
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f C

iv
il 

an
d 

En
vi

ro
nm

en
ta

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Lars Furu Kjelsaas

A cloud-based pipeline for Event
Sourcing of geospatial data

Master’s thesis in Engineering & ICT

Supervisor: Terje Midtbø, Atle Frenvik Sveen

May 2020





Lars Furu Kjelsaas

A cloud-based pipeline for Event
Sourcing of geospatial data

Master’s thesis in Engineering & ICT
Supervisor: Terje Midtbø, Atle Frenvik Sveen
May 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Civil and Environmental Engineering





 

Fakultet for ingeniørvitenskap 
Institutt for bygg og miljøteknikk 

  

 

 

Masteroppgave 
(TBA4925 - Geomatikk, masteroppgave) 

 

Vår 2020 

for 
Lars Furu Kjelsaas 

 

A cloud-based pipeline for event-sourcing of geospatial data 

BAKGRUNN  

For å utvikle gode IT-løsninger basert på geografiske data er datatilgang viktig. De rette 

datasettene må være tilgjengelig i rett format for hver enkelt applikasjon. Løsninger må også 

kunne skalere på en sømløs måte.  

En tradisjonell arkitektur der geografiske (vektor) data lagres i en romlig database skalerer 
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1 Abstract 

Many geospatial datasets are updated in bulk, and new versions are published as full, new 

datasets. For some applications, the historical perspective and the change of data over time is 

vital information for the use of the data.  

By introducing Event Sourcing, the changing nature of the underlying data can be presented 

more accurately and efficiently. By storing events that contain the changes to objects, rather 

than storing static states, more temporal information can be represented. The approach may 

also enable new ways of using and distributing the data to other systems.  

To transform snapshotted data to an event stream of changes, one must compute the difference 

between two versions of a dataset to capture the changes. This is computation intensive for 

large datasets, especially when working with the nuances of geospatial objects. As differences 

could be represented on a single-object basis, parallelizing the computation could help handle 

the amount of computation required in a timely fashion. 

Azure Functions and other serverless architectures represent a new paradigm of cloud services 

that promises scaling of resources as need arises without having to worry about the setup of 

underlying server hardware. The ability to scale from zero to massive, parallel processing 

seems well fit for the scheduled, large processing jobs that is required for Event Sourcing large 

geospatial datasets.  

A pipeline was built using a durable orchestration function that handled dataflow between 

multiple functions. This allowed processing to be parallelized over clusters of virtual machines. 

By utilizing open standards and defined data objects, the pipeline was made with modularity 

in mind, with the possibility of swapping out components if the need arises in the future.  

Initial results from the implemented pipeline show promising results, but more work is needed 

to find the optimal setup. The system can process hundreds of updates, but struggle when the 

number of required updates increase beyond this. One possible route for scaling capacity 

further is to introduce multiple layers of orchestrators to further divide up the parallel 

workflow. This thesis has experimented in the crossing point between geocomputation, Event 

Sourcing and serverless computing and discovered some possibilities. Further work should 

reveal interesting results, as the combination has many synergies and similarities. 
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2 Sammendrag 

Mange geografiske datasett blir oppdatert samlet, med jevnlig publisert av fullverdige, nye 

versjoner. For en del applikasjoner er imidlertid det historiske perspektivet og endringen av 

data mellom versjoner viktig informasjon for å kunne nyttiggjøre dataene. 

Ved å bruke Event Sourcing kan dette representeres mer nøyaktig og effektivt. Ved å lagre 

hendelser som inneholder endringene til objekter, istedenfor statiske data, kan mer informasjon 

om tid bli lagret. Tilnærmingen kan også muliggjøre nye måter å bruke og distribuere dataene 

på mellom systemer. 

For å transformere stillbilde-data til en hendelsesstrøm med endringer, er det nødvendig å 

beregne forskjellen mellom datasett for å fange opp endringene. Dette er beregningsintensivt 

for store datasett, spesielt når fokuset ligger på endringsnyanser til geografiske objekter. 

Ettersom forskjeller kan bli representert på enkeltgjenstandsbasis, kan parallellisering av 

beregningen bidra til å øke gjennomstrømmingen av data, og dermed redusere kjøretiden.  

Azure Functions og andre serverløse arkitekturer er et nytt paradigme innen skytjenester, som 

tilbyr skalering av ressurser etter behov uten å måtte bekymre seg for oppsettet av 

underliggende maskinvare. Evnen til å skalere fra null til massiv, parallell prosessering virker 

godt egnet for de planlagte, store prosesseringsjobbene som er nødvendige for Event Sourcing 

av store geografiske datasett. 

En prosesseringsløype ble laget ved hjelp av en «vedvarende orkestreringsfunksjon» som 

håndterte dataflyten mellom ulike funksjoner. Dette tillot parallellisering av prosessering over 

flere klynger med virtuelle maskiner, noe som ellers ville vært utfordrende. Ved å bruke åpne 

standarder og tydelig definerte dataobjekter ble prosesseringsløypen laget med tanke på 

modularitet, med mulighet for å bytte ut enkeltkomponenter ved behov. 

De første resultatene fra den implementerte prosesseringsløypa viser lovende resultater, men 

det er nødvendig med mer arbeid for å finne et best mulig oppsett. Systemet kan behandle 

hundrevis av oppdateringer, men sliter når antall oppdateringer øker utover dette. En mulighet 

for å skalere kapasiteten videre er å introdusere flere lag med orkestreringsfunksjoner, for å 

dele den parallelle arbeidsflyten ytterligere. Denne avhandlingen har utforsket 

krysningspunktet mellom geografiske beregningsmetoder, Event Sourcing og serverløs 

databehandling og kommet fram til lovende funn. Videre arbeid bør kunne avdekke 

interessante resultater, siden teknologiene har flere likheter og mulige synergier.  
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4 Introduction 

Most geospatial datasets are updated, revised, or in other ways changed over time. The 

frequency of these updates varies from “almost never” to instantaneous. Many of the most 

central governmental geospatial datasets in Norway, and abroad, are updated on a monthly or 

bi-monthly schedule, in a bulk-update fashion, where a new version of the dataset completely 

replaces the old. For many applications, this is a viable solution. In other applications there 

may be no need to keep track of changes, as the underlying data doesn’t change fundamentally 

over time and older data is fine. However, for some applications the historical perspective is 

vital, and we want to represent both the past and the present in an efficient manner.  

Event-sourcing is one method for keeping the historical perspective. Storing the changes to 

data rather than static objects lets us represent the dynamic nature of data. How can we 

transform traditional data structures of versioned databases of objects to an event store in an 

efficient manner? This question forms the underlying motivation for this thesis. More 

specifically, this thesis will attempt to answer this question by answering the following research 

questions: 

1. Is a cloud-based implementation of a diff-based event generation pipeline a viable 

solution for producing an event-stream from traditional, bulk-updated data? 

2. How can such a pipeline be implemented in a modern, cloud-based computing 

environment? 

3. How does such a pipeline perform in terms of scalability and throughput? 

4. How does an event generation pipeline for versioned geospatial data fit into a larger 

software architecture in terms of integration of data consumers? 

These questions are answered in the following. To establish a common platform of 

understanding, the first part is a review of relevant theory and practice. This includes relevant 

research done in the fields of geospatial and spatiotemporal representation and processing, 

event-based and event-sourced architectures, database technology and cloud computing.  

The findings of the background section form the groundwork for the Method & Pipeline 

Implementation section, in which the actual implementation of a difference-based event 

generation pipeline is presented and explained. This part covers the major architectural 

decisions made during the implementation and presents the final pipeline. Then, relevant 

results and takeaways from the work is presented before an overall discussion of the work and 

possible future work are described.  
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5 Background 

 Geospatial data 

Spatial, or geospatial, data is a term used to describe data where the position, shape and/or size 

in the world is an important part. This could be anything from a list of points representing 

traffic signs along a road, polygons representing different types of soil, and so on. The term is 

usually used when the data is analyzed or presented in a spatial context (Worboys & Duckham, 

2004). 

Geospatial data are used in a wide variety of circumstances, like ridesharing services keeping 

track of vehicles and users (Wang, 2017), predicting future landslides (van Westen et al., 2008) 

or epidemiologists monitoring diseases (Pfeiffer et al., 2008).  

 Representing geospatial data 

How geospatial data is represented is important for facilitating the storage, processing, and 

visualization of them. The representation is central to how a problem can be solved, and how 

easy such a solution is. While geospatial  data can be represented in several different ways, the 

two major representations are the raster format and the vector format (Peuquet, 2002). 

By dividing the relevant geographical area into an array of grid cells with varying values 

representing some real-world phenomenon, the raster format is created. The vector format is 

structured as a series of vectors with coordinate values in two (or three) dimensions. The raster 

format corresponds to a field-based representation, while the vector format is an object-based 

representation.  

In fact, it has been shown that discrete objects and continuous fields are the only possible bases 

for describing the geographic world if the foundation is aggregation of point sets (Goodchild 

et al., 2007).  

While a field-based representation is excellent for representing statistical and demographic 

data, such as median income, average rainfall or number of inhabitants in an area, object 

representation is more fit for translating objects such as roads or houses into the virtual world. 

One aspect to note is that a vector dataset can represent a field-based view of the world, such 

as when dividing the world into non-overlapping polygons of data such as administrative or 

statistical divisions.  
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 OGC Simple Features 

Open Geospatial Consortium (OGC) is “[…] a worldwide community committed to advancing 

geospatial location information and services as a vital force for progress” (OGC, 2020). As an 

international organization comprised of many actors within the geospatial community, OGC 

seek to establish international standards for geospatial representation. A widely adopted 

standard is OGC Simple Features, outlining an object-based representation of different kinds 

of features. Features are in this work defined as abstractions of real-world phenomena, like a 

road, a lamppost or a forested area (OGC, 2010).  

 

Figure 1 - Geometry class hierarchy, OGC Simple Features (OGC, 2010) 

5.1.2.1 Geometry 

Geometry is the root class of the system, an abstract class holding common functionality that 

the different kinds of geometries can inherit from. All geometries have one or more points with 

coordinate values in a reference system. 

5.1.2.2 Points 

The core building block of the OGC Simple features and most other object-based 

representations is its smallest part, the 0-dimensional geometric object called Point. A Point, 

like in a mathematical representation of points, has no area, no length, circumference, or such. 
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It represents a single, discrete point in space. The more complicated structures are built up of 

multiple points and the increasingly complex relations these can have.  

5.1.2.3 Curves 

Curves are used to represent 1-dimensional lines, usually structured by a series of vertices 

represented by points and an interpolation between them. In OGC Simple Features, only the 

LineString subclass exists, which draws straight lines as edges between the vertices to form a 

series of lines. A pair of Points defines each Line representing a line segment.  

5.1.2.4 Surfaces 

“Surface is a 2-dimensional geometric object.” (OGC, 2010), although the standard outlines 

two subclasses, the most relevant for this thesis is Polygon. This is an area defined by a line 

forming a continuous, exterior boundary and any number of “holes” inside of it (Figure 2). 

 

Figure 2 - Examples of polygon surfaces with 0 (a), 1 (b) and 2 (c) “holes” (OGC, 2010) 

5.1.2.5 GeometryCollections 

“A GeometryCollection is a geometric object that is a collection of some number of geometric 

objects” (OGC, 2010). It has different subclasses specifically containing objects such as 

MultiPoint, MultiLineString and MultiPolygon. GeometryCollection and its subclasses are used 

to represent more complex geographic features, as well as collections of multiple other objects.  
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 Well-Known Text (WKT) and Well-Known Binary (WKB) 

Together with OGC Simple Features, the text markup language Well-Known Text (WKT) was 

created to represent vector geometry objects. A more compact, binary version, Well-Known 

Binary (WKB), can be used for data transfer and storage (Stolze, 2003). 

 

Simple Features Example WKT representation  

Point 

 

POINT (20 15) 

Polygon 

 

POLYGON (20 15, 15 20, 10 40, …) 

Multipoint 

 

MULTIPOINT ((20 15), (25 20), (10 40)) 

Table 1 - Examples of representation of some OGC Simple Features as Well-Known Text 

 

 Traditional storage of geospatial data 

Storage of geospatial data, and most structured data for that matter, is often tied to a database, 

which is “[…] a collection of data organized in such a way that a computer can efficiently store 

and retrieve the data” (Worboys & Duckham, 2004). Efficient storage and retrieval of data 

depend not only on properly structured data in the database to provide satisfactory 

performance, but also optimized structures,  representations, and algorithms for operating on 

data (Worboys & Duckham, 2004). A spatial database system is a database with additional 

capabilities for handling large volumes of spatial objects. Storage structures, indexing and 

retrieval of data and manipulation of data must be adapted for the additional spatial context. 

According to Schneider (2017), a spatial database should be able handle the following 

requirements: 
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1. The spatial database system should include the features normally in a traditional 

database system and build further upon this foundation. 

2. It should offer spatial data types as special data types for the representation of 

geographic objects with spatial data types. An example of this could be basing types on 

OGC Simple Features. 

3. It should provide operations that can perform geometric computations on spatial 

objects.  

4. It should provide spatial predicates that check relationships and other properties 

between spatial objects, such as topological relationships.  

5. It should offer a spatial query language for spatial queries 

6. The previous points should be implemented by providing effective data structures for 

spatial data types and efficient implementations of spatial operations, predicates, joins 

and indexes.  

Some implementations of spatial databases are built as extensions to mature relational database 

management systems (RDBMS), while others exist on their own or as part of Geographic 

Information System (GIS) software.  

 Processing of geospatial data 

Many geospatial analyses are computationally expensive. Because of this, research has been 

done within the geocomputation field on the subject of high-performance computing (Gahegan, 

2017). Some of this work has been focused on finding better algorithms and tuning existing 

ones for better performance, but focus has also been on parallel computing, “[…] a 

computational technique in which multiple operations are executed at concurrently rather than 

sequentially” (Shekhar & Cugler, 2017). 

By using the power of multiple Central Processing Units (CPUs) simultaneously, a result can 

be found much faster than when using a single core. However, converting an algorithm to 

utilize parallel computation is a non-trivial task. Depending on the specific task at hand, the 

challenge can vary from simple to impossible. An early work within the Geographic 

Information Science (GISc) field found promising results when processing spatial statistics 

(Armstrong & Marciano, 1995). 
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 Temporal and spatiotemporal data 

Temporal data is a term used to describe data with a temporal component, or a notion of time, 

attached. In other words, temporal data is data that changes over time in some way. The time-

component can describe several types of change, such as incrementing or decrementing a 

numerical value, change of a textual value, or the movement of a point, change of size or other 

geographic feature change. Another form of temporal data are events happening along a time 

axis, which change the aggregated results from a “before” to an “after” state (Peuquet, 2002, 

2017). Temporal data with a geospatial component is often referred to as spatiotemporal data.  

 Stages or degrees of spatiotemporal datasets 

How changes over time is represented in spatial datasets have been subject to development. 

Traditionally, cartography had an inherent static view of the world, which according to Peuquet 

(2017) might have held back development. However, temporal elements have been introduced 

to geospatial datasets. The representation can be divided into four, distinct stages of increasing 

degree (Worboys & Duckham, 2004; Worboys, 2005). 

5.2.1.1 Stage Zero: Static representations 

A static representation contains no temporal dimension at all. As far as the dataset is concerned, 

the information within is static and unchanging. If changes are made to the dataset, all previous 

history is overwritten.  

5.2.1.2 Stage One: Temporal snapshots 

Snapshotting refers to capturing a moment in time, like when taking a snapshot with a camera. 

By storing multiple different versions of the same dataset at different times, one can represent 

the dataset at all the different times, both keeping some historical data and being able to 

compare data over time to infer some trends. Until recently, this was the most common 

approach for spatiotemporal models (Worboys, 2005). 

However, no explicit information about the changes are stored. If the changes themselves is 

the important part to show, trying to parse differences from one snapshot to another might be 

difficult, depending on the changes. If a change has happened, there is also no information 

about when it occurred more precise than at some point in time between the snapshots.  

The most naïve approach for incorporating a temporal dimension into geospatial data is to store 

each temporal snapshot of a dataset. However, this will quickly become unfeasible due to 

running out of space (Worboys & Duckham, 2004). For any number of snapshots, the space 

requirements are large. This is due to the necessity of storing unchanged features in every 
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snapshot. Data duplication is generally to be avoided if possible, as the duplicates require extra 

space and makes updates to the data more complicated. Within RDBMSs this phenomenon is 

known as redundancy, and is generally to be avoided except when creating backup and 

recovery plans (Elmasri & Navathe, 2016). Redundancy in geospatial databases have been a 

focus when constructing spatial indexes (Gaede, 1995).  

Although not necessarily stored as such, many datasets are published like snapshots. A new 

version of a dataset is published every month, every few months or after a given amount of 

work is done. The users then either overwrite previous data (stage zero representation) or store 

them as different snapshots (stage one representation). 

Of course, a great example of snapshot data is actual snapshots in the form of aerial and satellite 

photos used for data collection. Another example would be storing old and new municipal 

borders after a change as separate datasets.  

5.2.1.3 Stage Two: Object lifelines 

By storing different versions of single objects, rather than the whole dataset, more granularity 

can be achieved.  

This approach is called object lifelines and can be represented using objects indexed by their 

id and version, with only the latest version being shown to the end user. Using object lifelines, 

changes to an object like creation, destruction and adjustments can be represented explicitly 

and get connected to a specific time. There is also less redundant storage of data stored 

compared to snapshots, as only changed data gets a new object version. An example of a dataset 

structured in this manner is Open Street Map (Section 5.3). 

5.2.1.4 Stage three: Events and actions 

How does a representation of geospatial data look like when events and actions are used to 

represent static data rather than the other way around? 

Mourelatos (1978) divides situations into states and occurrences, or actions.  Occurrences are 

then divided into processes (activities) and events (performances). Events are divided into 
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developments and punctual occurrences. 

 

Figure 3 - Division of different “situations”. (Adapted from Mourelatos 1978) 

By representing our data as different kinds of occurrences (Figure 3), all situations can be 

represented. This is because objects go through states like creation, deletion and are changed 

in the form of updates. These changes can be “[…] described as an event or collection of events 

– something of significance that happens.” (Peuquet, 2017). The change event is the focus, 

rather than the new state.  

 OpenStreetMap (OSM) 

OpenStreetMap, or OSM, is one of the most extensive examples of crowd-sourcing of 

geospatial data (Haklay & Weber, 2008). OSM is an open-licensed world-spanning database 

of vector-based geospatial data. Data collection and editing follows the same crowd-sourcing 

principle which drives the online encyclopedia Wikipedia, where a collaboration of volunteers, 

each with small contributions, together create a large dataset. As existing OSM data is extended 

or corrected, new versions of already registered objects are stored as new versions of the object. 

This is the object timeline structure presented in section 5.2.1.3. 

 Event-driven architectures and Event Sourcing 

Software applications based on the notion of events are not limited to geospatial data. A 

growing number of applications in use today trigger different functionality within software 

when an event occurs. These events can originate either from the outside world or within the 

system itself (Hohpe, 2006). An event within this context might be defined more practically 

than the theoretical approach exemplified by Mourelatos in Section 5.2.1.4. An event can 

simply be “a notable thing that happens inside or outside your business” (Michelson & Seybold, 
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2011). The focus is business-driven, and several pieces of central work has been published in 

the form of blog posts from industry veterans, rather than in peer-reviewed papers.  

A more special grouping within event-driven architectures is Event Sourcing. In event-sourced 

systems, not only are events used for messaging and triggers, they are also used to represent 

the application state in storage. Debski et al. (2018) describes it as “An advanced version of 

commit-log”. While writing a log file like Write-ahead-logging (WAL) (Mohan et al., 1992) 

implemented in some file systems can represent the same information, the key to Event 

Sourcing is that the events themselves represent the foundation, rather than being a backup log 

that can be used for recovery. By capturing all changes to the state as a sequence of events, the 

state itself can be represented (Fowler, 2005).  

 

Figure 4 - Event sourcing pattern (Adapted from Debski et al. 2018).  

Figure 4 shows the general layout of the Event Sourcing pattern. The state machine is 

responsible for calculating and representing the current state of the application. After the state 

machine receives a command, it requests all events stored for a given ID from the Event Store. 

These are passed back, and the events are applied to the state in chronological order, producing 

the current (or any requested) state for the ID. Any modifications to the state the command 

requires can then be written back to the store as new events. 

This is similar to the envisioned Stage Three representation described in Section 5.2.1.4. 

Although little scientific work has been published on Event Sourcing, large companies like 

Netflix (Avery & Reta, 2017) has adopted the approach for complex, commercial tasks and it 

is described as a mature method (Debski et al., 2018).  

Event-sourced systems are constructed using the concepts of append-only writing and 

immutable data, meaning that once something has been written it is never changed again. This 
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has a few advantages. In domains such as banking, where systems handle sensitive and 

critically important data, it is imperative that an audit log is kept ensuring that the system is 

working as intended. By making the log the central piece of storage it can be guaranteed that 

the log is the correct sequence of events that happened in the system without elaborate testing, 

as it is the central source of facts (Young, 2014). 

The event log is not only useful as an audit log, it also allows easier reproduction of software 

bugs that have occurred in the past, as one can reconstruct the state at the exact time the bug 

occurred after the fact. Running past events through a system can also be a very efficient way 

of testing new software versions.  

If the immutable data is stored on a storage device that is also immutable, no tampering with 

the event history can be done. Keeping a full log of all events and actions within a system with 

no way of changing it is a good security measure when planning for so-called superuser attacks, 

where someone with administrator access tries to misuse or sabotage the system (Young, 2014). 

A challenge that event-sourced architectures face, is that as the event history gets longer, 

constructing the current state takes longer time as well. In practice, this problem is fixed by 

combining the approaches of Stage One and Stage Three representations (Section 5.2.1), 

snapshots and events. As data is fetched, at fixed intervals or when queries take too long, the 

state built by the current request can be stored as a snapshot. The immutable, append-only 

structure of data ensures that snapshots and cache never get outdated.  

 Related technology 

 Functional programming 

When building a program based around functions, one is practicing functional programming. 

A program should be built upon functions that takes in an input and returns a result, that always 

is the same for the same input parameters (Hughes, 1989). This means that the function cannot 

depend on any persistent state that mutates over time or produce any side-effects in other parts 

of the code. Such a function is called a pure function and can be seen as a computer analogy to 

mathematical functions in that they have a deterministic outcome (Milewski, 2014). The 

modern use of the term “functional programming” usually include cases where parts, and not 

necessarily whole applications are built on these principles. Common procedures within Big 

Data processing such as MapReduce lend heavily from functional programming principles, 

utilizing the deterministic nature of functions to efficiently process large amounts of data in 

parallel (Dean & Ghemawat, 2008).  
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 Command Query Responsibility Segregation – CQRS 

Separation of concerns is desirable when developing software (Dijkstra, 1976). By separating 

functionality for different concerns, each part can solve its problem in the most optimal way. 

This idea of separation of concerns can be applied to the handling of state and storage. 

Command-Query Separation (CQS) was developed as part of the work on the Eiffel 

programming language by Bertrand Meyer (Meyer, 1988). CQS divides all methods into two 

types. The first has a void return type, called Command. It can mutate state and is not a pure 

function since it can have side-effects. The second type of function in a CQS system is called 

a query. A query has a non-void return type and is not allowed to mutate state.  

Command Query Responsibility Segregation (CQRS) applies the CQS principles to database 

reads and writes (Young, 2014). When choosing which database system or setup one should 

use for a task, a tradeoff that must be considered are whether the system should be optimized 

for fast writes or fast reads. Quick lookups on changing data often depend on constructing 

tables and trees for different indices, slowing down ingestion of new data.  

By separating the system into write and read models, each can be optimized for their own load. 

All commands go to one model, and all the queries go to another model (Figure 5). For most 

systems, queries are what you need to scale. Data are written once and read many times (Young, 

2014). For most queries, it is sufficient to be eventually consistent (Brewer, 2000). 

 

Figure 5 - Separation of writing and reading in a CQRS + Event sourcing system (Adapted from Debski et al. 2018) 

If it is accepted that the reads might not be fully up to date, but just eventually consistent, it is 

possible to separate the reading and writing part of the data storage. Event Sourcing and events 

is one way to bridge the gap between the models, and the two patterns are often seen together. 
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According to Greg Young, who coined the term CQRS, it is not possible to implement Event 

Sourcing without CQRS (Young, 2014). 

 Domain-Driven Design – DDD 

When using the Event Sourcing approach, a common strategy is naming the events in a way 

that adheres to the Domain-Driven Design (DDD) modelling philosophy. The core principle of 

DDD is that what is stored reflects the domain one is working in. If the system is tracking the 

movement of ships between ports, the event of a ship leaving port should not be represented as 

removing one ship from the list of ships in port or changing the location parameter for the ship 

in the database. These approaches are prone to error, as they are derivatives of the real event 

happening. By storing an event named “ShipDeparted”, and then drawing conclusions based 

on that data, one layer of abstraction is removed from the model. It is then easier to track what 

the program is doing and catch any illogical behavior. In practice, the models change more 

often than the actual underlying behavior, and representing the behavior is therefore desirable 

(Fowler, 2005; Young, 2014). 

To be able to follow the Domain-Driven Design principles, it is imperative that the developer, 

or the system, has information that allow the representation to reflect the real world.  

 Relevance for spatiotemporal datasets 

Spatial datasets covering larger areas and comprehensive data can grow quickly. The same is 

true if one wishes to keep a record over time, being able to query how a distribution or dataset 

looked like at a given point in the past. Storing a full version of the dataset for every relevant 

timestamp quickly becomes unfeasible, and deleting older data removes potentially relevant 

data from the system.  

An event-based approach shares similarity with some popular file compression techniques, 

opting to store differences between data rather than full representations of them. This is in 

many cases much more compact. Rather than storing the results of a sequence of operations, 

you store the operations themselves.  

Another relevant comparison is to source code version control systems like git (Git, 2020; 

Spinellis, 2012). By storing the changes made to a file, rather than multiple full copies of it, 

they offer a space efficient way to track changes over time. This makes it possible to go back 

to an earlier version if necessary, and the lightweight nature makes it easier to store copies 

remotely. Comparing different updates to the underlying data also makes collaborative work 
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on the same files much simpler and is one of the reasons why source code version control 

systems are a cornerstone of modern software development (Ruparelia, 2010). 

 Cloud computing 

The concept, and usage of, cloud computing has taken hold in the last years. Cloud services 

are based around the principle the responsibility of hosting is offloaded to a “cloud” of servers 

somewhere in the world, connected to the internet, rather than maintaining your own servers.  

You deploy your data, code, and other resources, to a remote location and rent computational 

capacity rather than purchasing your own servers.  

Many of the largest software, hardware and service companies in the world have established 

themselves within the cloud service industry. Major cloud providers include Amazon, 

Microsoft, Google and IBM (Kratzke, 2018).  

There are advantages to cloud computing compared to more classic server solutions. Time 

spent purchasing, configuring, and maintaining infrastructure is reduced. Instead, focus can be 

directed towards development of the software running on the infrastructure. 

When the software is deployed as part of a large pool with storage and processing power scaled 

to handle many applications at the same time, peaks in storage and processing demand for a 

single application can usually be handled by the much larger system. There is less of a risk of 

a web page belonging to a small company suddenly becoming popular overnight, and the 

company behind it not being able to handle all the web page requests coming in. In a similar 

vein, there is no need for over scaling hardware to hedge for future growth, as these actions 

can be taken when or if the need arises.  This is not only a concern for growing web pages, 

“peak loads” can also occur in applications where processing is happening regularly, but not 

constantly. 

Cloud computing carries a lower risk of downtime compared to a privately hosted server, and 

in case of such incidents the recovery time is usually faster. This is due to the advantages of 

scale, where multiple redundant systems and servers can be setup without a large upfront 

investment. A company whose main business is selling cloud services are also more likely to 

possess specialists within the field of accessibility and are more likely to have on-site 

operations staff that monitor and intervene if any error situation occurs.  

Modern cloud computing platforms also offer a wide array of instrumentation for setup of 

services (Spillner, 2017). An emerging field within software development and IT management 

is DevOps, aiming to automate the processes for building, testing, and releasing software with 
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code and scripting. One example is Infrastructure as Code, where the setup of servers, databases 

and connections are defined through scripts rather than button presses in menus or a series of 

commands, so that they can be easily replicated and updated as necessary. The availability of 

such DevOps instrumentation is one of the key benefits of using established cloud platforms 

(Spillner, 2017).   

 From storage to processing – the different layers 

One common categorization of cloud services is by layers of abstraction, where different 

services are classified by how closely coupled they are to actual server hardware. 

 Infrastructure as a service (IaaS) 

The most “low-level” type of cloud computing service with little abstraction offered is 

Infrastructure as a service, or IaaS. Within the scope of IaaS, you can rent services such as a 

server, a virtual machine, a virtual network or similar. You are renting specific hardware setups 

in different structures. IaaS “[…] provides the physical computing resources that are configured 

by the user to meet variable needs” (Sugumaran & Armstrong, 2017). 

The customer has control over and is responsible for updating and maintaining the operating 

system and any software needed to fulfill any further necessary requirements for the given 

system. IaaS provides maximum flexibility for consumer-created software but does not try to 

hide the operation complexity of the application (Kratzke, 2018). 

 Platform as a service (PaaS) 

Platform as a Service, or PaaS, refers to the practice of a service delivering configurable 

foundational software components such as databases and the middleware that handles flows of 

information among applications (Sugumaran & Armstrong, 2017). Platforms can provide the 

necessary “wiring” in a solution, but do not typically solve consumer needs directly. Examples 

of PaaS might include a managed database service with all required tooling supplied. With an 

IaaS solution renting server capacity, setting up a virtual machine on the server and then hosting 

a database on that might have solved the same issue. The PaaS approach offers less flexibility, 

but also less setup work and tuning of hardware.  

 Software as a service (SaaS) 

Traditionally, the type of cloud service positioned closest to the end user and furthest away 

from managing hardware is Software as a Service, or SaaS. “[SaaS] is generally manifested as 

managed, network-enabled applications” (Sugumaran & Armstrong, 2017). This means that 

SaaS can provide a finished solution that fully covers a need that a consumer might have. 
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Sugumaran and Armstrong mention services such as Google Apps or GIS software delivered 

through the internet browser as examples of SaaS. This is a significantly different kind of cloud 

service than renting servers or virtual machines.  

 Virtual machines and container architectures 

An important feature of cloud processing is to be elastic and flexible (Kratzke, 2018). Over 

time, IaaS architectures have moved away from providing actual servers, and towards virtual 

machines. An abstraction on top of the physical hardware, a virtual machine might be run on 

any server within a larger set of servers.  The flexibility of virtual machines gives providers the 

opportunity of utilizing the underlying hardware better, by dividing larger servers into smaller 

virtual machines.  

While virtual machines provide benefits over physical servers, they still are full replications of 

systems, and have a large base footprint (Kratzke, 2018). A more recent development have 

been in container-based architectures like Docker (Felter et al., 2015; Merkel, 2014). By using 

advanced system functionality and technology, container architectures allow creation of 

lightweight, virtual machine-like systems with all required functionality for an application and 

little more. This allows for much smaller footprints for each container, and the adoption of 

architectures where system load can easily be distributed to many containers through load 

balancing. Typically, one container might contain one component of the architecture and all its 

dependencies. 

 Serverless computing 

A common problem one can encounter when running services in the cloud is the need for 

determining how much computation power and storage space the service might need. Proper 

prediction of the required resources is essential for cost management, as these parameters 

directly controls how much the service costs (Dillon et al., 2010; Eivy, 2017). 

Ideally, one could answer the question of how much processing and storage is needed with the 

answer of “Just enough for the application.”  This is what serverless computing aims to deliver, 

by abstracting allocation of resources away from the customer.   
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Figure 6 - Simplified differences between different cloud services 

A further abstraction built on top of what was discussed earlier, serverless computing aims to 

let the customer not have to worry about the cloud architecture and infrastructure at all. 

Backend code is deployed to the cloud as functions and gets run when called, without any long-

lived server application needing to be dedicated to it. When the function is called, it runs, and 

when it is finished delivering its output, it is like it was never there. FaaS systems have the 

advantage that they can scale to zero when not under any load, which is not normally possible 

for other cloud setups (McGrath & Brenner, 2017). The programs, or scripts, in a FaaS 

architecture have properties like those of pure functions (Section 5.5.1). This means that they 

contain no internal or persistent state, and simply execute according to their input.  

Many of the available commercial serverless systems are mostly limited to functions and scripts 

based on predefined templates and specifications (Enes et al., 2020), but there are also 

examples of FaaS solutions which provide full-fledged programming language support. 

The use of serverless computing has been growing the last few years with advancing 

technology in the area, and the growth is expected to continue the coming years (Varghese & 

Buyya, 2018). 

 Function orchestration  

Basic FaaS systems are structured around functions, with no state management involved. This 

might be a challenge for more complicated workflows, like pipelines requiring multiple steps 

and parallel processing. The FaaS model still lacks adequate coordination mechanisms between 

functions in more complex solutions (Baldini, Cheng, et al., 2017; Garcia Lopez et al., 2019). 
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Introducing an orchestrator function with extended capabilities, with the responsibility of 

managing data flow and execution order of functions, reduce the need for an external service 

is a way to handle this requirement. 

This idea is quite similar to a technique called sagas, originally developed for handling long 

lived transactions in databases (Garcia-Molina & Salem, 1987). Originally proposed as a way 

of splitting up longer transactions into many smaller steps to free up resources in between steps, 

this principle has since been introduced as a tool used in modern web development for complex 

state changes. (Redux-Saga, n.d.) 

FaaS platforms and function orchestration is an emerging field. This means that existing 

literature on the field is limited, and the industry seems to lead the way when it comes to new 

developments. 

A comparison of different FaaS orchestration solutions shows several differences between the 

commercial solutions provided. Although direct comparisons of the different solutions is 

difficult due to differing scopes and models, Garcia Lopez et al. (2019) provides some main 

takeaways. AWS Lambda from Amazon is the most mature solution, with a clear billing model, 

low overhead, and some support for parallel execution. A weakness however is its limited 

scripting language, and the fact that the orchestrator itself is not a function, which limits 

function composition (Baldini, Cheng, et al., 2017). 

IBM Composer from IBM performs close to AWS Lambda for short-running applications and 

is easier to set up than its competitors. This is in line with its focus of targeting more simple 

workflows.  

Azure Durable Functions (ADF) from Microsoft does not measure up in terms of performance, 

as the system produces significant overhead compared to the other systems on all loads. 

However, it is by far the most advanced in terms of programmability, with full-blown support 

for commonly used programming languages such as C# and JavaScript, and powerful syntactic 

structures for asynchronous and parallel programming.  

While these findings are accurate at the time of writing, Garcia Lopez et al. (2019) stresses that 

they are likely to change over time, as all examined solutions are in active development.  
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 Cost control in cloud computing 

Moving processing operations from local servers to the cloud have been shown to be a 

resource-effective and therefore cost-effective way to compute (Van Eyk et al., 2018). A sign 

of this is the wide adoption of cloud and migration of existing solutions to the cloud in the 

industry. However, predicting the cost of a solution and comparing different cloud products 

based on this has been difficult (Eivy, 2017). As the industry matures, this is expected to 

become less of a problem, but currently there still are challenges.  

Serverless systems costs are based on use rather than allocated resources, and this might be 

preferable for some uses.  

 Security concerns in cloud computing 

Cloud computing allow us to offload some of our security concerns to someone else. Many 

concerns still remain however, data is vulnerable to attacks wherever it is stored and processed 

(Ryan, 2013). For instance, it is still important to limit who can access the data, even though 

the cloud provider might streamline the setup of access restrictions. The threat of a malicious 

insider with access is still relevant in the cloud, and might be larger due to the number of 

employees or subcontractors tasked with running the cloud service (Hubbard & Sutton, 2010). 

Sending large amounts of data across the internet and most likely across national borders to 

servers maintained by someone else do come with a slew of security challenges. In some 

instances, it is the main hurdle for widespread adoption of cloud solutions. Strong isolation 

between different users that host services in shared resources is also vital (Baldini, Castro, et 

al., 2017). This is because deploying malicious code to a server can bypass security measures 

if it is allowed to interact with other services hosted on the same hardware.  
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6 Methods and pipeline implementation 

 The task 

The pipeline implementation needs to accomplish several tasks. First, it needs a way to look at 

two different versions of a spatial dataset and pair up features for event generation. Second, it 

needs a way to create events that describes the changes. As these are computationally intensive 

tasks for larger datasets, they need to be implemented in a way that can scale well. While the 

actual implementation of the algorithms used for these tasks is outside the scope of this thesis, 

parallelization of the tasks (Section 5.1.5) can still be utilized in order to make them scale well. 

In addition to these tasks, the final event data needs to be made available to other applications 

through an output mechanism. 

 Implementation 

Processing of large amounts of spatiotemporal data and making them quickly available would, 

following a traditional approach to server technology, require a large investment in processing 

power. Since the arrival of new dataset versions are of a periodic nature, with a lot of time 

spent idling, maintaining such an infrastructure would be cost-ineffective. By solving this 

problem through cloud-based, serverless computation easier flexibility and scalability can 

hopefully be achieved.  

 Technology choices 

Based on the review of cloud computing solutions and orchestration presented in Section 5.8.1, 

combined with own experience with the technology, it was decided to implement the 

processing pipeline using the Microsoft Azure cloud platform. The individual tasks of the 

pipeline were implemented in C# and deployed as Azure Functions. A Durable Function 

orchestrator was used to manage data flow from task to task. The orchestrator also took care of 

handling the parallelization of tasks, using the fan-out, fan-in pattern (Section 6.4.6).  

 Architecture overview 

Figure 7 describes the pipeline and overall solution that was implemented.  

Below follows an overview of the implementation, before a more throughout description of the 

different components follow. 

Before anything was initiated, a PostGIS database setup by co-supervisor Atle Frenvik Sveen 

was loaded with a dataset prepared by him for the task. PostGIS is a powerful geospatial 
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extension to the popular open-source RDBMS PostgreSQL. 15 separate tables contained yearly 

versions from 2005 to 2019 of OSM (Section 5.3) data.  

The pipeline was initiated by a HTTP Post request to an endpoint generated by Azure, where 

run parameters concerning which year to fetch, how many entries and timeout values were 

passed in for testing purposes. The HttpStart function initiated by the request launched the 

DurableOrchestrator, the central component for the pipeline. 

 

Figure 7 - Overview of the solution architecture presented 

The task of the DurableOrchestrator function was to manage the application state and initiate 

other functions as they were required. It used storage tables to track how far the execution had 

run and went dormant whenever another task was running. It was also the component 

responsible for parallelizing processes. When the DurableOrchestrator was first launched, it 

returned several end points for keeping track of its status from the outside. The Call Response 

(on the right-hand side of Figure 7) was the return result that got written to one of these 

endpoints. This output was used extensively for development and testing purposes.  
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The first task was to fetch data from the database. This was the responsibility of the FetchData 

function, which used a database connection string from the application settings and parameters 

from the run parameters fed into the application to fetch the right data. The task of this function 

was to pair objects that was updates of each other together for easier event generation later.  

The EventCreator function was initiated with a database entry or a pair of entries, depending 

on the event type required. It found the differences in geometry and descriptive tags between 

versions by utilizing external libraries and built events for writing. The EventCreator functions 

was launched in parallel, as each function could run independently of each other. 

The last components of the main pipeline were the EventWriter and EventGridWriter functions. 

These took the events made in the EventCreator and wrote them to different output mediums. 

The EventWriter function wrote them to a persistent event store, while the EventGridWriter 

function wrote a stream of events to an Event Grid, the Azure infrastructure for passing events 

to different consumers.  

The Application Programming Interface (API) was responsible for making the event data 

accessible in a traditional state format, essentially reversing the process in the 

DurableOrchestrator function. It took in an Http Get Request and returned a full version of the 

dataset in the current form, by running through all the events of the event store and applying 

relevant updates and deletes to recreate the current state.  

 The Durable Orchestrator 

The DurableOrchestrator function was the central building block of the event pipeline. 

Implemented as an Azure Durable Function (ADF) (Gillum et al., 2019), the responsibilities 

of the orchestrator was managing the flow of the application. This included initiating other 

functions and passing them parameters, receiving results back and passing them further along 

the line. A setup with Azure Functions without an orchestrator would have included 

intermediary storage or queue structures between each step, and splitting work between 

multiple parallel processes would be much more difficult. The ADF is itself implemented based 

on Event Sourcing. Every time it is started, it executes from the top of the program. By storing 

the state as a series of events, it kept track of which functions it had invoked before and what 

result it got back. When it encountered a situation where it was awaiting a response from a 

function call, it skipped through the rest of the execution and turned off. It later woke back up 

and started retracing the event log through the code, recreating its state, whenever it was 
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finished waiting for other processes. This repeated itself until the whole orchestrator had been 

executed successfully.  

When initiating multiple concurrent and parallel functions, it was necessary to create a task list 

for the orchestrator to await results from. This way, multiple functions was started from one 

run of the orchestrator, and it could sleep until all of them was finished executing.  

 Prepared input data 

The test data set used during development and subsequent testing of the solution was a subset 

of the Open Street Map dataset.  The dataset mainly consisted of features located in Norway 

and had been transformed from State Two Object timelines (page 17) into yearly snapshots for 

the purpose of this application. Each table consisted of 5 columns: object id, object version, 

timestamp, descriptive tags, and geometry. Object version was an incrementing value 

representing the version order in the object timeline, and together with object id was a unique 

identifier.  

 Querying efficiently 

When considering a cloud-based solution, the 

Input-Output (IO) operations and network 

latency would most likely be a large factor 

when measuring runtime. An early 

implementation of the pipeline fetched entries 

one at a time, but this soon became a 

bottleneck. By performing different database 

join operations between two versions of a 

table where ids persist from one version to 

another, finding update pairs, deletions and 

creations was quite simple. This was a more 

efficient query (See appendix) than simply 

fetching one entry at a time.   

An inner join of two versions of the same 

dataset (Figure 8d), on the id field of both, 

resulted in all entries which was a part of both 

sets. These were our updated or unchanged 

Figure 8 - Joins of datasets and their corresponding diff 

event type 
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objects, which the function would need to calculate differences for.  

A left join (Figure 8a) combined with looking through the ids that had a null entry for the table 

of version n +1, gave us all the objects that existed in version n, but not in version n + 1. These 

were our deleted objects, and deletion events could be created for these objects.  

A right join (Figure 8b) combined with looking at the null entries, gave us all the new entries 

that are in version n + 1, but not in version n. These were our creation events. 

The FetchData function (Figure 7) took this data and structured them for further processing. It 

also grouped the data by version for structure in case a run required comparing more than two 

versions. An example of this would be looking at data for a stretch of years, such as from 2013 

to 2016.  

6.4.3.1 Making an agnostic framework 

The task presented was to make a pipeline capable of handling different datasets, rather than 

implementing it specifically for the test dataset. The test dataset was distinct in some ways 

from the intended target, especially in the way it was versioned. It was easy to join between 

versions on feature id values as these were consistent across versions, this is an assumption that 

not necessarily holds true for other sets. Although matching entries between versions without 

the help of a stable identifier was considered outside the scope of this work, the task specified 

that the pipeline should be able to handle the introduction of such a component. Because of 

this, an aggregate id for internal indexing was used for an easier transition to non-indexed data. 

Adding a function before FetchData that matched different versions and gave them 

corresponding aggregate ids should integrate well with the solution. 

 NetTopologySuite (NTS) 

NetTopologySuite (NTS) is an opensource library for .NET, adapted from the Java library JTS 

Topology Suite. It is an “[…] API for modelling and manipulating 2-dimensional linear 

geometry.” It provides numerous geometric predicates and functions.” It is based on the OGC 

Simple Features definition of objects and was used for help handling the processing of 

geometries in the solution. (JTS, 2020; NTS, 2007) Whenever there was need for the geospatial 

features of an object, NTS was used to serialize the WKB data (Section 0) from the database 

and then represent the geometry. 
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 Creating events 

After the relevant, versioned data was loaded into the program and assigned matching 

aggregate ids, the next step was to generate change events.  

6.4.5.1 What should the event contain? 

How can a diff event be identified? They are directly connected to the geographic objects they 

are describing, so the first part of their identifying key was the connecting aggregate id. 

However, any object could get changed multiple times over its lifespan, so an incremental 

version number was included to differentiate events. This combination of aggregate id and 

version number was used as a unique identifier. Updates, deletes and creations of objects might 

be handled differently depending on the application, so an EventType value was included to 

represent this.  

The main payload, however, was the GeometryPatch and TagPatch values. The 

GeometryPatch was created using the GeometryDiff library, made by co-supervisor Sveen, 

which compared two incoming geometries. The Diff returned represented a translation from 

version n of the object into version n+1 and made it possible to Event Source the geometries 

themselves, storing them in Stage Three representation.  

The TagPatch represented the updates to all tags (also known as attributes, tags is the name 

used in OSM) to the geometry. The tags in the test data set was represented as JSON objects. 

Finding the changes to a JSON object was a solved problem, and a mature code library was 

used to calculate the resulting diff patches for these as well (Bryan, P., Nottingham, 2013). 

By applying the GeometryPatch and the TagPatch to an object of the old version (version n), 

the return value would be the same object, updated to the new version, version n + 1 (Figure 

9).  

 

Figure 9 - Patching and unpatching an object 
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The patches could also be undone (Figure 9), sending the patch and the new version through 

an undo operation would return the old version.  

The DiffEvent also contained the timestamp of version n + 1. It was assumed that version n is 

the correct representation of the data until the update occurred, after which the updated data 

was the new truth. This assumption holds true for most relevant problems we seek to solve and 

would be the best representation available with the data the application had access to. By 

tracking the timestamp of the DiffEvent, we could represent the correct state of the object at 

any time, not just the present. 

  

Figure 10 - Timestamping is important for ordering events in an asynchronous setting 

The timestamps could also be used to make sure that the API read the events in the right order 

(Figure 10). In an asynchronous, append-only write scheme, if the data was not explicitly 

versioned, timestamps can be used for versioning, as the system does not guarantee that the 

events show in the right order.   

Finally, a reference was included to the dataset id and version, to easier keep track of which 

data set the diff event was related to. As one of the underlying ideas was that multiple datasets 

could be fed through this pipeline and onto an event queue, it was important to be able to 

separate the different datasets from each other again easily, in case a listener function was only 

interested in a subset of the available diff events.  

 Parallelization 

An important design detail is that Event Sourcing enabled aggressive parallelization of tasks. 

This could be done since no event was dependent on any other. The events are only used 

together later, when read from the event log. By keeping track of the timestamps and version 

ids an eventually consistent state could be guaranteed in the event log (Musa Elbushra & 

Lindström, 2014).  
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As such, the solution could use the powerful fan-out/fan-in pattern that is presented as one of 

the main strengths of ADF (Roberts, 2019).  

 

Figure 11 - Flow of the fan-out/fan-in pattern in Azure Durable Functions (Gillum, 2019a) 

Normally, while it can be easy to initiate multiple parallel processes, it is much more difficult 

to keep track of all the awaiting functions and know when to resume the orchestrator. To do 

the same here, a list of all the tasks initiated was generated, and then the system awaited the 

completion of all the tasks in the list. As soon as all tasks were done, the orchestrator could 

continue to the next step, and the system had successfully fanned out and back in. Assuming 

full parallelization, the runtime of this part was equal to the max runtime among the tasks, 

rather than the sum of all the run times. Of course, more time was spent on overhead, but for 

sufficiently large problems this should be a smaller factor than the speedup from parallel 

processing.  

Note that this parallel processing not only occurred across multiple processors, but across 

multiple virtual machines and servers. Some network latency was therefore expected.  

 Writing events to persistent storage 

After all the events had been created in parallel, they had to be written to persistent storage. 

Although the intention is that external services can listen to an event queue for any updates, 

there needed to be some storage keeping track of the history. This was to keep track of what 

had happened in the past. If a consumer of events later had to be rebooted, it might have had to 

reread previous events to recreate the current state before it could resume listening to new 

events. 
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One obvious option for storage was PostgreSQL, as it was already used for the input data. It 

has great support for geospatial operations with PostGIS as mentioned in the architecture 

overview. However, the events themselves did not contain any direct geographic features, only 

diffs. Second, the event stream generated by the program was more suited for a document store 

of some kind, as the structure of events might need to change over time. As older events cannot 

be changed in an Event Sourcing system, the storage would have to accept different structures, 

and document stores are more flexible in this regard. A RDBMS might also struggle with the 

large spikes in writes at certain times, as it would need to hold connections to all the parallel 

writers. Although a document store setup could be achieved in PostgreSQL and Azure 

Functions (Marten, n.d.), a more lightweight solution with lower overhead costs for cloud 

hosting was preferred. Azure Table Storage is a simple solution made to work in tandem with 

different solutions in the Azure cloud environment and integrated seamlessly with the function 

architecture. Writing to the table store was as simple as redirecting the return value of the 

function to storage rather than back to the orchestrator (Figure 12). 

 

Figure 12 - The code necessary for writing to Table Storage from Azure functions 

As mentioned, Durable Functions already use Table Storage for keeping track of its 

orchestration process, which also is an event-sourced approach.  

Azure Table Storage lacks query options outside of the RowKey and Partition key, the 

combination which uniquely identified each row. However, it follows the serverless principle 

of no baseline cost and only paying for the used functionality. Its lightweight nature also allows 

it to store potentially huge volumes of data, which is ideal for the large amount of data that an 

event store might contain (Heath, 2017). 

6.4.7.1 Choice of keys 

The choice of keys for the event store was important for fast read performance later. Keys 

should be chosen according to the read patterns most likely to occur. For the persistent storage, 

it was assumed that the most common reads would be getting all events related to either a whole 

dataset or a single aggregate id. The partition key that decided what information gets stored 

together was set to the dataset id. Inspiration was also drawn from the setup Netflix used for 

their licensing server (Figure 13) (Avery and Reta 2017). A common choice for row id in event 

[return: Table("EventLog")] 
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stores can be the aggregation, or view, that is interested in the data. According to Avery and 

Reta, the data structure should come from the aggregation. For us, the aggregates correspond 

most closely to the dataset ids. A limit in Table Storage is that there can only be one additional 

key to the partition key. To ensure unique identifiers, a combined key of aggregate id and 

version (Section 6.4.5.1) was used.  

 . 

 

Figure 13 - Example of setup of event table, with partition key, row keys and data columns (Netflix setup based on Avery and 

Reta 2017) 

 Cloud setup 

To make the above solution work, some resources had to be set up in the Azure cloud. 

Deploying to Azure is grouped into resources and resource groups. 

Resources are any single service that are available in the cloud solution. Examples range from 

databases, to virtual machines, to function apps. Depending on the resource, these can be 

categorized under Platforms-as-a-Service (PaaS), Software-as-a-Service (SaaS) or serverless 

computing/Functions-as-a-Service (FaaS).  

For our setup, the serverless computing services were used for all processing purposes. This 

was due to the need for elastic scaling, compared to the more rigid structures offered through 

virtual machines. The initial setup was also simpler, as there was less need for defining 

endpoints, processing power and storage space ahead of implementation.   

The Event Pipeline and the API was deployed as two separate Function Apps, setup with HTTP 

triggers. This meant that the services would be ready to run and would do so any time someone 

with the right credentials sent a GET request to the relevant HTTP endpoint.  
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A resource group represents a container that groups related resources together. Under the hood, 

the resource group holds the metadata for the grouping, and provides a way to control and 

monitor the connected resources together. All resources belong to one and only one resource 

group. A common strategy for grouping is based on resource lifecycles. If the resources are 

created, updated, and deleted together and their structure is dependent on one another, they 

should be grouped together. Here, the resources for the Event Sourcing pipeline, the event 

storage and the API were grouped in a resource group, while the database containing the test 

dataset was hosted in another. This was decided because the test dataset existed separately of 

this project and was also accessed from other work. A structure like this encourages good 

development practices related to decoupling code and the separation of concerns described by 

Dijkstra (1976). 

 Creating an API 

A vital part of making the system useable was creating an API that allowed external solutions 

to make reads on the event log without having to adapt to its specific structure. A core principle 

should be that the underlying data structure should have as little impact as possible.  

For this reason, we wanted to return objects and not events when we got read requests from the 

solution. The core principle, and what was implemented, was that every object was a sum of 

all the diff events related to that object. The object got created, then changed and then changed 

again. At one point the tags updated as well. What the end user usually would be interested in 

would be the current object state at some point in time.  

6.5.1.1 Separating objects 

To process the events for each object, it was decided to group the events by object aggregate 

ids. While this required an extra pass over the events, it was decided that the simplicity of this 

solution and the ability to reduce latency by reducing the number of read requests was worth 

it. Hence, the first step was fetching all events related to the dataset in question. 

Language Integrated Query (most known as LINQ) is a query tool built into the C# language 

that offers functional programming patterns. It provides numerous capabilities for sorts, 

groups, searches and similar for collections such as lists. For this purpose, its GroupBy function 

made it simple to go through the events for one object at a time, building the dataset.  

Another way to achieve a similar data structure that was considered, was looping over the list 

of events. Each event could have then been mapped to a Dictionary structure with aggregate 

ids as keys and lists of events as values. In the end, the resulting structure would be similar. 
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 Test setup 

After the system was implemented and set up properly in Azure, it was necessary to test how 

performant it was. As the main performance criteria was scalability and throughput, it was 

decided to run the system on increasing workloads in terms of tuples handled, until max 

throughput was found. When maximum capacity was found, a run time analysis for different 

loads would determine how the system scaled. Ideally, a solution with parallel execution of 

tasks would scale sub-linearly as input got larger.  

 Runtime analysis 

Implementing a timer function within the orchestration function did not work due to the 

constant restarts of the orchestrator, and the recommended method for recording the execution 

time of a solution was to inspect the execution history within the Microsoft Azure Storage 

Explorer interface (Gillum et al., 2019). When measuring the time elapsed, there was a number 

of points that could be defined as the starting and stopping points (Figure 14). The most relevant 

for total performance would be measuring the time from the user sends a request and until the 

user has access to the requested data. However, this period includes network latency and the 

time Azure uses to initiate the process. As this thesis is focused on the pipeline itself, it was 

decided to measure time elapsed from the startup of the Orchestrator function (t0), until the 

orchestrator was finished with all its subprocesses (t1).  

 

Figure 14 - Selecting a time span to measure 

The table DurableFunctionsHubHistory in Azure is the event store for the orchestrator function 

and is used to keep track of different functions starting and stopping. By using the timestamp 
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of the events ExecutionStarted and ExecutionCompleted we could find the time elapsed during 

the execution of the pipeline.  

 Number of runs and different datasets 

We define one run as an execution from start until end. While timing the function from t0 to t1 

reduces some unknown variables, it was vital to find the average time over multiple runs to 

reduce uncertainty.  

A variable that could affect runtime was the data being used, as geometries vary in size and 

analysis complexity. It was decided to do half the runs with an update from 2012 to 2013 and 

the other half from 2013 to 2014. This could give some insight into whether different data 

impacted runtime in a meaningful way.   

 Parallel runs 

As discussed in Section 5.8.1 about Function Orchestration, Azure Durable Functions are 

orchestrators that themselves are functions. A main benefit of this is the ability to create sub 

orchestrations that can handle parts of a larger workflow (Baldini, Cheng, et al., 2017). To test 

the possibility of including such a strategy for handling datasets too large to handle in one run, 

we ran a simple test by scheduling multiple runs concurrently on the largest test set to see 

whether a parallel execution of multiple pipelines could scale even further.  

 The uncertainty of serverless 

As discussed in Section 5.8, a core principle of serverless architectures is the delegation of 

hardware and middleware responsibilities to the cloud provider. When testing the performance 

of the pipeline, it can be difficult to control unknown variables related to how Microsoft 

deploys and runs the ordered services. As shown by Lynn et al. (2017) and Garcia Lopez et al. 

(2019) serverless orchestrators in general and Azure in particular is still not mature in terms of 

reliable run times.  

 Function timeouts 

In some cases, a function stalls and is not able to finish its execution within five minutes. If 

this happens, Azure terminates the function. As the pipeline implemented did not contain any 

fallback solution for this, runs that took more than five minutes was discarded from the runtime 

results.   
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7 Results 

 Runtime 

The raw event data exported from Azure were further grouped and analyzed using Microsoft 

Excel. By calculating the difference in timestamps between the ExecutionStarted and 

ExecutionCompleted events, time elapsed (tElapsed) for each run is found. The final results 

are presented in Table 2, grouped by dataset (ySerie) and number of objects (nObjects).  

Dataset years ySerie nObjects tElapsed Runs Avg tElapsed 

2012-2013 1 50 00:51,5 5 00:10,3 

2012-2013 1 100 01:23,1 5 00:16,6 

2012-2013 1 150 01:48,5 5 00:21,7 

2012-2013 1 200 02:20,4 5 00:28,1 

2013-2014 2 50 01:08,1 5 00:13,6 

2013-2014 2 100 01:07,2 5 00:13,4 

2013-2014 2 150 01:59,6 5 00:23,9 

2013-2014 2 200 02:00,7 5 00:24,1 

2013-2014 (In parallel) 3 200 04:43,2 5 00:56,6 

Table 2 - Runtime results by size of dataset and dataset used 

A sample set of raw data exported from Azure is included in the Appendix (Table 3). 

Figure 15 shows the results as a bar chart. The first column in each grouping describe average 

runtime when creating events from 2012 to 2013, the second 2013 to 2014 and the third the 

combined average of all runs. When the number of objects increase, we can see that the average 

runtime increases from about 12 seconds on 50 objects to about 26 seconds for 200 objects.  

 

Figure 15 – Runtime results by size of dataset and dataset used 
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 Reruns due to timeout 

Due to timeouts (Section 6.6.5), four runs that all took place right after each other that all lasted 

over 5 minutes were discarded from the results and the relevant runs was run again.  

 Parallel runs 

We included runs in parallel (Table 2, last row), to test whether multiple pipelines running 

concurrently could be a way to increase throughput.  

 

Figure 16 – Comparison between sequential runs and parallel runs. Each average runtime is the mean over 5 runs. The total 

run is the summation of single runs for the sequential run, and the time from first execution start to last execution completion 

for the parallel run.  

 

Each run is executing significantly slower when run in parallel, almost 57 seconds compared 

to 24 seconds. However, the total run completes faster in parallel. 1:12,9 minute is over 45 

seconds faster than the sequential run.   

There was some delay between the start of runs while executing the parallel setup. This was 

partially due to waiting for a response to each call before sending the next one, and partially 

due to the delay in Azure between receiving a request and starting execution (Figure 17). The 

sequential runs are assumed to start up as soon as the previous run is done. Parallel runs start 

up with a delay from the one before. All runs vary in duration. 
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Figure 17 - Illustration of timing sequential (a) and parallel (b) runs.  

 Maximal runtime for parallel operations 

The worst-case scenario of total run time in a parallel setup would be if the last run started, 

were the one taking the longest time. Then the total execution time would be the time of the 

longest run, plus the sum of all start delays. 

𝑡𝑚𝑎𝑥,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = max(𝑡𝑟𝑢𝑛 1, 𝑡𝑟𝑢𝑛 2, … , 𝑡𝑟𝑢𝑛 𝑛) + ∑ 𝑡𝑑𝑒𝑙𝑎𝑦,𝑛
𝑛−1
𝑖=1  . 



 7.3 Costs of processing in the cloud 

45 

 

In the test run with parallel runs, the sum of delays was 12,6 seconds, while the largest trun was 

1:01 minutes.  

𝑡𝑚𝑎𝑥,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 61.0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 + 12.6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 73,6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

This was only slightly larger than the ttotal observed, which was 72,9 seconds.  

 Costs of processing in the cloud 

Figure 18 describes the costs associated with hosting the Azure Functions, Table Storage and 

Durable Orchestrator throughout the project. 

 

Figure 18 - Cost breakdown over project duration. All services represent the sum of traffic throughout development and 

testing 

The costs associated with prototyping and testing the application can be considered negligible, 

with a total cost of 1.06 Norwegian Kroner (kr). Over 77 % of this, 0.82 kr, was from the Table 

Storage. Costs were fetched directly from the cost breakdown available in the Azure admin 

panel.  

In line with the serverless architecture of the solution, the billing model for all services used 

was usage-based, with no underlying, monthly cost.  
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8 Discussion 

Let us start by looking back to the main research questions presented in the introduction. 

1. Is a cloud-based implementation of a diff-based event generation pipeline a viable 

solution for producing an event-stream from traditional, bulk-updated data? 

2. How can such a pipeline be implemented in a modern, cloud-based, computing 

environment? 

3. How does such a pipeline perform in terms of scalability and throughput? 

4. How does an event generation pipeline for versioned geospatial data fit into a larger 

software architecture in terms of integration of data consumers? 

 The cloud-based pipeline implementation 

The serverless paradigm of cloud computing seems especially well suited for the task of turning 

bulk-updated geospatial data into an event-stream. The recent advances in cloud-based 

computing enables us to scale up and down processing capacity as needed, and billing 

structures allow the system to scale to zero when no processing is needed. Handling events that 

represent a change to a single feature within a large dataset enables aggressive parallelization 

of the processing of these.  

The challenges with cost found by others (Eivy, 2017) was not encountered in this early-phase 

implementation. While not representative of production-level loads, the low accumulated costs 

after some amount of load put on the system throughout development and testing is promising.  

 Scalability and throughput 

The main challenge to overcome for this cloud-based system to be a viable implementation for 

the event generation pipeline is its scalability. Can it handle the large amounts of event 

generation needed for updating a large geospatial dataset from one version to another? 

While the solution worked well for processing low- to medium numbers of features, larger 

processes (500-1000 features) stalled and did not run successfully. Three possible culprits 

could be: 

• Orchestrator out of memory 

When the orchestrator was run locally on a cloud emulator for test purposes, running out of 

memory was the main challenge. The local emulator runs all processes on the same computer 

and does not fully represent how resource allocation works in the cloud but having a problem 

on an emulator might mean it eventually becomes a problem in the cloud application as well.  
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• Run history takes longer and longer to process 

As more functions are called, tasks awaited and others completed, the history table used by the 

orchestrator function to find its current state grows. This is the same challenge that any Event 

Sourcing system encounters at some point without snapshotting (Discussed in Section 9.3). As 

this initially was a likely candidate, the system was tested with an option enabled called 

Extended Sessions (Gillum, 2019b) that mitigates this issue by not turning off the orchestrator 

as aggressively when many small functions are called. As this changed little in terms of system 

performance, it is less likely that this is the issue. 

• Large geometries block the pipeline 

Tracing the execution logs, the bottleneck appears to be when fanning out EventCreator 

functions. Here, the difference (diff) generation for the update events are run. The diffing 

algorithm used for finding the differences between geometries was GeomDiff, made by Sveen. 

He commented that “preliminary results indicate that the GeomDiff algorithm degrades 

significantly with large (1000+ vertices) geometries.”  

Although this represents a relatively small portion of the geometries, their compute time can 

be many orders of magnitude longer than the rest. In a pipeline architecture with parallelization, 

this problem is initially not significant, but as the total number of these geometries get closer 

to the max parallel capacity, we see a significant slowdown (Figure 19).  

 

Figure 19 - Slow processing of some events cause throughput issues 
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A makeshift solution for timing out long-lived processes and falling back to representing the 

Update with a Delete and Create did help, but not enough to overcome the problem. A potential 

direction is to predict what geometries might be difficult to create patches for and use the 

fallback solution directly. Finding a way of creating an update event that contains the delete-

create update representation would be better than creating two separate events, as this does not 

accurately model what is happening.  

The results presented in this master thesis are not enough to conclude whether the orchestrator 

running out of memory, slow processing of some events or other factors is the hindrance for 

further scaling. If the parallel test used different data sets for each of its runs, we could have 

gathered more information about the issue. This way, the probability of it encountering 

problematic objects would increase and its longest run would likely slow.  

 Parallelization not as aggressive as hoped 

The blocking of the pipeline by slow processes would not be a problem if the “pipe” itself was 

wide enough. One of the core assumptions made when selecting an architecture for parallel 

processing of the events was that this could be scaled further than what was the result. While 

the solution is closely following the official documentation for implementing the fan-out, fan-

in pattern, some coding error might have limited the number of parallel processes. However, 

when searching for a solution online, others seem to have encountered similar scalability issues 

for processing heavy workloads. When encountering this kind of load with varying processing 

requirements, some of the underlying virtual machines might run on peak load while others are 

idling, and the load balancer might not realize that it needs to spin up more resources. Official 

documentation suggests that up to 20 VMs might be used at the same time (Gillum, 2019b), 

but even for hour-long runs we seldom registered more than 10 running at the same time.  

One of the common suggestions for a work-around is limiting the number of processes each 

VM is delegated (Gillum, 2019b). However, taking into consideration numbers of VMs and 

how much each should process seems counter intuitive to the serverless workflow that the setup 

suggests it can deliver. Further work is required to find the root cause of this. 

Another bottleneck that might be to blame is available memory in the orchestration function. 

While this is not something that we were able to decipher from the logs or live monitoring of 

the runs, when running similar tests on the local cloud emulator provided by Azure this was 

the main reason for slowdown. This might not be the case when running in the cloud, but it 

could be worth investigating.  
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The solution is running fine for smaller workloads. A reasonable approach is to split up an 

update of a database into multiple smaller runs. One way this could be achieved is by wrapping 

a new orchestration function around the existing one, delegating what part each should do. As 

there is no double-billing when running multiple levels of orchestration, the extra cost would 

be minimal, and the fact that Durable Functions is functions themselves allow for this approach 

Function orchestrationSection 5.8.1). As orchestration-within-orchestration is not easily done 

in all cloud platforms, a different approach would need to be used if implementing this extra 

orchestration step elsewhere (Baldini, Cheng, et al., 2017; Garcia Lopez et al., 2019). The 

results of running parallel runs compared to sequential ones indicate that there is an opportunity 

for better overall capacity by following this route. However, this was not tested in-depth and 

more work is needed to find an optimal structure for this.  

 Synthetic and real-life datasets 

Ideally, any solution should be tested in a variety of scenarios, on a variety of different datasets 

(Theodoridis et al., 1999). However, for testing out the validity of a concept, it is normally not 

feasible to create a synthetic dataset that can cover such a variety.  

As the system was tested on an adapted, real-life dataset it already has some resiliency to 

variation of data. During development, it was discovered that some features changed from one 

OGC Simple Features type to another (e.g. LineString to Polygon), something the 

GeometryDiffer library could not create a patch for. It is challenging to anticipate challenges 

such as this when creating a synthetic dataset that should model the challenges of real-world 

data.  

 Reliability 

Four runs during testing had to be discarded due to function timeouts (Section 7.1.1). As these 

four happened right after each other and none of the other runs with identical parameters were 

affected similarly, there might be something happening server side that has not been accounted 

for. During the period these tests were done, the relevant Azure server region that was used 

(Western Europe) was experiencing up to a 775% increase in traffic due to the Corona virus 

epidemic in Europe (Microsoft, 2020). This might have caused some instabilities in the service, 

although this is not certain. 
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 Similar work 

Zhou et al. (2004) proposed a solution not too different from the one outlined in this thesis. An 

“event-based incremental updating (E-BIU)” system handles updates for spatiotemporal 

databases.  

A main difference is that the paper looks more into the consumer-side of events, using them to 

update a database, rather than focusing on the production of events. “It is assumed that the 

event information can be collected and transferred to the database system according to certain 

form designed previously.” This master thesis has focused on the generation of events that such 

a system can use for updates. Another key difference is that the implementation by Zhou et al. 

was done before cloud computing became widely available, and hence is implemented with a 

more traditional data structure and database setup in mind.  

An interesting point is made about a type of change event, reappearance. Something exists, and 

then disappears before once again appearing. The example given is a river drying up during a 

drought, then reappearing after the drought is over.  

A similar pattern was encountered in our own test data, but in a way that not necessarily 

represents real-world change. OSM is a crowd-sourced dataset, and we found examples of 

datasets that were registered, removed, and then reappeared at its original position. Because of 

this, the data is removed, then later reapplied. We can see the same in our specific 

transformation of the set, where the data was treated as fully updated versions every year. Every 

set not updated in a year was treated as deleted. Some models for events include reappearance 

(Worboys, 2005), while other models omit them (Claramunt & Thériault, 1995). The 

reappearance event might be more relevant for geospatial events than for other uses and should 

be considered for future work in the field.  

Although serverless architectures are new and still in active development, it has already been 

used within the scientific community in general and for geocomputation, due to its ability to 

scale rapidly and parallelize larger tasks. 

An example is satellite imagery analysis pipeline to evaluate surface reflectance of lakes 

(Figure 20) (John et al., 2019). 
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Figure 20 - Pipeline flow of highly parallelized processing of satellite imagery  (John et al., 2019) 

By subdividing raster images and processing different parts of the images in parallel, large 

throughput is found. Note that in Figure 20, in the second row from the top, we can see an 

example of sub orchestration for dividing up the work.  

Recent work on Event Sourcing is more and more focusing on implementations in the cloud. 

Not only is cloud computing in general increasing in popularity, the functional, event-driven 

nature of serverless architectures fit well with Event Sourcing. Betts et al. (2012) represent the 

intentions of Microsoft of supporting this direction and implementing the Durable Orchestrator 

as an event-sourced system further signify this.  

 Other main takeaways 

  Debugging Durable Functions 

A core challenge today when developing a solution with a Durable Functions orchestrator, is 

debugging code.  

When the program encounters a runtime error, the program stops its execution, which is 

expected. However, as the orchestrator function is durable and keeps track of its execution in 

persistent storage, rerunning the code after updating it picks up where the previous run was and 

possibly tries to execute the same, faulty code from earlier instead of the new code. To remove 

impact from one run into the next the code either must run until execution is finished, or the 

user must manually clear out a WorkItems queue as well as storage tables keeping track of 

running instances. This is design as intended by the Durable Functions team, but a cumbersome 

process. Although good development practices and support tools might catch many bugs before 

runtime, some will invariably show up.  

 

 

  



9 Conclusion and future work 

52 

9 Conclusion and future work 

There have been done work earlier in the overlap between geocomputation and Event 

Sourcing. Interestingly, it seems like the idea of events for updating state is more established 

within work on geospatial data than elsewhere. A lot of work done in the 90’s and 00’s on 

temporal GIS solutions are relevant for Event Sourcing. There is a lot of overlap between 

work on Event Sourcing and the serverless paradigm within cloud computing, and as shown 

in Section 8.3 there have been promising results in moving geocomputation to the cloud.  

 

Figure 21 - The scope of this thesis 

This thesis has experimented in the crossing point between these three technologies and 

discovered some possibilities. Further work should reveal interesting results, as the 

combination has many synergies and similarities.  

 Schema changes 

How should future updates to the event structure and schema be handled (Overeem et al., 

2017)? A core principle of Event Sourcing is that data should not be overwritten, it should be 

appended as new events. If we update events that happened in the past, the data is no longer 

immutable. A system for notifying consumers that a previous event has changed needs to be 

implemented, and these consumers need logic to deal with this. Depending on the use-case it 

might not be possible. The promise of no invalid caches is broken, so now the system needs a 

way to handle this. The benefits related to security and reproducibility is no longer there. This 
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means that we cannot overwrite earlier events when converting to a new schema, the history is 

still what it always was (Young, 2017). 

A proposed solution by Young, and in use at Netflix (Avery & Reta, 2017), is versioning. 

Although a large topic, the core principle is that the events have some version tracker or other 

metadata on themselves, so the system knows how to handle this type of event. When reading 

an older version that lacks a value, a placeholder might be added.  

 A configurable pipeline 

To make future adjustments to the pipeline and to use it for different use cases, it was necessary 

for it to be adaptive to change and configurable. The pipeline was made basing the modelling 

of geospatial features on open standards such as OGC Simple Features and building the 

pipeline with modular functions with clear responsibilities and defined data objects for input 

and output between them. It should be possible to configure the pipeline for use of different 

function implementations and for different use cases. Making changes to the overall cloud 

architecture and the orchestrator function might be more challenging.  
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 Snapshots 

For the current implementation, there is little wrong in storing event-like structures as object 

lifelines (Stage Two). However, a more mature solution might include snapshotting, to avoid 

having to play through all events connected to an aggregate id. Figure 22a illustrates replaying 

events without snapshots and Figure 22b illustrates that fewer steps are necessary if we use 

snapshots. Since we are storing differences that can be applied in reverse by undoing patches, 

we can traverse the events backwards from a snapshot if this is easier, illustrated by Figure 22c.  

 

Figure 22 - Reproducing an earlier state: (a) without snapshots, (b) with snapshots, (c) with snapshots and difference-based 

events 

 Including geospatial references in events 

One could reasonably imagine that a consumer of the event stream is only interested in a subset 

of the events within an aggregate. One way of handling this could be including a geospatial 

reference of some kind to easily filter based on location. Bounding boxes for geometries could 

be fetched from incoming data or could be generated as part of the event generation. The highly 

parallelized nature of the processing means that this should not slow down the generation much, 

although some slow-down of ingestion is to be expected. Including metadata of relevant areas 

or creating new aggregates is another way of handling this but might not be as flexible for 

future use cases.  
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 A variety of input and output 

An event-sourced, cloud-based system should lend itself well to integration with Internet-of-

Things devices and sensor streams. This is because we already have tried representing more 

static objects in a way that is much more like the usual data streams coming from these sources. 

Possible future work in mixing real event data and event-sourced static data could be 

interesting. An architecture such as the one outlined in this thesis is a good starting point for 

such a system. We already have implemented two outputs, or read models, in the form of a 

persistent storage of events with an API that delivers traditional data structures and an event 

stream (Figure 23). A future version might include more than one input, by integrating more 

write models. The current is based on differences between versions in databases; an input 

event-stream should be possible.  

 

Figure 23 - Possible future integrations on write and read-side of pipeline 

 Introducing Domain-driven design 

In an ideal world, the data model could be moved closer to a domain-driven based design. What 

are the creates, updates, and deletes representing? Is it a new road being paved, a river changing 

its course or simply new, more correct measurements? This is difficult to achieve without 

changes to the reporting of data. However, the flexibility and usability of the system would 

increase if such context could be included, either through richer input or more advanced event 

creation.  
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 In conclusion 

This master thesis has shown the potential of Event Sourcing updates from one version to 

another of traditional, bulk-updated data. Implementing the pipeline in a cloud environment as 

a serverless application with an orchestrator responsible for handling data flow shows 

promising initial results, but further work is needed to scale the setup sufficiently to larger 

datasets. A possible direction is introducing the idea of a master orchestrator delegating work 

to sub orchestrations.  

By implementing an API that can turn events back into traditional snapshots, the system is able 

to serve traditional consumers of geospatial data on their terms. However, the event stream 

written to an event grid allows for new ways of consuming geospatial data in the form of 

dynamic indexing, location- and dataset-based consumers that update when necessary, and 

more. Event Sourcing static data also creates opportunities in mixing them with Internet-of-

Things (IoT) event data and other event-based systems.  
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11 Appendix 

 SQL Queries 

 Get updates from table1 to table2 

SELECT table1.id, table1.version, table1.tags,  

ST_AsBinary(table1.geom), extract(epoch from table1.ts),                
table2.version, table2.tags,  
ST_AsBinary(table2.geom), extract(epoch from table2.ts) 
FROM {table1} AS table1 
INNER JOIN {table2} AS table2 
ON table1.id = table2.id 
WHERE table1.geom IS NOT NULL and table2.geom IS NOT NULL 
LIMIT {parameters.Tuples} 
 

 Get creates from table1 to table2 

SELECT table1.id, table1.version, table1.tags,  

ST_AsBinary(table1.geom), extract(epoch from table1.ts),                
table2.version, table2.tags,  
ST_AsBinary(table2.geom), extract(epoch from table2.ts) 
FROM {table1} AS table1 
RIGHT JOIN {table2} AS table2 
ON table1.id = table2.id 
WHERE table1.geom IS NOT NULL and table2.geom IS NOT NULL 
ST_GeometryType(table1.geom) = ST_GeometryType(table2.geom) 
LIMIT {parameters.Tuples} 

 Get deletes from table1 to table2 

SELECT table1.id, table1.version, table1.tags,  

ST_AsBinary(table1.geom), extract(epoch from table1.ts),                   
table2.version, table2.tags,  
ST_AsBinary(table2.geom), extract(epoch from table2.ts) 
FROM {table1} AS table1 
LEFT JOIN {table2} AS table2 
ON table1.id = table2.id 
WHERE table1.geom IS NOT NULL and table2.geom IS NOT NULL 
AND ST_GeometryType(table1.geom) = ST_GeometryType(table2.geom) 
LIMIT {parameters.Tuples} 
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 Sample Raw Data exported from DurableFunctionsHubHistory 

  

Table 3 - Sample Raw Data exported from DurableFunctionsHubHistory 
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