379400-975B-4339-B219-

 
142 20180926055000 10 min 1000 m Registrert 16 NA NA 

EB9C4CAD-6316-4244-8488-
 

142 20180926010000 12 timer 10 m Godkjent kvalitet B 16 NA NA 
880474F8-01F8-40A9-8F44-

 
142 20180926080000   500 m Registrert 16 NA NA 

EAC7AD11-A7E5-4993-9A73-
 

142 20180926020000 4 timer Ikke reg Registrert 16 NA NA 
D406CD93-9E5C-484E-BCB8-

 
144 20180926060800 Ikke registrert Eksakt Godkjent kvalitet C 16 NA NA 

A980BB34-AE3F-420B-A1A3-
 

144 20180926063000 Ikke registrert Eksakt Registrert 16 NA NA 
EF3C5343-2EDC-49B8-8AA9-

 
144 20180926020000 12 timer Ikke reg Registrert og 

 
16 NA NA 

205DEFCF-A079-4129-B659-
 

144 20180926064500 10 min Eksakt Godkjent kvalitet A 16 Y NA 
75DAA794-DB28-481D-9EFF-

 
144 20190104105900 Eksakt Eksakt Registrert 17 D D 

3A3AA1DB-E998-4DEC-BE40-
 

144 20190104000047 Eksakt Eksakt Registrert 17 M N 
3B503C1F-9B8A-4784-BCC8-

 
144 20190104000036 Eksakt Eksakt Registrert 17 N N 

7B2B8526-5975-4CEA-9077-
 

144 20190104120000 30 min Eksakt Registrert 17 N N 
2BB106A9-C176-45F1-B763-

 
144 20190104110700 Eksakt Eksakt Registrert 17 N N 

F55E8CE1-2FCE-48DB-AF09-
 

144 20190104105900 Eksakt Eksakt Registrert 17 N N 
7A0BD3A9-AC04-4F1E-8C30-

 
144 20190104104700 Eksakt Eksakt Registrert 17 N N 

B89FD831-F459-4E19-94F5-
 

144 20190104 12 timer 1000 m Registrert 17 NA NA 
3CC7F620-10E0-4B20-8892-

 
144 20190104210000 Eksakt Ikke reg Registrert 17 NA NA 

18FFF425-5931-4DCF-8F6F-D2E17EA866F2 144 20190104132200 Eksakt Eksakt Registrert 17 NA NA 
6EE20E36-DD41-46A4-A1F3-

 
144 20190104130900 Eksakt Eksakt Registrert 17 NA NA 

44863A88-D9D5-4C23-B9A8-
 

144 20190606205500 Eksakt Eksakt Registrert 18 N  
6DBBA4CB-138F-4A8E-8AF8-

 
144 20190606204700 Eksakt Eksakt Registrert 18 N  

8A8F81A7-6CF0-4737-A72C-
 

144 20190606204700 Eksakt Eksakt Registrert 18 N  
06985475-5C44-486D-A8AF-

 
144 20190606204000 Eksakt Eksakt Registrert 18 N  

5CE38A39-9094-460F-87D5-
 

144 20190606202400 Eksakt Eksakt Registrert 18 N  
6AF87A9E-9EFF-4B96-8D8C-

 
144 20190606201700 Eksakt Eksakt Registrert 18 N  

BD9F36E2-A8B8-4611-AC4F-
 

144 20190606200700 Eksakt Eksakt Registrert 18 N  
F7C7F597-D3B0-416D-B3D5-

 
144 20190606195900 Eksakt Eksakt Registrert 18 N  

5A1F3E03-2260-4207-9E79-
 

144 20190606195000 Eksakt Eksakt Registrert 18 N  
FDB3BB94-8115-44DB-8480-

 
144 20190606203200 Eksakt Eksakt Registrert 18 NA  

F7BA5FC8-4D16-4BE9-9E83-
 

144 20190606123800 Eksakt Eksakt Registrert 18 NA  
17E16651-DD9D-4E91-B721-

 
142 20190606191542 1 time 50 m Registrert 18 NA  

292BAC5F-A9E7-4233-9177-
 

144 20190730163000 30 min 500 m Registrert 19 D  
D1098020-A8C2-41E8-A760-

 
144 20190730163000 1 time 500 m Registrert 19 D  

8D194208-CED4-4DF6-95F5-
 

144 20190730163000 1 time 500 m Registrert 19 D  
20EC6DC6-613A-4B44-BE67-

 
140 20190730120000 12 timer 10 m Registrert 19 M   

4E3CCAF9-08B8-4843-8640-
 

144 20190730170000 4 timer Eksakt Registrert 19 NA NA 
37CCC0CB-9C06-4D17-8E76-

 
144 20190730170000 4 timer 10 m Registrert 19 NA NA 

423C947A-ACE7-41DB-A9AD-
 

144 20190730170000 4 timer 10 m Registrert 19 NA NA 
BA43ECA3-4F9F-4144-ABB9-

 
144 20190730170000 4 timer 50 m Registrert 19 NA NA 

7361CD85-F32C-4802-8E24-
 

144 20190730170000 4 timer 50 m Registrert 19 NA NA 



Appendix B – Landslide Database Selection 

Landslide ID Type Time noyTidspkt noyPosisjo regStatus ID dNDVI InSAR 
A23823F2-18B6-4BC0-8116-

 
144 20190730170000 4 timer 250 m Registrert 19 NA NA 

569B9C02-FBB0-45F4-84C5-
 

144 20190730170000 4 timer 10 m Registrert 19 NA NA 
CBDA30AD-BDF2-4374-8C40-

 
144 20190730170000 4 timer 10 m Registrert 19 NA NA 

1F199ACE-C39D-4F3B-B923-
 

144 20190730170000 4 timer 100 m Registrert 19 NA NA 
84EC9879-17F1-42E2-BDAE-

 
144 20190730170000 4 timer 250 m Registrert 19 NA NA 

16C0208F-D631-4453-B2B4-
 

142 20190730160000 4 timer Eksakt Registrert 19 M NA 
32E92CE4-84DF-41D4-84F5-

 
142 20190730150000 12 timer 50 m Registrert 19 M NA 

F02244E7-F213-4FD9-BB15-
 

142 20190730160000 12 timer 50 m Registrert 19 M NA 
92E399D4-63F5-442B-8736-

 
142 20190730165300 1 time 500 m Registrert 19 D  

384BBBB0-BE80-472C-9420-
 

142 20190730160000 4 timer Eksakt Registrert 19 D NA 
986FED1B-4ADB-4ED8-AB76-

 
142 20190730163000 1 time 500 m Registrert 19 D  

47414D4A-3125-4232-A82C-
 

142 20190730163000 30 min Eksakt Registrert 19 N  
B50B3FD3-FE2C-4C51-9294-

 
142 20190730170000 30 min Eksakt Registrert 19 NA NA 

3D81B0D9-8F8E-4985-8B37-
 

142 20190730170000 30 min Eksakt Registrert 19 NA NA 
6AC2A921-598C-41D1-A6DD-

 
142 20190730164000 4 timer Eksakt Registrert 19 Y  

0C475368-7FF4-4727-A67D-
 

142 20190730150000 12 timer Eksakt Registrert 19 Y  
27055E63-3010-4A50-A32E-

 
142 20190730160000 4 timer Eksakt Registrert 19 Y NA 

BF78591E-9EF8-47E3-81FD-FF5EA706F16E 142 20190730165000 10 min Eksakt Registrert 19 Y  
CEFCAA5C-5D50-4293-9766-

 
142 20190730165300 12 timer 500 m Registrert 19 Y  

05C8A39C-6902-41B6-900A-
 

142 20190730155800 12 timer 500 m Registrert 19 Y  
2B876048-78C3-46D2-A947-

 
142 20190730164500 15 min Eksakt Registrert 19 Y  

5467BF2A-60F7-4CEC-A5B8-
 

142 20190730163000 30 min Eksakt Registrert 19 Y  
D63F6AAA-0F07-4F22-8D3C-

 
142 20190730163000 30 min Eksakt Registrert 19 Y  

185297FB-39F6-4A2B-9160-
 

142 20190730163000 30 min Eksakt Registrert 19 Y  
E43FF1F4-A2ED-4171-8BEB-

 
142 20190730160000 4 timer Eksakt Registrert 19 Y NA 

D22B3AC6-5F46-4F3F-8A97-
 

142 20190730160000 4 timer Eksakt Registrert 19 Y NA 
58A27DBD-0A22-4842-8798-

 
142 20190730160000 4 timer Eksakt Registrert 19 Y NA 

8EF7B858-4F86-444E-8AB7-
 

142 20190730163000 1 time Eksakt Registrert 19 Y  
FF7CD9BF-E006-40E4-B1A3-

 
144 20190730204900 Eksakt Eksakt Registrert 19 Y N 

6C12E5EB-A0AE-4A20-A70D-
 

144 20190730164500 30 min Eksakt Registrert 19 Y  
EFAAD6B9-43B8-44D1-85B1-

 
144 20190730163000 30 min Eksakt Registrert 19 Y  

BE09ECFA-66EA-4D7E-8447-
 

144 20190730163000 1 time 500 m Registrert 19 Y  
9769F4D6-00D9-454E-BC84-

 
144 20190730173000 15 min 50 m Registrert 19 Y  

26044F99-1F06-4401-AE9C-
 

133 20191204070000 Ikke registrert Eksakt Registrert 20 NA  
EF7B6C32-DEDC-4784-9F0D-

 
142 20191204180000 Eksakt Eksakt Registrert 20 N  

0E255DDE-991C-4C4D-8274-
 

142 20191204200000 Eksakt Eksakt Registrert 20 N  
DDB765A1-94EE-4081-A050-

 
142 20191204160000 Eksakt Eksakt Registrert 20 N  

9C768FEB-FD59-4A91-8B40-
 

142 20191204095300 Eksakt Eksakt Registrert 20 NA  
6504985C-C092-46B5-8D8F-

 
142 20191204203600 Eksakt Eksakt Registrert 20 Y  

24D46E88-A176-4B53-BE00-
 

144 20191229170500 Eksakt Eksakt Registrert 21 M  
61DB054E-33ED-425A-8C03-

 
144 20191229000055 Eksakt Eksakt Registrert 21 NA  

83392C11-A403-4BB5-B902-
 

144 20191229200010 2 dager Eksakt Registrert 21 NA  
24B6721E-61B5-4C6E-BD98-

 
144 20191229132600 Eksakt Eksakt Registrert 21 NA  

9F22B7B3-49DD-434E-A040-
 

142 20191229185533 1 dag Eksakt Registrert 21 M  
6382D3B3-F6C8-4665-B02D-

 
142 20191229181300 Eksakt Eksakt Registrert 21 M  

B42B9580-2367-4E05-9B16-
 

142 20191229174100 Eksakt Eksakt Registrert 21 M  
ED105170-44FE-4BAD-A737-

 
142 20191229153923 1 dag 10 m Registrert 21 N  

9733D24C-A0F0-44F7-BC9E-
 

142 20191229212500 Eksakt Eksakt Registrert 21 N  
0400D9D2-2C49-43FB-922F-

 
142 20191229120000 1 dag 1000 m Registrert 21 N  

FD13FFCA-8329-4299-A597-
 

142 20191229095600 Eksakt Eksakt Registrert 21 NA  
DD26B900-EF7A-431E-9F74-

 
142 20191229114000 Eksakt Eksakt Registrert 21 NA  

1F0D7603-DCFB-4BE3-AAB5-
 

142 20191229112300 Eksakt Eksakt Registrert 21 NA  
275DCC8D-A823-450C-B102-

 
142 20191229201300 Eksakt Eksakt Registrert 21 NA  

3E1230FD-34BF-47D0-8A77-
 

142 20191229201300 Eksakt Eksakt Registrert 21 NA  
0B9E3A0E-F186-4036-82D3-

 
142 20191229090800 Eksakt Eksakt Registrert 21 NA  

FD17F67F-FF78-4D50-A7CE-
 

133 20191229165000 30 min Eksakt Registrert 21 M  
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Appendix C – SAR Analysis 

 
 

Table C1. Sentinel-1 images for SAR landslide mapping 

ID Track Orbit Pre-Event Image 
Days 

Before 
Event 

Post-Event Image 
Days 
After 
Event 

1 44 Ascending S1A_IW_SLC__1SDV_20150909T170204_20150909T170231_007641_00A981_D46B 7 S1A_IW_SLC__1SDV_20150921T170204_20150921T170231_007816_00AE19_7B14 5 

2 15 Ascending S1A_IW_SLC__1SDV_20151118T171859_20151118T171926_008662_00C501_6E56 4 S1A_IW_SLC__1SDV_20151130T171858_20151130T171925_008837_00C9E7_50B8 4 

3 15 Ascending S1A_IW_SLC__1SDV_20151130T171805_20151130T171835_008837_00C9E7_D78B 5 S1A_IW_SLC__1SDV_20151212T171808_20151212T171835_009012_00CEC5_DFD2 7 

4 44 Ascending S1A_IW_SLC__1SDV_20161114T170306_20161114T170333_013941_016729_C815 11 S1A_IW_SLC__1SDV_20161126T170306_20161126T170333_014116_016C7A_E07A 1 

5 37 Descending S1B_IW_SLC__1SDV_20161202T054607_20161202T054634_003213_005787_39CE 2 S1B_IW_SLC__1SDV_20161214T054607_20161214T054634_003388_005C92_70D1 10 

6 110 Descending S1A_IW_SLC__1SDV_20161225T055533_20161225T055600_014532_01799C_08DC 5 S1B_IW_SLC__1SDV_20161231T055448_20161231T055515_003636_0063B9_B7D2 1 

7 110 Descending S1A_IW_SLC__1SDV_20170118T055506_20170118T055534_014882_01845F_D44C 2 S1B_IW_SLC__1SDV_20170124T055421_20170124T055449_003986_006E0F_4B8A 3 

8 66 Descending S1B_IW_SLC__1SDV_20170121T052839_20170121T052906_003942_006CC6_DCED 5 S1A_IW_SLC__1SDV_20170127T052932_20170127T052959_015013_018863_E910 1 

9 37 Descending S1A_IW_SLC__1SDV_20170513T054711_20170513T054738_016559_01B74F_9E04 5 S1B_IW_SLC__1SDV_20170519T054632_20170519T054659_005663_009EB2_B33B 1 

10 146 Ascending S1A_IW_SLC__1SDV_20170719T165428_20170719T165455_017543_01D56C_B8AA 5 S1B_IW_SLC__1SDV_20170725T165348_20170725T165415_006647_00BB10_393D 1 

11 117 Ascending S1B_IW_SLC__1SDV_20171003T170925_20171003T170953_007668_00D8A4_AB93 5 S1A_IW_SLC__1SDV_20170927T171016_20170927T171046_018564_01F4A1_98DE 1 

12 15 Ascending S1A_IW_SLC__1SDV_20171119T171851_20171119T171919_019337_020C5A_907D 4 S1B_IW_SLC__1SDV_20171125T171800_20171125T171827_008441_00EF3E_823B 2 

13 117 Ascending S1A_IW_SLC__1SDV_20171126T171046_20171126T171114_019439_020FA5_F713 11 S1A_IW_SLC__1SDV_20171208T171046_20171208T171114_019614_021518_88AA 1 

14 15 Ascending S1B_IW_SLC__1SDV_20171219T171749_20171219T171817_008791_00FA66_3F52 4 S1A_IW_SLC__1SDV_20171225T171850_20171225T171918_019862_021CB3_AF5C 2 

15 37 Descending S1A_IW_SLC__1SDV_20180414T054732_20180414T054759_021459_024F4B_12E1 4 S1B_IW_SLC__1SDV_20180420T054642_20180420T054709_010563_013434_84F7 2 

16 15 Ascending S1B_IW_SLC__1SDV_20180921T171807_20180921T171834_012816_017A90_B2FF 5 S1A_IW_SLC__1SDV_20180927T171901_20180927T171930_023887_029B6C_91D1 1 

17 73 Ascending S1B_IW_SLC__1SDV_20181230T164616_20181230T164643_014274_01A8D0_C78C 5 S1A_IW_SLC__1SDV_20190105T164658_20190105T164726_025345_02CE24_97EC 1 

18 139 Descending S1A_IW_SLC__1SDV_20190603T053931_20190603T053958_027511_031ABA_1E94 3 S1B_IW_SLC__1SDV_20190609T053841_20190609T053908_016615_01F45C_FF79 3 

19 117 Ascending S1B_IW_SLC__1SDV_20190725T171026_20190725T171053_017293_020856_0890 5 S1A_IW_SLC__1SDV_20190731T171108_20190731T171136_028364_033489_BE08 1 

20 58 Ascending S1B_IW_SLC__1SDV_20191130T160659_20191130T160727_019159_02429D_8F86 4 S1A_IW_SLC__1SDV_20191206T160735_20191206T160802_030230_0374B1_9052 2 

21 110 Descending S1A_IW_SLC__1SDV_20191222T055555_20191222T055622_030457_037C89_3B2C 7 S1A_IW_SLC__1SDV_20200103T055554_20200103T055621_030632_03828E_FA85 5 

A 174 Ascending S1A_IW_SLC__1SDV_20191202T162038_20191202T162105_030171_0372A2_9334 2 S1B_IW_SLC__1SDV_20191208T162000_20191208T162028_019275_024650_3E9B 4 

B 62 Descending S1A_IW_SLC__1SDV_20190808T230435_20190808T230502_028484_033836_FD0B 9 S1A_IW_SLC__1SDV_20190820T230436_20190820T230503_028659_033E4A_E468 3 

C 53 Descending S1A_IW_SLC__1SDV_20200228T083057_20200228T083127_031450_039EF4_BD1C 4 S1B_IW_SLC__1SDV_20200305T083024_20200305T083052_020554_026F33_3F26 2 

D 14 Ascending S1B_IW_SLC__1SSH_20161013T154442_20161013T154509_002490_00432B_FE5E 2 S1A_IW_SLC__1SSH_20161019T154524_20161019T154551_013561_015B59_27EA 4 

 



Appendix C – SAR Analysis 

 

Figure C1. SAR intensity change detection at Site A, Burundi 

 

Figure C2. SAR intensity change detection at Site B, China 



Appendix C – SAR Analysis 

 

Figure C2. SAR intensity change detection at Site C, Brazil 

 

Figure B2. SAR intensity change detection at Site D, Svalbard 
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Table D1. Sentinel-2 images for δNVDI landslide mapping 

ID  Pre-Event Image Days Before 
Event Post-Event Image Days After 

Event  
1 S2A_MSIL1C_20150911T104036_N0204_R008_T32VNL_20150911T104038 6 S2A_MSIL1C_20151113T105302_N0204_R051_T32VNL_20151113T105301 57 

2 S2A_MSIL1C_20150821T111056_N0204_R137_T32VLP_20150821T111059 97 S2A_MSIL1C_20160822T105652_N0204_R094_T32VLP_20160822T105653 270 

3 S2A_MSIL1C_20150904T105046_N0204_R051_T32VLK_20150904T105042 92 S2A_MSIL1C_20160214T110142_N0201_R094_T32VLK_20160214T110150 71 

4 S2A_MSIL1C_20161107T105242_N0204_R051_T32VMQ_20161107T105238 18 S2A_MSIL1C_20170205T105221_N0204_R051_T32VMQ_20170205T105223 72 

5 S2A_MSIL1C_20160620T105032_N0204_R051_T32VNR_20160620T105028 167 S2B_MSIL1C_20170630T105029_N0205_R051_T32VNR_20170630T105305 208 

6 S2A_MSIL1C_20161107T105242_N0204_R051_T32VMP_20161107T105238 53 S2A_MSIL1C_20170211T111201_N0204_R137_T32VMP_20170211T111155 43 

7 S2A_MSIL1C_20161107T105242_N0204_R051_T32VMQ_20161107T105238 74 S2A_MSIL1C_20170205T105221_N0204_R051_T32VMQ_20170205T105223 16 

8 S2A_MSIL1C_20161021T110102_N0204_R094_T33WVP_20161021T110101 97 S2A_MSIL1C_20170208T110211_N0204_R094_T33WVP_20170208T110209 13 

9 S2A_MSIL2A_20170503T104021_N0205_R008_T32VPP_20170503T104024 15 S2A_MSIL2A_20170503T104021_N0205_R008_T32VPP_20170503T104024 5 

10 S2A_MSIL2A_20170705T105031_N0205_R051_T32VNP_20170705T105026 19 S2A_MSIL2A_20170827T105651_N0205_R094_T32VNP_20170827T105652 34 

11 S2B_MSIL1C_20170915T104009_N0205_R008_T32VMK_20170915T104215 17 S2A_MSIL2A_20171102T105211_N0206_R051_T32VMK_20171102T131812 31 

12 S2A_MSIL2A_20171112T105301_N0206_R051_T32VLM_20171112T124940 11 S2A_MSIL2A_20180121T105341_N0206_R051_T32VLM_20180121T130138 59 

13 S2A_MSIL2A_20171009T110951_N0205_R137_T32VLM_20171009T110946 59 S2A_MSIL2A_20180223T110041_N0206_R094_T32VLM_20180223T131657 78 

14 S2A_MSIL2A_20171112T105301_N0206_R051_T32VLM_20171112T124940 41 S2A_MSIL2A_20180121T105341_N0206_R051_T32VLM_20180121T130138 29 

15 S2B_MSIL2A_20180416T105029_N0207_R051_T32VNR_20180416T112038 14 S2B_MSIL2A_20180509T105619_N0207_R094_T32VNR_20180509T112216 1 

16 S2A_MSIL2A_20180904T110621_N0208_R137_T32VLM_20180904T143104 22 S2A_MSIL1C_20181011T105951_N0206_R094_T32VLM_20181011T112731 15 

17 S2A_MSIL1C_20181110T110251_N0207_R094_T32VNR_20181110T111728 55 S2A_MSIL1C_20190205T105231_N0207_R051_T32VNR_20190205T110320 32 

18 S2B_MSIL1C_20190531T105039_N0207_R051_T32VNN_20190531T125247 6 S2A_MSIL1C_20190615T105031_N0207_R051_T32VNN_20190615T112558 9 

19 S2A_MSIL2A_20190728T105621_N0213_R094_T32VLP_20190728T135007 2 S2B_MSIL2A_20190802T105629_N0213_R094_T32VLP_20190802T135403 3 

20 S2A_MSIL2A_20191016T110041_N0213_R094_T33WXS_20191016T122142 49 S2B_MSIL2A_20200212T104049_N0214_R008_T33WXS_20200212T123248 70 

21 S2B_MSIL2A_20191130T110319_N0213_R094_T32VLN_20191130T123218 29 S2B_MSIL1C_20200122T111249_N0208_R137_T32VLN_20200122T112042 24 

A S2A_MSIL2A_20190915T080611_N0213_R078_T35MQT_20190915T105801 80 S2A_MSIL2A_20191214T081331_N0213_R078_T35MQT_20191214T111406 10 

B S2B_MSIL2A_20190425T034539_N0211_R104_T48RUV_20190425T075734 114 S2A_MSIL2A_20190927T034541_N0213_R104_T48RUV_20190927T080200 41 

C S2A_MSIL2A_20200127T131241_N0213_R138_T23KLP_20200127T151126 36 S2A_MSIL2A_20200307T131241_N0214_R138_T23KLP_20200307T152827 4 

D S2A_MSIL1C_20160922T120812_N0204_R109_T33XWG_20160922T120 23 S2B_MSIL1C_20170917T125749_N0205_R038_T33XWG_20170917T125747 337 

 

 



Appendix D – δNDVI Analysis 

 

Figure D1. δNDVI with mapped polygons in case 2 

 

Figure D2 δNDVI with mapped polygons in case 10 
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Figure D3. δNDVI with mapped polygons in case 12 

 

Figure D4. δNDVI with mapped polygons in case 14 
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Figure D5. δNDVI with mapped polygons in case 16 

 

Figure D6. δNDVI with mapped polygons in case 19 



Appendix D – δNDVI Analysis 

 

Figure D7. δNDVI with mapped polygons in case 21 
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Table E1. Weather station data 

ID Date 
Nearest Hourly 

Weather 
Station 

Antecedent 1 
Day 

Antecedent 
3 Day 

Maximum 
Hourly 
Rainfall 

Maximum 
3 Hr 

Rainfall 

Maximum 
24 Hr 

Rainfall 

Max 1 Day 
Precipitation 

Max 3 Day 
Precipitation 

Snowmelt 
(xgeo.no) 

Rain 
Gauge 

Ref 

Latitude 
(m) 

Longitude 
(m) 

Elevation 
(m) 

1 20150917 Gvarv-Nes 9.3 62 7.5 15.9 53.3 52.2 103.1 0 32060 171307 6596960 93 

2 20151126/27 Ørsta-Eitrefjell 23.9 26.1 6.5 17.7 88.6 72 129.1 8 59695 47112 6922527 690 

3 20151205/06 Elk-Hove 61.4 90.2 8.9 24.1 139.2 135.7 247.3 10 43010 5607 6516535 65 

4 20161125 Innerdalen 15 26.9 7.1 14.2 41.9 41.9 86.5 10 64700 181944 6970110 405 

5 20161204/05 Trondheim-Voll 14 26 4.5 9.9 29.2 20.2 47.1 10 68860 273087 7039283 127 

6 20161230 Myrkdalen-
Vetlebotn 10.7 22.2 8.1 23 90 73.5 117.4 9 51990 37734 6778197 700 

7 20170120 Innerdalen 31.2 38.2 5 13.4 56 31.2 68.9 11 64700 181944 6970110 405 

8 20170126 Glomfjord-
Skihytta 36.4 44 5.4 13.7 79.7 69.8 106.2 10 80705 453648 7412463 520 

9 20170518 Rena-
Ørnhaugen 2.5 7.3 6.6 18.5 45.7 45.7 52.1 3 7420 312778 6810063 872 

10 20170724 Skåbu 2.7 2.7 10.5 29.5 52.4 49.7 53.3 0 13655 202602 6834728 928 

11 20171002 Åseral 54.8 163.2 11.7 31.9 75.9 66.5 197.1 0 41480 59794 6522462 268 

12 20171123 Sauda 21 21.3 10.6 18.8 83.9 73.9 129.1 6 46610 13312 6643831 5 

13 20171207 Kvamskogen-
Jonshøgdi 49.6 118.9 9.1 25.1 82 78.2 169.2 7 50310 2972 6728890 455 

14 20171223 Sauda 27.4 40.3 11.3 29.3 125.7 113.4 145.5 15 46610 13312 6643831 5 

15 20180418 Vest-Torpa II 0 0 1 2 2 2 2 19 21680 230990 6765866 542 

16 20180926 Gullfjellet 8.8 27.2 15.7 45.7 138.8 124.2 181.6 0 50865 20221 6731505 345 

17 20190104 Trondheim-Voll 8 25.7 2.3 5.3 23 23 42.6 11 68860 273087 7039283 127 

18 20190606 Hamar II 1.6 4.9 15.1 25.5 35.6 29.2 39.9 0 12290 287541 6746888 141 

19 20190730 Haukedal 0.5 0.8 22.8 43.6 113.6 107.8 114.2 0 56960 40609 6839990 311 

20 20191204 Malangen-
Pålfinnmoen 15.6 57.8 4 7.6 37.6 29.2 66.2 10 90100 644184 7704933 124 

21 20191229 Vangsnes 7.7 7.8 5.3 12 76.2 57.3 100.7 10 53101 51345 6810852 49 
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Figure E1. IDF Curve for case 1 

 

Figure E2. IDF Curve for case 2, 19 
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Figure E3. IDF Curve for case 3 

 

Figure E4. IDF Curve for case 4, 7 



Appendix E – Weather Data 
 

 

Figure E5. IDF Curve for case 5, 17 

 

Figure E6. IDF Curve for case 6, 21 
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Figure E7. IDF Curve for case 8 

 

Figure E8. IDF Curve for case 9, 10 
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Figure E9. IDF Curve for case 11 

 

Figure E10. IDF Curve for case 12, 14 



Appendix E – Weather Data 
 

 

Figure E11. IDF Curve for case 13, 16 

 

Figure E12. IDF Curve for case 15 



Appendix E – Weather Data 
 

 

Figure E13. IDF Curve for case 18 

 

Figure E14. IDF Curve for case 20 
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