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Abstract

We study two classes of equations: a fractional Korteweg—De Vries (fKdV) equa-
tion ug + uug + (A%u), = 0 and a fractional Degasperis—Procesi (fDP) equation
Up + Uy + %(A’Su2)x = 0. The operator A~ is a Fourier multiplier with symbol
(14 ¢€2)7%/2 and s € (0,1). For the fKdV equation, we prove that there exist lo-
cal bifurcation branches emanating from the trivial solution, consisting of smooth
and periodic traveling-wave solutions, and that the local branches extend to global
solution curves. In the limit of such a curve we find a highest, cusped traveling-
wave solution and prove its optimal s-Holder regularity, attained in the cusp. For
the fDP equation, we prove that local bifurcation branches of smooth and periodic
traveling-wave solutions exist around a constant solution of the equation and that for
sufficiently small periods global bifurcation occurs. Moreover, we discuss conditions
under which a highest, cusped traveling-wave solution for the fDP equation exists,
and its expected regularity. The theory is accompanied by numerical examples.

Sammendrag

Vi studerer to familier av ligninger: En fraksjonell Korteweg—De Vries-ligning (fKdV)
gitt ved uy + uu, + (A7%u), = 0 og en fraksjonell Degasperis—Procesi-ligning (fDP)
gitt ved u¢ +uug, + 2 (A*u?), = 0. Operatoren A~* er en Fourier-multiplikator med
symbol (14 £2)7/2 og s € (0,1). For fKdV-ligningen beviser vi at det eksisterer
lokale forgreninger av lgsninger rundt den trivielle lgsningen, bestaende av glatte
og periodiske reisende bglger, og at de lokale forgreningene eksisterer som globale
lgsningskurver. I grensen av en slik kurve finner vi en spiss reisende bglge med mak-
simal hgyde og beviser dens optimale s-Hélder-regularitet, oppnadd i spissen. For
fDP-ligningen viser vi at lokale lgsningsforgreninger av glatte og periodiske reisen-
de bglger eksisterer rundt en konstant lgsning til ligningen, og at global forgrening
forekommer for tilstrekkelig sma perioder. Videre diskuterer vi betingelser for eksis-
tensen av en spiss reisende bglge med maksimal hgyde som lgser fDP-ligningen, og
dens forventede regularitet. Numeriske eksempler er gitt.
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advances for the Whitham equation, the idea was to study the relationship between
the regularity of traveling-wave solutions for a dispersive equation and the order of the
dispersive operator present in the equation. In the project, local bifurcation theory
for a fractional Korteweg-De Vries (or Whitham-type) equation with a parametrized
dispersive operator was developed. The first part of this thesis addresses regularity and
global bifurcation for this equation and thereby concludes the theory.
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features of the dispersive operator in the equation which permit the same traveling-wave
phenomena that were shown for the original model, and the balance between dispersion
and nonlinear effects in these equations. Secondly, a study of a fractional Degasperis—
Procesi equation, where the main difference is that the dispersive term is nonlinear.

None of the proofs in this thesis have been copied directly from other sources, but
many results are based on, or inspired by the works of others. All sources are referenced
throughout, and those that are used repeatedly are provided at the beginning of each
section.
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1 Introduction

The problems considered in this thesis are related to the mathematical study of water
waves. We briefly review basic notions and relevant history of this subject. Then, we
specify the problems that are investigated herein, and give a short overview of related
research.

1.1 Background

The behavior of fluids, and the formation of waves, has long been a subject of mathe-
matical research, and variations of the governing equations in hydrodynamics have been
known for more than two centuries. An outline of early history is given in [8].

Pertaining to the topics in this thesis, a seminal event is J. S. Russel’s observation
of a wave-phenomena which he called the ”wave of translation”, on a canal in 1834.
This was a smooth and solitary wave traveling without a change of shape, and was not
predicted by the contemporary linear theory of water waves. With the report on this
new discovery [25], the concept of a nonlinear solitary traveling wave was introduced to
the mathematical community.

Another influential piece of history is G. G. Stokes article [27] from 1847, in which
he argued that if there exists a singular wave solution with a steady profile to the free
boundary problem for the Euler equations, then the wave must have an interior angle of
120° at the crest. Introducing thereby the idea of highest singular traveling waves, this
later has become known as the Stokes conjecture. The existence of the Stokes wave was
proved in [2], thus settling the conjecture. For a more detailed account of Stokes’ work
on water waves, we refer to [9].

Let us consider an infinitely wide fluid body with a fixed bottom and a free surface
under the influence of gravity, as illustrated in Figure 1. The following discussion and
notation are based on the monograph [20]. We assume that the fluid is homogeneous,
inviscid, incompressible, and irrotational. Moreover, it is contained in a domain of
bounded depth with a fixed bottom and a free surface, both of which can be parametrized
as graphs. The fluid particles can not cross either the bottom or the surface. There is
no surface tension present and the external pressure above the free surface is assumed
to be constant. Furthermore, we assume that the fluid is at rest at infinity.

Let ©Q; C R? denote the two-dimensional domain occupied by the fluid at a time ¢.
The velocity at a point (z,z) at time ¢ is denoted by U(z,z,t), and the pressure is
P(xz,z,t). Furthermore, the bottom is located at a constant depth —Hj, and the free
surface elevation is given by the function ((x,t).

The motion of the fluid can now famously be described by the free-surface Euler
equations [20, pp. 2-3]. Introducing a velocity potential ®(¢,z,z), on the grounds of
the fluid being irrotational, the Euler equations may be reformulated as the free surface
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Figure 1: Ilustration of a fluid body in a gravitational force.

Bernoulli equations. They are given by

Vo= U in o, (1.1a)

AD =0 in (1.1b)
1 1

<I>t+§|V<I>\2+gz: _;(P_Patm> in (U, (1.1¢)

with boundary conditions

b, =0 on {z=—Hp},
G—VI+Gh®=0 on {z=((zt)}
P = Py on {z=((z,t)}.

Note that V is the gradient operator with respect to spacial variables, and 0, denotes
the outwards normal derivative. These equations are simply a mathematical restatement
of the assumptions made on the fluid body.

It can be shown that if both the free surface elevation {, and the trace of the velocity
potential ¢ = ®|,— are known, then the potential ® is uniquely determined. It may be
recovered from ¢ and v by solving the boundary value problem

AP =0 in Qt,
Pl=c =¥, (1.2)
(QZ)’2=*H0 =0.

This is known as the Zakharov—Craig—Sulem formulation of the water-wave problem.

In view of the Zakharov—Craig—Sulem formulation, it suffices to find a set of equations
which determine ¢ and %, in order to solve the water-wave problem. To this end, we
introduce the Dirichlet—Neumann operator G[(]. It is defined as

GI¢: ¥ = V14 (G0n®|=, (1.3)

where ® solves the problem (1.2), with boundary conditions given by ¢ and . Hence,
G[¢] maps Dirichlet boundary conditions to Neumann boundary conditions of the same
problem, via the solution of the problem itself.



The utility of this definition becomes evident through the following calculations.
Using the chain rule on the free surface boundary condition in (1.2), one obtains

(@o)]o=¢ = Yt — (P2)|2=¢,
(q)arﬂz:c =Yy — ((I)Z)’zzc (I

Similarly, using the chain rule on the definition of the Dirichlet—Neumann operator yields

Since P = Pym at the surface, the right-hand side of the equation (1.1c) vanishes on
z = ((z,t). Together with the free surface boundary condition, we arrive at the set of
equations

((IDZ)|Z=C

Ct - g[C]w = 07

wt +g< + }¢2 o (Q[CW + C:cd}x)Q (1.4)
97w

21+
for ¢ and . This system is called the water-wave equations.

Depending on the physical configuration of the problem, solutions to the water-wave
equations may exhibit radically different qualitative properties. A diverse variety of
behavior is contained within the equations, making them extremely difficult to solve
in a unified way. For this reason, it is often useful to distinguish between different
asymptotic regimes. An example of such a regime is shallow water theory, which refers
to the situation when the ratio between the depth and characteristic length of the flow
is small. If one assumes that the variation in surface elevation is small compared to the
depth of the fluid, this constitutes what is usually called the small-amplitude regime.

It is shown in [20, Chapter 5] how, in the small-amplitude regime with shallow water,
the water-wave equations can be justifiably reduced to different variations of simplified
shallow water systems. A particular class of such systems is the Boussinesq equations,
which, under the assumption that the free surface ( takes the form of two counter-
propagating waves, can be even further reduced to scalar models. One of the most
studied such equations is the Korteweg-De Vries (KdV) equation [20, p. 179], which
can be written as

U + Uty + Uggy = 0. (1.5)

If one assumes medium-amplitude waves, equations such as the Degasperis—Procesi (DP)
equation
Up — Uggt + AUy — SUgUpy — Ulgpy = 0 (1.6)

are possible [20, p. 203]. Although we shall not be concerned with the details of these
derivations here, it is essential to note that the variables have been scaled and nondi-
mensionalized compared to the system (1.4) which is written in dimensional form.

We now consider the question: Is the dispersion relation of the full water-wave equa-
tions preserved through the reduction to the KdV equation? To answer this, we first
give a short introduction to the notion of a dispersive equation.



The concept of dispersion originates from the study of linear differential equations
that admit sinusoidal wave-train solutions of the form

u(z,t) = Aelsr—wt, (1.7)

Whenever the equation involves both space and time derivatives, the wavenumber £ and
the frequency w has to satisfy a relationship G(£,w) = 0, where one often assumes an
explicit relation w = W (). This is known as the dispersion relation of the equation.
Observe that the phase velocity, defined as

£ £’

depends on the wave number & whenever W (&) is not a constant multiple of . The
physical interpretation of this is that waves of different spacial frequency have different
velocities. This phenomena is called dispersion. One can also talk about relative " mag-
nitudes” of dispersion, and with weak dispersion we mean the situation when there are
only small differences in velocity for different wave numbers.

The KdV equation can be written in dimensional form as

3c 1
Gt + coCy + iﬁzggm + ECOHSC:E:E:E =0, (1'8)
where ¢ := \/gHp [33]. Linearizing the equation and inserting the generic solution (1.7),

one finds that the phase velocity for these solutions has to be

1
ckav(§) = co(1 — gﬂg 2)-
For linear evolution equations with classical differential operators, the dispersion
relations are always polynomials in £. In [33, p. 368], Whitham notes that inserting the
wave-train solution (1.7) into the one-dimensional integro-differential equation

Gl t) + /R Kz — y)Caly,t) dy = 0, (L9)

one obtains the phase velocity

c(§) = /RK(x)e_’fx dx .

That is, the phase velocity corresponds to the Fourier transform of the convolution kernel
appearing in (1.9) (see (2.2) for conventions for the Fourier transform). Therefore, by
virtue of the Fourier inversion theorem [4, Theorem 1.19], any sufficiently integrable
phase velocity ¢ = ¢(£) may be incorporated in equation (1.9) by choosing a convolution

kernel
1

K(z) = o /Rc(f)eigm e .

4



The above can be used to deduce the dispersion relation of the original water-wave
problem (1.4). The linearized equations around ({,%) = (0,0) are given by

{Q—QmeQ

Ve +9¢ =0, (110

where G[0] is defined as in (1.3). It turns out that the Dirichlet—Neumann operator has
an explicit expression in this case. Indeed, taking the Fourier transform of (1.2) with
respect to the horizontal variable x, one obtains

—E20(€,2) + .. (€,2) =0,
O(€,0) = ¥(€),
$,(¢,—Hy) = 0.

This is a second order ordinary differential equation with respect to z, and one can check
that it has the unique solution

cosh((z + Ho)¢)

62 = = e V©)

Moreover, since R
®.(¢,0) = & tanh(Ho&)v (),
the operator G[0] acts on 9 according to

G[0]y = .F (¢ tanh(Ho&) (€)).

Note that this operation can equivalently be formulated as the convolution
Gl =K+ = [ Ko=)ty

where the convolution kernel K is given by the inverse Fourier transform of £ tanh(H).
Eliminating 1, the linearized system (1.10) may now be written as

Gt + g(K % () =0. (1.11)

Comparing this with the equation (1.9), we deduce that the dispersion relation of (1.11)
is w = /g€ tanh(HpE), and solutions therefore has the phase velocity

ew(e) = 1 L2, (1.12)

This means that the dispersion relation of the KdV equation (1.8) is not the same as
the dispersion relation for the original water-wave equations (1.4). There is a qualitative
difference between these equations as well, mirroring the difference in the dispersion



relations. While the KdV equation is a local differential equation with polynomial phase
velocity, the phase velocity cyy is not a polynomial, and so the equation (1.11) is genuinely
nonlocal. This mathematical observation can be thought of as a result of the coupling
between the interior of the fluid and the free surface, where global information about
the flow in the interior influences the motion at each point of the boundary.

The phase velocity ckqy for the KdV equation is precisely equal to the two first terms
in the Maclaurin expansion of cyw. This observation was also made by Whitham, who
in 1967 in [32] proposed the improved model

Gt o0+ (Kw () =0, (113)
0

where Ky is the inverse Fourier transform of ¢y, having the exact dispersion relation
of the original water-wave problem. This equation is presently known as the Whitham
equation.

Physical considerations were also a motivating factor behind this improved model.
As remarked by Whitham in [33, p. 476], nonlinear shallow water equations which
neglect dispersion allow wave breaking, but not solitary and periodic traveling waves,
while on the other hand, the KdV equation allows solitary and periodic waves, but not
wave breaking. The dispersion in the Whitham equation (1.13) is much weaker than that
of the KdV equation (1.8), suggesting perhaps a wider array of wave-phenomena than
captured by either model on its own. This turned out to be correct. Both wave-breaking
[18] and traveling waves [11, 31] have been proved for the Whitham equation.

In fact, in [11] it was shown that there exist cusped, periodic traveling-wave solutions
to the Whitham equation, and that they have exact 1/2-Holder regularity at crests. A
natural question to ask is if similar results can be obtained for equations of the same
form but with other dispersion relations. Modifications of the dispersion akin to that of
(1.13) are possible in both the KdV equation (1.5) and the DP equation (1.6). This is
the overarching theme of the present work.

1.2 Problem description

We consider two classes of equations: a fractional Korteweg-De Vries (fKdV) equation
on the form
ur + wig + (A %u), =0, s e (0,1), (1.14)

and a fractional Degasperis—Procesi (fDP) equation given as
3
up + uug + i(A_SuQ)m =0, s € (0,1). (1.15)

Here, u(t, z) is a real-valued function on R?, and the operator A% is a Fourier multiplier
operator defined as

with symbol .
@ =01+8)2 (1.16)



of order —s. The operator A™° is frequently referred to as the Bessel potential oper-
ator, and it may equivalently be characterized as a convolution operator according to
A7%u = K * u, with convolution kernel given by

Ki(o) = 27(07) @) = 5 [ (70 e,

The fKdV and fDP equations are nonlocal and nonlinear evolution equations with
weak dispersion. If one assumes traveling-wave solutions on the form u(x,t) = p(z —put),
where p is interpreted as the wave-speed in the rightward direction, the fKdV equation
reads ]

—ne' + 5 (%) + (A7) = 0.
Integrating yields the steady equation

1
— e + 5902 + Ao =0. (1.17)
The right-hand side is assumed to be zero without loss of generality, due to the Galilean

transformation
p=p+, [ Vs e

with v chosen such that v(1 — u — %’y) cancels the possible constant of integration.
The traveling-wave assumption for the fDP equation yields

—pp + %gpQ + g/\_sgp2 = K, (1.18)
where it is not possible to obtain zero on the right-hand side with a transformation while
at the same time preserving the structure of the equation. Therefore, we work with an
arbitrary real constant x on the right-hand side.

When referring to a traveling-wave solution of any of the two equations, we mean a
real-valued continuous and bounded function ¢ satisfying the equation on R.

The purpose of the present work is to study the existence and regularity of highest
traveling waves for the fKdV and the fDP equations. The notion of highest waves
stems from the observation that nonconstant solutions to both the fKdV and the fDP
equations are smooth, except possibly at points where the wave-height equals the wave-
speed g (cf. Theorem 3.8, Theorem 6.8), and that this is the maximal height that can be
attained by a family of solutions that bifurcate from the trivial solution to the equation.
Accordingly, solutions ¢ that attain the height of i are referred to as highest traveling
waves.

We briefly review relevant research. As already noted, highest periodic traveling
waves, and the regularity thereof, have been proved for the Whitham equation in [11].
The solitary case of (non-periodic) solutions ¢ with lim|,|_,, ¢(z) = 0 has been studied
in [31], where analogous results were obtained. The novelty in the present work lies in
the parametrized dispersive operator A™% of order —s € (—1,0). A partial result in this
direction, for a class of generalized Whitham equations with a parametrized inhomoge-
neous symbol on the form (1.12) of order in (—1,0), is given in [1]. In preparation is



also a study of an fKdV equation with a homogeneous symbol of order in (—1,0) and a
generalized nonlinearity [35].

The fKdV equation (1.17), with s > 1, has been studied in [21], where highest pe-
riodic traveling waves were proved to exist, and the waves were shown to be exactly
Lipschitz continuous at the crests. The paper [6] considered the homogeneous coun-
terpart of the fKdV equation with s > 1, and analogous results were obtained for this
family of equations as well. However, note that in these cases, the equations incorporate
strong enough dispersion to ensure that the solutions are at least Lipschitz continuous
at the crests. As we will see, this does not hold in our case.

The Degasperis—Procesi equation (1.6) was first studied in [10], and is known to
permit peaked traveling-wave solutions [22]. A nonlocal formulation of the equation
corresponding to the fDP equation (1.15) with s = 2 was studied in [3], where the
existence of highest periodic traveling waves of Lipschitz regularity at crests was proved.

Similar methods as used in this thesis have also been applied to other equations; see
e.g. [13, 14] for a full-dispersion shallow water model and a capillary-gravity Whitham
equation, respectively. We also mention that in [23] a dispersive equation similar to
(1.14) with fixed nonlinearity and varied dispersion was studied in the context of well-
posedness and blow-up.

1.3 Notation

Throughout, we use the notation X <, Y (for some mathematical objects X and Y') if
there exists a positive constant C),, depending on p, such that the inequality X < C,Y
holds. The relation X < Y < X is denoted X =< Y, with the same convention for
subscripts. We shall also occasionally employ the Landau notation f(z) = O(g(x))
whenever there exists a positive constant C with

|[f(@)] < Clg(a)]

for all x in some domain, and use O(g(x)) as a placeholder for such functions. Further-
more, writing X < Y signifies that X is "much smaller” than Y, that is, the inequality
X < ¢Y holds for a sufficiently small positive constant c.

2 The Bessel potential operator

This section is a survey on the Bessel potential operator and serves as a prelude to the
subsequent study of the fKdV and fDP equations. In Section 2.1, we examine the sign
and asymptotic behavior of the convolution kernel K; and its derivatives, and investigate
how the operator A™* acts on functions satisfying certain sign and parity conditions. In
Section 2.2, we prove that A™% is a smoothing operator on the scale of Holder—Zygmund
spaces.



2.1 The convolution kernel K,

Throughout, we let Sp denote R/PZ, the compact interval [—P/2, P/2] in R of length
P < oo with coinciding endpoints. In the following, function spaces are defined on R for
convenience, but they can be defined analogously on Sp.

Let C(R) denote the space of uniformly continuous and bounded functions over R,

CR):={f: R—R; f is bounded and uniformly continuous},

normed by || f||c(r) = sup,cg |f(7)|. Characterizing functions that are k times continu-
ously differentiable, we define

CFR) := {f € C(R); f™ € C(R) for m = 0,1,2, ..., k}, (2.1)

and furnish the space with the usual norm || f||crg) = an:O | £ o). If a function
f is contained in C*(R) for every k € N, then we say that the function f is smooth, and
write f € C®(R).

The Schwartz space of rapidly decreasing smooth functions on R is defined as

SR) :={f e C°MR); || fllg; < oo for every k,l € N},

where the semi-norms || - [|x; are given by
1F I = sup(1 + |z ])*1 1O (@)].
zeR

The dual space, comprising all linear and bounded complex-valued functionals over S(R),
is denoted by S’(R). Similarly, let D(R) be the space of compactly supported smooth
functions on R, and D'(R) the collection of linear and bounded complex-valued func-
tionals over D(R). The space D(R) is furnished with the usual countable family of
semi-norms, transferred to D'(R) by duality. On the compact interval Sp, the space
S(Sp) comprises smooth functions over Sp, while D(Sp) is the collection of smooth
functions over R with support contained in Sp. For details on how these spaces are
defined, we refer to the monograph [4].

Let .# denote the Fourier transform on S(R), extended to S'(R) via duality, and
normalized as

FNO = [ f@e s, (F @ =5 [ foetde @)

for f € S(R). We shall sometimes write f for the Fourier transform of f.

The following proposition provides a basic understanding of the convolution kernel
K, used throughout this thesis. It is based on [17, Proposition 1.2.5], but sharpened
somewhat on the grounds of the restriction of s € (0, 1).



Proposition 2.1. Let s € (0,1). Then

(i) Ks has the integral representation

1 o0 wz s—3
Ky (z)= ——— e tTw tTz dt, 2.3
)=V / (2.3

(ii) Ky is even and strictly positive,
(i4i) K is smooth on R\ {0} and integrable with || Ks|| 11wy =1,

(iv) we have
for|z| > 1, and

for |x| <1 and Cs > 0, where
Hy(z) =5 1+ O(|z]**h)

and
|Hy(2)] = O(|2°),  [H{(x)| = O(j=]""). (2.6)

Proof. (i) For every complex number z with Re z > 0, the gamma function is defined as

o0
I'(z) = / et 7Lt
0

see e.g. [16, A.2]. Making the substitution ¢ — at for a positive real number a in the
Gamma function evaluated in s/2 yields the identity

. 1 [ s
a 2= etz dt.
P(8/2)/0

Setting a = 1 + £2, one has

s 1 > —t(14+€2) 451
(©) —r<s/2>/0 e el

Note that both of the preceding integrals converge for every s > 0. Applying the inverse
Fourier transform yields

-1 —s _i i€ 1 > —t(1+£2) 51
FUE ) =g [ (g [ ) as.

Changing the order of integration, and using the well known formula

F N e ) @)= ——e T

10



(a standard proof of which can be found in [4, p. 18]), one arrives at

Kow) = < [ e R T
r) = —]mmm [ t 2 .
° VAT T(s/2) Jo
This proves the formula (2.3).
(ii)-(iii) The representation (2.3) shows that Ky € C*°(R\ {0}), and that the kernel
is even and strictly positive. The positivity of the kernel implies that

H&szé&@wzﬁqf@ﬂ®=@*=L

where we have used the Fourier inversion theorem [16, Theorem 2.2.14].
(iii) We show the asymptotic bounds for K. Suppose |z| > 1. Then the inequality

t4222=1 > |z[ holds for all ¢ € (0, ). This means that t+2 > L |z, and consequently

2

1
et < e sie 1,

for all t € (0, §). Note also that the inequality ¢+ ﬁ—j > |z| holds for every ¢ > 0. Indeed,

the minimum of the function ¢+ % is attained in t = ‘Qﬂ, where equality holds. Splitting

the integral in the representation (2.3) on ¢t = %, and using the inequalities above, yields
s o ([fen et [T a) ok e
)| < ——— e 8t t 2 2 <se .
’ Var T(s/2) \ Jo . s€
where we have used that both integrals converge to positive constants for every choice

of s € (0,1). This proves (2.4).
Now suppose |z| < 1. The integral in (2.3) may be written as

Ky(z) = m</j+/x:+/loo>e—t—ﬁi £ dt, (2.8)

For the first term, the substitution t — x%t gives

2

T 2 1
_xZ 4 s5=3 _ 42 _ 1 s—3
/ CRET dt:|x]51/eme4tt2 dt
0 0

1 . 1 _
- |1:]5_1/ e~ 72 dt +O(|x|s+1)/ e~ 7 dt,
0 0

where in the second step, we used that et =14 O(tx?) from the Taylor expansion of
the exponential function. Note that this expansion also justifies the derivatives in (2.6).
Both integrals in the last line converge to positive constants for every choice of s € (0,1).

:c2
In the second term, we bound the exponential factor e =% by positive constants above
and below, and obtain the estimate

Vo2 s . 2
/ et tzgdt:/ 7 dt = ———(|z[*"1 = 1).
22 2 1-s
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. . . _l=
Finally, for the third term we bound the exponential factor e~ 4t above and below,

which simply gives
[e.o] 2 o0
_p—zZ  s=3 . ¢ 53 .
/ e @ t 2 dtN/ e "tz dt =, 1.
1 1

Inserting the above estimates in (2.8) yields (2.5). O

The next result is a direct application of the positivity of the kernel K. A similar
statement is given in [11, Lemma 3.5].

Corollary 2.2. If f and g are functions belonging to C(R) with f > g and f(xg) > g(x0)
for some xq, then
APf > A%g.

That is, the operator A™* is strictly monotone on C(R).

Proof. Let f and g be functions according to the assumptions. Since f and g are con-
tinuous, there exists a neighborhood of nonzero measure around xg on which f > g.
Consequently,

(A7) = (A)a) = [ Koo = 9)(7(0) ~ 0) du > 0
since K is strictly positive. O

We now turn to an investigation of the signs of the derivatives of K. The arguments
are based on the results in [11, Section 2|, while a more detailed account of completely
monotone functions and related topics can be found in [26]. We begin by introducing
some notions that are useful in the proof of Proposition 2.3, where we shown that the
kernel K is a completely monotone function.

A function g: (0,00) — R is said to be completely monotone if it is smooth and
satisfies

(—1)"g(A) = 0 (2.9)

for all n € Ny and all A > 0, where Ny denotes the set of all nonnegative integers.
This definition naturally extends to even functions g: R\ {0} — R, which are called
completely monotone if they are completely monotone on (0, 00).

A subclass of the class of completely monotone functions are Stieltjes functions. A
Stieltjes function is a function g: (0,00) — [0,00) that can be written in terms of the
integral representation

a 1
A)=—+b ——do(t
s =5 o [ e,

where a and b are nonnegative constants, and o is a Borel measure on (0, co0) satisfying

1
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It turns out that the class of Stieltjes functions can be completely characterized by
analytic extensions. Precisely, by [26, Corollary 7.4], if ¢ is a strictly positive function
on (0,00), then g is Stieltjes if and only if

lim 9(A) € [0, oc],

and ¢ has an analytic extension to C\ (—oo, 0] with
Im(z) Im(g(z)) < 0.

Note that, owing to [11, Lemma 2.12], if ¢ is Stieltjes and « € (0, 1], then g% is
Stieltjes. Moreover, by [11, Proposition 2.20], if f: R — R and g: (0,00) — R are two
functions satisfying

F(&) = g(&?)

for all £ # 0, then f is the Fourier transform of an even, integrable, and completely
monotone function if and only if g is Stieltjes with

/1\1{%9()\) < 00 and /\h_{r;o g(A) =0.

We are now in the position to prove the complete monotonicity of K, or in other
words, that all derivatives of K are strictly monotone with alternating sign.

Proposition 2.3. For every s € (0,1), the convolution kernel K is completely mono-
tone. In particular, it is strictly decreasing and strictly conver on (0, 00).

Proof. Let
g: A (1+ 071

The function g extends analytically to C\ (—o0, 0], since the only singularity isin A = —1.
For every z € C\ (—o0, 0], one has

B Im(z)
Im(g(2)) = — (1 + Re(2))2 4 Im(2)2’
and consequently I 9
(o) = ~ R

1+ Re(2))2 +Tm(z)? =

on C\ (=00, 0]. That is, g is a Stieltjes function. As we have seen, this implies that ¢*/2
is Stieltjes. Furthermore,

lim ¢*/?(\) = 1 lim g*%/2(\) =
&’%g() ;o Jlim g0 =0

for every s € (0,1). Therefore, the function

fO =92 =01+ 2=



is the Fourier transform of an even, integrable and completely monotone function. But
since

F(Ks) = (6%,

we conclude that K, is completely monotone.

It remains to prove that Kj is strictly decreasing and strictly convex on (0, 00).
However, it is noted in [26, Remark 1.5] that as a consequence of Bernstein’s theorem
[26, Theorem 1.4], if ¢ is not identically constant, then (2.9) holds with strict inequality
for every A and every n. O

Towards analyzing periodic solutions of the fKdV and fDP equations, we now define
the periodic convolution kernel

Kpg:=Y_ Ki(z+nP). (2.10)
nez

We mention that the same definition is made in both [11] and [3], and that it is motivated
by the observation

(Ky % )z /K v — ) f(y) dy

nez 2JrPn
2
:/PKP,S © — ) f(y) dy.
T2

for every P-periodic smooth function f. Owing to the exponential decay of K from
Proposition 2.1, the periodic kernel can be bounded by

Kps(x) =ps [z, (2.11)

for z € (—P, P). In addition, we have the following properties of Kps. The proof of
Proposition 2.4 is based on [11, Remark 3.4].

Proposition 2.4. The periodic kernel Kpg is even, P-periodic and strictly increasing
n (—P/2,0).

Proof. By (2.10), the kernel Kp is clearly P-periodic, and the evenness of Kp follows
from the evenness of K,. Furthermore, the derivative of Kp is

Kpy(x) =Y Ki(x+nP)
nez

=" (Kl(z +nP) + Kz — (n+1)P)).
n=0

14



For z € (0, P/2) the inequality |x +nP| < |z — (n+1)P| holds. Moreover, K(z) is even
and strictly convex on (—P/2,0), implying that |K.(z + nP)| > |K.(x — (n + 1)P] for
all n € N and all x € (0, P/2). Therefore, we must have

Kl(z+nP)+ Ki(z—(n+1)P) <0

for every n € Ny, implying that the periodic kernel Kp is strictly decreasing on (0, P/2).
Hence, by evenness, it is strictly increasing on (—P/2,0). O

Having proved the necessary positivity and monotonicity of the periodic convolution
kernel, we are now in the position to show how A™% acts on periodic and odd functions
which change sign only in the origin. This plays an important role in the bifurcation
arguments constructed in Section 4 and 7.

Lemma 2.5. Let f be a P-periodic, odd and continuous function with f > 0 on
(=P/2,0) and f(xo) > 0 for some xg € (—P/2,0). Then

AT >0
on (—P/2,0).

Proof. Let f be a function according to the assumptions above. Then

P/2
(A*f)(z) = Kps(x—y)f(y)dy
—p/2
0
_ / (Kpy(x —y) — Kpy(z+9))f(y) dy.
—P/2

Note that since f is nonnegative on (—P/2,0) and strictly positive on some domain of
nonzero measure, it suffices to show that

Kps(z —y) — Kps(z +y) >0 (2.12)

for all z,y € (—P/2,0). Firstly, by Proposition 2.4, the periodic kernel Kp is strictly
increasing on (—P/2,0) and strictly decreasing on (0, P/2). Secondly,

dist(z — y,0) < min{dist(z + y,0), dist(x + y, —P)}. (2.13)
for x,y € (—P/2,0). Indeed,
[z =yl < o]+ [yl = [z + 9]
for z # y of same sign, and
| —y| =max{z —y,y—x} < P+z+y,

due to —x < P+ x and —y < P +y for all z,y € (—P/2,0). This means that (2.12)
holds. O

15



2.2 Smoothing

Fourier multiplier operators are defined by multiplying the Fourier transform of a func-
tion with a given symbol function, thereby modifying its frequencies. Precisely, a Fourier
multiplier a(D) is defined as multiplication in frequency space with the symbol a(&), and
formally one has X
a(D)f =7 H(a(&) [ (€)),

If the function a belongs to S(R), then the operator a(D) is well defined and linear from S
to itself, and that this holds more generally on the space of tempered distributions S’(R),
via duality. Indeed, the space S(R) is a Banach algebra [16, Proposition 2.2.7], and the
Fourier transform is an isomorphism from S(R) onto itself [16, Propositon 2.2.11]. Note
also that since a1 (D)az(D)f = (a1 0a2)(D)f, for Fourier multiplier operators a; and as,
the inverse of a multiplier a(D) is given by a multiplier with the reciprocal symbol of a.
Formally, we write

(a(D))"' =a"Y(D). (2.14)
We show how Fourier multipliers act on periodic functions. It is known that every
smooth, P-periodic function f can be written as a uniformly convergent fourier series

F) = [flee’F o, (2.15)

kEZ

1 [P W

Fourier multipliers act on P-periodic, smooth functions by multiplying the Fourier coef-
ficients of the function with the symbol of the operator. Precisely, for a multiplier a(D),

one has ok
D)f =Y a(=5) (e 7. (2.16)
keZ

with Fourier coefficients

This follows from the Fourier series representation of f from (2.15), and the calculation

x 1 ) o .
a(D)e" PR / iz (5)/62131€3’e_”/g dy d§

271'
— e anky/ —Z(y—a?)f d¢ dy
I iy — a)e v
=30 Ra Yy— et Y
2 .
= o(5)e H

where we have used Fubini’s theorem [5, Theorem 4.5] to switch the order of integration,
and in the last step the Fourier inversion theorem.

The operator A™* is a Fourier multiplier with symbol (¢)~® as defined in (1.16). The
symbol (£)™* belongs to the space S(R), and the operation is well-defined on S’(R).

16



Since the operator A™% increases the decay of the Fourier transform of the function on

which it operates, a natural question to ask is what this means in terms of the regularity
of the function itself. To answer this question, we introduce the Holder and Zygmund
spaces, which shall also be used extensively in later sections. An outline of these classes
of functions, and generalizations thereof, can be found in [30].

The space of a-Holder continuous functions on R, with « € (0, 1), is defined as

C™(R) == {f € C(R); [floo.a(r) < o0},

where [-]co.a(r) denotes the Holder semi-norm

[f] o = sup |f($) B f(y)|
cos(®) - z,yeR |.CU - y|a '
zAYy

We say that the function f € C(R) is a-Holder continuous at the point x € R if
[fz+h) — fz)]

fl A0 my == sup < 00.
lego@ heR |h|*
h£0

In analogy with (2.1), we define for every o € (0,1) and any k € N the space
Ch(R) = {f € C*(R); S e CO(R)},

containing all k£ times continuously differentiable functions on R with a-Holder contin-
uous k-th derivative. Moreover, we let C’?&Z‘H(Sp) denote the closed subspace of Ck’o‘,
comprising even and P-periodic functions.

The Holder spaces are defined using first-order differences of functions. The so-
called Zygmund spaces can be defined in a similar way, using second- or higher-order
differences. Let |« and {a} denote the integer and fractional part of o > 0, where we
adopt the convention that 0 < {a} < 1. Furthermore let A, be the first-order difference
operator acting on a function f according to

(Anf)(@) = flz +h) = f(@),
and let A} be the nth-order iterated difference. That is,
(AL)(@) = (Au(ARS)) (@) = f(a+ 2h) — 2f(z + h) + f (=),
and so forth. Then, we define for every a > 0 the Zygmund spaces
C*(R) :={f € CL(R); [flea(m) < oo},

where the Zygmund semi-norm [f]ca gy is given by

142 FLeD ]| co gy
« = Su
Fleam 0£heR |h[{et

17



Two important facts about the Holder and Zygmund spaces, given in [30, Theorem
1.2.2], are used throughout this thesis. Firstly, for non-integer s, the Holder space C Ls){s}
and the Zygmund space C* coincide, in the sense of equivalent norms. It is in this context
we sometimes refer to Holder-Zygmund spaces, and the two are used interchangeably
when there is no confusion. Secondly, the Zygmund space C*, with s > 0, is (norm-)
equivalent to

m £(k
e~ {rects o 18 Blleo _ <)
o£her  |h|*7F
for every choice of k € Ny and m € N with £ < s and m > s — k.

The following proposition shows how the Bessel potential operator A™* changes the
regularity of functions on which it acts, in the context of Holder-Zygmund spaces. Work-
ing with differences, it is often useful to isolate the singularity |x|*~! from the kernel K.
More precisely, we write

Ks(w) = Cs’x‘s_l + I?S(x)a (217)
where we have B
K (2)] Ss (1+ |2])*72, (2.18)
and furthermore that
IN(;’x = O(|z|*71), x| <1,
Ri@|=0(ef™). o 019)
IK{(z)] S L+ |2)*7%, Jal > 1,

in view of the exponential decay of Ky and (2.5) from Proposition 2.1. Then by the
mean value theorem

~ o~ 1 ~
Rule +y) - Kula)] < |y/0 R ( + ty)]| dt

where we let R;(:c) denote

1
) -
Rl(x) = /0 K (& + ty)| dt .
Similarly, we have
|Ko(z+y) + Ko(z — y) — 2K,(2)] < [y|*R2(), (2.20)

with

2 bt 1

Ry (z) = /0 /0 2t| K (x — ty + 2sty)| ds dt .

Note that the estimates (2.18) and (2.19) applies to Ré and sz respectively.

Proposition 2.6. For every a > 0 and s € (0, 1), the operator A% is linear and bounded
from C*(R) to C*T5(R).

18



Proof. Fix a > 0 and s € (0,1). Due to the above norm equivalences for Zygmund
spaces (based on [30, Theorem 1.2.2]), it suffices to prove that

[AT(A=* )LD o

0£hER |h[{at+s

for functions f € C* and for some difference order m > 2. We shall do this for m = 3.
We claim that [|ApKs|p1r) S |k|°. Using the spitting of K into its regular and
singular components given in (2.17), it is possible to write

TNy A :/ Koo+ h) — K()| do

R ) B (2.21)

,S/ ||x+h|‘9_1—|x|‘9_1}dw+/ |Ks(z+ h) — Ks(z)|dx .
R R

The first integral in (2.21) can be estimated by
/ ||z 4+ h[*~t — 27 dx = !h\s/ It 1t = e dt S [hf,
R R

since
R e 17 el I 17

for large t. For the second integral in (2.21), one has

/ Rz +h) - Ra(@)| de < |1 / Rl (x) da
R R
< |h,

due to the characterization of the difference from (2.20). This proves [|Ap Ks|[ 11 (r) < [h[*.
By Young’s inequality [4, Lemma 1.4], we now have

sup | (A} (A7 f)10D) ()] = [|AF (K + f10D)]|

z€R
= (AR K) * (A7 FLD) o
< ALK L1 | AT fll oo
S ‘h|{a}+s‘

The desired inequality is now obtained by dividing by \h|{°‘}JrS and passing to supremum
with respect to h. O

Corollary 2.7. For every s € (0,1), the operator A=* is linear and bounded from L*(R)
to C%3(R).
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Proof. Recall that if @ > 0 is not an integer, the Holder space CleJAe}(R) coincides
(equivalent norms) with the Zygmund space C*(R). Now if f € L, then ||A2 f|| 1~ < 1,
and we have with the same reasoning as in the proof of Proposition 2.6 that

Sggl(ﬁi(/\_sf)(w)\ < ALK | AT f ] o
SEU

Passing to supremum yields f € C9%. O

3 Traveling-wave solutions to the fKdV equation

We present properties pertaining to the sign and regularity of traveling-wave solutions
to the fKdV equation. While this section is an a priori study of solutions to the fKdV
equation, existence shall be established in Section 4. In Section 3.1, we recover informa-
tion about the magnitude, and the sign of derivatives, of solutions that satisfy certain
periodicity and parity conditions. In particular, Lemma 3.3 parallels the classical study
of the nodal pattern of eigenfunctions to elliptic operators and will be of decisive impor-
tance in the subsequent bifurcation argument. Then, in Section 3.2, it is proved that all
solutions which have an amplitude strictly smaller than the wave-speed p are smooth,
and in Section 3.3 that solutions which achieve the maximal amplitude of u belongs to
C%$(R). The s-Holder regularity is optimal and attained in the crest where ¢ = p.

Most of the methods in this section follow [11]. The main difference is that we here
consider the parametrized operator A™® with s € (0,1), and we obtain new results on
the relationship between the order of the operator and the optimal regularity of highest
traveling waves. Note that in the following, the parameter s is considered to be fixed in
(0,1), and the fKdV equation refers to equation (1.17) for this value of s.

3.1 Periodic traveling waves

Many properties of solutions ¢ to the fKdV equation can be inferred by analyzing the
structure of the equation. We begin with a proposition giving bounds for the minima
and maxima of solutions, making use of the Bessel potential operator being strictly
monotone, and the observation that

A Pc=Ksxc=c||Ks||n =c¢
for every constant ¢ € R.
Proposition 3.1. If ¢ is a solution to the fKdV equation, then

2(p—1) <minp <0 <maxe or e=2(u—1) if p <1,
0<minp <2(p—1) <maxy or =0 if p> 1.
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Proof. The equation can be written in the form

(b — @) =p> =200
Since A%y > min ¢ and A"%p < max ¢, we have

(1 —®)* < p* —2mine,

(b —®)* > p? — 2max .

In particular, this holds for min ¢ (resp. max ¢), which gives
1
mincp(§ miny — (u — 1)) <0,
1
maxap(§ max ¢ — (u— 1)) > 0.

Analyzing the sign of the factors on the left-hand sides above yields the claim. O

If a solution ¢ satisfies ¢(x) = 0 at some point z, then evaluating the equation in
x =0 yields A=*¢p = 0. Therefore, since the convolution kernel K associated with A=*
is strictly positive, the solution ¢ must either be identically equal to zero, or it must
change sign.

We now state a result regarding the L2-integrability of periodic solutions of a finite
period P.

Proposition 3.2. Let P < co. Then every solution ¢ € L*(Sp) to the fKdV equation
belongs to L>(Sp). In particular,

Iol12 s, = 201 — 1) / pds.
Sp

Proof. Integrating the equation ¢? = 2up — 2A~%¢ over Sp yields

/ chdm:Qu/ apdw—2/ A_Sgodx:Q(,u—(O)_s)/ pdz,
Sp Sp Sp Sp

where we have used the formula (2.16) for Fourier multipliers on periodic functions. O]

In the bifurcation preceedure in Section 4, we work with nonconstant, even and P-
periodic solutions to the fKdV equation which are nondecreasing on (—P/2,0). The
following proposition lists properties of such solutions.

Lemma 3.3. Every P-periodic, nonconstant and even solution o € C*(R) to the fKdV
equation which is nondecreasing on (—P/2,0) satisfies

¢ >0 and @< p
on (—P/2,0). If in addition ¢ € C*(R), then

©"(0) <0 and ¢"(£P/2) > 0.
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Proof. We have by assumption that ¢’ is odd, nontrivial and nonnegative on (—P/2,0).
Hence, it satisfies the assumptions of Lemma 2.5, and we infer that A=5¢’ > 0 on
(—=P/2,0). Differentiating the fKdV equation, one has

(h—p)' =A% >0

on (—P/2,0), and we conclude that ¢’ > 0 and ¢ < p on (—P/2,0).
Now assume that ¢ € C?(R). Differentiating twice, we get

(h= )" = (&) + A",
Evaluating this equation at x = 0 yields

P/2
(1= ¢(0))¢"(0) = (A™¢")(0) = 2 Kps(y)¢"(y) dy,
0
since ¢’(0) = 0 by evenness and differentiability of ¢, and because Kps and ¢” are even
functions. For some ¢ > 0, splitting the integral and using integration by parts, one
obtains
P/2 € P/2

Kps(y)¢"(y) dy = / Kps(y)¢" (y) dy + Kps(y)¢" (y) dy
0

0 €

_ /05 Kps(y)¢"(y) dy + [ Kp, (y)w’(y)} P2

P/2
- Kp(y)¢' (y) dy

)

y=e¢

(recall that Kpg is smooth outside of the origin). The first term vanishes when € \, 0,
because

15 15
. Vi " . -1 _
i%'/o Kps(y)e" (W) dy | S ¢ llow) ;1{%/0 ly|* " dy =0,

where we have used (2.11) for the period kernel. The second term must also vanish in
the limit, since ¢'(P/2) = 0, and since ¢'(¢) < e due to ¢'(0) = 0 and the continuity
of ¢/. The last term is negative for each € > 0, since we have proved both ¢’ < 0 and
K}%S < 0 on (—P/2,0). Moreover, it is decreasing as € N\, 0, so passing to the limit we

arrive at
P/2

(1= ¢(0))¢"(0) = ~2lim i Kp(y)¢'(y) dy < 0.

In view of ¢ < p, we conclude that ¢”(0) < 0.
We show that ¢”(£P/2) > 0. Arguing similarly as above, one has

P/2
(1 —@(P/2))"(P/2) =2 i Kps(P/2+y)¢"(y) dy

o [ S / " ) P2-40)6 )

P/2—¢
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where the second term vanishes when € N\, 0. For the first term, integration by parts
yields

P/2—e
/O Kpo(P/2+ )¢ () dy

P/2—¢ P/2—¢
= [Kerzenew)| = [ KPR G
y=0
and passing to the limit we obtain
P/2—¢
(n—@(P/2))¢"(P/2) = —2lim ; Kp(P/2+y)¢' (y) dy > 0,

on account of K being P-periodic and strictly positive on (—P/2,0), and ¢’ strictly
negative on (0, P/2). Hence, ¢”(P/2) > 0, and by evenness also ¢’ (—P/2) > 0. O

3.2 Regularity of solutions ¢ < u

One might ask whether the first- and second-order continuous differentiability assump-
tions of Lemma 3.3 are reasonable. The following proposition shows that all solutions
which are strictly smaller than p are smooth, and therefore that Lemma 3.3 applies to
such solutions.

Lemma 3.4. Let ¢ < p be a solution to the fKdV equation. Then ¢ is smooth on every
open set where ¢ < .

Proof. Assume first that ¢ < g uniformly on R. We rewrite the fKdV equation to the
form

o =p—\p?—=20"5¢. (3.1)
Note that if f < p? is a function which belongs to C®(R) for some a > 0, then the

mapping
feop—vpr—f

takes f back into C*(R), since the function x — /x is continuous for x > 0. Moreover,
owing to Proposition 2.6 and Corollary 2.7, the operator A™* is linear and bounded from
L*>®(R) to C*(R) and from C*(R) to C**5(R). When ¢ < p, it is evident from the fKdV
equation that A=%p < p?, meaning that the right-hand side of (3.1) maps L>®°(R) to
C*(R) and C*(R) to C*T*(R). Bootstrapping now yields ¢ € C*°(R).

Now let U be an open set on which ¢ < p, and let ¢ € CJ (U), in the sense that
Yo € C*(R) for all ¢ € D(U). We claim that A™%¢ € C*(U), and that consequently
the above iteration argument holds for ¢ < p on every open set U. To see this, split ¢
according to

YA = PAT (pp) + YAT((1 = p)g),
where 1) and p belongs to D(U), and p = 1 on a compact neighborhood of supp v in U.
Since pp € C*(R), we have A~*(pyp) € C*T*(R). Furthermore, the second term

BAH((1— p)g) = /R Ko(z — (@) (1 — p(y))e(y) dy
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is smooth: the kernel K, is smooth on R\ {0}, and the integrand vanishes whenever
x is sufficiently close to y, because either ¥ (x) is zero, or 1 — p(y) is zero when y
approaches . ]

3.3 Regularity of highest traveling waves

We now turn to an investigation of solutions that are allowed to attain the height of
¢ = p in some but all points. Such solutions are referred to as highest traveling-wave
solutions, and they exhibit different qualitative properties than the smooth solutions
with ¢ < p discussed in Section 3.2.

In Lemma 3.3 it was proved that solutions that are continuously differentiable are
strictly increasing on (—P/2,0). The regularity assumption can be relaxed if ¢ does not
exceed p, as the following proposition shows. While the result can also be proven for
the solitary case by a similar argument, we state it for periodic solutions.

Proposition 3.5. Let ¢ be an even, P-periodic and nonconstant solution to the fKdV
equation that is nondecreasing on (—P/2,0) with ¢ < u. Then ¢ is strictly increasing
n (—P/2,0).

Proof. Taking the difference of the fKdV equation evaluated in two points « and y, one
obtains

(20— () — o)) (p(z) = »(y)) = 2((A"¢) () — (A7) (y)). (3.2)
Furthermore, for every h € (0, P/2), we have
(A7°p)(z 4+ h) = (A°p)(z = h)

—/ Kzt h— y)w(y)dy—/_oof@(x—h—y)w(y)dy
:/ Ks<m—y>so<y+h>dy—/°° Koz — y)o(y — h) dy

P/2 —P/2
—/ Kps(x —y)p(y + h) dy—/ Kps(x —y)e(y —h)dy
—-P/2 —P/2

0
- /P/Q“KRS(~’C —y) — Kps(z +y)(p(y +h) — oy — h)) dy,

where we have used the evenness of Kp, and ¢. Hence,

(2u —p(z +h) —p(x — h))(p(z + h) — p(z - h))
=2((A™p)(x 4+ h) — (A™p)(x — h))

0
—2 / (Kpa(z — ) — Kz +9)(ly + ) — oly — b)) dy.
—P/2

The term Kps(y — ) — Kps(y + ) in the above was shown in the proof of Lemma 2.5
to be strictly positive for every z,y € (—P/2,0). Moreover, owing to (2.13), the factor
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(¢(y+h)—(y — h)) is nonnegative, and larger than zero for some y € (—P/2,0), since
¢ is assumed to be nonconstant and nondecreasing on (—P/2,0). Therefore

2u — (@ +h) —p(x = h))(p(x+h) — @z —h)) >0

for every x € (—P/2,0) and every h € (0, P/2), which implies that ¢ is strictly increasing
on (—P/2,0). O

Lemma 3.4 shows that every solution ¢ satisfying the assumptions of Proposition 3.5
is smooth on Sp \ {0}. In the origin, the smoothness of the solution may break down if
©(0) = p. The following lemma shows that this is the case.

Lemma 3.6. Let P < 0o, and let ¢ be an even, P-periodic and nonconstant solution to
the fKdV equation that is nondecreasing on (—P/2,0) with ¢ < pu. Then

nw—e(P/2) Zp 1. (3.4)
Moreover, there exists € > 0 such that
p—o(x) Zp |z (3.5)

uniformly for |z| < e.

Remark 3.7. The estimate (3.5) is in fact uniform in P, when the period is assumed to
be sufficiently large. Therefore, one can let P 0o, and obtain the estimate in the case
of solitary waves. This permits us to prove the subsequent Theorem 3.8 for periodic or
solitary traveling-wave solutions to the fKdV equation in a unified way.

Proof. Since ¢ is smooth except possibly in = 0, one has for z € (—P/2,0) that

(1 —p(x)¢' (x) = (A %p)'(z)
_ i (A7) @+ 1) = (A7) (2 = b))
h—0 2h

T S
>timint o [ (Kpalo =) = Knalo + )6+ 1) — oy~ 1) dy
—0 2h —pP/2

0
> / (Kpa(z — ) — Kpale + )¢ () dy.
—P/2

In the third step we used the formula (3.3), and the last estimate, where differenti-
ation is taken under the integral, is justified by Fatou’s lemma [5, Lemma 4.1]. Fix
xo € (—P/2,0) and let = € [zg,0). Then, with z € [-P/2, z], we have

(1 — ()¢ (x) = (1 — @(z))¢' (2)

0
> [, e p —Krerndwd

z0/4
> / ) (Kol =) = Kpo(o + )2 ) dy.
zo
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where we used that the integrand in the second step is strictly positive, since the differ-
ence Kp(z—y)—Kps(z+y) is positive and ¢’ > 0in (—P/2,0) owing to Proposition 3.5.
Letting

. Ty T
Cp=min{Kps(x —y) — Kps(zr+vy); z,y € (50, ZO)} > 0,
we have 0 -
(1 = @(=P/2))¢ (x) = Cp(p(7}) = o(5))-
Integrating over (%2, %) and dividing by the difference o(%) — (%) proves (3.4).

Towards proving (3.5), we claim that there exists € > 0 such that the estimate
Kps(x —y) — Kps(z +y) Zp xol*™

holds uniformly over x € [z¢,0) and y € (x0/2,20/4) with |zg| < . Note first that for
these ranges of « and y, we have |z — y| < |z + y|. Then, due to the estimate (2.11), we
can pick a small enough xg and constants C; and C7, depending on P and K, such that

Kpg(x—y) > Cile —y[*"  and  Kps(z+y) < Cile+y[*
hold for all x € [z9,0) and y € (z0/2,x0/4), and such that
Kps(z —y) = Kps(z +y) = Cilz —y[~" = Cola + 3"~
Dl = () ol
Zp |l

> Oy (

Inserting the above estimate in (3.6) yields

(1= ()¢ (@) Zp lzol™™" (p(0/4) — ¢(20/2)).

Integrating this inequality over (z¢/2, z/4) with respect to x, dividing by the (positive)
difference (¢(zo/4) — p(x0/2), and setting z = x(, we obtain

(1 = @(wo) Zp (x0/4 = z0/2)|wol" ™ Zp |2o|*,

and the inequality is uniform in xg for |xg| < . The estimate (3.5) now follows by
evenness of . O

Proposition 3.6 provides an upper bound for the regularity at the crests of periodic
solutions which are allowed to touch p from below in the origin. In Theorem 3.8, we
also prove a global upper counterpart of the estimate (3.5), thereby establishing global
s-Holder regularity of solutions ¢, attained at the crests. The method of the proof follows
[11, Theorem 5.4], but with modified arguments for the global estimates related to the
parametrized order s € (0, 1) of the Bessel potential operator.
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Theorem 3.8. Let P € (0,00], and let ¢ < p be an even and nonconstant solution to the
fKAV equation which is nondecreasing on (—P/2,0) with p(0) = p. Then ¢ € C**(R).
Moreover,

p—plr) = |z° (3.7)
uniformly for |x| < 1.

Remark 3.9. Using the (nonperiodic) kernel K in the proof, and in view of Remark 3.7,
the period P in Theorem 3.8 is allowed to be infinite.

Proof. Let ¢ € L>®(R) satisfy the assumptions above. We show first that, for every
a < s, the solution ¢ is a-Hélder continuous in 0. From (3.2) we obtain the formula

(1 —o(@))* = 2((A7°9)(0) — (A°p)(x))

= [+ ) + Ko 9) = 2K )00 )y,
Splitting the kernel in the singular and regular parts, as shown in (2.17), gives
| [ () + Koo =) = 2K, () (010 — () |
S [ Nl a1 = 200000 = ) dy
+ [ |Ruler )+ R =) = 2K.(0)] (900) = (0)) dy
For the singular part one has
[ Nl 315 e = 51 = 208900 = ) dy
< 2|l oo al* /R R L R e (3:9)

< |zl
where the integral in the last step converges every s € (0, 1), owing to the inequality
L4+t 1 =gt =25t S P (3.10)

for large ¢. The regular part can be estimated by
[ IRie+9) + Rl =) = 2R )] 0(0) = o)) dy

3.11
< gl /R R2(y) dy (3.11)
< Jaf?,

where we have used R2(y) from (2.20) and the estimates in (2.19) for it. Inserting (3.9)
and (3.11) in (3.8) yields (u — ¢(x))?* < |z|*. This implies that ¢ is at least $-Holder
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continuous in 0. Using this information, the term ¢(0) — ¢(y) can be bounded from

above by [y|2 in the estimate (3.9), giving sﬂ%—Hélder continuity of ¢ in 0. Iteration

of this argument proves that ¢ is a-Ho6lder regular in 0 for every a < s.
We now show s-Holder regularity in = 0. To this end, we claim that there is a
constant C, independent of «, such that

/R |Ka(z +9) + Ka(z — ) — 2K (4)|ly|* dy < Claf?®

for all || <1 and all 0 < a < s. Indeed, for the singular part we have

/R a4y o — g 4 20yl |1 dy

_ ymwa/ L4 e~ 1= et — 2t e de
R
S T
< |z,
where the integral converges in view of (3.10), and in the last step it was used that

|z| < 1. Note that the estimate is uniform in « € [0,s]. Moreover, the regular part of
the kernel can be bounded according to

/R Rz 4 ) + Ralz —y) — 2Ru(y)|lyl* dy < |22 /R R2()ly|® dy
< Jaf?
< |z|?®,

for |z| < 1. It was shown above that ¢ is a-Hélder continuous in the origin for every
a € [0,s). Hence,

(p(0) = (x))* = /R (Ks(z+y) + Ko(z —y) — 2K,(y)) (0(0) — ¢(y)) dy

< [eloge [ 1Kulo+9) + Kula =) = 2K, (o) ol dy
< lelepala.

Dividing by |z|** and passing to supremum yields

[30}08’“ 5 1

uniformly over a € [0,s). We let o s, and obtain the estimate (3.7).
We now claim that for global a-Holder continuity, with any « € (0, 1), it suffices to
prove that
h)— —h
sup (@ + h) — p(x — h)|

0<h<|z|<é he

< 00,
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for some § > 0. This is equivalent to

lollcoem) S max {1, sup lple +h) — plz = 1) } (3.12)
0<h<|z|<§ he

Note first that p(z + y) — ¢(x — y) is symmetric in = and y, which implies that

[ellconmy = sup [p(z 4+ h) = p(x = h)
) 0<h<|z| he ’

where h denotes min{|z|, |y|}. Now fix 6 < 1. If h > §/2, then
fola+ )~ ple —1)| _llellie
he - J
On the other hand, if |x| > ¢ and h < /2, the already established smoothness of ¢

outside of the origin implies that

plx+h)—plx—nh O\ 1—a
Ll )ha ( ) < 2(5) lellersre,pre) S llelleres/z,pr2)-

This justifies the reduction (3.12).

We proceed to show that ¢ € CO%*(R) for every o < s. Assume that 0 < h <z < §
for some § < 1, in accordance with the reduction above, where x can be taken positive
without loss of generality due to the evenness of . Since

(p(a+h) = p(z — h))®

< |(2p = oz +h) = p(z = h))(p(x + h) — oz = h))] (3.13)

= [(A™%p)(z +h) — (A™°p)(z — h),
and A™* maps L™ to C%* and C® to C®**, we obtain that ¢ is at least a-Holder regular
for every a < s if s <1/2 and v = 1/2 if s > 1/2. Consequently, for s > 1/2 we need to
pass the threshold o = 1/2 in the iteration procedure of (3.13). So assume that s > 1/2

and that ¢ € C%® with o+ s > 1. Note that for a function f € C'# with 3 € (0,1) and
1/(0) =0, one has

f(x) = F)l = |z = yll£'(€) = F(0)] S [ —yll¢) (3.14)
for £ € (z,y). Hence,
(A7) (@ + h) — (A*0)(x = )| S hlg[t*F,

with £ € (z — h,x + h) and {« + s} being the fractional part of o + s. Inserting this in
(3.13) yields
hlg|tot)
2p = p(x +h) = p(x = h)
hla + h|{ots} (3.15)
~ |+ h|*+ |z — h®
< hlz + h|* !

(2 +h) =z —h)| S
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where we have used the estimate (3.5) from Lemma 3.6 in the second step, and in the
last step that {4+ s} —s = a — 1. Now we interpolate between (3.15) and the exact
s-Holder regularity in the origin. Precisely, with n € (0,1) one has

[p(x+h) =l = h)[ _ |p(@+h) = ez = h)["

hn - hn
< |z + k[ DHA=ms,

= p(z + R

This is bounded whenever s
n< ——-,
l1+s—«

and we choose the interpolation parameter n such that equality holds. Hence,

ol + h) =l = h)| < hTFs.

Iterating this argument, one obtains in each step for ¢ € C%® that ¢ is Tra—g-Holder
regular. The regularity is therefore increased in each iteration and tending to s proving
¢ € CYY(R) for every a < s.

We now prove ¢ € C%*(R). To this end, note that the difference in the right-hand
side of (3.2) can also be written as

(A7) (@ +h) — (A7) (x —

h)
/ K(z+h—y)oly / K(z —h - y)p(y) dy
[

)dy —
=/_ Ky —h)e(y +x)dy - (3.16)

K(y+h)e(y + ) dy

= /(;(Ks(y +h) = Ks(y =h)(e(y —z) — oy +2)dy.
Let 0 < h < |z| < ¢ for some § < 1, and assume that x is positive. Since
2n—p(@+h)—p(@—h)>p—pl@+h)=>p—p),
we have with (3.2) and (3.16) that
(1= w(@)|e(x + h) — o(z — h)

0 (3.17)
< 2/ Ku(y+h) — Ka(y — )lloly — 2) — oy + )| dy.

—0o0

To estimate the factor |o(y — =) — ¢(y + )|, we interpolate between the sharp C:*-
regularity in # = 0 and the global C%“-regularity (for a < s). That is,

lo(y — ) — oy +2)| < [lellco.o min(|z]*, [y[*) (3.18)

for every choice of a € (0, s), and

oy — ) — oy +2)| S 9]0 max(|z[*, |y[*), (3.19)
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which holds true in view of the s-Holder regularity in x = 0 via

lp(y —2) — oy + )|

(ply—2) —p) + (b — p(y + 2))|

|
S Pleos(lz —yl° + |z +y[)
S [@]COsmaX(lwls yl)-

Interpolation of (3.18) and (3.19) over a parameter 7 gives

ey — ) — oy + 2)| S [0, min(|a], |y))*" max(|a], |y|)* =, (3.20)

with (a,n) € (0,5s) x [0,1]. The integral in the right-hand side of (3.17) can be split in
the singular and regular parts of the kernel K. Inserting (3.20) in the integral with the
singular term yields

0
/ lly + B~ — ly — By — 2) — oy + )| dy

—0o0

0
S el [ My B~ =y = bl minfal, o)) max(e], )0 dy
—0o0

=
gt [+ iy = e 0
)

. (3.21)
[l 20 / lly + B — [y — B[] dy

—1“

< [l ]2+ / ¢4 1[50 — Jt — 110 de
— 00
0
@l O b / 61 — J¢ — 1o Je]" ds
-3

The integral in the last line clearly converges. For the difference in the second last line
we have the identity
R e e el [

for large ¢. Thus, we need to choose 1 such that s — 2+ s(1 —n) < —1 for convergence.
But this is possible for every s € (0,1) by requiring

1
n>2- - (3.22)

31



The regular part can be estimated by

0 ~ ~
/ Ruly+ 1) — Raly - W)lo(y — ) — o(y + 2)| dy

—00

0
S el [ By min(fal, lye max(fal )4 dy

— ||

< ol bl / R () |y dy

(3.23)
0
+ oo bz [ Ry (y)|y|*" dy

el

0
S Iloalel™hH40-0 [ R o)y 0= a

—00

0
O P LR TARE / R e,

where both integrals converge. Note in particular that s — 2 + s(1 —n) < —1 in the
second last integral due to the choice of 1 given by (3.22) and the estimate (2.18) for
R}. Inserting (3.21) and (3.23) into (3.17) yields

(h—@(@))|p(z + h) — oz = h)|

< ”SDHZVO . (’x‘aﬁh5+5(1*77) + ’x‘s(lfn)heran + |x’0¢77h1+5(1*77) + ‘$|s(1717)h1+on7)

S ol ool h?

Y

where we have used h < |z|. Thus,

p—(@) \(le(@+h)—o(@—h)
(‘$|an+5(1_7l)> ( hS S ng”nco,aa

uniformly for a € (0, s). Since u — ¢(x) 2 |x|® for small |z| by Lemma 3.6, and h < |z,
this can be reduced to
[z +h) —p(z—h)|

n
2 S el

Splitting the estimate over n we arrive at

(Iso(w+h) —plz— h))”<|<p(:c+h) — oz — h)|>1”

- - < Il2o.

Hence,

h) —p(z —h
lellcoa < sup <\w<w+ )~ ¢la >|>
0<h<|z|<é h

< sup
O0<h<|z|<d

5 ||¢”n00,a7

<|90(w SERGE h)l)”(!s@(x SIEEGE h>|)1—”
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which finally proves

sup
0<h<|z|<é

GELELE h))l" <

uniformly for a € (0, s) with
1
min(0,2 — ;) <n<l1

fixed. This justifies letting o ' s, thereby proving the claimed global s-Holder regularity
of the solution ¢.

In view of of Lemma 3.6, we infer that the s-Hdélder regularity is precisely attained
in the crest, as claimed in (3.7). O

4 Analytic bifurcation for the fKdV equation

In this section, analytic bifurcation theory is applied to the fKdV equation to construct a
global curve of even, periodic and smooth solutions which converge to a highest traveling
wave. In Section 4.1, the existence of local bifurcation branches, composed of small-
amplitude solutions, is proved. Then, in section 4.2, it is shown that the local branches
can be extended to global analytic curves and that a highest traveling-wave solution can
be found in the limit of this curve. By virtue of the theory from section 3, we show
that the limiting wave is smooth outside the crests, and cusped with exactly s-Holder
regularity at the crests where the maximal height of u is achieved.

The organization of the results in this section follows [11, Section 6]. The theory of
analytic bifurcation is due to Buffoni, Dancer and Toland [7].

4.1 Local bifurcation

We consider the parameter s € (0,1) appearing in the symbol (£)® fixed, and set
B € (s,1). Let
1 _
F:(ip,p) = pp = 59 = A%, (4.1)
where

F:C% (Sp) xR — C%3 (Sp),

even even

since A™% maps C’g{,’gn(Sp) onto itself, and Cg\}gn(Sp) is a Banach algebra.

Recall that if X and Y are Banach spaces, and f: X — Y is a function defined on
these spaces, we say that f is Fréchet differentiable at a point zg € X if there exists a
linear and bounded operator A: X — Y with

| f(zo + k) — f(x0) — Ahlly

=0.
0<||hllx—=0 1Al x

If such an operator exists it is called the Fréchet derivative of f at xg, denoted by df [x¢],
and it is unique. Moreover, the Fréchet derivative of a function f: X xY — Z at a
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point (zp,yp) with respect to the first argument is defined as the Fréchet derivative of
f(,;y0) at zg, whenever this operator exists. It is denoted 9, f[xo,yo], and is a linear
and bounded operator from X to Z. The Fréchet derivative of the second argument is
defined analogously. A more detailed account of calculus in Banach spaces can be found
in [7, Chapter 3].

The function F' defined in (4.1) is a polynomial in the variable ¢. It follows that F is
Fréchet differentiable with respect to ¢ and can be written as a convergent power series
in C'g\’zgn(S p). That is, F' is a real-analytic function.

Solutions to the equation

Flo,u) =0 (4.2)
coincide with solutions to the fKdV equation, now with the additional requirement of
evenness, P-periodicity and g-Holder continuity of . Note that there are exactly two
curves of constant solutions to (4.2),

=0 and p=2(u—1).

The implicit function theorem [7, Theorem 4.5.4] states that if (¢g, po) is a solution
to (4.2) and the operator d,F[¢o, f1o] is a homeomorphism, then all solutions to the
problem (4.2) in a neighborhood of (¢, po) lie on a unique curve. Therefore, a necessary
condition for a point (¢o, po) to be the origin of a bifurcation is that 0,F[po, jto] is not
a homeomorphism. An important example of operators that contain such functions are
the Fredholm operators.

We say that a linear bounded and operator A: X — Y, on Banach spaces X and Y,
is a Fredholm operator of index p = n — r if one has

(7) dimker(A) =n < oo, and
(13) im(A) is closed and codimim(A) = r < co.

Here, im and ker denote the image and the kernel of the operator A, and dim and codim
denote (algebraic) dimension and codimension. We now characterize points along the
trivial solution curve of (4.2) in which 9,F is a Fredholm operator.

Proposition 4.1. For every finite period P > 0 and any k € N, there exists a unique

number i, = (ZEV=5 such that O,F[0, ] is a Fredholm operator of index 0 with

dim ker (9, F[0, pp i ]) = codimim(9, F[0, pp ) = 1.
Proof. The function F' is Fréchet differentiable with respect to ¢, and
8<PF[07 /L] = Mld _A_Sv

where id is the identity operator on Cg&gn(S p). Note that A~* is a compact operator on
ng}gn(Sp). This is a consequence of the fact that Holder spaces of a given exponent are
compactly embedded in all Holder spaces of strictly smaller exponents. More generally,
the embedding

CP*3(Sp) «» CP(Sp) (4.3)
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is compact for every s > 0 and any finite P > 0; see [29, Chapter 13 (A.39)]. The
notation < here signifies a compact embedding. Thus,

A~%: CP(Sp) — CPT5(Sp) <= CP(Sp),

and this property is preserved by restricting the operation to the closed subspace of
even functions. As a result of the Fredholm alternative theorem [7, Theorem 2.7.6], this
implies that 0,F[0, i1] is a Fredholm operator of index zero. Furthermore, for all k € N,
the operator O, F'[0, pip ;| maps the basis function ¢p; := cos (%1‘) of C’g\’,gn(Sp) to
zero while all others are multiplied by a positive constant. This is evident from (4.5)
and the fact that (-)7% is strictly decreasing on N. Hence, the dimension of the kernel
and the codimension of the image of 9,F[0, up, ] is 1. O

Fredholm operators play an important role in bifurcation theory, not only since they
are examples of operators for which the implicit function breaks down, but because they
allow certain classical bifurcation results. These include the Lyapunov—-Schmidt reduc-
tion [7, Theorem 8.2.1], reducing the infinite-dimensional problem (4.2) in a neighbor-
hood of a solution (o, f40) to a finite-dimensional problem, and the Crandall-Rabinowitz
theorem, providing the existence of local bifurcation branches emanating from the trivial
solution curve at points in which the Fréchet derivative is Fredholm. Due to Propo-
sition 4.1, we are now in the position to apply an analytic version of the Crandall-
Rabinowitz theorem [7, Theorem 8.3.1] around the trivial solution curve of (4.2).

Lemma 4.2. For every finite period P > 0 and every k € N, the trivial solution curve
of (4.2) has a bifurcation point at (0, up ), and for each bifurcation point there exists
€ > 0 and an analytic curve

Rek = {(ppr(t), npi(t)); t € (—e,€) and (©pk(0), upk(0)) = (0, upy)}

belonging to Coon(Sp) x R, such that F(epr(t), ppr(t)) = 0 for all t € (—e,e). Fur-
thermore, all solutions to the equation (4.2) in a neighborhood of (0, u},.) lie either on
Rpy or on the trivial curve {(0,p); p € R}. ’

Together with the transcritical bifurcation of constant solutions {(2(u—1),u); u € R}
intersecting the trivial curve in (0,1), the curves Rpy, constitute all nonzero solutions

to (4.2) in Co%2.(Sp) x R in a neighborhood of the trivial solution curve.

Proof. By Proposition 4.1, the operator J,F[0, u?k] is a Fredholm operator for every
k € N, and it was shown in the proof that ker(d,F[0, up,.]) is one-dimensional. Further-
more,

ker(9,F[0, upy]) = {7¢pr; 7 € R} and dqu[O:M};,k](lv ©pk) = Ppik

for every k € N. This means that the transversality condition holds, that is,

2 F10, 1) (1,05 ) & im(9,F[0, ppy]),
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and hence that the assumptions of [7, Theorem 8.3.1] are satisfied.

Since the kernel of 0, F[0, p] is trivial for all u # u}, ., for every k € N and p # 1, it
follows from the implicit function theorem that the trivial solution is otherwise locally
unique. O

Remark 4.3. The local bifurcation branches Rpj from Lemma 4.2 can be uniquely
determined by the quotient between k£ and P. Indeed, two solution branches with the
same quotients % = % have coinciding bifurcation points in <%>_5 , and since % is
an integer multiple of P;, the branches both belong to C’g{,’gn(Spl) where uniqueness is
ensured by the lemma.

4.2 Global bifurcation
The Fréchet derivative of the function F' at any point (o, 1) € C%2,(Sp) x R is given by

OpFp, 1] = (1 — p)id —AT". (4.4)
Assuming that ¢ < u, we make the following observations. Firstly, the operator (u—¢)id
is injective. Secondly, it is continuous, because Cg{,gn(Sp) is a Banach algebra. Thirdly,
it is surjective, since for every 9 € Cg{,gn(Sp) there exists ﬁﬁ € Cg{,gn(Sp). We conlude

that for ¢ < p, the operator (— ) id is a linear homeomorphism on Cg\}gn(Sp). On the
grounds of this, we define the set

U:={(p,p) € CHE.(Sp) xR; ¢ < u}.

Moreover, let
S:={(p.u) €U; F(p,p) = 0},

and let S* denote the p-component of S.

In the following, we consider only the first bifurcation point (0, :“73,1) and the cor-
responding one-dimensional basis ¢}, = COS(%’T:U) for ker 0, F[0, N*PJ]- To simplify no-
tation, let (o(t), u(t)) denote the parametric curve (¢p1(t), np1(t)) from Lemma 4.2,
emanating from the point (0, 1} ).

Our goal is now to invoke [7, Theorem 9.1.1], which gives conditions for the when the
local bifurcation branch (¢(t), u(t)) can be extended to a global solution curve. Precisely,
if 0,F[p, p] is a Fredholm operator of index zero in S, all closed and bounded subsets
of S are compact, and p/(¢) # 0 in a neighborhood of the bifurcation point, then there
exists a continuous global curve which extends the local bifurcation branch. We prove
the following propositions.

Proposition 4.4. The operator O,F [, j1] is Fredholm of index zero for every (o, p) € U.

Proof. The proposition is an application of [7, Theorem 2.7.6], which states that if K is
a compact bounded and linear operator and T is a homeomorphism on Banach spaces,
then T+ K is a Fredholm operator of index zero. By (4.4) the operator d,F[p, 1] is
equal to the sum of (i — ¢)id, which is a homeomorphism for every ¢ in U', and A~%,
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which is compact on C’g\}gn(S p). This implies that d,F[p, u] is a Fredholm operator of
index zero. [

Proposition 4.5. Fvery closed and bounded subset of S is compact.

Proof. As in the proof of Lemma 3.4, the equation can be written in the form (3.1). In
view of this, if K is a closed and bounded subset of S, then K! = {p; (p,u) € K} is
a bounded subset of Cnggfl(Sp). Moreover, by (4.3), then K is relatively compact in
Cg{,gn(S p). Since closed and bounded subsets of R are compact, every sequence in K has

a convergent subsequence in the closure of K. But K is closed by assumption. O

Recall that for every even, P-periodic, smooth and real-valued function f, we define
its Fourier cosine coefficients as

P/
=3 [ P; @) cos (*5a) .

> mk
Fla) = I 4 31 cos (P)
k=1
As in (2.16), the action of A7 on f is given by
A f(x) = D;]O + Z <¥ “*[f]k cos (?x) (4.5)

It suffices now to prove that u/(t) #Z 0 on (—¢,¢) in order to extend the local curve
from Lemma 4.2 to a global bifurcation curve. To this end, we parametrize (¢(t), u(t)) in
such a way that [p(t)]; = ¢ (this parametrization corresponds to the Lyapunov—Schmidt
reduction). One can check that

[p(- + P/2)h = —[¢l1 = —t,

by using the identity cos(x — m) = — cos(z), and the periodicity of ¢. This implies that

(P(®)(- + P/2), u(t)) = (p(=t), u(=1))

by the local uniqueness of the curve, and consequently u(t) = u(—t). Since the curve
(¢(t), u(t)) is analytic in a neighborhood of (0, u} ;) by Lemma 4.2, we may expand ¢(t)
and p(t) in terms of

o0 o0
o) = pnt”,  p(t) =) pgnt™.
n=1 n=0
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Inserting this into the fKdV equation and extracting terms of equal power in ¢ yields

A%p1 — pop1 =0, (4.6a)
A pa — pop2 = —%%0%, (4.6b)
A" 03 — pows = pap1 — P12, (4.6¢)
A 04 — piops = pop2 — o103 — %wg, (4.6d)
A" 05 — pows = papr + P23 — P11 — P23 (4.6¢)
Let m; := <@>_S to lighten the notation in the subsequent calculations. Clearly, we

have 9 = pp; = mi, which due to (4.6a) gives p1(z) = cos(25z). Expanding ¢, in a
Fourier series, the equation (4.6b) implies that

G0 m+ 3y~ mledeos (UF) = feos (T = 47
Hence, . 1 4
2(@) = =5~ Ay~ = (B

Now, the right-hand side of (4.6c) is

1 1 s 1 6m
P2 Amy — 1) 8(my — mz)] cos () - [S(ml - mg)} os (7)-

or

Since cos(%5x) is not in the image of the operator on the left-hand side of (4.6¢c), we

infer that
1 1

Lmi—1) By —ma)’

p2 = (4.8)

Using the same principles for as in (4.7), one finds

1 61
cos (?x)

903(1’) - 8(m2 — ml)(TTL3 — ml)

Thus, the right-hand side of (4.6d) is given by
1 1 1

32(1—my)? 321 —my)(mp —ma)  64(my —my)?

1 1 1 Am
(m1 - mg) [32(7711 — mz) + 16(m3 - ml):| €08 (?1')
1 1 1 87

+ (m1 — mQ) [16(7)13 — ml) 64(m1 — m2>:| o8 ( P $),

_l’_
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and one can check that

1 1 1 1
palw) = 1 —m) [32(1 “m0)2 32(1—mi)(my —ma)  64(mq — m2)2}
1 1 ™
T 1 —ma)? [32(7711 “ma) T 16(ms — ml)] cos ()

+ ! [ ! - ! ] cos (8—7Tx)
(m1 —m2)(mg —my) [16(mz —m1)  64(m; — my2) P
The right-hand side of (4.6e) can not have a term with cos(25x), as this function is not

in the image of the operator on the left-hand side. Calculating the cos(%”a:)—part of the
right-hand side of (4.6e) implies that

1 1 1
M= 50 —m)® 3201 — m1)2(my — ma)  64(1 — my)(my — ma)?

1 3

64(m1 - m2)3 64(m1 - m2)2(m3 - ml)

(4.9)

For every s € (0,1), one finds (see Remark 4.6) that uo is nonzero for all but one
unique value P} of the period P, and moreover that ps is nonzero for the value P;.
Therefore,

W #0 on (—g,¢).

In view of Proposition 4.4 and Proposition 4.5, the assumptions of [7, Theorem 9.1.1]
are now satisfied. That is, the local bifurcation branch can be extended globally. We
state the alternatives for the qualitative behavior of this extension given in the theorem.

Remark 4.6. We have not been able to establish analytically the uniqueness of P} or

that u4 is nonzero for this particular value of P. Numerical calculations supporting our
conclusion are included in Appendix A.1.

Lemma 4.7. The local bifurcation branch t — (p(t), u(t)) extends to a global continuous
curve R := {(p(t), u(t)); t € [0,00)} C U, and one of the following alternatives hold.

(i) 1(o(t), ()|l cos xm — 00 as t — oo,
(i) dist(R,0U) = 0,
(iii) R is a closed loop of finite period. That is, there exists T > 0 such that
R = {((t), u(t)); 0 <t < T},

where (o(T), w(T)) = (0, wpy)-

In addition to the above, we mention that [7, Theorem 9.1.1] ensures that JR has a
local analytic re-parametrization at each point. Moreover, if 9(¢1) = 9i(t2) for numbers
i 75 t2, with

ker 9, Flp(t), p(t1)] = {0},
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then alternative (iii) of Lemma 4.7 occurs, and [t; — t2| is an integer multiple of 7'

We end this section with an observation about Galilean symmetry in the fKdV
equation. One can check that if ¢ is a solution to then fKdV equation with wave-speed
i, then ¢ + 2(1 — p) solves the equation with wave-speed 2 — p. Therefore, the Galilean
transformation

(o, 1) = (@ +2(1 = p),2 = p) (4.10)

gives a one-to-one correspondence between solutions to (4.2) with u € (0,1) and solutions
with u € (1,2). Precisely, the trivial curve {(0,u); ¢ € (0,1)} maps to the curve
of constant solutions {(2(x — 1),p); 1 € (1,2)}, and the curve of constant solutions
{(2(p—1),p); p € (0,1)} maps to the trivial curve {(0,u); u € (1,2)}. Consequently,
the bifurcation points along the trivial curve with p € (0,1) are reflected to the curve
of constant solutions 2(p — 1) with p € (1,2), and they must therefore extend to global
curves in the same way. Moreover, by Lemma 4.2, the trivial curve on p > 1 is locally
unique, implying that the curve {(2(x — 1), 1) ; 1 € (0,1)} must also be locally unique.
This symmetry of solutions is illustrated in Figure 2.

4.3 Convergence to a highest traveling wave

Towards invoking [7, Theorem 9.2.2] and the exclusion of alternative (iii) in Lemma 4.7,
we define the closed cone K (in the sense of [7, Definition 9.2.1]) as

K :={p e C% (Sp); ¢ is nondecreasing on (—P/2,0)}.

even

We begin by showing that nonconstant solutions to the fKdV equation which satisfies
¢ < p and belongs to I cannot lie on the boundary of .

Proposition 4.8. In S', every nonconstant function ¢ in R NK belongs to the interior

of IC.
Proof. Let ¢ be a nonconstant solution to the fKdV equation in /' N/, and let 1 € S*
with

HQO - wHCOvﬁ < 67

for some 6 > 0. Both ¢ and v are smooth due to Lemma 3.4, and iteration of (3.1)
shows

lp = lice <6, (4.11)

where § can be made arbitrarily small at the expense of §. Moreover, by Lemma 3.3 we
have
¢ < 0on (—P/2,0), ¢"(0) <0, " (£P/2) > 0. (4.12)

Let a and b be points with —P/2 < a < b < 0, and such that

sup |¢/(z)| > 6
z€[a,b]
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and -
()0” >0 on (—P/Q,(L),
" < _S

® on (b,0).

This is possible if ¢ is sufficiently small, by virtue of (4.12). Then by (4.11), we have
¢’ > 0 on [a, b], which can be seen from

It can be shown in the same manner that ¢ < 0 on (b,0) and ¢” > 0 on (—P/2,a).
We claim that ¢’ > 0 on (b,0). Assume on the contrary that ¢'(xz) < 0 on (b,0).
Then ¢'(0) < 9'(x) < 0, since the second derivative is nonpositive. But this contradicts
the evenness of ¢. With an analogous argument on (—P/2,a), we arrive at ¢/ > 0 on
(=P/2,0). Thus, ¥ € K, and ¢ belongs to the interior of K. O

Having proved Proposition 4.8, the following corollary is now a direct application of
[7, Theorem 9.2.2]. We include here the proof.

Corollary 4.9. Alternative (iii) in Lemma 4.7 does not occur.

Proof. We show that ¢(t) € K\ {0} for all ¢ > 0. Assume by contradiction that there
exists a finite number

t :=sup{t > 0; ¢((0,t]) C £\ {0}}.

Since K is closed, the function () belongs to K. We claim that ¢(%) is constant. Indeed,
if ¢(t) is not constant, then by Proposition 4.8 it lies in the interior of the cone K; a
contradiction.

We argue that ¢(f) = 0. All nonzero constant solutions are on the form 2(u — 1)
with u € R\ {1}. By Proposition 3.2, we know that ]! cannot cross the line y = 1
without at the same time approaching the zero solution. Moreover, by (4.10) the line
{2(p — 1); p € (0,1)} is locally unique. Hence, ¢(f) = 0, and is therefore a local
bifurcation point according to Lemma 4.2.

Thus, p(t) = p}p,, for some k € N. By the discussion below Lemma 4.7 (which is due
to [7, Theorem 9.1.’1]), one can choose a local, real-analytic re-parametrization of the
curve R around t. We let j be the smallest number in N such that the j-th derivative
of ¢ in ¢ is nonzero. Then, in a neighborhood of ¢, one can write

J
o(t) = d ?‘M (t—1)7 +O(t — ). (4.13)
By definition of ¢, one has ¢(t) € K for all 0 < ¢ < ¢, and by (4.13) then

(~1dg[i] € K\ {0}.
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Figure 2: Bifurcation diagram for the FKdV equation (4.2). Local bifurcation curves
(cf. Lemma 4.2) are spread along {(0,u); u € (0,1)} accumulating towards 0, and
reflected to {(2(n — 1),p); p € (1,2)} via the transformation (4.10). The lines
{2(p—1,p); € (0,1)} and {(0,u); p > 1} of constant solutions are locally unique.
The local bifurcation branches extend to global curves (cf. Lemma 4.7), and a highest
traveling-wave solution can be found at the end of the global curve (cf. Theorem 4.12).
Note that the qualitative shape of the global bifurcation curve is not determined. The
depiction here is in line with the numerical result given in Appendix B.1.

Differentiation j times of the equality F'(¢(t), u(t)) = 0 with respect to ¢ in the point ¢
yields ‘ '
(=10, F[0, upild o t] = 0.

We deduce that (—1)’d’ belongs to both ker(D,F|0, up,]) and K\ {0}. Hence,

(-1 ff] = 7cos (),

for some 7 € R\ {0} and some k € N. But since cos (%x) is in K if and only if k =1,
and — cos (%x) ¢ K, there is a segment of R, sufficiently close to ¢, parametrized by
t < t, that coincides with the local bifurcation curve emanating from (0, M*P,l)‘ However,
then there exists countably many pairs (t1 ;,t2,;) with ¢1; \, 0 and t3; 't and with
R(t1,;) = R(t2,;). This implies that the bifurcation branch is an arbitrarily small loop,
contradicting Lemma 4.2. We conclude that ¢(¢) € L\{0} for all ¢ > 0, and consequently
that alternative (iii) from Lemma 4.7 does not occur. O

Having excluded the possibility of the global bifurcation curves forming closed loops,
we now turn to prove that both alternative (i) and (ii) in Lemma 4.7 must occur simul-
taneously in the limit. In this direction, we first show that one can find a convergent
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subsequence along the curve and that it does not tend to the trivial solution with van-
ishing wave-speed.

Proposition 4.10. Any sequence of solutions (pn, pin)nen C S to the fKdV equation
with bounded (pn)nen has a subsequence that converges uniformly to a solution .

Proof. 1t follows directly from the fKdV equation that

eIl ) < 2llll oo @) + 20A @l oo ®y < 201l + Dllpll®)

Thus, (¢n)nen is bounded insofar as (g, )nen is bounded. Furthermore, the sequence
(A™*@n)nen is uniformly equicontinuous. Indeed, since Ky is integrable and continuous,
then

(A= pn)(@) — (A~*g)(5)] = 1 [ e =) = Koty ~ mhent)
< llpnll e /R Ku(e —n) — Koy — )| dn,

which tends to zero when |z — y| — 0. Then by the Arzela—Ascoli theorem [5, Theorem
4.25], the sequence (A™*¢,)nen has a uniformly convergent subsequence. Finally, owing
to (3.1) one obtains the same conclusion for (@5, )nen. O

Proposition 4.11. For fized period P > 0, one has

p(t) 21

uniformly for t > 0 along the global bifurcation curve from Lemma 4.7.

Proof. Towards a contradiction, assume that there exists a sequence of wave-speeds
(tin)nen with g, — 0 asn — 0, and that the corresponding sequence (¢, )nen of solutions
to the fKdV equation belongs to the global bifurcation branch from Lemma 4.7. Then
by Proposition 4.10, there is a uniformly convergent subsequence of (¢, )nen, converging
to some g, which is also a solution to the equation. But since ¢, < u, along the
bifurcation branch, taking the limit one obtains ¢y < 0. This means that max; po(z) =0
by Proposition 3.1, implying that g = 0, by the discussion below Proposition 3.1. Using
(3.4), we gather that
0= lim (jin — gn(P/2)) 2 1
n—oo

a contradiction. Hence, the wave-speed cannot not vanish identically along the global
bifurcation branch. O

We are now in the position to conclude that a highest traveling-wave solution to the
fKdV equation exists at the limit of the global bifurcation branch.
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Theorem 4.12. Both alternative (i) and (ii) in Lemma 4.7 occur. For every unbounded
sequence (tp)nen of positive numbers, there exists a subsequence of (¢(tn), i(tn))nen that
converges to a solution (p, p) to the fKdV equation, with

©(0) = and o € C¥5(R).

The limiting wave is even, P-periodic, strictly increasing on (—P/2,0), and is exactly
s-Holder continuous at x € PZ.

Proof. We show that alternative (i) and (ii) occur simultaneously. Assume first that (i)
occurs, that is,

1(e(8), ()| o6 x — 00

when ¢t — oo. Since u(t) is strictly bounded between 0 and 1, this can only happen if
llo(t)|lco.s blows up. Aiming at a contradiction, suppose that there exists § > 0 with

lim inf inf (u(t) — o(t)(x)) > 0.

t—oo zeR

Then using (3.2), we have for every x,y € R that

_2l(A)() = (ATC) ()] _ (AP0 () — (A°9) (y)]
P(@) = e = T @ el 5 '

Starting with bounded ¢, iteration of A=%: L>® — C° and A~%: C% — CP*s yields
@ € C% for some o > 3. But this contradicts ||o(t)]|co.s — oo.

Conversely, suppose (ii) occurs. That is, there exists a sequence (@n, fin)nen With
¢, > 0on (=P/2,0) and ¢, < p, for all n € N, and

Jlim|n = @n(0)] = 0.

Towards a contradiction, assume that ,, remains bounded in C%#(R). Taking the limit
of a subsequence in C*F’ (R) for s < 8’ < 3, the limit must be exactly s-Holder regular
at the crest by (3.7), and we arrive at a contradiction to the boundedness of the sequence
in COA(R).

We conclude that alternative (i) and (ii) from Lemma 4.7 both occur. By Propo-
sition 4.10 there exists a subsequence converging to a highest periodic traveling-wave
solution of the fKdV equation, with properties as given in Section 3. U

5 Generalizations of the fKdV equation

In this section, we consider a generalization of the fKdV equation on the form

1
—pp + 5902 + Ly =0, (5.1)

where L is a Fourier multiplier operator with an inhomogeneous symbol m(§), and a
corresponding convolution kernel K. Note that taking L = A~ gives the fKdV equation
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studied in the previous sections. We discuss characteristic features of solutions to the
equation (5.1), and examine conditions on the symbol m(&) that promote traveling-wave
phenomena similar to that of the fKdV equation proved in Section 3 and Section 4.
In Section 5.1, we discuss the balance between dispersion and nonlinear effects in (5.1)
and introduce a more general class of Fourier multipliers, which has smoothing prop-
erties comparable to the Bessel potential operator A~*%, and of which A~ is a special
case. Then, in Section 5.2, we summarize conditions for complete monotonicity of the
convolution kernel K.

The material presented here is organized as a discussion around the equation (5.1),
based on the framework which has been laid out in the previous sections. We focus
on general concepts, and most technical proofs are omitted. Sources are mainly [4], for
the theory of Fourier multipliers and Besov spaces, and [11], for completely monotone
convolution kernels.

5.1 Fourier multiplier symbol classes

In studies of equations akin to (5.1), one often encounters the concept of balance between
dispersion and nonlinear effects. The travelling-wave assumption u(t,x) = ¢(x — ut) in
(1.14) restricts solutions to waves of a steady profile. There has to be a certain balance
between the terms in the equation for it to allow such solutions, and the properties of
the solutions will naturally reflect this balance.

The nonlinear term ¢? is deregularizing with regards to solutions. As an example,
consider the inviscid Burgers equation

up + uug = 0,

which integrates, under the traveling-wave assumption, to the two first terms of (5.1).
This equation has no nonconstant traveling-wave solutions. On the other hand, as we
have seen, adding a smoothing dispersive term L the equation may admit nonconstant
traveling waves.

The principle of this thesis is to fix the order of the nonlinear term in the equation
(5.1) and to investigate the relationship between the strength of the dispersion and the
regularity of traveling-wave solutions of the equation. We mention that one could also
have fixed the dispersion and varied the nonlinearity [12, 15, 24|, or let the orders of
both be parametrized [35].

Theorem 4.12 shows that when the order of the symbol for the Bessel potential
operator is —s, then there exist highest traveling-wave solutions to the fKdV equation
that are cusped with s-Holder regularity. In other words, weaker dispersion requires
sharper crests of solutions. Let us briefly reflect on this result.

As we have seen, the operator A™% is smoothing in the sense that it increases the
regularity of functions on which it acts. Arguing heuristically, the smoothing also results
in a certain leveling of functions. Indeed, the convolution of a function in a point is the
average of the function weighted by the convolution kernel centered in that point. It is
this leveling of solutions that counter the effects of the nonlinear term in the equation
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and permits traveling-wave solutions. But whereas the smoothing effects of A7 for
a given order —s always increase the regularity of functions by the same amount, the
effect of the leveling depends on the shape of the functions themselves. When the crest
of a solution is sharper, leveling becomes more prominent, and vice versa. This gives
an intuitive explanation for the observed relationship between dispersion and regularity
of solutions: When the dispersion is weak, the crests of solutions are sharp, promoting
sufficient leveling so that the equation is satisfied.

We ask which operators L in (5.1) have smoothing properties similar to that of A75.
In the direction of understanding how Fourier multipliers act on Hélder—Zygmund spaces,
we now introduce the more general Besov spaces. A crucial tool in this regard is the
Littlewood—Paley decomposition which is a dyadic partition of unity used for spectral
decomposition of functions.

Let o € D(R) with supp o C [—2,2] and p({) =1 on [¢| < 1. Now define

9(€) = 0(§) — 0(26)

with support on 1/2 < [£] < 2. We set Jg = g and ¥,(§) = 9(277€) for every j > 1, with
support on 2771 < |¢] < 27FL. The collection (9;);en, norm form a partition of unity

> Uie)=1, ¢er

Jj=0

A detailed explanation of this construction can be found in [4, pp. 59-61]. In view of
the above, every function f € S(R) can be written as

f=2%@m

Jj=0

where we have used the Fourier multiplier notation from (2.14). This is called the
Littlewood—Paley decomposition of f, and it naturally extends to the class of tempered
distributions §’(R) via duality over S(R).

Following [4, Definition 2.68], the inhomogeneous Besov space BS , with s € R and

P.q’
p,q € [1,00], is defined as the collection of tempered distributions u with

< 00,

lullsg,, = H(Qﬂ‘ﬂwj(D)uuLp)jez
L9(Z)

where || - [|g4(z) denotes the usual ?-norm of sequences. Although perhaps not immedi-
ately evident from the definition, p is an integrability parameter and s is a regularity
parameter analogous to those of the usual Sobolev spaces. The parameter ¢ gives ad-
ditional information about the precise regularity of functions belonging to B, ., but we
shall not further pursue the interpretation of this here. Important to us is the fact that
the Zygmund space C* with a > 0 coincides (equivalent norms) with the Besov space
B, o see [30, Section 2.6.5] for justification of this, and a comprehensive review of
related function spaces.
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There is a convenient way of characterizing Fourier multiplier operators which are
smoothing on the scale of Besov spaces. Indeed, it can be shown that if a is a smooth,
real-valued function which, for some r € R, satisfies

()] S (1+ 1€l (5:2)
for all ¢ € R and every k € Ny, then
a(D):B,,— By "

is a linear and bounded operator [4, Proposition 2.78]. The collection of symbols which
satisfy (5.2) is denoted by S™.

Note that the symbol (£)~° for the Bessel potential operator A™° belongs to the
symbol class S7°. As such, it is a smoothing operator of order —s in agreement with
Proposition 2.6.

Let us now summarize the implications of the above regarding solutions to the equa-
tion (5.1). Assume that the symbol m({) of the operator L is inhomogeneous and
belongs to some symbol class S™" for r € (0,1). Since then L is smoothing on the scale
of Holder—Zygmund spaces, it follows by bootstrapping the equation

p=p—\Vp*—2Lp

that all solutions that are strictly bounded from above by g are smooth. This is the
same argument that was used in Lemma 3.4 for the fKdV equation. The equation (5.1)
has constant solutions

=0 and ¢ =2(u—m(0)),

and the Frechet derivative of the function

1
F:(p,p) = pp — §s02—Ls0,

which maps CSV*EH(S p) X R to CSV’EH, is

OpF o, p] = (1 — ) id —L.

Due to the compact embedding (4.3), this operator is Fredholm on every subset of
C’g{,gn(Sp) with ¢ < p and it has a one-dimensional kernel precisely when there exists
a unique wave-speed p for which p = m(%), for some k € N and period P. Under
the assumption that such a p* exists, we can apply [7, Theorem 8.3.1] and obtain local
analytic bifurcation curves emanating from the trivial solution curve of (5.1) in the point
(0, u*). This generalizes Lemma 4.2 for the fKdV equation, and solutions belonging to
this curve are smooth.

Note that a sufficient condition for a one-dimensional kernel is that the symbol m(&)
is monotone. We mention that it is possible to bifurcate solutions even in the case of
higher-dimensional kernels, and done in [14] for the capillary-gravity Whitham equation.
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In the construction of a global solution curve which extends the local bifurcation
branch, it was used in Lemma 4.7 that p/(t) # 0 in a neighborhood around the point
from which the local curve (¢(t), pu(t)) emanates. The formulas (4.8) and (4.9) for the
coefficients of the series expansion of u(t) hold for general symbols in S~", and if they
can be shown to be nonzero, a global bifurcation result holds in this case as well. Indeed,
by [7, Theorem 9.1.1], the only condition left to verify is that every closed and bounded
subset of S is compact, but this follows immediately by the proof Proposition 4.5 using
the smoothing properties of L.

5.2 Properties of the convolution kernel

In the exclusion of the global bifurcation curve for the fKdV equation being a closed loop
we used information about the signs of the first and second derivatives of solutions. This
again depended on information about the convolution kernel of the operator present in
the equation. We now investigate what can be said about the convolution kernel of more
general smoothing operators.

First, note that whenever m(§) belongs to some symbol class S™", then the convo-
lution kernel of the corresponding Fourier multiplier operator is smooth outside of the
origin [28, Proposition 2.1]. Indeed, let K be the convolution kernel associated with

m(&), given by
K(z) = % /R m(&)eE de .

Then, for every j € Ng we can pick k € Ng with k& > j — s+ 1 so that taking j derivatives
with respect to = of the identity

PR (a) = 3= [ ¢#Dkm()de.

T on

and using the property (5.2) of m(§), yields an absolutely convergent integral. Hence,
K € C*(R\ {0}).
Assume now that m(&) is even and

)l\u\rr%)g()\) < 00 and Alglgog()\) =0
holds for the function g = m(y/*), and that g has an analytic extension to C\ (—o0, 0]
with
Im(z)Im(g(z)) <0.

Then, by the theory laid out in [11, Section 2], and more precisely by the argument of
Proposition 2.3, the convolution kernel K associated with m(€) is a completely monotone
function.

In particular, this implies that both K, and Kp as defined as in (2.10), are strictly
positive and strictly increasing for negative . Then Lemma 2.5 holds also in this more
general case. On the grounds of this, it can be shown that a nodal characterization
of periodic solutions to the equation (5.1) holds, which means that we are also able to
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exclude loops in the global bifurcation branch, as was done for the fKdV equation in
Corollary 4.9.

Remark 5.1. It would be sufficient to have nontrivial 2-monotonicity of the kernel, that
is, the kernel is strictly positive, has a strictly negative derivative, and is strictly convex
on (0, 00). However, there is to our knowledge no straightforward way to identify symbols
of 2-monotone kernels. We mention that a characterization of the Laplace transform is
known; see [34, Theorem 10].

We end this discussion with some remarks on the regularity and decay of the kernel
K. Firstly, if m(§) is analytic on a strip containing the real axis, then then the clas-
sical Paley-Wiener theorem [19, Chapter 7] applies, and one can conclude that K has
exponential decay. Secondly, it is possible to estimate the singularity in the origin of the
kernel. Indeed, due to [28, Propositon 2.2] we have

K (2)] < |27, (5-3)

whenever m(§) belongs to the symbol class S™" with r» € (0,1). In order to obtain the
precise regularity estimates for solutions similar to that of Lemma 3.6 and Theorem 3.8,
and thereby to ensure the convergence of the global bifurcation branch to a highest wave,
it would, in view of Proposition 2.1 and (5.3), be a sufficient condition that the symbol
can be written as

m(§) = C&)~" +m(§)

where C' is a positive constant and m(€) is a symbol which belongs to a symbol class
ST+ for some € > 0.

6 Traveling-wave solutions to the fDP equation

We now turn our attention to the fDP equation (1.15). Recall that it is given in (1.18)
* 1, 3
_MQP+7QP2+7A_8902 = K,
2 2
for s € (0,1) and x € R. Compared to the fKdV equation, the main differences are that
the nonlocal term is nonlinear and that we work with an arbitrary real constant x on
the right-hand side.

This section is a study of the regularity of traveling-wave solutions to the fDP equa-
tion. In Section 6.1, we give ranges for the parameter s that permit nonconstant periodic
solutions and show that such solutions must always cross the largest of the constant so-
lutions to the equation. In Section 6.2, we prove that all solutions which are strictly
smaller than p are smooth, and that nonnegative solutions that attain the maximal
height are exactly s-Holder regular at the crest.

We mainly follow the framework that was used for the fKdV equation above. Details
are sometimes omitted when proofs are the same as for the fKdV equation. The param-
eter s € (0,1) is held fixed and the fDP equation refers to the equation (1.18) with this
value of s.
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6.1 Periodic traveling waves

We begin with an investigation of which role the integration constant x on the right-
hand side of the fDP equation plays regarding the existence of solutions. The following
proposition and subsequent lemma are based on [3, Theorem 3.1]. Note that if ¢ solves
the fDP equation with wave-speed pu, then —¢(—z) is a solution to the equation with
—u. Hence, it suffices to consider p > 0.

Proposition 6.1. Let i > 0 and P < oo. Then for the fDP equation with a parameter
Kk € R,

2
(i) if k <0, all solutions are nonnegative, and for k < —% there are no real solutions,

(ii) if k > p?, there are no nonconstant P-periodic solutions.

Proof. (i) Let k < 0. Then the left-hand side of (1.18) is also nonpositive, which is
possible only if ¢ is nonnegative. If kK = 0, then ¢ = 0 is a valid solution, otherwise ¢ is
strictly negative by the monotonicity of A=% (Corollary 2.2). Writing the equation as

(1= 9)? =25+ p® = 3A7°¢?, (6.1)
and using min p? < A7*¢?, we obtain
(1 —¢)* < 25+ p? — 3min(p?).

In particular,

min p(min g — p) < K, (6.2)
where we have used min(¢?) = (min ¢)?, in view of ¢ being nonnegative. This equation
has no real solutions when s < —%2, and when xk = —“; it has only the constant solution
o=k

(ii) First, we claim that
max ¢ > | min ¢ (6.3)

for P-periodic solutions whenever x > 0. In the direction of a contradiction, assume
that max ¢ < |mingp|. If ¢ is to take negative values on some intervals, it is smooth
and bounded there (cf. Lemma 6.4). So there exists zo with ¢(zp) = minp. Observe
now that the function —up + %(pz attains its maximum in xg, since ¢ is minimal there,
and max ¢ does not exceed | minp|. But as ¢ is a solution to the fDP equation with
x> 0, we deduce that A~%p? is minimized in zg. Consequently, A~*¢? is minimized in
zo while at the same time g02 is maximized in xq; a contradiction.
Let x > pu?. Arguing as for (6.2), we obtain

max @(max g — ) > K,

where we have used max(¢?) = (max p)? as a consequence of (6.3). If k = pu?, then p =
is a valid solution, otherwise ¢ must take values above u. If ¢ > p is a nonconstant
solution, then the left-hand side of (6.1) attains its minimum in the minimum of ¢, while
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the right-hand side attains its minimum where A~%¢? is maximal. But ¢? cannot have
a minimum where A~%¢? is maximal, meaning that such solutions do not exist. If on
the other hand ¢ takes values both above and below pu, then for each interval on which
¢ is strictly larger than s, the term A~*¢? is minimal where ¢? is maximal. As before,
this is not possible. ]

We assume from now on that
2

—% <K< p (6.4)

such that nonconstant periodic solutions to the fDP equation may exist. Such solutions
intersect the value of the largest constant solution of the equation, as the following
lemma shows.

Lemma 6.2. Let p > 0 and P < oo. Then every nonconstant and P-periodic solution
© to the fDP equation satisfies

min ¢ < < max . (6.5)

A+ 12+ 8k
4

Proof. First, observe that the fDP equation, with parameters p and x satisfying (6.4),
has exactly two constant solutions

w1+ 8k
— 4 (6.6)

Let ¢ be a solution satisfying the assumptions above. Since

A79? > A7 (min(¢?)) = min(p?),

A% < A7%(max(yp?)) = max(p?),
there exist both points in which p? > A~%y? and points in which ¢? < A=*¢?. Hence,
the two terms must cross at some point; there exists xq such that ¢?(zg) = A7(¢?)(z0).
Inserting this in the fDP equation one sees that ¢(zg) takes the value of one of the
constant solutions (6.6) of the equation. From the proof of Proposition 6.1, we know
that max¢ > |min | for every choice of k. This implies that the maximum of ¢?

is attained in the maximum of ¢. Consequently, ¢(xg) takes the value of the largest
constant solution, and (6.5) holds. O

We now prove a lemma concerning the nodal properties of solutions to the fDP
equation. Note that nonnegativity of solutions is assumed: this is further commented
on in Section 7.2.

Lemma 6.3. Every P-periodic, nonconstant, nonnegative and even solution ¢ € C*(R)
to the fDP equation which is nondecreasing on (—P/2,0) satisfies

o' >0 and @ <p
on (—P/2,0). If in addition ¢ € C%(R), then
©"(0) <0 and ¢"(£P/2) > 0.
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Proof. By assumption, the solution ¢’ is odd, nontrivial and nonnegative on (—P/2,0).
Then, since ¢ is even, nonconstant and nonnegative, the product o’ satisfies the as-
sumptions of Lemma 2.5. Differentiating the equation gives

(=) =30"°(pp') >0

on (—P/2,0), and we conclude that ¢’ > 0 and ¢ < p on (—P/2,0).
Now assume that ¢ € C?(R). Differentiating twice we get

(1= @)¢" = 307°[(p')] + ()%,
Evaluating this equation in x = 0 yields

P/2
(1= ©(0))¢"(0) =6 i Kps(y)le(y)e' ()] dy,

For some ¢ > 0, splitting the integral and using integration by parts, we get

P/2 € P/2
Kps()le)¢' (y)] dy = </0 +/ >Kp,s(y)[s0(y)s0’(y)]’dy

’ € P/2
= [ Kl 0 dy+ | Ketwpie )|
P/2 T

- Kp ()W) (y) dy .

The first term vanishes,

15 €
li K '(y)] dy | < i ldy =0
lim !/0 PsWleW)e' )" dy | < Egg)/o ly|*~tdy =0,
due to ¢ € C? and (2.11) for the period kernel. The second also term vanishes since
¢'(P/2) = 0, and since ¢'(¢) < e due to ¢/(0) = 0. The last term is negative for
each ¢ > 0, since we have proved both ¢’ < 0 and K, < 0 on (—P/2,0), and ¢ is
nonnegative. Moreover, it is decreasing as € “\, 0, so passing to the limit we obtain

P/2
(= ¢(0)¢"(0) = —6lim | Kp,(y)e(y)¢(y) dy <0.
S
This implies ¢”(0) < 0. The inequalities ¢”(+P/2) > 0 can be proved in the same way
as in Lemma 3.3, using the minor modifications above to deal with the nonlinear term
A=5p2. O

6.2 Regularity of traveling waves

The following lemma shows that solutions ¢ < p to the fDP equation are smooth.
This parallels Lemma 3.4 for the fKdV equation and relies on the same bootstrapping
procedure set in the scale of Holder-Zygmund spaces.
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Lemma 6.4. Assume that o < u is a solution to the fDP equation. Then ¢ is smooth
on every open set where ¢ < .

Proof. The fDP equation can be written as

©=p— 2+ 2k —3A5p2, (6.7)

If ¢ < p uniformly on R then p? 4 2k > 3A~%¢?. Therefore, the mapping (6.7) is
continuous from L™ to C* and from C® to C“"$. Iteration of this map yields smoothness
of ¢. Proceeding as in Lemma 3.4 for an open interval U on which ¢ < p completes the
proof. O

Traveling-wave solutions to the fDP equation have similar features as the waves for
the fKdV equation. Solutions which are strictly smaller than g are smooth, but the
smoothness may break down when the wave-height approaches p. To show that a loss
of regularity occurs for highest waves and to prove the exact regularity at the crest, we
have to deal with the nonlinear term A~*¢?. To this end, we assume that solutions are
nonnegative.

Proposition 6.5. Let ¢ be an even, P-periodic, nonconstant and nonnegative solution
to the fDP equation that is nondecreasing on (—P/2,0) with ¢ < p. Then ¢ is strictly
increasing on (—P/2,0).

Proof. Taking the difference of the fDP equation evaluated in two points z and y, one
obtains

(21 = p(x) = eW))(@(@) = () = 3((A7°¢?)(z) — (A7¢*)(y)). (6.8)
In the same way as in (3.3), it can be shown that
(A% (z + h) = (A™°¢?)(z — h)

0 5 5 (6.9)
- / o UPs(@ =) = Koo ) +1) = 2y~ W) dy.

Assume that z € (—P/2,0) and 0 < h < 1. Then integrand in (6.9) is nonnegative and
positive on some set of nonzero measure. Indeed, the difference of the periodic kernels
is positive as shown in the proof of Lemma 2.5, and due to ¢ being nonnegative and
continuous it suffices to observe that both factors in

@*(y+h) —o*(y —h) = (ply + h) + oy — h)(e(y + h) — oy — h))

must take positive values at the same time on some interval of nonzero measure. Thus,

(2u —p(z +h) —p(x —h))(p(z+h) —p(x—h)) >0

for every x € (—P/2,0), which implies that ¢ is strictly increasing on (—P/2,0). O
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Proposition 6.5 implies that solutions satisfying the assumptions are smooth on
Sp\ {0}. The next lemma provides an upper bound for the regularity in the origin
for solutions that are permitted to achieve the maximal wave-height of . This corre-
sponds to Lemma 3.6 for the fKdV equation.

Lemma 6.6. Let P < oo, and let ¢ be an even, P-periodic, nonnegative and nonconstant
solution to the fDP equation that is nondecreasing on (—P/2,0) with ¢ < p. Then

i o(P/2) 2p 1. (6.10)
Moreover, there exists € > 0 such that
b= (@) Zp ol (6.11)

uniformly for |z| < e.

Remark 6.7. As in Section 3, we state the lemma for the periodic case and remark that
the estimate is uniform in P for large periods, so that the exact regularity at the crest
given in Theorem 6.8 holds both in the periodic and in the solitary case.

Proof. We have the identity
(A7) (x + h) = (A% (x — h)
= /_(;/2(KP,S($ —y) = Kps(z +9))(¢*(y + h) — ¢*(y — h)) dy
for every h € (0,P/2). Let z € (—P/2,0), and note that the integrand in the above is
nonnegative. Differentiating the fDP equation now yields
(1 = ()¢ (x) = 3(A™*¢?) ()

_ 3 (AT @+ h) — (A7) — b))
h—0 2h

.30
> lim inf / (Kps(z —y) — Kps(z+9)(©*(y + h) — 9*(y — h)) dy
h—0 2]1 —-P/2

0
> 6/ (Kps(xz —y) — Kps(z+y)e(y)¢' (y) dy,
—P/2

where we appeal to Fatou’s lemma in the last step. Fixing xg € (—P/2,0) and letting
x € [x0,0), one has for z € [—P/2, x] that

(1= 9(2))¢' (x) > (1 — p(x))¢ ()

0
> 6 / (Kpa(@ —y) — Kpa(z +4))o)¢ (4) dy
—P/2

zo/4
6 / (Kpa( — ) — Kpa(z +)o(u)¢ () dy
xo/?

v

vV

zo/4
/ |, (rale =) = Kpo + )2 ) dy
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where in the last step we have used that ¢ is strictly positive on (z¢/2,z¢/4) due to ¢
being nonnegative and strictly increasing on (—P/2,0). The estimates (6.10) and (6.11)
now follow by identical arguments to those in the proof of Lemma 3.6. O

Given the upper bound (6.11) for the regularity of solutions to the fDP equation with
©(0) = p and satisfying the assumptions of Lemma 6.6, the question is now whether this
bound is optimal. It turns out that it is and that solutions belong to C%*(R). Although
the proof of the following theorem is similar to the proof of Theorem 3.8, we write out
most details for the sake of clarity.

Theorem 6.8. Let ¢ < p be an even and nonconstant solution to the fKdV equation
that is nonnegative and nondecreasing on (—P/2,0) with p(0) = p. Then ¢ € C*$(R).
Moreover,

w—o(x)~ x| (6.12)
uniformly for |z| < 1.

Proof. The assumption ¢(0) = 1 means that (6.8) can be rewritten to

(1 = o(@))* = 3(A™9*)(0) = 3(A™*¢?)(2)
3

=5 [ (Kala ) + Ko~ ) = 2K.0)((0) ~ (0 dy.
R

For the second factor in the integrand, note that

0% (@) = ()] < 2llpllz=le(z) — o),

so that for bounded ¢ we have
(11— o(2)? < /R Koo +9) + Ka(z — ) — 2K,()] (0(0) — 0(y)) dy
< /R [z +y* "+ ]z — " =20y (0(0) — @(y)) dy

n /R |Ko(z +y) + Ko(z —y) — 2K(y)|(2(0) — o(y)) dy (6.13)

< |x|3/ [T+ ¢ 1=t — 25| de
R

4 Jaf? / R2(y) dy
R

S el

Consequently, ¢ is at least §-Holder regular in 0. Inserting |u — ¢(y)| < ly|2 in (6.13)

yields %/ 22+S—H61der regularity of ¢ in 0, and this procedure may be iterated to prove

that ¢ is a-Holder regular in 0 for every a < s.
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We now show s-Holder regularity in = 0. From the proof of Theorem 3.8 we know
that there exists a constant C, independent of «, such that

/R Kz +y) + Ko(z — y) — 2K, (9)|ly] dy < Cla|2®

for all || <1 and all 0 < a < s. Hence,

3

(0) = o(a))? = 5 [ (il 0)+ Kl = 9) = 20.00)) (£20) = () dy

S lelllelege [ |l )+ Koo = 9) = 2Kl dy
< [elgganlal™,

where it was used that ¢ is a-Holder continuous in the origin for every a € [0,s) as
shown above. Dividing by |z|>* and passing to supremum yields

[30}08’0‘ SJ 1

uniformly over a € [0,s). We let a s, and obtain the estimate (6.12).
We claim that ¢ € C%%(R) for every a < s. In view of the assumptions of the
theorem and the smoothness of ¢ outside of the origin, it suffices to prove

h) — oz — h
sup o+ h) —ple—m) _

0<h<|z|<§ he

for some 6 > 0, as shown in the proof of Theorem 3.8. So assume that 0 < h < |z| <
for some § < 1, where we let x be positive without loss of generality. We have

(p(z +h) = p(z —h))®
< |(2p — oz + h) — o(z — k) (p(z + h) — o(z — h))| (6.14)
= 3|(A=p?) (@ + h) — (A~ *0?)(@ — h).

The Hélder and Zygmund spaces are Banach algebras, and A~* maps L>® to C%* and

C% to C**5. Thus, ¢ is at least a-Holder regular for every o < s if s < 1/2 and o = 1/2
if s > 1/2. So assume that s > 1/2 and that p € C%* with a4+ s > 1. Then we have

[(A™*Q?) (@ + h) — (A7) (z — h)| S hlters),
with £ € (x — h,x + h) due to (3.14). Inserting this in (6.14) yields

h’ﬂ{a—&-s}

21— (@ +h) —p(x —h)

hla + h|{ots} (6.15)
~ o+ b+ |z — hlf
< hlz + h|* !

(2 +h) =gz —h)| S
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where we have used the estimate (6.11) from Lemma 6.6 in the second step, in view of
h < x < with ¢ at our disposal. Interpolation between (6.15) and the exact s-Holder
regularity in the origin over a parameter n € (0, 1) yields

[p(x +h) =l —h)] _ lp(@+h) —p@—h)|
h1 - h7
< |z 4 hMemDHA=ms

n
=z +h)| "

and choosing n = this is bounded. Hence,

1+j—a’
p(z + h) — p(z — h)| S hTFes,

and the argument may be iterated to obtain ¢ € C%%(R) for every a < s.
We now show that ¢ € C%*(R). To this end, note that

0
(A°0*)(@+h)—(A~°¢*)(z—h) —/ (Ks(y+h)—K(y—h)(©*(y—z)— o*(y+2)) dy,

—00

so that

(= (@) +h) —p(x —h)
< |@2p — oz +h) =z — h))(p(z + h) — p(z — h))]
= 3|(A™%¢*)(z 4+ h) — (A™°¢?)(z — h)|

0 (6.16)
< 3/ Ko(y+B) — Ka(y — W) ||o?(y — 2) — 62y + )| dy

—00

0
SﬁllsOHLoo/ |Ks(y+h) — Ks(y — h)|[p(y —2) — oy +2)|dy.

—0o0

Let 0 < h < |z| < 6 for some § < 1. For the factor |o(y — z) — p(y + x)| in the last line,
we interpolate between the global a-Hélder regularity (o < s)

oy — ) — ey + 2)| < llellcoe min(lz]*, [y[*)

and the sharp s-Holder regularity in the origin
o(y —2) = oy + 2)| S [pleos max([z], |y[*).
This yields

p(y = 2) = oy + )| S ol fro.0 min(|a], |y))*" max(|], |y)** ", (6.17)
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with (a,n) € (0,s) x [0, 1]. Inserting (6.17) in (6.16), we have
(n = @(@))lp(z + h) — oz = h)|

0
S llelléoa / [Ks(y + h) — Ks(y — h)|min(|], [y])* max(|z], [y])* " dy

< ol /

—0o0

_‘x

|
ly + A" — |y — A7y dy
0
gl gl / ly + R — ly — B |yl dy

~lal
~lal
+ llelléo.a bl Ryl dy

—00

0
el lal [ Ry (y)ly|*" dy,

il

where we have split the kernel according to (2.17). Choosing the interpolation parameter
1 such that

1
n>2——, (6.18)
s
we obtain

(1 —o(@))|p(@ + h) — p(x — h)|

0
< |’¢||go,a|$|a”hs+s(l_”)/ 4+ 1570 — [e — 1Y [0
—0o0
0
HelBaalel PRt [ 4170 = o 1ot
-5
0
+ ol o |10 / R (#h) [t d
— o

0
P L TARE / R e

S ol o.alz TR,

(e ) (=) < o,

uniformly for a € (0, s). Furthermore, since p — p(z) 2 |z|® for |z| < 1 by Lemma 6.6
and h < |z|, this can be reduced to

lo(x 4 h) — o(z — h)|
P ey S llellEo.a-

Hence,

Splitting the estimate over n we arrive at

<|<p(:c + h)h—ago(a: — h)y>"<\so(x + h)f;tp(x - h)\>1—n <ol
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which proves

sup
0<h<|z|<d

GELELE h))l—” <

uniformly for a € (0, s), with
. 1
min(0,2 - -) <n <1
s

fixed. We let a s and deduce that ¢ belongs to C%*(R).
Combined with Lemma 6.6, this also proves (6.12), that is, the s-Holder regularity
of ¢ is attained in the crest. O

7 Analytic bifurcation for the fDP equation

In this section, we develop bifurcation theory for the fDP equation (1.18). In Sec-
tion 7.1, it is proved that there exist local analytic bifurcation branches consisting of
small-amplitude, periodic and even solutions to the equation emanating from the largest
curve of constant solutions to the equation. The local branches are in Section 7.2 shown
to extend to global solution curves, and alternatives for the qualitative behavior of these
curves are given. Moreover, we discuss the existence of a highest traveling-wave solution.

The organization of the results parallels Section 4 for the fKdV equation, and we
rely on the theory of analytic bifurcation from the monograph [7]. Inspiration has also
been taken from [3].

7.1 Local bifurcation

Consider the parameter s € (0,1) fixed, set 5 € (s,1), and assume that the period
P > 0 is finite. Recall that we restrict our attention to g > 0, since antisymmetric
solutions —p(—x) exist for —u whenever solutions ¢(x) exist for the fDP equation with
wave-speed p.
Let the function
G:C% (Sp) x R — C%P (Sp)

even even
be defined as
1 2 3 —s, 2
Gt (pop) = pp = 59" = SATQ" + k.

We let y(u) denote one of the constant solutions to the fDP equation, and consider the
function

G(9, 1) = G(v(p) — b, 1)
= (7(1) = 1)+ 3 (WA — SATG — 2%

where the relation
¢=(p) - (7.1)
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implies that constant y-solutions of the problem

Glp,p) =0 (7.2)
maps one-to-one to trivial ¢-solutions of the problem
G(¢, 1) = 0. (7.3)

Moreover, if (¢, 1) is a solution to (7.3), then (¢, ) solves (7.2), and consequently also
the fDP equation.
It is favorable to set

A+ + 8k

v(p) =,

seeing that nonconstant periodic solutions have to cross this branch of constant solutions
as shown in Lemma 6.2. Moreover, the Fréchet derivative of G with respect to ¢ is

0G0, 1] = (v() — p)id +3y() A, (7.4)

and in order to ensure the existence of bifurcation points along the trivial solution curve
of (7.3), the kernel of 85G0, 1] has to be nontrivial. That is, there must exist k € N
such that
<@>—s _ l;u — ’7(“)
P 3w
This equation has solutions only if v(x) is chosen to be the largest constant solution
to the fDP equation. The following lemma shows that in this case, local bifurcation
curves do exist. We appeal to [7, Theorem 8.3.1], which is an analytic version of the
Crandall-Rabinowitz theorem.

(7.5)

Lemma 7.1. Assume that —%2 <K< p2.

(i) If k < 0, then for every P > 0 and every k € N with % < \/32/s — 1, there exists
a unique {ip) € (v —8k, 00),

(i) if k > 0, then for every P > 0 and every k € N with % > \/32/5 — 1, there exists
a unique [, € (y/K, 00)

such that (’y(u},k),u*P?k) s a bifurcation point for G in each case. For every such point,
there exists € > 0 and an analytic curve

Qpp = {(opr(t), npi(t)) s t € (—e,€)} C Coln(Sp) x R
such that G(op(t), upk(t)) =0 for allt € (—¢,¢) and

(#pk(0), npi(0)) = (v(kp), HPk)-

For every k # 0, the curves Qpy, constitute all nonconstant solutions of (7.3) in a
neighborhood of the two constant solution curves of the equation.

60



Proof. Since solutions of the problem (7.2) map one-to-one to solutions of (7.3), it suf-
fices to establish the existence of local bifurcation curves éRk of G. We check the
assumptions of [7, Theorem 8.3.1], namely, that there exist {1p, such that 8¢C~¥ [0, ,u’jgyk]
is a Fredholm operator of index zero with one-dimensional kernel spanned by ¢7,, and
that the transversality condition 7

0o Gl0, i) (S 1) & im(Dp G0, 1)

holds.

The Fréchet derivative of G given by (7.4) is a sum of the scaled identity and the
scaled compact operator A™%. As we have seen before, this implies that 8¢é[0, p) is a
Fredholm operator of index zero. For given P and k, using the characterization (2.16)
of how A~ acts on the basis functions cos(25z) of Cg{,gn(Sp), the kernel of 8¢(~¥ [0, u] is
one-dimensional precisely when there exists a unique p such that the equation (7.5) is
satisfied. That is, when there exists y such that

The right-hand side of this equation tends to v/3%2/5 — 1 when u — co. When & < 0,
the right-hand side is always larger than \/32/ — 1, when s > 0, the right-hand side is
always smaller than 1/32/5 — 1, and equality holds if x = 0. This shows that solutions p
to (7.5) are only possible for the ranges of P and k given in the lemma. For such values
of P and k, solutions ,u*P’k exist and are unique. Indeed, the function

1p—~(p)
v(w)

is continuous and monotone in j for every x, and takes values in (1,1/32%/s — 1) for k < 0

and (1/32/s —1,0) for k > 0, so that is must take the value (%)f‘S € (0,1) for a unique
w1 in each case. Note that when x = 0, the function is constant, and therefore only
satisfied for a unique value of %.

For the points (0, /L*Rk,), the kernel is one-dimensional and given by

ker 6¢G[0,u*p7k] = {Tﬁb}%kS T € R}

with ¢p;, = cos(%x). Differentiating the operator 3¢é[0,p*P’k] with respect to the

bifurcation parameter u, one can check that
Due G0, 1ip i) (0P, 1) = (V' (Wpg) — Db + 37 (pp) A dp s
This function belongs to the image of 8¢,C~¥ [0, ,u}’k] if and only if

1(kp)

*
Hpy

7’(#73,1@) =

61



It is easily verified that for k # 0, this is not possible, and we conclude that the transver-
sality condition holds. That is, we get nontrivial local bifurcation branches in this case.
For k =0, the transversality condition does not hold, and we cannot conclude that
bifurcation occurs. O

In contrast to the fKdV equation, Lemma 7.1 shows that for given s, local bifurcation

for the fDP equation can only happen if the fraction % is either strictly smaller or

strictly larger than v/3%/5 — 1, depending on the parameter . That is, we do not have
complete freedom in choosing the period P of solutions. In particular, for x > 0 and
small s bifurcation only occurs for periods P < 1.

7.2 Global bifurcation

From this point on we assume x > 0. This is a necessary assumption to ensure that
global bifurcation branches do not converge to a constant solution; further comments
are provided at the end of this section. To simplify the discussion, we consider the local
bifurcation branch Qp consisting of solutions of a fixed period

2T
V32/s —1

emanating from the trivial curve of (7.2) in (y(u*),*). It is henceforth denoted by

(o(t), u(t))-
Let

P <

V= {(p, 1) € CHE.(Sp) x (VE,00); ¢ < p},
and define
W= {(p,pn) € V; G(p,p) = 0}.

We follow the same conventions as in Section 4.2, and write V! and W' for the ¢-
components of V and W.

In the direction of global bifurcation for the fDP equation, we prove that d,G[p, 1]
is a Fredholm operator in V, that closed and bounded subsets of W are compact, and
that 1/(t) does not vanish identically around the bifurcation point (y(x*), u*). Then we
invoke [7, Theorem 9.1.1] in the same manner as in Section 4.

Proposition 7.2. The operator 0,G|p, j1] is Fredholm of index zero for every (o, ) € V.
Proof. The Fréchet derivative of G in (¢, p) is
0pGlo, ] = (1 — ¢)id =3A7%(¢-).

The first term is a homeomorphism in V', and the second term is a compact operator on
Cgv’gn(S p). The claim follows from [7, Theorem 2.7.6]. O

Proposition 7.3. Any closed and bounded subset of W is compact.
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Proof. Note that

P =1 — V2 42k —3A5p?
is a continuous map from C? to CA** for ¢ € S. Hence, if K is a closed and bounded
subset of S, then K! must be a bounded subset of Cégvtﬁ(Sp). That is, K is relatively
compact in Ceﬂven(S p) which coincides with Oeven(Sp). Since K is closed by assumption,
it is compact. ]

If we let V and W denote the transformed sets V and W via (7.1), then both of
the above propositions hold also for 6¢G in V and W. Thus, in order to to apply
the global bifurcation result [7, Theorem 9.1.1] to the present situation, and extend the
local bifurcation branches from Lemma 7.1 to global analytic solution curves, it suffices
to show that p(t) # 0 in a neighborhood of p*.

To this end, we choose a parametrization for curve (¢(t), u(t)) (corresponding to the
curve (p(t), u(t)) via (7.1)) such that [¢(t)]; = ¢, and expand

[e%} 0
= Z ¢ntn7 ,Lt(t) = Z /’L2nt2n7
n=1 n=0

in view of the local branch being analytic. This is the same expansions which was used
for the local bifurcation curves in Section 4.2. Inserting ¢(¢) and u(t) into (7.3) yields

3v(po) A P1 — (o — ¥(p0))d1 = 0, (7.6a)
$(10)A =62 — (10— 2(1o))br = 5% + SA76H, (7.6)

and

3v(1o) A 3 — (o — ¥ (10)) b3
= ¢162 + p2(1 — 7' (110)) b1 + A7 (¢162) — 3p27 (o)A~ ¢1,
for the first-, second-, and third-order terms in t. As before, we let m; denote <%>*3

It is clear that po = p*, and since 3y(p*)m1 = p* — y(p*), the equation (7.6a) can be
written as

(7.6¢)

3y(u*) (A" p1 — myg1) = 0.

Consequently we have ¢; = cos(25z). Inserting this in the right-hand side of (7.6b)

yields
YO 1 4
3Y(W)APd2 —mign) =1+ 1(1 + 3msg) cos (Fx),

which implies that

by = 1 ( 1 B 1+ 3mo COS(MI‘))
2T 3y \1—my 4(my — ma) P

The coefficients in front of the cos(25z)-terms on the right-hand side of (7.6c) can now

be determined, and reads

14+3my ( 1 1+ 3mo
3y(p*) \1—my  8(my —ma

)> T a1 — A (%) — B/ (1)),
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However, since cos(25z) is not in the image of the left-hand side of (7.6c), we have

1+ 3m1 1 ( 1 1+ 3m2 >
3y(p*) 3may'(p*) ++/(w*) — 1 '
We find (see Remark 7.4) that there exist periods P such that pe # 0, implying that
w'(t) # 0 in a neighborhood of ¢ = 0. Hence, the assumptions of [7, Theorem 9.1.1] are

now satisfied. We state a lemma establishing global bifurcation for the fDP equation,
and give qualitative alternatives for the curves.

1y = (7.7)

1—m;  8(my —my)

Remark 7.4. Numerical calculations of the (exact) expression (7.7) supporting our con-
clusion are included in Appendix A.2.

Lemma 7.5. There exists a period P < 27/\/3%/5 — 1 such that the local bifurcation
branch t — (p(t), u(t)) of P-periodic solutions to the fDP equation from Lemma 7.1
extends to a global continuous curve Q = {(p(t), u(t)); t € [0,00)} C V, and one of the
following alternatives hold.

(1) [1(o(t), u(t))llcos xr — 00 as t — oo,
(11) dist(Q,0V) =0,
(iii) Q is a closed loop of finite period. That is, there exists T > 0 such that
Q= {(p(),u(t); 0 <t < T},
where (o(T), w(T)) = (0, ).

Before we finish this section with a discussion of the behavior of the global bifurcation
curves from Lemma 7.5, we state a proposition which shows that if x(¢) is bounded along
the global solution curve, then one can find a limiting solution ¢ on that curve.

Proposition 7.6. Any sequence of solutions (pn, tin)neny C W with bounded (fin)neN
has a subsequence that converges uniformly to a solution .

Proof. Assume that (fu,)nen is bounded. Since

1 3
5@ =Kt pe = SATR <kt pg,

we have
lellZee < 2+ 2l Lo

Thus, the sequence (¢n)nen is bounded. This implies that (A~%p2),en is uniformly
equicontinuous. Indeed, since K is integrable and continuous, one has

[(A™0n)(x) — (A %0n) (y)| = ‘ /R(Ks(x —n) = Ks(y —n))en(n) dn

< llpnllzoe ) /R | Kz —n) = Ks(y —n)| dn,
which tends to zero when |x — y| — 0, and it can be taken independently of n. Then

(A™*pn)nen has a uniformly convergent subsequence by the Arzela—Ascoli theorem. Ow-
ing to (6.7), one obtains the same conclusion for (¢y,)nen. O
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1
1
1
Y/

Figure 3: Bifurcation diagram for the fDP equation (1.18) with x > 0. The diagram
plots max ¢ for p > 0 and min ¢ for u < 0. Local bifurcation branches emanate from
the largest constant solution of the equation for p > /k (cf. Lemma 7.1), and there
exists a period P such that the first local branch can be extended to a global curve
(cf. Lemma 7.5). The curves of constant solutions are otherwise locally unique. Numer-
ical bifurcation suggests that the global bifurcation curve converges to a highest wave
for the fDP equation for sufficiently small periods, here depicted as a dashed line.

Two key ingredients now lack before one can conclude that there exist highest pe-
riodic traveling-wave solutions to the fDP equation (1.18) that are cusped with C%*-
regularity at the crests. Firstly, one needs to show that solutions are nonnegative along
the main bifurcation branch from Lemma 7.5. Secondly, it must be established that
alternative (i) does not happen by p(t) approaching oco.

If solutions are in fact nonnegative, then the nodal properties from Lemma 4.12
hold. This permits the exclusion of closed loops in the global bifurcation curve using
the method of Corollary 4.9 from Section 4. Moreover, one can then show that pu(t)
does not approach /k as t — 0o along the global bifurcation branch with the following
argument, based on [3, Lemma 4.8].

Assume that there exists a sequence (i, )nen With p, — /k as n — 0o. By Proposi-
tion 7.6 there is a convergent subsequence (¢, ) of the corresponding sequence of solu-
tions to the fDP equation (¢n)nen that converges to a solution ¢g. For this subsequence

we have
Fong £ 4/ pz, + 8k
- > VK

4

due to Lemma 6.2, while on the other hand max ¢,, < pn, — /. Hence, max ¢g = v/,
and

max Pp, >

max A%¢3 = /k.

This can only happen if pg = /K, and if the solution is nonnegative we arrive at a
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contradiction to (6.10) from Lemma 6.6. This also demonstrates why the assumption
k > 0 was made at the beginning of this section; otherwise one can not eliminate the
possibility that the global bifurcation branch converges to a constant solution of the
equation.

It is also essential to ensure that alternative (i) in Lemma 7.5 does not happen by
u(t) — oo while () remains bounded in the C%%-norm. Numerical experiments suggest
that this can be avoided by choosing a small enough period P. This claim is proved in
[3, Proposition 4.10] for the nonlocal formulation of the Degasperis—Procesi equation.
We have not been able to prove this for the fDP equation.

A Numerical computation of bifurcation coefficients

Appendix A.1 and A.2 reports numerical results for the coefficients in the expansions
of p4(t) in the local bifurcation branches for the fKdV and the fDP equation. Note that
while the calculations of the coefficients are done numerically, the expressions given in
Section 4.2 and Section 7.2 are exact.

A.1 Coefficients for the fKdV equation

Numerical calculations show that uo, as given by (4.8), is strictly decreasing in P for
every choice of s € (0,1) and that there exists a unique P; such that ps = 0. As an illus-
tration, the function us is plotted in figure A.la for the special cases s € {0.1,---,0.9}.
Calculating P for a discretized set s € (0,1) and plotting 4 as given by (4.9) for these
values of P} yields the graph in figure A.1b. The values of u4 are strictly larger than 0
for all s € (0,1).

0.14 mins=>0

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
s

(a) (b)

Figure A.1: (a) Plot of ugo for different periods. (b) Plot of u4 for P, for different values
of s.
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A.2 Coefficients for the fDP equation

From Section 7.2 we have that

1 + 3m1 1 ( 1 1 + 3m2 )

3y(p*) 3may' (w*) + ' () = 1\1—my  8(m1 —ma)

in the expansion of p(t) from the local bifurcation branch for the fDP equation with

k > 0. Thus po vanishes if and only if the last factor equals zero. Numerically, we find

that this does not happen when s < s* ~ 0.76, and that it happens for a unique P; for

s > s*. In any case, one can pick small enough period P such that p does not vanish.
A small set of illustrative sample plots are given in Figure A.2, where values of

fi2 =

I9m1 +3mime — 11mg — 1

from the third factor in the expression of us are plotted for all admissible periods
27

< —F—,
V32/s -1

for the special cases s € {0.1,---,0.9}.

0.4

0.2 4 5=10.9

0.0 1

—0.2 -

—0.6

—0.84

-1.0 -

—1.2 4

T T T T T T T T T
0.00 0.25 0.50 0.75 100 125 150 175 2.00
P

Figure A.2: Plot of us for different admissible periods.

B Global bifurcation: a numerical example

We give here samples of numerical approximations of global bifurcation branches for the
fKdV and the fDP equation, illustrating the results obtained in the previous sections.
A Fourier collocation method is used, and multiplication of nonlinear terms is carried
out in physical space. For transformation between physical and frequency space we have
used the discrete Fourier transform, and the approximation scheme utilizes a standard
nonlinear root-finding algorithm. Details about the specific results are given below.
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B.1 Bifurcation for the fKdV equation

Figure B.1 shows part of a numerical bifurcation branch for the fKdV equation. Here,
P = 27, and s = 0.5. The first solution is the trivial solution from which nontrivial,
smooth solutions with consecutively higher amplitude arise. The numerical method
breaks down as the crest becomes cusped in the limit.

054 %

LN 0.4 4
0.4 .

A 0.2
0.3 ~

max @
/
@(x)

0.2 4 ~ 0.0 4

014 .

0.0 4 .

Figure B.1: (a) Part of a numerical bifurcation branch for the fKdV equation. (b) Indi-
vidual solutions along the bifurcation branch.

B.2 Bifurcation for the fDP equation

Figure B.2 shows part of a global bifurcation branch for the f{DP equation with x = 1 and
s = 0.5. Here, the period is chosen as half the maximal possible period of 27/1/3%/s — 1,
evaluating to P = 0.35.

We report two observations based on our numerical experiments. Firstly, all periodic
solutions along the bifurcation branches are nonnegative for every s € (0,1) and x > 0.
This suggests the exclusion of alternative (iii) in Lemma 7.5 thanks to Lemma 6.3.
Secondly, it is possible that alternative (i) in Lemma 7.5 happens by u(t) — oo while
||l co.s remains bounded. This can be avoided however, by restricting solutions to
sufficiently small periods. A similar bifurcation pattern has been proved for the case
s=21in [3].
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ure B.2: (a) Part of a numerical bifurcation branch for the fDP equation. (b) Indi-

vidual solutions along the bifurcation branch.

References

[1] O. O. Afram. Solutions of a generalized Whitham equation. Trans. R. Norw. Soc.
Sci. Lett., (3):5-29, 2021.

[2] C. J. Amick, L. E. Fraenkel, and J. F. Toland. On the Stokes conjecture for the
wave of extreme form. Acta Math., 148:193-214, 1982.

[3] M. N. Arnesen. A non-local approach to waves of maximal height for the Degasperis—
Procesi equation. J. Math. Anal. Appl., 479(1):25-44, 2019.

[4] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier Analysis and Nonlinear Partial
Differential Equations. Springer-Verlag Berlin Heidelberg, 2011.

[5] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Springer-Verlag New York, 2011.

[6] G.Bruell and R. N. Dhara. Waves of maximal height for a class of nonlocal equations

with homogeneous symbols. Indiana Univ. Math. J., 70(2):711-742, 2021.

B. Buffoni and J. F. Toland. Analytic Theory of Global Bifurcation: An Introduc-
tion. Princeton University Press, 2003.

A. D. Craik. The origins of water wave theory. Annu. Rev. Fluid Mech., 36(1):1-28,
2004.

A. D. Craik. George Gabriel Stokes on water wave theory. Annu. Rev. Fluid Mech.,
37(1):23-42, 2005.

69



[10]

[11]

[12]

[19]

[20]

[21]

[22]

23]

A. Degasperis and M. Procesi. Asymptotic integrability. In A. Degasperis and
G. Gaeta (Eds), Symmetry and Perturbation Theory. World Scientific Publication,
1999.

M. Ehrnstrom and E. Wahlén. On Whitham’s conjecture of a highest cusped wave
for a nonlocal dispersive equation. Ann. Inst. H. Poincaré Anal. Non Linéaire,
36(6):1603-1637, 2019.

M. Ehrnstrom, M. D. Groves, and E. Wahlén. On the existence and stability of
solitary-wave solutions to a class of evolution equations of Whitham type. Nonlin-
earity, 25(10):2903-2936, 2012.

M. Ehrnstrom, M. A. Johnson, and K. M. Claassen. Existence of a highest wave
in a fully dispersive two-way shallow water model. Arch. Ration. Mech. Anal.,
231:1635-1673, 2019.

M. Ehrnstrom, M. A. Johnson, O. I. H. Mahlen, and F. Remonato. On the bifurca-
tion diagram of the capillary-gravity Whitham equation. Water Waves, 1:275-313,
2019.

M. Ehrnstrom and L. Pei. Classical well-posedness in dispersive equations with
nonlinearities of mild regularity, and a composition theorem in Besov spaces. J.
Evol. Equ., 18(3):1147-1171, 2018.

L. Grafakos. Classical Fourier Analysis. Springer-Verlag New York, 3rd edition,
2014.

L. Grafakos. Modern Fourier Analysis. Springer-Verlag New York, 3rd edition,
2014.

V. M. Hur. Wave breaking in the Whitham equation. Adv. Math., 317:410-437,
2017.

Y. Katznelson. An Introduction To Harmonic Analysis. Cambridge University
Press, 3rd edition, 2004.

D. Lannes. The Water Waves Problem, volume 188 of Mathematical Surveys and
Monographs. American Mathematical Society, 2013.

H. Le. Waves of maximal height for a class of nonlocal equations with inhomoge-
neous symbols. arXiv:2012.10558, 2020.

J. Lenells. Traveling wave solutions of the Degasperis—Procesi equation. J. Math.
Anal. Appl., 306(1):72-82, 2005.

F. Linares, D. Pilod, and J.-C. Saut. Dispersive perturbations of Burgers and
hyperbolic equations I: Local theory. SIAM J. Math. Anal., 46(2):1505-1537, 2014.

70



[24]

[25]

[26]

O. 1. H. M=hlen. Solitary waves for weakly dispersive equations with inhomogeneous
nonlinearities. Discrete Contin. Dyn. Syst., 40(7):4113-4130, 2020.

J. S. Russel. Report on Waves. Report of the 14th meeting of the British Association
for the Advancement of Science, 1844.

R. L. Schilling, R. Song, and Z. Vondracek. Bernstein functions: Theory and Ap-
plications, volume 37 of de Gruyter Studies in Mathematics. Walter de Gruyter &
Co., Berlin, 2nd edition, 2012.

G. G. Stokes. On the theory of oscillatory waves. Trans. Cambridge Philos. Soc.,
8:441-455, 1847. Reprinted in Mathematical and Physical Papers, vol. 1, pp. 197—
229, Cambridge, 1880.

M. E. Taylor. Partial Differential Equations II. Springer, New York, 2nd edition,
2011.

M. E. Taylor. Partial Differential Equations III. Springer, New York, 2nd edition,
2011.

H. Triebel. Theory of Function Spaces II. Birkhauser Verlag, Basel, 1992.

T. Truong, E. Wahlén, and M. H. Wheeler. Global bifurcation of solitary waves for
the Whitham equation. arXiv:2009.04713, 2020.

G. B. Whitham. Variational methods and applications to water waves. Proc. R.
Soc. Lond. Ser. A, 299(1456):6-25, 1967.

G. B. Whitham. Linear and Nonlinear Waves. John Wiley & Sons, 1974.

R. E. Williamson. Multiply monotone functions and their Laplace transforms. Duke
Math. J., 23(2):189-207, 1956.

J. Xue and F. Hildrum. Large-amplitude travelling waves with exact Holder regu-
larity in a class of fractional KdV equations. In preparation, 2021.

71



	Introduction
	Background
	Problem description
	Notation

	The Bessel potential operator
	The convolution kernel TEXT
	Smoothing

	Traveling-wave solutions to the fKdV equation
	Periodic traveling waves
	Regularity of solutions TEXT
	Regularity of highest traveling waves

	Analytic bifurcation for the fKdV equation
	Local bifurcation
	Global bifurcation
	Convergence to a highest traveling wave

	Generalizations of the fKdV equation
	Fourier multiplier symbol classes
	Properties of the convolution kernel

	Traveling-wave solutions to the fDP equation
	Periodic traveling waves
	Regularity of traveling waves

	Analytic bifurcation for the fDP equation
	Local bifurcation
	Global bifurcation

	Appendix Numerical computation of bifurcation coefficients
	Coefficients for the fKdV equation
	Coefficients for the fDP equation

	Appendix Global bifurcation: a numerical example
	Bifurcation for the fKdV equation
	Bifurcation for the fDP equation

	References

