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Abstract

We study two classes of equations: a fractional Korteweg–De Vries (fKdV) equa-
tion ut + uux + (Λ−su)x = 0 and a fractional Degasperis–Procesi (fDP) equation
ut + uux + 3

2 (Λ−su2)x = 0. The operator Λ−s is a Fourier multiplier with symbol

(1 + ξ2)−s/2 and s ∈ (0, 1). For the fKdV equation, we prove that there exist lo-
cal bifurcation branches emanating from the trivial solution, consisting of smooth
and periodic traveling-wave solutions, and that the local branches extend to global
solution curves. In the limit of such a curve we find a highest, cusped traveling-
wave solution and prove its optimal s-Hölder regularity, attained in the cusp. For
the fDP equation, we prove that local bifurcation branches of smooth and periodic
traveling-wave solutions exist around a constant solution of the equation and that for
sufficiently small periods global bifurcation occurs. Moreover, we discuss conditions
under which a highest, cusped traveling-wave solution for the fDP equation exists,
and its expected regularity. The theory is accompanied by numerical examples.

Sammendrag

Vi studerer to familier av ligninger: En fraksjonell Korteweg–De Vries-ligning (fKdV)
gitt ved ut + uux + (Λ−su)x = 0 og en fraksjonell Degasperis–Procesi-ligning (fDP)
gitt ved ut +uux + 3

2 (Λ−su2)x = 0. Operatoren Λ−s er en Fourier-multiplikator med

symbol (1 + ξ2)−s/2 og s ∈ (0, 1). For fKdV-ligningen beviser vi at det eksisterer
lokale forgreninger av løsninger rundt den trivielle løsningen, best̊aende av glatte
og periodiske reisende bølger, og at de lokale forgreningene eksisterer som globale
løsningskurver. I grensen av en slik kurve finner vi en spiss reisende bølge med mak-
simal høyde og beviser dens optimale s-Hölder-regularitet, oppn̊add i spissen. For
fDP-ligningen viser vi at lokale løsningsforgreninger av glatte og periodiske reisen-
de bølger eksisterer rundt en konstant løsning til ligningen, og at global forgrening
forekommer for tilstrekkelig sm̊a perioder. Videre diskuterer vi betingelser for eksis-
tensen av en spiss reisende bølge med maksimal høyde som løser fDP-ligningen, og
dens forventede regularitet. Numeriske eksempler er gitt.
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Preface

This is the final report for the course ”TMA4900 - Master Thesis”, spring semester 2021,
at the Norwegian University of Science and Technology. The work was carried out under
the supervision of Professor Mats Ehrnström, who also proposed the topic of the thesis.

The present work builds on my earlier project titled ”Traveling Waves in a Whitham-
Type Equation with a Bessel Potential Operator”, written during the fall semester of
2020 as part of the course ”TMA4500 - Specialization Project”. Inspired by recent
advances for the Whitham equation, the idea was to study the relationship between
the regularity of traveling-wave solutions for a dispersive equation and the order of the
dispersive operator present in the equation. In the project, local bifurcation theory
for a fractional Korteweg–De Vries (or Whitham-type) equation with a parametrized
dispersive operator was developed. The first part of this thesis addresses regularity and
global bifurcation for this equation and thereby concludes the theory.

While studying our original model equation, I was also given the opportunity to
explore generalizations in directions that I found interesting. This resulted in two addi-
tional topics which have been included in the thesis. Firstly, a section on characteristic
features of the dispersive operator in the equation which permit the same traveling-wave
phenomena that were shown for the original model, and the balance between dispersion
and nonlinear effects in these equations. Secondly, a study of a fractional Degasperis–
Procesi equation, where the main difference is that the dispersive term is nonlinear.

None of the proofs in this thesis have been copied directly from other sources, but
many results are based on, or inspired by the works of others. All sources are referenced
throughout, and those that are used repeatedly are provided at the beginning of each
section.

I am sincerely grateful to Mats Ehrnström for introducing me to an interesting prob-
lem, giving me a large degree of freedom in my approach, and teaching me about math-
ematics.

Trondheim, June 2021
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1 Introduction

The problems considered in this thesis are related to the mathematical study of water
waves. We briefly review basic notions and relevant history of this subject. Then, we
specify the problems that are investigated herein, and give a short overview of related
research.

1.1 Background

The behavior of fluids, and the formation of waves, has long been a subject of mathe-
matical research, and variations of the governing equations in hydrodynamics have been
known for more than two centuries. An outline of early history is given in [8].

Pertaining to the topics in this thesis, a seminal event is J. S. Russel’s observation
of a wave-phenomena which he called the ”wave of translation”, on a canal in 1834.
This was a smooth and solitary wave traveling without a change of shape, and was not
predicted by the contemporary linear theory of water waves. With the report on this
new discovery [25], the concept of a nonlinear solitary traveling wave was introduced to
the mathematical community.

Another influential piece of history is G. G. Stokes article [27] from 1847, in which
he argued that if there exists a singular wave solution with a steady profile to the free
boundary problem for the Euler equations, then the wave must have an interior angle of
120◦ at the crest. Introducing thereby the idea of highest singular traveling waves, this
later has become known as the Stokes conjecture. The existence of the Stokes wave was
proved in [2], thus settling the conjecture. For a more detailed account of Stokes’ work
on water waves, we refer to [9].

Let us consider an infinitely wide fluid body with a fixed bottom and a free surface
under the influence of gravity, as illustrated in Figure 1. The following discussion and
notation are based on the monograph [20]. We assume that the fluid is homogeneous,
inviscid, incompressible, and irrotational. Moreover, it is contained in a domain of
bounded depth with a fixed bottom and a free surface, both of which can be parametrized
as graphs. The fluid particles can not cross either the bottom or the surface. There is
no surface tension present and the external pressure above the free surface is assumed
to be constant. Furthermore, we assume that the fluid is at rest at infinity.

Let Ωt ⊂ R2 denote the two-dimensional domain occupied by the fluid at a time t.
The velocity at a point (x, z) at time t is denoted by U(x, z, t), and the pressure is
P (x, z, t). Furthermore, the bottom is located at a constant depth −H0, and the free
surface elevation is given by the function ζ(x, t).

The motion of the fluid can now famously be described by the free-surface Euler
equations [20, pp. 2–3]. Introducing a velocity potential Φ(t, x, z), on the grounds of
the fluid being irrotational, the Euler equations may be reformulated as the free surface

1



z

0 x

ζ(x, t)

−H0

Ωt
U(x, z, t),

P (x, z, t)

Patm

g

Figure 1: Illustration of a fluid body in a gravitational force.

Bernoulli equations. They are given by

∇Φ = U in Ωt, (1.1a)

∆Φ = 0 in Ωt, (1.1b)

Φt +
1

2
|∇Φ|2 + gz = −1

ρ
(P − Patm) in Ωt, (1.1c)

with boundary conditions

Φz = 0 on {z = −H0},

ζt −
√

1 + ζ2x∂nΦ = 0 on {z = ζ(x, t)},
P = Patm on {z = ζ(x, t)}.

Note that ∇ is the gradient operator with respect to spacial variables, and ∂n denotes
the outwards normal derivative. These equations are simply a mathematical restatement
of the assumptions made on the fluid body.

It can be shown that if both the free surface elevation ζ, and the trace of the velocity
potential ψ = Φ|z=ζ are known, then the potential Φ is uniquely determined. It may be
recovered from ζ and ψ by solving the boundary value problem

∆Φ = 0 in Ωt,

Φ|z=ζ = ψ,

(Φz)|z=−H0 = 0.

(1.2)

This is known as the Zakharov–Craig–Sulem formulation of the water-wave problem.
In view of the Zakharov–Craig–Sulem formulation, it suffices to find a set of equations

which determine ζ and ψ, in order to solve the water-wave problem. To this end, we
introduce the Dirichlet–Neumann operator G[ζ]. It is defined as

G[ζ] : ψ 7→
√

1 + ζ2x∂nΦ|z=ζ , (1.3)

where Φ solves the problem (1.2), with boundary conditions given by ζ and ψ. Hence,
G[ζ] maps Dirichlet boundary conditions to Neumann boundary conditions of the same
problem, via the solution of the problem itself.
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The utility of this definition becomes evident through the following calculations.
Using the chain rule on the free surface boundary condition in (1.2), one obtains

(Φt)|z=ζ = ψt − (Φz)|z=ζ ,
(Φx)|z=ζ = ψx − (Φz)|z=ζ ψx.

Similarly, using the chain rule on the definition of the Dirichlet–Neumann operator yields

(Φz)|z=ζ =
G[ζ]ψ − ζxψx√

1 + ζ2x
.

Since P = Patm at the surface, the right-hand side of the equation (1.1c) vanishes on
z = ζ(x, t). Together with the free surface boundary condition, we arrive at the set of
equations 

ζt − G[ζ]ψ = 0,

ψt + gζ +
1

2
ψ2
x −

(G[ζ]ψ + ζxψx)2

2(1 + ζ2x)
= 0

(1.4)

for ζ and ψ. This system is called the water-wave equations.
Depending on the physical configuration of the problem, solutions to the water-wave

equations may exhibit radically different qualitative properties. A diverse variety of
behavior is contained within the equations, making them extremely difficult to solve
in a unified way. For this reason, it is often useful to distinguish between different
asymptotic regimes. An example of such a regime is shallow water theory, which refers
to the situation when the ratio between the depth and characteristic length of the flow
is small. If one assumes that the variation in surface elevation is small compared to the
depth of the fluid, this constitutes what is usually called the small-amplitude regime.

It is shown in [20, Chapter 5] how, in the small-amplitude regime with shallow water,
the water-wave equations can be justifiably reduced to different variations of simplified
shallow water systems. A particular class of such systems is the Boussinesq equations,
which, under the assumption that the free surface ζ takes the form of two counter-
propagating waves, can be even further reduced to scalar models. One of the most
studied such equations is the Korteweg–De Vries (KdV) equation [20, p. 179], which
can be written as

ut + uux + uxxx = 0. (1.5)

If one assumes medium-amplitude waves, equations such as the Degasperis–Procesi (DP)
equation

ut − uxxt + 4uux − 3uxuxx − uuxxx = 0 (1.6)

are possible [20, p. 203]. Although we shall not be concerned with the details of these
derivations here, it is essential to note that the variables have been scaled and nondi-
mensionalized compared to the system (1.4) which is written in dimensional form.

We now consider the question: Is the dispersion relation of the full water-wave equa-
tions preserved through the reduction to the KdV equation? To answer this, we first
give a short introduction to the notion of a dispersive equation.
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The concept of dispersion originates from the study of linear differential equations
that admit sinusoidal wave-train solutions of the form

u(x, t) = Aeiξx−iωt. (1.7)

Whenever the equation involves both space and time derivatives, the wavenumber ξ and
the frequency ω has to satisfy a relationship G(ξ, ω) = 0, where one often assumes an
explicit relation ω = W (ξ). This is known as the dispersion relation of the equation.
Observe that the phase velocity, defined as

c =
ω

ξ
=
W (ξ)

ξ
,

depends on the wave number ξ whenever W (ξ) is not a constant multiple of ξ. The
physical interpretation of this is that waves of different spacial frequency have different
velocities. This phenomena is called dispersion. One can also talk about relative ”mag-
nitudes” of dispersion, and with weak dispersion we mean the situation when there are
only small differences in velocity for different wave numbers.

The KdV equation can be written in dimensional form as

ζt + c0ζx +
3

2

c0
H0

ζζx +
1

6
c0H

2
0ζxxx = 0, (1.8)

where c0 :=
√
gH0 [33]. Linearizing the equation and inserting the generic solution (1.7),

one finds that the phase velocity for these solutions has to be

cKdV(ξ) = c0(1−
1

6
H2

0ξ
2).

For linear evolution equations with classical differential operators, the dispersion
relations are always polynomials in ξ. In [33, p. 368], Whitham notes that inserting the
wave-train solution (1.7) into the one-dimensional integro-differential equation

ζt(x, t) +

∫
R
K(x− y)ζx(y, t) dy = 0, (1.9)

one obtains the phase velocity

c(ξ) =

∫
R
K(x)e−iξx dx .

That is, the phase velocity corresponds to the Fourier transform of the convolution kernel
appearing in (1.9) (see (2.2) for conventions for the Fourier transform). Therefore, by
virtue of the Fourier inversion theorem [4, Theorem 1.19], any sufficiently integrable
phase velocity c = c(ξ) may be incorporated in equation (1.9) by choosing a convolution
kernel

K(x) =
1

2π

∫
R
c(ξ)eiξx dξ .

4



The above can be used to deduce the dispersion relation of the original water-wave
problem (1.4). The linearized equations around (ζ, ψ) = (0, 0) are given by{

ζt − G[0]ψ = 0,

ψt + gζ = 0,
(1.10)

where G[0] is defined as in (1.3). It turns out that the Dirichlet–Neumann operator has
an explicit expression in this case. Indeed, taking the Fourier transform of (1.2) with
respect to the horizontal variable x, one obtains

− ξ2Φ̂(ξ, z) + Φ̂zz(ξ, z) = 0,

Φ̂(ξ, 0) = ψ̂(ξ),

Φ̂z(ξ,−H0) = 0.

This is a second order ordinary differential equation with respect to z, and one can check
that it has the unique solution

Φ̂(ξ, z) =
cosh((z +H0)ξ)

cosh(H0ξ)
ψ̂(ξ).

Moreover, since
Φ̂z(ξ, 0) = ξ tanh(H0ξ)ψ̂(ξ),

the operator G[0] acts on ψ according to

G[0]ψ = F−1(ξ tanh(H0ξ)ψ̂(ξ)).

Note that this operation can equivalently be formulated as the convolution

G[0]ψ = K ∗ ψ =

∫
R
K(x− y)ψ(y) dy,

where the convolution kernel K is given by the inverse Fourier transform of ξ tanh(H0ξ).
Eliminating ψ, the linearized system (1.10) may now be written as

ζtt + g(K ∗ ζ) = 0. (1.11)

Comparing this with the equation (1.9), we deduce that the dispersion relation of (1.11)
is ω =

√
gξ tanh(H0ξ), and solutions therefore has the phase velocity

cW(ξ) =

√
g tanh(H0ξ)

ξ
. (1.12)

This means that the dispersion relation of the KdV equation (1.8) is not the same as
the dispersion relation for the original water-wave equations (1.4). There is a qualitative
difference between these equations as well, mirroring the difference in the dispersion
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relations. While the KdV equation is a local differential equation with polynomial phase
velocity, the phase velocity cW is not a polynomial, and so the equation (1.11) is genuinely
nonlocal. This mathematical observation can be thought of as a result of the coupling
between the interior of the fluid and the free surface, where global information about
the flow in the interior influences the motion at each point of the boundary.

The phase velocity cKdV for the KdV equation is precisely equal to the two first terms
in the Maclaurin expansion of cW. This observation was also made by Whitham, who
in 1967 in [32] proposed the improved model

ζt +
3

2

c0
h0
ζζx + (KW ∗ ζ) = 0, (1.13)

where KW is the inverse Fourier transform of cW, having the exact dispersion relation
of the original water-wave problem. This equation is presently known as the Whitham
equation.

Physical considerations were also a motivating factor behind this improved model.
As remarked by Whitham in [33, p. 476], nonlinear shallow water equations which
neglect dispersion allow wave breaking, but not solitary and periodic traveling waves,
while on the other hand, the KdV equation allows solitary and periodic waves, but not
wave breaking. The dispersion in the Whitham equation (1.13) is much weaker than that
of the KdV equation (1.8), suggesting perhaps a wider array of wave-phenomena than
captured by either model on its own. This turned out to be correct. Both wave-breaking
[18] and traveling waves [11, 31] have been proved for the Whitham equation.

In fact, in [11] it was shown that there exist cusped, periodic traveling-wave solutions
to the Whitham equation, and that they have exact 1/2-Hölder regularity at crests. A
natural question to ask is if similar results can be obtained for equations of the same
form but with other dispersion relations. Modifications of the dispersion akin to that of
(1.13) are possible in both the KdV equation (1.5) and the DP equation (1.6). This is
the overarching theme of the present work.

1.2 Problem description

We consider two classes of equations: a fractional Korteweg–De Vries (fKdV) equation
on the form

ut + uux + (Λ−su)x = 0, s ∈ (0, 1), (1.14)

and a fractional Degasperis–Procesi (fDP) equation given as

ut + uux +
3

2
(Λ−su2)x = 0, s ∈ (0, 1). (1.15)

Here, u(t, x) is a real-valued function on R2, and the operator Λ−s is a Fourier multiplier
operator defined as

Λ−s : f 7→ F−1
(
〈ξ〉−sf̂(ξ)

)
,

with symbol
〈ξ〉−s := (1 + ξ2)−

s
2 (1.16)
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of order −s. The operator Λ−s is frequently referred to as the Bessel potential oper-
ator, and it may equivalently be characterized as a convolution operator according to
Λ−su = Ks ∗ u, with convolution kernel given by

Ks(x) = F−1(〈ξ〉−s)(x) =
1

2π

∫
R
〈ξ〉−seixξ dξ .

The fKdV and fDP equations are nonlocal and nonlinear evolution equations with
weak dispersion. If one assumes traveling-wave solutions on the form u(x, t) = ϕ(x−µt),
where µ is interpreted as the wave-speed in the rightward direction, the fKdV equation
reads

−µϕ′ + 1

2
(ϕ2)′ + (Λ−sϕ)′ = 0.

Integrating yields the steady equation

−µϕ+
1

2
ϕ2 + Λ−sϕ = 0. (1.17)

The right-hand side is assumed to be zero without loss of generality, due to the Galilean
transformation

ϕ 7→ ϕ+ γ, µ 7→ µ+ γ,

with γ chosen such that γ(1− µ− 1
2γ) cancels the possible constant of integration.

The traveling-wave assumption for the fDP equation yields

−µϕ+
1

2
ϕ2 +

3

2
Λ−sϕ2 = κ, (1.18)

where it is not possible to obtain zero on the right-hand side with a transformation while
at the same time preserving the structure of the equation. Therefore, we work with an
arbitrary real constant κ on the right-hand side.

When referring to a traveling-wave solution of any of the two equations, we mean a
real-valued continuous and bounded function ϕ satisfying the equation on R.

The purpose of the present work is to study the existence and regularity of highest
traveling waves for the fKdV and the fDP equations. The notion of highest waves
stems from the observation that nonconstant solutions to both the fKdV and the fDP
equations are smooth, except possibly at points where the wave-height equals the wave-
speed µ (cf. Theorem 3.8, Theorem 6.8), and that this is the maximal height that can be
attained by a family of solutions that bifurcate from the trivial solution to the equation.
Accordingly, solutions ϕ that attain the height of µ are referred to as highest traveling
waves.

We briefly review relevant research. As already noted, highest periodic traveling
waves, and the regularity thereof, have been proved for the Whitham equation in [11].
The solitary case of (non-periodic) solutions ϕ with lim|x|→∞ ϕ(x) = 0 has been studied
in [31], where analogous results were obtained. The novelty in the present work lies in
the parametrized dispersive operator Λ−s of order −s ∈ (−1, 0). A partial result in this
direction, for a class of generalized Whitham equations with a parametrized inhomoge-
neous symbol on the form (1.12) of order in (−1, 0), is given in [1]. In preparation is
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also a study of an fKdV equation with a homogeneous symbol of order in (−1, 0) and a
generalized nonlinearity [35].

The fKdV equation (1.17), with s > 1, has been studied in [21], where highest pe-
riodic traveling waves were proved to exist, and the waves were shown to be exactly
Lipschitz continuous at the crests. The paper [6] considered the homogeneous coun-
terpart of the fKdV equation with s > 1, and analogous results were obtained for this
family of equations as well. However, note that in these cases, the equations incorporate
strong enough dispersion to ensure that the solutions are at least Lipschitz continuous
at the crests. As we will see, this does not hold in our case.

The Degasperis–Procesi equation (1.6) was first studied in [10], and is known to
permit peaked traveling-wave solutions [22]. A nonlocal formulation of the equation
corresponding to the fDP equation (1.15) with s = 2 was studied in [3], where the
existence of highest periodic traveling waves of Lipschitz regularity at crests was proved.

Similar methods as used in this thesis have also been applied to other equations; see
e.g. [13, 14] for a full-dispersion shallow water model and a capillary-gravity Whitham
equation, respectively. We also mention that in [23] a dispersive equation similar to
(1.14) with fixed nonlinearity and varied dispersion was studied in the context of well-
posedness and blow-up.

1.3 Notation

Throughout, we use the notation X .p Y (for some mathematical objects X and Y ) if
there exists a positive constant Cp, depending on p, such that the inequality X ≤ CpY
holds. The relation X . Y . X is denoted X h Y , with the same convention for
subscripts. We shall also occasionally employ the Landau notation f(x) = O(g(x))
whenever there exists a positive constant C with

|f(x)| ≤ C|g(x)|

for all x in some domain, and use O(g(x)) as a placeholder for such functions. Further-
more, writing X � Y signifies that X is ”much smaller” than Y , that is, the inequality
X ≤ cY holds for a sufficiently small positive constant c.

2 The Bessel potential operator

This section is a survey on the Bessel potential operator and serves as a prelude to the
subsequent study of the fKdV and fDP equations. In Section 2.1, we examine the sign
and asymptotic behavior of the convolution kernel Ks and its derivatives, and investigate
how the operator Λ−s acts on functions satisfying certain sign and parity conditions. In
Section 2.2, we prove that Λ−s is a smoothing operator on the scale of Hölder–Zygmund
spaces.
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2.1 The convolution kernel Ks

Throughout, we let SP denote R/PZ, the compact interval [−P/2, P/2] in R of length
P <∞ with coinciding endpoints. In the following, function spaces are defined on R for
convenience, but they can be defined analogously on SP .

Let C(R) denote the space of uniformly continuous and bounded functions over R,

C(R) := {f : R→ R ; f is bounded and uniformly continuous},

normed by ‖f‖C(R) = supx∈R |f(x)|. Characterizing functions that are k times continu-
ously differentiable, we define

Ck(R) := {f ∈ C(R) ; f (m) ∈ C(R) for m = 0, 1, 2, ..., k}, (2.1)

and furnish the space with the usual norm ‖f‖Ck(R) =
∑k

m=0 ‖f (m)‖C(R). If a function

f is contained in Ck(R) for every k ∈ N, then we say that the function f is smooth, and
write f ∈ C∞(R).

The Schwartz space of rapidly decreasing smooth functions on R is defined as

S(R) := {f ∈ C∞(R) ; ‖f‖k,l <∞ for every k, l ∈ N},

where the semi-norms ‖ · ‖k,l are given by

‖f‖k,l := sup
x∈R

(1 + |x|)k|f (l)(x)|.

The dual space, comprising all linear and bounded complex-valued functionals over S(R),
is denoted by S ′(R). Similarly, let D(R) be the space of compactly supported smooth
functions on R, and D′(R) the collection of linear and bounded complex-valued func-
tionals over D(R). The space D(R) is furnished with the usual countable family of
semi-norms, transferred to D′(R) by duality. On the compact interval SP , the space
S(SP ) comprises smooth functions over SP , while D(SP ) is the collection of smooth
functions over R with support contained in SP . For details on how these spaces are
defined, we refer to the monograph [4].

Let F denote the Fourier transform on S(R), extended to S ′(R) via duality, and
normalized as

(Ff)(ξ) =

∫
R
f(x)e−ixξ dx, (F−1f̂)(x) =

1

2π

∫
R
f̂(ξ)eixξ dξ, (2.2)

for f ∈ S(R). We shall sometimes write f̂ for the Fourier transform of f .
The following proposition provides a basic understanding of the convolution kernel

Ks, used throughout this thesis. It is based on [17, Proposition 1.2.5], but sharpened
somewhat on the grounds of the restriction of s ∈ (0, 1).

9



Proposition 2.1. Let s ∈ (0, 1). Then

(i) Ks has the integral representation

Ks(x) =
1√

4πΓ( s2)

∫ ∞
0

e−t−
x2

4t t
s−3
2 dt, (2.3)

(ii) Ks is even and strictly positive,

(iii) Ks is smooth on R \ {0} and integrable with ‖Ks‖L1(R) = 1,

(iv) we have
Ks(x) .s e

−|x| (2.4)

for |x| ≥ 1, and
Ks(x) = Cs|x|s−1 +Hs(x), (2.5)

for |x| < 1 and Cs > 0, where

Hs(x) hs 1 +O(|x|s+1)

and
|H ′s(x)| = O(|x|s), |H ′′s (x)| = O(|x|s−1). (2.6)

Proof. (i) For every complex number z with Re z > 0, the gamma function is defined as

Γ(z) =

∫ ∞
0

e−t tz−1 dt;

see e.g. [16, A.2]. Making the substitution t 7→ at for a positive real number a in the
Gamma function evaluated in s/2 yields the identity

a−
s
2 =

1

Γ(s/2)

∫ ∞
0

e−at t
s
2
−1 dt .

Setting a = 1 + ξ2, one has

〈ξ〉−s =
1

Γ(s/2)

∫ ∞
0

e−t(1+ξ
2) t

s
2
−1 dt .

Note that both of the preceding integrals converge for every s > 0. Applying the inverse
Fourier transform yields

F−1(〈ξ〉−s) =
1

2π

∫
R
eixξ
(

1

Γ(s/2)

∫ ∞
0

e−t(1+ξ
2) t

s
2
−1 dt

)
dξ .

Changing the order of integration, and using the well known formula

F−1(e−tξ
2
)(x) =

1

2
√
πt
e−

x2

4t

10



(a standard proof of which can be found in [4, p. 18]), one arrives at

Ks(x) =
1√

4π Γ(s/2)

∫ ∞
0

e−t−
x2

4t t
s−3
2 dt .

This proves the formula (2.3).
(ii)-(iii) The representation (2.3) shows that Ks ∈ C∞(R \ {0}), and that the kernel

is even and strictly positive. The positivity of the kernel implies that

‖Ks‖L1(R) =

∫
R
Ks(x) dx = (F−1F 〈ξ〉−s)(0) = 〈0〉−s = 1,

where we have used the Fourier inversion theorem [16, Theorem 2.2.14].
(iii) We show the asymptotic bounds for Ks. Suppose |x| ≥ 1. Then the inequality

t+ 2x2−1
8t ≥ |x| holds for all t ∈ (0, 18). This means that t+ x2

4t ≥
1
8t+|x|, and consequently

e−t−
x2

4t ≤ e−
1
8t e−|x|,

for all t ∈ (0, 18). Note also that the inequality t+ x2

4t ≥ |x| holds for every t > 0. Indeed,

the minimum of the function t+ x2

4t is attained in t = |x|
2 , where equality holds. Splitting

the integral in the representation (2.3) on t = 1
8 , and using the inequalities above, yields

|Ks(x)| ≤ e−|x|√
4π Γ(s/2)

(∫ 1
8

0
e−

1
8t t

s−3
2 dt+

∫ ∞
1
8

t
s−3
2 dt

)
.s e

−|x|, (2.7)

where we have used that both integrals converge to positive constants for every choice
of s ∈ (0, 1). This proves (2.4).

Now suppose |x| < 1. The integral in (2.3) may be written as

Ks(x) =
1√

4π Γ(s/2)

(∫ x2

0
+

∫ 1

x2
+

∫ ∞
1

)
e−t−

x2

4t t
s−3
2 dt, (2.8)

For the first term, the substitution t 7→ x2t gives∫ x2

0
e−

x2

4t
−t t

s−3
2 dt = |x|s−1

∫ 1

0
e−tx

2
e−

1
4t t

s−3
2 dt

= |x|s−1
∫ 1

0
e−

1
4t t

s−3
2 dt+O(|x|s+1)

∫ 1

0
e−

1
4t t

s−1
2 dt,

where in the second step, we used that e−tx
2

= 1 +O(tx2) from the Taylor expansion of
the exponential function. Note that this expansion also justifies the derivatives in (2.6).
Both integrals in the last line converge to positive constants for every choice of s ∈ (0, 1).

In the second term, we bound the exponential factor e−t−
x2

4t by positive constants above
and below, and obtain the estimate∫ 1

x2
e−t−

x2

4t t
s−3
2 dt h

∫ 1

x2
t
s−3
2 dt =

2

1− s
(
|x|s−1 − 1

)
.
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Finally, for the third term we bound the exponential factor e−
|x|2
4t above and below,

which simply gives ∫ ∞
1

e−t−
x2

4t t
s−3
2 dt h

∫ ∞
1

e−t t
s−3
2 dt hs 1.

Inserting the above estimates in (2.8) yields (2.5).

The next result is a direct application of the positivity of the kernel Ks. A similar
statement is given in [11, Lemma 3.5].

Corollary 2.2. If f and g are functions belonging to C(R) with f ≥ g and f(x0) > g(x0)
for some x0, then

Λ−sf > Λ−sg.

That is, the operator Λ−s is strictly monotone on C(R).

Proof. Let f and g be functions according to the assumptions. Since f and g are con-
tinuous, there exists a neighborhood of nonzero measure around x0 on which f > g.
Consequently,

(Λ−sf)(x)− (Λ−sg)(x) =

∫
R
Ks(x− y)(f(y)− g(y)) dy > 0,

since Ks is strictly positive.

We now turn to an investigation of the signs of the derivatives of Ks. The arguments
are based on the results in [11, Section 2], while a more detailed account of completely
monotone functions and related topics can be found in [26]. We begin by introducing
some notions that are useful in the proof of Proposition 2.3, where we shown that the
kernel Ks is a completely monotone function.

A function g : (0,∞) → R is said to be completely monotone if it is smooth and
satisfies

(−1)ng(n)(λ) ≥ 0 (2.9)

for all n ∈ N0 and all λ > 0, where N0 denotes the set of all nonnegative integers.
This definition naturally extends to even functions g : R \ {0} → R, which are called
completely monotone if they are completely monotone on (0,∞).

A subclass of the class of completely monotone functions are Stieltjes functions. A
Stieltjes function is a function g : (0,∞) → [0,∞) that can be written in terms of the
integral representation

g(λ) =
a

λ
+ b+

∫
(0,∞)

1

λ+ t
dσ(t),

where a and b are nonnegative constants, and σ is a Borel measure on (0,∞) satisfying∫
(0,∞)

1

1 + t
dσ(t) <∞.
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It turns out that the class of Stieltjes functions can be completely characterized by
analytic extensions. Precisely, by [26, Corollary 7.4], if g is a strictly positive function
on (0,∞), then g is Stieltjes if and only if

lim
λ↘0

g(λ) ∈ [0,∞],

and g has an analytic extension to C \ (−∞, 0] with

Im(z) Im(g(z)) ≤ 0.

Note that, owing to [11, Lemma 2.12], if g is Stieltjes and α ∈ (0, 1], then gα is
Stieltjes. Moreover, by [11, Proposition 2.20], if f : R → R and g : (0,∞) → R are two
functions satisfying

f(ξ) = g(ξ2)

for all ξ 6= 0, then f is the Fourier transform of an even, integrable, and completely
monotone function if and only if g is Stieltjes with

lim
λ↘0

g(λ) <∞ and lim
λ→∞

g(λ) = 0.

We are now in the position to prove the complete monotonicity of Ks, or in other
words, that all derivatives of Ks are strictly monotone with alternating sign.

Proposition 2.3. For every s ∈ (0, 1), the convolution kernel Ks is completely mono-
tone. In particular, it is strictly decreasing and strictly convex on (0,∞).

Proof. Let
g : λ 7→ (1 + λ)−1.

The function g extends analytically to C\(−∞, 0], since the only singularity is in λ = −1.
For every z ∈ C \ (−∞, 0], one has

Im(g(z)) = − Im(z)

(1 + Re(z))2 + Im(z)2
,

and consequently

Im(g(z)) = − Im(z)2

(1 + Re(z))2 + Im(z)2
≤ 0,

on C \ (−∞, 0]. That is, g is a Stieltjes function. As we have seen, this implies that gs/2

is Stieltjes. Furthermore,

lim
λ↘0

gs/2(λ) = 1, lim
λ→∞

gs/2(λ) = 0

for every s ∈ (0, 1). Therefore, the function

f(ξ) = g
s
2 (ξ2) = (1 + ξ2)−

s
2 = 〈ξ〉−s

13



is the Fourier transform of an even, integrable and completely monotone function. But
since

F (Ks) = 〈ξ〉−s,

we conclude that Ks is completely monotone.
It remains to prove that Ks is strictly decreasing and strictly convex on (0,∞).

However, it is noted in [26, Remark 1.5] that as a consequence of Bernstein’s theorem
[26, Theorem 1.4], if g is not identically constant, then (2.9) holds with strict inequality
for every λ and every n.

Towards analyzing periodic solutions of the fKdV and fDP equations, we now define
the periodic convolution kernel

KP,s :=
∑
n∈Z

Ks(x+ nP ). (2.10)

We mention that the same definition is made in both [11] and [3], and that it is motivated
by the observation

(Ks ∗ f)(x) =

∫
R
Ks(x− y)f(y) dy

=
∑
n∈Z

∫ P
2
+Pn

−P
2
+Pn

Ks(x− y)f(y) dy

=

∫ P
2

−P
2

KP,s(x− y)f(y) dy,

for every P -periodic smooth function f . Owing to the exponential decay of Ks from
Proposition 2.1, the periodic kernel can be bounded by

KP,s(x) hP,s |x|s−1, (2.11)

for x ∈ (−P, P ). In addition, we have the following properties of KP,s. The proof of
Proposition 2.4 is based on [11, Remark 3.4].

Proposition 2.4. The periodic kernel KP,s is even, P -periodic and strictly increasing
on (−P/2, 0).

Proof. By (2.10), the kernel KP,s is clearly P -periodic, and the evenness of KP,s follows
from the evenness of Ks. Furthermore, the derivative of KP,s is

K ′P,s(x) =
∑
n∈Z

K ′s(x+ nP )

=
∞∑
n=0

(
K ′s(x+ nP ) +K ′s(x− (n+ 1)P )

)
.
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For x ∈ (0, P/2) the inequality |x+nP | < |x− (n+ 1)P | holds. Moreover, Ks(x) is even
and strictly convex on (−P/2, 0), implying that |K ′s(x + nP )| > |K ′s(x − (n + 1)P | for
all n ∈ N and all x ∈ (0, P/2). Therefore, we must have

K ′s(x+ nP ) +K ′s(x− (n+ 1)P ) < 0

for every n ∈ N0, implying that the periodic kernel KP,s is strictly decreasing on (0, P/2).
Hence, by evenness, it is strictly increasing on (−P/2, 0).

Having proved the necessary positivity and monotonicity of the periodic convolution
kernel, we are now in the position to show how Λ−s acts on periodic and odd functions
which change sign only in the origin. This plays an important role in the bifurcation
arguments constructed in Section 4 and 7.

Lemma 2.5. Let f be a P -periodic, odd and continuous function with f ≥ 0 on
(−P/2, 0) and f(x0) > 0 for some x0 ∈ (−P/2, 0). Then

Λ−sf > 0

on (−P/2, 0).

Proof. Let f be a function according to the assumptions above. Then

(Λ−sf)(x) =

∫ P/2

−P/2
KP,s(x− y)f(y) dy

=

∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))f(y) dy .

Note that since f is nonnegative on (−P/2, 0) and strictly positive on some domain of
nonzero measure, it suffices to show that

KP,s(x− y)−KP,s(x+ y) > 0 (2.12)

for all x, y ∈ (−P/2, 0). Firstly, by Proposition 2.4, the periodic kernel KP,s is strictly
increasing on (−P/2, 0) and strictly decreasing on (0, P/2). Secondly,

dist(x− y, 0) < min{dist(x+ y, 0), dist(x+ y,−P )}. (2.13)

for x, y ∈ (−P/2, 0). Indeed,

|x− y| < |x|+ |y| = |x+ y|

for x 6= y of same sign, and

|x− y| = max{x− y, y − x} < P + x+ y,

due to −x < P + x and −y < P + y for all x, y ∈ (−P/2, 0). This means that (2.12)
holds.
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2.2 Smoothing

Fourier multiplier operators are defined by multiplying the Fourier transform of a func-
tion with a given symbol function, thereby modifying its frequencies. Precisely, a Fourier
multiplier a(D) is defined as multiplication in frequency space with the symbol a(ξ), and
formally one has

a(D)f := F−1(a(ξ)f̂(ξ)),

If the function a belongs to S(R), then the operator a(D) is well defined and linear from S
to itself, and that this holds more generally on the space of tempered distributions S ′(R),
via duality. Indeed, the space S(R) is a Banach algebra [16, Proposition 2.2.7], and the
Fourier transform is an isomorphism from S(R) onto itself [16, Propositon 2.2.11]. Note
also that since a1(D)a2(D)f = (a1 ◦a2)(D)f , for Fourier multiplier operators a1 and a2,
the inverse of a multiplier a(D) is given by a multiplier with the reciprocal symbol of a.
Formally, we write

(a(D))−1 = a−1(D). (2.14)

We show how Fourier multipliers act on periodic functions. It is known that every
smooth, P -periodic function f can be written as a uniformly convergent fourier series

f(x) =
∑
k∈Z

[f ]ke
i 2πk
P
x, (2.15)

with Fourier coefficients

[f ]k :=
1

P

∫ P

−P
f(x)e−i

2πk
P
x dx .

Fourier multipliers act on P -periodic, smooth functions by multiplying the Fourier coef-
ficients of the function with the symbol of the operator. Precisely, for a multiplier a(D),
one has

a(D)f =
∑
k∈Z

a
(2πk

P

)
[f ]ke

i 2πk
P
x. (2.16)

This follows from the Fourier series representation of f from (2.15), and the calculation

a(D)ei
2πk
P
x =

1

2π

∫
R
eiξxa(ξ)

∫
R
ei

2πk
P
ye−iyξ dy dξ

=
1

2π

∫
R
ei

2πk
P
y

∫
R
a(ξ)e−i(y−x)ξ dξ dy

=
1

2π

∫
R
â(y − x)ei

2πk
P
y dy

= a
(2πk

P

)
ei

2πk
P
x,

where we have used Fubini’s theorem [5, Theorem 4.5] to switch the order of integration,
and in the last step the Fourier inversion theorem.

The operator Λ−s is a Fourier multiplier with symbol 〈ξ〉−s as defined in (1.16). The
symbol 〈ξ〉−s belongs to the space S(R), and the operation is well-defined on S ′(R).
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Since the operator Λ−s increases the decay of the Fourier transform of the function on
which it operates, a natural question to ask is what this means in terms of the regularity
of the function itself. To answer this question, we introduce the Hölder and Zygmund
spaces, which shall also be used extensively in later sections. An outline of these classes
of functions, and generalizations thereof, can be found in [30].

The space of α-Hölder continuous functions on R, with α ∈ (0, 1), is defined as

C0,α(R) := {f ∈ C(R) ; [f ]C0,α(R) <∞},

where [·]C0,α(R) denotes the Hölder semi-norm

[f ]C0,α(R) := sup
x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|α

.

We say that the function f ∈ C(R) is α-Hölder continuous at the point x ∈ R if

[f ]
C0,α
x (R) := sup

h∈R
h6=0

|f(x+ h)− f(x)|
|h|α

<∞.

In analogy with (2.1), we define for every α ∈ (0, 1) and any k ∈ N the space

Ck,α(R) := {f ∈ Ck(R) ; f (k) ∈ C0,α(R)},

containing all k times continuously differentiable functions on R with α-Hölder contin-
uous k-th derivative. Moreover, we let Ck,αeven(SP ) denote the closed subspace of Ck,α,
comprising even and P -periodic functions.

The Hölder spaces are defined using first-order differences of functions. The so-
called Zygmund spaces can be defined in a similar way, using second- or higher-order
differences. Let bαc and {α} denote the integer and fractional part of α > 0, where we
adopt the convention that 0 < {α} ≤ 1. Furthermore let ∆h be the first-order difference
operator acting on a function f according to

(∆hf)(x) = f(x+ h)− f(x),

and let ∆n
h be the nth-order iterated difference. That is,

(∆2
hf)(x) = (∆h(∆hf))(x) = f(x+ 2h)− 2f(x+ h) + f(x),

and so forth. Then, we define for every α > 0 the Zygmund spaces

Cα(R) := {f ∈ Cbαc(R) ; [f ]Cα(R) <∞},

where the Zygmund semi-norm [f ]Cα(R) is given by

[f ]Cα(R) := sup
06=h∈R

‖∆2
hf

(bαc)‖C0(R)

|h|{α}
.
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Two important facts about the Hölder and Zygmund spaces, given in [30, Theorem
1.2.2], are used throughout this thesis. Firstly, for non-integer s, the Hölder space Cbsc,{s}

and the Zygmund space Cs coincide, in the sense of equivalent norms. It is in this context
we sometimes refer to Hölder-Zygmund spaces, and the two are used interchangeably
when there is no confusion. Secondly, the Zygmund space Cs, with s > 0, is (norm-)
equivalent to

Cs =

{
f ∈ Ck ; sup

06=h∈R

‖∆m
h f

(k)‖C0

|h|s−k
<∞

}
for every choice of k ∈ N0 and m ∈ N with k < s and m > s− k.

The following proposition shows how the Bessel potential operator Λ−s changes the
regularity of functions on which it acts, in the context of Hölder-Zygmund spaces. Work-
ing with differences, it is often useful to isolate the singularity |x|s−1 from the kernel Ks.
More precisely, we write

Ks(x) = Cs|x|s−1 + K̃s(x), (2.17)

where we have
|K̃ ′s(x)| .s (1 + |x|)s−2, (2.18)

and furthermore that

|K̃ ′′s (x)| = O(|x|s−1), |x| < 1,

|K̃ ′′s (x)| .s (1 + |x|)s−3, |x| ≥ 1,
(2.19)

in view of the exponential decay of Ks and (2.5) from Proposition 2.1. Then by the
mean value theorem

|K̃s(x+ y)− K̃s(x)| ≤ |y|
∫ 1

0
|K̃ ′s(x+ ty)| dt

where we let R1
y(x) denote

R1
y(x) =

∫ 1

0
|K̃ ′s(x+ ty)| dt .

Similarly, we have

|K̃s(x+ y) + K̃s(x− y)− 2K̃s(x)| ≤ |y|2R2
y(x), (2.20)

with

R2
y(x) =

∫ 1

0

∫ 1

0
2t|K̃ ′′s (x− ty + 2sty)| ds dt .

Note that the estimates (2.18) and (2.19) applies to R1
y and R2

y, respectively.

Proposition 2.6. For every α > 0 and s ∈ (0, 1), the operator Λ−s is linear and bounded
from Cα(R) to Cα+s(R).
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Proof. Fix α > 0 and s ∈ (0, 1). Due to the above norm equivalences for Zygmund
spaces (based on [30, Theorem 1.2.2]), it suffices to prove that

sup
0 6=h∈R

‖∆m
h (Λ−sf)(bαc)‖C0(R)

|h|{α}+s
<∞

for functions f ∈ Cα and for some difference order m ≥ 2. We shall do this for m = 3.
We claim that ‖∆hKs‖L1(R) . |h|s. Using the spitting of Ks into its regular and

singular components given in (2.17), it is possible to write

‖∆hKs‖L1(R) =

∫
R
|Ks(x+ h)−Ks(x)| dx

.
∫
R

∣∣|x+ h|s−1 − |x|s−1
∣∣ dx+

∫
R
|K̃s(x+ h)− K̃s(x)| dx .

(2.21)

The first integral in (2.21) can be estimated by∫
R

∣∣|x+ h|s−1 − |x|s−1
∣∣ dx = |h|s

∫
R

∣∣|t+ 1|s−1 − |t|s−1
∣∣ dt . |h|s,

since ∣∣|t+ 1|s−1 − |t|s−1
∣∣ . |t|s−2

for large t. For the second integral in (2.21), one has∫
R
|K̃s(x+ h)− K̃s(x)| dx . |h|

∫
R
R1
h(x) dx

. |h|,

due to the characterization of the difference from (2.20). This proves ‖∆hKs‖L1(R) . |h|s.
By Young’s inequality [4, Lemma 1.4], we now have

sup
x∈R
|
(
∆3
h(Λ−sf)(bαc)

)
(x)| = ‖∆3

h(Ks ∗ f (bαc))‖L∞

= ‖(∆hK) ∗ (∆2
hf

(bαc))‖L∞
≤ ‖∆hKs‖L1‖∆2

hf‖L∞

. |h|{α}+s.

The desired inequality is now obtained by dividing by |h|{α}+s and passing to supremum
with respect to h.

Corollary 2.7. For every s ∈ (0, 1), the operator Λ−s is linear and bounded from L∞(R)
to C0,s(R).
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Proof. Recall that if α > 0 is not an integer, the Hölder space Cbαc,{α}(R) coincides
(equivalent norms) with the Zygmund space Cα(R). Now if f ∈ L∞, then ‖∆2

hf‖L∞ . 1,
and we have with the same reasoning as in the proof of Proposition 2.6 that

sup
x∈R
|
(
∆3
h(Λ−sf

)
(x)| ≤ ‖∆hKs‖L1‖∆2

hf‖L∞

. |h|s.

Passing to supremum yields f ∈ C0,s.

3 Traveling-wave solutions to the fKdV equation

We present properties pertaining to the sign and regularity of traveling-wave solutions
to the fKdV equation. While this section is an a priori study of solutions to the fKdV
equation, existence shall be established in Section 4. In Section 3.1, we recover informa-
tion about the magnitude, and the sign of derivatives, of solutions that satisfy certain
periodicity and parity conditions. In particular, Lemma 3.3 parallels the classical study
of the nodal pattern of eigenfunctions to elliptic operators and will be of decisive impor-
tance in the subsequent bifurcation argument. Then, in Section 3.2, it is proved that all
solutions which have an amplitude strictly smaller than the wave-speed µ are smooth,
and in Section 3.3 that solutions which achieve the maximal amplitude of µ belongs to
C0,s(R). The s-Hölder regularity is optimal and attained in the crest where ϕ = µ.

Most of the methods in this section follow [11]. The main difference is that we here
consider the parametrized operator Λ−s with s ∈ (0, 1), and we obtain new results on
the relationship between the order of the operator and the optimal regularity of highest
traveling waves. Note that in the following, the parameter s is considered to be fixed in
(0, 1), and the fKdV equation refers to equation (1.17) for this value of s.

3.1 Periodic traveling waves

Many properties of solutions ϕ to the fKdV equation can be inferred by analyzing the
structure of the equation. We begin with a proposition giving bounds for the minima
and maxima of solutions, making use of the Bessel potential operator being strictly
monotone, and the observation that

Λ−sc = Ks ∗ c = c‖Ks‖L1 = c

for every constant c ∈ R.

Proposition 3.1. If ϕ is a solution to the fKdV equation, then{
2(µ− 1) ≤ minϕ ≤ 0 ≤ maxϕ or ϕ ≡ 2(µ− 1) if µ ≤ 1,

0 ≤ minϕ ≤ 2(µ− 1) ≤ maxϕ or ϕ ≡ 0 if µ > 1.
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Proof. The equation can be written in the form

(µ− ϕ)2 = µ2 − 2Λ−sϕ.

Since Λ−sϕ ≥ minϕ and Λ−sϕ ≤ maxϕ, we have

(µ− ϕ)2 ≤ µ2 − 2 minϕ,

(µ− ϕ)2 ≥ µ2 − 2 maxϕ.

In particular, this holds for minϕ (resp. maxϕ), which gives

minϕ
(1

2
minϕ− (µ− 1)

)
≤ 0,

maxϕ
(1

2
maxϕ− (µ− 1)

)
≥ 0.

Analyzing the sign of the factors on the left-hand sides above yields the claim.

If a solution ϕ satisfies ϕ(x) = 0 at some point x, then evaluating the equation in
x = 0 yields Λ−sϕ = 0. Therefore, since the convolution kernel Ks associated with Λ−s

is strictly positive, the solution ϕ must either be identically equal to zero, or it must
change sign.

We now state a result regarding the L2-integrability of periodic solutions of a finite
period P .

Proposition 3.2. Let P < ∞. Then every solution ϕ ∈ L1(SP ) to the fKdV equation
belongs to L2(SP ). In particular,

‖ϕ‖2L2(SP ) = 2(µ− 1)

∫
SP
ϕdx .

Proof. Integrating the equation ϕ2 = 2µϕ− 2Λ−sϕ over SP yields∫
SP
ϕ2 dx = 2µ

∫
SP
ϕdx−2

∫
SP

Λ−sϕdx = 2(µ− 〈0〉−s)
∫
SP
ϕdx,

where we have used the formula (2.16) for Fourier multipliers on periodic functions.

In the bifurcation preceedure in Section 4, we work with nonconstant, even and P -
periodic solutions to the fKdV equation which are nondecreasing on (−P/2, 0). The
following proposition lists properties of such solutions.

Lemma 3.3. Every P -periodic, nonconstant and even solution ϕ ∈ C1(R) to the fKdV
equation which is nondecreasing on (−P/2, 0) satisfies

ϕ′ > 0 and ϕ < µ

on (−P/2, 0). If in addition ϕ ∈ C2(R), then

ϕ′′(0) < 0 and ϕ′′(±P/2) > 0.
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Proof. We have by assumption that ϕ′ is odd, nontrivial and nonnegative on (−P/2, 0).
Hence, it satisfies the assumptions of Lemma 2.5, and we infer that Λ−sϕ′ > 0 on
(−P/2, 0). Differentiating the fKdV equation, one has

(µ− ϕ)ϕ′ = Λ−sϕ′ > 0

on (−P/2, 0), and we conclude that ϕ′ > 0 and ϕ < µ on (−P/2, 0).
Now assume that ϕ ∈ C2(R). Differentiating twice, we get

(µ− ϕ)ϕ′′ = (ϕ′)2 + Λ−sϕ′′.

Evaluating this equation at x = 0 yields

(µ− ϕ(0))ϕ′′(0) = (Λ−sϕ′′)(0) = 2

∫ P/2

0
KP,s(y)ϕ′′(y) dy,

since ϕ′(0) = 0 by evenness and differentiability of ϕ, and because KP,s and ϕ′′ are even
functions. For some ε > 0, splitting the integral and using integration by parts, one
obtains ∫ P/2

0
KP,s(y)ϕ′′(y) dy =

∫ ε

0
KP,s(y)ϕ′′(y) dy+

∫ P/2

ε
KP,s(y)ϕ′′(y) dy

=

∫ ε

0
KP,s(y)ϕ′′(y) dy+

[
KP,s(y)ϕ′(y)

]P/2
y=ε

−
∫ P/2

ε
K ′P,s(y)ϕ′(y) dy

(recall that KP,s is smooth outside of the origin). The first term vanishes when ε ↘ 0,
because

lim
ε↘0

∣∣ ∫ ε

0
KP,s(y)ϕ′′(y) dy

∣∣ . ‖ϕ′′‖C(R) lim
ε↘0

∫ ε

0
|y|s−1 dy = 0,

where we have used (2.11) for the period kernel. The second term must also vanish in
the limit, since ϕ′(P/2) = 0, and since ϕ′(ε) . ε due to ϕ′(0) = 0 and the continuity
of ϕ′. The last term is negative for each ε > 0, since we have proved both ϕ′ < 0 and
K ′P,s < 0 on (−P/2, 0). Moreover, it is decreasing as ε ↘ 0, so passing to the limit we
arrive at

(µ− ϕ(0))ϕ′′(0) = −2 lim
ε↘0

∫ P/2

ε
K ′P,s(y)ϕ′(y) dy < 0.

In view of ϕ < µ, we conclude that ϕ′′(0) < 0.
We show that ϕ′′(±P/2) > 0. Arguing similarly as above, one has

(µ− ϕ(P/2))ϕ′′(P/2) = 2

∫ P/2

0
KP,s(P/2 + y)ϕ′′(y) dy

= 2

(∫ P/2−ε

0
+

∫ P/2

P/2−ε

)
KP,s(P/2 + y)ϕ′′(y) dy,
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where the second term vanishes when ε ↘ 0. For the first term, integration by parts
yields ∫ P/2−ε

0
KP,s(P/2 + y)ϕ′′(y) dy

=

[
KP,s(P/2 + y)ϕ′(y)

]P/2−ε
y=0

−
∫ P/2−ε

0
K ′P,s(P/2 + y)ϕ′(y) dy,

and passing to the limit we obtain

(µ− ϕ(P/2))ϕ′′(P/2) = −2 lim
ε↘0

∫ P/2−ε

0
K ′P,s(P/2 + y)ϕ′(y) dy > 0,

on account of K ′P,s being P -periodic and strictly positive on (−P/2, 0), and ϕ′ strictly
negative on (0, P/2). Hence, ϕ′′(P/2) > 0, and by evenness also ϕ′′(−P/2) > 0.

3.2 Regularity of solutions ϕ < µ

One might ask whether the first- and second-order continuous differentiability assump-
tions of Lemma 3.3 are reasonable. The following proposition shows that all solutions
which are strictly smaller than µ are smooth, and therefore that Lemma 3.3 applies to
such solutions.

Lemma 3.4. Let ϕ ≤ µ be a solution to the fKdV equation. Then ϕ is smooth on every
open set where ϕ < µ.

Proof. Assume first that ϕ < µ uniformly on R. We rewrite the fKdV equation to the
form

ϕ = µ−
√
µ2 − 2Λ−sϕ. (3.1)

Note that if f < µ2 is a function which belongs to Cα(R) for some α > 0, then the
mapping

f 7→ µ−
√
µ2 − f

takes f back into Cα(R), since the function x 7→
√
x is continuous for x > 0. Moreover,

owing to Proposition 2.6 and Corollary 2.7, the operator Λ−s is linear and bounded from
L∞(R) to Cs(R) and from Cα(R) to Cα+s(R). When ϕ < µ, it is evident from the fKdV
equation that Λ−sϕ < µ2, meaning that the right-hand side of (3.1) maps L∞(R) to
Cs(R) and Cα(R) to Cα+s(R). Bootstrapping now yields ϕ ∈ C∞(R).

Now let U be an open set on which ϕ < µ, and let ϕ ∈ Csloc(U), in the sense that
ψϕ ∈ Cα(R) for all ψ ∈ D(U). We claim that Λ−sϕ ∈ Cα+sloc (U), and that consequently
the above iteration argument holds for ϕ < µ on every open set U . To see this, split ϕ
according to

ψΛ−sϕ = ψΛ−s(ρϕ) + ψΛ−s((1− ρ)ϕ),

where ψ and ρ belongs to D(U), and ρ ≡ 1 on a compact neighborhood of suppψ in U .
Since ρϕ ∈ Cα(R), we have Λ−s(ρϕ) ∈ Cα+s(R). Furthermore, the second term

ψΛ−s((1− ρ)ϕ) =

∫
R
Ks(x− y)ψ(x)(1− ρ(y))ϕ(y) dy
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is smooth: the kernel Ks is smooth on R \ {0}, and the integrand vanishes whenever
x is sufficiently close to y, because either ψ(x) is zero, or 1 − ρ(y) is zero when y
approaches x.

3.3 Regularity of highest traveling waves

We now turn to an investigation of solutions that are allowed to attain the height of
ϕ = µ in some but all points. Such solutions are referred to as highest traveling-wave
solutions, and they exhibit different qualitative properties than the smooth solutions
with ϕ < µ discussed in Section 3.2.

In Lemma 3.3 it was proved that solutions that are continuously differentiable are
strictly increasing on (−P/2, 0). The regularity assumption can be relaxed if ϕ does not
exceed µ, as the following proposition shows. While the result can also be proven for
the solitary case by a similar argument, we state it for periodic solutions.

Proposition 3.5. Let ϕ be an even, P -periodic and nonconstant solution to the fKdV
equation that is nondecreasing on (−P/2, 0) with ϕ ≤ µ. Then ϕ is strictly increasing
on (−P/2, 0).

Proof. Taking the difference of the fKdV equation evaluated in two points x and y, one
obtains

(2µ− ϕ(x)− ϕ(y))(ϕ(x)− ϕ(y)) = 2
(
(Λ−sϕ)(x)− (Λ−sϕ)(y)

)
. (3.2)

Furthermore, for every h ∈ (0, P/2), we have

(Λ−sϕ)(x+ h)− (Λ−sϕ)(x− h)

=

∫ ∞
−∞

Ks(x+ h− y)ϕ(y) dy−
∫ ∞
−∞

Ks(x− h− y)ϕ(y) dy

=

∫ ∞
−∞

Ks(x− y)ϕ(y + h) dy−
∫ ∞
−∞

Ks(x− y)ϕ(y − h) dy

=

∫ −P/2
−P/2

KP,s(x− y)ϕ(y + h) dy−
∫ −P/2
−P/2

KP,s(x− y)ϕ(y − h) dy

=

∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))(ϕ(y + h)− ϕ(y − h)) dy,

(3.3)

where we have used the evenness of KP,s and ϕ. Hence,

(2µ− ϕ(x+ h)− ϕ(x− h))(ϕ(x+ h)− ϕ(x− h))

= 2
(
(Λ−sϕ)(x+ h)− (Λ−sϕ)(x− h)

)
= 2

∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))(ϕ(y + h)− ϕ(y − h)) dy .

The term KP,s(y − x)−KP,s(y + x) in the above was shown in the proof of Lemma 2.5
to be strictly positive for every x, y ∈ (−P/2, 0). Moreover, owing to (2.13), the factor
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(ϕ(y+ h)−ϕ(y− h)) is nonnegative, and larger than zero for some y ∈ (−P/2, 0), since
ϕ is assumed to be nonconstant and nondecreasing on (−P/2, 0). Therefore

(2µ− ϕ(x+ h)− ϕ(x− h))(ϕ(x+ h)− ϕ(x− h)) > 0

for every x ∈ (−P/2, 0) and every h ∈ (0, P/2), which implies that ϕ is strictly increasing
on (−P/2, 0).

Lemma 3.4 shows that every solution ϕ satisfying the assumptions of Proposition 3.5
is smooth on SP \ {0}. In the origin, the smoothness of the solution may break down if
ϕ(0) = µ. The following lemma shows that this is the case.

Lemma 3.6. Let P <∞, and let ϕ be an even, P -periodic and nonconstant solution to
the fKdV equation that is nondecreasing on (−P/2, 0) with ϕ ≤ µ. Then

µ− ϕ(P/2) &P 1. (3.4)

Moreover, there exists ε > 0 such that

µ− ϕ(x) &P |x|s (3.5)

uniformly for |x| < ε.

Remark 3.7. The estimate (3.5) is in fact uniform in P , when the period is assumed to
be sufficiently large. Therefore, one can let P ↗∞, and obtain the estimate in the case
of solitary waves. This permits us to prove the subsequent Theorem 3.8 for periodic or
solitary traveling-wave solutions to the fKdV equation in a unified way.

Proof. Since ϕ is smooth except possibly in x = 0, one has for x ∈ (−P/2, 0) that

(µ− ϕ(x))ϕ′(x) = (Λ−sϕ)′(x)

= lim
h→0

((Λ−sϕ)(x+ h)− (Λ−sϕ)(x− h))

2h

≥ lim inf
h→0

1

2h

∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))(ϕ(y + h)− ϕ(y − h)) dy

≥
∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))ϕ′(y) dy .

In the third step we used the formula (3.3), and the last estimate, where differenti-
ation is taken under the integral, is justified by Fatou’s lemma [5, Lemma 4.1]. Fix
x0 ∈ (−P/2, 0) and let x ∈ [x0, 0). Then, with z ∈ [−P/2, x], we have

(µ− ϕ(z))ϕ′(x) ≥ (µ− ϕ(x))ϕ′(x)

≥
∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))ϕ′(y) dy

≥
∫ x0/4

x0/2
(KP,s(x− y)−KP,s(x+ y))ϕ′(y) dy,

(3.6)
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where we used that the integrand in the second step is strictly positive, since the differ-
ence KP,s(x−y)−KP,s(x+y) is positive and ϕ′ > 0 in (−P/2, 0) owing to Proposition 3.5.
Letting

CP = min{KP,s(x− y)−KP,s(x+ y) ; x, y ∈ (
x0
2
,
x0
4

)} > 0,

we have
(µ− ϕ(−P/2))ϕ′(x) ≥ CP (ϕ(

x0
4

)− ϕ(
x0
2

)).

Integrating over (x02 ,
x0
4 ) and dividing by the difference ϕ(x04 )− ϕ(x02 ) proves (3.4).

Towards proving (3.5), we claim that there exists ε > 0 such that the estimate

KP,s(x− y)−KP,s(x+ y) &P |x0|s−1

holds uniformly over x ∈ [x0, 0) and y ∈ (x0/2, x0/4) with |x0| < ε. Note first that for
these ranges of x and y, we have |x− y| < |x+ y|. Then, due to the estimate (2.11), we
can pick a small enough x0 and constants C1 and C1, depending on P and Ks, such that

KP,s(x− y) ≥ C1|x− y|s−1 and KP,s(x+ y) ≤ C1|x+ y|s−1

hold for all x ∈ [x0, 0) and y ∈ (x0/2, x0/4), and such that

KP,s(x− y)−KP,s(x+ y) ≥ C1|x− y|s−1 − C2|x+ y|s−1

≥ C1

(3

4

)s−1|x0|s−1 − C2

(1

4

)s−1|x0|s−1
&P |x0|s−1.

Inserting the above estimate in (3.6) yields

(µ− ϕ(z))ϕ′(x) &P |x0|s−1(ϕ(x0/4)− ϕ(x0/2)).

Integrating this inequality over (x0/2, x0/4) with respect to x, dividing by the (positive)
difference (ϕ(x0/4)− ϕ(x0/2), and setting z = x0, we obtain

(µ− ϕ(x0) &P (x0/4− x0/2)|x0|s−1 &P |x0|s,

and the inequality is uniform in x0 for |x0| < ε. The estimate (3.5) now follows by
evenness of ϕ.

Proposition 3.6 provides an upper bound for the regularity at the crests of periodic
solutions which are allowed to touch µ from below in the origin. In Theorem 3.8, we
also prove a global upper counterpart of the estimate (3.5), thereby establishing global
s-Hölder regularity of solutions ϕ, attained at the crests. The method of the proof follows
[11, Theorem 5.4], but with modified arguments for the global estimates related to the
parametrized order s ∈ (0, 1) of the Bessel potential operator.
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Theorem 3.8. Let P ∈ (0,∞], and let ϕ ≤ µ be an even and nonconstant solution to the
fKdV equation which is nondecreasing on (−P/2, 0) with ϕ(0) = µ. Then ϕ ∈ C0,s(R).
Moreover,

µ− ϕ(x) h |x|s (3.7)

uniformly for |x| � 1.

Remark 3.9. Using the (nonperiodic) kernel Ks in the proof, and in view of Remark 3.7,
the period P in Theorem 3.8 is allowed to be infinite.

Proof. Let ϕ ∈ L∞(R) satisfy the assumptions above. We show first that, for every
α < s, the solution ϕ is α-Hölder continuous in 0. From (3.2) we obtain the formula

(µ− ϕ(x))2 = 2
(
(Λ−sϕ)(0)− (Λ−sϕ)(x)

)
=

∫
R

(Ks(x+ y) +Ks(x− y)− 2Ks(y))(ϕ(0)− ϕ(y)) dy .
(3.8)

Splitting the kernel in the singular and regular parts, as shown in (2.17), gives∣∣ ∫
R

(Ks(x+ y) +Ks(x− y)− 2Ks(y))(ϕ(0)− ϕ(y)) dy
∣∣

.
∫
R

∣∣|x+ y|s−1 + |x− y|s−1 − 2|y|s−1
∣∣(ϕ(0)− ϕ(y)) dy

+

∫
R

∣∣K̃s(x+ y) + K̃s(x− y)− 2K̃s(y)
∣∣(ϕ(0)− ϕ(y)) dy

For the singular part one has∫
R

∣∣|x+ y|s−1 + |x− y|s−1 − 2|y|s−1
∣∣(ϕ(0)− ϕ(y)) dy

≤ 2‖ϕ‖L∞ |x|s
∫
R

∣∣|1 + t|s−1 + |1− t|s−1 − 2|t|s−1
∣∣ dt

. |x|s,

(3.9)

where the integral in the last step converges every s ∈ (0, 1), owing to the inequality∣∣|1 + t|s−1 + |1− t|s−1 − 2|t|s−1
∣∣ . |t|s−3 (3.10)

for large t. The regular part can be estimated by∫
R

∣∣K̃s(x+ y) + K̃s(x− y)− 2K̃s(y)
∣∣(ϕ(0)− ϕ(y)) dy

. ‖ϕ‖L∞ |x|2
∫
R
R2
x(y) dy

. |x|2,

(3.11)

where we have used R2
x(y) from (2.20) and the estimates in (2.19) for it. Inserting (3.9)

and (3.11) in (3.8) yields (µ − ϕ(x))2 . |x|s. This implies that ϕ is at least s
2 -Hölder
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continuous in 0. Using this information, the term ϕ(0) − ϕ(y) can be bounded from

above by |y|
s
2 in the estimate (3.9), giving s/2+s

2 -Hölder continuity of ϕ in 0. Iteration
of this argument proves that ϕ is α-Hölder regular in 0 for every α < s.

We now show s-Hölder regularity in x = 0. To this end, we claim that there is a
constant C, independent of α, such that∫

R

∣∣Ks(x+ y) +Ks(x− y)− 2Ks(y)
∣∣|y|α dy ≤ C|x|2α

for all |x| ≤ 1 and all 0 ≤ α ≤ s. Indeed, for the singular part we have∫
R

∣∣|x+ y|s−1 + |x− y|s−1 + 2|y|s−1
∣∣|y|α dy

= |x|s+α
∫
R

∣∣|1 + t|s−1 + |1− t|s−1 − 2|t|s−1
∣∣|t|α dt

. |x|s+α

≤ |x|2α,

where the integral converges in view of (3.10), and in the last step it was used that
|x| ≤ 1. Note that the estimate is uniform in α ∈ [0, s]. Moreover, the regular part of
the kernel can be bounded according to∫

R

∣∣K̃s(x+ y) + K̃s(x− y)− 2K̃s(y)
∣∣|y|α dy . |x|2

∫
R
R2
x(y)|y|α dy

. |x|2

≤ |x|2α,

for |x| ≤ 1. It was shown above that ϕ is α-Hölder continuous in the origin for every
α ∈ [0, s). Hence,

(ϕ(0)− ϕ(x))2 =

∫
R

(
Ks(x+ y) +Ks(x− y)− 2Ks(y)

)
(ϕ(0)− ϕ(y)) dy

≤ [ϕ]
C0,α

0

∫
R

∣∣Ks(x+ y) +Ks(x− y)− 2Ks(y)
∣∣|y|α dy

. [ϕ]
C0,α

0
|x|2α.

Dividing by |x|2α and passing to supremum yields

[ϕ]
C0,α

0
. 1

uniformly over α ∈ [0, s). We let α↗ s, and obtain the estimate (3.7).
We now claim that for global α-Hölder continuity, with any α ∈ (0, 1), it suffices to

prove that

sup
0<h<|x|<δ

|ϕ(x+ h)− ϕ(x− h)|
hα

<∞,
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for some δ > 0. This is equivalent to

‖ϕ‖C0,α(R) . max

{
1, sup

0<h<|x|<δ

|ϕ(x+ h)− ϕ(x− h)|
hα

}
. (3.12)

Note first that ϕ(x+ y)− ϕ(x− y) is symmetric in x and y, which implies that

‖ϕ‖C0,α(R) = sup
0<h<|x|

|ϕ(x+ h)− ϕ(x− h)|
hα

,

where h denotes min{|x|, |y|}. Now fix δ � 1. If h ≥ δ/2, then

|ϕ(x+ h)− ϕ(x− h)|
hα

≤ 4
‖ϕ‖L∞
δ

.

On the other hand, if |x| ≥ δ and h ≤ δ/2, the already established smoothness of ϕ
outside of the origin implies that

|ϕ(x+ h)− ϕ(x− h)|
hα

≤ 2
(δ

2

)1−α‖ϕ‖C1(δ/2,P/2) . ‖ϕ‖C1(δ/2,P/2).

This justifies the reduction (3.12).
We proceed to show that ϕ ∈ C0,α(R) for every α < s. Assume that 0 < h < x < δ

for some δ � 1, in accordance with the reduction above, where x can be taken positive
without loss of generality due to the evenness of ϕ. Since

(ϕ(x+ h)− ϕ(x− h))2

≤
∣∣(2µ− ϕ(x+ h)− ϕ(x− h))(ϕ(x+ h)− ϕ(x− h))

∣∣
=
∣∣(Λ−sϕ)(x+ h)− (Λ−sϕ)(x− h)

∣∣, (3.13)

and Λ−s maps L∞ to C0,s and Cα to Cα+s, we obtain that ϕ is at least α-Hölder regular
for every α < s if s ≤ 1/2 and α = 1/2 if s > 1/2. Consequently, for s > 1/2 we need to
pass the threshold α = 1/2 in the iteration procedure of (3.13). So assume that s > 1/2
and that ϕ ∈ C0,α with α+ s > 1. Note that for a function f ∈ C1,β with β ∈ (0, 1) and
f ′(0) = 0, one has

|f(x)− f(y)| = |x− y||f ′(ξ)− f ′(0)| . |x− y||ξ|β (3.14)

for ξ ∈ (x, y). Hence,∣∣(Λ−sϕ)(x+ h)− (Λ−sϕ)(x− h)
∣∣ . h|ξ|{α+s},

with ξ ∈ (x− h, x+ h) and {α+ s} being the fractional part of α+ s. Inserting this in
(3.13) yields

|ϕ(x+ h)− ϕ(x− h)| . h|ξ|{α+s}

2µ− ϕ(x+ h)− ϕ(x− h)

.
h|x+ h|{α+s}

|x+ h|s + |x− h|s

. h|x+ h|α−1

(3.15)
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where we have used the estimate (3.5) from Lemma 3.6 in the second step, and in the
last step that {α + s} − s = α − 1. Now we interpolate between (3.15) and the exact
s-Hölder regularity in the origin. Precisely, with η ∈ (0, 1) one has

|ϕ(x+ h)− ϕ(x− h)|
hη

≤ |ϕ(x+ h)− ϕ(x− h)|η

hη
|µ− ϕ(x+ h)|1−η

. |x+ h|η(α−1)+(1−η)s.

This is bounded whenever
η ≤ s

1 + s− α
,

and we choose the interpolation parameter η such that equality holds. Hence,

|ϕ(x+ h)− ϕ(x− h)| . h
s

1+s−α .

Iterating this argument, one obtains in each step for ϕ ∈ C0,α that ϕ is s
1+s−α -Hölder

regular. The regularity is therefore increased in each iteration and tending to s, proving
ϕ ∈ C0,α(R) for every α < s.

We now prove ϕ ∈ C0,s(R). To this end, note that the difference in the right-hand
side of (3.2) can also be written as

(Λ−sϕ)(x+ h)− (Λ−sϕ)(x− h)

=

∫ ∞
−∞

K(x+ h− y)ϕ(y) dy−
∫ ∞
−∞

K(x− h− y)ϕ(y) dy

=

∫ ∞
−∞

K(y − h)ϕ(y + x) dy−
∫ ∞
−∞

K(y + h)ϕ(y + x) dy

=

∫ 0

−∞
(Ks(y + h)−Ks(y − h))(ϕ(y − x)− ϕ(y + x) dy .

(3.16)

Let 0 < h < |x| < δ for some δ � 1, and assume that x is positive. Since

2µ− ϕ(x+ h)− ϕ(x− h) ≥ µ− ϕ(x+ h) ≥ µ− ϕ(x),

we have with (3.2) and (3.16) that

(µ− ϕ(x))|ϕ(x+ h)− ϕ(x− h)|

≤ 2

∫ 0

−∞
|Ks(y + h)−Ks(y − h)||ϕ(y − x)− ϕ(y + x)| dy .

(3.17)

To estimate the factor |ϕ(y − x) − ϕ(y + x)|, we interpolate between the sharp C0,s-
regularity in x = 0 and the global C0,α-regularity (for α < s). That is,

|ϕ(y − x)− ϕ(y + x)| . ‖ϕ‖C0,α min(|x|α, |y|α) (3.18)

for every choice of α ∈ (0, s), and

|ϕ(y − x)− ϕ(y + x)| . [ϕ]
C0,s

0
max(|x|s, |y|s), (3.19)
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which holds true in view of the s-Hölder regularity in x = 0 via

|ϕ(y − x)− ϕ(y + x)| = |(ϕ(y − x)− µ) + (µ− ϕ(y + x))|
. [ϕ]

C0,s
0

(|x− y|s + |x+ y|s)

. [ϕ]
C0,s

0
max(|x|s, |y|s).

Interpolation of (3.18) and (3.19) over a parameter η gives

|ϕ(y − x)− ϕ(y + x)| . ‖ϕ‖η
C0,α min(|x|, |y|)αη max(|x|, |y|)s(1−η), (3.20)

with (α, η) ∈ (0, s)× [0, 1]. The integral in the right-hand side of (3.17) can be split in
the singular and regular parts of the kernel Ks. Inserting (3.20) in the integral with the
singular term yields∫ 0

−∞

∣∣|y + h|s−1 − |y − h|s−1
∣∣|ϕ(y − x)− ϕ(y + x)| dy

. ‖ϕ‖η
C0,α

∫ 0

−∞

∣∣|y + h|s−1 − |y − h|s−1
∣∣min(|x|, |y|)αη max(|x|, |y|)s(1−η) dy

= ‖ϕ‖η
C0,α |x|αη

∫ −|x|
−∞

∣∣|y + h|s−1 − |y − h|s−1
∣∣|y|s(1−η) dy

+ ‖ϕ‖η
C0,α |x|s(1−η)

∫ 0

−|x|

∣∣|y + h|s−1 − |y − h|s−1
∣∣|y|αη dy

. ‖ϕ‖η
C0,α |x|αηhs+s(1−η)

∫ 0

−∞

∣∣|t+ 1|s−1 − |t− 1|s−1
∣∣|t|s(1−η) dt

+ ‖ϕ‖η
C0,α |x|s(1−η)hs+αη

∫ 0

−δ

∣∣|t+ 1|s−1 − |t− 1|s−1
∣∣|t|αη dt .

(3.21)

The integral in the last line clearly converges. For the difference in the second last line
we have the identity

|t+ 1|s−1 − |t− 1|s−1 . |t|s−2

for large t. Thus, we need to choose η such that s− 2 + s(1− η) < −1 for convergence.
But this is possible for every s ∈ (0, 1) by requiring

η > 2− 1

s
. (3.22)
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The regular part can be estimated by∫ 0

−∞
|K̃s(y + h)− K̃s(y − h)||ϕ(y − x)− ϕ(y + x)| dy

. ‖ϕ‖η
C0,αh

∫ 0

−∞
R1
h(y) min(|x|, |y|)αη max(|x|, |y|)s(1−η) dy

. ‖ϕ‖η
C0,αh|x|αη

∫ −|x|
−∞

R1
h(y)|y|s(1−η) dy

+ ‖ϕ‖η
C0,αh|x|s(1−η)

∫ 0

−|x|
R1
h(y)|y|αη dy

. ‖ϕ‖η
C0,α |x|αηh1+s(1−η)

∫ 0

−∞
R1
h(th)|t|s(1−η) dt

+ ‖ϕ‖η
C0,α |x|s(1−η)h1+αη

∫ 0

−δ
R1
h(th)|t|αη dt,

(3.23)

where both integrals converge. Note in particular that s − 2 + s(1 − η) < −1 in the
second last integral due to the choice of η given by (3.22) and the estimate (2.18) for
R1
h. Inserting (3.21) and (3.23) into (3.17) yields

(µ− ϕ(x))|ϕ(x+ h)− ϕ(x− h)|
. ‖ϕ‖η

C0,α

(
|x|αηhs+s(1−η) + |x|s(1−η)hs+αη + |x|αηh1+s(1−η) + |x|s(1−η)h1+αη

)
. ‖ϕ‖η

C0,α |x|αη+s(1−η)hs,

where we have used h < |x|. Thus,(
µ− ϕ(x)

|x|αη+s(1−η)

)(
|ϕ(x+ h)− ϕ(x− h)|

hs

)
. ‖ϕ‖η

C0,α ,

uniformly for α ∈ (0, s). Since µ− ϕ(x) & |x|s for small |x| by Lemma 3.6, and h < |x|,
this can be reduced to

|ϕ(x+ h)− ϕ(x− h)|
hs−η(s−α)

. ‖ϕ‖η
C0,α .

Splitting the estimate over η we arrive at(
|ϕ(x+ h)− ϕ(x− h)|

hα

)η( |ϕ(x+ h)− ϕ(x− h)|
hs

)1−η
. ‖ϕ‖η

C0,α .

Hence,

‖ϕ‖C0,α . sup
0<h<|x|<δ

(
|ϕ(x+ h)− ϕ(x− h)|

hα

)
≤ sup

0<h<|x|<δ

(
|ϕ(x+ h)− ϕ(x− h)|

hα

)η( |ϕ(x+ h)− ϕ(x− h)|
hs

)1−η

. ‖ϕ‖η
C0,α ,
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which finally proves

sup
0<h<|x|<δ

(
|ϕ(x+ h)− ϕ(x− h)|

hα

)1−η
. 1

uniformly for α ∈ (0, s) with

min(0, 2− 1

s
) < η < 1

fixed. This justifies letting α↗ s, thereby proving the claimed global s-Hölder regularity
of the solution ϕ.

In view of of Lemma 3.6, we infer that the s-Hölder regularity is precisely attained
in the crest, as claimed in (3.7).

4 Analytic bifurcation for the fKdV equation

In this section, analytic bifurcation theory is applied to the fKdV equation to construct a
global curve of even, periodic and smooth solutions which converge to a highest traveling
wave. In Section 4.1, the existence of local bifurcation branches, composed of small-
amplitude solutions, is proved. Then, in section 4.2, it is shown that the local branches
can be extended to global analytic curves and that a highest traveling-wave solution can
be found in the limit of this curve. By virtue of the theory from section 3, we show
that the limiting wave is smooth outside the crests, and cusped with exactly s-Hölder
regularity at the crests where the maximal height of µ is achieved.

The organization of the results in this section follows [11, Section 6]. The theory of
analytic bifurcation is due to Buffoni, Dancer and Toland [7].

4.1 Local bifurcation

We consider the parameter s ∈ (0, 1) appearing in the symbol 〈ξ〉s fixed, and set
β ∈ (s, 1). Let

F : (ϕ, µ) 7→ µϕ− 1

2
ϕ2 − Λ−sϕ, (4.1)

where
F : C0,β

even(SP )× R→ C0,β
even(SP ),

since Λ−s maps C0,β
even(SP ) onto itself, and C0,β

even(SP ) is a Banach algebra.
Recall that if X and Y are Banach spaces, and f : X → Y is a function defined on

these spaces, we say that f is Fréchet differentiable at a point x0 ∈ X if there exists a
linear and bounded operator A : X → Y with

lim
0<‖h‖X→0

‖f(x0 + h)− f(x0)−Ah‖Y
‖h‖X

= 0.

If such an operator exists it is called the Fréchet derivative of f at x0, denoted by df [x0],
and it is unique. Moreover, the Fréchet derivative of a function f : X × Y → Z at a
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point (x0, y0) with respect to the first argument is defined as the Fréchet derivative of
f(·, y0) at x0, whenever this operator exists. It is denoted ∂xf [x0, y0], and is a linear
and bounded operator from X to Z. The Fréchet derivative of the second argument is
defined analogously. A more detailed account of calculus in Banach spaces can be found
in [7, Chapter 3].

The function F defined in (4.1) is a polynomial in the variable ϕ. It follows that F is
Fréchet differentiable with respect to ϕ and can be written as a convergent power series
in C0,β

even(SP ). That is, F is a real-analytic function.
Solutions to the equation

F (ϕ, µ) = 0 (4.2)

coincide with solutions to the fKdV equation, now with the additional requirement of
evenness, P -periodicity and β-Hölder continuity of ϕ. Note that there are exactly two
curves of constant solutions to (4.2),

ϕ ≡ 0 and ϕ ≡ 2(µ− 1).

The implicit function theorem [7, Theorem 4.5.4] states that if (ϕ0, µ0) is a solution
to (4.2) and the operator ∂ϕF [ϕ0, µ0] is a homeomorphism, then all solutions to the
problem (4.2) in a neighborhood of (ϕ0, µ0) lie on a unique curve. Therefore, a necessary
condition for a point (ϕ0, µ0) to be the origin of a bifurcation is that ∂ϕF [ϕ0, µ0] is not
a homeomorphism. An important example of operators that contain such functions are
the Fredholm operators.

We say that a linear bounded and operator A : X → Y , on Banach spaces X and Y ,
is a Fredholm operator of index p = n− r if one has

(i) dim ker(A) = n <∞, and

(ii) im(A) is closed and codim im(A) = r <∞.

Here, im and ker denote the image and the kernel of the operator A, and dim and codim
denote (algebraic) dimension and codimension. We now characterize points along the
trivial solution curve of (4.2) in which ∂ϕF is a Fredholm operator.

Proposition 4.1. For every finite period P > 0 and any k ∈ N, there exists a unique
number µ∗P,k := 〈2πkP 〉

−s such that ∂ϕF [0, µ∗P,k] is a Fredholm operator of index 0 with

dim ker(∂ϕF [0, µ∗P,k]) = codim im(∂ϕF [0, µ∗P,k]) = 1.

Proof. The function F is Fréchet differentiable with respect to ϕ, and

∂ϕF [0, µ] = µ id−Λ−s,

where id is the identity operator on C0,β
even(SP ). Note that Λ−s is a compact operator on

C0,β
even(SP ). This is a consequence of the fact that Hölder spaces of a given exponent are

compactly embedded in all Hölder spaces of strictly smaller exponents. More generally,
the embedding

Cβ+s(SP ) ↪↪→ Cβ(SP ) (4.3)
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is compact for every s > 0 and any finite P > 0; see [29, Chapter 13 (A.39)]. The
notation ↪↪→ here signifies a compact embedding. Thus,

Λ−s : Cβ(SP ) ↪→ Cβ+s(SP ) ↪↪→ Cβ(SP ),

and this property is preserved by restricting the operation to the closed subspace of
even functions. As a result of the Fredholm alternative theorem [7, Theorem 2.7.6], this
implies that ∂ϕF [0, µ] is a Fredholm operator of index zero. Furthermore, for all k ∈ N,

the operator ∂ϕF [0, µ∗P,k] maps the basis function ϕ∗P,k := cos
(
2πk
P x

)
of C0,β

even(SP ) to
zero while all others are multiplied by a positive constant. This is evident from (4.5)
and the fact that 〈·〉−s is strictly decreasing on N. Hence, the dimension of the kernel
and the codimension of the image of ∂ϕF [0, µ∗P,k] is 1.

Fredholm operators play an important role in bifurcation theory, not only since they
are examples of operators for which the implicit function breaks down, but because they
allow certain classical bifurcation results. These include the Lyapunov–Schmidt reduc-
tion [7, Theorem 8.2.1], reducing the infinite-dimensional problem (4.2) in a neighbor-
hood of a solution (ϕ0, µ0) to a finite-dimensional problem, and the Crandall–Rabinowitz
theorem, providing the existence of local bifurcation branches emanating from the trivial
solution curve at points in which the Fréchet derivative is Fredholm. Due to Propo-
sition 4.1, we are now in the position to apply an analytic version of the Crandall–
Rabinowitz theorem [7, Theorem 8.3.1] around the trivial solution curve of (4.2).

Lemma 4.2. For every finite period P > 0 and every k ∈ N, the trivial solution curve
of (4.2) has a bifurcation point at (0, µ∗P,k), and for each bifurcation point there exists
ε > 0 and an analytic curve

RP,k = {(ϕP,k(t), µP,k(t)) ; t ∈ (−ε, ε) and (ϕP,k(0), µP,k(0)) = (0, µ∗P,k)}

belonging to C0,β
even(SP ) × R, such that F (ϕP,k(t), µP,k(t)) = 0 for all t ∈ (−ε, ε). Fur-

thermore, all solutions to the equation (4.2) in a neighborhood of (0, µ∗P,k) lie either on
RP,k or on the trivial curve {(0, µ) ; µ ∈ R}.

Together with the transcritical bifurcation of constant solutions {(2(µ−1), µ) ; µ ∈ R}
intersecting the trivial curve in (0, 1), the curves RP,k constitute all nonzero solutions

to (4.2) in C0,β
even(SP )× R in a neighborhood of the trivial solution curve.

Proof. By Proposition 4.1, the operator ∂ϕF [0, µ∗P,k] is a Fredholm operator for every
k ∈ N, and it was shown in the proof that ker(∂ϕF [0, µ∗P,k]) is one-dimensional. Further-
more,

ker(∂ϕF [0, µ∗P,k]) = {τϕ∗P,k ; τ ∈ R} and ∂2ϕµF [0, µ∗P,k](1, ϕ
∗
P,k) = ϕ∗P,k

for every k ∈ N. This means that the transversality condition holds, that is,

∂2µϕF [0, µ∗P,k](1, ϕ
∗
P,k) 6∈ im(∂ϕF [0, µ∗P,k]),
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and hence that the assumptions of [7, Theorem 8.3.1] are satisfied.
Since the kernel of ∂ϕF [0, µ] is trivial for all µ 6= µ∗P,k, for every k ∈ N and µ 6= 1, it

follows from the implicit function theorem that the trivial solution is otherwise locally
unique.

Remark 4.3. The local bifurcation branches RP,k from Lemma 4.2 can be uniquely
determined by the quotient between k and P . Indeed, two solution branches with the
same quotients P1

k1
= P2

k2
have coinciding bifurcation points in 〈2πk1P1

〉−s, and since P2
k2

is

an integer multiple of P1, the branches both belong to C0,β
even(SP1) where uniqueness is

ensured by the lemma.

4.2 Global bifurcation

The Fréchet derivative of the function F at any point (ϕ, µ) ∈ C0,β
even(SP )×R is given by

∂ϕF [ϕ, µ] = (µ− ϕ) id−Λ−s. (4.4)

Assuming that ϕ < µ, we make the following observations. Firstly, the operator (µ−ϕ) id

is injective. Secondly, it is continuous, because C0,β
even(SP ) is a Banach algebra. Thirdly,

it is surjective, since for every ϑ ∈ C0,β
even(SP ) there exists 1

µ−ϕϑ ∈ C
0,β
even(SP ). We conlude

that for ϕ < µ, the operator (µ−ϕ) id is a linear homeomorphism on C0,β
even(SP ). On the

grounds of this, we define the set

U :=
{

(ϕ, µ) ∈ C0,β
even(SP )× R ; ϕ < µ

}
.

Moreover, let
S :=

{
(ϕ, µ) ∈ U ; F (ϕ, µ) = 0

}
,

and let S1 denote the ϕ-component of S.
In the following, we consider only the first bifurcation point (0, µ∗P,1) and the cor-

responding one-dimensional basis ϕ∗P,1 = cos(2πP x) for ker ∂ϕF [0, µ∗P,1]. To simplify no-
tation, let (ϕ(t), µ(t)) denote the parametric curve (ϕP,1(t), µP,1(t)) from Lemma 4.2,
emanating from the point (0, µ∗P,1).

Our goal is now to invoke [7, Theorem 9.1.1], which gives conditions for the when the
local bifurcation branch (ϕ(t), µ(t)) can be extended to a global solution curve. Precisely,
if ∂ϕF [ϕ, µ] is a Fredholm operator of index zero in S, all closed and bounded subsets
of S are compact, and µ′(t) 6≡ 0 in a neighborhood of the bifurcation point, then there
exists a continuous global curve which extends the local bifurcation branch. We prove
the following propositions.

Proposition 4.4. The operator ∂ϕF [ϕ, µ] is Fredholm of index zero for every (ϕ, µ) ∈ U .

Proof. The proposition is an application of [7, Theorem 2.7.6], which states that if K is
a compact bounded and linear operator and T is a homeomorphism on Banach spaces,
then T + K is a Fredholm operator of index zero. By (4.4) the operator ∂ϕF [ϕ, µ] is
equal to the sum of (µ− ϕ) id, which is a homeomorphism for every ϕ in U1, and Λ−s,
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which is compact on C0,β
even(SP ). This implies that ∂ϕF [ϕ, µ] is a Fredholm operator of

index zero.

Proposition 4.5. Every closed and bounded subset of S is compact.

Proof. As in the proof of Lemma 3.4, the equation can be written in the form (3.1). In
view of this, if K is a closed and bounded subset of S, then K1 = {ϕ ; (ϕ, µ) ∈ K} is

a bounded subset of Cβ+seven(SP ). Moreover, by (4.3), then K1 is relatively compact in

C0,β
even(SP ). Since closed and bounded subsets of R are compact, every sequence in K has

a convergent subsequence in the closure of K. But K is closed by assumption.

Recall that for every even, P -periodic, smooth and real-valued function f , we define
its Fourier cosine coefficients as

[f ]k =
2

P

∫ P/2

−P/2
f(x) cos

(2πk

P
x
)
dx,

so that the Fourier series of f is

f(x) =
[f ]0
2

+
∞∑
k=1

[f ]k cos
(2πk

P
x
)
.

As in (2.16), the action of Λ−s on f is given by

Λ−sf(x) =
[f ]0
2

+

∞∑
k=1

〈2πk

P

〉−s
[f ]k cos

(2πk

P
x
)
. (4.5)

It suffices now to prove that µ′(t) 6≡ 0 on (−ε, ε) in order to extend the local curve
from Lemma 4.2 to a global bifurcation curve. To this end, we parametrize (ϕ(t), µ(t)) in
such a way that [ϕ(t)]1 = t (this parametrization corresponds to the Lyapunov–Schmidt
reduction). One can check that

[ϕ(·+ P/2)]1 = −[ϕ]1 = −t,

by using the identity cos(x− π) = − cos(x), and the periodicity of ϕ. This implies that

(ϕ(t)(·+ P/2), µ(t)) = (ϕ(−t), µ(−t))

by the local uniqueness of the curve, and consequently µ(t) = µ(−t). Since the curve
(ϕ(t), µ(t)) is analytic in a neighborhood of (0, µ∗P,1) by Lemma 4.2, we may expand ϕ(t)
and µ(t) in terms of

ϕ(t) =

∞∑
n=1

ϕnt
n, µ(t) =

∞∑
n=0

µ2nt
2n.
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Inserting this into the fKdV equation and extracting terms of equal power in t yields

Λ−sϕ1 − µ0ϕ1 = 0, (4.6a)

Λ−sϕ2 − µ0ϕ2 = −1

2
ϕ2
1, (4.6b)

Λ−sϕ3 − µ0ϕ3 = µ2ϕ1 − ϕ1ϕ2, (4.6c)

Λ−sϕ4 − µ0ϕ4 = µ2ϕ2 − ϕ1ϕ3 −
1

2
ϕ2
2, (4.6d)

Λ−sϕ5 − µ0ϕ5 = µ4ϕ1 + µ2ϕ3 − ϕ1ϕ4 − ϕ2ϕ3. (4.6e)

Let mj := 〈2πjP 〉
−s to lighten the notation in the subsequent calculations. Clearly, we

have µ0 = µ∗P,1 = m1, which due to (4.6a) gives ϕ1(x) = cos(2πP x). Expanding ϕ2 in a
Fourier series, the equation (4.6b) implies that

[ϕ2]0
2

(1−m1) +

∞∑
j=1

(mj −m1)[ϕ2]j cos
(2πj

P

)
= −1

4
cos
(4π

P
x
)
− 1

4
. (4.7)

Hence,

ϕ2(x) = − 1

4(1−m1)
− 1

4(m2 −m1)
cos
(4π

P
x
)
.

Now, the right-hand side of (4.6c) is[
µ2 −

1

4(m1 − 1)
− 1

8(m1 −m2)

]
cos
(2π

P
x
)
−
[

1

8(m1 −m2)

]
cos
(6π

P
x
)
.

Since cos(2πP x) is not in the image of the operator on the left-hand side of (4.6c), we
infer that

µ2 =
1

4(m1 − 1)
+

1

8(m1 −m2)
. (4.8)

Using the same principles for as in (4.7), one finds

ϕ3(x) =
1

8(m2 −m1)(m3 −m1)
cos
(6π

P
x
)
.

Thus, the right-hand side of (4.6d) is given by

1

32(1−m1)2
− 1

32(1−m1)(m1 −m2)
− 1

64(m1 −m2)2

+
1

(m1 −m2)

[
1

32(m1 −m2)
+

1

16(m3 −m1)

]
cos
(4π

P
x
)

+
1

(m1 −m2)

[
1

16(m3 −m1)
− 1

64(m1 −m2)

]
cos
(8π

P
x
)
,
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and one can check that

ϕ4(x) =
1

(1−m1)

[
1

32(1−m1)2
− 1

32(1−m1)(m1 −m2)
− 1

64(m1 −m2)2

]
− 1

(m1 −m2)2

[
1

32(m1 −m2)
+

1

16(m3 −m1)

]
cos
(4π

P
x
)

+
1

(m1 −m2)(m4 −m1)

[
1

16(m3 −m1)
− 1

64(m1 −m2)

]
cos
(8π

P
x
)
.

The right-hand side of (4.6e) can not have a term with cos(2πP x), as this function is not
in the image of the operator on the left-hand side. Calculating the cos(2πP x)-part of the
right-hand side of (4.6e) implies that

µ4 =
1

32(1−m1)3
− 1

32(1−m1)2(m1 −m2)
− 1

64(1−m1)(m1 −m2)2

− 1

64(m1 −m2)3
− 3

64(m1 −m2)2(m3 −m1)

(4.9)

For every s ∈ (0, 1), one finds (see Remark 4.6) that µ2 is nonzero for all but one
unique value P ∗s of the period P , and moreover that µ4 is nonzero for the value P ∗s .
Therefore,

µ′ 6≡ 0 on (−ε, ε).

In view of Proposition 4.4 and Proposition 4.5, the assumptions of [7, Theorem 9.1.1]
are now satisfied. That is, the local bifurcation branch can be extended globally. We
state the alternatives for the qualitative behavior of this extension given in the theorem.

Remark 4.6. We have not been able to establish analytically the uniqueness of P ∗s or
that µ4 is nonzero for this particular value of P . Numerical calculations supporting our
conclusion are included in Appendix A.1.

Lemma 4.7. The local bifurcation branch t 7→ (ϕ(t), µ(t)) extends to a global continuous
curve R := {(ϕ(t), µ(t)) ; t ∈ [0,∞)} ⊂ U , and one of the following alternatives hold.

(i) ‖(ϕ(t), µ(t))‖C0,β×R →∞ as t→∞,

(ii) dist(R, ∂U) = 0,

(iii) R is a closed loop of finite period. That is, there exists T > 0 such that

R = {(ϕ(t), µ(t)) ; 0 ≤ t ≤ T},

where (ϕ(T ), µ(T )) = (0, µ∗P,1).

In addition to the above, we mention that [7, Theorem 9.1.1] ensures that R has a
local analytic re-parametrization at each point. Moreover, if R(t1) = R(t2) for numbers
t1 6= t2, with

ker ∂ϕF [ϕ(t1), µ(t1)] = {0},
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then alternative (iii) of Lemma 4.7 occurs, and |t1 − t2| is an integer multiple of T .
We end this section with an observation about Galilean symmetry in the fKdV

equation. One can check that if ϕ is a solution to then fKdV equation with wave-speed
µ, then ϕ+ 2(1− µ) solves the equation with wave-speed 2−µ. Therefore, the Galilean
transformation

(ϕ, µ) 7→ (ϕ+ 2(1− µ), 2− µ) (4.10)

gives a one-to-one correspondence between solutions to (4.2) with µ ∈ (0, 1) and solutions
with µ ∈ (1, 2). Precisely, the trivial curve {(0, µ) ; µ ∈ (0, 1)} maps to the curve
of constant solutions {(2(µ − 1), µ) ; µ ∈ (1, 2)}, and the curve of constant solutions
{(2(µ − 1), µ) ; µ ∈ (0, 1)} maps to the trivial curve {(0, µ) ; µ ∈ (1, 2)}. Consequently,
the bifurcation points along the trivial curve with µ ∈ (0, 1) are reflected to the curve
of constant solutions 2(µ− 1) with µ ∈ (1, 2), and they must therefore extend to global
curves in the same way. Moreover, by Lemma 4.2, the trivial curve on µ > 1 is locally
unique, implying that the curve {(2(µ− 1), µ) ; µ ∈ (0, 1)} must also be locally unique.
This symmetry of solutions is illustrated in Figure 2.

4.3 Convergence to a highest traveling wave

Towards invoking [7, Theorem 9.2.2] and the exclusion of alternative (iii) in Lemma 4.7,
we define the closed cone K (in the sense of [7, Definition 9.2.1]) as

K := {ϕ ∈ C0,β
even(SP ) ; ϕ is nondecreasing on (−P/2, 0)}.

We begin by showing that nonconstant solutions to the fKdV equation which satisfies
ϕ ≤ µ and belongs to K cannot lie on the boundary of K.

Proposition 4.8. In S1, every nonconstant function ϕ in R1∩K belongs to the interior
of K.

Proof. Let ϕ be a nonconstant solution to the fKdV equation in R1 ∩K, and let ψ ∈ S1

with
‖ϕ− ψ‖C0,β < δ,

for some δ > 0. Both ϕ and ψ are smooth due to Lemma 3.4, and iteration of (3.1)
shows

‖ϕ− ψ‖C2 < δ̃, (4.11)

where δ̃ can be made arbitrarily small at the expense of δ. Moreover, by Lemma 3.3 we
have

ϕ′ < 0 on (−P/2, 0), ϕ′′(0) < 0, ϕ′′(±P/2) > 0. (4.12)

Let a and b be points with −P/2 < a < b < 0, and such that

sup
x∈[a,b]

|ϕ′(x)| > δ̃
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and
ϕ′′ ≥ δ̃ on (−P/2, a),

ϕ′′ ≤ −δ̃ on (b, 0).

This is possible if δ̃ is sufficiently small, by virtue of (4.12). Then by (4.11), we have
ψ′ > 0 on [a, b], which can be seen from

ψ′(x) = ϕ′(x)− (ϕ′(x)− ψ′(x))

≥ ϕ′(x)− |ψ′(x)− ϕ′(x)|
> δ̃ − sup

x∈[a,b]
|ψ′(x)− ϕ′(x)| > 0.

It can be shown in the same manner that ψ′′ ≤ 0 on (b, 0) and ψ′′ ≥ 0 on (−P/2, a).
We claim that ψ′ ≥ 0 on (b, 0). Assume on the contrary that ψ′(x) < 0 on (b, 0).

Then ψ′(0) ≤ ψ′(x) < 0, since the second derivative is nonpositive. But this contradicts
the evenness of ψ. With an analogous argument on (−P/2, a), we arrive at ψ′ ≥ 0 on
(−P/2, 0). Thus, ψ ∈ K, and ϕ belongs to the interior of K.

Having proved Proposition 4.8, the following corollary is now a direct application of
[7, Theorem 9.2.2]. We include here the proof.

Corollary 4.9. Alternative (iii) in Lemma 4.7 does not occur.

Proof. We show that ϕ(t) ∈ K \ {0} for all t > 0. Assume by contradiction that there
exists a finite number

t := sup{t > 0 ; ϕ((0, t]) ⊂ K \ {0}}.

Since K is closed, the function ϕ(t) belongs to K. We claim that ϕ(t) is constant. Indeed,
if ϕ(t) is not constant, then by Proposition 4.8 it lies in the interior of the cone K; a
contradiction.

We argue that ϕ(t) = 0. All nonzero constant solutions are on the form 2(µ − 1)
with µ ∈ R \ {1}. By Proposition 3.2, we know that R1 cannot cross the line µ = 1
without at the same time approaching the zero solution. Moreover, by (4.10) the line
{2(µ − 1) ; µ ∈ (0, 1)} is locally unique. Hence, ϕ(t) = 0, and is therefore a local
bifurcation point according to Lemma 4.2.

Thus, µ(t) = µ∗P,k for some k ∈ N. By the discussion below Lemma 4.7 (which is due
to [7, Theorem 9.1.1]), one can choose a local, real-analytic re-parametrization of the
curve R around t. We let j be the smallest number in N such that the j-th derivative
of ϕ in t is nonzero. Then, in a neighborhood of t, one can write

ϕ(t) =
djϕ
[
t
]

j!
(t− t)j +O(|t− t|j+1). (4.13)

By definition of t, one has ϕ(t) ∈ K for all 0 ≤ t < t, and by (4.13) then

(−1)jdjϕ
[
t
]
∈ K \ {0}.
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−
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Figure 2: Bifurcation diagram for the FKdV equation (4.2). Local bifurcation curves
(cf. Lemma 4.2) are spread along {(0, µ) ; µ ∈ (0, 1)} accumulating towards 0, and
reflected to {(2(µ − 1), µ) ; µ ∈ (1, 2)} via the transformation (4.10). The lines
{2(µ− 1, µ) ; µ ∈ (0, 1)} and {(0, µ) ; µ > 1} of constant solutions are locally unique.
The local bifurcation branches extend to global curves (cf. Lemma 4.7), and a highest
traveling-wave solution can be found at the end of the global curve (cf. Theorem 4.12).
Note that the qualitative shape of the global bifurcation curve is not determined. The
depiction here is in line with the numerical result given in Appendix B.1.

Differentiation j times of the equality F (ϕ(t), µ(t)) = 0 with respect to t in the point t
yields

(−1)j∂ϕF [0, µ∗P,k]d
jϕ
[
t
]

= 0.

We deduce that (−1)jdj belongs to both ker(DϕF [0, µ∗P,k]) and K \ {0}. Hence,

(−1)jdjϕ
[
t
]

= τ cos
(2πk

P
x
)
,

for some τ ∈ R \ {0} and some k ∈ N. But since cos
(
2πk
P x

)
is in K if and only if k = 1,

and − cos
(
2π
P x
)
6∈ K, there is a segment of <, sufficiently close to t, parametrized by

t < t, that coincides with the local bifurcation curve emanating from (0, µ∗P,1). However,

then there exists countably many pairs (t1,j , t2,j) with t1,j ↘ 0 and t2,j ↗ t and with
<(t1,j) = <(t2,j). This implies that the bifurcation branch is an arbitrarily small loop,
contradicting Lemma 4.2. We conclude that ϕ(t) ∈ K\{0} for all t > 0, and consequently
that alternative (iii) from Lemma 4.7 does not occur.

Having excluded the possibility of the global bifurcation curves forming closed loops,
we now turn to prove that both alternative (i) and (ii) in Lemma 4.7 must occur simul-
taneously in the limit. In this direction, we first show that one can find a convergent
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subsequence along the curve and that it does not tend to the trivial solution with van-
ishing wave-speed.

Proposition 4.10. Any sequence of solutions (ϕn, µn)n∈N ⊂ S to the fKdV equation
with bounded (µn)n∈N has a subsequence that converges uniformly to a solution ϕ.

Proof. It follows directly from the fKdV equation that

‖ϕ‖2L∞(R) ≤ 2‖µϕ‖L∞(R) + 2‖Λ−sϕ‖L∞(R) ≤ 2(|µ|+ 1)‖ϕ‖L∞(R)

Thus, (ϕn)n∈N is bounded insofar as (µn)n∈N is bounded. Furthermore, the sequence
(Λ−sϕn)n∈N is uniformly equicontinuous. Indeed, since Ks is integrable and continuous,
then ∣∣(Λ−sϕn)(x)− (Λ−sϕn)(y)

∣∣ =

∣∣∣∣ ∫
R

(Ks(x− η)−Ks(y − η))ϕn(η) dη

∣∣∣∣
≤ ‖ϕn‖L∞(R)

∫
R

∣∣Ks(x− η)−Ks(y − η)
∣∣ dη,

which tends to zero when |x− y| → 0. Then by the Arzela–Ascoli theorem [5, Theorem
4.25], the sequence (Λ−sϕn)n∈N has a uniformly convergent subsequence. Finally, owing
to (3.1) one obtains the same conclusion for (ϕn)n∈N.

Proposition 4.11. For fixed period P > 0, one has

µ(t) & 1

uniformly for t ≥ 0 along the global bifurcation curve from Lemma 4.7.

Proof. Towards a contradiction, assume that there exists a sequence of wave-speeds
(µn)n∈N with µn → 0 as n→ 0, and that the corresponding sequence (ϕn)n∈N of solutions
to the fKdV equation belongs to the global bifurcation branch from Lemma 4.7. Then
by Proposition 4.10, there is a uniformly convergent subsequence of (ϕn)n∈N, converging
to some ϕ0, which is also a solution to the equation. But since ϕn ≤ µn along the
bifurcation branch, taking the limit one obtains ϕ0 ≤ 0. This means that maxx ϕ0(x) = 0
by Proposition 3.1, implying that ϕ0 ≡ 0, by the discussion below Proposition 3.1. Using
(3.4), we gather that

0 = lim
n→∞

(µn − ϕn(P/2)) & 1;

a contradiction. Hence, the wave-speed cannot not vanish identically along the global
bifurcation branch.

We are now in the position to conclude that a highest traveling-wave solution to the
fKdV equation exists at the limit of the global bifurcation branch.
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Theorem 4.12. Both alternative (i) and (ii) in Lemma 4.7 occur. For every unbounded
sequence (tn)n∈N of positive numbers, there exists a subsequence of (ϕ(tn), µ(tn))n∈N that
converges to a solution (ϕ, µ) to the fKdV equation, with

ϕ(0) = µ and ϕ ∈ C0,s(R).

The limiting wave is even, P -periodic, strictly increasing on (−P/2, 0), and is exactly
s-Hölder continuous at x ∈ PZ.

Proof. We show that alternative (i) and (ii) occur simultaneously. Assume first that (i)
occurs, that is,

‖(ϕ(t), µ(t))‖C0,β×R →∞

when t → ∞. Since µ(t) is strictly bounded between 0 and 1, this can only happen if
‖ϕ(t)‖C0,β blows up. Aiming at a contradiction, suppose that there exists δ > 0 with

lim inf
t→∞

inf
x∈R

(µ(t)− ϕ(t)(x)) ≥ δ.

Then using (3.2), we have for every x, y ∈ R that

|ϕ(x)− ϕ(y)| = 2|(Λ−sϕ)(x)− (Λ−sϕ)(y)|
|2µ− ϕ(x)− ϕ(y)|

≤ |(Λ
−sϕ)(x)− (Λ−sϕ)(y)|

δ
.

Starting with bounded ϕ, iteration of Λ−s : L∞ → Cs and Λ−s : Cβ → Cβ+s yields
ϕ ∈ C0,α for some α > β. But this contradicts ‖ϕ(t)‖C0,β →∞.

Conversely, suppose (ii) occurs. That is, there exists a sequence (ϕn, µn)n∈N with
ϕ′n ≥ 0 on (−P/2, 0) and ϕn < µn for all n ∈ N, and

lim
n→∞

|µn − ϕn(0)| = 0.

Towards a contradiction, assume that ϕn remains bounded in C0,β(R). Taking the limit
of a subsequence in C0,β′(R) for s < β′ < β, the limit must be exactly s-Hölder regular
at the crest by (3.7), and we arrive at a contradiction to the boundedness of the sequence
in C0,β(R).

We conclude that alternative (i) and (ii) from Lemma 4.7 both occur. By Propo-
sition 4.10 there exists a subsequence converging to a highest periodic traveling-wave
solution of the fKdV equation, with properties as given in Section 3.

5 Generalizations of the fKdV equation

In this section, we consider a generalization of the fKdV equation on the form

−µϕ+
1

2
ϕ2 + Lϕ = 0, (5.1)

where L is a Fourier multiplier operator with an inhomogeneous symbol m(ξ), and a
corresponding convolution kernel K. Note that taking L = Λ−s gives the fKdV equation
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studied in the previous sections. We discuss characteristic features of solutions to the
equation (5.1), and examine conditions on the symbol m(ξ) that promote traveling-wave
phenomena similar to that of the fKdV equation proved in Section 3 and Section 4.
In Section 5.1, we discuss the balance between dispersion and nonlinear effects in (5.1)
and introduce a more general class of Fourier multipliers, which has smoothing prop-
erties comparable to the Bessel potential operator Λ−s, and of which Λ−s is a special
case. Then, in Section 5.2, we summarize conditions for complete monotonicity of the
convolution kernel K.

The material presented here is organized as a discussion around the equation (5.1),
based on the framework which has been laid out in the previous sections. We focus
on general concepts, and most technical proofs are omitted. Sources are mainly [4], for
the theory of Fourier multipliers and Besov spaces, and [11], for completely monotone
convolution kernels.

5.1 Fourier multiplier symbol classes

In studies of equations akin to (5.1), one often encounters the concept of balance between
dispersion and nonlinear effects. The travelling-wave assumption u(t, x) = ϕ(x− µt) in
(1.14) restricts solutions to waves of a steady profile. There has to be a certain balance
between the terms in the equation for it to allow such solutions, and the properties of
the solutions will naturally reflect this balance.

The nonlinear term ϕ2 is deregularizing with regards to solutions. As an example,
consider the inviscid Burgers equation

ut + uux = 0,

which integrates, under the traveling-wave assumption, to the two first terms of (5.1).
This equation has no nonconstant traveling-wave solutions. On the other hand, as we
have seen, adding a smoothing dispersive term Lϕ the equation may admit nonconstant
traveling waves.

The principle of this thesis is to fix the order of the nonlinear term in the equation
(5.1) and to investigate the relationship between the strength of the dispersion and the
regularity of traveling-wave solutions of the equation. We mention that one could also
have fixed the dispersion and varied the nonlinearity [12, 15, 24], or let the orders of
both be parametrized [35].

Theorem 4.12 shows that when the order of the symbol for the Bessel potential
operator is −s, then there exist highest traveling-wave solutions to the fKdV equation
that are cusped with s-Hölder regularity. In other words, weaker dispersion requires
sharper crests of solutions. Let us briefly reflect on this result.

As we have seen, the operator Λ−s is smoothing in the sense that it increases the
regularity of functions on which it acts. Arguing heuristically, the smoothing also results
in a certain leveling of functions. Indeed, the convolution of a function in a point is the
average of the function weighted by the convolution kernel centered in that point. It is
this leveling of solutions that counter the effects of the nonlinear term in the equation
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and permits traveling-wave solutions. But whereas the smoothing effects of Λ−s for
a given order −s always increase the regularity of functions by the same amount, the
effect of the leveling depends on the shape of the functions themselves. When the crest
of a solution is sharper, leveling becomes more prominent, and vice versa. This gives
an intuitive explanation for the observed relationship between dispersion and regularity
of solutions: When the dispersion is weak, the crests of solutions are sharp, promoting
sufficient leveling so that the equation is satisfied.

We ask which operators L in (5.1) have smoothing properties similar to that of Λ−s.
In the direction of understanding how Fourier multipliers act on Hölder–Zygmund spaces,
we now introduce the more general Besov spaces. A crucial tool in this regard is the
Littlewood–Paley decomposition which is a dyadic partition of unity used for spectral
decomposition of functions.

Let % ∈ D(R) with supp % ⊂ [−2, 2] and %(ξ) ≡ 1 on |ξ| ≤ 1. Now define

ϑ(ξ) := %(ξ)− %(2ξ)

with support on 1/2 ≤ |ξ| ≤ 2. We set ϑ0 = % and ϑj(ξ) = ϑ(2−jξ) for every j ≥ 1, with
support on 2j−1 ≤ |ξ| ≤ 2j+1. The collection (ϑj)j∈N0 norm form a partition of unity

∞∑
j=0

ϑj(ξ) = 1, ξ ∈ R.

A detailed explanation of this construction can be found in [4, pp. 59-61]. In view of
the above, every function f ∈ S(R) can be written as

f =

∞∑
j=0

ϑj(D)f,

where we have used the Fourier multiplier notation from (2.14). This is called the
Littlewood–Paley decomposition of f , and it naturally extends to the class of tempered
distributions S ′(R) via duality over S(R).

Following [4, Definition 2.68], the inhomogeneous Besov space Bs
p,q, with s ∈ R and

p, q ∈ [1,∞], is defined as the collection of tempered distributions u with

‖u‖Bsp,q :=

∥∥∥∥(2js‖ϑj(D)u‖Lp)j∈Z
∥∥∥∥
`q(Z)

<∞,

where ‖ · ‖`q(Z) denotes the usual `q-norm of sequences. Although perhaps not immedi-
ately evident from the definition, p is an integrability parameter and s is a regularity
parameter analogous to those of the usual Sobolev spaces. The parameter q gives ad-
ditional information about the precise regularity of functions belonging to Bs

p,q, but we
shall not further pursue the interpretation of this here. Important to us is the fact that
the Zygmund space Cα with α > 0 coincides (equivalent norms) with the Besov space
Bα
∞,∞; see [30, Section 2.6.5] for justification of this, and a comprehensive review of

related function spaces.
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There is a convenient way of characterizing Fourier multiplier operators which are
smoothing on the scale of Besov spaces. Indeed, it can be shown that if a is a smooth,
real-valued function which, for some r ∈ R, satisfies

|a(ξ)(k)| .k (1 + |ξ|)r−k (5.2)

for all ξ ∈ R and every k ∈ N0, then

a(D) : Bs
p,q → Bs−r

p,q

is a linear and bounded operator [4, Proposition 2.78]. The collection of symbols which
satisfy (5.2) is denoted by Sr.

Note that the symbol 〈ξ〉−s for the Bessel potential operator Λ−s belongs to the
symbol class S−s. As such, it is a smoothing operator of order −s in agreement with
Proposition 2.6.

Let us now summarize the implications of the above regarding solutions to the equa-
tion (5.1). Assume that the symbol m(ξ) of the operator L is inhomogeneous and
belongs to some symbol class S−r for r ∈ (0, 1). Since then L is smoothing on the scale
of Hölder–Zygmund spaces, it follows by bootstrapping the equation

ϕ = µ−
√
µ2 − 2Lϕ

that all solutions that are strictly bounded from above by µ are smooth. This is the
same argument that was used in Lemma 3.4 for the fKdV equation. The equation (5.1)
has constant solutions

ϕ ≡ 0 and ϕ ≡ 2(µ−m(0)),

and the Frechet derivative of the function

F : (ϕ, µ) 7→ µϕ− 1

2
ϕ2 − Lϕ,

which maps C0,β
even(SP )× R to C0,β

even, is

∂ϕF [ϕ, µ] = (µ− ϕ) id−L.

Due to the compact embedding (4.3), this operator is Fredholm on every subset of

C0,β
even(SP ) with ϕ < µ and it has a one-dimensional kernel precisely when there exists

a unique wave-speed µ for which µ = m(2πkP ), for some k ∈ N and period P . Under
the assumption that such a µ∗ exists, we can apply [7, Theorem 8.3.1] and obtain local
analytic bifurcation curves emanating from the trivial solution curve of (5.1) in the point
(0, µ∗). This generalizes Lemma 4.2 for the fKdV equation, and solutions belonging to
this curve are smooth.

Note that a sufficient condition for a one-dimensional kernel is that the symbol m(ξ)
is monotone. We mention that it is possible to bifurcate solutions even in the case of
higher-dimensional kernels, and done in [14] for the capillary-gravity Whitham equation.
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In the construction of a global solution curve which extends the local bifurcation
branch, it was used in Lemma 4.7 that µ′(t) 6≡ 0 in a neighborhood around the point
from which the local curve (ϕ(t), µ(t)) emanates. The formulas (4.8) and (4.9) for the
coefficients of the series expansion of µ(t) hold for general symbols in S−r, and if they
can be shown to be nonzero, a global bifurcation result holds in this case as well. Indeed,
by [7, Theorem 9.1.1], the only condition left to verify is that every closed and bounded
subset of S is compact, but this follows immediately by the proof Proposition 4.5 using
the smoothing properties of L.

5.2 Properties of the convolution kernel

In the exclusion of the global bifurcation curve for the fKdV equation being a closed loop
we used information about the signs of the first and second derivatives of solutions. This
again depended on information about the convolution kernel of the operator present in
the equation. We now investigate what can be said about the convolution kernel of more
general smoothing operators.

First, note that whenever m(ξ) belongs to some symbol class S−r, then the convo-
lution kernel of the corresponding Fourier multiplier operator is smooth outside of the
origin [28, Proposition 2.1]. Indeed, let K be the convolution kernel associated with
m(ξ), given by

K(x) =
1

2π

∫
R
m(ξ)eixξ dξ .

Then, for every j ∈ N0 we can pick k ∈ N0 with k > j−s+1 so that taking j derivatives
with respect to x of the identity

xkK(x) =
1

2π

∫
R
eixξDk

ξm(ξ) dξ,

and using the property (5.2) of m(ξ), yields an absolutely convergent integral. Hence,
K ∈ C∞(R \ {0}).

Assume now that m(ξ) is even and

lim
λ↘0

g(λ) <∞ and lim
λ→∞

g(λ) = 0

holds for the function g = m(
√
·), and that g has an analytic extension to C \ (−∞, 0]

with
Im(z) Im(g(z)) ≤ 0.

Then, by the theory laid out in [11, Section 2], and more precisely by the argument of
Proposition 2.3, the convolution kernel K associated with m(ξ) is a completely monotone
function.

In particular, this implies that both K, and KP as defined as in (2.10), are strictly
positive and strictly increasing for negative x. Then Lemma 2.5 holds also in this more
general case. On the grounds of this, it can be shown that a nodal characterization
of periodic solutions to the equation (5.1) holds, which means that we are also able to
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exclude loops in the global bifurcation branch, as was done for the fKdV equation in
Corollary 4.9.

Remark 5.1. It would be sufficient to have nontrivial 2-monotonicity of the kernel, that
is, the kernel is strictly positive, has a strictly negative derivative, and is strictly convex
on (0,∞). However, there is to our knowledge no straightforward way to identify symbols
of 2-monotone kernels. We mention that a characterization of the Laplace transform is
known; see [34, Theorem 10].

We end this discussion with some remarks on the regularity and decay of the kernel
K. Firstly, if m(ξ) is analytic on a strip containing the real axis, then then the clas-
sical Paley–Wiener theorem [19, Chapter 7] applies, and one can conclude that K has
exponential decay. Secondly, it is possible to estimate the singularity in the origin of the
kernel. Indeed, due to [28, Propositon 2.2] we have

|K(x)| . |x|r−1, (5.3)

whenever m(ξ) belongs to the symbol class S−r with r ∈ (0, 1). In order to obtain the
precise regularity estimates for solutions similar to that of Lemma 3.6 and Theorem 3.8,
and thereby to ensure the convergence of the global bifurcation branch to a highest wave,
it would, in view of Proposition 2.1 and (5.3), be a sufficient condition that the symbol
can be written as

m(ξ) = C〈ξ〉−r + m̃(ξ)

where C is a positive constant and m̃(ξ) is a symbol which belongs to a symbol class
S−r+ε for some ε > 0.

6 Traveling-wave solutions to the fDP equation

We now turn our attention to the fDP equation (1.15). Recall that it is given in (1.18)
as

−µϕ+
1

2
ϕ2 +

3

2
Λ−sϕ2 = κ,

for s ∈ (0, 1) and κ ∈ R. Compared to the fKdV equation, the main differences are that
the nonlocal term is nonlinear and that we work with an arbitrary real constant κ on
the right-hand side.

This section is a study of the regularity of traveling-wave solutions to the fDP equa-
tion. In Section 6.1, we give ranges for the parameter κ that permit nonconstant periodic
solutions and show that such solutions must always cross the largest of the constant so-
lutions to the equation. In Section 6.2, we prove that all solutions which are strictly
smaller than µ are smooth, and that nonnegative solutions that attain the maximal
height are exactly s-Hölder regular at the crest.

We mainly follow the framework that was used for the fKdV equation above. Details
are sometimes omitted when proofs are the same as for the fKdV equation. The param-
eter s ∈ (0, 1) is held fixed and the fDP equation refers to the equation (1.18) with this
value of s.
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6.1 Periodic traveling waves

We begin with an investigation of which role the integration constant κ on the right-
hand side of the fDP equation plays regarding the existence of solutions. The following
proposition and subsequent lemma are based on [3, Theorem 3.1]. Note that if ϕ solves
the fDP equation with wave-speed µ, then −ϕ(−x) is a solution to the equation with
−µ. Hence, it suffices to consider µ > 0.

Proposition 6.1. Let µ > 0 and P <∞. Then for the fDP equation with a parameter
κ ∈ R,

(i) if κ ≤ 0, all solutions are nonnegative, and for κ < −µ2

8 there are no real solutions,

(ii) if κ ≥ µ2, there are no nonconstant P -periodic solutions.

Proof. (i) Let κ ≤ 0. Then the left-hand side of (1.18) is also nonpositive, which is
possible only if ϕ is nonnegative. If κ = 0, then ϕ ≡ 0 is a valid solution, otherwise ϕ is
strictly negative by the monotonicity of Λ−s (Corollary 2.2). Writing the equation as

(µ− ϕ)2 = 2κ+ µ2 − 3Λ−sϕ2, (6.1)

and using minϕ2 ≤ Λ−sϕ2, we obtain

(µ− ϕ)2 ≤ 2κ+ µ2 − 3 min(ϕ2).

In particular,
minϕ(minϕ− µ) ≤ κ, (6.2)

where we have used min(ϕ2) = (minϕ)2, in view of ϕ being nonnegative. This equation

has no real solutions when κ < −µ2

8 , and when κ = −µ2

8 it has only the constant solution
ϕ ≡ µ

4 .
(ii) First, we claim that

maxϕ > |minϕ| (6.3)

for P -periodic solutions whenever κ > 0. In the direction of a contradiction, assume
that maxϕ ≤ |minϕ|. If ϕ is to take negative values on some intervals, it is smooth
and bounded there (cf. Lemma 6.4). So there exists x0 with ϕ(x0) = minϕ. Observe
now that the function −µϕ+ 1

2ϕ
2 attains its maximum in x0, since ϕ is minimal there,

and maxϕ does not exceed |minϕ|. But as ϕ is a solution to the fDP equation with
κ > 0, we deduce that Λ−sϕ2 is minimized in x0. Consequently, Λ−sϕ2 is minimized in
x0 while at the same time ϕ2 is maximized in x0; a contradiction.

Let κ ≥ µ2. Arguing as for (6.2), we obtain

maxϕ(maxϕ− µ) ≥ κ,

where we have used max(ϕ2) = (maxϕ)2 as a consequence of (6.3). If κ = µ2, then ϕ ≡ µ
is a valid solution, otherwise ϕ must take values above µ. If ϕ ≥ µ is a nonconstant
solution, then the left-hand side of (6.1) attains its minimum in the minimum of ϕ, while
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the right-hand side attains its minimum where Λ−sϕ2 is maximal. But ϕ2 cannot have
a minimum where Λ−sϕ2 is maximal, meaning that such solutions do not exist. If on
the other hand ϕ takes values both above and below µ, then for each interval on which
ϕ is strictly larger than µ, the term Λ−sϕ2 is minimal where ϕ2 is maximal. As before,
this is not possible.

We assume from now on that

−µ
2

8
< κ < µ2, (6.4)

such that nonconstant periodic solutions to the fDP equation may exist. Such solutions
intersect the value of the largest constant solution of the equation, as the following
lemma shows.

Lemma 6.2. Let µ > 0 and P < ∞. Then every nonconstant and P -periodic solution
ϕ to the fDP equation satisfies

minϕ <
µ+

√
µ2 + 8κ

4
< maxϕ. (6.5)

Proof. First, observe that the fDP equation, with parameters µ and κ satisfying (6.4),
has exactly two constant solutions

µ±
√
µ2 + 8κ

4
. (6.6)

Let ϕ be a solution satisfying the assumptions above. Since

Λ−sϕ2 > Λ−s(min(ϕ2)) = min(ϕ2),

Λ−sϕ2 < Λ−s(max(ϕ2)) = max(ϕ2),

there exist both points in which ϕ2 > Λ−sϕ2 and points in which ϕ2 < Λ−sϕ2. Hence,
the two terms must cross at some point; there exists x0 such that ϕ2(x0) = Λ−s(ϕ2)(x0).
Inserting this in the fDP equation one sees that ϕ(x0) takes the value of one of the
constant solutions (6.6) of the equation. From the proof of Proposition 6.1, we know
that maxϕ > |minϕ| for every choice of κ. This implies that the maximum of ϕ2

is attained in the maximum of ϕ. Consequently, ϕ(x0) takes the value of the largest
constant solution, and (6.5) holds.

We now prove a lemma concerning the nodal properties of solutions to the fDP
equation. Note that nonnegativity of solutions is assumed: this is further commented
on in Section 7.2.

Lemma 6.3. Every P -periodic, nonconstant, nonnegative and even solution ϕ ∈ C1(R)
to the fDP equation which is nondecreasing on (−P/2, 0) satisfies

ϕ′ > 0 and ϕ < µ

on (−P/2, 0). If in addition ϕ ∈ C2(R), then

ϕ′′(0) < 0 and ϕ′′(±P/2) > 0.
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Proof. By assumption, the solution ϕ′ is odd, nontrivial and nonnegative on (−P/2, 0).
Then, since ϕ is even, nonconstant and nonnegative, the product ϕϕ′ satisfies the as-
sumptions of Lemma 2.5. Differentiating the equation gives

(µ− ϕ)ϕ′ = 3Λ−s(ϕϕ′) > 0

on (−P/2, 0), and we conclude that ϕ′ > 0 and ϕ < µ on (−P/2, 0).
Now assume that ϕ ∈ C2(R). Differentiating twice we get

(µ− ϕ)ϕ′′ = 3Λ−s[(ϕϕ′)′] + (ϕ′)2.

Evaluating this equation in x = 0 yields

(µ− ϕ(0))ϕ′′(0) = 6

∫ P/2

0
KP,s(y)[ϕ(y)ϕ′(y)]′ dy,

For some ε > 0, splitting the integral and using integration by parts, we get∫ P/2

0
KP,s(y)[ϕ(y)ϕ′(y)]′ dy =

(∫ ε

0
+

∫ P/2

ε

)
KP,s(y)[ϕ(y)ϕ′(y)]′ dy

=

∫ ε

0
KP,s(y)[ϕ(y)ϕ′(y)]′ dy+

[
KP,s(y)ϕ(y)ϕ′(y)

]P/2
y=ε

−
∫ P/2

ε
K ′P,s(y)ϕ(y)ϕ′(y) dy .

The first term vanishes,

lim
ε↘0

∣∣ ∫ ε

0
KP,s(y)[ϕ(y)ϕ′(y)]′ dy

∣∣ . lim
ε↘0

∫ ε

0
|y|s−1 dy = 0,

due to ϕ ∈ C2 and (2.11) for the period kernel. The second also term vanishes since
ϕ′(P/2) = 0, and since ϕ′(ε) . ε due to ϕ′(0) = 0. The last term is negative for
each ε > 0, since we have proved both ϕ′ < 0 and K ′P,s < 0 on (−P/2, 0), and ϕ is
nonnegative. Moreover, it is decreasing as ε↘ 0, so passing to the limit we obtain

(µ− ϕ(0))ϕ′′(0) = −6 lim
ε↘0

∫ P/2

ε
K ′P,s(y)ϕ(y)ϕ′(y) dy < 0.

This implies ϕ′′(0) < 0. The inequalities ϕ′′(±P/2) > 0 can be proved in the same way
as in Lemma 3.3, using the minor modifications above to deal with the nonlinear term
Λ−sϕ2.

6.2 Regularity of traveling waves

The following lemma shows that solutions ϕ < µ to the fDP equation are smooth.
This parallels Lemma 3.4 for the fKdV equation and relies on the same bootstrapping
procedure set in the scale of Hölder-Zygmund spaces.
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Lemma 6.4. Assume that ϕ ≤ µ is a solution to the fDP equation. Then ϕ is smooth
on every open set where ϕ < µ.

Proof. The fDP equation can be written as

ϕ = µ−
√
µ2 + 2κ− 3Λ−sϕ2. (6.7)

If ϕ < µ uniformly on R then µ2 + 2κ > 3Λ−sϕ2. Therefore, the mapping (6.7) is
continuous from L∞ to Cs and from Cα to Cα+s. Iteration of this map yields smoothness
of ϕ. Proceeding as in Lemma 3.4 for an open interval U on which ϕ < µ completes the
proof.

Traveling-wave solutions to the fDP equation have similar features as the waves for
the fKdV equation. Solutions which are strictly smaller than µ are smooth, but the
smoothness may break down when the wave-height approaches µ. To show that a loss
of regularity occurs for highest waves and to prove the exact regularity at the crest, we
have to deal with the nonlinear term Λ−sϕ2. To this end, we assume that solutions are
nonnegative.

Proposition 6.5. Let ϕ be an even, P -periodic, nonconstant and nonnegative solution
to the fDP equation that is nondecreasing on (−P/2, 0) with ϕ ≤ µ. Then ϕ is strictly
increasing on (−P/2, 0).

Proof. Taking the difference of the fDP equation evaluated in two points x and y, one
obtains

(2µ− ϕ(x)− ϕ(y))(ϕ(x)− ϕ(y)) = 3
(
(Λ−sϕ2)(x)− (Λ−sϕ2)(y)

)
. (6.8)

In the same way as in (3.3), it can be shown that

(Λ−sϕ2)(x+ h)− (Λ−sϕ2)(x− h)

=

∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))(ϕ2(y + h)− ϕ2(y − h)) dy .

(6.9)

Assume that x ∈ (−P/2, 0) and 0 < h� 1. Then integrand in (6.9) is nonnegative and
positive on some set of nonzero measure. Indeed, the difference of the periodic kernels
is positive as shown in the proof of Lemma 2.5, and due to ϕ being nonnegative and
continuous it suffices to observe that both factors in

ϕ2(y + h)− ϕ2(y − h) = (ϕ(y + h) + ϕ(y − h))(ϕ(y + h)− ϕ(y − h))

must take positive values at the same time on some interval of nonzero measure. Thus,

(2µ− ϕ(x+ h)− ϕ(x− h))(ϕ(x+ h)− ϕ(x− h)) > 0

for every x ∈ (−P/2, 0), which implies that ϕ is strictly increasing on (−P/2, 0).
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Proposition 6.5 implies that solutions satisfying the assumptions are smooth on
SP \ {0}. The next lemma provides an upper bound for the regularity in the origin
for solutions that are permitted to achieve the maximal wave-height of µ. This corre-
sponds to Lemma 3.6 for the fKdV equation.

Lemma 6.6. Let P <∞, and let ϕ be an even, P -periodic, nonnegative and nonconstant
solution to the fDP equation that is nondecreasing on (−P/2, 0) with ϕ ≤ µ. Then

µ− ϕ(P/2) &P 1. (6.10)

Moreover, there exists ε > 0 such that

µ− ϕ(x) &P |x|s (6.11)

uniformly for |x| < ε.

Remark 6.7. As in Section 3, we state the lemma for the periodic case and remark that
the estimate is uniform in P for large periods, so that the exact regularity at the crest
given in Theorem 6.8 holds both in the periodic and in the solitary case.

Proof. We have the identity

(Λ−sϕ2)(x+ h)− (Λ−sϕ2)(x− h)

=

∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))(ϕ2(y + h)− ϕ2(y − h)) dy

for every h ∈ (0, P/2). Let x ∈ (−P/2, 0), and note that the integrand in the above is
nonnegative. Differentiating the fDP equation now yields

(µ− ϕ(x))ϕ′(x) = 3(Λ−sϕ2)′(x)

= 3 lim
h→0

((Λ−sϕ2)(x+ h)− (Λ−sϕ2)(x− h))

2h

≥ lim inf
h→0

3

2h

∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))(ϕ2(y + h)− ϕ2(y − h)) dy

≥ 6

∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))ϕ(y)ϕ′(y) dy,

where we appeal to Fatou’s lemma in the last step. Fixing x0 ∈ (−P/2, 0) and letting
x ∈ [x0, 0), one has for z ∈ [−P/2, x] that

(µ− ϕ(z))ϕ′(x) ≥ (µ− ϕ(x))ϕ′(x)

≥ 6

∫ 0

−P/2
(KP,s(x− y)−KP,s(x+ y))ϕ(y)ϕ′(y) dy

≥ 6

∫ x0/4

x0/2
(KP,s(x− y)−KP,s(x+ y))ϕ(y)ϕ′(y) dy

&
∫ x0/4

x0/2
(KP,s(x− y)−KP,s(x+ y))ϕ′(y) dy
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where in the last step we have used that ϕ is strictly positive on (x0/2, x0/4) due to ϕ
being nonnegative and strictly increasing on (−P/2, 0). The estimates (6.10) and (6.11)
now follow by identical arguments to those in the proof of Lemma 3.6.

Given the upper bound (6.11) for the regularity of solutions to the fDP equation with
ϕ(0) = µ and satisfying the assumptions of Lemma 6.6, the question is now whether this
bound is optimal. It turns out that it is and that solutions belong to C0,s(R). Although
the proof of the following theorem is similar to the proof of Theorem 3.8, we write out
most details for the sake of clarity.

Theorem 6.8. Let ϕ ≤ µ be an even and nonconstant solution to the fKdV equation
that is nonnegative and nondecreasing on (−P/2, 0) with ϕ(0) = µ. Then ϕ ∈ C0,s(R).
Moreover,

µ− ϕ(x) h |x|s (6.12)

uniformly for |x| � 1.

Proof. The assumption ϕ(0) = µ means that (6.8) can be rewritten to

(µ− ϕ(x))2 = 3(Λ−sϕ2)(0)− 3(Λ−sϕ2)(x)

=
3

2

∫
R

(Ks(x+ y) +Ks(x− y)− 2Ks(y))(ϕ2(0)− ϕ2(y)) dy .

For the second factor in the integrand, note that

|ϕ2(x)− ϕ2(y)| ≤ 2‖ϕ‖L∞ |ϕ(x)− ϕ(y)|,

so that for bounded ϕ we have

(µ− ϕ(x))2 .
∫
R

∣∣Ks(x+ y) +Ks(x− y)− 2Ks(y)
∣∣(ϕ(0)− ϕ(y)) dy

.
∫
R

∣∣|x+ y|s−1 + |x− y|s−1 − 2|y|s−1
∣∣(ϕ(0)− ϕ(y)) dy

+

∫
R

∣∣K̃s(x+ y) + K̃s(x− y)− 2K̃s(y)
∣∣(ϕ(0)− ϕ(y)) dy

. |x|s
∫
R

∣∣|1 + t|s−1 + |1− t|s−1 − 2|t|s−1
∣∣ dt

+ |x|2
∫
R
R2
x(y) dy

. |x|s.

(6.13)

Consequently, ϕ is at least s
2 -Hölder regular in 0. Inserting |µ − ϕ(y)| . |y|

s
2 in (6.13)

yields s/2+s
2 -Hölder regularity of ϕ in 0, and this procedure may be iterated to prove

that ϕ is α-Hölder regular in 0 for every α < s.
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We now show s-Hölder regularity in x = 0. From the proof of Theorem 3.8 we know
that there exists a constant C, independent of α, such that∫

R

∣∣Ks(x+ y) +Ks(x− y)− 2Ks(y)
∣∣|y|α dy ≤ C|x|2α

for all |x| ≤ 1 and all 0 ≤ α ≤ s. Hence,

(ϕ(0)− ϕ(x))2 =
3

2

∫
R

(
Ks(x+ y) +Ks(x− y)− 2Ks(y)

)
(ϕ2(0)− ϕ2(y)) dy

. ‖ϕ‖L∞ [ϕ]
C0,α

0

∫
R

∣∣Ks(x+ y) +Ks(x− y)− 2Ks(y)
∣∣|y|α dy

. [ϕ]
C0,α

0
|x|2α,

where it was used that ϕ is α-Hölder continuous in the origin for every α ∈ [0, s) as
shown above. Dividing by |x|2α and passing to supremum yields

[ϕ]
C0,α

0
. 1

uniformly over α ∈ [0, s). We let α↗ s, and obtain the estimate (6.12).
We claim that ϕ ∈ C0,α(R) for every α < s. In view of the assumptions of the

theorem and the smoothness of ϕ outside of the origin, it suffices to prove

sup
0<h<|x|<δ

|ϕ(x+ h)− ϕ(x− h)|
hα

<∞

for some δ > 0, as shown in the proof of Theorem 3.8. So assume that 0 < h < |x| < δ
for some δ � 1, where we let x be positive without loss of generality. We have

(ϕ(x+ h)− ϕ(x− h))2

≤
∣∣(2µ− ϕ(x+ h)− ϕ(x− h))(ϕ(x+ h)− ϕ(x− h))

∣∣
= 3
∣∣(Λ−sϕ2)(x+ h)− (Λ−sϕ2)(x− h)

∣∣. (6.14)

The Hölder and Zygmund spaces are Banach algebras, and Λ−s maps L∞ to C0,s and
Cα to Cα+s. Thus, ϕ is at least α-Hölder regular for every α < s if s ≤ 1/2 and α = 1/2
if s > 1/2. So assume that s > 1/2 and that ϕ ∈ C0,α with α+ s > 1. Then we have∣∣(Λ−sϕ2)(x+ h)− (Λ−sϕ2)(x− h)

∣∣ . h|ξ|{α+s},

with ξ ∈ (x− h, x+ h) due to (3.14). Inserting this in (6.14) yields

|ϕ(x+ h)− ϕ(x− h)| . h|ξ|{α+s}

2µ− ϕ(x+ h)− ϕ(x− h)

.
h|x+ h|{α+s}

|x+ h|s + |x− h|s

. h|x+ h|α−1

(6.15)
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where we have used the estimate (6.11) from Lemma 6.6 in the second step, in view of
h < x < δ with δ at our disposal. Interpolation between (6.15) and the exact s-Hölder
regularity in the origin over a parameter η ∈ (0, 1) yields

|ϕ(x+ h)− ϕ(x− h)|
hη

≤ |ϕ(x+ h)− ϕ(x− h)|η

hη
|µ− ϕ(x+ h)|1−η

. |x+ h|η(α−1)+(1−η)s,

and choosing η = s
1+s−α , this is bounded. Hence,

|ϕ(x+ h)− ϕ(x− h)| . h
s

1+s−α ,

and the argument may be iterated to obtain ϕ ∈ C0,α(R) for every α < s.
We now show that ϕ ∈ C0,s(R). To this end, note that

(Λ−sϕ2)(x+h)−(Λ−sϕ2)(x−h) =

∫ 0

−∞
(Ks(y+h)−Ks(y−h))(ϕ2(y−x)−ϕ2(y+x)) dy,

so that

(µ− ϕ(x))|ϕ(x+ h)− ϕ(x− h)|
≤
∣∣(2µ− ϕ(x+ h)− ϕ(x− h))(ϕ(x+ h)− ϕ(x− h))

∣∣
= 3
∣∣(Λ−sϕ2)(x+ h)− (Λ−sϕ2)(x− h)

∣∣
≤ 3

∫ 0

−∞
|Ks(y + h)−Ks(y − h)||ϕ2(y − x)− ϕ2(y + x)| dy

≤ 6‖ϕ‖L∞
∫ 0

−∞
|Ks(y + h)−Ks(y − h)||ϕ(y − x)− ϕ(y + x)| dy .

(6.16)

Let 0 < h < |x| < δ for some δ � 1. For the factor |ϕ(y− x)−ϕ(y+ x)| in the last line,
we interpolate between the global α-Hölder regularity (α < s)

|ϕ(y − x)− ϕ(y + x)| . ‖ϕ‖C0,α min(|x|α, |y|α)

and the sharp s-Hölder regularity in the origin

|ϕ(y − x)− ϕ(y + x)| . [ϕ]
C0,s

0
max(|x|s, |y|s).

This yields

|ϕ(y − x)− ϕ(y + x)| . ‖ϕ‖η
C0,α min(|x|, |y|)αη max(|x|, |y|)s(1−η), (6.17)
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with (α, η) ∈ (0, s)× [0, 1]. Inserting (6.17) in (6.16), we have

(µ− ϕ(x))|ϕ(x+ h)− ϕ(x− h)|

. ‖ϕ‖η
C0,α

∫ 0

−∞
|Ks(y + h)−Ks(y − h)|min(|x|, |y|)αη max(|x|, |y|)s(1−η) dy

. ‖ϕ‖η
C0,α |x|αη

∫ −|x|
−∞

∣∣|y + h|s−1 − |y − h|s−1
∣∣|y|s(1−η) dy

+ ‖ϕ‖η
C0,α |x|s(1−η)

∫ 0

−|x|

∣∣|y + h|s−1 − |y − h|s−1
∣∣|y|αη dy

+ ‖ϕ‖η
C0,αh|x|αη

∫ −|x|
−∞

R1
h(y)|y|s(1−η) dy

+ ‖ϕ‖η
C0,αh|x|s(1−η)

∫ 0

−|x|
R1
h(y)|y|αη dy,

where we have split the kernel according to (2.17). Choosing the interpolation parameter
η such that

η > 2− 1

s
, (6.18)

we obtain

(µ− ϕ(x))|ϕ(x+ h)− ϕ(x− h)|

. ‖ϕ‖η
C0,α |x|αηhs+s(1−η)

∫ 0

−∞

∣∣|t+ 1|s−1 − |t− 1|s−1
∣∣|t|s(1−η) dt

+ ‖ϕ‖η
C0,α |x|s(1−η)hs+αη

∫ 0

−δ

∣∣|t+ 1|s−1 − |t− 1|s−1
∣∣|t|αη dt

+ ‖ϕ‖η
C0,α |x|αηh1+s(1−η)

∫ 0

−∞
R1
h(th)|t|s(1−η) dt

+ ‖ϕ‖η
C0,α |x|s(1−η)h1+αη

∫ 0

−δ
R1
h(th)|t|αη dt

. ‖ϕ‖η
C0,α |x|αη+s(1−η)hs.

Hence, (
µ− ϕ(x)

|x|αη+s(1−η)

)(
|ϕ(x+ h)− ϕ(x− h)|

hs

)
. ‖ϕ‖η

C0,α

uniformly for α ∈ (0, s). Furthermore, since µ − ϕ(x) & |x|s for |x| � 1 by Lemma 6.6
and h < |x|, this can be reduced to

|ϕ(x+ h)− ϕ(x− h)|
hs−η(s−α)

. ‖ϕ‖η
C0,α .

Splitting the estimate over η we arrive at(
|ϕ(x+ h)− ϕ(x− h)|

hα

)η( |ϕ(x+ h)− ϕ(x− h)|
hs

)1−η
. ‖ϕ‖η

C0,α
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which proves

sup
0<h<|x|<δ

(
|ϕ(x+ h)− ϕ(x− h)|

hα

)1−η
. 1

uniformly for α ∈ (0, s), with

min(0, 2− 1

s
) < η < 1

fixed. We let α↗ s and deduce that ϕ belongs to C0,s(R).
Combined with Lemma 6.6, this also proves (6.12), that is, the s-Hölder regularity

of ϕ is attained in the crest.

7 Analytic bifurcation for the fDP equation

In this section, we develop bifurcation theory for the fDP equation (1.18). In Sec-
tion 7.1, it is proved that there exist local analytic bifurcation branches consisting of
small-amplitude, periodic and even solutions to the equation emanating from the largest
curve of constant solutions to the equation. The local branches are in Section 7.2 shown
to extend to global solution curves, and alternatives for the qualitative behavior of these
curves are given. Moreover, we discuss the existence of a highest traveling-wave solution.

The organization of the results parallels Section 4 for the fKdV equation, and we
rely on the theory of analytic bifurcation from the monograph [7]. Inspiration has also
been taken from [3].

7.1 Local bifurcation

Consider the parameter s ∈ (0, 1) fixed, set β ∈ (s, 1), and assume that the period
P > 0 is finite. Recall that we restrict our attention to µ > 0, since antisymmetric
solutions −ϕ(−x) exist for −µ whenever solutions ϕ(x) exist for the fDP equation with
wave-speed µ.

Let the function
G : C0,β

even(SP )× R→ C0,β
even(SP )

be defined as

G : (ϕ, µ) 7→ µϕ− 1

2
ϕ2 − 3

2
Λ−sϕ2 + κ.

We let γ(µ) denote one of the constant solutions to the fDP equation, and consider the
function

G̃(φ, µ) := G(γ(µ)− φ, µ)

= (γ(µ)− µ)φ+ 3γ(µ)Λ−sφ− 3

2
Λ−sφ2 − 1

2
φ2,

where the relation
φ = γ(µ)− ϕ (7.1)
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implies that constant ϕ-solutions of the problem

G(ϕ, µ) = 0 (7.2)

maps one-to-one to trivial φ-solutions of the problem

G̃(φ, µ) = 0. (7.3)

Moreover, if (φ, µ) is a solution to (7.3), then (ϕ, µ) solves (7.2), and consequently also
the fDP equation.

It is favorable to set

γ(µ) :=
µ+

√
µ2 + 8κ

4
,

seeing that nonconstant periodic solutions have to cross this branch of constant solutions
as shown in Lemma 6.2. Moreover, the Fréchet derivative of G̃ with respect to φ is

∂φG̃[0, µ] = (γ(µ)− µ) id +3γ(µ)Λ−s, (7.4)

and in order to ensure the existence of bifurcation points along the trivial solution curve
of (7.3), the kernel of ∂φG̃[0, µ] has to be nontrivial. That is, there must exist k ∈ N
such that 〈2πk

P

〉−s
=

1

3

µ− γ(µ)

γ(µ)
. (7.5)

This equation has solutions only if γ(µ) is chosen to be the largest constant solution
to the fDP equation. The following lemma shows that in this case, local bifurcation
curves do exist. We appeal to [7, Theorem 8.3.1], which is an analytic version of the
Crandall–Rabinowitz theorem.

Lemma 7.1. Assume that −µ2

8 < κ < µ2.

(i) If κ < 0, then for every P > 0 and every k ∈ N with 2πk
P <

√
32/s − 1, there exists

a unique µ∗P,k ∈ (
√
−8κ,∞),

(ii) if κ > 0, then for every P > 0 and every k ∈ N with 2πk
P >

√
32/s − 1, there exists

a unique µ∗P,k ∈ (
√
κ,∞)

such that (γ(µ∗P,k), µ
∗
P,k) is a bifurcation point for G in each case. For every such point,

there exists ε > 0 and an analytic curve

QP,k = {(ϕP,k(t), µP,k(t)) ; t ∈ (−ε, ε)} ⊂ C0,β
even(SP )× R

such that G(ϕP,k(t), µP,k(t)) = 0 for all t ∈ (−ε, ε) and

(ϕP,k(0), µP,k(0)) = (γ(µ∗P,k), µ
∗
P,k).

For every κ 6= 0, the curves QP,k constitute all nonconstant solutions of (7.3) in a
neighborhood of the two constant solution curves of the equation.
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Proof. Since solutions of the problem (7.2) map one-to-one to solutions of (7.3), it suf-
fices to establish the existence of local bifurcation curves Q̃P,k of G̃. We check the

assumptions of [7, Theorem 8.3.1], namely, that there exist µ∗P,k such that ∂φG̃[0, µ∗P,k]
is a Fredholm operator of index zero with one-dimensional kernel spanned by φ∗P,k, and
that the transversality condition

∂2µφG̃[0, µ∗P,k](φ
∗
P,k, 1) 6∈ im(∂φG̃[0, µ∗P,k])

holds.
The Fréchet derivative of G̃ given by (7.4) is a sum of the scaled identity and the

scaled compact operator Λ−s. As we have seen before, this implies that ∂φG̃[0, µ] is a
Fredholm operator of index zero. For given P and k, using the characterization (2.16)

of how Λ−s acts on the basis functions cos(2πkP x) of C0,β
even(SP ), the kernel of ∂φG̃[0, µ] is

one-dimensional precisely when there exists a unique µ such that the equation (7.5) is
satisfied. That is, when there exists µ such that

2πk

P
=

√(
3

γ(µ)

µ− γ(µ)

)2/s

− 1.

The right-hand side of this equation tends to
√

32/s − 1 when µ → ∞. When κ < 0,

the right-hand side is always larger than
√

32/s − 1, when κ > 0, the right-hand side is

always smaller than
√

32/s − 1, and equality holds if κ = 0. This shows that solutions µ
to (7.5) are only possible for the ranges of P and k given in the lemma. For such values
of P and k, solutions µ∗P,k exist and are unique. Indeed, the function

1

3

µ− γ(µ)

γ(µ)

is continuous and monotone in µ for every κ, and takes values in (1,
√

32/s − 1) for κ < 0

and (
√

32/s − 1, 0) for κ > 0, so that is must take the value 〈2πkP 〉
−s ∈ (0, 1) for a unique

µ in each case. Note that when κ = 0, the function is constant, and therefore only
satisfied for a unique value of 2πk

P .
For the points (0, µ∗P,k), the kernel is one-dimensional and given by

ker ∂φG̃[0, µ∗P,k] = {τφ∗P,k ; τ ∈ R}

with φ∗P,k := cos(2πkP x). Differentiating the operator ∂φG̃[0, µ∗P,k] with respect to the
bifurcation parameter µ, one can check that

∂µφG̃[0, µ∗P,k](φ
∗
P,k, 1) = (γ′(µ∗P,k)− 1)φ∗P,k + 3γ′(µ∗P,k)Λ

−sφ∗P,k.

This function belongs to the image of ∂φG̃[0, µ∗P,k] if and only if

γ′(µ∗P,k) =
γ(µ∗P,k)

µ∗P,k
.
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It is easily verified that for κ 6= 0, this is not possible, and we conclude that the transver-
sality condition holds. That is, we get nontrivial local bifurcation branches in this case.
For κ = 0, the transversality condition does not hold, and we cannot conclude that
bifurcation occurs.

In contrast to the fKdV equation, Lemma 7.1 shows that for given s, local bifurcation
for the fDP equation can only happen if the fraction 2πk

P is either strictly smaller or

strictly larger than
√

32/s − 1, depending on the parameter κ. That is, we do not have
complete freedom in choosing the period P of solutions. In particular, for κ > 0 and
small s bifurcation only occurs for periods P � 1.

7.2 Global bifurcation

From this point on we assume κ > 0. This is a necessary assumption to ensure that
global bifurcation branches do not converge to a constant solution; further comments
are provided at the end of this section. To simplify the discussion, we consider the local
bifurcation branch QP,1 consisting of solutions of a fixed period

P <
2π√

32/s − 1

emanating from the trivial curve of (7.2) in (γ(µ∗), µ∗). It is henceforth denoted by
(ϕ(t), µ(t)).

Let
V :=

{
(ϕ, µ) ∈ C0,β

even(SP )× (
√
κ,∞) ; ϕ < µ

}
,

and define
W :=

{
(ϕ, µ) ∈ V ; G(ϕ, µ) = 0

}
.

We follow the same conventions as in Section 4.2, and write V 1 and W 1 for the ϕ-
components of V and W .

In the direction of global bifurcation for the fDP equation, we prove that ∂ϕG[ϕ, µ]
is a Fredholm operator in V , that closed and bounded subsets of W are compact, and
that µ′(t) does not vanish identically around the bifurcation point (γ(µ∗), µ∗). Then we
invoke [7, Theorem 9.1.1] in the same manner as in Section 4.

Proposition 7.2. The operator ∂ϕG[ϕ, µ] is Fredholm of index zero for every (ϕ, µ) ∈ V .

Proof. The Fréchet derivative of G in (ϕ, µ) is

∂ϕG[ϕ, µ] = (µ− φ) id−3Λ−s(φ · ).

The first term is a homeomorphism in V , and the second term is a compact operator on
C0,β
even(SP ). The claim follows from [7, Theorem 2.7.6].

Proposition 7.3. Any closed and bounded subset of W is compact.
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Proof. Note that
ϕ = µ−

√
µ2 + 2κ− 3Λ−sϕ2

is a continuous map from Cβ to Cβ+s for ϕ ∈ S. Hence, if K is a closed and bounded
subset of S, then K1 must be a bounded subset of Cβ+seven(SP ). That is, K1 is relatively

compact in Cβeven(SP ) which coincides with C0,β
even(SP ). Since K is closed by assumption,

it is compact.

If we let Ṽ and W̃ denote the transformed sets V and W via (7.1), then both of

the above propositions hold also for ∂φG̃ in Ṽ , and W̃ . Thus, in order to to apply
the global bifurcation result [7, Theorem 9.1.1] to the present situation, and extend the
local bifurcation branches from Lemma 7.1 to global analytic solution curves, it suffices
to show that µ(t) 6≡ 0 in a neighborhood of µ∗.

To this end, we choose a parametrization for curve (φ(t), µ(t)) (corresponding to the
curve (ϕ(t), µ(t)) via (7.1)) such that [φ(t)]1 = t, and expand

φ(t) =

∞∑
n=1

φnt
n, µ(t) =

∞∑
n=0

µ2nt
2n,

in view of the local branch being analytic. This is the same expansions which was used
for the local bifurcation curves in Section 4.2. Inserting φ(t) and µ(t) into (7.3) yields

3γ(µ0)Λ
−sφ1 − (µ0 − γ(µ0))φ1 = 0, (7.6a)

3γ(µ0)Λ
−sφ2 − (µ0 − γ(µ0))φ2 =

1

2
φ21 +

3

2
Λ−sφ21, (7.6b)

and
3γ(µ0)Λ

−sφ3 − (µ0 − γ(µ0))φ3

= φ1φ2 + µ2(1− γ′(µ0))φ1 + 3Λ−s(φ1φ2)− 3µ2γ
′(µ0)Λ

−sφ1,
(7.6c)

for the first-, second-, and third-order terms in t. As before, we let mj denote 〈2πjP 〉
−s.

It is clear that µ0 = µ∗, and since 3γ(µ∗)m1 = µ∗ − γ(µ∗), the equation (7.6a) can be
written as

3γ(µ∗)(Λ−sφ1 −m1φ1) = 0.

Consequently we have φ1 = cos(2πP x). Inserting this in the right-hand side of (7.6b)
yields

3γ(µ∗)(Λ−sφ2 −m1φ2) = 1 +
1

4
(1 + 3m2) cos

(4π

P
x
)
,

which implies that

φ2 =
1

3γ(µ∗)

(
1

1−m1
− 1 + 3m2

4(m1 −m2)
cos
(4π

P
x
))

The coefficients in front of the cos(2πP x)-terms on the right-hand side of (7.6c) can now
be determined, and reads

1 + 3m1

3γ(µ∗)

(
1

1−m1
− 1 + 3m2

8(m1 −m2)

)
+ µ2(1− γ′(µ∗)− 3m1γ

′(µ∗)).
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However, since cos(2πP x) is not in the image of the left-hand side of (7.6c), we have

µ2 =
1 + 3m1

3γ(µ∗)

1

3m1γ′(µ∗) + γ′(µ∗)− 1

(
1

1−m1
− 1 + 3m2

8(m1 −m2)

)
. (7.7)

We find (see Remark 7.4) that there exist periods P such that µ2 6= 0, implying that
µ′(t) 6≡ 0 in a neighborhood of t = 0. Hence, the assumptions of [7, Theorem 9.1.1] are
now satisfied. We state a lemma establishing global bifurcation for the fDP equation,
and give qualitative alternatives for the curves.

Remark 7.4. Numerical calculations of the (exact) expression (7.7) supporting our con-
clusion are included in Appendix A.2.

Lemma 7.5. There exists a period P < 2π/
√

32/s − 1 such that the local bifurcation
branch t 7→ (ϕ(t), µ(t)) of P -periodic solutions to the fDP equation from Lemma 7.1
extends to a global continuous curve Q := {(ϕ(t), µ(t)) ; t ∈ [0,∞)} ⊂ V , and one of the
following alternatives hold.

(i) ‖(ϕ(t), µ(t))‖C0,β×R →∞ as t→∞,

(ii) dist(Q, ∂V ) = 0,

(iii) Q is a closed loop of finite period. That is, there exists T > 0 such that

Q = {(ϕ(t), µ(t)) ; 0 ≤ t ≤ T},

where (ϕ(T ), µ(T )) = (0, µ∗).

Before we finish this section with a discussion of the behavior of the global bifurcation
curves from Lemma 7.5, we state a proposition which shows that if µ(t) is bounded along
the global solution curve, then one can find a limiting solution ϕ on that curve.

Proposition 7.6. Any sequence of solutions (ϕn, µn)n∈N ⊂ W with bounded (µn)n∈N
has a subsequence that converges uniformly to a solution ϕ.

Proof. Assume that (µn)n∈N is bounded. Since

1

2
ϕ2 = κ+ µϕ− 3

2
Λ−sϕ2 < κ+ µϕ,

we have
‖ϕ‖2L∞ ≤ 2κ+ 2µ‖ϕ‖L∞ .

Thus, the sequence (ϕn)n∈N is bounded. This implies that (Λ−sϕ2
n)n∈N is uniformly

equicontinuous. Indeed, since Ks is integrable and continuous, one has∣∣(Λ−sϕn)(x)− (Λ−sϕn)(y)
∣∣ =

∣∣∣∣ ∫
R

(Ks(x− η)−Ks(y − η))ϕn(η) dη

∣∣∣∣
≤ ‖ϕn‖L∞(R)

∫
R

∣∣Ks(x− η)−Ks(y − η)
∣∣ dη,

which tends to zero when |x − y| → 0, and it can be taken independently of n. Then
(Λ−sϕn)n∈N has a uniformly convergent subsequence by the Arzela–Ascoli theorem. Ow-
ing to (6.7), one obtains the same conclusion for (ϕn)n∈N.
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µ

−
√
κ
√
κ

µmaxϕminϕ

Figure 3: Bifurcation diagram for the fDP equation (1.18) with κ > 0. The diagram
plots maxϕ for µ > 0 and minϕ for µ < 0. Local bifurcation branches emanate from
the largest constant solution of the equation for µ >

√
κ (cf. Lemma 7.1), and there

exists a period P such that the first local branch can be extended to a global curve
(cf. Lemma 7.5). The curves of constant solutions are otherwise locally unique. Numer-
ical bifurcation suggests that the global bifurcation curve converges to a highest wave
for the fDP equation for sufficiently small periods, here depicted as a dashed line.

Two key ingredients now lack before one can conclude that there exist highest pe-
riodic traveling-wave solutions to the fDP equation (1.18) that are cusped with C0,s-
regularity at the crests. Firstly, one needs to show that solutions are nonnegative along
the main bifurcation branch from Lemma 7.5. Secondly, it must be established that
alternative (i) does not happen by µ(t) approaching ∞.

If solutions are in fact nonnegative, then the nodal properties from Lemma 4.12
hold. This permits the exclusion of closed loops in the global bifurcation curve using
the method of Corollary 4.9 from Section 4. Moreover, one can then show that µ(t)
does not approach

√
κ as t→∞ along the global bifurcation branch with the following

argument, based on [3, Lemma 4.8].
Assume that there exists a sequence (µn)n∈N with µn →

√
κ as n→∞. By Proposi-

tion 7.6 there is a convergent subsequence (ϕnk) of the corresponding sequence of solu-
tions to the fDP equation (ϕn)n∈N that converges to a solution ϕ0. For this subsequence
we have

maxϕnk >
µnk +

√
µ2nk + 8κ

4
>
√
κ

due to Lemma 6.2, while on the other hand maxϕnk < µnk →
√
κ. Hence, maxϕ0 =

√
κ,

and
max Λ−sϕ2

0 =
√
κ.

This can only happen if ϕ0 ≡
√
κ, and if the solution is nonnegative we arrive at a
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contradiction to (6.10) from Lemma 6.6. This also demonstrates why the assumption
κ > 0 was made at the beginning of this section; otherwise one can not eliminate the
possibility that the global bifurcation branch converges to a constant solution of the
equation.

It is also essential to ensure that alternative (i) in Lemma 7.5 does not happen by
µ(t)→∞ while ϕ(t) remains bounded in the C0,β-norm. Numerical experiments suggest
that this can be avoided by choosing a small enough period P . This claim is proved in
[3, Proposition 4.10] for the nonlocal formulation of the Degasperis–Procesi equation.
We have not been able to prove this for the fDP equation.

A Numerical computation of bifurcation coefficients

Appendix A.1 and A.2 reports numerical results for the coefficients in the expansions
of µ(t) in the local bifurcation branches for the fKdV and the fDP equation. Note that
while the calculations of the coefficients are done numerically, the expressions given in
Section 4.2 and Section 7.2 are exact.

A.1 Coefficients for the fKdV equation

Numerical calculations show that µ2, as given by (4.8), is strictly decreasing in P for
every choice of s ∈ (0, 1) and that there exists a unique P ∗s such that µ2 = 0. As an illus-
tration, the function µ2 is plotted in figure A.1a for the special cases s ∈ {0.1, · · · , 0.9}.
Calculating P ∗s for a discretized set s ∈ (0, 1) and plotting µ4 as given by (4.9) for these
values of P ∗s yields the graph in figure A.1b. The values of µ4 are strictly larger than 0
for all s ∈ (0, 1).

(a) (b)

Figure A.1: (a) Plot of µ2 for different periods. (b) Plot of µ4 for P ∗s , for different values
of s.
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A.2 Coefficients for the fDP equation

From Section 7.2 we have that

µ2 =
1 + 3m1

3γ(µ∗)

1

3m1γ′(µ∗) + γ′(µ∗)− 1

(
1

1−m1
− 1 + 3m2

8(m1 −m2)

)
in the expansion of µ(t) from the local bifurcation branch for the fDP equation with
κ > 0. Thus µ2 vanishes if and only if the last factor equals zero. Numerically, we find
that this does not happen when s < s∗ ≈ 0.76, and that it happens for a unique P ∗s for
s > s∗. In any case, one can pick small enough period P such that µ does not vanish.

A small set of illustrative sample plots are given in Figure A.2, where values of

9m1 + 3m1m2 − 11m2 − 1

from the third factor in the expression of µ2 are plotted for all admissible periods

P <
2π√

32/s − 1
,

for the special cases s ∈ {0.1, · · · , 0.9}.

Figure A.2: Plot of µ2 for different admissible periods.

B Global bifurcation: a numerical example

We give here samples of numerical approximations of global bifurcation branches for the
fKdV and the fDP equation, illustrating the results obtained in the previous sections.

A Fourier collocation method is used, and multiplication of nonlinear terms is carried
out in physical space. For transformation between physical and frequency space we have
used the discrete Fourier transform, and the approximation scheme utilizes a standard
nonlinear root-finding algorithm. Details about the specific results are given below.
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B.1 Bifurcation for the fKdV equation

Figure B.1 shows part of a numerical bifurcation branch for the fKdV equation. Here,
P = 2π, and s = 0.5. The first solution is the trivial solution from which nontrivial,
smooth solutions with consecutively higher amplitude arise. The numerical method
breaks down as the crest becomes cusped in the limit.

(a) (b)

Figure B.1: (a) Part of a numerical bifurcation branch for the fKdV equation. (b) Indi-
vidual solutions along the bifurcation branch.

B.2 Bifurcation for the fDP equation

Figure B.2 shows part of a global bifurcation branch for the fDP equation with κ = 1 and

s = 0.5. Here, the period is chosen as half the maximal possible period of 2π/
√

32/s − 1,
evaluating to P ≈ 0.35.

We report two observations based on our numerical experiments. Firstly, all periodic
solutions along the bifurcation branches are nonnegative for every s ∈ (0, 1) and κ > 0.
This suggests the exclusion of alternative (iii) in Lemma 7.5 thanks to Lemma 6.3.
Secondly, it is possible that alternative (i) in Lemma 7.5 happens by µ(t) → ∞ while
‖ϕ‖C0,β remains bounded. This can be avoided however, by restricting solutions to
sufficiently small periods. A similar bifurcation pattern has been proved for the case
s = 2 in [3].
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(a) (b)

Figure B.2: (a) Part of a numerical bifurcation branch for the fDP equation. (b) Indi-
vidual solutions along the bifurcation branch.
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