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Abstract

Delusions are one of the main symptoms of schizophrenia, and delusion
prone individuals have been linked to a ’jumping to conclusions’ bias. That
means drawing conclusions without having sufficient information. An in-
formation sampling task called the box task has been proposed to find if
participants have this bias. In the box task, we have a grid of grey boxes
that, when opened, either display the colour red or blue. Participants are
informed that one colour is in the majority and that their task is to find out
which one. We use two versions of the box task, one where the participants
can open as many boxes as they want and another where the test termi-
nates when they try to open a random box. These are called the unlimited
and limited versions, respectively. In this report, we find an Ideal Observer
solution of the box task, where an Ideal Observer is someone who would
make the optimal choice each time a box is opened. We have data from 76
participants who have done both versions of the box task, and we define
a model for how they make decisions using a softmax model. The model
includes parameters, α, that is a minor loss or penalty a participant gets
each time a box is opened, β, that is the loss we get if the test terminates
in a limited trial and η, that is a measure of how good the decisions the
participant make are. In the model, the probability that a box is red, Θ,
has a prior distribution with hyperparameters γ and κ. We estimate the
model parameters for each participant with maximum likelihood estimation
and find confidence intervals using parametric bootstrapping. Finally, we
look at the sensitivity to the hyperparameters in the prior distribution for
Θ.

This model is a good fit for the participants who make good choices but not
for those who make bad choices. Parametric bootstrapping makes the con-
fidence intervals for the participants that make optimal, or close to optimal,
choices have length zero, meaning that, for these participants, this is not
the best choice of method for finding these intervals. Looking at the sensi-
tivity in the unlimited case, we find that the values of η̂ are not sensitive
to the changes in the prior, whereas the values of α̂ tend to be smaller with
one of the priors. However, in the limited version, the model is sensitive to
the changes in the prior and tend to estimate smaller values for all three
parameters for the smallest values of the hyperparameters we use here.
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Sammendrag

Et av de viktigste symptomene p̊a schizofreni er vrangforestillinger. Man-
ge med dette symptomet har vist seg å trekke forhastede slutninger uten
å ha nok informasjon, de har da har et ’jumping to conclusions’ (JTC)
bias. Bokstesten (the box task) har blitt foresl̊att å bruke for å finne ut om
noen har et JTC bias. Da ser man tolv gr̊a bokser i et rutenett. Man åpner
en og en boks, og bak hver boks skjuler det seg en av to farger, rød eller
bl̊a. Deltakerne f̊ar beskjed om at en av fargene alltid er i majoritet og at
de skal finne ut hvilken det er. I denne rapporten brukes to versjoner av
bokstesten, én hvor man f̊ar åpne alle de tolv boksene og en annen hvor
deltakerne f̊ar beskjed om at testen terminerer n̊ar en tilfeldig boks åpnes.
Disse kalles henholdsvis ubegrenset og begrenset versjon. I denne rappor-
ten finner vi en Ideell Observatør-løsning, hvor en Ideell Observatør er en
deltaker som alltid tar optimale valg. Vi har data fra 76 personer som har
gjort begge versjoner av bokstesten, og vi modellerer hvordan disse tar valg
n̊ar de tar testen med en softmax-modell. Modellen inkluderer parameterne
α, som representerer et lite tap man f̊ar hver gang en boks åpnes, β, som
er det tapet man f̊ar hvis testen terminerer i den begrensete versjonen og
η, som sier noe om hvor gode valg man tar. Sannsynligheten for at en boks
er rød, Θ, har en apriorifordeling som inkluderer hyperparameterne γ og
κ. Modellparameterne estimeres med sannsynlighetsmaksimering, og konfi-
densintervaller beregnes ved hjelp av parametrisk bootstrapping. Deretter
ser vi p̊a hvor sensitive resultatene er n̊ar vi forandrer p̊a hyperparameterne
i apriorifordelingen til Θ.

Modellen passer bra hvis deltakerne tar gunstige valg, men ikke fullt s̊a bra
hvis de tar d̊arlige valg. Lengden p̊a konfidensintervallene til individene som
tar optimale eller nesten optimale valg blir null. For disse deltakerne er der-
for ikke parametrisk bootstrapping den beste m̊aten å finne disse intervallene
p̊a. I den ubegrensede versjonen blir η̂ p̊avirket lite n̊ar hyperparameterene
forandres, mens α̂ tenderer til å bli mindre for de minste hyperparameterene
brukt her. I den begrensede versjonen, derimot, f̊ar mange deltakere lavere
estimater for alle tre parametere.
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Chapter 1

Introduction

Schizophrenia is a psychotic disorder where at least two symptoms: delu-
sions, hallucinations, disorganized speech, grossly disorganized or catatonic
behaviour or negative symptoms such as reduced emotional expressions and
lowered motivation, have to be present. Delusions are beliefs that will not
change if contradicting evidence is presented. The most common type of
delusions is persecutory delusions. People who have those kinds of delusions
might think that they will be hurt, injured, tormented or so on by others.
Referential delusions are also common. Then a person puts meaning into
comments, gestures and actions, thinking that they are about themselves
when they not necessarily are. Completely improbable beliefs are called
bizarre delusions. These are delusions others find far-fetched, and they are
things that cannot happen in real life. A bizarre delusion could, for example,
be that a person believes that their organs have been removed and replaced
by someone else’s organs without there being any scars or other evidence of
that happening. A delusion that is not bizarre could be that you think you
are under police surveillance without there being any evidence supporting
this. It might be hard to distinguish between delusions and strongly held
ideas. The main distinction is about the degree of conviction and how much
or little the beliefs can be amended when contradicting facts are presented
(American Psychiatric Association, 2013).

Delusions are one of the main characteristics of schizophrenia as it appears
in about three out of four of those diagnosed (Garety et al., 2011). Re-
searchers have been trying to understand how the delusions are formed and
maintained to improve treatment (Dudley et al., 2016). One important
finding is that deluded individuals seem to make decisions based on less
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2 CHAPTER 1. INTRODUCTION

evidence than healthy and other psychiatric individuals. Making decisions
based on little evidence is often referred to as a ”jumping to conclusions”
(JTC) bias. A person with this bias might reach decisions or form beliefs
before reaching realistic conclusions and thus accept unrealistic ideas. They
are therefore more prone to delusions. The hope is that if we can detect the
JTC bias, we can reduce delusional thinking and prevent delusions.

The JTC bias is traditionally tested with a probabilistic reasoning task
called the beads task. The participants are presented with two jars con-
taining beads of two colours, for example, red and blue. The two jars have
opposite ratios of each colour, meaning that if the first has 85% red beads
and 15% blue, the second has 15% red and 85% blue. The participants are
told that beads are drawn from one of the jars, and their task is to find
out which one that is. We ask them to choose only when they are entirely
sure, and they draw as many beads as they want. The beads are drawn
sequentially, and after each draw, the participants are asked if they want to
choose which jar we draw beads from or if they will continue to draw more
beads. One is usually said to have a JTC bias if one decides after one or
two beads (Moritz et al., 2017). However, the beads task has shown to pose
some problems.

Some of the first to use the beads task were Huq et al. (1988). Already in
the first article, they presented some of the problems with the beads task.
They used an 85-15 ratio of the beads. When the two first beads that we
draw are of the same colour, it is a 97% probability that the beads are from
the jar with 85% of the beads in that colour. Therefore, one might argue
that choosing a jar at that point is reasonable and does not show a JTC bias.
Deluded individuals make decisions earlier than the control groups, but Huq
et al. argue that non-deluded individuals are more conservative and that
people with delusions cancel out that bias when gathering less information.
In an article by Moritz et al. (2017), other problems with the beads task are
discussed, for example, that many participants seem not to understand that
we draw all the beads from the same jar. Thus, they might think that each
time we draw a bead, they have to guess from which jar that single bead is
coming. These participants are then classified to have a JTC bias. We can
also see that it is common to make logical errors due to miscomprehension.
In an article by Moritz and Woodward (2005), they found that 52% of the
schizophrenic participants and 23% of the healthy controls had at least one
response that was not logical. The participants that misunderstand are
more likely to choose early. Moritz et al. (2017) further states that the
beads task is correlated with intelligence. Lack of intelligence might be
a reason for or a confound for misunderstanding the task. They also say
that confidence influences decision-making. The participants are asked to
choose when they are entirely sure which jar we draw beads from, which
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could make more confident participants decide earlier. We might conclude
that participants make hasty decisions because they like to take risks or are
not cautious. However, other tasks that account for confidence also display
a JTC bias with the delusion-prone participants. Additionally, there is only
a one-dimensional sequence of events in the beads task. Thus, it is harder
to find different versions to test multiple times.

The box task has been suggested as an alternative to the beads task. Here,
we present the participants with a grid of a fixed number of boxes. When
we open a box, one out of two colours is displayed, for example, blue or red.
The participants are told that one of the colours always is in the majority,
and their task is to find out which one (Moritz et al., 2017). They can open
as many boxes as they want before making a decision. We can change the
number of boxes and the ratio of the two colours for each new trial.

In this report, we model how the participants make decisions in the box
task. In the version of the box task used here, there are twelve boxes. The
participants cannot choose which boxes they open, only if they open the
next box or not. We use two different versions of the box task. The first is
an unlimited one, where the participants can open as many boxes as they
want, even until all twelve boxes are opened, before reaching a decision. In
the second version, the participants are told that the test will terminate at
a random point. If the test terminates before the participant has decided
what the majority colour is, this counts as a failed trial. We call this the
limited version. In Figure 1.1, we see a limited trial of the box task with red
and blue boxes. The participant has opened two boxes and has to choose
whether to open another box or decide whether blue or red is the dominant
colour.

We have data from 76 participants that have done ten trials each of the box
task. The first trial was a practice trial of the limited version, followed by
three unlimited and six limited trials. We model the participants’ decisions
using a softmax model and fit this model to each participant with maximum
likelihood estimation. Thus, we find the maximum likelihood estimates in
the softmax model. We then find confidence intervals for each of these
estimates using parametric bootstrapping and percentile intervals.

We also find an Ideal Observer solution of the box task. An Ideal Observer is
a participant that always makes optimal, or ideal, choices and thus finds the
best solution (He et al., 2013). Each time a box is opened, the participant
has three options. The first is to choose that blue is the majority colour, the
second that red is, and the third option is to open another box. We have
defined loss functions for each of these alternatives, which represent the cost
of choosing the different options. An Ideal Observer would always choose
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Figure 1.1: A limited trial of the box task with two opened boxes. The participants are
to find out what the majority colour is given that one of them always is in the majority.

the decision with the least expected loss and end up with the overall optimal,
or ideal, solution. In this report, we assume a binomial distribution with
parameters 12 and some probability Θ for the total number of red boxes.
Each time a box is opened, the probability that the box is red is Θ and 1−Θ
that the box is blue. We also assume a beta prior for Θ with parameters γ
and κ. If we have any prior beliefs about the distribution of colours, we can
incorporate this knowledge here. If both γ and κ are one, this is a uniform
prior, meaning that Θ has the same probability of taking any value between
zero and one.

In this report, we first go through some of the background theory used later
on. Then, we will formulate the model for the decisions the participants
make. That includes finding an Ideal Observer solution of the box task and
describing how to find parameter estimates and confidence intervals. Fur-
ther on, we will present some results, both the Ideal Observer solution and
the parameter estimated with their respective confidence intervals. Addi-
tionally, we look at the sensitivity to the hyperparameters γ and κ. Lastly,
we have some closing remarks.



Chapter 2

Background Theory

In this chapter, we go through some of the statistical theory used in this
report. This includes the theorem of total probability, Bayes’ theorem, the
beta and gamma functions, Bayesian modelling, loss functions, the law of
total expectation, the softmax function, maximum likelihood estimation and
bootstrapping.

2.1 The Theorem of Total Probability

The theorem of total probability is often used when we want to find some
probability, and this probability is hard to find. Then, sometimes it might
be easier to find that probability if we condition on something, and use the
theorem of total probability.

Theorem 1 (Theorem of Total Probability, Continuous Variables)
If we have a continuous variable, Θ, and a discrete variable, U , and both
P (U = u|Θ = θ) and fΘ(θ) are known for all θ, then we can find P (U = u)
from (Schay, 2016)

P (U = u) =

∫ ∞
−∞

P (U = u|Θ = θ)fΘ(Θ = θ) dθ. (2.1)

Consider, for example, two discrete random variables U and V that are
conditionally independent given the continuous stochastic variable Θ. To
find the probability that U + V is equal to some integer j, we can use the

5



6 CHAPTER 2. BACKGROUND THEORY

theorem of total probability to condition on theta. Thus,

P (U + V = j) =

∫ ∞
−∞

P (U + V = j|Θ = θ)fΘ(Θ = θ) dθ.

Later, we can exploit the conditional independence. If θ is a probability
defined on the interval (0,1), this will be integrated on that interval, such
that

P (U + V = j) =

∫ 1

0

P (U + V = j|Θ = θ)fΘ(Θ = θ) dθ.

2.2 Bayes’ Rule

We can use Bayes’ rule to find conditional probabilities and distributions.

Theorem 2 (Bayes’ Rule) Consider two events, A and B. We can find
the probability of A given event B by the use of the probability of event B
given A and the probabilities of the events A and B separately (Casella and
Berger, 2002). Hence,

P (A|B) =
P (B|A)P (A)

P (B)
. (2.2)

As an example, consider a discrete random variable, U . We can find the
probability that U is greater than or equal to 7, and condition on it being
different from six by using (2.2). Then U ≥ 7 is an event, and U 6= 6 is
another event. Thus,

P (U ≥ 7|U 6= 6) =
P (U 6= 6|U ≥ 7)P (U ≥ 7)

P (U 6= 6)
. (2.3)

2.3 The Beta and Gamma Functions

Later, we will use the beta and gamma functions and some of their proper-
ties. These are therefore stated here. This theory can for example be found
in Casella and Berger (2002). The gamma function for a parameter κ is

Γ(κ) =

∫ ∞
0

tκ−1e−tdt.

A useful property of the gamma function is that it is recursive. Hence,

Γ(κ+ 1) = κΓ(κ), κ > 0. (2.4)
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Additionally, the beta function with parameters γ and κ is defined as

B(γ, κ) =

∫ 1

0

θγ−1(1− θ)κ−1 dθ. (2.5)

We can express the beta function as a product of gamma functions. This
yields

B(γ, κ) =
Γ(γ)Γ(κ)

Γ(γ + κ)
. (2.6)

2.4 Bayesian Modelling

Consider a stochastic variable, U , that has a probability density function
f(u|θ), where θ is a parameter upon which U depends. In classical statistics,
θ is said to be a fixed but unknown value. The goal is to find this one true
value. However, in Bayesian statistics we consider θ as a stochastic variable,
such that θ has a density function. Here, the goal is to find the underlying
density. To do so we propose a prior distribution for θ, f(θ). The prior
distribution represents the prior knowledge we have about θ before observing
any data. That could be our own subjective believes about the parameter
or information based on other previously collected data or studies. One
could also choose a prior distribution that does not say anything about the
parameter at all. This is called a non-informative prior, and it is often used
when we have none or little prior information about the parameter (Givens
and Hoeting, 2012). If we have collected data, denoted u, we can update
our prior beliefs with the information we get from that data. The resulting
distribution is called the posterior distribution of θ, f(θ|u). We can find
this using Bayes’ theorem, and it includes both the prior information we
have and the new information we get from the data.

Consider a discrete stochastic variable, U , that has a sampling distribution
P (U = u|θ), and let P (U = u) be the marginal distribution of U . Addition-
ally, let f(θ) be the prior distribution of θ. Using Bayes’ rule as it is stated
in (2.2), we get that the posterior distribution of θ given u, f(θ|u), can be
expressed as (Casella and Berger, 2002)

f(θ|u) =
P (U = u|θ)f(θ)

P (U = u)
.

We can sometimes exploit the fact that the posterior distribution is pro-
portional to the numerator in the above expression. This is because the
denominator is a normalising constant. Hence,

f(θ|u) ∝ P (U = u|θ)f(θ). (2.7)

If (2.7) has the form of a known distribution, then that known distribution
is the posterior distribution.
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As an example, consider a random variable, U , that is binomially distributed
with parameters 12 and some probability, θ. Thus,

(U |Θ = θ) ∼ Binomial(12, θ).

Hence, the probability that we have u successes out of twelve, given θ, is

f(u|θ) =

(
12

u

)
θu(1− θ)12−u. (2.8)

As θ is a probability, its value is on the interval [0, 1]. We know that the
beta distribution is conjugate with the binomial distribution and has value
between 0 and 1 (Casella and Berger, 2002), thus we choose a beta prior for
θ with parameters γ and κ. Hence,

Θ ∼ Beta(γ, κ). (2.9)

The prior density of Θ is then

f(θ) =
1

B(γ, κ)
θγ−1(1− θ)κ−1, (2.10)

where B(γ, κ) is the beta function as defined in (2.5). We can find the
posterior distribution of θ using (2.7), (2.8) and (2.10). Thus,

f(θ|u) ∝ f(u|θ)f(θ)

∝
(

12

u

)
θu(1− θ)12−u 1

B(γ, κ)
θγ−1(1− θ)κ−1

All the factors that do not include θ are constants, and we collect them
together as one constant, denoted C. Then

f(θ|u) ∝ C θu+γ−1(1− θ)12−u+κ−1.

We can see that this is proportional to a beta distribution like the one in
(2.10), but in this case with parameters u + γ and 12 − u + κ. Hence, the
posterior distribution is a beta distribution with these parameters,

Θ|U = u ∼ Beta(u+ γ, 12− u+ κ).

2.5 Loss Functions

A loss function typically says something about the cost, or loss, of an action
related to a parameter. Let Ωδ be the action space, consisting of all the
actions that we can do, where δ is an action. Then,

δ ∈ Ωδ.
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Additionally, let z be the true, but unknown state of nature, where

z ∈ Ωz.

We can define a loss function that depends on z and δ, which we denote
L(z, δ). This is then the loss when making a decision, δ, regarding z (Liese
and Miescke, 2008).

A loss function could for example be the 0-1-loss function. If for example
Ωδ = Ωz = {0, 1}, the loss function could be

L(z, δ) = I(z 6= δ), (2.11)

where I is an indicator function such that

L(z, δ) =

{
0, if z = δ,

1, if z 6= δ.

In some cases, we would like to find the expected value of the loss function.
Taking the expected value of an indicator function gives the probability that
the event is happening (Cormen et al., 2009). Hence, taking the expectation
of (2.11) gives

E[L(z, δ)] = E[I(z 6= δ)] = P (z 6= δ). (2.12)

As an example, consider the box task with twelve boxes that could be either
blue or red once they are opened. We define a stochastic variable, Xi, that
represents the colour of the i-th opened box, such that

Xi =

{
0, if box i is blue,

1, if box i is red.
(2.13)

When i boxes are opened, let X1:i denote the colours of the i boxes, such
that

X1:i = (X1, X2, ..., Xi). (2.14)

Additionally, let Z be the colour that is in the majority when all twelve boxes
are opened, the true majority colour. This is also a stochastic variable as it
depends on the colours of the twelve boxes, the Xi’s. We define Z as

Z = I

 12∑
j=1

Xj > 6

 . (2.15)

Then,

Z =

{
0, if blue is the true majority colour,

1, if red is the true majority colour.
(2.16)
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Also, let δ be the choice the participant makes about which colour that is
the dominant colour, such that

δ =

{
0, if the participant chooses blue as the majority colour,

1, if the participant chooses red as the majority colour.

We can then define a loss function for the choice that the participant makes.
This can be a 0-1 loss as in (2.11), and the loss function can therefore be
defined as

L(Z, δ) = I(Z 6= δ), (2.17)

Then, the loss is zero if the participant chooses the right colour as the
majority colour and one if she chooses the wrong colour.

To find the expected loss, we take the expectation of the loss function. As
Z depends on the colours of the twelve boxes, we condition on the colour of
the already opened boxes, X1:i = x1:i. The expectation of the loss function
is then

E[L(Z, δ)|X1:i = x1:i] = E[I(Z 6= δ)|X1:i = x1:i].

As in (2.12), this expectation is the probability that δ 6= Z, but here the
probability depends on X. Thus,

E[L(Z, δ)|X1:i = x1:i] = P (Z 6= δ|X1:i = x1:i). (2.18)

2.6 The Law of Total Expectation

Let {A1, A2, ..., Ak} be a partition of the sample space, S. Thus, there are
k non-overlapping parts, such that Ai ∩Aj = ∅, ∀ i 6= j. Then we also have
that S = A1 ∪A2 ∪ ...∪Ak. If we want to find the expectation of an event,
B, and we have the expectation of B on each of these partitions, we can use
the law of total expectation. It states that

E[B] =
∑
i

E[B|Ai]P (Ai). (2.19)

This can also be used to find the expectation of functions (Schay, 2016).
Let g(B) be the function that we want to take the expectation of, then

E[g(B)] =
∑
i

E[g(B)|Ai]P (Ai). (2.20)

Later we will use the law of total expectation when we find the expectation
of a loss function that says something about the loss of opening the next
box in the box task. This expected loss is dependent on the colour of the
box that will be opened. Thus, to find that expected loss, we use the law
of total expectation and condition on the colour of the following box.



2.7. THE SOFTMAX FUNCTION 11

2.7 The Softmax Function

The softmax function is commonly used in classification problems with more
that two classes (Bishop, 2013). Consider a decision, ∆, which now is a
stochastic variable for which we want to construct a distribution. We find
a probability mass function for ∆ = δ using a softmax function. Let there
be D decisions, such that

δ ∈ {0, 1, 2, ..., D − 1}.

Additionally, let Eδ(ϕ) be values tied to each decision that depends on some
parameters, ϕ. The probability mass function for each decision, δ, could be
found using a softmax function, such that

f(δ|ϕ, η) =
exp(−ηEδ(ϕ))∑D−1
d=0 exp(−ηEd(ϕ))

, (2.21)

where η is some parameter.

These decisions could, for example, be the three choices we have each time
we open a box in the box task. These choices are that blue is the majority
colour, or that red is, denoted δ = 0 and δ = 1, respectively. The last choice
is to open another box, which we denote δ = 2. Then, we let E0(ϕ) be the
expected loss when choosing that blue is the majority colour, similarly to
(2.18). Additionally, we let E1(ϕ) and E2(ϕ) be the expected loss of choosing
red as the majority colour and of opening another box, respectively. Then,
the probability mass function for δ could be as in (2.21). We then have a
probability mass function for each of the three decisions that depend on the
expected losses, parameters ϕ and some parameter η.

2.8 Maximum Likelihood Estimation

Maximum likelihood estimation is used to find estimates for parameters in a
distribution. These are the estimates that, as the name implies, maximises
the likelihood, and for short, we call them MLEs. Assume that we have
probability distribution for a stochastic variable, ∆, and consider n samples,
δ1, δ2, ..., δn, of ∆. Denote the probability mass function for each of these δ’s
as f(δ|ϕ), where ϕ contains the parameters in the probability mass function.
If the δi’s are independent, the likelihood function is defined as

L(ϕ|δ1, δ2, ..., δn) =

n∏
i=1

f(δi|ϕ). (2.22)

The MLEs are then the estimates of ϕ that maximises this function, and
they are usually denoted ϕ̂. It is often hard to maximize the likelihood func-
tion, then it might be easier to take the logarithm of the likelihood function
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and maximize that instead. This is called the log likelihood function, and
is normally denoted as l. Thus,

l(ϕ|δ1, δ2, ..., δn) =log (L(ϕ|δ1, δ2, ..., δn))

=log

(
n∏
i=1

f(δi|ϕ)

)
.

(2.23)

As the logarithm of products is the sum of the logarithms, we get that the
log likelihood is

l(ϕ|δ1, δ2, ..., δn) =

n∑
i=1

log(f(δi|ϕ)). (2.24)

Maximizing this will give the same maximum point as if we maximize the
likelihood function (Casella and Berger, 2002).

As an example, consider that the δi’s have probability mass function as in
(2.21). The parameters that we want to find estimates for are then ϕ and η.
If we have n samples of ∆, denoted δi, where i ∈ {1, 2, ..., n}, the likelihood
function would be

L(ϕ, η|δ1, δ2, ..., δn) =

n∏
i=1

f(δi|ϕ, η)

=

n∏
i=1

exp(−ηEδi(ϕ))∑2
d=0 exp(−ηEd(ϕ))

.

The log likelihood would then be

l(ϕ, η|δ1, δ2, ..., δn) =

N∑
i=0

log

(
exp(−ηEδi(ϕ))∑2
d=0 exp(−ηEd(ϕ))

)

=

N∑
i=0

(
−ηEδi − log

(
2∑
d=0

exp (−ηEd(ϕ))

))
.

The maximum likelihood estimators of ϕ and η would then be the values
that maximises this log likelihood function. We denote them as ϕ̂ and η̂.

2.9 Bootstrapping

Consider a sample, (δ1, δ2, ..., δn), where the δi’s are identically and inde-
pendently distributed from an unknown distribution, F . We can use this
sample to estimate this distribution, denoted by F̂ . To get some ideas about
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the properties of F , we can find the properties of F̂ . Sometimes it is chal-
lenging to do this analytically. Instead, we can use simulations, and this is
where bootstrapping is useful. Bootstrapping is a way of finding new sam-
ples, either from the original sample, (δ1, δ2, ..., δn), or from the estimated
distribution, F̂ . We can then use those samples to find, for example, stan-
dard error, bias, variance, or perhaps the most common; confidence intervals
(Efron and Tibshirani, 1993).

There are two types of bootstrapping, nonparametric and parametric. In
the nonparametric bootstrap, F̂ is the empirical distribution of the data,
and we take samples from our original sample. Consider for example that
you have a dataset, δ = (δ1, δ2, δ3, δ4, δ5). A bootstrap sample of this might
then be (δ5, δ5, δ2, δ3, δ1) and another might be (δ2, δ4, δ2, δ2, δ1). These are
resampled versions of δ. Thus, the bootstrap samples consists of elements
from the original dataset, but some of them might not appear at all in a
bootstrap sample while others might appear more than once. Drawing B of
these samples, we can do inference about the population the original data
is from.

In the parametric bootstrap, we make assumptions about the population,
and F̂ is the parametric distribution. Consider a sample, (δ1, δ2, ..., δn),
from a distribution that has a probability mass function f(δ|ϕ), where ϕ
might be a vector of parameters (Casella and Berger, 2002). We can for
example find an estimate, ϕ̂, of ϕ, using maximum likelihood estimation
as in Chapter 2.8. When we have done that, we can draw new samples,
denoted δ∗i from f(δ|ϕ̂), such that

δ∗1 , δ
∗
2 , ..., δ

∗
n ∼ f(δ|ϕ̂).

If we draw B samples, we can, as for the nonparametric bootstrap, do
inference.

2.9.1 Confidence Intervals with Bootstrap Samples

One way of doing inference is to find confidence intervals. When we have
B bootstrap samples, there are multiple methods for finding these. A con-
fidence interval (CI) for a parameter is an interval that will contain the
true value of the parameter a given proportion of the times an interval is
constructed. If we, for example, have a 90% CI, then the true value of the
parameter will be in the interval 90% of the times we construct a new one
(Efron and Tibshirani, 1993).

One method for finding CIs with bootstrap samples is the percentile method.
The percentile method is simple to both understand and implement. How-
ever, these confidence intervals might be biased. Then, one could instead
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Figure 2.1: Here we have plotted the MLEs of 150 bootstrap samples in a histogram.
The red dashed lines represent the 5-th and 95-th percentiles.

use approaches such as bias corrected and accelerated intervals or approx-
imate bootstrap confidence intervals. In this report, we use the percentile
method to find confidence intervals.

Consider a situation with B bootstrap samples. Let the vector ϕ be a
parameter, for which we want to find a confidence interval. Then, we find
the MLE of ϕ for each of the B samples. If we want to find a 90% confidence
interval using the percentile method, we find the 5-th and 95-th percentiles.
Plotting the MLEs of ϕ is a histogram, the 5-th percentile is the value of ϕ̂
in the histogram where 5% of the samples are below. The 95-th is where 5%
of the values are above. This is visualised in Figure 2.1. Here we have 150
bootstrap samples, and we have found the MLE of ϕ for each sample. These
values are plotted in a histogram, where the red dashed lines represent the
5-th and 95-th percentiles. Then 5% of the MLEs lie to the left of the left
red line, and 5% lie to the right of the right red line. The 90% CI for ϕ is
around (1.4,7) when using the percentile method.



Chapter 3

Model formulation

The box task is an information sampling task used to assess a ’jumping to
conclusions’ (JTC) bias (Balzan et al., 2017). In the box task used in this
report, the participants are shown a grid of twelve boxes, and each time a
box is opened, one out of two colours, for example, blue or red, is displayed.
Participants are told that one colour is always in the majority and that their
task is to find out which one. We use two different versions of the box task.
In the first one, the participants can open as many of the twelve boxes as
they want before deciding which of the two colours is in the majority. We
call this the unlimited version. In the second one, which we call the limited
version, the participants are informed that the test will terminate at one
point when a random box is opened. If the participant has not decided what
the majority colour is when the test terminates, this counts as a failed trial.
The participant could, for example, try to open the fourth box when the
test terminates. Then, she does not get to see what colour that fourth box
has. She cannot choose what she thinks is the majority colour, and this is
a failed trial.

We have data from 76 participants that have done multiple trials of both
versions of the box task. The experiment where the data was collected was
carried out by Professor Gerit Pfuhl and Doctoral Research Fellow Kristof-
fer Klevjer at UiT The Arctic University of Norway in February 2020. They
recruited participants from an undergraduate psychology course. First, they
did a practice trial that was a limited trial that terminated after opening
three boxes. That means that if they tried to open the fourth, the test
terminated, and they could not make a decision. That trial is not ana-
lyzed here. Following the practice trial were three unlimited trials. The

15
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Figure 3.1: The order of the boxes in Trial 2. This is an unlimited trial.

participants could, in these trials, open as many of the twelve boxes as they
wanted before deciding on what they think is the dominant colour—lastly,
there were six limited trials. Three of them terminated after the partici-
pants had opened six boxes, and the other three terminated after they had
opened nine boxes. These nine trials are the ones we analyze here, meaning
that we analyze Trials 2 to 10. We have data for how many boxes each
participant has opened in each of the nine trials. We call this ’draws to de-
cision’. The participants have either opened boxes until they have decided
what they think is the majority colour or until the test terminates. We have
data for what they chose or whether the test terminated before they were
able to choose. To compensate for possible biases towards one colour, the
two colours were changed for each new trial. They could, for example, be
green and pink in the first trial and blue and yellow in the second trial. For
simplicity, we are in this report referring to these colour as blue and red for
all trials.

For each trial, there is a fixed sequence of boxes. The participants can only
choose whether to open the next box or not; they cannot choose which box
they open. Thus, we know how many of the boxes that were blue and how
many that were red for each step in the different trials. In Trial 2, which is an
unlimited trial, the boxes were opened in the order that is shown in Figure
3.1. In Figure 3.2, the draws to decisions for all participants are shown in a
histogram. Here, the number of boxes that are opened when the participant
chooses what she thinks is the majority colour is on the horizontal axis. On
the vertical axis are the number of participants that have decided on that
particular box. We see that many participants have chosen the majority
colour after they have opened three boxes. All of these three boxes are
red. Thus, there is a high probability that red is the dominant colour. As
the participants are told that one of the colours is always in the majority,
we can be completely sure if six of the opened boxes are red, that red is
the dominant colour. This is because there cannot be six of each box if
one of them is in the majority. When seven boxes are opened in Trial 2,
six of them are red, and we know then that red is the dominant colour.
Seven participants have chosen colour after seven boxes are opened. Some
participants wait longer, even though they can be completely sure after
seven boxes are opened.

In Trial 3, which is also an unlimited trial, it takes more boxes to be com-
pletely sure what the majority colour is. As shown in Figure 3.3, there are
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Figure 3.2: Histogram of the draws to decisions for all participants in Trial 2.

Figure 3.3: The order of the boxes in Trial 3. This is an unlimited trial.

six blue boxes when ten of the boxes are opened. We see in Figure 3.4 that
the participants in general open more boxes before choosing the majority
colour in this trial than in Trial 2.

Both Trial 5 and Trial 8 are limited trials that terminate after nine boxes
are opened. The order of the boxes in Trial 5 is shown in Figure 3.5. When
seven boxes are opened, six of them are blue, and we can therefore conclude
when seven boxes are opened that blue is the majority colour. We see in
Figure 3.7 that many participants choose the majority colour after three
boxes are opened. All of these three are blue boxes. In Trial 8, there are
never two boxes of the same colour following each other, as shown in Figure
3.6. There are at no point in this trial six of one of the colours, meaning
that we never can be completely sure which one is the majority colour. This
is reflected in the draws to decision for the participants, as shown in Figure
3.8. We see that the test terminates for many of the participants before
choosing what they think is the majority colour.

The order of the boxes for all trials can be found in Appendix A. Here we
also have histograms of the draws to decision for all of the trials.

In the following, we formulate a model for how the participants make de-
cisions in the box task, and we estimate parameters such that we can fit
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Figure 3.4: Histogram of the draws to decisions for all participants in Trial 3.

Figure 3.5: The order of the boxes in Trial 5. This is a limited trial that terminates
after nine boxes are opened.

Figure 3.6: The order of the boxes in Trial 8. This is a limited trial that terminates
after nine boxes are opened.
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Figure 3.7: The draws to decisions
for all participants in Trial 5. That is,
how many boxes they open before they
choose what they think is the majority
colour, or before the test terminates.
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Figure 3.8: The draws to decisions
for all participants in Trial 8. That is,
how many boxes they open before they
choose what they think is the majority
colour, or before the test terminates.
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the model to each person. We also find a so-called Ideal Observer solution
of the box task. An Ideal Observer would always make optimal decisions
(He et al., 2013). Thus, an Ideal Observer solution is close to an optimal
solution of the box task.

3.1 Modelling Framework

Before we start with the formulation of the model, we will introduce some
notation and present some assumptions.

We let Xi be the colour of the i-th opened box as in (2.13). Then, if the
box is blue, Xi is zero, and if the box is red, Xi is one. We assume that
each Xi has a Bernoulli distribution with success probability Θ, where we
later condition on there not being six blue and six red boxes. Then,

Xi ∼ Bernoulli(Θ).

We also define a vector, X1:i, that contains the colours of the first i boxes
that are or will be opened, just as in (2.14). In the same way, we let
x1:i = (x1, x2, ..., xi).

Additionally, let Ui be the number of the first i opened boxes that are red.
Thus, Ui is a stochastic variable defined as

Ui =

i∑
j=1

Xj . (3.1)

The sum of Bernoulli distributed variables is binomially distributed (Casella
and Berger, 2002). Thus, Ui is binomially distributed with parameters i and
Θ. We define another stochastic variable, Vi, that is the number of red boxes
that are not opened when i boxes are opened. Thus, Vi is the number of
red boxes out of the 12− i boxes that are not opened, which yields,

Vi =

12∑
j=i+1

Xj . (3.2)

This variable is also binomially distributed, but with parameters 12− i and
Θ. Thus,

Ui ∼ Binomial(i,Θ)

Vi ∼ Binomial(12− i,Θ).
(3.3)

Then, we have that

P (Ui = ui|Θ = θ) =

(
12

ui

)
θui(1− θ)12−ui , (3.4)



20 CHAPTER 3. MODEL FORMULATION

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5
Pr

ob
ab

ilit
y 

de
ns

ity
= = 0.1
= = 0.5
= = 1
= = 2
= = 5

Figure 3.9: The probability density function for the beta distribution plotted for dif-
ferent values of the hyperparameters γ and κ.

and

P (Vi = vi|Θ = θ) =

(
12− i
vi

)
θvi(1− θ)12−i−vi . (3.5)

Just as in Chapter 2.4, we let Θ have a conjugate beta prior with parameters
γ and κ, as shown in (2.9). The prior distribution of Θ is then as given in
(2.10).

Figure 3.9 shows the probability density function of the beta distribution
for different values of γ and κ. The pink line represents the situation where
γ = κ = 1. This is the same as having a uniform prior for Θ. That means
that the probability of Θ being anywhere on the interval between zero and
one is constant. As the participants are told that one of the colours will be
in the majority but get no information about which one, this might be a
suitable prior. However, one might argue that our prior beliefs resemble the
purple or orange lines as we know that one of the colours will definitively
be in the majority. Thus it might not be reasonable to assume that Θ is
0.5. For this reason, we exclude all priors that have γ and κ larger than 1,
which is the situation for the black and grey lines.

Of all the 12 boxes, Ui +Vi is the total number of red boxes. Consequently,
if Ui + Vi is bigger than 6, it is a red majority in the box task, and if it
is smaller than 6, the true majority colour is blue. We denote this true
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majority colour as Z, such that

Z = I(Ui + Vi > 6). (3.6)

This is the same as defining Z as in (2.15), as Ui + Vi =
∑12
j=1Xj , and the

order that the boxes are opened in does not affect the majority. Then, as
in (2.16), Z is zero if the true majority colour is blue and one if the true
majority colour is red.

Each time a box is opened, the participants have three choices. The first is
to choose blue as the dominant colour, the second that red is, and the third
is to choose to open another box. We denote these decisions as δi, where i is
the number of opened boxes. If δi = 0, the participant chooses that blue is
the more prominent colour, thus that there are in total, of all twelve boxes,
more blue boxes than red. Moreover, δi = 1 means that the participant has
chosen that red is the dominant colour, and δi = 2 represents the situation
where the participant chooses to open the next box. Thus,

δi =


0, if blue is chosen as majority colour,

1, if red is chosen as majority colour,

2, if the participant chooses to open the next box.

(3.7)

We can define loss functions for each of these decisions. These loss functions
depend on the true majority colour, Z, and the decision, δi. Similarly
to Chapter 2.5, we denote the loss function when i boxes are opened as
Li[Z, δi;ϕ]. In our case, we have that

ΩZ = {0, 1}

and
Ωδi = {0, 1, 2}.

If we take the expectation of this loss function, we get the expected loss for
each of these decisions when i boxes are opened, which we denote

E iδi(ϕ) = E [Li[Z, δi;ϕ]|X1:i = x1:i] ,

as it depends on some parameters ϕ. This expected loss also depends on
the colours of the i boxes that already are opened, x1:i.

In the limited version of the box task, the participants are told that the test
will terminate when a random box is opened. Thus, we need a random vari-
able representing how many boxes that are open when the test terminates.
We call this variable T . If T = 3, the participant has opened three boxes and
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wants to open the fourth when the test terminates. Then, instead of seeing
the colour of the fourth box, the test terminates, and this is a failed trial.
The information given to the participants regarding this is that the test will
terminate when a random box is opened. We assume that the first box can
always be opened, but the probabilities that the test terminates at the sub-
sequent boxes are the same. When 12 boxes are opened, there are no more
boxes to open and, therefore, no more chances for the test to terminate.
Thus, T is uniformly distributed with on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},

T ∼ Uniform({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}). (3.8)

Now we have all the notation needed to define the model for how the par-
ticipants make decisions.

3.2 The Model for the Decisions

Having the notation for the expected losses and decisions, we can define the
probability mass function for the decisions using a softmax function similar
to the one in (2.21).

For each participant we have observed decisions, δ = (δ1, δ2, ..., δn), where
δj ∈ {0, 1, 2} as in (3.7), and n is the total amount of decisions we have for
each participant. Thus, j ∈ {1, 2, ..., n}. As the participants have opened a
different amount of boxes each time, n varies form participant to participant.
Recall that i is the number of boxes that are opened, and that i is reset for
each new trial. Thus, the probability mass function for the decisions can be
expressed as

f(δj |ϕ, η;x1:i) =
exp(−ηE iδj (ϕ))∑2
d=0 exp(−ηE id(ϕ))

, (3.9)

where η is some parameter. η can be interpreted as a measure of how far
the choices the participant makes are away from the decision with the least
expected loss. If η is infinity, they always make the decision with the lowest
expected loss, and if η is zero, they choose arbitrarily. A negative value of
η indicates that the participant tends to choose the decisions with higher
expected losses.

When we have this model, we can find estimates of the parameters, ϕ and
η, for each participant such that the model is adapted to each one of the
participants. This estimation is done by finding the maximum likelihood
estimates (MLEs) as described in Chapter 2.8. We can also find confidence
intervals tied to each of the parameters for all of the participants using the
bootstrap as described in Chapter 2.9. This will be done in the subsequent
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sections, but firstly we find an Ideal Observer solution of the box task and
use this to find expressions for the loss functions and expected losses.

3.3 Loss Functions

Before we start finding Ideal Observer solutions, we formulate loss functions
in the unlimited and limited cases.

3.3.1 Loss Functions in the Unlimited Case

Starting with the unlimited case, we define loss functions for each of the
three choices we have when i boxes are opened and put them together as
one function. If the participant chooses blue as the majority colour, δi = 0,
we say that the loss is zero if blue is the true majority colour and one if it
is not. Thus, this can be expressed as an indicator function as in (2.11).
Recall that the true majority colour is denoted Z. Then, we can express
the loss of choosing blue as the majority colour when i boxes are opened as

Li[Z, δi = 0;ϕ] = I(Z 6= 0) = I(Z = 1). (3.10)

We define the loss function for when the participant chooses that red is the
majority colour, δi = 1, similarly to (3.10). This time the loss is zero if the
true majority colour is red and one if the blue is the true majority colour.
Thus,

Li[Z, δi = 1;ϕ] = I(Z 6= 1) = I(Z = 0). (3.11)

We imagine that some participants have some minor penalty or loss of open-
ing another box. That might be because it is tiresome for them to sit
through a full trial and they want to finish fast, or that they get some inner
reward or feeling of victory when they finish early. A parameter, α, repre-
sent this. The loss function for the choice of opening the next box depends
on the successive losses. As we do not know the choices that will be made
later, we do not know what these losses are. However, we can model these
choices as the choices that an Ideal Observer would make. These choices
depend on the colour of the next box, Xi+1, and the colours of the al-
ready opened boxes, x1:i. We denote these choices as IO(x1:i, Xi+1), where
Xi+1 ∈ {0, 1}. We define the loss for the decision to open the next box as
α plus the loss in the next step. Thus,

Li[Z, δi = 2;ϕ] = α+ Li+1[Z, IO(x1:i, Xi+1);ϕ], (3.12)

where Li+1[Z, IO(x1:i, Xi+1);ϕ] is the loss when the next box is opened.
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Putting (3.10), (3.11) and (3.12) together, we get that the total loss function
in the unlimited case can be expressed as

Li[Z, δi;ϕ] =I(Z = 0) I(δi = 0)

+I(Z = 1) I(δi = 1)

+
(
α+ Li+1[Z, IO(x1:i, Xi+1);ϕ]

)
I(δi = 2).

(3.13)

Having the loss functions for the unlimited case, we proceed with formulat-
ing the loss functions for the limited trials of the box task.

3.3.2 Loss Functions in the Limited Case

The loss functions in the limited case are highly comparable to the ones in
the unlimited case. Recall that in a limited trial, the participants might be
stopped when a random box opens and that this counts as a failed trial.

Firstly, we have a look at the loss function for choosing blue as the majority
colour. We see that this is not dependent on any of the boxes that are not
opened in the unlimited case. When i boxes are opened in a limited trial,
and the participant chooses that blue is the majority colour, this is, as in
the unlimited trial, not affected by the colours of the unopened boxes. If
i boxes are opened, and one chooses what the majority colour is here, we
know that the test will not terminate, as the participant will not open more
boxes. Thus, we can put the loss function for choosing blue as the majority
colour in a limited trial as the same as the loss function for choosing blue
in an unlimited trial. The loss function is then as in (3.10).

The same argument holds for the loss function for choosing red as the ma-
jority colour in a limited trial. Thus, that loss function is the same as in
(3.11).

For the choice of opening the next box, we have to consider that the test
might terminate. We define a parameter, β, that only appears in the loss
function for opening the next box in limited trials. We let it be the loss the
participant gets when the test terminates before choosing what the majority
colour is. Recall that T is the number of boxes that already are opened when
the test terminates and that it is uniformly distributed as in (3.8). The loss
when the test does not terminate will be the loss for when the next box is
open, in the same way as for the unlimited trials. We can include the event
of the test terminating as an indicator function, where an indicator function
is as seen in (2.11). Thus, the loss function for opening the next box in an
unlimited trial is the loss you get when the next box is opened plus α, times
an indicator function that is one if the test does not terminate. I addition
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to this, we have the loss for when the test terminates, β, times an indicator
for that the test terminates. Hence,

Li[Z, δi = 2;ϕ] =
(
α+ Li[Z, IO(x1:i, Xi+1);ϕ]

)
I(T 6= i)

+ β I(T = i),
(3.14)

where IO(x1:i, Xi+1) are the choices that an Ideal Observer would do in the
next steps.

We get the total loss function in the limited case using (3.10), (3.11) and
(3.14), such that

Li[Z, δi;ϕ] =I(Z = 0) I(δi = 0)

+I(Z = 1) I(δi = 1)

+
((
α+ Li[Z, IO(x1:i, Xi+1);ϕ]

)
I(T 6= i)

+ β I(T = i)
)
I(δi = 2)

(3.15)

As we have the loss functions in the unlimited and the limited cases, we
now continue with finding an Ideal Observer solution of the box task. This
solution depends on the expectation of the loss functions, the expected
losses.

3.4 Ideal Observer Solution

Having defined loss functions for both the unlimited and the limited versions
of the box task, we now want to find an Ideal Observer (IO) solution. We
find one for the unlimited case and another for the limited. As stated
above, an Ideal Observer acts like a participant that always makes optimal
decisions. In the box task, the optimal decision for each opened box is the
decision that gives the least expected loss. If one makes the decision with
the lowest expected loss each time a box is opened, the total solution is the
Ideal Observer solution. Thus, we need to find these expected losses. They
depend on the parameter α in the unlimited version of the box task and
both α and β in the limited version. Therefore, we get many different IO
solutions depending on the values of the parameters. Recall that when i
boxes are opened, the participants have three choices as stated in (3.7). We
want to find expected losses for all three decisions in both the unlimited
and limited versions of the box task.

3.4.1 Expected Losses

When we find the expected losses, we take the expectation of the loss func-
tions like in (2.12). Recall that taking the expectation of an indicator func-
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tion gives the probability of the event and that x1:i is a vector containing
the colours of the i opened boxes.

As stated in Chapter 3.1, the expected losses when i boxes are opened,
are denoted E iδi(ϕ), with δi ∈ (0, 1, 2). We start with the expected loss for

choosing blue as the majority colour, E i0(ϕ). This expected loss is the same
for both the unlimited and limited trials as the loss functions, stated in
(3.10), are identical. We condition on the colours of the opened boxes, as
the true majority colour, Z, depends on the colours of all the twelve boxes.
Thus,

E i0(ϕ) =E
[
Li[Z, δi = 0;ϕ]

∣∣X1:i = x1:i]

=E
[
I(Z = 1)

∣∣X1:i = x1:i]

=P (Z = 1|X1:i = x1:i).

(3.16)

We see that the expected loss of choosing blue as the majority colour is
equal to the probability that red is the majority colour given the colours of
the opened boxes, for both the unlimited and limited versions. The only
thing that this expected loss depends on is the colours of the first i boxes,
x1:i.

We find the expected loss of choosing red as the majority colour when i boxes
are opened, E i1(ϕ), similarly to (3.16). Again, conditioning on X1:i = x1:i,
we get

E i1(ϕ) =E
[
Li[Z, δi = 1;ϕ]

∣∣X1:i = x1:i]

=E
[
I(Z = 0)

∣∣X1:i = x1:i]

=P (Z = 0|X1:i = x1:i).

(3.17)

The expected loss for choosing red as the majority colour is then the prob-
ability that blue is the majority colour, conditioned on X1:i = x1:i, for both
the unlimited and the limited case.

When we find the expected losses for opening the next box, we have to
distinguish between the unlimited and limited cases. Starting with the
unlimited case, we continue in the same way as for choosing blue or red as
the majority colour, by taking the expectation of the loss function, as it
is stated in (3.12), and conditioning on the colours of the i opened boxes.
Recall that IO(x1:i, Xi+1) are the choices that an Ideal Observer would
make in the next steps. We then get that

E i2(ϕ) =E
[
α+ Li[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i

]
.

Taking the expectation of a constant gives the constant. Thus

E[α|X1:i = x1:i] = α,
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as α is not dependent on the colours of the boxes. Then,

E i2(ϕ) =α+ E
[
Li[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i

]
. (3.18)

We see that E
[
Li[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i

]
is the expected loss in

the next step, and it depends on the colour of the box that opens, Xi+1. We
find this expectation using the law of total expectation as in (2.20). Then,

E
[
Li[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i

]
=E
[
Li+1[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i, Xi+1 = 0

]
×P (Xi+1 = 0|X1:i = x1:i)

+E
[
Li+1[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i, Xi+1 = 1

]
×P (Xi+1 = 1|X1:i = x1:i),

(3.19)

where P (Xi+1 = 0|X1:i = x1:i) is the probability that box i + 1 is blue
given the colours of the first i boxes and P (Xi+1 = 1|X1:i = x1:i) is the
probability that it is red.

Inserting (3.19) into (3.18), we get that the expected loss for opening the
next box in the unlimited case is

E i2(ϕ) = α+E
[
Li+1[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i, Xi+1 = 0

]
×P (Xi+1 = 0|X1:i = x1:i)

+E
[
Li+1[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i, Xi+1 = 1

]
×P (Xi+1 = 1|X1:i = x1:i).

(3.20)

Note that

E
[
Li+1[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i, Xi+1 = 0

]
= E i+1

IO(x1:i,0)(ϕ)

and

E
[
Li+1[Z, IO(x1:i, Xi+1);ϕ]|X1:i = x1:i, Xi+1 = 1

]
= E i+1

IO(x1:i,1)(ϕ).

The expression for the expected loss of opening the next box in the unlimited
case, (3.20), is then

E i2(ϕ) = α+E i+1
IO(x1:i,0)(ϕ)P (Xi+1 = 0|X1:i = x1:i)

+E i+1
IO(x1:i,1)(ϕ)P (Xi+1 = 1|X1:i = x1:i).

(3.21)

In the unlimited case, the expected loss depends on the parameter α. Thus,
ϕ = α.

We proceed in a similar manner when we find the expected loss of opening
the next box in the limited case. Taking the expectation of the loss function
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in (3.14), we get the expected loss when i boxes are opened given that the
test has not terminated yet, E i2(ϕ). Recall that if the box terminates when
i boxes already are open, then the parameter T is equal to i. We have to
condition on T being greater than or equal to i when we find the expected
loss, meaning that the test has not terminated yet when i boxes are open.
Using (3.14) we get that

E i2(ϕ) =E
[
Li[Z, δi = 2;ϕ] |X1:i = x1:i, T ≥ i

]
=E
[(
α+ Li+1[Z, IO(x1:i, Xi+1);ϕ]

)
I(T 6= i)

+ β I(T = i) |X1:i = x1:i, T ≥ i
]
.

(3.22)

We start with the first term in (3.22). When the test terminates is inde-
pendent of the colours of the boxes, such that T is independent of x1:i. The
indicator function will then be the probability of T 6= i, whereas, for the
expectation of the loss function when i+1 boxes are opened, we use the law
of total expectation as in (2.20), and condition on the colour of the next
box, Xi+1.

We also have that E i+1
2 (ϕ,Xi+1 = j) is the expected loss in the next step

given the colours of the i opened boxes, the colour of box i + 1 and given
that the test has not terminated yet. Thus,

E
[(
α+ Li+1[Z, IO(x1:i, Xi+1);ϕ]

)
I(T 6= i)|X1:i = x1:i, T ≥ i

]
=
(
α+

1∑
j=0

E i+1
2 (ϕ,Xi+1 = j)P (Xi+1 = j|X1:i = x1:i, T ≥ i)

)
× P (T 6= i|T ≥ i)

(3.23)

As the x’s and T are independent, we have that

P (Xi+1 = j|X1:i = x1:i, T ≥ i) = P (Xi+1 = j|X1:i = x1:i). (3.24)

Putting (3.24) into (3.23), we get

E
[(
α+ Li+1[Z, IO(x1:i, Xi+1);ϕ]

)
I(T 6= i)|X1:i = x1:i, T ≥ i

]
=
(
α+

1∑
j=0

E i+1
2 (ϕ,Xi+1 = j)P (Xi+1 = j|X1:i = x1:i)

)
× P (T 6= i|T ≥ i).

(3.25)

The last term in (3.22) becomes

E
[
β I(T = i)|X1:i = x1:i, T ≥ i

]
= β P (T = i|T ≥ i) (3.26)

as it does not depend on the colours of the boxes, x1:i.
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Putting (3.25) and (3.26) into (3.22), we get that the expected loss for
opening another box in the limited case is

E i2(ϕ) =
(
α+

1∑
j=0

E i+1
2 (ϕ,Xi+1 = j)P (Xi+1 = j|X1:i = x1:i)

)
× P (T 6= i|T ≥ i)

+ β P (T = i|T ≥ i).

(3.27)

The expected losses in the limited cases depend on α and β, thus in this
case we have that ϕ = (α, β).

Now that we have expressions for the expected losses, we have to find the
probabilities in these expressions.

3.4.2 Probabilities

As we now have expressions for the expected losses, we find the probabilities
needed for finding the expected losses. That is P (Z = 1|X1:i = x1:i),
P (Z = 0|X1:i = x1:i), P (Xi+1 = 1|X1:i = x1:i), P (Xi+1 = 0|X1:i = x1:i),
P (T 6= i|T ≥ i) and P (T = i|T ≥ i).

The Majority Colour

When we find the probabilities used in the expressions for the expected
losses, we start with the expected loss for choosing blue as the majority
colour, as given in (3.16). Then we need the probability

P (Z = 1|X1:i = x1:i). (3.28)

This is the probability that red is the majority colour, given the colours
of the boxes that already are observed. Using the definition of Z as it
is in (3.6), we can express (3.28) using Ui and Vi. Recall that they are
defined as in (3.1) and (3.2), respectively. (3.28) can then be expressed as
the probability that Ui + Vi > 6, or that Ui + Vi ≥ 7, given the colours of
the i first boxes. However, we also need to condition on Ui + Vi 6= 6, as
we know that one of the colours always is in majority, such that there will
never be six blue and six red boxes all together. Thus, we find P (Ui + Vi ≥
7|X1:i = x1:i, Ui + Vi 6= 6). As the order the boxes have been opened in is

irrelevant here, and Ui =
∑i
j=1Xj , we use Ui = ui instead of X1:i = x1:i,

to be consistent with the other notation. Thus, we have that

P (Z = 1|X1:i = x1:i) = P (Ui + Vi ≥ 7|Ui = ui, Ui + Vi 6= 6). (3.29)
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Using Bayes rule as described in (2.2), we get that

P (Ui + Vi ≥ 7|Ui = ui, Ui + Vi 6= 6)

=
P (Ui + Vi 6= 6|Ui = ui, Ui + Vi ≥ 7)P (Ui + Vi ≥ 7|Ui = ui)

P (Ui + Vi 6= 6|Ui = ui)
.

(3.30)

As
P (Ui + Vi 6= 6|Ui = ui, Ui + Vi ≥ 7) = 1,

we get that

P (Ui + Vi ≥ 7|Ui = ui, Ui + Vi 6= 6) =
P (Ui + Vi ≥ 7|Ui = ui)

P (Ui + Vi 6= 6|Ui = ui)
. (3.31)

We have that

P (Ui + Vi ≥ 7|Ui = ui) =

12∑
j=7

P (Ui + Vi = j|Ui = ui) (3.32)

Thus, to be able to find P (Ui + Vi ≥ 7|Ui = ui), we start with finding
P (Ui + Vi = j|Ui = ui). Using the law of total probability as in (2.1), and
conditioning on θ, we get

P (Ui + Vi = j|Ui = ui)

=

∫ 1

0

P (Ui + Vi = j|Ui = ui,Θ = θ)f(θ|Ui = ui)dθ

=

∫ 1

0

P (Vi = j − ui|Θ = θ)f(θ|Ui = ui)dθ

(3.33)

Thus, we need to find P (Vi = j − ui|Θ = θ) and f(θ|Ui = ui).

Since Vi has a binomial distribution as in (3.3), we get that

P (Vi = j − ui|Θ = θ) =

(
12− i
j − ui

)
θj−ui(1− θ)12−i−(j−ui) (3.34)

We can find f(θ|Ui = ui) using Bayes rule as given in (2.2). Hence,

f(θ|Ui = ui) =
P (Ui = ui|Θ = θ)f(θ)

P (Ui = ui)
,

which is proportional to the numerator of the right-hand side as in (2.7).
Using that Ui|Θ has a binomial distribution with probability mass function
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as in (3.4), and that Θ has a beta prior, with density function as in (2.10),
we get that

f(θ|Ui = ui) ∝ P (Ui = ui|Θ = θ)f(θ)

∝ θui(1− θ)i−uiθγ−1(1− θ)κ−1

= θui+γ−1(1− θ)i−ui+κ−1.

This is proportional to the density of a beta distribution with parameters
ui + γ and i− ui + κ. Hence, we can conclude that

Θ|Ui ∼ Beta(ui + γ, i− ui + κ),

and therefore that

f(θ|Ui = ui) =
1

B(ui + γ, i− ui + κ)
θui+γ−1(1− θ)i−ui+κ−1. (3.35)

We now have expressions for P (Vi = j − ui|Θ = θ) and f(θ|Ui = ui), as
given in (3.34) and (3.35), respectively. We put these into (3.33), and get

P (Ui + Vi = j|Ui = ui)

=

∫ 1

0

P (Vi = j − ui|Θ = θ)P (Θ = θ|Ui = ui)dθ

=

∫ 1

0

(
12− i
j − ui

)
θj−ui(1− θ)12−i−(j−ui)

θui+γ−1(1− θ)i−ui+κ−1

B(ui + γ, i− ui + κ)
dθ.

(3.36)

Taking the parts that do not depend on θ outside of the integral and sum-
ming the exponents of θ and (1− θ), we get that (3.36) is

P (Ui + Vi = j|Ui = ui)

=

(
12−i
j−ui

)
B(ui + γ, i− ui + κ)

×
∫ 1

0

θj−ui+ui+γ−1(1− θ)12−i−(j−ui)+i−ui+κ−1dθ

=

(
12−i
j−ui

)
B(ui + γ, i− ui + κ)

∫ 1

0

θj+γ−1(1− θ)12−j+κ−1dθ.

(3.37)

The part inside the integral is proportional to the density of a beta distri-
bution with parameters j+ γ and 12− j+κ. The integral of a density over
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the parameter space is one, hence∫ 1

0

1

B(j + γ, 12− j + κ)
θj+γ−1(1− θ)12−j+κdθ = 1.

Therefore, ∫ 1

0

θj+γ−1(1− θ)12−j+κdθ = B(j + γ, 12− j + κ). (3.38)

Putting (3.38) into (3.37), we get

P (Ui+Vi = j|Ui = ui) =

(
12− i
j − ui

)
B(j + γ, 12− j + κ)

B(ui + γ, i− ui + κ)
. (3.39)

Putting (3.39) into (3.32), we get that

P (Ui + Vi ≥ 7|Ui = ui) =

12∑
j=7

(
12− i
j − ui

)
B(j + γ, 12− j + κ)

B(ui + γ, i− ui + κ)
. (3.40)

We have that

P (Ui + Vi 6= 6|Ui = ui) = 1− P (Ui + Vi = 6|Ui = ui)

and, using (3.39), we get

P (Ui + Vi 6= 6|Ui = ui) = 1−
(

12− i
6− ui

)
B(6 + γ, 12− 6 + κ)

B(ui + γ, i− ui + κ)

= 1−
(

12− i
6− ui

)
B(6 + γ, 6 + κ)

B(ui + γ, i− ui + κ)
.

(3.41)

Putting (3.41) and (3.40) into (3.31), we get

P (Ui + Vi ≥ 7|Ui = ui, Ui + Vi 6= 6)

=

∑12
j=7

(
12−i
j−ui

) B(j+γ,12−j+κ)
B(ui+γ,i−ui+κ)

1−
(

12−i
6−ui

) B(6+γ,6+κ)
B(ui+γ,i−ui+κ)

.
(3.42)

This is the probability that there is a red majority in total, given the colour
of the first i boxes that are opened, and given that one of the colours is in
the majority. This is also the expected loss of choosing blue as the majority
colour.
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In the expected loss for choosing red as the majority colour, we have P (Z =
0|X1:i = x1:i), as in (3.17). The same argument holds here as in (3.29).
Thus, we have that

P (Z = 0|X1:i = x1:i) = P (Ui + Vi ≤ 5|Ui = ui, Ui + Vi 6= 6). (3.43)

This is the probability that blue is the majority colour, which is the com-
plementing probability to the probability that red is the majority colour.
Therefore,

P (Ui + Vi ≤ 5|Ui = ui, Ui + Vi 6= 6)

= 1− P (Ui + Vi ≥ 7|Ui = ui, Ui + Vi 6= 6).
(3.44)

Putting the expression in (3.42) into (3.44), we get that the probability of
blue being the dominant colour is

P (Ui + Vi ≤ 5|Ui = ui, Ui + Vi 6= 6)

= 1−
∑12
j=7

(
12−i
j−ui

) B(j+γ,12−j+κ)
B(ui+γ,i−ui+κ)

1−
(

12−i
6−ui

) B(6+γ,6+κ)
B(ui+γ,i−ui+κ)

,
(3.45)

which also it the expected loss of choosing red as the majority colour.

The Colour of the Next Box

We now have a look at the expected losses for opening the next box, both
in the unlimited and the limited cases, as given in (3.21) and (3.27), respec-
tively. In both expressions, we have the probability that the next box is
either red or blue, given the colours of the opened boxes. These probabili-
ties are P (Xi+1 = 1|X1:i = x1:i) and P (Xi+1 = 0|X1:i = x1:i), where

P (Xi+1 = 0|X1:i = x1:i) = 1− P (Xi+1 = 1|X1:i = x1:i), (3.46)

as there are only two possible colours the box could have. Thus, we find
the probability that that the next box is red, and can then easily find the
probability of it being blue using (3.46).

Again, we change the notation from X1:i = x1:i to Ui = ui and Vi = vi,
with the same argument as for (3.29). Thus,

P (Xi+1 = 1|X1:i = x1:i) = P (Xi+1 = 1|Ui = ui, Ui + Vi 6= 6) (3.47)

Using Bayes’ rule, stated in (2.2), we get that this is

P (Xi+1 = 1|Ui = ui, Ui + Vi 6= 6)

=
P (Ui + Vi 6= 6|Ui = ui, Xi+1 = 1)P (Xi+1 = 1|Ui = ui)

P (Ui + Vi 6= 6|Ui = ui)
,

(3.48)
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where the expression in the denominator, P (Ui + Vi 6= 6|Ui = ui), is as
given in (3.41).

We start by finding P (Xi+1 = 1|Ui = ui). Using the law of total probability
that is stated in (2.1), and conditioning on θ, we get

P (Xi+1 = 1|Ui = ui) =

∫ 1

0

P (Xi+1 = 1|Ui = ui,Θ = θ)

× f(θ|Ui = ui) dθ.

(3.49)

The expression for f(θ|Ui = ui) is given in (3.35). All of the x’s are Bernoulli
distributed with probability θ, and they are conditionally independent of
each other, given θ. Therefore, the probability that Xi+1 is one, or red,
is independent of the colour of the already opened boxes. The probability
that a box that is opened is one is also equal to θ. Hence,

P (Xi+1 = 1|Ui = ui,Θ = θ) = P (Xi+1 = 1|Θ = θ) = θ. (3.50)

Putting (3.50) and (3.35) into (3.49) gives

P (Xi+1 = 1|Ui = ui)

=

∫ 1

0

θ
1

B(ui + γ, i− ui + κ)
θui+γ−1(1− θ)i−ui+κ−1dθ

=
1

B(ui + γ, i− ui + κ)

∫ 1

0

θui+γ(1− θ)i−ui+κ−1dθ.

(3.51)

Again, the part inside the integral is proportional to the density of a beta
distribution, here with parameters ui + γ + 1 and i− ui + κ. Integrating a
distribution over the parameter space gives one, which in this case gives∫ 1

0

1

B(ui + γ + 1, i− ui + κ)
θui+γ(1− θ)i−ui+κ−1dθ = 1.

Hence,∫ 1

0

θui+γ(1− θ)i−ui+κ−1dθ = B(ui + γ + 1, i− ui + κ). (3.52)

Inserting (3.52) into (3.51) gives

P (Xi+1 = 1|Ui = ui) =
B(ui + γ + 1, i− ui + κ)

B(ui + γ, i− ui + κ)
. (3.53)

Using the property of the beta function as stated in (2.6), we get that the
numerator in (3.53) is

B(ui + γ + 1, i− ui + κ) =
Γ(ui + γ + 1)Γ(i− ui + κ)

Γ(ui + γ + 1 + i− ui + κ)
, (3.54)
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and that the denominator is

B(ui + γ, i− ui + κ) =
Γ(ui + γ)Γ(i− ui + κ)

Γ(ui + γ + i− ui + κ)
. (3.55)

Inserting (3.54) and (3.55) into (3.53), gives

P (Xi+1 = 1|Ui = ui) =

Γ(ui+γ+1)Γ(i−ui+κ)
Γ(ui+γ+1+i−ui+κ)

Γ(ui+γ)Γ(i−ui+κ)
Γ(ui+γ+i−ui+κ)

=

Γ(ui+γ+1)
Γ(γ+1+i+κ)

Γ(ui+γ)
Γ(γ+i+κ)

.

(3.56)

Using the recursive property of the gamma function as seen in (2.4), we get
that the nominator in (3.56) is

Γ(ui + γ + 1)

Γ(γ + 1 + i+ κ)
=

(γ + ui)Γ(ui + γ)

(γ + κ+ i)Γ(γ + i+ κ)
. (3.57)

Inserting (3.57) into (3.56), we get

P (Xi+1 = 1|Ui = ui) =

(γ+ui)Γ(ui+γ)
(γ+κ+i)Γ(γ+i+κ)

Γ(ui+γ)
Γ(γ+i+κ)

=
γ + ui
γ + κ+ i

.

(3.58)

In the expression in (3.48), it remains to find P (Ui+Vi 6= 6|Ui = ui, Xi+1 =
1). Firstly,

P (Ui + Vi 6= 6|Ui = ui, Xi+1 = 1)

= P (Ui + Vi 6= 6|Ui+1 = ui + 1)

= P (Ui+1 + Vi+1 6= 6|Ui+1 = ui + 1).

(3.59)

Using (3.41), we get that

P (Ui+1 + Vi+1 6= 6|Ui+1 = ui + 1)

= 1−
(

12− (i+ 1)

6− (ui + 1)

)
B(6 + γ, 6 + κ)

B(ui + 1 + γ, i− (ui + 1) + κ)

= 1−
(

11− i
5− ui

)
B(6 + γ, 6 + κ)

B(ui + 1 + γ, i− ui − 1 + κ)
.

(3.60)
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Then, using (3.59) and (3.60), we get that

P (Ui + Vi 6= 6|Ui = ui, Xi+1 = 1)

= 1−
(

11− i
5− ui

)
B(6 + γ, 6 + κ)

B(ui + γ + 1, i− ui + κ)

(3.61)

Inserting (3.61), (3.58) and (3.41) into (3.48), we get

P (Xi+1 = 1|Ui = ui, Ui + Vi 6= 6)

=
P (Ui + Vi 6= 6|Ui = ui, Xi+1 = 1)P (Xi+1 = 1|Ui = ui)

P (Ui + Vi 6= 6|Ui = ui)

=

[
1−

(
11−i
5−ui

) B(6+γ,6+κ)
B(γ+ui+1,κ+i−ui)

]
γ+ui

γ+κ+i

1−
(

12−i
6−ui

) B(6+γ,6+κ)
B(ui+γ,i−ui+κ)

.

(3.62)

As we now have the probability that the next box that is opened is red, we
can find the probability that the next box that opens is blue using (3.46).
Thus, we have both the probabilities for which colour the next box is.

When the Test Terminates

In (3.27) we see the expected loss for opening another box in the limited
case. Here we have the probability that the test terminates when i boxes
are opened given that the test has not terminated yet and the probability
that it does not terminate when i boxes are opened given that it has not
terminated yet. These are P (T = i|T ≥ i) and P (T 6= i|T ≥ i), which are
complementary probabilities, such that

P (T 6= i|T ≥ i) = 1− P (T = i|T ≥ i). (3.63)

Thus, if we find P (T = i|T ≥ i), we can easily find P (T 6= i|T ≥ i) using
(3.63).

Using Bayes’ rule as it is given in (2.2), we get

P (T = i|T ≥ i) =
P (T ≥ i|T = i)P (T = i)

P (T ≥ i)
. (3.64)

We see that

P (T ≥ i|T = i) = 1. (3.65)
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As T is uniformly distributed with 11 possible values, as in (3.8), we have
that

P (T = i) =
1

11
. (3.66)

It then remains to find P (T ≥ i). We have that

P (T ≥ i) = 1− P (T < i) = 1−
i−1∑
j=1

P (T = j). (3.67)

As in (3.66), we have that P (T = j) is 1
11 . Thus, (3.67) becomes

P (T ≥ i) =1−
i−1∑
j=1

1

11
= 1− (i− 1)

1

11

=
11− (i− 1)

1
=

12− i
11

.

(3.68)

Inserting (3.65), (3.66) and (3.68) into (3.64), we get

P (T = i|T ≥ i) =
1
11

12−i
11

=
1

12− i
. (3.69)

We now have all that we need to find the three expected losses each time a
box is opened in both unlimited and limited trials. Then we find the Ideal
Observer solutions by always choosing the decision with the least expected
loss each time a box is opened.

3.5 Maximum Likelihood Estimators

As we have defined a model for the participants’ decisions and found expres-
sions for the expected losses for each of the three decisions, we can now fit
the model to each participant. We do this by finding maximum likelihood
estimates of α and η in the unlimited case and α, β and η in the limited
case, based on the decisions the participants have made. We generalise the
situation to fit both the unlimited and limited case and denote α and β as
ϕ.

We can find the likelihood, L(ϕ, η|δ) as in (2.22). If we have n decisions for
each participant, denoted δ, we get that the likelihood is

L(ϕ, η|δ) =

n∏
j=1

f(δj |ϕ, η) (3.70)



38 CHAPTER 3. MODEL FORMULATION

Using the model as it is defined in (3.9) and the expected losses as they are
formulated in Chapter 3.4.1, (3.70) becomes

L(ϕ, η|δ) =

n∏
j=1

exp(−ηE iδj (ϕ))∑2
d=0 exp(−ηE id(ϕ))

. (3.71)

We then find the log likelihood function, l(ϕ, η|δ), by taking the logarithm
of (3.71) as in (2.23) and (2.24). Then,

l(ϕ, η|δ) =

n∑
j=1

log(f(δj |ϕ, η))

=

n∑
j=1

log

(
exp(−ηE iδj (ϕ))∑2
d=0 exp(−ηE id(ϕ))

)
.

(3.72)

Using the property of the logarithm that

log
(a
b

)
= log(a)− log(b),

we get that the log likelihood is

l(ϕ, η|δ) =

n∑
j=1

(
log
(
exp(−ηE iδj (ϕ))

)
−log

( 2∑
d=0

exp(−ηE id(ϕ))
))
.

(3.73)

Using that the last term inside the sum does not depend on j, and that

log
(
exp(−ηE iδj (ϕ))

)
= −ηE iδj (ϕ),

we can write (3.73) as

l(ϕ, η|δ) =

n∑
j=1

(
− ηE iδj (ϕ)

)
− n log

( 2∑
d=0

exp(−ηE id(ϕ))
)
. (3.74)

It does not matter if we maximise the likelihood or the log-likelihood be-
cause maximising (3.71) and (3.74) with respect to ϕ and η, gives the same
estimates for the parameters. These are the maximum likelihood estimates,
and we denote them as ϕ̂ and η̂, respectively. We maximize (3.74) here.
Thus, we find

ϕ̂, η̂ = arg max
ϕ,η

l(ϕ, η|δ). (3.75)
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Recall that in the unlimited trials we have ϕ = α, such that we find α̂ and
η̂ for all participants. In the limited trials we have that ϕ = α, β, meaning
that we find α̂, β̂ and η̂ for all participants.

To maximise the log-likelihood, we use a version of the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm called L-BFGS-B. This algorithm uses
less memory than the original BFGS and allows bounds on the parameters
(Zhu et al., 1997). It is an extension of the limited memory BFGS (L-BFGS)
algorithm that does not allow bounds on the parameters. L-BFGS-B is
mostly used for nonlinear optimisation problems with bounded variables
where it might be hard to find the Hessian matrix. As we want to maximise
(3.74) and this depends on the expected losses, it is hard to find the Hessian
matrix. Especially the expected loss for opening the next box, E i2(ϕ), makes
this challenging as it depends on the expected losses in the next steps.
We also have bounds on α and β. Recall that they are defined as the
loss one gets when a new box is opened, and the loss one gets when the
test terminates, respectively. If α or β were negative, this indicates some
reward of opening the next box or the test terminating, which we believe
is not likely. Therefore, the L-BFGS-B algorithm is a natural choice of
optimisation algorithm. The L-BFGS-B is used for minimising and not
maximising. Thus we minimise the negative of the log-likelihood instead of
maximising the log-likelihood. We use Python to do this. To avoid finding
local minimum points, we use several starting values and choose the results
tied to the lowest value of the negative log-likelihood.

When we have the MLEs for α, β and η, it remains to find confidence
intervals for the parameters.

3.6 Confidence Intervals for the Parameters

To say something about the uncertainty of the parameter estimates we have
found, we now find confidence intervals for each of them. We then use
parametric bootstrapping, which is described in Chapter 2.9.

Consider a person with parameter estimates α̂, β̂ and η̂. Recall that ϕ̂ = α̂
in the unlimited case and ϕ̂ = α̂, β̂ in the limited case. Using the softmax
model, we can find the probabilities for each of the three choices in all the
steps in the nine trials. That is, we find the probability that the participant
chooses blue as the majority colour, that she chooses red and that she
chooses to open the next box. These probabilities are then

P (δj |ϕ̂, η̂, x1:i) =
exp(−η̂E iδj (ϕ̂))∑2
d=0 exp(−η̂E id(ϕ̂))

, (3.76)
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where δj ∈ {0, 1, 2}. For each opened box, we can simulate the decisions
the participant would make using these probabilities. Then we get whole
new sequences of decisions. Consider, for example, Trial 2, where the order
of the boxes is as shown in Figure 3.1. Before any boxes are opened, we
can imagine that the probability that the participant chooses to open the
next box, that δ0 = 2, is relatively high, and the other two probabilities
quite small and of equal size. The first box that opens is a red one, X1 = 1.
The probability that she chooses red as the majority colour is higher than
the probability that she chooses blue, but whether it is higher than the
probability of δ1 = 2 or not depends on the parameter estimates. We find
these probabilities and draw decisions until the participant in the simulated
trial has chosen what the majority colour is. We do that for each of the nine
trials and then end up with a new set of simulated decisions. In the limited
trials, we either stop when δi = 0 or δi = 1, or when the test terminates. If
the test terminates, this is a failed trial, and the loss is β.

For those simulated decisions, we find new estimates for the parameters,
again using maximum likelihood estimation as in Chapter 3.5. We simulate
these decisions and find the new MLEs 1000 times. We then have 1000
bootstrap samples for all the parameters for each participant. These MLEs
of the decisions in simulated trials are denoted

{ϕ∗(b), b = 1, 2, ..., 1000}

and
{η∗(b), b = 1, 2, ..., 1000}.

For each of these parameters, we use the percentile method to construct
confidence intervals as described in Chapter 2.9.1. We find 90% CIs for
each of the parameters, and we denote them as

[ϕ̂
∗(5)
1000, ϕ̂

∗(95)
1000 ]

and
[η̂
∗(5)
1000, η̂

∗(95)
1000 ].

Thus, we are finding the 5-th and 95-th percentiles.

We do this for each participant and get confidence intervals for α and η in
the unlimited case and α, β and η in the limited case for all 76 participants.

We now have an Ideal Observer solution of the box task and parameter
estimates and confidence intervals for all three parameters for all of the 76
participants. Next, we will show some results.



Chapter 4

Results

As we have found the maximum likelihood estimates and their respective
confidence intervals, the next step is to show some of these results. However,
we first present the Ideal Observer (IO) solutions for different values of the
parameters, which depends on the expected losses. We first look at the
situations where γ = κ = 1, meaning that the prior distribution for Θ is
uniform. Secondly, we have a look at how sensitive the results are to the
hyperparameters γ and κ in the beta prior we have for Θ.

4.1 Uniform Prior for Θ

When we present the results, we start with the results where we have a
uniform prior for Θ. Recall that this means that it is equally likely that Θ
takes any value between zero and one. We start with having a look at the
probabilities that either blue or red are the majority colours.

4.1.1 Conditional Probabilities

We will here have a look at the probability that red is the dominant colour
and the probability that blue is the dominant colour, as shown in (3.42) and
(3.45), respectively. These probabilities can be represented for each possible
combination of red and blue boxes. Thus, we can find those probabilities
for all the trials the participants have done.

We present the probabilities in Figure 4.1 as a tree. The top node represents
the situation where no boxes are opened. The probability that blue is the
majority colour is then equal to the probability of red being the majority

41
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Figure 4.1: A tree representing the probabilities that either red or blue are in the
majority in the box task with a uniform prior. The top node is the situation where no
boxes are opened, where we do not have any information. Hence, the probabilities are
equal. The fraction that is blue inside the node is the probability that a box is blue. The
circle around the nodes represents which colour that is most likely to be in the majority.
Hence the circle is split between red and blue in the top node. The node down to the left
is the situation when a blue box is opened, the node down to the right is when one red
box is opened, and so forth.

colour. This is represented as the proportion of blue and red inside the
nodes, which in the top node are equal quantities. The circle around the
node represent which of the colours that have the highest probability of
being in the majority. In the top node, the probabilities are equal, and
therefore, this circle is split in two. The node down to the left of the top
node represents the situation where one box is opened, and that box is blue.
One node down to the left of that one represents the situation where two
boxes are opened, and both are blue, and so on. Similarly, the node down
to the right of the top node represents the situation where one box that is
red is opened and so forth down the tree. We see that in the last row of
the tree, there is no middle node. This is because the last row represents
the situations where twelve boxes are opened, and as there cannot be six of
each colour, that node is not included in the tree. In the row above, we see
that all the nodes are completely red or completely blue. That means that
we can be sure what the majority colour is after eleven boxes are opened.
This is because there cannot be six boxes of each of the colours. Then, if
there are six of one colour and five of the other, we know that the colour
with six boxes is the majority colour.

When we have these probabilities, the next step is to look at the Ideal
Observer solution we have found.
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4.1.2 An Ideal Observer Solution in the Unlimited Case

As we have all the expected losses for each possible combination of opened
boxes, we can present these similarly to the probabilities in Figure 4.1. The
expected losses in the unlimited case are given in (3.16), (3.17) and (3.21).
In the unlimited case, we get different solutions for different values of α.
We have looked at numerous solutions, but only a handful of them will be
presented here.

Recall that an Ideal Observer (IO) solution is the solution we get when
the decisions tied to the least expected loss are chosen each time a box
is opened. In Figure 4.2, we have visualised the expected losses and the
decisions an Ideal Observer would do if α = 0.0001. As in Figure 4.1, the
top node represents the situation where no boxes are opened, and the node
down to the left represents the situation where one box is opened and that
box is blue and so forth. The circles around the nodes represent the decision
with the least expected loss, thus the decision that an Ideal Observer would
make. A blue circle indicates that choosing blue as the majority colour has
the least expected loss, and a red circle indicates that choosing red has.
A green circle means that the decision to open the next box has the least
expected loss. The colours inside the nodes represent what we could call the
inverse of the expected losses. That means that if the decision of choosing
red as the majority colour has a low expected loss, the amount of red inside
that node is big. That means that the colour that represents the Ideal
Observer solution is the most prominent in the different nodes. The inverse
expected losses are found by adding together all the expected losses and
then subtracting the expected loss in question. Later we are normalising
these inverse expected losses as they do not sum to one. Let τi(δi) be the
inverse expected losses when i boxes are opened. Then, the inverse expected
loss for choosing blue as the majority colour is

τi(0) =

2∑
j=0

E iδj (α)− E i0(α).

Similarly, for red it would be

τi(1) =

2∑
j=0

E iδj (α)− E i1(α),

and for opening the next box it will be

τi(2) =
2∑
j=0

E iδj (α)− E i2(α).

We need to normalise these. The proportion of blue in each node would
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Figure 4.2: A decision tree for the unlimited version of the box task with α = 0.0001
and γ = κ = 1. Green circles around each node show that opening another box has
the least expected loss, and blue and red circles show that the least expected loss is
for choosing the majority colour to be blue and red, respectively. The colours inside
the nodes represent the inverse expected losses. As in Figure 4.1, the top node is the
situation before any boxes are opened, and the node down to the left of the top node is
when one blue box is opened and so on.

then be
τi(0)

τi(0) + τi(1) + τi(2)
.

This tree stops when there is a red or blue circle around the node. That
is when the Ideal Observer would choose what the majority colour is, and
since this is the Ideal Observer solution, we stop the decision tree there.

As we can see in Figures 4.2, 4.3 and 4.4, where the α values are 0.0001,
0.01 and 0.05, respectively, the trees are slimmer for bigger values of α.
Recall that α is the penalty of opening a box and that the expected loss
for choosing to open another box increases with it. Hence the threshold for
when that expected loss surpasses the expected loss for choosing either blue
or red as the majority colour decreases with increasing α. Therefore, we
decide at an earlier point when α is high, making the trees slimmer.

At some point, α could get so big that the Ideal Observer would decide
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Figure 4.3: A decision tree for an un-
limited trial with α = 0.01 and γ =
κ = 1. We can interpret this tree in the
same way as Figure 4.2 where the circles
around each node shows which decision
the Ideal Observer would do.

Figure 4.4: A decision tree in the un-
limited case with α = 0.05 and γ =
κ = 1 that can be understood in the
same way as Figure 4.2 where the circles
around each node shows which decision
the Ideal Observer would do.

what the majority colour is after only one box is opened. The expected loss
for opening another box is dependent on both α and the expected losses for
continuing to open boxes. In contrast, the expected losses for choosing the
majority colour depend only on the probabilities that one of the colours is
in the majority. For example, if the first box is red, the probability that red
is in the majority increases. Therefore, if α is big enough, the expected loss
for opening another box could be higher than the probabilities that one of
the colours is in the majority; thus, the Ideal Observer would decide after
one box is opened. This is the situation when α is 0.1 as in Figure 4.5. The
expected loss before any boxes are opened is 0.5, both for choosing blue and
red as the majority colour. For the choice of opening a box, the expected
loss is 0.308. This is then the choice an Ideal Observer would make before
any boxes are opened. If the box that opens is blue, the expected loss for
choosing that blue is the majority colour is 0.208, 0.792 for choosing red,
and 0.260 for opening another box. Hence, the Ideal Observer would decide
that blue is the majority colour. This problem is symmetric. If the opened
box is red, the expected loss for choosing that red is the majority colour
is 0.208, 0.792 for choosing blue and 0.260 for opening another box. In
that case, the expected loss is smallest when we choose red as the majority
colour.

As α is the loss we get when we open a box, we can imagine that it also could
be zero. In Figure 4.6 we see the decision tree for α = 0. When we have six
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Figure 4.5: A decision tree for an unlimited trial with α = 0.1, that can be interpreted
in the same way as Figure 4.2

Figure 4.6: An Ideal Observer solution of the unlimited version of the box task with
α = 0 and γ = κ = 1. This tree can be interpreted the same way as the tree in Figure 4.2.
Here we choose that the IO chooses the majority colour if the expected loss of opening
the next box is the same as for choosing the majority colour. These are both zero if there
are six boxes of one of the colour that is displayed, which is the situation in all the nodes
that have circles that are split between two colours.

boxes of one of the colours, for example, red, the expected loss of choosing
red as the majority colour is zero, but so is the expected loss of opening
the next box. Thus, an Ideal Observer would choose arbitrarily between
those. However, we have decided here that the IO would rather choose the
majority colour than open the next box if both of these expected losses are
zero, such that one does not open any more boxes than necessary. We see
that this tree resembles the tree where α = 0.0001 as shown in Figure 4.2.
This indicated that such a small value of α is very close to having α equal
to zero.

In Figure 4.7 we see the Ideal Observer solution in Trial 2 for an individual
with α = 0.01. Trial 2 is as shown in Figure 3.1. We see that the Ideal
Observer would choose after six boxes are opened, hence before we can be
completely sure that red is the majority colour, but the probability is 0.9958,
so it is very likely that we choose the right colour here. The expected loss of
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Figure 4.7: An Ideal Observer solution
for Trial 2 with α = 0.01 and γ = κ = 1.
The tree can be interpreted in the same
way as Figure 4.2.

Figure 4.8: An Ideal Observer solution
for Trial 2 with α = 0.05 and γ = κ = 1.
The tree can be interpreted in the same
way as Figure 4.2.

choosing red is then 0.0042, whereas the expected loss of opening the next
box is 0.0134. We see that if a participant has an α = 0.05, then an Ideal
Observer would choose after two boxes are opened in Trial 2, as shown in
Figure 4.8. Then, the penalty for opening the next box is much higher than
in Figure 4.7. Thus, the IO would choose after only two boxes are opened.

As we have presented Ideal Observer solutions in the unlimited case for
different values of α, the next step is to show some of the solutions in the
limited case.

4.1.3 An Ideal Observer Solution in the Limited Case

Having the expected losses in the limited case as given in (3.16), (3.17) and
(3.27), we can visualise them in the same way as Figure 4.2. In the limited
trials, we have two parameters, α and β. Thus, we have solutions with both
of these parameters varying.

In Figures 4.9 and 4.10, we see two solutions, both with α = 0.01. They
have different values of β, namely β = 0.6 and 0.4, respectively. Both trees
have the same width, but we see that the tree with the higher β value is
shorter. Thus, an Ideal Observer with β = 0.6 would open fewer boxes than
one with β = 0.4, which is what we would imagine as β is the loss of the
test terminating.
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Figure 4.9: A decision tree for an un-
limited trial with α = 0.01, β = 0.6 and
γ = κ = 1. We can interpret this tree in
the same way as Figure 4.2 where the
circles around each node shows which
decision the Ideal Observer would do.

Figure 4.10: A decision tree in the lim-
ited case with α = 0.05, β = 0.4 and
γ = κ = 1 that can be understood in the
same way as Figure 4.2 where the circles
around each node shows which decision
the Ideal Observer would do.

The trees in the limited case are, in general, slimmer than in the unlimited
case. That is because of the penalty we get when the test terminates before
we have made a decision. The expected losses for opening another box are
bigger than in the unlimited case. Hence, in the limited case, these surpass
the expected losses of choosing blue or red as the majority colour earlier
than in the unlimited case. Small values of α and β in combination makes
the trees wider, as in Figure 4.11.

As in the unlimited case, there are trials where the Ideal Observer solution
is to choose the majority colour after one box is opened. This is the case in
Figures 4.12 and 4.13. The only thing that has changed from Figure 4.10
to Figure 4.12 and from Figure 4.9 to Figure 4.13 is the value of α, which
has increased from 0.01 to 0.05. In the cases with the higher values of α,
the expected loss for opening the second box is larger than for choosing the
majority colour. That results from these expected losses being dependent
on the next expected losses, which again depend on the expected losses
for opening another box after that and so on. Additionally, these could
potentially be large if the amount of red and blue boxes are close to each
other, meaning that we, for example, first open a red box, then a blue, then
a red and so forth.

In Figure 4.14, we see the IO solution for Trial 8 where α = 0.01 and β = 0.6.
We see that an Ideal Observer would choose the majority colour after seven
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Figure 4.11: A decision tree for an unlimited trial with α = 0.01, β = 0.2 and γ = κ = 1.
We can interpret this tree in the same way as Figure 4.2 where the circles around each
node shows which decision the Ideal Observer would do.

Figure 4.12: A decision tree for a lim-
ited trial with α = 0.05, β = 0.4 and
γ = κ = 1. It can bee interpreted as the
tree in Figure 4.2.

Figure 4.13: A decision tree for a lim-
ited trial with α = 0.05, β = 0.6 and
γ = κ = 1 that can be interpreted in
the same way as the tree in Figure 4.2.
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Figure 4.14: An Ideal Observer solu-
tion for Trial 8 with α = 0.01, β = 0.6
and γ = κ = 1. The tree can be inter-
preted in the same way as Figure 4.2

Figure 4.15: An Ideal Observer solu-
tion for Trial 8 with α = 0.01, β = 0.2
and γ = κ = 1. The tree can be inter-
preted in the same way as Figure 4.2

boxes are opened, where four are blue, and three are red. In Figure 4.15, we
see another IO solution for Trial 8, where α = 0.0001 and β = 0.2. Here, an
Ideal Observer would not choose before the test terminates, and that would
be a failed trial. Thus, the Ideal Observer is not perfect, as it is based
on expected losses based on the previously opened boxes and not based on
what is actually going to happen.

We have now presented some of the Ideal Observer solutions we have found
and will continue to present some of the results of the decision model we
have defined.

4.1.4 Maximum Likelihood Estimates

As we have presented some Ideal Observer solutions, we will now look at
the parameter estimates we have found for each participant. Recall that we
find the maximum likelihood estimates (MLEs) by minimising the negative
log-likelihood using the L-BFGS-B algorithm as described in Chapter 3.5.
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Figure 4.16: The MLEs for all the participants plotted for the unlimited case of the
box task with γ = κ = 1. α̂ is on the horizontal axis and η̂ on the vertical.

Unlimited

We start with the unlimited case, where we have the parameters α and η.
For each participant, we have found the maximum likelihood estimates of
both of these parameters, denoted α̂ and η̂. These are plotted in Figure
4.16. We see one extreme value of each of the estimates, α̂ and η̂. To get
a better picture of the values that are not extreme, we zoom in closer to
zero for both parameters. This is done in Figure 4.17, and we have zoomed
even more in Figure 4.18. Many of the participants have α̂ equal to or close
to zero, meaning that they have none or little loss of opening boxes. This
is not surprising as the task is neither long nor hard to complete, and we
would imagine that many of the participants open many boxes.

Recall that high values of η indicate that the participant tends to make
the decisions with the least expected losses, and η is infinity when the par-
ticipant makes the decisions with the least excepted loss each time a box
is opened. The log-likelihood function is almost flat for high values of η.
That means that the stopping criterion for the optimisation algorithm will
be met several places for high values of η. Thus, if the true value of η is
infinity, we could find that η̂ is, for example, 10000 because the stopping
criterion is met there. Therefore, we find a threshold for η where we can
say that all values above that threshold are so high that they go to infinity.
Then, we can say that if a participant has η̂ above that threshold, she tends
to always make the decisions with the least expected loss. This threshold
depends on the difference in the two lowest expected losses, but we can, for
example, find one for when the difference is 0.01. If we, for example, have a
majority of red boxes, then the expected loss of choosing red as the major-
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Figure 4.17: The MLEs for all the participants plotted for the unlimited case of the
box task with γ = κ = 1. Here we have zoomed in closer to zero on the plot in Figure
4.16.
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Figure 4.18: The MLEs for all the participants plotted for the unlimited case of the
box task with γ = κ = 1. Here we have zoomed in closer to zero even more than in
Figure 4.17.
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ity colour is quite low, but so could the expected loss of opening the next
box be. Consider, a situation where we have E i0(ϕ) = 0.98, E i1(ϕ) = 0.02
and E i2(ϕ) = 0.01. Then, the decision to open the next box has the lowest
expected loss, but the decision to choose red as the majority colour is not
far away. We then want the threshold value of η to be so high that the
probability that the participant chooses to open the next box is close to
one. If η = 1000, the probability that the participant chooses to open the
next box given these expected losses, is 0.99995. Thus, we set η = 1000 as
a threshold for when the participant tends to always makes the choices that
have the least expected loss.

If we look at the extreme values in Figure 4.16, we find one participant with
a very high value of η̂ and small value of α̂. This is individual 58, who has
MLEs

α̂ = 0.0016,

η̂ = 443422.7.
(4.1)

In each of the three unlimited trials, this individual chooses the majority
colour exactly when there are six of one of the colours, which is when we
can be completely sure what the true majority colour is. That means that
individual 58 chooses after seven boxes are opened in Trial 2, and she then
chooses red. In Trials 3 and 4, she chooses after 10 and 9 boxes are opened,
respectively. Thus, she always chooses the decision with the least expected
loss, which are the decisions an Ideal Observer would make, and η̂ is there-
fore above the threshold value of 1000. Individual 58 has α̂ = 0.0016, which
is relatively small. That might be because she does not open any more
boxes than necessary. She might then have a small loss of opening boxes
or some reward of finishing early. This α̂ value is so small that it would
give an IO solution similar to the one in Figure 4.2, such that one always
chooses after six boxes of one of the colours have been opened.

Looking at the other extreme value in Figure 4.16, which is individual num-
ber 13, we see that she has a high value of α̂ and a small value of η̂. The
values are

α̂ = 4.2224,

η̂ = −0.4290.
(4.2)

In Trial 2, she chooses after opening two boxes, where both boxes are red.
In both Trial 3 and Trial 4, she chooses when three boxes are opened, where
two of them are blue, and one is red. She then chooses red as the majority
colour despite the fact that choosing blue as the majority colour has a lower
expected loss. Thus, she tends to choose decisions with higher expected
losses, and therefore has a negative estimate of η. She also chooses quite
early; thus, she gets a high estimate of α. However, an Ideal Observer with
this high value of α would always choose after one box is opened.
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In Figure 4.17 we see another participant that has a high value of α̂. This
is participant 44 that has MLEs

α̂ = 0.1585,

η̂ = 176.9.
(4.3)

In all three unlimited trials, she chooses what she thinks is the dominant
colour after opening one box. This is why she has a higher value of α̂ than
most of the other participants. She always chooses the colour of that first
box as the majority colour, meaning that if the first box is red, she chooses
red as the majority colour. Then the expected loss of choosing red for this
participant is 0.2083, whereas the expected loss of opening the next box is
0.3373. Thus, she also chooses the alternative with the least expected loss
and gets a pretty high value of η̂.

If we look at a more typical person, we find, for example, individual number
61. She has

α̂ = 0.0135,

η̂ = 19.9432.
(4.4)

In the three unlimited trials, she chooses what she thinks is the majority
colour after five, six and four boxes are opened. She chooses the majority
colour before she can be entirely sure and therefore has α̂ larger than zero.
However, when she chooses majority colour, she chooses the colour with the
least expected loss and thus has a positive η̂. An IO with the estimates of
individual 61 would choose after 3, 10 and 9 boxes were opened. Thus her
decisions do not coincide with the IO decisions, but they are not far away.

Having looked at the MLEs in the unlimited case, we now continue with
the limited trials.

Limited

In the limited version, we have three parameters, α, β and η, and we have
found maximum likelihood estimates for these for all of the 76 participants.
The MLEs of α and η for all participants are plotted in Figure 4.20, and
we have zoomed in on that plot in Figure 4.21. We see that many of the
participants have α̂ = 0. In fact, all participants except four have α̂ = 0.
We also see that four of the participants have η̂ higher than the threshold
value of 1000, meaning that they make good choices each time a box is
opened. What is not so easy to see is that the two participants with the
highest values of α̂ have negative values of η̂. This indicates that they make
choices with high expected losses and that they have high costs of opening
new boxes.

In Figure 4.22 we have plotted the MLEs of α and β for all participants.
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Figure 4.19: An Ideal Observer solution of the box task in the unlimited case for
individual number 61 with a uniform prior, such that γ = κ = 1. She has α̂ = 0.0135.
This tree can be interpreted in the same way as the tree in Figure 4.2.
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Figure 4.20: Maximum likelihood esti-
mates of α and η for all participants in the
limited version of the box task. γ = κ = 1.
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Figure 4.21: MLEs of α and η in the lim-
ited case. Zoomed in on the plot in Figure
4.20.
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Figure 4.22: Maximum likelihood estimates of α and β for all participants in the limited
version of the box task. γ = κ = 1.

Again we see that many participants have α̂ = 0. This might indicate that
α is unnecessary to include in the limited version. Both α and β are values
tied to whether we choose the majority colour early or not. Thus, it might
be enough only to include β. It is also not obvious how the MLEs give
weight to α compared to β.

We have plotted the MLEs of β and η together in Figure 4.23. Again we
see that four of the participants have high values of η̂. Three of these have
values of β̂ close to one, which might indicate that they are afraid of the
test terminating and thus choose early, but that they choose the colour that
is most likely to be in the majority. Zooming in on the plot as in Figure
4.24, we see that the majority of the participants have values of η̂ between
10 and 80 and values of β̂ between zero and 0.7. We also see that some
participants have β̂ equal to zero.

In Figures 4.20 and 4.23 we see a participant with a very high value of η̂.
This is individual number 70, and she has parameter estimates

α̂ = 0.0015,

β̂ = 0.7929,

η̂ = 23851.9.

(4.5)

She chooses what she thinks is the majority colour after either two or three
boxes are opened in the limited trials. When there are two boxes of the
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Figure 4.23: Maximum likelihood esti-
mates of β and η for all participants in the
limited version of the box task. γ = κ = 1.
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Figure 4.24: MLEs of β and η in the lim-
ited case. Zoomed in on the plot in Figure
4.23.

Figure 4.25: An Ideal Observer solution for individual number 70 in the limited version
of the box task with γ = κ = 1.

same colour, she chooses that colour as the majority colour. In Figure 4.25
we see the Ideal Observer solution for an individual with the values given
in (4.5). We see that the IO would do the exact same thing as individual
number 70 has done, that is, choose when we have two boxes of the same
colour, and then choose that colour as the dominant colour. In Trial 5,
that is after two boxes are opened as the first two boxes are blue. This is
visualised in Figure 4.26. In Trial 6, both the IO and participant number
70 chooses after three boxes are opened, as seen in Figure 4.27.

Figure 4.26: An Ideal Observer solution
of Trial 5 for individual number 70 where
γ = κ = 1.

Figure 4.27: An Ideal Observer solution
of Trial 6 for individual number 70 where
γ = κ = 1.
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Figure 4.28: An Ideal Observer solution for individual number 11 in the limited version
of the box task with γ = κ = 1.

We have two individuals with high values of α̂. These are participants 11 and
13. They both have β̂ = 0 and negative values of η̂. These two individuals
can be interpreted the same way. Therefore, we present only the participant
with the highest α̂ here, participant number 11. Her parameter estimates
are

α̂ = 1.1798,

β̂ = 0.0,

η̂ = −1.9538.

(4.6)

She chooses after two or three boxes are opened, and she tends to choose
the colour in the minority, not majority, out of the opened boxes. That is
the reason for η̂ being negative. β̂ is a measure of the loss one gets when the
test terminates. If the test terminates, this counts as a failed trial. It also
counts as a failed trial if the participant chooses the wrong colour as the
majority colour. This individual does not seem to care if she chooses the
wrong colour as the majority colour, and we might believe that, in the same
way, she does not care whether the test terminates or not. That might be
the reason that β̂ is zero. However, as she chooses after two and three boxes
are opened, this indicates some loss of opening boxes; thus, we get the high
value of α̂. Earlier, we discussed that α might be unnecessary in the limited
trials as so many participants have α̂ = 0. However, for individual number
11 and the other participant with the high value of α̂, this parameter might
be needed to express some penalty of opening boxes as we have that β̂ = 0.
In Figure 4.28 we see that an Ideal Observer with the same estimates as
individual number 11 would choose the majority colour before any boxes are
opened. The expected loss of choosing the majority colour then is 0.5 as it
is the probability that the opposite colour is in the majority. The expected
loss of opening the first box is much higher due to the high value of α̂.

In Figures 4.22 and 4.23 we see participant number 75 that has a high value
of β̂. Her parameter estimates are

α̂ = 0.0517,

β̂ = 2.219,

η̂ = 70.87.

(4.7)

This participant chooses after one box is opened in all six limited trials.
This is the reason for the high value of β̂. At the same time, individual
75 always chooses the colour of that first box as the majority colour, which
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is the colour with the least expected loss. The expected loss of opening
the next box might be lower than the expected loss of choosing that as
the majority colour. However, these expected losses are often close to each
other, whereas the expected loss of choosing the other colour as the majority
is often further away. Thus, she tends to choose decisions with low expected
losses, but they might not be the decisions with the lowest expected loss.
The value of η̂ is, therefore, relatively high.

If we look at a more typical person, we find, for example, individual number
40. She has parameter estimates

α̂ = 0.0,

β̂ = 0.4414,

η̂ = 38.00.

(4.8)

She opens between 2 and 5 boxes in all the trials except Trial 8. In all of
these trials, she chooses the most probable colour as the colour that she
believes is the majority. Thus, η̂ is reasonably high. In Trial 8, she opens
nine boxes and tries to open the tenth when the test terminates. In that
trial, there are never two boxes of the same colour opened after each other,
and the probability that one of the colours is the majority colour is quite
low.

As the MLEs are presented for the different parameters, we continue with
presenting their respective confidence intervals.

4.1.5 Confidence Intervals

We have presented an Ideal Observer solution of the box task and the max-
imum likelihood estimates for different participants. Now, we will discuss
some of the confidence intervals we have found. Recall that these are found
by finding the MLEs of 1000 bootstrap samples for each participant and
then finding the 5-th and 95-th percentiles, as discussed in Chapter 3.6.

Unlimited

We start with the confidence intervals in the unlimited case. In Figure 4.29
we see the confidence intervals for α. The whole interval for individual
number 13 is not included as it is very long. Recall that the MLE of α for
person 13 is very large, and we also have a very large value of the upper

limit of the CI for α, α̂
(95)
1000. We see that many of the CIs include zero,

meaning that many participants might not have that small loss of opening
the next box.

In Figure 4.30 we see all the CIs in the unlimited case for η. We see that



60 CHAPTER 4. RESULTS

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Figure 4.29: Confidence intervals for all the participants for α in the unlimited version
of the box task. We see that individual number 13 has an interval outside the range of
this plot. γ = κ = 1.
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some of the participants have the whole CI above 1000, the threshold value
we defined for η̂. We can for these participants conclude that they always
make decisions with small expected losses. We also see that many of the CIs
include the threshold value. In Figure 4.31 we have zoomed in on the CIs
and added a line at zero. Only one CI include zero, the CI for individual
number 13. Recall that she has a negative value of η̂ and a very high α̂, as
seen in (4.2).

In Chapter 4.1.4 we discussed individual 61 that is a more typical person.
Her MLEs are given in (4.4). We have 1000 bootstrap samples and thus
1000 values of both α̂ and η̂ for this participant. These are plotted in Figure
4.32. There, we have also plotted the confidence interval as black lines. We
see that most of the bootstrap samples are accumulated in the bottom left
corner. Thus, we zoom in there in Figure 4.33, where we also have plotted
the CI. We have that[

α̂
∗(5)
1000, α̂

∗(95)
1000

]
= [0, 0.0362],[

η̂
∗(5)
1000, η̂

∗(95)
1000

]
= [10.0449, 110.3661].

We see that the confidence interval for α includes zero. Recall that having
α = 0 means that one does not have any loss of opening boxes. Addition-
ally, we see that the whole interval for η is above zero, which means that
individual number 61 makes decisions with low expected losses. However,
they might not always be the decisions with the lowest expected loss.

In Chapter 4.1.4 we also discussed individual number 13 that has a high
value of α̂, as seen in (4.2), compared to the other participants. The 1000
bootstrap samples for participant number 13 are plotted in Figure 4.34, and
zoomed on the η̂ axis in Figure 4.35. The CIs are[

α̂
∗(5)
1000, α̂

∗(95)
1000

]
= [0, 1246.3510],[

η̂
∗(5)
1000, η̂

∗(95)
1000

]
= [−9.9272, 18.3986].

We see that many of the values of α̂ are very high, much higher than the

MLE; thus, α̂
∗(95)
1000 is very high. That means that the estimate for this

individual is uncertain. Thus, the model might not be a good fit for this
participant and the choices she makes. That might be because the expected
loss is based on the next decisions that will be made. We have decided that
these decisions are the decisions that an Ideal Observer would make, the
decisions with the least expected losses. However, this participant tends
to make decisions with high expected losses, meaning that the decisions
we include in the model are not so relevant for this individual. Thus, we
might conclude that this model is not a great fit for participants that make
decisions with high expected losses.



62 CHAPTER 4. RESULTS

0 500 1000 1500 2000 2500 3000 3500

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Figure 4.30: Confidence intervals for each participant for η in the unlimited version of
the box task. γ = κ = 1.



4.1. UNIFORM PRIOR FOR Θ 63

0 200 400 600 800 1000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Figure 4.31: Confidence intervals of η for each participant in the unlimited trials of the
box task with γ = κ = 1, zoomed.
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Figure 4.32: All of the MLEs of the
1000 bootstrap samples plotted for individ-
ual number 61 in the unlimited case with
γ = κ = 1. The confidence intervals for
the two parameters are also included.
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Figure 4.33: Here we have zoomed in
on the bootstrap samples and confidence
intervals that are plotted in Figure 4.32.
This is for individual number 61 in the un-
limited case with γ = κ = 1.
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Figure 4.34: All of the MLEs of the
1000 bootstrap samples plotted for individ-
ual number 13 in the unlimited case with
γ = κ = 1. The confidence intervals for
the two parameters are also included.
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Figure 4.35: Zoomed in on the bootstrap
samples and confidence intervals that are
plotted in Figure 4.32. This is for individ-
ual number 13 in the unlimited case with
γ = κ = 1.
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Another participant with extreme values we looked at in Chapter 4.1.4
is individual number 58. The MLEs are given in (4.1). Her value of η̂
is above the threshold value, which makes the probabilities in (3.76) be
approximate either zero or one. Thus, when we draw decisions based on
those probabilities, we will always end up with the same decisions, and
those are the decisions that the participant have made. All the simulated
decisions are identical to the decisions the participant has made, and the
MLEs will be identical. Thus, the length of the two CIs will be zero, and
the values will be equal to the MLEs. Hence, the CIs are[

α̂
∗(5)
1000, α̂

∗(95)
1000

]
= [0.0016, 0.0016],[

η̂
∗(5)
1000, η̂

∗(95)
1000

]
= [443422.7, 443422.7].

Thus, parametric bootstrapping might not be a satisfactory method to find
confidence intervals for the participants that tend to make the decisions
with the least expected loss.

Having shown some of the confidence intervals for the unlimited trials, we
continue with the limited trials.

Limited

We will now have a look at the confidence intervals in the limited case.
In Figure 4.36 we see the CIs for α for all of the participants. Individual
number 11 has a much larger upper limit of the CI than the range of the axis
here; thus, the CI continues outside the plot. We also see that participant
13 has a higher interval than the other participants. These two are also the
individuals with the high values of α̂ in Figure 4.20. We also see that all
participants except these two have upper limits smaller than 0.2, meaning
that most participants have none or a only a small loss of opening the next
box.

In Figure 4.37, we have plotted all the confidence intervals for β in the
limited case. Again, we see that individual 11 has a large interval that spans
beyond the axis. Many of the intervals include zero. Having β̂ = 0 means
that one does not feel any loss if the test terminates, although this is defined
as a failed trial. We also see that most participants have upper limits below
one, meaning that failed trials are not disastrous for most participants.

We have also plotted the confidence interval for η for each participant. This
is shown in Figure 4.38. The CI for participant 70 is not included here as
it is much higher than the axis range. There are only two CIs that include
zero, the ones for participants 11 and 13. The rest of the intervals are
above zero. That indicates that most participants make choices with little
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Figure 4.36: Confidence intervals for α in the limited case of the box task with γ = κ = 1
for each participant. Individual number 11 has a much higher value of the upper limit
than the range of the axis here.
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Figure 4.37: Confidence intervals for β in the limited case of the box task with γ = κ = 1
for each participant. As in Figure 4.36 participant 11 has a long interval.
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expected loss, whereas individuals 11 and 13 might tend to make decisions
with higher expected losses. Many participants have long intervals, which
might mean that there is uncertainty tied to their estimates.

We have three participants where the confidence intervals for all three pa-
rameters have length zero. These are individuals 21, 70 and 75. As for
individual 75 in the unlimited case, they have very high values of η̂, which
makes the probabilities of each of the decisions as seen in (3.76) be approx-
imately zero or approximately one. Thus, all the simulated decisions are
the same as the decisions they have made. Therefore, all of the 1000 MLEs
are the same, and finding the percentiles gives the same value as the MLEs.
It should be noted that individual 75 has η̂ = 70.87 as seen in (4.7), which
is far below the threshold value of 1000 that we defined for η. She has a
pretty high estimate of β, which makes the expected loss of opening the
next box relatively high. Therefore, the expected losses differ considerably,
and it takes a much lower value of η̂ for the probabilities in (3.76) to be
approximately zero or one. Thus, η̂ = 70.87 is a high value for individual
number 75.

In Figures 4.36 and 4.37 we see that individual 11 has long confidence in-
tervals for α and β. In Figure 4.39 we have plotted α̂ and β̂ of the 1000
bootstrap samples for individual 11 together with the confidence intervals
for α and β. We have zoomed in on that plot in Figure 4.40. Additionally,
we have plotted the MLEs and the confidence intervals of α and η in Figure
4.41 and zoomed in on that plot in Figure 4.42. The confidence intervals
are [

α̂
∗(5)
1000, α̂

∗(95)
1000

]
= [0.2935, 649.1],[

β̂
∗(5)
1000, β̂

∗(95)
1000

]
= [0, 16.74],[

η̂
∗(5)
1000, η̂

∗(95)
1000

]
= [−10.45,−0.0013].

We see also here that there are many high values of α̂, which again give
long intervals that indicate an uncertain estimate of α. Furthermore, there
are some extreme values of β̂. The CI has an upper limit at 16.74, which
is relatively high compared to the other participants. Thus, there is some
uncertainty tied to the estimate of both α and β for individual 11, indicating
that this model is not a good fit. As discussed for individual 13 in the
unlimited version, this might be because we assume Ideal Observer decisions
when we find the expected losses of opening the next box. These decisions
are not that relevant for participant 11 in the limited case as she tends to
make decisions with high expected losses. She chooses the colour in the
minority multiple times, meaning that she chooses the decisions with the
highest expected loss.
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Figure 4.38: Confidence intervals for η in the limited case of the box task with γ = κ = 1
for each participant. Participant 70 has a too high CI to be included here.
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Figure 4.39: All of the MLEs for α and β
of the 1000 bootstrap samples plotted for
individual number 11 in the limited case
with γ = κ = 1. The confidence intervals
for the two parameters are also included.
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Figure 4.40: Here we have zoomed in
on the bootstrap samples and confidence
intervals that are plotted in Figure 4.39.
This is for individual number 11 in the lim-
ited case with γ = κ = 1.
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Figure 4.41: All of the MLEs for α and η
of the 1000 bootstrap samples plotted for
individual number 11 in the limited case
with γ = κ = 1. The confidence intervals
for the two parameters are also included.
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Figure 4.42: Here we have zoomed in
on the bootstrap samples and confidence
intervals that are plotted in Figure 4.41.
This is for individual number 11 in the lim-
ited case with γ = κ = 1.
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Figure 4.43: All of the MLEs for β and η
of the 1000 bootstrap samples plotted for
individual number 11 in the limited case
with γ = κ = 1. The confidence intervals
for the two parameters are also included.
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Figure 4.44: Here we have zoomed in
on the bootstrap samples and confidence
intervals that are plotted in Figure 4.43.
This is for individual number 11 in the lim-
ited case with γ = κ = 1.

In Figure 4.43 we see β̂ and η̂ of participant number 11 for the 1000 boot-
strap samples plotted, and zoomed in Figure 4.44. We see that the whole
interval for η is below zero. This is a strong indicator that individual 11
makes many choices with high expected losses.

In Figure 4.45, we have plotted the MLEs of α and β for the 1000 bootstrap
samples of individual 40 that is a more typical person. We see that α̂ and
β̂ tend to not be zero at the same time, indicating that she gets some loss
of opening boxes, but it differs whether the MLE is putting weight on α or
β. In Figure 4.46 we have plotted all α̂ and η̂ together, and zoomed in on
that plot in Figure 4.47. Here we see that there are many high values of η̂,
and that the confidence interval is long. The values of β̂ and η̂ are plotted
in Figure 4.48 and we have zoomed in Figure 4.49. The confidence intervals
are

[
α̂
∗(5)
1000, α̂

∗(95)
1000

]
= [0, 0.0796],[

β̂
∗(5)
1000, β̂

∗(95)
1000

]
= [0, 0.5857],[

η̂
∗(5)
1000, η̂

∗(95)
1000

]
= [21.29, 2716.5].

We have now looked at the results when we have a uniform prior, meaning
that γ = κ = 1. Next, we look at how the results are influenced when we use
a different prior. Thus, we look at the sensitivity of to the hyperparameters
γ and κ.
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Figure 4.45: All of the MLEs for α and β of the 1000 bootstrap samples plotted for
individual number 40 in the limited case with γ = κ = 1. The confidence intervals for
the two parameters are also included.
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Figure 4.46: All of the MLEs for α and η
of the 1000 bootstrap samples plotted for
individual number 40 in the limited case
with γ = κ = 1. The confidence intervals
for the two parameters are also included.
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Figure 4.47: Here we have zoomed in
on the bootstrap samples and confidence
intervals that are plotted in Figure 4.46.
This is for individual number 11 in the lim-
ited case with γ = κ = 1.
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Figure 4.48: All of the MLEs for β and η
of the 1000 bootstrap samples plotted for
individual number 40 in the limited case
with γ = κ = 1. The confidence intervals
for the two parameters are also included.
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Figure 4.49: Here we have zoomed in
on the bootstrap samples and confidence
intervals that are plotted in Figure 4.48.
This is for individual number 11 in the lim-
ited case with γ = κ = 1.
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4.2 Sensitivity to Hyperparameters

The results we have discussed so far have all been for a uniform prior of
Θ. Recall that Θ is the success probability in the Bernoulli distribution we
have for the Xi’s, that are the colours of the boxes as described in (2.13),
where we later conditioned on there not being six blue and six red boxes.
We have a beta prior for Θ with hyperparameters γ and κ, seen in (2.9). As
we can see in Figure 3.9, having γ = κ = 1 is the same as having a uniform
prior for Θ. We will now have a look at how the results are affected when
we use a different prior.

As discussed in Chapter 3.1, the participants are told that one of the colours
always is in the majority. Therefore, one might think that the probability
that there are more of one of the colours is higher than the probability
that there are six of each of the colours. Thus, we want a prior more like
the purple or orange lines in Figure 3.9. We choose the purple line where
γ = κ = 0.5.

Having a uniform prior for Θ, we have found MLEs for all the parameters
and confidence intervals tied to each of them for each of the participants.
We do the same with a prior having γ = κ = 0.5, and compare the results.
With these values of the hyperparameters, the model put more weight on
the colours of the boxes that are opened. For example, suppose many of
the opened boxes are blue. In that case, the probability that blue is the
majority colour is higher in the model with the new prior, resulting in a
lower expected loss of choosing blue as the majority colour.

4.2.1 Unlimited

When we look at the sensitivity to hyperparameters, we start with the
results for the unlimited version.

In Figure 4.50 we have plotted all the MLEs for both priors. The green
dots are the MLEs in the model with the uniform prior for Θ, and the
orange points are the MLEs in the model with the new prior. We see that
the participants that had extreme values with the uniform prior still have
extreme values with the new prior, but the values differ considerably. The
highest value of η̂ is remarkably lower, but it is still above that threshold
value we defined for η. That might be because of the flat log-likelihood
function, making the high estimates of η somewhat uncertain, as discussed
in Chapter 4.1.4. Thus, the large change in η̂ might not be because of the
new prior but because of the numerical optimisation. If we zoom in on
the plot in Figure 4.50, as we have done in Figure 4.51, we see that the
participants with high, but not extreme, values of η̂ or α̂ have shifted their
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Figure 4.50: Maximum likelihood estimates in the unlimited version of the box task.
The green dots represent MLEs where we have a uniform prior for Θ, that is, γ = κ = 1.
The orange dots are the MLEs where γ = κ = 0.5.

MLEs substantially. However, zooming even more, as in Figure 4.52, we
see that the MLEs of the participants that do not have extreme or high
values are shifted a little, but not considerably, with some exceptions. All
participants who did not have α̂ = 0 before have shifted the values of α̂
closer to zero with the new prior. Most of the participants with α̂ = 0 in
the first model have the same in the alternative model. We also see that most
of these participants have the same or about the same value of η̂, perhaps
slightly shifted upwards, with the new prior. For the other participants,
there are, with some exceptions, no considerable differences in the values
of η̂. Some participants get higher values of η̂, and others get lower values
without any apparent pattern.

In Figure 4.53 we see the confidence intervals for α. The green lines are the
CIs we found earlier with the uniform prior, and the orange lines represent
the CIs when we have the beta prior for Θ with γ = κ = 0.5. As for the
MLEs, we see that the confidence intervals are close to each other. Many
of the upper limits are slightly shifted to the left, with some exceptions.
Again, we see that the interval of individual 13 is long, such that the upper
limit is outside of this plot. These upper limits for the old and new prior
are quite similar.

Figure 4.54 displays the confidence interval for η for each participant. We
also have here that the orange lines are the CIs in the case with the new
prior and the green lines are the CIs we found in the case with the uniform
prior. In Figure 4.55 we have zoomed in closer to zero to get a better
view of the participants with lower values of η̂. These confidence intervals
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Figure 4.51: MLEs using two different priors in the unlimited case of the box task.
This is the same plot as in Figure 4.50 zoomed in.
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Figure 4.52: The plot of MLEs in Figure 4.51 zoomed.
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Figure 4.53: Confidence intervals for α for all of the 76 participants in the unlimited
version of the box task. The green intervals represent the situation where we have a
uniform prior for Θ, that is, γ = κ = 1. The orange lines are the intervals for a prior
where γ = κ = 0.5.
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differ more than the intervals for α. Some are shorter than before, and
others are longer, without any clear pattern of which intervals that is. Some
intervals are slightly shifted to the right, but those are mostly the intervals
that are longer than the original intervals. The upper limits are mainly
higher than the original, and the new lower limits are often close to the
old ones. However, these higher upper limits might be because of the flat
log-likelihood function as discussed in Chapter 4.1.4.

Thus, we see that the unlimited version is not very sensitive when changing
the hyperparameters from 1 to 0.5. The MLEs of η do not seem to change
much, whereas the MLEs of α tend to be a bit smaller. There are no
substantial changes in the confidence intervals.

4.2.2 Limited

We continue looking at the estimates and confidence intervals using a new
prior for Θ, this time in the limited case of the box task.

In the previous results, where we have a uniform prior, we have that many
values of α̂ are zero in the limited version. In Figure 4.56 we have plotted
both the new and the old estimates of α and η. The green dots are the
estimates for the model with the uniform prior, and the orange dots are the
new estimates with the beta prior having hyperparameters γ = κ = 0.5. We
see that all participants that have α̂ = 0 with the uniform prior, still have
that with the non-uniform prior. The two participants with high values of
α̂, individuals 11 and 13, get even higher values of α̂. Their values of η̂ are
slightly higher with the new prior. There are three participants that had
values of α̂ slightly higher than zero that with the new prior have α̂ = 0.
Most participants get a lower value of η̂ with the non-uniform prior. The
majority of the values are only shifted a little downwards, except some that
get a huge difference in the values. These are participants that have huge
values of η̂ from before with the uniform prior. We discussed earlier that
the log-likelihood function is flat for high values of η and that the stopping
criterion in the optimisation can be met several places when η is high. That
might be the reason for the large change in the value of η̂. A few participants
get higher values of η̂, but if the values are higher it is not by a lot.

We have plotted the MLEs for α and β together in Figure 4.57. We see
also here participants 11 and 13 with the high values of α̂. Their values of
β̂ were zero with the uniform prior and stay zero with the new prior. We
also see one participant that increases the value of β̂ considerably. That is
individual number 75. Recall that this participant has confidence intervals
of length zero because of the high value of η̂. Her MLEs for the situation
where we have a uniform prior are given in (4.7). The log-likelihood function
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Figure 4.54: Confidence intervals for η for all of the 76 participants in the unlimited
version of the box task. The green intervals represent the situation where we have a
uniform prior for Θ, that is, γ = κ = 1. The orange lines are the intervals for a prior
where γ = κ = 0.5.
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Figure 4.55: The plot in Figure 4.54 zoomed.
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Figure 4.56: Maximum likelihood estimates of α and η in the limited version of the
box task. The green dots represent MLEs where we have a uniform prior for Θ, that is,
γ = κ = 1. The orange dots are the MLEs where γ = κ = 0.5.

is also quite flat for big values of α or β, meaning that the same argument
for high differences in η̂ holds for β̂ as well.

The plot for β̂ and η̂ together is shown in Figure 4.58. Here, we again see
participant 75 that gets a much higher β̂. She gets a smaller value of η̂, but
again, that might be because of the flat log-likelihood function.

If we zoom in on the plot in Figure 4.58, as in Figure 4.59, we see that most
participants, with some exceptions, get smaller values of both β̂ and η̂. All
the participants that had β̂ = 0 with the uniform prior still have that with
the non-uniform prior. All the other participants, except participant 75,
get slightly smaller values of β̂, resulting in more participants getting β̂ = 0
with the new prior.

In general, we get smaller values of all of the estimates of all three parame-
ters, with some exceptions, with the non-uniform prior for Θ.

In Figure 4.60, we have plotted all the confidence intervals for α in both
the case where we have a uniform prior and the case where we have a non-
uniform prior. As before, the green lines are the intervals when we have the
uniform prior, and the orange lines when the prior is non-uniform. We see
that the upper limit of the CI for participant 11 is higher than the upper
limit here. A plot including the whole interval for this person can be found
in Appendix B. Here we have also included a plot that zooms in on the
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Figure 4.57: Maximum likelihood estimates of α and β in the limited version of the
box task. The green dots represent MLEs where we have a uniform prior for Θ, that is,
γ = κ = 1. The orange dots are the MLEs where γ = κ = 0.5.
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Figure 4.58: Maximum likelihood estimates of β and η in the limited version of the
box task. The green dots represent MLEs where we have a uniform prior for Θ, that is,
γ = κ = 1. The orange dots are the MLEs where γ = κ = 0.5.
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Figure 4.59: The plot in Figure 4.58, zoomed.

x-axis in Figure 4.60. We see that many of the intervals are pretty similar
for both priors. However, we see that participants 6, 21 and 70, who had
intervals of length zero, actually get an interval with the new prior. That
is because their new estimates of η are much lower; thus, the probabilities
in (3.76) are not zero or one anymore. In contrast, we have participant 75
that still has length zero of the confidence interval.

We have plotted the confidence intervals for β for all participants with the
two different priors in Figure 4.61. As for α, we see that participants 21 and
70 no longer have intervals of length zero, but that individual 75 still has.
We also get that participants 6 and 44 get much longer confidence intervals
for β with the new prior. The rest of the intervals are quite similar with
the two different priors.

The confidence intervals for η are plotted in Figure 4.62. Again, we see that
individual 21 and 70 get new intervals with length larger than zero and that
individual 75 does not. As for the confidence interval for β for individual
44, the interval of η is much longer with the new prior. Along with this,
individual 6 gets non-overlapping confidence intervals for η. The rest of
the intervals are close for the two different priors. Some intervals are now
shorter, and some are longer.

As we have seen, the parameters estimates in the limited version are more
affected by the change of prior than in the unlimited version. In the limited,
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Figure 4.60: Confidence intervals for α for all of the 76 participants in the limited
version of the box task. The green intervals represent the situation where we have a
uniform prior for Θ, that is, γ = κ = 1. The orange lines are the intervals for a prior
where γ = κ = 0.5.
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Figure 4.61: Confidence intervals for β for all of the 76 participants in the limited
version of the box task. The green intervals represent the situation where we have a
uniform prior for Θ, that is, γ = κ = 1. The orange lines are the intervals for a prior
where γ = κ = 0.5.
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Figure 4.62: Confidence intervals for η for all of the 76 participants in the limited
version of the box task. The green intervals represent the situation where we have a
uniform prior for Θ, that is, γ = κ = 1. The orange lines are the intervals for a prior
where γ = κ = 0.5. The old interval for person 70 is a scalar that has value 23851.9, thus
it is outside the rage of this plot.
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all three parameters seem to get slightly smaller values, whereas only α̂ and
not η̂ in the unlimited seem to be smaller. However, for both cases, there
seem not to be any large changes in the confidence intervals.



Chapter 5

Closing Remarks

In this report, we model decisions in the box task using a softmax model
with parameters α, β and η. The parameter α is a small penalty or loss
we get each time we open a box, and β is the loss we get when the test
terminates before choosing what the majority colour is. The last parameter,
η, says something about how far away the choices we make are from the
decision with the least expected loss. 76 participants have done several box
task trials. We find maximum likelihood estimates for each participant and
confidence intervals tied to each parameter using parametric bootstrapping.
MLEs are plotted for all participants, in addition to bootstrap samples
and CIs for some participants. We find that the model is a good fit for
participants who make good choices but worse for those who make decisions
with high expected losses. Moreover, parametric bootstrapping makes the
confidence intervals for participants that make good choices be zero. Thus,
that is not an ideal way of finding CIs for these participants. We also discuss
the sensitivity to the hyperparameters in the prior distribution for Θ. The
estimates of α seem to be slightly smaller in the unlimited case when we
change the hyperparameters from 1 to 0.5. The values of η̂ changes slightly,
but with no pattern of who gets higher and who gets lower values. In
the limited version, all three parameters seem to get smaller values of the
estimates. However, the confidence intervals in both cases seem to get minor
changes, with no clear pattern of the changes for any of the parameters.

In addition to this, we develop an Ideal Observer (IO) solution of the box
task. This is done by finding the expected losses for the three choices we
have each time a box is opened and then always making the decision with the
least expected loss. These expected losses are the expected loss of choosing
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that blue is the majority colour, choosing that red is the majority colour and
the expected loss of opening the next box. These IO solutions are visualised
as decision trees that depend on parameters α and β.

In Chapter 1 we discussed that the box task is an alternative to the beads
task to assess a ’jumping to conclusions’ (JTC) bias. The parameters α and
β say something about how reluctant one is to open boxes. As mentioned,
it is hard to differentiate between the two parameters and the loss one gets.
However, as β is the loss the participant gets when the test terminates in the
limited trial, we might believe that α is the parameter that best describes
the tendency to jump to conclusions. That small loss one gets each time a
box is opened could be tied to the tendency to JTC. We see, for example,
that participant 44 opens one box in all the unlimited trials. She gets a high
value of α̂ as seen in (4.3). Additionally, participant 75 is one of the few to
get α̂ 6= 0 in the limited version, and she opens one box before deciding in
all the limited trials. Thus, they both open only one box before choosing
what they believe is the majority colour, and they both have high values of
α̂. However, participant 75 also have a high value of β̂, which might also
indicate a JTC bias.

An adjustment we could do with the model is to remove α in the limited
version. As we saw in Chapter 4.1.4, for the majority of the individuals,
the α̂ is zero in the limited case. However, we saw that including α might
be helpful in the situations where the participants make decisions with high
expected losses.

We have assumed that participants have one value of both α and η in the
unlimited case and then another in the limited case. A second possibility is
that each participant has one single value of α and one single value of η that
applies to both versions of the box task. We could then combine the two
likelihood functions and minimise this one to find these values once instead
of twice for each participant.

The parameter α is assumed to be constant and does not depend on the
number of boxes that are opened, i. It could be a possibility that α varies
with i. The same holds for β. This might be more realistic as participants
can get more reluctant to open boxes when more boxes are opened. More-
over, in this thesis, it is assumed that T , the number of opened boxes when
the test terminates, is uniformly distributed. We could also make a model
where T varies with i.

In Chapter 4.1.5 we discussed that some participants get confidence inter-
vals with length zero. That means that parametric bootstrapping is not
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adequate in these situations. Thus, it might be useful to find confidence
intervals another way, for example, using nonparametric bootstrapping.

In this report, we discussed the sensitivity to hyperparameters using a beta
prior for Θ with γ = κ = 0.5. We could try with other hyperparameters
and see if the results will be even more different. For example, γ = κ = 0.1
might be an interesting case as this prior will be even more concentrated to
the ends of the parameter space for Θ.
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Appendix A

The Trials and Draws to
Decision in the Box Task

As we have data from 76 participants that have done the box task, we are
presenting the order of the boxes in the nine trials they have done. We also
include histograms of how many boxes the participants opened before they
either chose the majority colour or the test terminated. This is called draws
to decision.

Figure A.1: The order of the boxes in the three unlimited trials. That is, Trial 2, 3 and
4.
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Figure A.2: The order of the boxes in the six limited trials. That is, Trials 5, 6, 7, 8 ,
9 and 10. We see that Trials 5, 7 and 8 terminate after nine boxes are opened, whereas
the other trials terminate after six boxes are opened.
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Figure A.3: Histogram of the draws to decisions for all participants in the three unlim-
ited trials.
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Figure A.4: The draws to decisions for all participants in the six limited trials. That
is, how many boxes they open before they choose what they think is the majority colour,
or before the test terminates.
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Confidence Intervals
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Figure B.1: Confidence intervals of α in the limited case for all participants with two
different priors for Θ. The green lines represent CIs in the situation where we use a
uniform prior, that is γ = κ = 1 and the orange lines for when we have γ = κ = 0.5.
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Figure B.2: Confidence intervals of α in the limited case for all participants with two
different priors for Θ. Here we have zoomed in more on the plot in Figure 4.60
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Figure B.3: Confidence intervals of β in the limited case for all participants with two
different priors for Θ. The green lines represent CIs in the situation where we use a
uniform prior, that is γ = κ = 1 and the orange lines for when we have γ = κ = 0.5.
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Figure B.4: Confidence intervals of β in the limited case for all participants with two
different priors for Θ. Here we have zoomed in on the plot in Figure 4.61
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