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Preface

This report presents the final results of the Master’s thesis related to the course
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Mathematics, at the Norwegian University of Science and Technology, NTNU. It
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specialization topic and investigate theory and methods related to this topic. This
thesis applies the Bayesian ensemble filtering method to an assumed model with
both categorical and continuous variables. A professor at NTNU has guided the
project closely. I want to give a special thanks to professor H̊akon Tjelmeland at the
Department of Mathematical Sciences for the thorough and constructive guidance
this semester.
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Abstract

The Bayesian ensemble filter is proposed in Loe and Tjelmeland (2021). It is a
generalization of the traditional ensemble Kalman filter (EnKF), a solution to the
filtering problem in statistics. The ensemble Kalman filter updates a prior ensemble
to a posterior ensemble, where the updated ensemble consists of realizations from
the desired filtering distribution. The Bayesian ensemble filter opens up for other
parametric families than the Gaussian, which are the assumptions for the popular
ensemble Kalman filter. The framework they present is what they call fully Bayesian,
in the sense that we treat the model parameters as random variables. The first task
of updating a prior ensemble to a posterior ensemble is to derive the distribution
from which to simulate the unknown parameters. The next step is to find a class of
updating distributions from which to sample the posterior ensemble. An optimality
criterion is thereafter stated, restricting the class of updating distribution to the
optimal distribution with respect to the criterion.

In Loe and Tjelmeland (2021), they study two assumed models, one with con-
tinuous state variables and one with categorical state variables. In this report, we
apply the Bayesian ensemble filter on a new assumed model. The new assumed
model has state variables consisting of one categorical and one continuous vector.
The categorical state vector follows a Markov chain with non-homogeneous transi-
tion probabilities. The continuous state vector is assumed Gaussian and contributes
to the model as noise. The optimality criterion in our assumed model states that we
want to minimize the expected Mahalanobis distance between the prior and posterior
ensemble members. Finding the updating distributions then reduces to two optimal-
ity problems, one for each state vector. To show the algorithm’s performance, we
present three simulation examples with different degrees of the variance’s influence
of the observations. We compare the results from the simulation to the generated
true values. The filter captures the true value of the categorical vector well in two
of the examples, which is expected. However, the spread of the simulated filtering
ensemble members might be too narrow.
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Sammendrag

Det Bayesianske ensemble filteret er presentert i Loe og Tjelmeland (2021). Det er en
generalisering av det tradisjonelle ensemble Kalmanfilteret (EnKF) og er en løsning
p̊a filtreringsproblemet i statistikk. Ensemble Kalmanfilteret oppdaterer et predik-
sjonsensemble til et oppdateringsensemble, hvor det oppdaterte ensemblet best̊ar
av realisasjoner fra den ønskede filtreringsfordelingen. Det Bayesianske ensemble-
filteret åpner opp for andre antagelser enn Gaussiske, som er antagelsene for en-
semble Kalmanfilteret. Det Bayesianske ensemble filter algoritmen er fullt Gaussisk,
i den forstand at den betrakter alle parametre som tilfeldige variabler. Det første
steget i den Bayesianske ensemble filteret er å finne en m̊ate å simulere de ukjente
parameterne p̊a. Det neste steget er s̊a å finne ett sett med fordelinger som opp-
dateringsensemblet blir simulert fra. Deretter vil et optimeringskriterium bestemme
hvilken fordeling som er den best mulige, i henhold til kriteriet.

To modeller blir studert i Loe og Tjelmeland (2021). Den ene modellen betrak-
ter kontinuerlige tilstandsvariable og den andre modellen kategoriske tilstandsvari-
able. I denne rapporten vil vi studere en ny antatt modell. Den nye modellen har
tilstandsvariable som best̊ar av en kategorisk og en kontinuerlig vektor. Den kat-
egoriske vektoren kommer fra en Markovkjede, mens den kontinuerlige vektoren er
antatt normalfordelt og bidrar som støy i modellen. Vi velger et optimeringskriterium
som sier at vi vil gjøre s̊a f̊a endringer som mulig n̊ar vi oppdaterer medlemmer fra
prediksjonsensemblet til oppdateringsensemblet. For å finne settet med oppdater-
ingsfordelinger må vi s̊a løse to optimeringsproblemer, ett optimeringsproblem for
hver tilstandsvektor. Vi utfører tre simulerte eksempler for å vise hvordan algorit-
men presterer p̊a eksempler der de sanne verdiene er kjent. Filtreringsalgoritmen
gjør det bra p̊a de to eksemplene den er antatt å gjøre bra p̊a. Det kan tyde p̊a
at filteret underestimerer variansen, ettersom det ser at spredningen av de simulerte
realisasjonene fra oppdateringsfordelingen ikke ser ut til å dekke de sanne verdiene.
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1 Introduction

A state space model consists of evolving latent states, {xt}Tt=1 and related observa-
tions, {yt}Tt=1, where T is the number of time steps in the model. We say that each
latent state variable xt emits one observation yt and makes a transition to a new
latent state variable xt+1, at each time t. The latent states constitute a Markov
chain, and the observations depend on the latent state in their respective time. The
observation at one time is conditionally independent of the previous latent state
variables given its respective state variable at that specific time. The filtering prob-
lem in statistics refers to making sequential inference in state space models. More
specifically, it takes on finding the distribution of the current latent state variable,
given all the observations up until the current time, p(xt|y1, y2, . . . , yt). In other
words, it helps us learn as much as possible about the latent states together with
the associated uncertainties of the estimations made through the observations in the
state space model.

The filtering problem arises in many fields, and some notable examples are
weather forecasting and reservoir modeling. Numerical models for describing the
atmosphere’s evolution are widely used in weather forecasts, such as wind speed
prediction, see Cassola and Burlando (2012). Atmospheric observations are often
of low resolution and come with measurement errors. Solving the filtering problem
can, in this case, make it possible to estimate the wind speed in some interpolated
fields using the numerical model of the wind speed evolution, while also taking the
observations with measurement errors into account. In reservoir modeling, a relevant
problem might be to estimate some properties of the petroleum present in a reser-
voir, such as the amount or the saturation. The property measured might depend
on some underlying states in the reservoir, such as porosity, rock type and pressure,
corresponding to the state space model’s latent variables. The observation could
be some measurement of the hidden state of the reservoir, which would have some
measurement errors.

The Kalman filter provides an exact solution to the filtering problem, assuming
linear transitions and emission equations with additive Gaussian noise. The Kalman
filter starts with a prediction step. This step updates the model parameters by
applying a linear shift from the states’ transition equations. Following the prediction
step is the update step. The update step combines the prediction distribution with
the distribution of the observations given the current state variable to find the desired
filtering distribution. This way, the current filtering distribution is based on the
previous state variable and the observation made in the current iteration. With linear
Gaussian assumptions to the transitions and emissions, the update step is a linear
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update of the mean vector and covariance matrix from the prediction step. Since
we operate with linear Gaussian assumptions in all steps of the model, the update
step returns a Gaussian filtering distribution. In high dimensional state spaces, the
computation and storage of the model parameters often become computationally
expensive, hence approximations are needed.

The ensemble Kalman filter (EnKF) presented by Evensen (1994) finds an ap-
proximate solution to the filtering problem. In contrast to the Kalman filter, which
propagates distributions in all steps, the EnKF instead propagates an ensemble of
independent realizations from the desired filtering distributions. One advantage of
working with realizations and not with distributions directly is that we can easily
reduce the problem’s dimension and the updating algorithm’s complexity. Therefore,
the EnKF is essential in, for example, weather forecasting, where the dimension of
the state space tends to be high. The EnKF also consists of a prediction and an
update step. The prediction step applies a dynamical model to the ensemble from
the filtering distribution at time t− 1, resulting in a prediction ensemble of indepen-
dent realizations from the prediction distribution at time t. The prediction step is
assumed doable in an exact manner. Like the traditional Kalman filter, the update
step involves a linear shift of the prediction ensemble to obtain an ensemble from
the filtering distribution. The prediction ensemble might not be realizations from a
Gaussian distribution, and the EnKF might retain non-Gaussian properties of the
correct underlying distribution.

One problem of the EnKF is that it often underestimates the uncertainties in
its estimations. In the EnKF, we first estimate the model parameters. When used
in the model, we assume them to be known and do not include the uncertainties
in the estimations. The hierarchical EnKF (HEnKF) introduced by Myrseth and
Omre (2010) aims at making more reliable uncertainty estimates by treating the
model parameters as random variables, with a Gauss-conjugate density function.
The HEnKF seems to give more reliable predictions, see Myrseth and Omre (2010).

The EnKF implicitly assumes a linear Gaussian model for the prediction distribu-
tion when combined with the linear Gaussian likelihood model. Loe and Tjelmeland
(2020) introduce a more general class of updating distributions. They open up for
other distribution families than the Gaussian, for instance, one supporting categor-
ical variables. Other assumptions for the model distributions can, for instance, be
useful in the reservoir modeling example, where the latent variable might depend
on the type of rock in the reservoir. A discrete distribution for the state variables
might then be useful. From the assumed prediction distribution and the assumed
likelihood, we can use Bayes’ rule to find the distribution from which to simulate the
final filtering ensemble at each time t. In Loe and Tjelmeland (2021), this Bayesian

2



framework is taken one step further to what they call a fully Bayesian framework
for the filtering problem in statistics. The framework is fully Bayesian in the sense
that, in similarity with the HEnKF, it treats its parameters as random variables.
In particular, they discuss two different models. In the first discussed model, the
prediction and forecast approximations constitute a linear Gaussian model, and in
the second model, they constitute a hidden Markov model with categorical states.

This report applies the fully Bayesian framework defined in Loe and Tjelmeland
(2021) to another assumed model, including latent states consisting of both cate-
gorical and continuous variables. In particular, the state space’s latent variables
consist of one categorical vector, whose elements takes values of either 0 or 1, and
one continuous vector acting as the noise in the model. The categorical vector is
assumed to follow a Markov chain, and the continuous vector is assumed Gaussian
distributed with mean zero. This report aims at finding a class of updating distri-
butions from which to simulate realizations from the filtering distribution with this
assumed model. Our focus lies on the structure of the updating procedure, and we do
not take the complexity of the resulting algorithm into account. As the computation
of some of the distributions requires a sum over all possible state vectors, we assume
the state space dimension to be sufficiently small in order for the algorithm to be
computationally feasible. We leave an algorithm for higher dimensional state spaces
for future work.

Section 2 provides the relevant background material for state space models and
some known solutions to the filtering problem. In Section 3 the fully Bayesian frame-
work from Loe and Tjelmeland (2021) is presented. It is followed by our assumed
model, which is presented in Section 4. Here, the class of updating distributions
for our assumed model is derived. In Section 5, we present a simulation example of
the algorithm in use. Finally, we finish the report in Section 6 with some closing
remarks.

2 Preliminaries

This section introduces state space models and the filtering problem, and provides
some relevant background material. We present two well-known solutions to the
filtering problem, the traditional Kalman filter and the ensemble Kalman filter. We
end the preliminaries with a section on linear programming, a valuable tool in the
final updating algorithm in this report and a quick presentation of the VAR(1) model
for time series.
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Figure 1: Graphical illustration of a state space model. The shaded variables are observ-
able, whereas the non shaded variables are hidden.

2.1 State space models

A state space model consists of latent random state variables {xt}Tt=1, xt ∈ Ωx, and
observations {yt}Tt=1, yt ∈ Ωy, whose value is depending on its corresponding state
variable at time t. The dependency structure of a general state space model is shown
in Figure 1. The latent states constitute a Markov chain, and the Markov property
is that each variable xt is conditionally independent of xt−2, xt−3, . . . , x1, given its
parent xt−1. We use the notation x1:T = (x1, . . . , xT ), to denote all the underlying
variables from time 1 to time T . The joint distribution of all the latent state variables
then factorizes into a product of the initial state distribution p(x1) and the transition
probabilities p(xt|xt−1) as,

p(x1:T ) = p(x1)
T∏
t=2

p(xt|xt−1).

The observed random variable yt results from the latent state xt emitting a random
value. The state space model stipulates that the observed random variables are
independent given the latent state variables. In other words, we can write that y1:T =
(y1, y2, . . . , yT ) are conditionally independent given x1:T . The joint distribution of
the observations conditioned on latent states then factorizes into the product,

p(y1:T |x1:T ) =
T∏
t=1

p(yt|xt).

For convenience, we define p(xT+1|xT ) = 1, so that we can write the joint distribution
of all variables in the state space model as,

p(x1:T , y1:T ) = p(x1)
T∏
t=1

p(xt+1|xt)p(yt|xt). (1)
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Figure 2: Graphical illustration of a state space model with both categorical variables γt,
and continuous variables zt. The shaded variables are observable, whereas the non-shaded
variables are hidden. The squares surround the latent variables in one time step.

The state space model is general, and countless models have this underlying structure.
The latent states can be high dimensional and coming from both continuous and
categorical state spaces Ωx. The same yields for the observation space Ωy. To
illustrate the state space model’s generality, described in this section, we present an
example. One can, for instance, have a state space Ωx = Ωγ × Ωz of a categorical
space Ωγ and a continuous space Ωz. The latent states in this state space model,
xt = (γt, zt), t = 1, . . . , T , consists of γt ∈ Ωγ and zt ∈ Ωz. We assume that {γt}Tt=1

follows a Markov chain. The continuous state vector zt could contribute to the model
as noise, and the dependency between the variables satisfies the Markov property,
meaning p(zt|zt−1, zt−2, . . . , z1) = p(zt|zt−1) for all t = 1, . . . , T . Further, we assume
that γt ⊥ zt for all t = 1, . . . , T and that emission of the observable variables in
this model depend on the entire state vector in their respective time. An illustration
of this specific state space model is given in Figure 2. Now define p(γT+1|γT ) = 1
and p(zT+1|zT ) = 1. The same independency structure as in Figure 1 yields in this
model. Now we can factorize the expression in (1) further by using that the γt ⊥ zt.
The initial probability then comes down to p(x1) = p(γ1)p(z1) and the transition
probabilities p(xt+1|xt) = p(γt+1|γt)p(zt+1|zt), so that the joint distribution of all
the variables in this particular state space model becomes,

p(x1:T , y1:T ) = p(γ1)p(z1)
T∏
t=1

p(γt+1|γt)p(zt+1|zt)p(yt|γt, zt), (2)
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We could, for instance, use this model in reservoir modeling. The state vector could
represent the amount or the saturation of petroleum present at one specific location
or some other property we want to investigate. We can assume that this property
could depend on what type of rock is there, representing the categorical vector. The
continuous vector acts as the noise not captured in the emission elsewhere. The
observations yt could then be some measurement of the state vector, bound to have
some measurement errors and uncertainties. This model will be our assumed model
in this report, described in Section 4. In Section 4, we will find a class of updating
distributions from which to simulate realizations from the distribution p(xt|y1:t), i.e.
the filtering distribution.

2.2 The filtering problem

We now go back to the general state space model with joint distribution defined
in (1). In state space models we observe some variables {yt}Tt=1 ∈ Ωy, but are
interested in some hidden states {xt}Tt=1 ∈ Ωx. The filtering problem in statistics
takes on finding the hidden state’s distribution at time t, xt, given all observations
made up to time t. We are thereby interested in the filtering distribution p(xt|y1:t).
The filtering distribution can be found iteratively, where we in each iteration assume
that the filtering distribution, p(xt−1|y1:t−1), in the previous time t−1 is known. Each
iteration consists of two steps, the prediction- and update steps. In the prediction
step we find the so-called prediction distribution p(xt|y1:t−1), by marginalizing over
xt−1 from the joint distribution p(xt, xt−1|y1:t−1) and using that xt ⊥ y1:t−1|xt−1,

p(xt|y1:(t−1)) =

∫
Ωx

p(xt, xt−1|y1:(t−1))dxt−1

=

∫
Ωx

p(xt|xt−1)p(xt−1|y1:(t−1))dxt−1. (3)

Following the prediction step comes the update step, where we find the filtering
distribution at time t. The update step uses Bayes’ rule to compute the filtering
distribution. The prediction distribution serves as a prior distribution for the filtering
distribution, meaning it is our best guess for a filtering distribution without taking
the evidence, being the current observation, into account. With a likelihood p(yt|xt),
the filtering distribution comes out as the posterior distribution in Bayes’ rule,

p(xt|y1:t) = p(xt|y1:(t−1), yt)

=
p(yt|xt)p(xt|y1:(t−1))∫

Ωx
p(yt|xt)p(xt|y1:(t−1))dxt

. (4)
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Both the marginalization in (3) and the calculation of the normalizing constant in
(4) require an integral over the entire state space, and the calculations are generally
not feasible. However, assuming a linear Gaussian model for the prediction and
the likelihood distribution makes the joint, all marginals and all conditionals also
Gaussian. The algorithm with these assumptions is called the Kalman filter, and we
present it in the next section.

2.3 The Kalman filter

The Kalman filter (Katzfuss et al., 2016) is a framework for finding the filtering
distribution, that is p(xt|y1:t), given a linear Gaussian state space model. We start
by assuming a Gaussian initial distribution for x1 with initial mean vector µ0 and
covariance matrix Σ0, i.e. x1 ∼ N (µ0,Σ0). A linear Gaussian state space model
assumes linear Gaussian equations for all transitions between the hidden states and
all emissions from the hidden states to the model’s observations. We write the
transition equation in the state space model at time t as,

xt = Fxt−1 + ut, (5)

with ut ∼ N (0, Q), and the matrix F takes the state one step forward at time. We
write the linear emission equation as,

yt = Hxt−1 + vt, (6)

where vt ∼ N (0, R), and the matrix H relates the observation at time t to its
respective hidden state. As described in Section 2.2, the Kalman filter solves the
filtering problem iteratively with an algorithm of a so-called prediction step and an
update step. With linear Gaussian transitions and emissions, the prior, likelihood
and posterior distribution in (4) will also return Gaussian. In other words, the
prediction and filtering distribution will be Gaussian. For the Gaussian distribution,
we only need the mean and covariance matrix to identify the distribution. Thus, to
update the distribution in the prediction steps and the updating steps, the Kalman
filter only updates the mean and covariance matrix. We denote with µ̌t ∈ Rn and
Σ̌t ∈ Rn×n the mean vector and the covariance matrix of the prediction distribution
at time t. The notation µ̃t ∈ Rn and Σ̃t ∈ Rn×n denote the mean vector and the
covariance matrix for the filtering distribution at time t. The same notation yields
for the following section. The Kalman filter first calculates the parameters for the
prediction distribution, xt|y1:t−1 ∼ N (µ̌t, Σ̌t). With the filtering distribution at time
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t− 1 as, xt−1|y1:t−1 ∼ N (µt−1,Σt−1), and using the transition in (5) we get,

µ̌t = E(xt|y1:t−1) = Fµt−1,

Σ̌t = Var(xt|y1:t−1) = FΣt−1F T +Q.

Here the notation AT denotes the transpose of a matrix A. The prediction distribu-
tion is the prior distribution in (4), and the associated likelihood distribution can be
found by the emission in (6) to be,

yt|xt ∼ N (Hxt, R). (7)

The prior and likelihood distributions produces the posterior distribution or the
filtering distribution at time t, which can be found by combing Gaussian distributions
to be,

xt|y1:t ∼ N (µ̃t, Σ̃t),

where

µ̃t = µ̌t +Kt(yt −Hµ̌t),
Σ̃t = (I −KtH)Σ̌t

(8)

and Kt = Σ̌tHT (HΣ̌tHT +R)−1 is the so-called Kalman gain matrix.
The Kalman filter calculates an analytical filtering distribution given a linear

Gaussian state space model. If the underlying state space model is not linear Gaus-
sian, our assumptions are wrong, and another model might be preferred. For high
dimensional state spaces Ωx or observation spaces Ωy, the rank of the parameters
in the Kalman filter becomes too large to handle computationally. The Kalman fil-
ter is then not computationally feasible. The EnKF introduces so-called ensembles,
being realizations of either the prediction or filtering distribution. The EnKF does
not assume Gaussian distributions in the prediction step, and the resulting filtering
ensemble might therefore not come from a Gaussian distribution.

2.4 The ensemble Kalman filter

The ensemble Kalman filter (EnKF), first introduced by Evensen (1994), is an evo-
lution of the regular Kalman filter described in Section 2.3. It solves the filtering
problem, where the observations are, assumed to come from a linear Gaussian model
as in (6), and with likelihood distribution as in (7). In contrast to the regular Kalman
filter, the transitions do not need to be linear Gaussian. It also consists of a predic-
tion and an update step performed at each time in the algorithm. Instead of updating
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each step’s distribution, it updates a so-called ensemble. The ensemble consists of
independent realizations of the distribution in a given step, and we start with an
ensemble from the initial distribution p(x1). Assume an ensemble, {xt−1(m)}Mm=1, of
M realization from the filtering distribution at time t− 1, p(xt−1|y1:t−1), is available.
In the prediction step, the EnKF assumes that an ensemble from the prediction
distribution can be obtained by simulating from the distribution p(xt|xt−1). More
precisely, the EnKF assumes we can obtain an ensemble {x̌t(m)}Mm=1 from the predic-
tion distribution at time t by applying a dynamic model,

x̌t(m) = f(xt−1(m)) + ut(m),

with ut(m) ∼ N (0, Q), to all the ensemble members from the previous time step.
This is analogous to the prediction step in the Kalman filter in Section 2.3, where
we would have the same model for the prediction distribution in the EnKF as in
the Kalman filter choosing f(xt−1(m)) = Fxt−1(m). The prediction step is usually
doable in an exact manner. The realizations in the prediction ensemble do not
necessarily have to come from a Gaussian distribution, as opposed to the regular
Kalman filter. Next is the update step, where we will find a linear equation that
updates a prediction realization to a realization from the filtering distribution at
time t. To find this equation, we assume that the prediction ensemble, {x̌t(m)}Mm=1

consists of independent realizations from a Gaussian distribution with mean vector
µ̌t and covariance matrix Σ̌t. Namely, we assume,

x̌t(m) ∼ N (µ̌t, Σ̌t), (9)

for all m = 1, 2, . . . ,M . The mean vector and covariance matrix from the assumed
prediction distribution are not available. Hence, we estimate the prediction distri-
bution’s parameters, µ̌t and Σ̌t, from the prediction ensemble at each time t. The
likelihood distribution for ensemble member m is the Gaussian distribution in (7)
replacing xt with the respective ensemble member,

yt|x̌t(m) ∼ N (Hx̌t(m), R).

Suppose now that x̌t(m) is independent of vt(m) ∼ N (0, R) and consider the linear
update

x̃t(m) = x̌t(m) +Kt(yt −Hx̌t(m) + vt(m)), (10)

9



with Kt as in (8). Using that (HΣ̌tH t + T )−1 is symmetric, one can show that x̃t(m)

is Gaussian distributed with mean vector µ̃t and covariance matrix Σ̃t as,

µ̃t = µ̌t +Kt(yt −Hµ̌t)
Σ̃t = Var(x̌t(m)) + Var

(
Kt(Hx̌t(m) + vt(m))

)
− 2Cov

(
Kt(Hx̌t(m) + vt(m)), x̌t(m)

)
= Σ̌t +Kt(HΣ̌tHT +R)(HΣ̌tHT +R)−1HΣ̌t − 2KtHΣ̌t

= (I −KtH)Σ̌t.

(11)

This leads to that x̃t(m) ∼ N(µ̃t, Σ̃t), with µ̃t and Σ̃t as in (8). The updated ensemble
member x̃t(m) is therefore approximately a realization from the filtering distribution
at time iteration t. As the number of ensemble members M is much smaller than
the state space’s dimension, the estimated covariance matrix has a low rank. For
problems with higher dimensional state space or observation space, the EnKF yields
a more desired algorithm than the regular Kalman filter because it becomes more
computationally efficient. In the construction of the linear update equation, we
indirectly assume a linear Gaussian model for the true underlying model. Suppose
the true underlying model is not linear Gaussian. In that case, we might preserve
some of the non-Gaussian properties of the true distribution when updating with (10)
and not simulating from the Gaussian with parameters in (11) directly. In Section
3, we present the Bayesian ensemble filtering method, a generalized version of the
EnKF. The Bayesian ensemble filtering method opens up for other assumptions than
the linear Gaussian model. It does not assume the model parameters to be known
but treat them as random variables as opposed to the two filters presented so far.
Before diving into the Bayesian ensemble filtering method, we take a quick detour
through linear programming and vector autoregression in the following two sections.

2.5 Linear programming

Linear programming (Nocedal and Wright, 2006) is a special case of mathematical
optimization. In mathematical optimization, we want to find the optimal solution,
x?, of a problem given some criteria, with respect to some variable x. Linear pro-
gramming demands all equations and criteria to be linear functions of the variable
x. The standard or canonical form of a linear programming problem is,

min
x

gTx

subject to Ax = b, x ≥ 0,
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where g, x ∈ Rn, b ∈ Rm and A ∈ Rm×n. The function we minimize over is called the
objective function. In this case the objective function is gtx. Any linear program-
ming problem can be described on this form, with some modifications. We can, for
instance, have both upper and lower bounds on the variable x, which gives the linear
programming problem,

min
x

gTx

subject to ATx = b, l ≤ x ≤ u,
(12)

with l, u ∈ Rn, not written on the standard form. All the values of x that satisfy the
constraint in the problem defines the feasible set. Linear programming problems do
not necessarily have a unique solution. If the feasible set is empty or the objective
function is unbounded below the feasible region, i.e., the region that the constraints
define, the problem will not have a solution. There are different methods for solving
linear programming problems, and two popular choices are the simplex method and
the interior-point method. In Section 4.3 we use linear programming, where the
optimal solution will be the filtering distribution of a categorical state vector.

2.6 Vector autoregression

In this section we present the vector autoregressive model of order 1, i.e. the VAR(1)
model, see Brockwell and Davis (2016). The VAR(1) model can be written as,

zt = Φzt−1 + ωt, (13)

for t = 2, . . . , T , where Φ ∈ Rn×n and ωt ∼ N (0,Υ). A stationary time series is a
time series where the probabilistic character of the time series does not change over
time. More precisely, if the joint distribution of (z1, . . . , zm) and the joint distribution
(z1+h, . . . , zm+h) are the same for all h ∈ N and m > 0. For the VAR(1) model to
be stationary we need that all eigenvalues of the matrix Φ lies inside the unit circle.
The VAR(1) model will be used as a model for the continuous latent variables in the
simulation examples in Section 5.

3 Bayesian ensemble filtering

The Bayesian ensemble filtering method introduced in Loe and Tjelmeland (2021)
finds the filtering distribution in state space models with what they call a fully
Bayesian updating framework. The framework is fully Bayesian in the sense that
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the model parameters are treated as random variables. The filtering method can
be viewed as a more generalized updating procedure than the EnKF, which is a
particular case given the correct assumptions. The framework takes some elements
from the EnKF, in which it also propagates ensembles in each iteration instead of
distributions as in the regular Kalman filter. It also uses a prediction and an update
step to solve the filtering problem. The Bayesian filtering method’s prediction step
does not differ from the previously introduced methods. For that reason, our focus
lies on the updating of an ensemble of realizations, {x̌(m)}Mm=1, from the prediction
distribution to an ensemble of realizations, {x̃(m)}Mm=1, from the filtering distribution
at time t. Since the parameters are random variables, they also need to be updated
before updating the prediction ensemble. The parameter simulation is explained
further in Section 3.3. The superscript t is omitted from the notation in this and
the following section, as we only focus on one specific time t. As before, we write
variables x from the prediction distribution at time t as x̌, and variables x from the
filtering distribution as x̃ at time t, to easily distinguish between variables from the
prediction distribution and the filtering distribution.

3.1 Assumed Bayesian model

Here we present the assumed Bayesian model in the Bayesian ensemble filtering
method, following Loe and Tjelmeland (2021). The model will be used to up-
date a realization x̌(m) from the prediction distribution to a realization x̃(m) from
the filtering distribution. Figure 3 illustrates the updating step’s Bayesian model.
Here, we denote with θ ∈ Ωθ, the parameters defining the distributions of the hid-
den state, x, at the current time, where Ωθ is the parameter space. We define
u(m) = {x̌(1), x̌(2), . . . , x̌(m−1), x̌(m+1), . . . , x̌(M)}, in other words all the realizations
from the prediction distribution omitting realization m. We assume the true underly-
ing hidden state x and the realizations x̌(1), . . . , x̌(M) to be conditionally independent
and identically distributed given θ. Additionally, we assume that y ⊥ {x̌(m)}Mm=1, θ|x
and that x̃(m) ⊥ u(m)|θ, y. The joint distribution of θ, x, x̌(1), . . . , x̌(M) and y then
simplifies to

p(θ, x, x̌(1), . . . , x̌(M), y) = p(θ)p(x|θ)p(y|x)
M∏
m=1

p(x̌(m)|θ).

In this equation, we have introduced the prior distribution p(θ) for θ. This prior
should be chosen as a conjugate prior distribution for the distribution p(x|θ). In
Section 3.3 we will derive an algorithm from which to simulate θ ∼ p(θ|u(m), y).
Before that, we will in Section 3.2 describe a method for finding the class of updating
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Figure 3: Graphical illustration of the dependency structure in the update of one ensemble
member in the Bayesian ensemble filtering method. The superscript t is omitted in all the
variables. The shaded nodes are directly observable, whereas the non-shaded nodes are
hidden. This figure is inspired by Figure 2 in Loe and Tjelmeland (2021).

distributions, which is used to update an ensemble of prior realizations from the
prediction distribution to an ensemble of posterior realizations from the filtering
distribution. Here we also state a possible optimality criterion and find the optimal
filter with respect to that criterion.

3.2 Simulation from the filtering distribution

After having obtained an ensemble from the prediction distribution, we want to find a
class of updating distributions from which to simulate an ensemble from the filtering
distribution. According to the assumed model in the previous section, we will update
x̌(m) by simulating x̃(m) from some distribution,

x̃(m)|x̌(m), θ, y ∼ p(x̃(m)|x̌(m), θ, y),

for each m = 1, . . . ,M . We want that the simulated x̃(m) resembles the true hidden
value in distribution to the highest degree possible based on the information we have.
In other words, we want that the sampling distribution satisfy

x̃(m)|u(m), y
d
= x|u(m), y. (14)
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Note that we do not condition on x̌(m). This we do not do to preserve the randomness
in x̌(m) in the updating of x̃(m). The distribution of the variable on the right hand
side of (14) can be written as the marginalization of θ over the joint distribution of
x, θ|u(m), y like,

p(x|u(m), y) =

∫
Ωθ

p(x, θ|u(m), y)dθ

=

∫
Ωθ

p(x|θ, y)p(θ|u(m), y)dθ,

(15)

using that x ⊥ u(m)|θ, y. The same procedure can be done for the distribution of
x̃(m)|u(m), y on the left hand side of (14). As x̃(m) ⊥ u(m)|θ, y, we obtain that,

p(x̃(m)|u(m), y) =

∫
Ωθ

p(x̃(m), θ|u(m), y)dθ

=

∫
Ωθ

p(x̃(m)|θ, y)p(θ|u(m), y)dθ.

(16)

We exploit that (15) and (16) holds for all x and x̃(m), to find that to satisfy the
constraint in (14), it is sufficient to restrict the updating distribution to satisfy,

x̃(m)|θ, y d
= x|θ, y, (17)

for all θ and y. Given a θ, we can update x̌(m) by simulating x̃(m) from a distribution
p(x̃(m)|x̌(m), θ, y) consistent with (17). To find the parameters θ, we can before the
updating of x̌(m), simulate θ|u(m), y ∼ p(θ|u(m), y). This process will be described
in Section 3.3. By writing the distribution on the left hand side of (17) as the
marginalization of x̌(m) over the joint distribution of x̃(m), x̌(m)|θ, y we have,

px̃(m)|θ,y(x̃
(m)|θ, y) =

∫
Ωx

px|θ(x̌
(m)|θ, y)px̃(m)|x̌(m),θ,y(x̃

(m)|x̌(m), θ, y)dx̌(m),

where we use subscripts on p to make it clear what distributions the various p’s refer
to. As this must be equal to the distribution of the right hand side of (17), we can
rewrite our restriction of the desired sampling distribution to be,

px|θ,y(x̃
(m)|θ, y) =

∫
Ωx

px|θ(x̌
(m)|θ, y)px̃(m)|x̌(m),θ,y(x̃

(m)|x̌(m), θ, y)dx̌(m). (18)

This restriction tells us that there might be infinitely many solutions of updating
distributions, p(x̃(m)|x̌(m), θ, y), which satisfies (18). Which solution we choose does
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not matter if the assumed model is correct. However, if the assumed model is wrong,
the choice of solution might have a great impact on the final result. We want to use
the information in x̌(m) in the updating of the ensemble, and it is therefore essential
that the solution depend on this variable. Generally we define an optimal solution
p?(x̃(m)|x̌(m), θ, y) to the class of distributions satisfying (17) as the solution which
minimizes the expected value of some function g(x̌(m), x̃(m))

p?(x̃(m)|x̌(m), θ, y) = argmin
q(·)

E

[
g(x̌(m), x̃(m))

]
. (19)

One natural choice is to choose g(x̌(m), x̃(m)) to be the Mahalanobis distance between
x̌(m) and x̃(m)

g(x̌(m), x̃(m)) = (x̃(m) − x̌(m))TΣ−1(x̃(m) − x̌(m)), (20)

where Σ ∈ Rn×n is some positive definite matrix. With this choice of g(x̌(m), x̃(m)), we
keep as much of the information from the prior sample, x̌(m), as possible by making
minimal changes in the update to x̃(m). In Section 4, we apply the Bayesian filtering
method described in this section on a new assumed model, with both discrete and
continuous variables. When discussing the update step based on the new assumed
model, our focus is on the structure of the updating procedure and not on compu-
tational speed. The resulting algorithm is therefore computational feasible for low
dimensional state vectors only.

3.3 Parameter simulation

Before the updating of x̌(m) described in Section 3.2, we first need to simulate θ ∼
p(θ|u(m), y). The parameter simulation is the first step in the update step, and is
done for each ensemble member at each time. The prior distribution p(θ) determines
the posterior distribution p(θ|u(m), y). To simulate θ it is easier to simulate from
the distribution p(θ, x|u(m), y) and ignore x. Introducing a Gibbs sampler, we can
simulate from p(θ, x|u(m), y) by alternating between simulating from from the full
conditionals p(θ|x, u(m), y) and p(x|θ, u(m), y). By Bayes’ rule, and exploiting that
θ ⊥ y|x and that x ⊥ u(m)|θ, we get that the first full conditional becomes,

p(θ|x, u(m), y) = p(θ|x, u(m))

∝ p(x|θ, u(m))p(θ|u(m))

∝ p(x|θ)p(u(m)|θ)p(θ).
(21)

In Section 3.1 we stated that the distribution p(θ) should be chosen as a conjugate
prior for p(x|θ). If this is done, the distribution p(θ|x, u(m)) belongs to the same
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family of distributions as p(θ). Finding p(θ|x, u(m)) should therefore be possible. For
the other full conditional in the Gibbs sampler we also make use of Bayes’ rule, and
that x ⊥ u(m)|θ and y ⊥ θ|x to get that

p(x|θ, u(m), y) = p(x|θ, y)

∝ p(y|x, θ)p(x|θ)
∝ p(y|x)p(x|θ).

(22)

Performing enough iteration, a θ simulated from the Gibbs sampler should essentially
be a sample from the distribution p(θ|u(m), y) as desired. After having done the
simulation of θ, the class of updating distributions can be found using the previous
section’s procedure. In the next section, we take a deep dive into the model by
introducing a new assumed model, with both continuous and categorical variables,
where all calculations needed for the updating procedure are derived. The parameter
simulation in this assumed model is described with all necessary calculations in
Section 4.2.

4 Our assumed model

Loe and Tjelmeland (2020) applied the Bayesian ensemble filtering framework on
two assumed models; one with a continuous state space and one with a categorical
state space. In this section, we apply the updating procedure described in Section
3 on a new assumed model, including both continuous and categorical variables.
The new assumed model is a state space model identical to the example in Section
2.1, with joint distribution presented in (2). To simplify, we have not assumed
that all parameters are unknown. The unknown parameters θ are limited to the
Markov chain parameters generating the categorical vectors in the hidden states.
The following section will present all assumptions in the new model. This will be
followed by the simulation of the parameters θ in Section 4.2. In Section 4.3 we
will derive the class of updating distribution in our new assumed model and finally
find the optimal sampling distribution from which to simulate realizations from the
filtering distribution.

4.1 Specifying the assumed distributions

In our assumed model, we consider a state space model with hidden state variable
x = (γ, z) ∈ {0, 1}n × Rn. Here γ ∈ {0, 1}n = Ωγ is a categorical vector only taking
values of 0 or 1, and z ∈ Rn = Ωz is a continuous vector. For each x we have
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a corresponding variable y ∈ Rm, representing the observation of the latent state
variable. We assume that γ ⊥ z and that z ⊥ θ. Hence, the joint distribution of the
state variables given the parameter θ factorizes into the product,

p(x|θ) = p(γ, z|θ) (23)

= p(γ|θ)p(z) (24)

We assume that the distribution of the variables γ constitute a non-homogeneous
Markov chain with initial and transition probabilities,

θ = (θ1, {θr0}nr=2, {θr1}nr=2),

where θ1, θr0, θr1 ∈ [0, 1] are so that,

θ1 = p(γ1 = 1),

θr0 = p(γr = 1|γr−1 = 0),

θr1 = p(γr = 1|γr−1 = 1),

for r = 2, . . . , n. The non-homogeneity of the Markov chain means that we open
up for different transition probabilities in different parts of the Markov chain. The
parameters in θ are considered unknown, and treated as random variables. The joint
distribution of all the components in γ given θ then amounts to,

p(γ|θ) = p(γ1|θ)
n∏
r=2

p(γr|γr−1, θ). (25)

From our definition of θ as the initial and transition probabilities, we have that the
probability of the first component in the Markov chain given θ becomes,

p(γ1|θ) = θγ11 (1− θ1)1−γ1 = Bern(γ1; θ1). (26)

Namely, γ1|θ is Bernoulli distributed with parameter θ1. The transition probabilities
in the Markov chain will be,

p(γr|γr−1, θ) = θ
γr(1−γr−1)
r0 (1− θr0)(1−γr)(1−γr−1)θ

γrγr−1

r1 (1− θr1)(1−γr)γr−1 . (27)

As explained in Section 3.1, we adopt a conjugate prior for the unknown parameters
θ. Specifically we assume them to be independent and Beta-distributed,

θ1 ∼ Beta(p1, q1)

θr0 ∼ Beta(pr0, qr0)

θr1 ∼ Beta(pr1, qr1),
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for all r = 2, . . . , n, where p1, q1, pr0, qr0, pr1 and qr1 are all known hyperparameters.
The joint prior distribution of θ then amounts to,

p(θ) = p(θ1)
n∏
r=2

p(θr0)p(θr1)

∝ θp1−1
1 (1− θ1)q1−1

n∏
r=2

θpr0−1
r0 (1− θr0)qr0−1θpr1−1

r1 (1− θr1)qr1−1.

(28)

The distribution p(z) is chosen to be a multivariate Gaussian distribution with mean
0 and covariance matrix σ2I ∈ Rn×n, with σ2 ∈ R and I being the identity matrix
of size n. Namely,

z ∼ N (0, σ2I). (29)

Define so the known parameter µ = [µ0, µ1]T ∈ R2, with µ0, µ1 ∈ R. The vector
µγ ∈ {µ0, µ1}n is then defined to be,

µγ =
[
µγ1 µγ2 . . . µγn

]T
.

Namely, the ith component in the vector µγ is either µ0 or µ1, depending on whether
the ith component of γ is 0 or 1, respectively. The distribution p(y|x) is chosen to
be a Gaussian distribution with mean H(µγ + z), H ∈ Rm×n, and covariance matrix
R ∈ Rm×m,

y|x ∼ N (H(µγ + z), R). (30)

With this, the variable z contributes as noise to the mean of y. Figure 4 illustrates
the dependency structure in our assumed model graphically, when we want to update
an ensemble member x̌(m) to an ensemble member x̃(m) from the filtering distribution.
The following section presents the algorithm for updating the unknown parameters θ.
The parameter update is the first procedure in the update step. Section 4.3 presents
the remaining derivations in the update step, which results in the class of updating
distributions from which to simulate γ̃(m) and z̃(m).

4.2 Parameter simulation in our assumed model

The parameter simulation is the first part of the the updating of x̌(m) to x̃(m). In
Section 3.3 we showed that we could simulate θ ∼ p(θ, x|u(m), y) and then forget
x. We explained that we could simulate from the joint p(θ, x|u(m), y) by introduc-
ing a Gibbs sampler, where we alternate between simulating from the conditionals
p(θ|x, u(m), y) and p(x|θ, u(m), y). In this section, we will derive the full conditionals
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Figure 4: Graph structure of the assumed model when updating an ensemble member
x = [k, z] from the prior distribution to x̃ = [k̃, z̃] from the posterior distribution. The
shaded nodes are observable, whereas the non-shaded are deemed unknown, and need to
be simulated.

in the Gibbs sampler in our assumed model with assumptions specified in Section
4.1.

First we will look at how to simulate from the full conditional p(θ|x, u(m), y). As
explained in Section 3.1, this distribution will belong to the same family of distri-
bution as the prior distribution of θ, p(θ), as a conjugate prior was chosen for θ.
Expanding (21) by using the results in (24) and that the Markov property holds for
the categorical state variables, the posterior distribution factorizes into the product

p(θ|x, u(m), y) ∝ p(θ)p(x|θ)p(u(m)|θ)

= p(θ)p(z, γ|θ)
∏
i 6=m

p(ž(i), γ̌(i)|θ)

= p(θ)p(γ|θ)p(z)
∏
i 6=m

p(γ̌(i)|θ)p(ž(i))

∝ p(θ)p(γ|θ)
∏
i 6=m

p(γ̌(i)|θ)

= p(θ)p(γ1|θ)
n∏
r=2

p(γr|γr−1, θ)
∏
i 6=m

(
p(γ̌

(i)
1 |θ)

n∏
r=2

p(γ̌(i)
r |γ̌

(i)
r−1, θ)

)
(31)

The distribution p(θ) is written out in (28), and the distribution p(γ|θ) is defined in
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(25) with the different factors defined in (26) and (27). Remember that all ensemble
members in {γ(m)}Mm=1 are assumed to come from the same distribution as γ, given
θ. Inserting the expressions found for the distributions p(θ), p(γ1|θ) and p(γr|γr−1, θ)
into the last factorization in (31) and pulling together terms of powers with the same
base results in that the final expression of the posterior can be factorized into the
product,

p(θ|x, u(m)) = p(θ1|x, u(m))
n∏
r=2

p(θr0|x, u(m))p(θr1|x, u(m)). (32)

Here we can recognize the distributions in the factorized product on the right hand
side to be the posterior initial distribution,

θ1|x, u(m) ∼ Beta(p?1, q
?
1), (33)

with parameters

p?1 = p1 + γ1 +
∑
i 6=m

γ
(i)
1 ,

q?1 = q1 − γ1 +
∑
i 6=m

(1− γ(i)
1 ) + 1,

and the posterior transition distributions,

θr0|x, u(m) ∼ Beta(p?r0, q
?
r0), (34)

with parameters,

p?r0 = pr0 + γr(1− γr−1) +
∑
i 6=m

γ(i)
r (1− γ(i)

r−1),

q?r0 = qr0 + (1− γr)(1− γr−1) +
∑
i 6=m

(1− γ(i)
r )(1− γ(i)

r−1)

and
θr1|x, u(m) ∼ Beta(p?r1, q

?
r1), (35)

with parameters,

p?r1 = pr1 + γrγr−1 +
∑
i 6=m

γ(i)
r γ

(i)
r−1,

q?r1 = qr1 + (1− γr)γr−1 +
∑
i 6=m

(1− γ(i)
r )γ

(i)
r−1.
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Having found the full conditional p(θ|x, u(m), y), we only need the full condi-
tional p(x|θ, u(m), y) to get all the necessary distributions we need to simulate θ ∼
p(θ|u(m), y) by the Gibbs sampler. To find this full conditional we start by expanding
(22). Using that z ⊥ θ and that γ ⊥ z, we get,

p(x|θ, u(m), y) = p(x|θ, y)

∝ p(y|x)p(x|θ)
= p(y|γ, z)p(γ, z|θ)
= p(y|γ, z)p(z)p(γ|θ).

(36)

To simulate γ and z from this distribution, we can first simulate γ ∼ p(γ|θ, y) by
marginalizing over z. Given γ, we can thereafter simulate z ∼ p(z|γ, θ, y). We start
by finding the distribution of p(z|γ, θ, y), which is proportional to the factorized
product,

p(z|γ, θ, y) = p(z|γ, y)

∝ p(z, γ, y)

= p(y|γ, z)p(γ, z)

= p(y|γ, z)p(γ)p(z)

∝ p(y|γ, z)p(z).

By combining the exponents in these Gaussian distributions and introducing the
parameters Q and φ as,

Q = (
1

σ2
I +HTR−1H)−1 = σ2(I −KH),

φ = QHTR−1(y −Hµγ),
(37)

we can show that,

p(z|γ, θ, y) ∝ exp

{
1

2
(z − φ)TQ−1(z − φ)

}
.

That is, p(z|γ, θ, y) is Gaussian distributed,

p(z|γ, θ, y) ∼ N (φ,Q), (38)

with mean vector φ and covariance matrix Q as defined in (37). Next, we look at
the marginalized distribution, p(γ|θ, y). By using the result in (36), combining the
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exponents in the Gaussian distributions p(z) and p(y|γ, z) and integrating out z,
p(γ|θ, y) comes down to,

p(γ|θ, y) =

∫
z

p(x|θ, y)dz

∝ p(γ|θ)
∫
z

p(y|γ, z)p(z)dz

∝ p(γ|θ)
∫
z

exp

{
− 1

2

[(
y−H(µγ + z)

)T
·R−1

(
y −H(µγ + z)

)
+

1

σ2
zT z

]}
dz

= p(γ|θ) exp

{
− 1

2

[
(y −Hµγ)TR−1(y −Hµγ)− φTQ−1φ

]}
·
∫
z

exp

{
− 1

2
(z − φ)TQ−1(z − φ)

}
dz

∝ p(γ|θ) exp

{
− 1

2

[
(y −Hµγ)TR−1(y −Hµγ)− φTQ−1φ

]}
= p(γ|θ)N (y|Hµγ, R) exp

{
1

2
φTQ−1φ

}

(39)

We have now calculated all needed distributions in the Gibbs sampler used to
simulate θ ∼ p(θ|u(m), y) in the beginning of the update step. In the first alterna-
tion, we simulate θ ∼ p(θ|x, u(m)) defined in (32), where the factors p(θ1|x, u(m)),
p(θr0|x, u(m)) and p(θr1|x, u(m)) are defined in (33), (34) and (35), respectively. In
the second alternation, we start by simulating a γ ∼ p(γ|θ, y) defined in (39). Given
this γ, we can then simulate z ∼ p(z|γ, θ, y) defined in (38). Performing enough
iterations in the Gibbs sampler gives us the parameter used to update the respective
ensemble members. The method for updating one realization from the prediction
ensemble in our assumed model is described in the following section.

4.3 Class of updating distributions in our assumed model

Having found a way to simulate θ in Section 4.2, we can proceed with the update step
described in Section 3.2. We focus on the updating of one specific ensemble member
x̌(m) = (γ̌(m), ž(m)), from the prediction distribution, to the ensemble member x̃(m) =
(γ̃(m), z̃(m)), from the filtering distribution. For the given θ, we find a way to simulate
γ̃(m), z̃(m) ∼ p(γ̃(m), z̃(m)|γ̌(m), ž(m), θ, y) consistent with (17). The restriction in (17)
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ca, for our particular case, be written as,

γ, z|θ, y d
= γ̃(m), z̃(m)|θ, y. (40)

As we did in Section 3.2, we now denote with pX(x?), the distribution of a variable
X evaluated at x?. Writing out the expression for the joint probability on both sides
of the equation, the restriction can be formulated as,

pΓ|Θ,Y (γ|θ, y)pZ|Γ,Θ,Y (z|γ, θ, y) = pΓ̃(m)|Θ,Y (γ|θ, y)pZ̃(m)|Γ̃(m),Θ,Y (z|γ, θ, y).

From this formulation it is clear that the restriction in (40) is equivalent to the
restrictions,

pΓ|Θ,Y (γ|θ, y) = pΓ̃(m)|Θ,Y (γ|θ, y) (41)

and
pZ|Γ,Θ,Y (z|γ, θ, y) = pZ̃(m)|Γ̃(m),Θ,Y (z|γ, θ, y), (42)

for all γ, θ and y. Finding a way to simulate γ̃(m) and z̃ consistent with (40), then
comes down to finding a way to simulate γ̃(m) from a distribution p(γ̃(m)|γ̌(m), θ, y)
consistent with (41). Given this γ̃(m) we find a way to simulate z̃(m) from a distribu-
tion p(z̃(m)|γ̃(m), ž(m), θ, y) consistent with (42).

We will first look at how to find the updating distribution p(γ̃(m)|γ̌(m), θ, y), from
which to simulate γ̃(m). We use that the right hand side of (41) can be written as a
sum,

pΓ|Θ,Y (γ̃(m)|θ, y) =
∑
γ̌(m)

pΓ̃(m)|Γ̌(m),Θ,Y (γ̃(m)|γ̌(m), θ, y)pΓ̌(m)|Θ(γ̌(m)|θ). (43)

The distribution on the left hand side of this equation is calculated in (39), and
the distribution pΓ̌(m)|Θ(γ̌(m)|θ) on the right hand side of the equation is found in
(25) with the different factors defined in (26) and (27). The optimal distribution
p(γ̃(m)|γ̌(m), θ, y) with respect to an optimality criterion is found in Section 4.4.

We then proceed with finding the updating distribution p(z̃(m)|γ̃(m), ž(m), θ, y),
from which we simulate z̃(m). We start by noting that the distribution on the left
hand side of (42) is the Gaussian defined in (38). We so decide to limit the class of
updating distribution to,

p(z̃(m)|γ̃(m), ž(m), θ, y) ∼ N (z̃(m)|Až(m) +By + Cµγ̃(m) + d, S), (44)

where A ∈ Rn×n, B ∈ Rn×n, C ∈ Rn×n, d ∈ Rn and S ∈ Rn×n. What is left is to de-
termine A,B,C, d and S making the change from ž(m) to z̃(m) as small as possible, to
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satisfying the optimality criterion, but making sure that the restrictions for the up-
dating distribution are fulfilled. According to (44) we can simulate z̃(m)|γ̃(m), ž(m), θ, y
by drawing an ε ∼ N (0, S) and applying the linear shift of ž(m),

z̃(m) = Až(m) +By + Cµγ̃(m) + d+ ε. (45)

Remember that ž(m) and z are assumed identically distributed, with assumed distri-
bution written in (29). For two Gaussian distributions to be equal, we only nee the
mean vectors and covariance matrices to be equal. Hence, the restriction in (42) now
comes down to that the mean vectors and covariance matrices of the distribution of
z|γ, θ, y and z̃(m)|γ̃(m), θ, y yield the same, when evaluated at the same values. Taking
the mean and covariance of both sides of (45) over the distribution p(ž(m), ε|γ̃(m), θ, y)
yields,

E(z̃(m)) = E(Až(m) +By + Cµγ̃(m) + d+ ε)

= By + Cµγ̃(m) + d
(46)

and

Cov(z̃(m)) = Cov(Až(m) +By + Cµγ̃(m) + d+ ε)

= σ2AAT + S,
(47)

respectively. The restriction in (42) is now fulfilled if the result in (46) is equal to φ
and (47) is equal to Q, with φ and Q defined in (37). Namely that,

φ = σ2(I −KH)HTR−1(y −Hµγ̃(m)) = By + Cµγ̃(m) + d (48)

and
Q = σ2(I −KH) = σ2AAT + S, (49)

We solve (48) with respect to By + d and obtain,

By + d = σ2(I −KH)HTR−1(y −Hµγ̃(m))− Cµγ̃(m)

Inserting this into (45) eliminates B,C and d and results in,

z̃ = Až + Cµγ̃(m) + σ2(I −KH)HTR−1(y −Hµγ̃(m))− Cµγ̃(m) + ε

= Až + σ2(I −KH)HTR−1(y −Hµγ̃(m)) + ε.
(50)

We then solve (49) with respect to S,

S = σ2(I − AAT −KH). (51)
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What is now left for obtaining the equation from which we will simulate z̃(m) from
ž(m), is to specify A consistent with the restriction in (42) and making sure that S
is positive semi-definite. As shown in Section 3.2, there might be an infinite number
of distributions that support these requirements. In Section 4.4, we find the optimal
updating distribution for the simulation of both γ̃(m) and z̃(m), with respect to the
optimality criterion in (19) with the Mahalanobis distance defined in (20).

4.4 The optimal solution

The class of updating distributions for simulating γ̃(m) and z̃(m) from the filtering
distributions was found in the previous section. It was found that the distribution
p(γ̃(m)|γ̌(m), θ, y) must satisfy (43), and that z̃(m) can be simulated from the distribu-
tion p(z̃(m)|γ̃(m), ž(m), θ, y), by the linear equation in (50). In this section we will state
an optimality criterion, which in turn, determines the distribution p(γ̃(m)|γ̌(m), θ, y)
and the matrix A in (50). We use the optimality criterion (19) with the Mahalanobis
distance defined in (20) as the objective function. As the state variables contribute
to the mean of the likelihood in (30) as the sum µγ + z, we want to minimize the
expected distance between µγ̌(m) + ž(m) and µγ̃(m) + z̃(m). We use that Σ−1 can be
factorized as Σ−1 = V TV , V ∈ Rn×n. Hence, we write the objective function for our
particular assumed model as,

E
[
g(µγ̌(m) + ž(m), µγ̃(m) + z̃(m))

]
= E

[(
(µγ̃(m) + z̃(m))− (µγ̌(m) + ž(m))

)T
Σ−1

(
(µγ̃(m) + z̃(m))− (µγ̌(m) + ž(m))

)]
= E

[(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))T
·
(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))]
.

(52)

The expectation is taken over the distribution p(z̃(m), ž(m), γ̃(m), γ̌(m), ε|θ, y). We want
to find A, S and p(γ̃(m)|γ̌(m), θ, y) such that the function in (52) returns its minimum,
making sure that the restrictions in (41) and (42) holds, and that S is positive semi-
definite. In other words, to find the optimal updating distribution with respect to

25



our optimality criterion we have to solve the optimization problem,

argmin
A,p(γ̃(m)|γ̌(m),θ,y)

E

[(
V
(
(µγ̃(m)−µγ̌(m)) + (z̃(m) − ž(m))

))T
·
(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))]
s.t. S = σ2(I − AAT −KH) � 0,

pΓ|Θ,Y (γ̃(m)|θ, y) =
∑
γ̌(m)

pΓ̃(m)|Γ̌(m),Θ,Y (γ̃(m)|γ̌(m), θ, y)pΓ̌(m)|Θ(γ̌(m)|θ),

1 =
∑

γ̌(m)∈Ωγ

p(γ̃(m)|γ̌(m), θ, y), ∀ γ̃(m) ∈ Ωγ,

0 ≤ p(γ̃(m)|γ̌(m), θ, y) ≤ 1, ∀ γ̌(m), γ̃(m) ∈ Ωγ.

(53)

In Appendix A, we show that the terms involving A and p(γ̃(m)|γ̌(m), θ, y) are sep-
arated. For this reason, we can solve the minimization problem by solving it with
respect to A and p(γ̃(m)|γ̌(m), θ, y) separately. Hence, the minimization problem in
(53) can be solved by solving,

argmin
A

E

[(
V
(
(µγ̃(m) − µγ̌(m))+(z̃(m) − ž(m))

))T
·
(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))]
s.t. S = σ2(I − AAT −KH) � 0,

(54)

resulting in A, defining the the optimal updating distribution for z̃(m) and

argmin
p(γ̃(m)|γ̌(m),θ,y)

E

[(
V
(
(µγ̃(m)−µγ̌(m)) + (z̃(m) − ž(m))

))T
·
(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))]
s.t. pΓ|Θ,Y (γ̃(m)|θ, y) =

∑
γ̌(m)∈Ωγ

pΓ̃(m)|Γ̌(m),Θ,Y (γ̃(m)|γ̌(m), θ, y)pΓ̌(m)|Θ(γ̌(m)|θ),

1 =
∑

γ̌(m)∈Ωγ

p(γ̃(m)|γ̌(m), θ, y), ∀ γ̃(m) ∈ Ωγ

0 ≤ p(γ̃(m)|γ̌(m), θ, y) ≤ 1 ∀ γ̌(m), γ̃(m) ∈ Ωγ.

(55)
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resulting in the optimal updating distribution for γ̃(m).
We first focus on solving (54). We begin with subtracting ž(m) form both sides

of (50),

z̃(m) − ž(m) = (A− I)ž(m) + σ2(I −KH)HTR−1(y −Hµγ̃(m)) + ε

= (A− I)ž(m) +M(y −Hµγ̃(m)) + ε,
(56)

with M = σ2(I −KH)HTR−1. Our objective function in (54) can then be written
as,

E
[
g(µγ̌(m) + ž(m), µγ̃(m) + z̃(m))

]
= E

[(
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

))T
·
(
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

))]
,

(57)

In Appendix A, we show that we can write the objective function in (57) as,

E

[(
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

))T
·
(
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

))]
.

= σ2V tr
[
2I −KH

]
V T − 2σ2V tr

[
A
]
V T

+ V Cov
(
(I −MH)µγ̃(m) − µγ̌(m) +My

)
V T
]

+ E
[
(I −MH)µγ̃(m) − µγ̌(m) +My

]T
E
[
(I −MH)µγ̃(m) − µγ̌(m) +My

]
.

(58)

We see that the second term is the only term depending on A . Hence, solving the
minimization problem in (54) is equivalent to solving the maximization problem,

argmax
A

tr
{
V AV T

}
s.t. S = σ2(I −KH − AAT ) � 0.

(59)

To solve this, we adopt the procedure from Loe and Tjelmeland(2020), Section 4.3.
We Begin with the singular value decomposition of the covariance matrix σ2(I−KH),

σ2(I −KH) = UΛUT , (60)
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where U ∈ Rn×n is an orthogonal matrix, and Λ ∈ Rn×n is a diagonal matrix. Define
so,

S̃ = Λ−
1
2UTSUΛ

1
2 ,

and
Ã = σATUΛ−

1
2 .

The expression for S in (51) is then equivalent to the expression,

S̃ = I − ÃT Ã.

Writing the objective function in (59) in terms of Ã yields,

tr
{
V AV T

}
= tr

{
V UΛ

1
2 ÃTV T

}
= tr

{
ÃΛ

1
2UTV TV

}
= tr

{
ÃZ
}
,

where Z = Λ
1
2UTV TV . We now use Theorem 1 in Loe and Tjelmeland (2021). Since

σ2(I −KH) is positive definite, Λ is invertible. Thereby, Λ
1
2 is also invertible. We

require (V TV )−1 to be positive definite, and this implies invertibility of V TV . U is
orthogonal and therefore invertible. Z is thereby a product of invertible matrices and
is itself inveritible with full rank. With singular value decomposition Z = PGF T ,
Theorem 1 states that the maximum value of tr

{
ÃZ
}

under the constraint that S̃

is positive semi-definite occurs only for Ã = FP T . We then get that,

S̃ = I − ÃT Ã = I − PF TFP T = I − I = 0.

This implies that all elements of S are also 0. The corresponding optimal value for
A is then,

A =
1

σ
UΛ

1
2 ÃT =

1

σ
UΛ

1
2PF T .

We have now found the matrix A, identifying the linear equation in (50), which
samples z̃(m) from the filtering distribution. We will now proceed with showing
how to solve the optimization problem in (55), resulting in the optimal distribution,
p(γ̃(m)|γ̌(m), θ, y), from which to sample γ̃(m). We show that the optimization problem
can be written as a linear programming problem, i.e. the objective function and the
constraints are linear in the term p(γ̃(m)|γ̌(m), θ, y). First we define,

Gγ̌(m),γ̃(m) =
[
µTγ̃(m)

(
(I − 2HTMT )V TV +HTMTV TVMH

)
µγ̃(m)

− 2(My + µγ̌(m))TV TV (I −MH)µγ̃(m)

]
p(γ̌(m)|θ, y).

(61)
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In Appendix B, we show that,

E

[(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))T
·
(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))]
=

∑
γ̌(m)∈Ωγ

∑
γ̃(m)∈Ω

(m)
γ

Gγ̌(m),γ̃(m)p(γ̃(m)|γ̌(m), θ, y) + C,

(62)

where C is a constant not depending on γ̃(m). The last expression is linear in terms
of the distribution p(γ̃(m)|γ̌(m), θ, y). The optimization problem in (55) is therefore
a linear programming problem, which can be solved numerically. More thoroughly,
we show in Appendix C, that the optimization problem can be written on the same
form as the general problem in (12). The optimal sampling distribution for γ̃(m) with
respect to our optimality criterion can then be solved by a linear programming tool.

5 Simulation examples

In this section, we present three simulation examples with our assumed model speci-
fied in Section 4. In the examples, we generate data with different degrees of overlap
of the distribution of the observations, simulated from different hidden state values.
First, we describe how we generate the true hidden states for all three examples
and simulate corresponding observations in Section 5.1. After that, we specify val-
ues for all parameters in our assumed model in Section 5.2. The same parameter
assumptions yield for all three examples.

5.1 Experimental setup

In this section we describe how we generate the true hidden states with corresponding
observations in all three examples. The generated true hidden states are compared
to the update ensembles from the algorithm in Section 5.3. At all times t, we choose
the state variable xt = [γt, zt] to consist of the two state vectors γt = (γt1, . . . , γ

t
n) and

zt = (zt1, . . . , z
t
n), both having dimension n = 6, so that Ωx = {0, 1}6×R6. We define

the state space model for time 1 to time T = 20. We choose the true categorical
states,

γt =
[
1 1 1 0 0 0

]T ∀ t = 1, . . . , 20. (63)

In Figure 5 we illustrate the categorical state vectors. One pixel represents the value
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Figure 5: The true value of γtn for all components n at all times t. The x-axis represents
time t, and the y-axis represents component n. The component γtn = 1 where the image
pixels are white and γtn = 0 where the image pixels are black.

of γtn. The pixel is black if γtn = 0, and white if γtn = 1. We choose the continuous
noise variables zt to come from a VAR(1) model as in (13). We choose,

Φ =


0.6 0.2 0 0 0 0
0.2 0.6 0.2 0 0 0
0 0.2 0.6 0.2 0 0
0 0 0.2 0.6 0.2 0
0 0 0 0.2 0.6 0.2
0 0 0 0 0.2 0.6

 ,

i.e. the matrix with 0.6 on the main diagonal and 0.2 on the super- and subdiagonal.
When we choose Υ, the true covariance of ωt in the VAR(1) model, we want to
make sure that the covariance of zt do not change over time. Namely, we want that
Cov[zt] = Cov[zt−1] = W for all t = 2, . . . , T . To choose an appropriate W , we make
use of that we can construct a positive semi-definite matrix W by,

W = w2
0W1W

T
1 ,

where w0 ∈ Rn and W1 ∈ Rn×n are any arbitrary scalar and matrix, respectively.
We set,

W1 =


3 2 0 0 0 0
1 3 1 0 0 0
0 1 3 1 0 0
0 0 1 3 1 0
0 0 0 1 3 1
0 0 0 0 2 3

 ,
and set w0 = 0.4. We then get the value of Υ by taking the covariance on both sides
of (13), and solving the resulting equation with respect to Υ,

Υ = W − ΦWΦT .
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Figure 6: The marginal distribution of the observations of ytn|γtn = 0, ztn = 0 are presented
as blue curves, and the marginal distribution of the observations of ytn|γtn = 1, ztn = 0 are
presented as blue curves, for all three simulation examples. The distribution in Example 1
is shown on the left, Example 2 in the middle and Example 3 on the right. The distribution
of ytn|xtn when zt = 0 does not vary over time as we assume the categorical variables to be
constant. The matrix H = 0.6I in Example 1, H = 0.4I in Example 2 and H = 0.2I in
Example 3.

Note that Υ is not guaranteed to be positive semi-definite with this setup, but it is
in this particular case.

Having generated the true state vectors {xt}Tt=1, we now generate for for each
t = 1, . . . , 30, an observation vector yt = (yt1, . . . , y

t
6), according to the distribution

in (30). We set the parameter

µ =
[
0 3

]T
,

i.e. µ0 = 0 and µ1 = 3, in all three examples and choose R = I. Note that a vector µ
with these values will make the categorical vector dominate in the likelihood as the
values in the resulting matrix W will be in the range between µ0 and µ1. The value
of w0 was chosen with this in mind, so that the elements of W is in the appropriate
range. We set the matrix H = h0I, where h0 is a scalar we vary in all three examples.
We set h0 = 0.6 in Example 1, h0 = 0.4 in Example 2 and h0 = 0.2 in Example 3.
With lower value of h0, and no changes in the other parameters, the covariance R
is more dominate in the likelihood yt|xt, and the value of the categorical variables
have less influence. In other words, we vary the difference between the marginal
distribution of ytn|xtn in the three examples, when γtn = 0 and γtn = 1. This is
illustrated in Figure 6, where we have plotted the distribution of ytn|γtn = 0, ztn = 0 in
red, and ytn|γtn = 1, ztn = 0 in blue, for all three examples. The same effect could be
achieved by varying R. We assume the model to perform best in Example 1, where
the distribution of ytn|γtn = 1 and ytn|γtn = 0 do not overlap as much as in Example
2 and 3. The overlap in Example 3 seems crucial, and the model is not assumed
to perform as well here as in the two other examples. The values of h0 are chosen
with this in mind. The true value of µγt + zt and the simulated observations yt for
t = 1, . . . , 30 are plotted for all three examples in Figure 7. As is anticipated from
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Figure 7: The generated true values µγt + zt as red plus signs and the simulated obser-
vations in green circles, for all times t = 1, . . . , 20. The x-axis represents element n of the
vector where n = 1, . . . , 6. Example 1 is shown in the leftmost plot, Example 2 in the plot
in the middle and Example 3 in the rightmost plot. Note that the true state vectors are
equal in all three plots.

Figure 6, the values of ytn for n = 1, 2 and 3 and for n = 4, 5 and 6, are separated
most in Example 1. The separation is less in Example 2 and least in Example 3.

5.2 Specifications in our assumed model

Once we have generated the reference data, we specify our assumptions for the sim-
ulation procedure. We assume that,

θ1, θr0, θr1 ∼ Beta(1, 1),

for all r = 2, . . . , n, i.e. all θs are uniformly distributed. We use 100 iterations in
the Gibbs sampler for the parameter distribution. We choose to simulate M = 30
ensemble members at each time t. For the Mahalanobis distance g(x̌m, x̃(m)), We use
the Euclidean distance, i.e. Σ = I. For the prediction step, we assume we can obtain
the prediction ensemble member x̌t(m) by,

x̌t(m) = x̃t−1(m),

for t = 2, . . . , 20. In other words, we assume that γ̌t(m) = γ̃t−1(m) and žt(m) = z̃t−1(m).
We obtain the initial prediction ensemble member γ1(m) by simulating from a first
order Markov chain with initial and transition probabilities all set to 0.5. We obtain
the initial prediction ensemble z1(m) by simulating from a Gaussian distribution with
mean 0 and covariance I.

5.3 Simulation results

In this section we present the result of the simulations using the Bayesian ensemble
filtering algorithm derived in Section 4, with data generated as explained in Section
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Figure 8: Updating ensemble at t = 3, t = 15 and t = 30 in the first, second and third
row respectively, for the three examples column-wise. Example 1 is shown in the column
on the left, Example 2 in the column in the middle and Example 3 in the column on the
right. The solid lines show the value of the elements of the vectors µγ̃t(m) + z̃t(m), for
m = 1, . . . , 30. The true state vector expression, µγt + zt, are shown with red pluses.

5.1 and specifications for the simulation presented in Section 5.2. We evaluate the
results based on the generated true data. In Figure 8 , we show the simulated
values of µγ̃t(m) + z̃t(m) for all m = 1, . . . , 30, together with the true value µγt + zt,
at times t = 3, t = 15 and t = 30. In the upper plots, the true values seem to
lie inside the spread of the ensemble members. However, the spread declines over
time, and at t = 30, the spread of the ensemble members do not cover the true
values. It seems that the variance of the filtering distribution is underestimated. As
discussed in Section 3, the underestimation of the variance in the EnKF is to some
extent accounted for in our assumed model, as we consider the parameters as random
variables. However, we have only assumed that the transition probabilities in the
categorical variables’ Markov chain to be unknown. One improvement of the model
could be to simulate all parameters used in the model.

The marginal distribution of the categorical variables are estimated in Figure 9.
Compared to the image in Figure 5 , we see that Example 1 identifies the true value
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Figure 9: The estimated marginal distributions of the categorical variables for all three
examples. Example 1 is shown in the image on the left, Example 2 in the image in the
middle and Example 3 in the image on the right. The average value of the simulated

categorical variables {γ̃t(m)
n }Mm=1 are plotted against time, in gray-scale. The y-axis is the

elements, n. A white pixel at time t, element n, means that all ensemble members γ̃t(m)

have the value one 1, in element n. Note that a perfect simulation would yield the same
image as in Figure 5.

of the latent categorical variables almost immediately, with only some deviations.
The deviations could be the result of an outlier observation in that specific time
the deviation occurs. In Example 2, we see that the model have some difficulty to
identify the true categorical values in the beginning, but manages to identify them to
some degree at later times. In Example 3, we see that the model struggles to identify
the true values and performs quite bad. This result was anticipated in Section 5.1.

6 Closing remarks

In this report, we have applied the Bayesian ensemble filtering framework, proposed
in Loe and Tjelmeland (2021), on a new assumed model, consisting of both contin-
uous and categorical variables. For a fixed time t, we derive the class of updating
distribution from which to update a prior ensemble to a posterior ensemble of in-
dependent realizations from the filtering distribution. We propose an optimality
criterion, limiting the class of distributions to the optimal filter with respect to the
criterion.

The latent state variables in our state space model consist of two vectors, one
categorical and one continuous vector. The elements of the categorical vector take
on either the value 0 or the value 1, and we assume that it comes from a first order
Markov chain. The continuous vector contributes to the model as noise, and we
assume that it is Gaussian distributed with mean 0. We assume a linear-Gaussian
model for the observations, with mean depending on both state vectors. The tran-
sition probabilities in the Markov chain for the categorical variables are treated as
random variables, and we have derived an algorithm from which to simulate the
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parameters. The updating framework for this particular model is derived from an
optimality criterion that restricts the solution to making minimal changes to the
ensemble members

We present three simulation examples, showing the performance of the derived
updating algorithm. In the examples, we vary the values on the diagonal of the matrix
H, i.e., we vary the contribution of the hidden states to the mean of the likelihood.
In example 1, the likelihood distributions when the elements of the categorical vector
takes on values 1 and 0 are more separated than in example 2. The model manages
to identify the true value of the categorical vectors quite well when it is expected to,
that is in Example 1 and 2. In example 3, these distributions have a critical overlap,
and the model does not perform well here, as expected. At later times, we see that
the spread of the ensemble members do not capture the true values of µγt +zt. which
means that the method does seem to underestimate the variance in the final filtering
distribution.

We study our assumed model, treating the transition probabilities in the Markov
chain as random variables. One interesting task for the future could be to treat
also the remaining parameters as random variables. Treating more parameters as
random variables could increase the spread of the ensemble members in the simulation
and thereby increase the estimated variance. We do not prioritize computational
efficiency in the computed framework. Computing all possible transition probabilities
from γ̌(m) to γ̃(m) is the most demanding part of the algorithm. Hence, we choose a
sufficient low dimension for the state vectors in our simulation examples. It would be
interesting to explore ideas that would lower the complexity of the algorithm. One
idea that would reduce the algorithm’s complexity would be to restrict the allowed
dependencies between γ̌t(m) and γ̃t(m), which would lower the number of possible
transition probabilities, as done in the first order Markov chain assumed model in
Loe and Tjelmeland (2021).
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A Expansion of the minimization function

Here we will show that the function in (52) can be separated in terms depending on
A and terms depending on p(γ̃(m)|γ̌(m), θ, y). We start by seeing that we can write,

E
[
V
(
(A− I)ž(m)+(I −MH)µγ̃(m) − µγ̌(m) +My + ε

)]
= V E

[
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

]
= V E

[
(I −MH)µγ̃(m) − µγ̌(m) +My

]
,

(64)

where the last equality holds as then mean of ž(m) and ε are both 0. Moreover, we
have that,

Cov
[
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

)]
= V Cov

[
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

]
V T

= V
[
σ2(A− I)(A− I)T + S]V T

+ V Var
[
(I −MH)µγ̃(m) − µγ̌(m) +My

]
V T .

Replacing S with the expression in (51) yields,

Cov
[
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

)]
= V

[
σ2(A− I)(A− I)T + σ2(I − AAT −KH)]V T

+ V Cov
[
(I −MH)µγ̃(m) − µγ̌(m) +My

]
V T .

= V
[
σ2(2I − A− AT −KH)]V T

+ V Cov
[
(I −MH)µγ̃(m) − µγ̌(m) +My

]
V T .

(65)

For any stochastic vector w, we have the identity E[wTw] = tr[Cov(w)]+E[w]T E[w].
Using this identity with w = V [(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))], we can write the
minimization function in (52) as,

E

[(
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

))T
·
(
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

))]
.

= tr

[
Cov

(
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

))]
+ E

[
V
(
(A−I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

)
]T

· E
[
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

)]
(66)
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Inserting the expressions in (64) and (65) and thereafter using the trace is a linear
mapping and that tr[XT ] = tr[X] holds for any matrix X, we can further expand
(66),

E

[(
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

))T
·
(
V
(
(A− I)ž(m) + (I −MH)µγ̃(m) − µγ̌(m) +My + ε

))]
.

= tr
[
σ2V (2I − A− AT −KH)

)
V T

+ V Cov
(
(I −MH)µγ̃(m) − µγ̌(m) +My

)
V T
]

+ E
[
(I −MH)µγ̃(m) − µγ̌(m) +My

]T
E
[
(I −MH)µγ̃(m) − µγ̌(m) +My

]
= σ2V tr

[
2I −KH

]
V T − 2σ2V tr

[
A
]
V T

+ V Cov
(
(I −MH)µγ̃(m) − µγ̌(m) +My

)
V T
]

+ E
[
(I −MH)µγ̃(m) − µγ̌(m) +My

]T
E
[
(I −MH)µγ̃(m) − µγ̌(m) +My

]
We see that the second term in the last equality is the only term depending on A,
and that it is independent of γ̃(m) and γ̌(M). This proves that the optimality function
in (52), can be written in terms of A and p(γ̃(m)|γ̌(m), θ, y) separately.

B Derivation of the linear programming problem

for gamma

We will here expand the objective function in (55) and show that it can be written
in linear terms of p(γ̃(m)|γ̌(m), θ, y). We start by expanding the objective function,

E

[(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))T
·
(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))]
= E

[
(µγ̃(m) − µγ̌(m))TV TV (µγ̃(m) − µγ̌(m))

+ 2(z̃(m) − ž(m))TV TV (µγ̃(m) − µγ̌(m))

+ (z̃(m) − ž(m))TV TV (z̃(m) − ž(m))
]
.
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We then insert the expression for z̃ − ž in (56),

E

[(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))T
·
(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))]
= E

[
(µγ̃(m) − µγ̌(m))TV TV (µγ̃(m) − µγ̌(m))

+ 2
(
(A− I)ž(m) +M(y −Hµγ̃(m))

)T
V TV (µγ̃(m) − µγ̌(m))

+
(
(A− I)ž(m) +M(y −Hµγ̃(m))

)T
V T

· V
(
(A− I)ž(m) +M(y −Hµγ̃(m))

)]
.

Only considering the terms depending on γ̃(m) reduces the expression to,

E

[(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))T
·
(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))]
= E

[
µTγ̃(m)V

TV µγ̃(m) − 2µTγ̌(m)V
TV µγ̃(m)

+ 2
(
ž(m)T (A− I)TV TV + yTMTV TV + µTγ̌(m)V

TVMH
)
µγ̃(m)

− 2µTγ̃(m)H
TMTV TV µγ̃(m) + µTγ̃(m)H

TMTV TVMHµγ̃(m)

+ 2
(
ž(m)T (A− I)T + yTMT

)
V TVMHµγ̃(m)

]
+ C

= E
[
µTγ̃(m)

(
V TV − 2HTMTV TV +HTMTV TVMH

)
µγ̃(m)

+2
(
ž(m)T (A− I)TV TV − yTMTV TV + µTγ̌(m)V

TVMH

− µTγ̌(m)V
TV − ž(m)T (A− I)TV TVMH − yTMTV TVMH

)
µγ̃(m)

]
+ C

= E
[
µTγ̃(m)

(
(I − 2HTMT )V TV +HTMTV TVMH

)
µγ̃(m)

+2
((

(A− I)ž(m) −My − µγ̌(m)

)T
V TV

−
(
(A− I)ž(m) −My − µγ̌(m)

)T
V TV H

)
µγ̃(m)

]
+ C

= E
[
µTγ̃(m)

(
(I − 2HTMT )V TV +HTMTV TVMH

)
µγ̃(m)

+ 2
(
(A− I)ž(m) −My − µγ̌(m)

)T
V TV (I −MH)µγ̃(m)

]
+ C,
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with C being a constant, not depending on γ̃(m). Now, using that ž ⊥ γ̃ and that

E(ž) = 0 yields,

E

[(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))T
·
(
V
(
(µγ̃(m) − µγ̌(m)) + (z̃(m) − ž(m))

))]
= E

[
µTγ̃(m)

(
(I − 2HTMT )V TV +HTMTV TVMH

)
µγ̃(m)

+ 2
(
(A− I)ž(m) −My − µγ̌(m)

)T
V TV (I −MH)µγ̃(m)

]
+ C

= E
[
µTγ̃(m)

(
(I − 2HTMT )V TV +HTMTV TVMH

)
µγ̃(m)

− 2(My + µγ̌(m))TV TV (I −MH)µγ̃(m)

]
+ C

=
∑

γ̌(m)∈Ωγ

∑
γ̃(m)∈Ωγ

[
µTγ̃(m)

(
(I − 2HTMT )V TV +HTMTV TVMH

)
µγ̃(m)

− 2(My + µγ̌(m))TV TV (I −MH)µγ̃(m)

]
· p(γ̌(m)|θ, y)p(γ̃(m)|γ̌(m), θ, y) + C

=
∑

γ̌(m)∈Ωγ

∑
γ̃(m)∈Ωγ

Gγ̌(m),γ̃(m)p(γ̃(m)|γ̌(m), θ, y) + C,

with Gγ̌(m),γ̃(m) as in (61). The last expression is linear in terms of the distribution

p(γ̃(m)|γ̌(m), θ, y). This expression is then used in the optimization problem which
results in the updating distribution for γ̃(m).

C Matrix representation

Here we will show that the optimization problem in (55) can be written on the same
form as the general problem in (12). By replacing the objective function in (43) with
the expression in (62), we can rewrite the optimization problem to,

argmin
p(γ̃(m)|γ̌(m),θ,y)

∑
γ̌(m)∈Ωγ

∑
γ̃(m)∈Ωγ

Gγ̌(m),γ̃(m)p(γ̃(m)|γ̌(m), θ, y)

s.t. pΓ|Θ,Y (γ̃(m)|θ, y) =
∑

γ̌(m)∈Ωγ

pΓ̃(m)|Γ̌(m),Θ,Y (γ̃(m)|γ̌(m), θ, y)pΓ̌(m)|Θ(γ̌(m)|θ),

1 =
∑

γ̌(m)∈Ωγ

p(γ̃(m)|γ̌(m), θ, y), ∀ γ̃(m) ∈ Ωγ

0 ≤ p(γ̃(m)|γ̌(m), θ, y) ≤ 1 ∀ γ̌(m), γ̃(m) ∈ Ωγ.

(67)
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We order the categorical space Ωγ = {γ1, γ2, . . . , γ2n} and define the matrix X ∈
R2n×2n as,

X =


p(γ̃1(m)|γ̌1(m), θ, y) p(γ̃2(m)|γ̌1(m), θ, y) . . . p(γ̃2n(m)|γ̌1(m), θ, y)
p(γ̃1(m)|γ̌2(m), θ, y) p(γ̃2(m)|γ̌2(m), θ, y) . . . p(γ̃2n(m)|γ̌2(m), θ, y)

...
...

. . .
...

p(γ̃1(m)|γ̌2n(m), θ, y) p(γ̃2(m)|γ̌2n(m), θ, y) . . . p(γ̃2n(m)|γ̌2n(m), θ, y)

 . (68)

Namely, the element Xi,j in row i, column j, of the matrix X, defines the probability
from which we sample γ̃(m) = γj from the filtering distribution, given the prediction
sample γ̌(m) = γi. We then define the matrix G ∈ R2n×2n as,

G =


Gγ̌1(m),γ̃1(m) Gγ̌1(m),γ̃2(m) . . . Gγ̌1(m),γ̃2

n(m)

Gγ̌2(m),γ̃1(m) Gγ̌2(m),γ̃2(m) . . . Gγ̌2(m),γ̃2
n(m)

...
...

. . .
...

Gγ̌2
n(m),γ̃1(m) Gγ̌2

n(m),γ̃2(m) . . . Gγ̌2
n(m),γ̃2

n(m)

 , (69)

i.e. a matrix with where element Gi,j = Gγ̌i(m),γ̃j(m) defined in (61). We so define the

vectors x ∈ R22n and g ∈ R22n as,

x =



p(γ̃1(m)|γ̌1(m), θ, y)
...

p(γ̃2n(m)|γ̌1(m), θ, y)
p(γ̃1(m)|γ̌2(m), θ, y)

...
p(γ̃2n(m)|γ̌2(m), θ, y)

...
p(γ̃1(m)|γ̌2n(m), θ, y)

...
p(γ̃2n(m)|γ̌2n(m), θ, y)



, g =



Wγ̌1(m),γ̃1(m)

...
Wγ̌1(m),γ̃2

n(m)

Wγ̌2(m),γ̃1(m)

...
Wγ̌2(m),γ̃2

n(m)

...
Wγ̌2

n(m),γ̃1(m)

...
Wγ̌2

n(m),γ̃2
n(m)



, (70)

being the flattened vectors of the matrices X in (68) and W in (69) in row-major
order, respectively. We then define the diagonal matrix D ∈ R2n×2n as,

D =


p(γ̌1(m)|θ) 0 . . . 0

0 p(γ̌2(m)|θ) . . . 0
...

...
. . .

...
0 0 . . . p(γ̌2n(m)|θ)

 , (71)
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with diagonal entry Pi,i = p(γ̌i(m)|θ) for i = 1, . . . , 2n. Thereafter, we define the
block matrix A ∈ R2n+1×22n ,

A =



1
T
2n

0

1
T
2n

. . .

0
1
T
2n

D D D D


, (72)

with 12n = (1, 1, . . . , 1) ∈ R2n . In the first 2n rows of the matrix A, we have in row
i, the value 1 from column i · 2n to column (i + 1) · 2n, all other entries are 0. The
last 2n rows consist of a horizontal concatenation of 2n diagonal matrices, D in (71).
We so define the vector b ∈ R2n+1

,

b =



1
1
...
1

pΓ|Θ,Y (γ̃1(m)|θ, y)
pΓ|Θ,Y (γ̃2(m)|θ, y)

...
pΓ|Θ,Y (γ̃2n(m)|θ, y)


. (73)

i.e. bi = 1 for i = 1, 2, . . . , 2n and bj = pΓ|Θ,Y (γ̃j(m)|θ, y) for j = 2n+1, 2n+2, . . . , 2n+1.
We can then write the optimization problem in (67) on the same form as the general
linear programming problem in (12), with x and g as in (70), A as in (72), b as in
(73), l being the all-zero vector in R22n , u being the all-one vector in R22n .
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