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Abstract

In this thesis we study the concept of Salem sets. A Borel set is called a Salem set if
the Hausdor↵ dimension coincides with the Fourier dimension. It is known that the
Hausdor↵ dimension is bounded from below by the Fourier dimension, and that the
inequality may be strict. This happens for instance with the Cantor set.

Our main focus will be on two explicit constructions of Salem sets on the unit
interval. The first is that of random Cantor sets. This construction was introduced
in the 1950s and later expanded upon in the 1990s. For a fixed ↵ 2 (0, 1), we will
construct a random Cantor set where the Hausdor↵ dimension is bounded from above
by ↵. By estimating the expected value of a probability measure supported on the
random Cantor set, we are able to bound the Fourier dimension from below almost
surely by ↵. It follows that the construction is almost surely a Salem set with dimension
↵, and that we are able to construct Salem sets of any dimension ↵ 2 (0, 1).

The second construction provides a deterministic construction of a Salem set. This
method has its roots in number theory. We consider the set of ↵-well approximable
numbers, denoted E↵. A known result by Jarńık and Besicovitch is that E↵ has Haus-
dor↵ dimension 2/(2 + ↵). The main problem is therefore to estimate the Fourier
dimension. We construct a subset S↵ ⇢ E↵, and show that the Fourier dimension of
S↵ is bounded from below by 2/(2 + ↵). This implies that both S↵ and E↵ are Salem
set with dimension 2/(2 + ↵).
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Sammendrag

I denne oppgaven vil vi utforske salemmengder. En salemmengde er en borelmengde
hvor hausdor↵dimensjonen tilsvarer fourierdimensjonen. Det er kjent at hausdor↵di-
mensjonen er begrenset nedenfra av fourierdimensjonen, og at ulikheten kan være
streng. Dette er tilfellet for cantormengden.

Hovedfokuset vil være p̊a to eksplisitte konstruksjoner av salemmengder p̊a en-
hetsintervallet. Den første er av tilfeldige cantormengder. Denne konstruksjonen ble
først introdusert p̊a 1950-tallet, og senere videreutviklet p̊a 1990-tallet. For en bestemt
↵ 2 (0, 1), vil vi konstruere en tilfeldig cantormengde hvor hausdor↵dimensjonen er be-
grenset ovenfra av ↵. Ved å estimere forventningsverdien til et sannsynlighetsmål med
støtte p̊a den tilfeldige cantormengden, klarer vi å begrense fourierdimensjonen neden-
fra nesten helt sikkert med ↵. Dermed følger det at konstruksjon er nesten helt sikkert
en salemmengde med dimensjon ↵, og at vi kan konstruere salemmengder med hvilken
som helst dimensjon ↵ 2 (0, 1).

Den andre konstruksjonen gir en deterministisk konstruksjon av salemmengder.
Denne metoden har sine røtter i tallteori, hvor vi ser p̊a mengden E↵ av tall som kan
↵-approksimeres godt. Et kjent resultat av Jarńık og Besicovitch er at mengden E↵

har hausdor↵dimensjonen 2/(2 + ↵). Hovedproblemet er dermed å estimere fourierdi-
mensjonen. Vi konstruerer en undermengde S↵ ⇢ E↵, og viser at fourierdimensjonen
til S↵ er begrenset nedenfra av 2/(2 + ↵). Dette fører til at b̊ade S↵ og E↵ vil være
salemmengder med dimensjon 2/(2 + ↵).
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1 Introduction

A famous concept, if not uniformly recognized, is that of dimensions. One way
to think about the dimension of a set is by the number of coordinates needed
to specify the points of the set. For instance, it is taught in courses on linear
algebra that the dimension of a vector space is given by the smallest amount
of linearly independent vectors needed to span the vector space. Even though
this way of thinking about dimension is intuitive, it also has its downside of
restricting the concept of dimension to the set of non-negative integers.

A key property of dimension can be observed through scaling. If we scale a
two dimensional object with a factor of k, then the Lebesgue measure is scaled
by a factor of k2. On the other hand, for a three dimensional object the same
scaling would result in a scaling of the Lebesgue measure by a factor of k3.
We see that what dictates the change in Lebesgue measure under scaling is
the dimension.

Several definitions of dimension have been introduced in order to include
non-integer dimensions. Two of these are the Hausdor↵, and the Fourier di-
mension. The Hausdor↵ dimension can be though of as a covering dimension.
Let us cover a set A by open balls of small radii, r < " for some fixed ",
and consider the sum

P
rs. If we take the infimum of the sum

P
rs over all

coverings of A by balls with radii r < ", then one can show that there exists
a value s0 such that the infimum goes to 1 as "! 0 for all s < s0, while the
infimum goes to 0 as " ! 0 for all s > s0. The value s0 is referred to as the
Hausdor↵ dimension of A. A precise definition is given in section 3. As the
infimum is taken over all covers, the Hausdor↵ dimension is easier to bound
from above than below.

The Hausdor↵ dimension turns out to be an excellent tool for classifying
fractal sets, such as the Cantor set. On the other hand, the Hausdor↵ di-
mension coincides with the standard notion of dimension for sets of integer
dimension. In fact, it can be shown that any open ball in Rn has Hausdor↵
dimension n, while any hypersurface in Rn has Hausdor↵ dimension n� 1.

It turns out that the Hausdor↵ dimension is connected to an energy func-
tional with respect to probability measures. For a probability measure µ, the
energy functional is given by

Is(µ) =

ZZ

Rn⇥Rn

|x� y|�sdµ(x)dµ(y).

The Hausdor↵ dimension of a set A can be shown to coincide with the supre-
mum over values of s where there exist a probability measure µ supported on
A with Is(µ) < 1.
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Through the Fourier duality formula it is possible to write the energy func-
tional in terms of the Fourier transform of the probability measure, that is

Is(µ) = c(s, n)

Z

Rn

|bµ(⇠)|2|⇠|s�nd⇠.

This leads us to the definition of Fourier dimension. The Fourier dimension of
a set A is the supremum of s for which there exists a probability measure µ
supported on A with |bµ(⇠)|  C|⇠|�s/2.

A crucial observation is that given a set A with Fourier dimension s, there
exist a probability measure µ supported on A where It(µ) < 1 for all values
t < s. This means that the Hausdor↵ dimension of A must be at least s, and
so the Fourier dimension defines a lower bound for the Hausdor↵ dimension.

A set is called a Salem set if the Hausdor↵ and Fourier dimensions coin-
cides. A simple calculation shows that any n-dimensional cube is a Salem set
of dimension n in Rn. However, it turns out that the Fourier dimension is
dependent on the ambient space. Namely, given a probability measure µ sup-
ported on an n� 1 dimensional cube in Rn, there is a direction perpendicular
to the cube which the Fourier transform of µ does not depend on. Thus, the
Fourier transform of the measure will not have any decay in the perpendicular
direction, and so the Fourier dimension has to be zero. On the other hand,
the Hausdor↵ dimension does not depend on the ambient space. This means
that an n�1 dimensional cube will be a Salem set of dimension n�1 in Rn�1,
but not in Rn. In fact, it turns out to be rather di�cult to find Salem sets
with dimension d 2 (0, n) that are embedded in Rn.

Let us look at the Cantor set once again. It can be shown that it has
Hausdor↵ dimension log(2)/ log(3), yet there is too much structure for there
to exist a probability measure supported on the Cantor set which decays to
zero at infinity. For this reason, the Fourier dimension of the Cantor set is
zero, and thus is not a Salem set.

The focus of this thesis will be the construction of non-trivial Salem sets on
the unit interval. The first construction removes the structure of the Cantor
set by introducing randomness. This was first done in 1950 by Salem in [9],
and later in 1996 a slightly di↵erent method of using randomized translations
was introduced by Bluhm in [1]. We will follow the method of Bluhm to show
that for any 0 < ↵ < 1, it is possible to construct a random Cantor set which
is almost surely a Salem set with dimension ↵.

The second method has its roots in number theory. Here we consider the
set of ↵-well approximable numbers on the unit interval. This was done in
1981 by Kaufmann in [6], before Bluhm proposed a slightly simpler example
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in his 1998 paper [2]. Again, we will follow the paper by Bluhm to give a more
deterministic construction of Salem sets for any dimension ↵ 2 (0, 1).

Even though we only present one dimensional constructions, there do exist
higher dimensional analogues. The 1996 article by Bluhm considers higher
dimensional random Cantor sets, and was meant as an extension of the result
of Salem. The construction by Kaufman has also been expanded upon in
recent years. In 2019 Hambrook generalized the result further in [5] and was
able to give an explicit construction of Salem sets in Rn for any dimension
strictly between 1 and n� 1.

Section 3 is an introduction to the concepts of Hausdor↵ dimension, Fourier
dimension and Salem sets. For this section we have mostly followed chapters
2 and 3 of [7], while chapter 11 of [4] and chapters 8 and 9 of [10] have been
used as supplementary texts. We have included a few slightly more detailed
proofs compared to those found in [7]. Other proofs have been omitted.

We have also included a few examples related to the material. For instance,
examples presented in [7] have been worked through and presented here in
greater detail. We have also included a calculation for an upper bound on
Hausdor↵ dimension of the unit cube. We then extend the calculation to all
of Rn in order to show that the Hausdor↵ dimension of a set A ⇢ Rn cannot
be larger than n. The calculation of the unit cube, and the extension to Rn is
not included in any of the references used for this section.

The first construction of a Salem set with dimension ↵ 2 (0, 1) is found
in section 4. This section starts with a generalization of the Cantor set con-
struction in terms of translations and contractions. Here we also include a
few results, such as the representation of the set by translations. Moreover,
we show the existence of a probability measure on the generalized Cantor set.
The generalization and the representation of the set by translation is original
work which, to the best of our knowledge, cannot be found in the references.
The transition to a random Cantor set is straightforward by replacing trans-
lations by random variables.

When estimating the Fourier dimension of a random Cantor set, we have
followed an outline of the proof presented in [1]. Unlike Bluhm, we restrict our
attention to one dimension and uniformly distributed random variables. This
gives a simpler and more detailed proof, but it is also less general. The last step
of the proof consists of a transition from expected value to an almost surely
bound, which was not written out in [1]. An example of such a transition was
found in chapter 12 of [7], and after a minor modification we were able to use
it to finish the proof.

In section 5 we follow a deterministic construction found in [2]. The con-
struction is presented in detail, and we have divided the section into three
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parts. In the first part, the set E↵ of ↵-well approximable numbers is intro-
duced, and an upper bound on the Hausdor↵ dimension is provided. This
is considered a classical result, and thus is not proven in [2]. The proof we
present is inspired by a similar proof presented in chapter 9 of [10]. We also
introduce a subset S↵ ⇢ E↵. It is the set S↵ we consider in the remaining
parts.

In the second part, we estimate the Fourier dimension of S↵ from below,
and prove that both S↵ and E↵ are Salem sets of dimension 2/(2+↵). This is
done by constructing a weakly convergent sequence of measures with the right
decay properties. However, the weak convergence relies on proving that the
sequence is Cauchy in the uniform norm on the Fourier side. Proving this is
the focus in the third and final part of this section.
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2 Preliminaries

In this section we cover the notation and basic background theory used through-
out the thesis. As the thesis is heavily dependent on measure theory, proba-
bility theory and Fourier analysis, it is these topics which we will touch upon.

We denote the set of natural numbers by N, the set of integers by Z, the
set of real numbers by R, and the set of complex numbers by C. For a complex
number z 2 C, we denote the real part, <(z), and the imaginary part, =(z).
Any real number x � 0, can be written

x = [x] + {x}.

Here [x] 2 Z denotes the integer part of x, while {x} 2 [0, 1) denotes the
factional part of x. The set of prime numbers is denoted P ⇢ N. Furthermore,
the Euclidian inner product on Rn is defined by

x · y :=
nX

j=1

xjyj,

for all x, y 2 Rn. For x 2 Rn and r > 0 we define the open ball of radius r
centered at x by

B(x, r) := {y 2 Rn : |x� y| < r}.

We have tried to follow standard notation with regards to spaces of con-
tinuous functions on a set X ✓ Rn. As is common, we denote the space of all
continuous functions on X by C(X), while the space of functions with contin-
uous k derivatives is denoted Ck(X). For the space of smooth functions on X,
we write C1(X). We denote the space of continuous functions with compact
support by C0(X), while

C1(X) := C0(X)
k·ku

is the uniform closure of C0(X), and consists of continuous functions vanishing
at infinity. It follows that C1(X) ⇢ Cb(X). Here Cb(X) denotes the space of
bounded continuous functions on X.

Another important space in this thesis is the space C1,1(X) of functions
with Lipschitz continuous first derivatives. Since any Lipschitz continuous
function is di↵erentiable almost everywhere, it follows that for any � 2 C1,1(X),
the second derivative �00 exists almost everywhere, and k�00k1 < 1. Here k·k1
refers to the essential supremum with respect to the Lebesgue measure.
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2.1 Measure and Probability Theory

We mainly consider the Borel �-algebra, denoted B, throughout the thesis. A
set A is said to be a Borel set if A 2 B. By a Borel measure, we mean a non-
negative countably subadditive set function µ : B ! [0,1]. The Lebesgue
measure is always denoted by �. A function f : (X1,A1) ! (X2,A2) is said to
be measurable if f�1(A) 2 A1 for all A 2 A2. When integrating a measurable
function f with respect to the Lebesgue measure, we write

Z

Rn

f(x)d�(x) =

Z

Rn

f(x)dx,

and for 1  p < 1 we denote the Lp norm by

kfkp =
✓Z

Rn

|f(x)|pdx
◆ 1

p

.

Moreover, Lp(Rn) denotes the space of all measurable functions with finite
Lp-norm.

There is a useful formula for integrating a measurable function f with
respect to a Borel measure µ. The following result is found in chapter 6 of [4].

Theorem 2.1. If 0 < p < 1, then

Z

Rn

|f |pdµ = p

Z 1

0

sp�1µ ({x 2 Rn : |f(x)| > s}) ds

Let µ be a Borel measure. Then for each A 2 B, we define the restriction
of µ to A, denoted µ|A, by

µ|A(B) =

Z

B

�Adµ,

for every B 2 B. Here �A denotes the characteristic function of A, which is 1
for every element in A, and 0 otherwise.

Let f : (X1,A1) ! (X2,A2) be a measurable function between two measur-
able spaces. Then given the measure space (X1,A1, µ) we can define the push-
forward measure f⇤µ on (X2,A2) by f⇤µ(B) = µ(f�1(B)) for each B 2 A2.
When integrating a measurable function g with respect to the pushforward
measure, the integral is given by

Z

X2

gd(f⇤µ) =

Z

f�1(X2)

g � fdµ.
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An n-dimensional Borel measure µ is said to be bounded if

kµk := µ(Rn) < 1.

The set of all bounded Borel measures on Rn is denoted M (Rn). More gener-
ally, given a Borel set A we denote the set of all bounded Borel measures with
support in A by M (A).

Let µ be a bounded Borel measure. If µ(Rn) = 1, then µ is said to be
a probability measure on Rn. The set of all probability measures on Rn is
denoted P(Rn). Similarly, the set of all probability measures with support in
A is denoted P(A).

We will now transition to some basic probability theory. Here we follow
the presentation found in chapter 10 of [4]. A probability space (⌦,A , P ) is
a measurable space (⌦,A ) equipped with a probability measure P such that
P (⌦) = 1. A random variable X : ⌦ ! R on a probability space (⌦,A , P ) is
a real valued measurable function. The expected value of a random variable
X is defined as

E(X) :=

Z

⌦

X(!)dP (!),

and X is said to have finite expectation if

E(|X|) :=
Z

⌦

|X(!)|dP (!) < 1.

A given property is said to hold almost surely if it holds for all ! 2 ⌦, except
possibly on a set of probability zero. This is the equivalent of a property
holding almost everywhere in measure theory.

A collection of sets {E�}�2� ⇢ A is independent if for every N 2 N and
all distinct �1, . . . , �N 2 �,

P

 
N\

i=1

E�i

!
=

NY

i=1

P (E�i).

The concept of independence can be extended to random variables. A collec-
tion of random variables {X�}�2⌥ are independent, if the sets X�1

� (B�) are
independent for all B� 2 B. A useful result for independent random variables
is given by the next theorem.

Theorem 2.2. Suppose that X1, . . . , Xn are independent random variables

with finite expectations. Then the random variable
Qn

j=1 Xj will also have

finite expectation and

E
 

nY

j=1

Xj

!
=

nY

j=1

E(Xj).
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This theorem is presented and proven in the beginning of chapter 10 of
[4]. We end the discussion on probability theory with a proposition which ex-
presses the fact that functions of independent random variables are themselves
independent, as shown in [4].

Proposition 2.3. Let {Xj
n : 1  j  d, 1  n  N} be independent random

variables, and let fn : Rd ! R be a Borel measurable function for 1  n 
N . Then the random variables Yn := fn(X1

n, . . . X
d
n) for 1  n  N are

independent.

2.2 Elements of Fourier Analysis

We start by defining the Fourier transform of bounded Borel measures.

Def. 2.1. Let µ 2 M (Rn). Then the Fourier transform of µ is defined as

F (µ)(⇠) = bµ(⇠) =
Z

Rn

e�2⇡ix·⇠dµ(x),

and for a function f 2 L1(Rn) we define the Fourier transform of f as

F (f)(⇠) = bf(⇠) =
Z

Rn

e�2⇡ix·⇠f(x)dx.

For a measure µ 2 M (Rn) it follows from the triangle inequality that
|bµ(⇠)|  kµk, for every ⇠ 2 Rn. Moreover, by the dominated convergence
theorem it can be shown that bµ is a continuous function. Let us present
some basic properties of the Fourier transform. Let fy(x) := f(x� y) denote
translation by y, and define the function

ey(x) := e�2⇡iy·x.

We then have

bfy(⇠) = ey(⇠) bf(⇠), deyf(⇠) = bf(⇠ + y).

These properties of the Fourier transform are easily proven by a change of
variables.

There exists an inverse Fourier transform as the next theorem shows.

Theorem 2.4. Suppose that f 2 L1(Rn), and that bf 2 L1(Rn) as well. Then

for almost every x 2 Rn
,

f(x) =

Z

Rn

e2⇡ix·⇠ bf(⇠)d⇠.
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This result is known as the Fourier inversion theorem, and is a classical
result in Fourier analysis. The proof can be found in chapter 3 of [10].

When working with the Fourier transform it is convenient to introduce
the Schwartz space S (Rn). The Schwartz space consists of all functions � 2
C1(Rn) such that

kx↵@��k1 < 1,

for all multi-indicies ↵, � 2 Nn
0 , where k · k1 denotes the essential supremum

with respect to the Lebesgue measure. The Schwartz space is particularly
useful as F : S (Rn) ! S (Rn) defines an isometric isomorphism from the
Schwartz space to itself. Since S (Rn) is dense in Lp(Rn) for 1  p < 1 it is
possible to extend the Fourier transform to a unitary isomorphism from L2 to
itself. This is known as Plancherel’s theorem and can be found in chapter 3
of [10].

We will also consider Fourier series in dimension one. A function f : R ! R
is said to be periodic if f(x) = f(x+ n) for all n 2 Z, and so can be identified
with a function f : T = R/Z ! R. We will now define the Fourier series for
periodic functions.

Def. 2.2. Let f be a periodic function. Then the Fourier series of f is defined
as X

n2Z

bf(n)e�n(⇠) =
X

n2Z

bf(n)e2⇡in⇠,

where the Fourier coe�cients bf are given by

bf(n) =
Z 1

0

e�2⇡inxf(x)dx.

Since the only integrable periodic function on R is the zero function, there
will be no ambiguity surrounding the notation bf for Fourier transform and
Fourier coe�cients. It is possible to extend any function f supported on an
interval of length 1 to a periodic function. Whence we can define a Fourier
series for these functions. From the periodicity of the functions, the Fourier
coe�cients can be defined by integrating over the original interval instead of
the unit interval.

To a measure µ 2 M ([0, 1]) we can associate the Fourier series
X

n2Z

bµ(n)e2⇡inx,

where the Fourier coe�cients are given by

bf(n) =
Z 1

0

e�2⇡inxdµ(x).
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It is known that the Fourier series may not converge pointwise for functions
which are merely continuous. However, a useful theorem for ensuring uniform
convergence of the Fourier series is the following.

Theorem 2.5. If f 2 C1(T), then the Fourier series of f converges uniformly

to f .

A slightly stronger version of this theorem is proven in chapter 1 of [8].
This means that for f 2 C1(T) we can write

f(x) =
X

n2Z

bf(n)e2⇡inx,

which is an analogue of the Fourier inversion theorem in Rn on the torus T.
We end the discussion on Fourier analysis with Fourier duality and Par-

seval’s identity. The next lemma is known as Fourier duality, and is a conse-
quence of Fubini’s theorem.

Lemma 2.6 (Fourier duality). Assume that µ, ⌫ 2 M (Rn). Then
Z

Rn

bµd⌫ =

Z

Rn

b⌫dµ

Proof. By Fubini’s theorem it follows that
Z

Rn

bµ(⇠)d⌫(⇠) =
Z

Rn

Z

Rn

e�2⇡i⇠·xdµ(x)d⌫(⇠)

=

Z

Rn

Z

Rn

e�2⇡i⇠·xd⌫(⇠)dµ(x) =

Z

Rn

b⌫(x)dµ(x).

The next theorem is known as Parseval’s identity. We will state it both for
function in L2(Rn) and periodic functions in L2(T).

Theorem 2.7 (Parseval’s identity). Let f, g 2 L2(Rn). Then

Z

Rn

f(x)g(x)dx =

Z

Rn

bf(⇠)bg(⇠)d⇠.

If f, g 2 L2(T), then
Z 1

0

f(x)g(x)dx =
X

n2Z

bf(n)bg(n).
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The proof of Parseval’s identity is found in [8]. For functions in L2(Rn) we
refer to chapter 4, while periodic functions are treated in chapter 1. There is
a further generalization of Parseval’s identity involving measures.

Theorem 2.8. Let ' 2 S (Rn) and µ 2 M (Rn). Then

Z

Rn

'(x)dµ(x) =

Z

Rn

bµ(⇠)b'(⇠)d⇠.

If ' 2 S ([0, 1]) and µ 2 M ([0, 1]), then

Z 1

0

'(x)dµ(x) =
X

n2Z

bµ(n)b'(n).

The first result follows from the Fourier duality, while the periodic case is
discussed towards the end of chapter 3 in [7].

2.3 Weak Convergence of Measures

One of the types of convergence we will consider in this thesis is weak conver-
gence of measures. We only consider weak convergence of measures supported
on a compact set, and so we define the weak convergence of measures in the
following way,

Def. 2.3. Let K ⇢ Rn be a compact set, and let {µk} ⇢ M (K) be a sequence
of measures. Then the sequence {µk} is said to converge weakly to a measure
µ if Z

Rn

fdµk
k!1���!

Z

Rn

fdµ,

for all f 2 C(K).

We will use the notation µk * µ to denote that µk converges weakly to µ.
The definition presented here is closer to the notion of weak⇤ convergence in
functional analysis, than to weak convergence. However, we will not consider
any other types of weak convergence, so there will be no room for confusion.

We include two main results on weak convergence of measures. The proofs
are omitted.

Proposition 2.9. Let K ⇢ Rn
be a compact set, and {µk}k2N ⇢ M (K).

If supk2N kµkk < 1, then there exists a weakly convergent subsequence of

{µk}k2N.
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This proposition can be found in chapter 2 of [7], and follows from a more
general result on weak⇤ convergence in functional analysis.

A quite remarkable result which is proven towards the end of chapter 8 in
[4], connects pointwise convergence on the Fourier side with weak convergence
of measures.

Proposition 2.10. Let K ⇢ Rn
be a compact set. Suppose that {µk}k2N ⇢

M (K) and µ 2 M (K). If there exists a constant C such that kµkk  C < 1
for all k, and bµk(⇠) ! bµ(⇠) pointwise for every ⇠ 2 Rn

, then µk * µ.

Given a sequence {µk}k2N ⇢ M (K) such that supk2N kµkk < 1, it is
enough to show that the sequence is Cauchy on the Fourier side to conclude
that there exists a µ 2 M (K) such that µk * µ. To see why, we note that
proposition 2.9 ensures that there exists a subsequence µkj which converges
weakly to some µ. However, weak convergence implies that the Fourier trans-
form of the subsequence must converge pointwise to the Fourier transform of
µ. If the original sequence is Cauchy on the Fourier side, then the whole se-
quence must converge pointwise to the Fourier transform of µ. Thus, it follows
from proposition 2.10 that µk * µ. In particular, for a sequence of probability
measures it is enough to show that the sequence is Cauchy on the Fourier side
to conclude that it converges weakly to some probability measure µ 2 P(K).

2.4 The Standard Cantor Set

The standard 1/3-Cantor set, denoted C , will be used as an example through-
out section 3. It also acts as an inspiration for the construction presented in
section 4. For this reason, a brief introduction of the set C is in order.

When constructing C , it is common to start by dividing the unit interval
[0, 1] into three subintervals of equal length, and removing the middle interval.
This process is then repeated with the remaining intervals. If we start with
the set C0 = [0, 1], then the next two sets are given by

C1 =


0,

1

3

�[
2

3
, 1

�
, C2 =


0,

1

9

�[
2

9
,
1

3

�[
2

3
,
7

9

�[
8

9
, 1

�
.

By induction, it follows that the set Ck, for each k 2 N, can be written as

Ck =
2k[

j=1

Ik,j,

where Ik,j are disjoint closed intervals of length 3�k for each 1  j  2k.
Moreover, since each interval is divided into three subintervals, it follows that

12



Ik,j ⇢ Ik�1,i for j = 2i � 1 and j = 2i. In fact, for integers 0  m < n there
are exactly 2n�m intervals In,j ⇢ Im,i for each 1  i  2m. This implies that
the sequence of sets {Ck}1k=0 is nested

C0 � C1 � C2 � . . . .

The standard Cantor set is defined as the intersection of all Ck. That is

C =
1\

k=1

Ck :=
1\

k=1

2k[

i=1

Ik,i

Since C is an intersection of closed sets, it is itself a closed and hence compact
set. The Cantor set is non-empty, as the sequence is nested. Moreover, for
each point x 2 C there exists a sequence {ai}1i=1 such that,

x =
1X

i=1

ai
3i
, ai 2 {0, 2}.

13



3 Hausdor↵ Dimension and Salem Sets

In this section we introduce the concepts of Hausdor↵ and Fourier dimen-
sions, which are needed to define Salem sets. Throughout the section, we will
consider specific examples, most notably the standard Cantor set C .

3.1 Hausdor↵ Dimension

In order to introduce the Hausdor↵ dimension, we first need the Hausdor↵
measures H

s for s � 0. Let B(x, r) denote the open ball centered at x with
radius r. Let A ⇢ Rn be a Borel set and fix 0 < "  1. We then define the
set function

H
s
" (A) = inf

(
X

j2J

rsj : A ⇢
[

j2J

B(xj, rj), rj < "

)
, (3.1)

where J is a countable index set.
There are a few di↵erent conventions for defining H

s
" . For instance, a

normalization constant may be included. This is often done to ensure that
H

n
" coincides with the n-dimensional Lebesgue measure when "! 0. Another

way to define H
s
" is to use covers of Borel sets instead of open balls. For this

definition, the radii of the open balls are replaced by the diameters of the Borel
sets. This is done for instance in chapter 2 of [7]. As remarked by Mattila
in [7], replacing open balls with Borel sets results in a scaled versions of H

s
" .

Since the scaling of the function H
s
" does not impact our results, we have

chosen the simplest definition.
We note that H

s
" is a non-increasing function of ". This is because we take

the infimum over coverings of A by balls with radii less than ". As such, when
allowing for a larger radius there will be more ways to cover A. This means
the infimum will be taken over a larger set.

We now continue to the Hausdor↵ measure.

Def. 3.1. Let s � 0. We define the Hausdor↵ measure H
s as

H
s(A) = lim

"!0
H

s
" (A),

for each A ⇢ Rn in the Borel �-algebra B.

Let us make a few remarks regarding H
s. First of all, if " < 1 we see

from (3.1) that H
↵
" (A) > H

�
" (A) whenever ↵ < � for any Borel set A. In

particular, H
s(A) is a non-increasing function of s for fixed A. Furthermore,

14



H
s is countably subadditive on Borel sets, and thus defines a Borel measure.

A proof that H
s defines a Borel measure can be found in chapter 11 of [4].

Moreover, if s = n 2 N, then there exists a constant �(n) such that �(n)H s

is the Lebesgue measure on Rn. Lastly, we have H
s(A) = 0 for all Borel sets

A ⇢ Rn whenever s > n.
To see the last statement, we consider first the unit cube K = [0, 1]n ⇢ Rn.

For each k 2 N we can divide K into kn cubes with side lengths k�1. We note
that for each small cube, we can always find a ball with diameter equal to the
diagonal of the cube which encloses the cube. This means that rj = 2�1k�1

p
n

for each of these balls. Thus, for each " > 0 we can find a k0 2 N such that
1/k < " for all k > k0. In particular, we must have

H
s
" (K) 

knX

j=1

rsj =

✓p
n

2

◆s

kn�s, (3.2)

for all k > k0. So if s > n, it follows from (3.2) that

H
s(K) = 0.

Now for any m 2 Zn, we let the translation of K be denoted

K+m = [0 +m1, 1 +m1]⇥ · · ·⇥ [0 +mn, 1 +mn],

so that we can write
Rn =

[

m2Zn

K+m.

By the same argument as above, H
s(K +m) = 0 for any m 2 Zn, and thus

by the countable subadditivity of the Hausdor↵ measure,

H
s(Rn) 

X

m2Zn

H
s(K+m) = 0.

With the Hausdor↵ measure in mind, we are now ready to define the Haus-
dor↵ dimension. We start with a lemma, found in chapter 8 of [10].

Lemma 3.1. Let A ⇢ Rn
be a Borel set. Then there exists a unique number

s0 such that H
s(A) = 1 if s < s0 and H

s(A) = 0 if s > s0.

Proof. Let us first consider the case when s = 0. Then for each " > 0, H
0
" (A)

will be the smallest number of balls with radius less than " needed to cover
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the set A. We claim that H
0(A) < 1 if and only if A is a finite set. To see

why, note that if A is a finite set, then for every " > 0, we have

A ⇢
[

a2A

B(a, "),

and so H
0(A) 

P
a2A 1 < 1. On the other hand, let us assume that A is an

infinite set, and for a given " > 0, there is a finite cover of A of N open balls
of radius ". Then since Rn is a Hausdor↵ space we have for any two points
a, b 2 A such that a 6= b, there exist open sets Va and Vb containing a and b,
respectively, such that Va \ Vb = ;. In particular, given N + 1 points ai 2 A,
we can find 0 < "1 < " such that the open balls B(ai, "1) are disjoint. Thus,
we need at least N + 1 number of open balls with radii less than "1 to cover
A. By repeating this argument, we can find a sequence "n ! 0, such that at
least N + n number of open balls with radii rj < "n is needed to cover A at
step n. This shows that H

0(A) = 1 when A is not a finite set.
Let us still assume that A is a finite set. Then for " > 0, let {B(aj, rj)}Mj=1

be a finite covering of A by balls with radius rj < ", where aj 2 A for j 2
{1, . . . ,M}. Then for any s > 0

MX

j=1

rsj  "s
MX

j=1

1 = M"s,

which goes to zero as "! 0. Whence it follows that H
s(A) = 0 for any s > 0,

whenever A is a finite set.
Assume now that A is an infinite set, and let s0 = sup{s � 0 : H

s(A) =
1}. Since A is infinite, we know that 0 2 {s � 0 : H

s(A) = 1} 6= ;. Then
since H

s(A) is a non-increasing function of s, we know that H
s(A) = 1 for

all s < s0. Suppose now that s > s0. Then we can find some ↵ 2 (s0, s),
such that H

↵(A) < 1. Let M := 1 + H
↵(A) < 1, and observe that for

" > 0 we can find a covering {B(aj, rj)}j2J of A by balls of radii rj < ", andP
j r

↵
j  M . This follows from the definition of H

↵. In particular, we have

X

j2J

rsj =
X

j2J

rs�↵+↵
j  "s�↵

X

j2J

r↵j  "s�↵M,

which tends to zero as " ! 0 since s > ↵. This shows that H
s(A) = 0 for

s > s0.

We can apply lemma 3.1 to the following definition.
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Def. 3.2. Let A be a Borel set. Then the Hausdor↵ dimension of A is defined
as

dimH (A) = sup{s � 0 : H
s(A) = 1} = inf{s � 0 : H

s(A) = 0}. (3.3)

Here we use the convention that sup ; = 0 and inf ; = 1.

Let us now consider the standard 1/3-Cantor set C . We note that for
each k 2 N the Cantor set can be covered by 2k closed intervals with length
2rj = 3�k. So for any " > 0 we can find k such that 3�k < 2". As such we get

2kX

j=1

rsj = 2k
✓
3�k

2

◆s

=
1

2s

✓
2

3s

◆k

,

which goes to zero as k ! 1 as long as

2

3s
< 1 ) s >

log(2)

log(3)
.

This implies that H
s(C ) = 0 for s > log(2)/ log(3), and so from (3.3) we can

conclude that dimH (C )  log(2)/ log(3). Even though the Hausdor↵ measure
is defined using open sets, we can always cover a closed set by a slightly larger
open set. Thus, this argument will still hold when considering closed sets.

To show that the upper bound for C is indeed the Hausdor↵ dimension,
we will introduce a result by Frostman. The proof will be omitted, but can be
found in chapter 2 of [7], as well as chapter 8 of [10]. Recall that the set of all
probability measures supported on a Borel set A is denoted by P(A).

Theorem 3.2 (Frostman’s Lemma). Let 0  s  n and suppose that A ⇢ Rn

is a compact Borel set. Then H
s(A) > 0 if and only if there exists a µ 2 P(A)

such that

µ(B(x, r))  Crs, 8x 2 Rn, r > 0, (3.4)

for a suitable constant C.

For a compact Borel set A, it follows from Frostman’s Lemma, theorem
3.2, that if there exists a probability measure µ which satisfies (3.4) for s0,
then dimH (A) � s0. This means that a lower bound can be achieved for the
Hausdor↵ dimension by considering probability measures supported on the set
A.

Recall that the Cantor set is created by dividing the unit interval into
three parts and removing the middle part, then repeating the process. After
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k steps, we have 2k number of disjoint intervals Ik,i with length 3�k where
i 2 {1, . . . , 2k}. The Cantor set is given by

C =
\

k2N

2k[

i=1

Ik,i.

We now want to show that there exist a probability measure on C , denoted
µC , such that µC (Ik,i) = 2�k for each k 2 N and i 2 {1, . . . , 2k}. This will be
done by considering the weak limit of the sequence of measures

µk =

✓
2

3

◆�k 2kX

i=1

�|Ik,i . (3.5)

We first note that for any k 2 N

kµkk = µk(R) =
✓
2

3

◆�k 2kX

i=1

3�k = 1 < 1, (3.6)

and so by proposition 2.9 the sequence has a weakly convergent subsequence.
We now define µC as the weak limit of this subsequence. For a fixed k and
any i 2 {1, . . . , 2k}

µk(Ik,i) =

✓
2

3

◆�k

�(Ik,i) = 2�k,

since the intervals Ik,i are disjoint. Moreover, for any m < k, consider the
interval Im,j for a fixed j 2 {1, . . . ,m}. There are exactly 2k�m intervals Ik,ji
which are contained in Im,j, and so

µk(Im,j) =

✓
2

3

◆�k 2kX

i=1

�|Ik,i(Im,j) =

✓
2

3

◆�k

2k�m3�k = 2�m. (3.7)

Since property (3.7) holds for any element in the sequence {µk}k2N, it will also
hold for the weak limit of the subsequence. This shows that there exists a
probability measure µC which is supported on the Cantor set C , and has the
property

µC (Ik,i) = 2�k = 3�k log(2)
log(3) = �(Ik,i)

log(2)
log(3) . (3.8)

Note that it is possible to show that the entire sequence µk converges weakly
to the measure µC . This is done by showing that

R
fdµk is a Cauchy sequence
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for all f 2 C([0, 1]), and relies on the mean value theorem for integrals. How-
ever, the calculation is rather long, and not needed to find a lower bound on
the Hausdor↵ dimension of C .

We will now continue to establish a lower bound for the Hausdor↵ dimen-
sion through theorem 3.2. Recall that an open ball in dimension one is simply
an open interval B(x, r) = (x� r, x+ r). We may therefore restrict our atten-
tion to open intervals, and show that µC (B(x, r))  Crs. We also note that
any set which does not intersect the unit interval is a µC -null set, which follows
from the construction of the sequence µk. Furthermore, if C \ B(x, r) = ;,
then µC (B(x, r)) = 0. So it is enough to consider the case when B(x, r) ⇢ [0, 1]
and C \ B(x, r) 6= ;. Moreover, since for any 0 < r < 1/2 we can always find
a k 2 N such that 3�k  2r < 3�k+1, there must exists at least one Ik,j for
some j 2 {1, . . . , 2k} such that Ik,j \ B(x, r) 6= ; for this choice of k.

Fix x 2 (0, 1) and let 0 < r < 1/2 be such that B(x, r) ⇢ [0, 1]. We claim
that there are at most 3 intervals Ik,ji where i 2 {1, 2, 3} and ji 2 {1, . . . , 2k}
which have a non-empty intersection with B(x, r). To see this, recall that

dist(Ik,j, Ik,i) � 3�k, i 6= j,

so if xi 2 Ik,i and xj 2 Ik,j for i 6= j, then |xi � xj| � 3�k. Assume now
that there are four such intervals Ik,ji for i 2 {1, . . . , 4}. Then pick elements
xi 2 Ik,ji such that xi 2 B(x, r) for each i 2 {1, . . . , 4}. Relabel the elements,
if necessary, such that xi < xl for i < l. Then

3 · 3�k  (x4 � x3) + (x3 � x2) + (x2 � x1) = x4 � x1 < 2r,

from the assumption that xi 2 B(x, r) for i 2 {1, . . . , 4}. However, this is a
contradiction on our choice of k. This means that we have the cover

B(x, r) \ C ⇢
3[

i=1

Ik,ji ,

and since µC (B(x, r)) = µC (B(x, r) \ C ), we end up with

µC (B(x, r)) 
3X

i=1

µC (Ik,ji) = 3�(Ik,i)
log(2)
log(3)  3�(B(x, r))

log(2)
log(3) =

⇣
3 · 2

log(2)
log(3)

⌘
r

log(2)
log(3) ,

where we used (3.8). It now follows from theorem 3.2 that dimH (C ) �
log(2)/ log(3). Thus, we conclude that

dimH (C ) = log(2)/ log(3).
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3.2 Energy Integrals

One of the fundamental tools for studying the Hausdor↵ dimension is the
s-energy integral for measures.

Def. 3.3. Let µ be a non-negative Borel measure. The s-energy integral of µ
is defined as

Is(µ) :=

Z

Rn

Z

Rn

|x� y|�sdµ(x)dµ(y). (3.9)

It is also possible to define the s-potential

Vs(µ)(x) =

Z

Rn

|x� y|�sdµ(y) = ks ⇤ µ(x),

which is the convolution of a measure µ with the Riesz kernel ks(x) = |x|�s.
From (3.9), we can note that the s-energy is simply given by

Is(µ) =

Z

Rn

Vs(µ)(x)dµ(x).

A key result on the connection between Hausdor↵ dimension and energy
integrals, is given by the next theorem.

Theorem 3.3. Let A be a compact Borel set. Then the Hausdor↵ dimension

of A is given by

dimH (A) = sup{s : 9µ 2 P(A) such that Is(µ) < 1}.

Proof. Let s > 0 be the Hausdor↵ dimension of A. By Frostman’s lemma, the-
orem 3.2, there exists a probability measure µ 2 P(A) such that µ(B(x, r)) 
Crs. We now want to incorporate this fact into the s-potential. To do this,
we start by writing the s-potential as

Vs(µ)(x) =

Z

Rn

|x� y|�sdµ(y)

=s

Z 1

0

ts�1µ
�
{y : |x� y|�1 > t}

�
dt.

Using the change of variables t = r�1, we arrive at

s

Z 1

0

ts�1µ
�
{y : |x� y|�1 > t}

�
dt =� s

Z 0

1
r1�2�sµ ({y : |x� y| < r}) dr

=s

Z 1

0

µ(B(x, r))

rs+1
dr.
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Whence the s-potential can simply be written as

Vs(µ)(x) = s

Z 1

0

µ(B(x, r))

rs+1
dr. (3.10)

Since the measure µ is supported on the compact set A, it is enough to
integrate the potential over the set A. Moreover, if r � diam(A) =: R, then
A ⇢ B(x, r) for all x 2 A. This means that µ(B(x, r)) = 1 for all r > R and
x 2 A. Thus, with help of Frostman’s lemma, the t-energy can be estimated
for any t 2 (0, s). Namely

It(µ) =

Z

Rn

Vt(µ)(x)dµ(x)

=t

Z

A

Z 1

0

µ(B(x, r))

rt+1
drdµ(x)

t

Z

A

Z R

0

Crs�t�1drdµ(x) + t

Z

A

Z 1

R

r�t�1drdµ(x)

=t

✓
CRs�t

s� t
+

R�t

t

◆
< 1,

which is finite since 0 < t < s. Here we used the fact that µ(B(x, r))  Crs,
as well as µ(B(x, r)) = 1 whenever r > R for all x 2 A. This shows that there
exists at least one µ 2 P(A) such that It(µ) < 1 for all t < s = dimH (A).
It therefore follows that

dimH (A)  sup{s : 9µ 2 P(A) such that Is(µ) < 1}.

On the other hand, if Is(µ) < 1 for some µ 2 P(A) and s > 0, then
V (µ)(x) < 1 µ-almost everywhere. Thus, there must exist a constant 0 <
M < 1 such that the set C = {x 2 Rn : Vs(µ)(x)  M} has positive µ
measure. Now let µ|C denote the restriction of µ to the set C. Then for any
x 2 Rn, and any r > 0, we have

r�sµ|C(B(x, r)) =r�s

Z

B(x,r)

dµ|C(y)


Z

B(x,r)

|x� y|�sdµ|C(y)


Z

Rn

|x� y|�sdµ|C(y)  M,

and so µ|C(B(x, r))  Mrs. Since the set C might not have full measure, the
measure µ|C can be scaled to make a probability measure. As such, we can
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define the probability measure µ̃|C = µ|C/µ(C) 2 P(A) which for any x 2 Rn

and any r > 0 satisfies

µ̃|C(B(x, r)) =
µ|C(B(x, r))

µ(C)
 M

µ(C)
rs.

Whence it follows from Frostman’s lemma, theorem 3.2, that H
s(A) > 0

and so dimH (A) � s. In particular, since the same argument holds for any
µ 2 P(A) and s > 0 where Is(µ) < 1, it follows that

dimH (A) � sup{s : 9µ 2 P(A) such that Is(µ) < 1}.

3.3 Fourier Dimension and Salem Sets

We start by recalling that for a bounded Borel measure µ 2 M (Rn) the Fourier
transform is defined by

bµ(⇠) :=
Z

Rn

e�2⇡i⇠·xdµ(x).

By using Fourier duality, we can rewrite the s-energy integral from the previous
section. A useful formula is the following.

Theorem 3.4. Let µ be a positive measure with compact support and 0 < s <
n. Then

Is(µ) =

Z

Rn

Z

Rn

|x� y|�sdµ(x)dµ(y) =
�
�
n�s
2

�
⇡s�n

2

�
�
s
2

�
Z

Rn

|bµ(⇠)|2|⇠|s�nd⇠.

The proof of this formula can be found in chapter 3 of [7] or chapter 8 of
[10]. From theorem 3.4, we note that if Is(µ) < 1, then we must have some
decay property on the Fourier side of the measure µ. In particular, we expect
the integrand |bµ(⇠)|2|⇠|s�n to decay faster than |⇠|�n as |⇠| approaches infinity.
As such, if the measure µ satisfies

|bµ(⇠)|  C|⇠|� s
2 ,

for some constant C, then the t-energy integral, It(µ), will converge for all
t < s. With this in mind, let us now introduce the Fourier dimension of a
Borel set.
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Def. 3.4. Let A ⇢ Rn be a Borel set. The Fourier dimension of A is defined
as

dimF (A) := sup{s 2 [0, n] : 9µ 2 P(A) such that |bµ(⇠)|  C|⇠|� s
2}.

From the definition of the Fourier dimension, and theorem 3.4, we can see
that the Hausdor↵ dimension and Fourier dimension are connected. In fact, it
turns out that the Hausdor↵ dimension is bounded from below by the Fourier
dimension, as the next theorem shows.

Theorem 3.5. Let A be a compact Borel set. Then

dimF (A)  dimH (A).

Proof. Let 0 < s < dimF (A). Then there exists a probability measure µ 2
P(A) such that |bµ(⇠)|  C|⇠|� s

2 . We want to show that the integral
Z

Rn

|bµ(⇠)|2|⇠|t�nd⇠ < 1, (3.11)

for 0 < t < s. Then the result will follow from theorem 3.4.
Let us consider the integral in (3.11) in the two regions |⇠| < 1 and |⇠| � 1,

namely
Z

Rn

|bµ(⇠)|2|⇠|t�nd⇠ =

Z

|⇠|<1

|bµ(⇠)|2|⇠|t�nd⇠ +

Z

|⇠|�1

|bµ(⇠)|2|⇠|t�nd⇠.

Let !(n) denote the surface measure of the unit sphere Sn�1 ⇢ Rn. Then
in the first region, we can use the fact that |bµ(⇠)|  kµk, and use spherical
coordinates to achieve the bound

Z

|⇠|<1

|bµ(⇠)|2|⇠|t�nd⇠  !(n)kµk2
Z 1

0

rt�1dr =
!(n)kµk2

t
< 1. (3.12)

For the other region, |⇠| � 1, we use the fact that |bµ(⇠)|  C|⇠|� s
2 . Let

" = s� t > 0, then
Z

|⇠|�1

|bµ(⇠)|2|⇠|t�nd⇠ C

Z

|⇠|�1

|⇠|t�s�nd⇠

=C!(n)

Z 1

1

r�(1+")dr =
C!(n)

"
< 1. (3.13)

Combining (3.12) and (3.13), together with theorem 3.4, we have

It(µ) < 1

for all t < s. It then follows from theorem 3.3 that dimF (A)  dimH (A).
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We are now ready to give the definition of a Salem set, before proceeding
with a simple example of a Salem set in R.

Def. 3.5. A Borel set A is called a Salem set if

dimF (A) = dimH (A).

We demonstrate a simple example of a Salem set, namely the interval
[�1, 1] ⇢ R. If we calculate the Fourier transform of the Lebesgue measure
restricted to this interval, we get

F (2�1�|[�1,1])(⇠) = 2�1

Z 1

�1

e�2⇡ix⇠dx =
e2⇡i⇠ � e�2⇡i⇠

4⇡i⇠
=

sin (2⇡⇠)

2⇡⇠
,

and so it is clear that µ = 2�1�|[�1,1] defines a probability measure on [�1, 1]
with |bµ(⇠)|  C|⇠|�1. From the definition of Fourier dimension, we have
dimF ([�1, 1]) = min{1, 2} = 1. Moreover, since the [�1, 1] ⇢ R, it follows
that H

s([�1, 1]) = 0 for all s > 1. Thus, we must have dimH ([�1, 1])  1.
As such, by theorem 3.5 it follows that

1 = dimF ([�1, 1])  dimH ([�1, 1])  1.

This shows that [�1, 1] is a Salem set with Fourier dimension 1 in R. However,
the interval is not a Salem set in R2. For c 2 R, let µ be a probability measure
supported on [�1, 1]⇥ {c}. Then for each ⇠ 2 R2

e�2⇡i⇠·x = e�2⇡ic⇠2e�2⇡i⇠1x1 ,

for all x = (x1, x2) 2 [�1, 1]⇥ {c}. This means that

bµ(⇠) = e�2⇡ic⇠2bµ(⇠1).

Thus, for a fixed ⇠1 the value of |bµ(⇠)| = |bµ(⇠1)| remains constant whenever
|⇠2| ! 1. This implies that the Fourier dimension is zero, and demonstrates
that the Fourier dimension is dependent on the ambient space. On the other
hand, for any x 2 R2 and r > 0 such that the intersection of B(x, r) with
[�1, 1]⇥ {c} is non-empty, we can write

B(x, r) \ ([�1, 1]⇥ {c}) = I ⇥ {c},

where I ⇢ [�1, 1] is an interval of length �(I)  2r. It then follows from
theorem 3.2 that dimH ([�1, 1]⇥{c}) � 1. Thus, the interval [�1, 1]⇥{c} ⇢ R2

is not a Salem set.
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The interval [�1, 1] ⇢ R is an example of a Salem set, where Hausdor↵ and
Fourier dimension are equal. However, the Hausdor↵ and Fourier dimensions
do not have to be equal, as seen by the set [�1, 1] ⇥ {c} ⇢ R2. The next
proposition will provide another example of a set where the Hausdor↵ and
Fourier dimensions are di↵erent.

Proposition 3.6. Let C denote the standard 1/3-Cantor set. Then for any

µ 2 P(C ),
lim sup
|x|!1

|bµ(x)| > 0.

Proof. Since C ⇢ [0, 1] we will consider the Fourier series of µ 2 P(C ), and
show that the coe�cients bµ(k) do not tend to zero for k 2 Z as |k| ! 1. Let
us on the contrary assume there exists such a measure µ 2 P(C ) for which the
Fourier coe�cients tend to zero as |k| ! 1. Let ' 2 S ([0, 1]) be a positive
Schwartz function with supp ' ⇢ [1/3, 2/3] and

Z 1

0

'(x)dx = k'k1 = 1.

Then for j 2 N we define

'j(x) = '({3jx}), x 2 [0, 1],

where {·} denotes the fractional part. We now claim that supp('j) \ C = ;
for each j 2 N. To see this, we recall that we can expand any x 2 C , as

x =
1X

i=1

ai
3i
, ai 2 {0, 2}.

As such, for each fixed j,

3jx =
1X

i=1

3j�iai =
jX

i=1

3j�iai +
1X

i=j+1

3j�iai, ai 2 {0, 2}.

when taking the fractional part, we simply end up with

{3jx} =
1X

i=1

3�iaj+i 2 C ,

since each ai is either 0 or 2, and since supp(') \ C = ; we have the claimed
result.
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Now from the Fourier inversion formula,
X

k2Z

c'j(k)e
2⇡ikx = 'j(x) = '({3jx}) =

X

k2Z

b'(k)e2⇡ik3jx, x 2 [0, 1]. (3.14)

Here we used the fact that for any x 2 R, we can compose it into x = [x] +
{x}, where [x] is the integer part of x, and the 2⇡ periodicity of the complex
exponential. This results in

e2⇡ik3
jx = e2⇡ik([3

jx]+{3jx}) = e2⇡ik[3
jx]e2⇡ik{3

jx} = e2⇡ik{3
jx}

From (3.14) we must have
c'j(3

jk) = b'(k),
while the other coe�cients of 'j must vanish. Now for any j 2 N and m > 1,
we apply Parseval’s identity together with the fact that supp('j) \ C = ;.
Namely, since µ 2 P(C ) we have

0 =

Z 1

0

'jdµ =
X

k2Z

c'j(k)bµ(k) =
X

k2Z

c'j(3jk)bµ(3jk) =
X

k2Z

b'(k)bµ(3jk)

=c'j(0)bµ(0) +
X

1|k|m

b'(k)bµ(3jk) +
X

|k|>m

b'(k)bµ(3jk).

For the first term we simply have,

c'j(0)bµ(0) =
Z 1

0

'(x)dx

Z 1

0

dµ = µ(C ) = 1. (3.15)

By choosing m large enough we can make the last term as small as we wish
since ' 2 S ([0, 1]). In particular, we choose m such that

P
|k|>m |b'(k)| < 1/2,

which results in
������

X

|k|>m

b'(k)bµ(3jk)

������
 µ(C )

X

|k|>m

|b'(k)| < 1

2
. (3.16)

By (3.15) and (3.16), we must have

1 =

������

X

|k|>m

b'(k)bµ(3jk) +
X

1|k|m

b'(k)bµ(3jk)

������
<

������

X

1|k|m

b'(k)bµ(3jk)

������
+

1

2
,

independent of how j is chosen. However, the last term can be estimated from
above. Since m is fixed, we can choose j such that supk2Z,k�3j |bµ(k)| < 1/(4m).
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The choice of such a j follows from the assumption that |bµ(k)| ! 0 as |k| ! 1.
This means that the middle term has the upper bound

������

X

1|k|m

b'(k)bµ(3jk)

������
 k'k1

X

1|k|m

|bµ(3jk)|  m sup
k2Z,k�3j

|bµ(k)| < 1

4
,

which leads to a contradiction.

A consequence of proposition 3.6 is that the Fourier dimension of C must
be zero. Namely, there cannot exist any probability measure supported on
C where the Fourier transform goes to zero at infinity. As such, for any
µ 2 P(C ), it is not possible achieve the bound |bµ(⇠)|  C|⇠|�s for any s > 0.
From the definition of the Fourier dimension, it follows that

dimF (C ) = 0.

Since we have already shown that dimH (C ) = log(2)/ log(3), it follows that
C is not a Salem set.

Even though C is not a Salem set, it serves its purpose as an inspiration on
how to construct Salem sets. As it turns out, it is possible to construct random
Cantor sets that are almost surely Salem sets. This was done by Salem in [9],
and later by Bluhm in [1]. It is the construction of a random Cantor set we
will consider in the next section.
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4 Random Cantor Sets

A consequence of proposition 3.6 was that the standard 1/3-Cantor set, C ,
could not be a Salem set. The proof relied on an exploit of the regularity of
C , where we could create a sequence of Schwartz functions which were not
supported on C . One way to overcome this, is to introduce some kind of
randomness into the construction of the Cantor set. This was first done by
Salem, in 1950, where random contractions were used at each step [9].

We have already seen that the interval [�1, 1] is a Salem set with dimension
1 in R. Since any probability measure supported on [�1, 1] is also a probability
measure on R, we know that R is also a Salem set of dimension 1. We will see
that through Salem’s construction, it is possible to create a random Salem set
of any dimension ↵ 2 (0, 1).

In the spirit of Salem’s construction, in an article from 1996, by fixing
↵ 2 (0, n), Bluhm presented a recursive method of constructing a random
Salem set in Rn with dimension ↵, [1]. Bluhm’s random construction di↵ers
from Salem by using random translations rather than random contractions.
It is the method by Bluhm, with random translations at each step, which we
consider in this section.

In order to give a simple and clear presentation, we only consider the con-
struction in dimension one. Moreover, all random variables will be uniformly
distributed in the unit interval. This is done to avoid imposing any extra con-
ditions on our random variables. For a more general construction in higher
dimensions, we refer to Bluhm’s original article, [1].

4.1 Facts about Cantor Sets

When defining C , it is common to start with the unit interval and then re-
cursively remove the middle 1/3 part of the remaining intervals at each step.
Although this construction is quite easy to comprehend, it is not the construc-
tion we will consider in this section. In fact, the construction we will present
may seem more complicated, yet has the benefit of generalizing easier. More-
over, the type of Cantor set construction presented below easily incorporates
randomness when needed.

Let us now introduce a recursive construction of Cantor sets by translations
and contractions. We start with a compact interval C0 = [0, c] ⇢ R for some
c > 0, and a fixed ↵ 2 (0, 1). At each step k, we denote by Nk � 2 the number
of translations, while ⇢k denotes the contraction of the previous set at step k.
Further, we impose the condition Nk⇢↵k = 1 at each step k. We will always let
N0 = ⇢0 = 1, as the zero’th step can be thought of as a single translation of the
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original set C0 by 0. Further, let {Xk
j }

Nk
j=1 be the collection of non-negative

translations at step k, which all satisfy Xk
j  (1 � ⇢k)c. The condition on

the translations is imposed to ensure that we cannot translate outside of the
original set C0. We now construct the Cantor set C, which depends on the
choice of translations and contractions as follows

C0 =[0, c],

C1 =
N1[

⌫1=1

�
X1

⌫1 + ⇢1C0

�
,

C2 =
N2[

⌫2=1

N1[

⌫1=1

�
X1

⌫1 + ⇢1X
2
⌫2 + ⇢2⇢1C0

�
,

...

Ck =
Nk[

⌫k=1

. . .
N1[

⌫1=1

 
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j +

 
kY

l=0

⇢l

!
C0

!
,

C :=
1\

k=1

Ck.

Before continuing there are a few aspects of the construction we would like to
emphasise. Firstly, the translation corresponding to step k, Xk

j , is contracted

by a factor of
Qk�1

l=1 ⇢l for each j 2 {1, . . . , Nk}. Since Xk
j  (1 � ⇢k)c, this

ensures that

Xk
j + ⇢kC0 ⇢ C0 )

 
k�1Y

l=1

⇢l

!
Xk

j +

 
kY

l=1

⇢l

!
C0 ⇢

 
k�1Y

l=1

⇢l

!
C0. (4.1)

Thus, this condition is included to ensure that the translations remain inside
of previously scaled sets.

Secondly, at each step k there is a translation, which has been properly
scaled, from each of the previous steps present. This is done to make a nested
sequence of sets. To see why, we note that for any choice of translations it
follows from (4.1) that

kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j +

 
kY

l=0

⇢l

!
C0 ⇢

k�1X

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j +

 
k�1Y

l=0

⇢l

!
C0 ⇢ Ck�1.

Whence, it follows that Ck ⇢ Ck�1 for all k. In particular, we have a nested
sequence of sets,

C0 � C1 � C2 � . . . ,
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which consequently ensures that C 6= ;.
Finally, we note that no conditions of overlapping are imposed. It may

happen that two translated sets will have some overlap, meaning that given
two sequences ⌫1 = (⌫11 , ⌫

1
2 , . . . ⌫

1
k) and ⌫

2 = (⌫21 , ⌫
2
2 , . . . ⌫

2
k), we might have

 
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫1j
+

 
kY

l=0

⇢l

!
C0

!
\

 
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫2j
+

 
kY

l=0

⇢l

!
C0

!
6= ;.

This may happen if |Xk
i � Xk

j | < ⇢k for i 6= j, or in the extreme case that
all Xk

j are equal. For the latter case, all the sets making up Ck will overlap
completely for each k. This will result in the Cantor set, C, consisting of only
a single point.

Let us go back to the standard 1/3-Cantor set, and see how the construction
above fits with C . Here we have Nk = 2, where the translations are given by
Xk

1 = 0 and Xk
2 = 2/3. The contractions are all given by ⇢k = 1/3, and so

↵ = log(2)/ log(3). Recall that ↵ is nothing but the Hausdor↵ dimension of C .
In fact, as the next proposition shows, ↵ is an upper bound for the Hausdor↵
dimension of the Cantor set C as defined above.

Proposition 4.1. Let C be defined as above. Then dimH (C)  ↵.

Proof. We note that Ck is a cover of C for any k. Moreover, we have Nj � 2,
and Nj⇢↵j = 1. This means that

⇢j = N
� 1

↵
j  2�

1
↵  2�1,

for any k 2 N. At each step j, there are Nj new translations. This means that

the set Ck consist of
Qk

j=1 Nj translated versions of the set
⇣Qk

l=0 ⇢l
⌘
[0, c].

Now, for any " > 0, we can find k" such that

c
kY

l=0

⇢l < ",

for any k > k". Hence, for any s � 0, we have

H
s
" (C) 

kY

j=1

Nk

 
c

kY

l=0

⇢l

!s

=
kY

j=0

(Nj⇢
↵
j )⇢

s�↵
j cs  2k(↵�s)cs,

where we used that N0 = 1, and that Nj⇢↵j = 1 for all j. However, when
s > ↵, we have

2k(↵�s) k!1���! 0.
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This gives an upper bound for the Hausdor↵ measure,

H
s(C)  0,

for all s > ↵. From the definition of the Hausdor↵ dimension it follows that
dimH (C)  ↵.

Let us make a small comment on proposition 4.1. We noted that the
construction allowed for overlap. In particular, the inequality in proposition
4.1 may be strict depending on how the translations are chosen. To see why,
let Xk

j = 0 for all k 2 N and j 2 {1, . . . , Nj}. Then C = {0}, which is finite.
Since any finite set has Hausdor↵ dimension 0, we see that dimH (C) = 0 < ↵
for any ↵ > 0.

For simplicity, we define for each k 2 N the path set,

Dk =
kY

j=1

{1, . . . , Nj} = {1, . . . , N1}⇥ . . .⇥ {1, . . . , Nk}

where ⇥ denotes the Cartesian product. We note that each ⌫ = (⌫1, . . . , ⌫k) 2
Dk gives rise to one of the sets making up Ck through the mapping

⌫ 7!
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j +

 
kY

l=0

⇢l

!
C0 ⇢ Ck.

Hence, we can think of each ⌫ 2 Dk as a path down to a specific set in Ck. If
for ⌫ 2 Dk we define a new translation by

X⌫ =
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j , (4.2)

then we can write Ck in the more compact form

Ck =
[

⌫2Dk

 
X⌫ +

 
kY

l=0

⇢l

!
C0

!
. (4.3)

An interesting fact, is that any element x 2 C has a representation in terms
of these translations.

Lemma 4.2. Let C be a Cantor set as defined above. Then x 2 C if and only

if it can be written on the form

x = lim
k!1

kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j(x)
,

for some sequence {⌫j(x)}j2N, where ⌫j(x) 2 {1, . . . , Nj} for all j 2 N.
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Proof. Let us start by showing that the limit exists for any sequence {⌫j}j2N
where ⌫j 2 {1, . . . , Nj}. Since ⇢j = N

� 1
↵

j  2�1, we have the estimate

lim
k!1

�����

kX

j=1

 
j�1Y

l=0

⇢l

!
X i

⌫j

�����  lim
k!1

kX

j=1

2�(j�1)|Xj
⌫j |

<c lim
k!1

kX

j=0

2�j

=2c < 1,

where we used that (1� ⇢k) < 1 for all k, as well as ⇢0 = 1. This shows that
the sequence converges absolutely, since c > 0 is bounded. Thus, there exists
a z 2 R such that

z = lim
k!1

kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j . (4.4)

Now assume that x 2 C. From the definition of C, we know that x 2 Ck

for all k 2 N. So for each k 2 N, there is a path ⌫(x) = (⌫1(x), . . . , ⌫k(x)) 2 Dk

such that

x 2
 

kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j(x)
+

 
kY

l=0

⇢l

!
C0

!
.

Since this holds for any k 2 N, x must also lie in the limit set as k ! 1, and
so,

x 2 lim
k!1

 
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j(x)
+

 
kY

l=0

⇢l

!
C0

!
.

However, since C0 = [0, c] for some c > 0, it follows that

lim
k!1

 
kY

l=0

⇢l

!
C0 = {0}.

To see why, let y 2 C0, and note that

kY

l=0

⇢jy  2�ky
k!1���! 0.
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What this means, is that

x 2 lim
k!1

 
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j(x)
+

 
kY

l=0

⇢l

!
C0

!

= lim
k!1

 
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j(x)
+ {0}

!
,

=

(
lim
k!1

kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j(x)

)

which is a one-point set. Whence it follows that

x = lim
k!1

kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j(x)
.

For the opposite claim, we need to show that for any path sequence ⌫ =
(⌫1, ⌫2, . . .),

z(⌫) = lim
k!1

kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j 2 Cm,

for all m 2 N. Let ⌫ = (⌫1, ⌫2, . . .) be an arbitrary path sequence. Then, since
C0 = [0, c], we know that

kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j +

 
kY

l=0

⇢l

!
[0, c] ⇢ Ck,

for all k.
Now fix k. Then we want to show that z(⌫) 2 Ck. Since Ck ⇢ Ck�1, for

all k 2 N by construction, it follows that z(⌫) also lies in all Cm, for m < k.
However, in order to show that the entire limit lies in Ck, we split the limit
into two parts, one containing the elements up to k, and one for the remaining
part. We then estimate the remaining part. Since we can write z(⌫) as

z(⌫) = lim
m!1

 
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j +
mX

j=k+1

 
j�1Y

l=0

⇢l

!
Xj

⌫j

!
,

for any k, we want to estimate the remaining term and show that it will not
translate outside of Ck. In particular, we need to show that the remaining
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term is bounded by
⇣Qk

l=0 ⇢l
⌘
c, as this ensures that z(⌫) 2 Ck. By using the

fact that X i
⌫i  (1�⇢i)c, we can estimate the remaining term by a telescoping

sum,
�����

mX

j=k+1

 
j�1Y

l=0

⇢l

!
Xj

⌫j

����� 
mX

j=k+1

 
j�1Y

l=0

⇢l

!
(1� ⇢j)c

=

  
kY

l=0

⇢l

!
�
 

mY

l=0

⇢l

!!
c


 

kY

l=0

⇢l

!
c.

This shows that

lim
m!1

 
mX

i=k+1

 
i�1Y

l=0

⇢l

!
X i

⌫i

!
2
 

kY

l=0

⇢l

!
[0, c],

and so we must have z(⌫) 2 Ck. Since k was arbitrary, the same argument
holds for any other k 2 N. It therefore follows that

z(⌫) 2
1\

k=1

Ck = C.

If we now go back to C , the translations were given by Xk
1 = 0, and

Xk
2 = 2/3. As such, we see that any x 2 C can be written in the form

x =
1X

j=1

aj
3j
, aj 2 {0, 2}.

By using lemma 4.2, we can define a sequence of probability measures
{µk}k2N, where supp µk ⇢ Ck for each k 2 N. This is done through a sum of
Dirac �-measures running over all possible paths up to step k. As such, we
will use the path notation for the translations, as seen in (4.2). Furthermore,
we divide the sum by

Qk
i=1 Ni < 1, as this is the number of di↵erent paths in

Dk. Hence, we have a sequence of probability measures given by

µk =
1

Qk
j=1 Nj

X

⌫2Dk

�X⌫ =
1

Qk
j=1 Nj

X

⌫2Dk

�Pk
m=1(

Qm�1
l=0 ⇢l)Xm

⌫m
.
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The Fourier transform of the measure µk is simply given by

bµk(⇠) =
1

Qk
j=1 Nj

X

⌫2Dk

Z

R
e�2⇡i⇠xd�X⌫ (x) =

1
Qk

j=1 Nj

X

⌫2Dk

e�2⇡i⇠X⌫ ,

for each k 2 N. We want to show that this sequence of probability measures
converges weakly to a probability measure µ↵ supported on the Cantor set.
To help in our calculations, we first introduce a small lemma that simplifies
the expression of bµk.

Lemma 4.3. For each k 2 N, the Fourier transform of µk can be written as

bµk(⇠) =
kY

j=1

0

@ 1

Nj

NjX

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

1

A .

Proof. The proof follows from a simple calculation, where we multiply out the
product on the right hand side,

kY

j=1

0

@ 1

Nj

NjX

⌫j=1

e�2⇡i⇠(
Qi�1

l=0 ⇢l)Xj
⌫j

1

A =

⇣PN1

⌫1=1 e
�2⇡i⇠X1

⌫1

⌘
. . .

⇣PNk
⌫k=1 e

�2⇡i⇠(
Qk�1

l=0 ⇢l)Xk
⌫k

⌘

Qk
j=1 Nj

.

The result now follows from the distributive law, and some basic properties of
the exponential function. Namely,

1
Qk

j=1 Nj

 
N1X

⌫1=1

e�2⇡i⇠X1
⌫1

!
. . .

 
NkX

⌫k=1

e�2⇡i⇠(
Qk�1

l=0 ⇢l)Xk
⌫k

!

=
1

Qk
j=1 Nj

 
N1X

⌫1=1

. . .
NkX

⌫k=1

kY

j=1

e�2⇡i⇠(
Qj�1

l=0 )X
j
⌫j

!

=
1

Qk
j=1 Nj

 
N1X

⌫1=1

. . .
NkX

⌫k=1

e�2⇡i⇠
Pk

j=1(
Qj�1

l=0 )X
j
⌫j

!

=
1

Qk
j=1 Nj

X

⌫2Dk

e�2⇡i⇠X⌫ = bµk(⇠).

One way to show that the sequence {µk}k2N converges weakly, is by showing
that the Fourier transform converges pointwise. Then the result follows from
proposition 2.10. In order to show pointwise convergence, we first include a
small lemma on the di↵erence of complex exponential functions.
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Lemma 4.4. Assume that x, y 2 R. Then for any fixed ⇠ 2 R,

|e�2⇡i⇠x � e�2⇡i⇠y|  |x� y||2⇡⇠|.

Proof. We will prove the lemma using the fact that C is isomorphic to R2,
and then use the mean value theorem for vector valued functions on R2. For
simplicity, let us define ✓ := �2⇡⇠. We will assume that x > y. Now, recall
that

<(ei✓x � ei✓y) = cos(✓x)� cos(✓y),

=(ei✓x � ei✓y) = sin(✓x)� sin(✓y).

So when estimating the di↵erence, we are left with

|e�2⇡i⇠x � e�2⇡i⇠y|2 =(cos(✓x)� cos(✓y))2 + (sin(✓x)� sin(✓y))2

=|f✓(x)� f✓(y)|2

where f✓ : R ! R2 is given by f✓(x) = (cos(✓x), sin(✓x)). By the mean value
theorem, there exists a c 2 (x, y) ⇢ R such that

|f✓(x)� f✓(y)|
|x� y|  |f 0

✓(c)|.

The derivative of f✓ is given by

f 0
✓(c) = ✓(� sin(✓c), cos(✓c)) ) |f 0

✓(c)| = |✓| = |2⇡⇠|.

It thus follows that

|e�2⇡i⇠x � e�2⇡i⇠y| = |f✓(x)� f✓(y)|  |x� y||2⇡⇠|.

Proposition 4.5. Let the sequence of probability measures µk be defined by

µk =
1

Qk
i=1 Ni

X

⌫2Dk

�X⌫ .

Then there exists a probability measure µ↵ 2 P(C), such that µk * µ↵.
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Proof. For the weak convergence, it is enough to show that the Fourier trans-
form of the sequence is a Cauchy sequence for each fixed ⇠, and thus converges
pointwise. Assume that ⇠ is fixed. Then by lemma 4.3 we have for n > m,

|bµn(⇠)� bµm(⇠)|

=

������

nY

j=1

0

@ 1

Nj

NjX

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

1

A�
mY

j=1

0

@ 1

Nj

NjX

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

1

A

������

=

������

mY

j=1

0

@ 1

Nj

NjX

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

1

A

0

@
nY

j=m+1

0

@ 1

Nj

NjX

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

1

A� 1

1

A

������



������
1�

nY

j=m+1

0

@ 1

Nj

NiX

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

1

A

������
,

as the first term is simply |bµm(⇠)|  1 for all ⇠ 2 R. If we multiply out
the product, we are left with sum over all possible path combinations from
j = m + 1 to j = n. Since at each step j there are Nj di↵erent possibilities,
we can rewrite the di↵erence as,

������
1�

nY

j=m+1

0

@ 1

Nj

NjX

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

1

A

������

=
1Qn

j=m+1 Nj

�����

Nm+1X

⌫m+1=1

. . .
NnX

⌫n=1

 
1�

nY

j=m+1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

!�����

 1Qn
j=m+1 Nj

Nm+1X

⌫m+1=1

. . .
NnX

⌫n=1

���e�2⇡i⇠·0 � e�2⇡i⇠
Pn

j=m+1(
Qj�1

l=0 ⇢l)Xj
⌫j

��� .

It now follows from lemma 4.4 that

���e�2⇡i⇠·0 � e�2⇡i⇠
Pn

j=m+1(
Qj�1

l=0 ⇢l)Xj
⌫j

��� |2⇡⇠|

�����

nX

j=m+1

 
j�1Y

l=0

⇢l

!
Xj

⌫j

�����

2�m|2⇡⇠c|
n�mX

i=1

2�i+1

2�m+1|2⇡⇠c|

where we used the fact that Xk
j  (1 � ⇢k)c < c for all possible choices of j
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and k, ⇢0 = 1, and that ⇢l < 2�1 for all l � 1. This then implies that

1Qn
j=m+1 Nj

Nm+1X

⌫m+1=1

. . .
NnX

⌫n=1

���e�2⇡i⇠·0 � e�2⇡i⇠
Pn

j=m+1(
Qj�1

l=0 ⇢l)Xj
⌫j

���

 1Qn
j=m+1 Nj

Nm+1X

⌫m+1=1

. . .
NnX

⌫n=1

2�m+1|2⇡⇠c| = 2�m+1|2⇡⇠c|,

and so for n > m, we have

|bµn(⇠)� bµm(⇠)|  2�m+1|2⇡⇠c|.

Now to show that the sequence is Cauchy, we let " > 0. Since ⇠ 2 R is
fixed, there exists N⇠ 2 N, such that

2�N⇠+1 <
"

|2⇡⇠c| .

Whence it follows that for any n > m > N⇠, we have

|bµn(⇠)� bµm(⇠)|  2�m+1|2⇡⇠c| < ",

and so the sequence is Cauchy in R for each fixed ⇠. Since ⇠ was arbitrary and
we have a sequence of probability measures {µk}k2N, it follows from proposition
2.9 that bµk(⇠) converges pointwise to some bµ↵(⇠) for every ⇠ 2 R. This again
means that µk converges weakly to µ↵ by proposition 2.10. Moreover, lemma
4.2 ensures that supp µ↵ ⇢ C. Finally, to see that µ↵ actually is a probability
measure, we let �C0 2 C(C0) dentote the characteristic function on C0, and
note that

µ↵(R) =
Z

R
�C0dµ↵ = lim

k!1

Z

R
�C0dµk = 1.

4.2 The Transition to a Random Cantor Set

Let us now take the construction in section 4.1, and replace the translations
by random variables. Throughout this section we let ↵ 2 (0, 1) be a fixed
number. As in the case of the standard Cantor set, we will start with the unit
interval C0 = [0, 1]. However, we will choose the sequence Nk = k + 1 for the
number of translations at step k. We still require (k + 1)⇢↵k = 1, where ⇢k is
the contraction at step k.
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There is nothing special about the choice Nk = k + 1; it simply makes for
an easier construction. What is important in order to achieve an estimate for
the Fourier dimension is to have a sequence, Nk, which grows to infinity, but
not too fast. We will return to this matter later on. For now, let us focus on
the definition of a random Cantor set.

Let (⌦,A , P ) denote a probability space. The translations will now be
given by independent random variables Xk

j : ⌦ ! [0, 1 � ⇢k], which are uni-
formly distributed on the interval [0, 1 � ⇢k]. By uniformly distributed on an
interval [0, L], we mean that for any subinterval (a, b) ⇢ [0, L],

P ({! 2 ⌦ : Xk
j (!) 2 (a, b)}) = b� a

L
. (4.5)

Def. 4.1. Let
�
{Xk

j : ⌦ ! [0, 1� ⇢k]}k+1
j=1

 1
k=1

be a collection of independent
uniformly distributed random variables. For each ! 2 ⌦, we define the random
Cantor set by

CR(!) :=
1\

k=1

k+1[

⌫k=1

. . .
2[

⌫1=1

 
kX

j=1

 
j�1Y

l=0

⇢l

!
Xj

⌫j(!) +

 
kY

l=0

⇢l

!
[0, 1]

!
.

By using the path notation, given in (4.2), we can write the random Cantor
set on the more compact form,

CR(!) =
1\

k=1

[

⌫2Dk

 
X⌫(!) +

 
kY

l=0

⇢l

!
[0, 1]

!
.

By proposition 4.1, it follows that dimH (CR(!))  ↵. Furthermore, it follows
from proposition 4.5 that there exist a probability measure µ↵(!) supported
on CR(!), which is the weak limit of the sequence

µk(!) =
1

Qk
i=1 Nk

X

⌫2Dk

�X⌫(!).

The method used to find a lower bound on the Fourier dimension of CR(!)
involves estimating the expected value of bµk. For this process we first need
a few facts about the decay properties for the expected value of exponential
functions.

Lemma 4.6. Let X : ⌦ ! R be a random variable uniformly distributed on

the interval [0, L]. Then for every ⇠ 2 R\{0}, we have the bound

|E(e⇠ �X)| =
����
Z

⌦

e�2⇡i⇠X(!)dP (!)

���� 
1

⇡L|⇠| .
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Proof. In order to calculate the integral, we need to know what the push-
forward measure X⇤P is, as

Z

⌦

e�2⇡i⇠X(!)dP (!) =

Z

X�1(⌦)

e�2⇡i⇠xd(X⇤P (x)).

Since X is uniformly distributed, it follows from (4.5) that for any subinterval
(a, b) ⇢ [0, L],

X⇤P ((a, b)) = P (X�1(a, b)) =
b� a

L
.

This shows that the push-forward measure is nothing but the normalized
Lebesgue measure on [0, L]. Whence it follows that

Z

⌦

e�2⇡i⇠X(!)dP (!) =

Z L

0

e�2⇡i⇠xdx

L
=

1� e�2⇡iL⇠

2⇡iL⇠
,

and using the triangle inequality, we have
����
Z

⌦

e�2⇡i⇠X(!)dP (!)

���� 
1

⇡L|⇠| .

Corollary 4.6.1. Let ⇠ 2 R\{0}. Then for each k 2 N, and each j 2
{1, . . . , Nk}

��E
�
e⇠ �Xk

j

��� =
����
Z

⌦

e�2⇡i⇠Xk
j (!)dP (!)

���� 
2

⇡|⇠| .

Proof. Since ⇢k  2�1 for each k 2 N, it follows that 1 � ⇢k � 2�1. Thus, by
lemma 4.6 it follows that

����
Z

⌦

e�2⇡i⇠Xk
j (!)dP (!)

���� 
1

⇡(1� ⇢k)|⇠|
 2

⇡|⇠| .

4.3 Decay of Expected Values

The goal of this section is to estimate the expected value of bµ↵ raised to the
power 2q for each q 2 N. This will give rise to an almost surely convergent
series, which we use to estimate the Fourier dimension. However, estimating
the expected value can only provide an almost surely lower bound for the
Fourier dimension.
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Using lemma 4.4, the Fourier transform of µk(!) can be written as

bµk(!, ⇠) =
kY

j=1

0

@ 1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j (!)

1

A .

Since the random variables Xj
⌫j are independent, it follows that

E(|bµk(·, ⇠)|2q) =
kY

j=1

E

0

@

������
1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

������

2q1

A .

We will prove the following lemma.

Proposition 4.7. Let q, j 2 N, and assume that for ⇠ 2 R,

2(j + 1)q

qq⇡

 

j�1Y

l=0

⇢l

!
|⇠|.

We then have the bound

E

0

@

������
1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

������

2q1

A  2qq

(j + 1)q

Proof. Let us start by multiplying out the left hand side. This results in
������

1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j (!)

������

2q

=

0

@ 1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j (!)

1

A
q 0

@ 1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j (!)

1

A
q

=
1

(j + 1)2q

j+1X

⌫j2q=1

. . .
j+1X

⌫j1=1

e
�2⇡i⇠(

Qj�1
l=0 ⇢l)

Pq
i=1

✓
Xj

⌫ji
(!)�Xj

⌫jq+i
(!)

◆

.

Thus, the expected value can be written as

E

0

@

������
1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

������

2q1

A

=
1

(j + 1)2q

j+1X

⌫j2q=1

. . .
j+1X

⌫j1=1

E
 
e⇠(

Qj�1
l=0 ⇢l) �

qX

i=1

⇣
Xj

⌫ji
(!)�Xj

⌫jq+i
(!)

⌘!
. (4.6)
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We note that given any choice of ji and jq+i, we can find numbers hm 2 Z
with 0  |hm|  q such that

qX

i=1

⇣
Xj

⌫ji
(!)�Xj

⌫jq+i
(!)

⌘
=

j+1X

m=1

hmX
j
m(!).

Furthermore, any permutation, �, of {1, . . . , q} does not change the summa-
tion, that is

qX

i=1

Xj
⌫ji
(!) =

qX

i=1

Xj
⌫j�(i)

(!).

Thus, if there is some permutation � such that the equality ⌫i = ⌫q+�(i) holds
for all i 2 {1, . . . , q}, then hm = 0 for all m. This follows from the equality

qX

i=1

⇣
Xj

⌫ji
(!)�Xj

⌫jq+i
(!)

⌘
=

qX

i=1

⇣
Xj

⌫ji
(!)�Xj

⌫jq+�(i)
(!)

⌘
= 0.

In particular, if it happens that all hm = 0, then

E
 
e⇠(

Qj�1
l=0 ⇢l) �

qX

i=1

⇣
Xj

⌫ji
(!)�Xj

⌫jq+i
(!)

⌘!
= E(1) = 1.

On the other hand, if there exists at least one i0 such that ⌫ji0 6= ⌫jq+i for
any choice of i, then there has to exist an hi0 for which |hi0 | � 1. From the
independence of the random variables it follows that,

E
 
e⇠Qj�1

l=0 ⇢l
�

j+1X

m=1

hmX
j
m

!
=E

 
j+1Y

m=1

e⇠Qj�1
l=0 ⇢l

� hmX
j
m

!

=
j+1Y

m=1

E
⇣
e⇠Qj�1

l=0 ⇢l
� hmX

j
m

⌘
.

Moreover, since there is the trivial bound,

|E(e⇠ �X)| 
Z

⌦

��e�2⇡i⇠X(!)
�� dP (!) = 1,

for any random variable X, it follows from corollary 4.6.1 that
�����E

 
e⇠Qj�1

l=0 ⇢l
�

j+1X

m=1

hmX
j
m

!����� 
���E

⇣
e⇠Qj�1

l=0 ⇢l
� hi0X

j
i0

⌘��� 
2|⇠|�1

⇡
Qj�1

l=0 ⇢l
. (4.7)
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When estimating the sum we can therefore consider the two di↵erent cases
separately. Let us first consider the case when all hm = 0, and try to bound
the number of times this can happen. If for the first q elements we fix ⌫j, then
there are at most q! di↵erent ways to choose the remaining ⌫q+j such that all
hm = 0. On the other hand, there are (j + 1)q di↵erent ways to fix the first
q elements. This implies that there cannot be more than q!(j + 1)q di↵erent
ways to obtain

qX

i=1

⇣
Xj

⌫ji
(!)�Xj

⌫jq+i
(!)

⌘
= 0. (4.8)

Since (4.8) can hold for at most q!(j + 1)q di↵erent terms, it can be combined
with the bound given in (4.7) for the remaining terms. Thus, by (4.6) there is
an upper bound given by

E

0

@

������
1

Nj

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

������

2q1

A  q!

(j + 1)q
+

2|⇠|�1

⇡
Qj�1

l=0 ⇢l
.

Here we used the fact that summing over elements where (4.8) is not true,
yields a fraction less than 1 when dividing by the total amount of elements.

From here, we can invoke the condition on ⇠, which is equivalent to

2|⇠|�1

⇡
Qj�1

l=0 ⇢l
 qq

(j + 1)q
.

Hence, combining the condition on ⇠ together with the fact that q!  qq, for
all q 2 N, we are left with

E

0

@

������
1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

������

2q1

A  2qq

(j + 1)q
.

A result similar to proposition 4.7 can be proved for a general sequence
Nj. If the sequence Nj happens to be bounded by some M > 0, then for any
q > M the result gives no further information than the trivial bound,

E

0

@

������
1

Nj

NjX

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

������

2q1

A  1.
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As a consequence, a general sequence Nj must grow to infinity as j ! 1 in
order to give meaningful results. In particular, the approach for estimating
the Fourier dimension presented here would not work for a bounded sequence.

Since the random variables are independent, the expected value of bµk(!, ⇠)
can be written as a product of expected values of the form found in proposition
4.7. It is this property we exploit in proving the next proposition, which gives
a decay property on the expected value of the random Cantor probability
measure µ↵ on the Fourier side.

Proposition 4.8. For any q 2 N, and any 0 < ✓ < 1 there exists a number

⇥ = ⇥(↵, ✓, q) > 0 such that

E(|cµ↵(·, ⇠)|2q)  |⇠|�✓↵q,

for all ⇠ 2 R with |⇠| � ⇥.

Proof. Throughout this proof, the integer q 2 N, and the number 0 < ✓ < 1
will remain fixed. Let us make a few remarks regarding the expected value of
bµk. By lemma 4.3, we can, for each k 2 N, write the Fourier transform of µk

as

bµk(!, ⇠) =
kY

j=1

0

@ 1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j (!)

1

A .

Since all Xj
⌫j are independent, we can write the expected value of the product

as a product of expected values. That is,

E(|bµk(·, ⇠)|2q) =
kY

j=1

E

0

@

������
1

j + 1

j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

������

2q1

A .

For any j 2 N there is always the trivial bound
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⌫j (!)
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0

@ 1
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1

1

A
2q

= 1.

Thus, it follows from monotonicity of the Lebesgue integral that for any j 2 N,

E

0

@

������
1

j + 1

j+1X
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A  1.
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Now, let k0 2 N be fixed. For any k � k0, we can achieve a bound in terms of
k0. That is for any k � k0,

E(|bµk(·, ⇠)|2q) =
kY

j=1

E
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@

������
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j + 1

j+1X

⌫j=1

e�2⇡i⇠(
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k0Y

j=1

E

0

@
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j+1X

⌫j=1

e�2⇡i⇠(
Qj�1

l=0 ⇢l)Xj
⌫j

������

2q1

A

=E(|bµk0(·, ⇠)|2q).

When taking the limit as k ! 1, it follows from the dominated convergence
theorem that

E(|bµ↵(·, ⇠)|2q)  E(|bµk0(·, ⇠)|2q).
Thus, it is enough to prove the bound for some k0 2 N, which might depend
on ⇠.

Assume now that ⇠ 2 R satisfies the condition

(k + 1)q

qq⇡

 

k�1Y

l=0

⇢l

!
|⇠|, (4.9)

for some k. Then it also holds for anym < k. Thus, it follows from proposition
4.7, that

E(|bµ↵(·, ⇠)|2q)  E(|bµk(·, ⇠)|2q) 
(2qq)k

((k + 1)!)q
. (4.10)

The goal is to bound the right hand side of (4.10) by |⇠|�✓↵q for some large
value of ⇠. In order to achieve such a bound, let us see what condition (4.9)
implies. Recall that (j + 1)⇢↵j = 1. As such, condition (4.9) can be rewritten
as

(k!)
1
↵
(k + 1)q

qq⇡
 |⇠|. (4.11)

Note that the left hand side of (4.11) is a non-decreasing function of k. Thus,
for a fixed ⇠ we can find k⇠ 2 N, such that

((k⇠ � 1)!)
1
↵

kq
⇠

qq⇡
 |⇠|  (k⇠!)

1
↵
(k⇠ + 1)q

qq⇡
. (4.12)

By (4.12) it is enough to show that

(2qq)(k⇠�1)

(k⇠!)q

✓
(k⇠!)

1
↵
(k⇠ + 1)q

qq⇡

◆�✓↵q

. (4.13)
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By rearranging terms, and taking the logarithm of (4.13), we get the inequality

(k⇠ � 1) log (2qq) + ✓↵q2 log(k⇠ + 1)� ✓↵q log(qq⇡)  q(1� ✓) log(k⇠!). (4.14)

Note that for any positive constants C1, C2 � 0, and C3 > 0, we have

C1k + C2 log(k + 1)

C3k log(k)
k!1���! 0.

Thus, there exists K = K(C1, C2, C3) such that

C1k + C2 log(k + 1)  C3k log(k),

whenever k � K. By an appropriate choice of constants, namely

C1 = log(2qq) + q(1� ✓)
log(2)

2
,

C2 =✓↵q
q,

C3 =
q(1� ✓)

2
,

the following inequality must hold for all k � K(✓,↵, q),

(k � 1) log (2qq) + ✓↵q2 log(k + 1)� ✓↵q log(qq⇡) k log (2qq) + ✓↵q2 log(k + 1)

q(1� ✓)
k

2
(log(k)� log(2))

q(1� ✓) log(k!),

where we used the fact that k! � (k/2)k/2. This confirms (4.14) for su�ciently
large k. We note that the condition ✓ < 1 is crucial, otherwise (4.14) would
not hold for large values of k⇠, and consequently large values of |⇠|.

To conclude the proof, we note that for any ⇠ 2 R, with

|⇠| � ⇥(↵, ✓, q) := ((K(✓,↵, q)� 1)!)
1
↵
(K(✓,↵, q))q

qq⇡

we can find k⇠ � K(✓,↵, q) such that (4.12) holds. Since (4.12) holds, it follows
that

E
�
|bµ↵(·, ⇠)|2q

�
 E

⇣��bµk⇠�1(·, ⇠)
��2q
⌘
 (2qq)k⇠�1

(k⇠!)q
.

By the choice of k⇠, we know that (4.13) is true. Thus it follows that

E
�
|bµ↵(·, ⇠)|2q

�
 |⇠|�✓↵q.
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Let us end this subsection with a few comments on proposition 4.8. First
of all, the result holds for all q 2 N, and so it holds for q = 1. This means that

E(|bµ↵(·, ⇠)|2)  |⇠|�✓↵,

which is a good indication that almost surely |bµ↵(!, ⇠)|  |⇠|�✓↵/2 should hold
whenever |⇠| is su�ciently large. Unfortunately, the method used to transition
to an almost surely bound will decrease the decay rate slightly. Even so, this
will not a↵ect the Fourier dimension estimate.

Secondly, we want to show that the Fourier dimension is bounded from
below by ↵. For this reason, one ought to hope that ✓ = 1. However, it follows
from (4.14) that the case ✓ = 1 cannot be true for large values of |⇠|. To see
why, note that the right hand side would be zero, while the left hand side is
a monotonically increasing function of k⇠, and consequently also of |⇠|, which
tends to infinity. On the other hand, since the Fourier dimension is defined
through the use of the supremum, it is enough to show that the bound holds
for any ✓↵ < ↵.

Lastly, as pointed out earlier, the construction of the random Cantor set
could have been done using a more general sequence Nj instead of j+1. What
will change in the proof, is the k⇠ would be replaced by Nk⇠�1. Thus, equation
(4.14) reveals that the condition

log(Nk+1)Pk
j=1 log(Nj)

k!1���! 0,

is needed for the proof to work for a larger class of sequences. In particular, we
could have chosen a sequence that grows to infinity while obeying the above
growth condition. For a random Cantor set associated with such a sequence,
we would be able to prove an analogue of proposition 4.8. It is these types of
sequences Bluhm considers in his more general construction found in [1].

4.4 Transition from Expected Value to an Almost Surely

Bound

Up until now, we have only found a bound for the expected value of the
Fourier transform of the probability measure on our random Cantor set. In
order to transition to an almost surely bound, we will utilize a method found
in chapter 12 of [7] on how to create an almost surely absolutely convergent
series. However, as the book considers a di↵erent bound on the expected value
than we do, we have had to slightly modify the method.

47



Theorem 4.9. Let � > 0 and assume that there is a probability measure µ(!)
supported almost surely on a compact set such that for each q 2 N, there exist

a constant ⇥ = ⇥(�, q) such that

E(|bµ(·, ⇠)|2q)  |⇠|��q, (4.15)

for all |⇠| � ⇥. Then for all � < � there exist constants C = C(!, �, �), and
⌅ = ⌅(�, �) > 0, such that almost surely

|bµ(!, ⇠)|  C|⇠|�
�
2 .

for all ⇠ > ⌅.

Proof. We start by constructing a subset Q� ⇢ R with some useful properties.
For each k 2 N, define the set Qk by

Qk :=
n
2k�1 + i2�k �

2�1 : i 2
n
0, . . . ,

h
2k(

�
2+1)

ioo
⇢ [2k�1, 2k],

where [·] denotes the integer part. We note that there are fewer than 2k(�/2+1)+1

points in each set Qk. Taking the union of all k 2 N results in the set

Q+
� :=

[

k2N

Qk.

Finally, we let
Q� := �Q+

� [Q+
� ,

where we have included all points of Q+
� reflected around the origin. Note that

for any point ⇠ 2 R with |⇠| � 1, there exists k such that

|⇠| 2
⇥
2k�1, 2k

⇤
.

In particular, we can find an i 2
�
0, . . . ,

⇥
2k(�/2+1)

⇤ 
such that

2k�1 + i2�k �
2�1  |⇠|  2k�1 + (i+ 1)2�k �

2�1.

Whence it follows that whenever |⇠| � 1 there exists an element z 2 Q� with
|z| � |⇠| such that

|z � ⇠|  2�k �
2�1  2�k �

2  |⇠|�
�
2 ,

where the last inequality follows from the fact that |⇠|  2k.
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We now want to find an almost surely absolutely convergent series based
on the set Q� and our probability measure. Let us first consider the series,

X

z2Q�

|z|�
�
2�2 =2

1X

k=1

X

z2Qk

|z|�
�
2�2

2
1X

k=1

2k(
�
2+1)+12�(k�1)(�

2+2)

=2
�
2+4

1X

k=1

2�k < 1.

We will now transition to finding an almost surely bound on the probability
measure. Fix the integer q 2 Z, and consider the expected value of the series,

E

0

@
X

z2Q� ,|z|�⇥(�,q)

|z|�
�
2�2 |bµ(·, z)|2q

|z|��q

1

A =
X

z2Q� ,|z|�⇥(�,q)

E
✓
|z|�

�
2�2 |bµ(·, z)|2q

|z|��q

◆

=
X

z2Q� ,|z|�⇥(�,q)

|z|�
�
2�2E (|bµ(·, z)|2q)

|z|��q


X

z2Q�

|z|�
�
2�2 < 1 ,

where we have used Fubini’s theorem to interchange the summation and inte-
gration, as well as the condition (4.15). Since the expected value is bounded,
the series has to be bounded almost surely as well. As such, there exist a
constant C̃(!, �, q) such that for every z 2 Q� with |z| > ⇥(�, q) we almost
surely have the bound

|bµ(!, z)|2q  C̃(!, �, q)|z|
�+4
2 |z|��q. (4.16)

Note that (4.16) is equivalent to

|bµ(!, z)|  K(!, �, q)|z|
�+4
4q |z|�

�
2 ,

for some other constant K(!, �, q).
In order to transition from z to an arbitrary ⇠, we utilize lemma 4.4 to

show that the Fourier transform is Lipschitz. So by lemma 4.4, and the fact
that µ(!) is almost surely supported on a compact set, it follows that almost
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surely

|bµ(!, ⇠)� bµ(!, z)| =
����
Z

R
e�2⇡i⇠xd(µ(!))(x)�

Z

R
e�2⇡izxd(µ(!))(x)

����


Z

R
|e�2⇡i⇠x � e�2⇡izx|d(µ(!))(x)

2⇡|⇠ � z|
Z

R
|x|d(µ(!))(x)

2⇡M(!)|⇠ � z|,

where M(!) = supx2supp µ(!) |x| < 1. However, this means that for any ⇠ 2 R
with |⇠| > max{⇥(�, q), 1} we can find z 2 Q� with |⇠ � z|  |⇠|��/2, and
|⇠|  |z|  2|⇠|, such that we almost surely have

|bµ(!, ⇠)| |bµ(!, z)|+ |bµ(!, ⇠)� bµ(!, z)|

K(!, �, q)|z|
�+4
4q |z|�

�
2 + 2⇡M(!)|⇠ � z|

2
�+4
4q K(!, �, q)|⇠|

�+4
4q |⇠|�

�
2 + 2⇡M(!)|⇠|�

�
2

C(!, �, q)|⇠|
�+4
4q |⇠|�

�
2 .

To conclude the proof, we note that the argument holds for any q 2 N.
Thus, for any � < � we can find q� 2 N, such that

�

2
 �

2
� � + 4

4q�
.

Thus, for each |⇠| � ⌅(�, �) := max{⇥(�, q�), 1} we have that

|bµ(!, ⇠)|  C(!, �, q�)|⇠|
�+4
4q� |⇠|�

�
2  C(!, �, �)|⇠|�

�
2 ,

holds almost surely.

With the help of theorem 4.9, and proposition 4.8, we can show that almost
surely there exists a lower bound on the Fourier dimension of our random
Cantor set CR(!). Namely, we have the following corollary, which ensures
that CR(!) is almost surely a Salem set.

Corollary 4.9.1. The random Cantor set CR(!) is almost surely a Salem set

with dimension ↵.
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Proof. By proposition 4.1 we have seen that for any ! 2 ⌦ we have

↵ � dimH (CR(!)) � dimF (CR(!)).

Thus, it only remains to find a lower bound on the Fourier dimension. However,
this is done by combining proposition 4.8 with theorem 4.9. Namely, for each
0 < ✓ < 1 proposition 4.8 ensures that the conditions of theorem 4.9 are met.
Whence it follows that for any � < ✓↵ < ↵,

|bµ↵(!, ⇠)|  C(!,↵, ✓, �)|⇠|�
�
2 ,

holds almost surely for all |⇠| > ⌅(↵, ✓, �). Thus, it follows from the definition
of the Fourier dimension that almost surely

↵  dimF (CR(!))  dimH (CR(!))  ↵.

This shows that CR(!) is almost surely a Salem set with dimension ↵.
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5 Deterministic Construction of Salem Sets

In the previous section, we considered a construction of random Salem set
on the unit interval. In this section, we will consider another construction of
Salem sets on the unit interval. Unlike the random Cantor sets in section 4, we
consider a deterministic construction. In particular, we look at the set of ↵-
well-approximable numbers, E↵, for a given ↵ > 0. A known result by Jarńık
and Besicovitch is that E↵ has Hausdor↵ dimension 2/(2 + ↵). Moreover,
Kaufman gave a construction of a probability measure on E↵ in 1981 which
ensures that the Fourier dimension of E↵ is at least 2/(2 + ↵). This result
can be found in [6], as well as chapter 9 in [10]. We will not present the
construction by Kaufman, but rather one by Bluhm, found in [2]. This enables
us to construct a Salem set on the unit interval of any dimension between 0
and 1.

Using the construction by Bluhm, we will create a probability measure on a
subset of E↵, denoted S↵. As a probability measure on S↵ is also a probability
measure on E↵, the result by Kaufman follows from Bluhm’s result.

5.1 Definition of ↵-approximable Sets

In order to define the set E↵, we first need some notation. For a given point
x 2 R, we define the seminorm

kxkZ := min
m2Z

|x�m|, (5.1)

which is the distance from x to the nearest integer. For a given ↵ > 0, let E↵

be the set

E↵ :=
1\

k=1

1[

q=k

�
x 2 [0, 1] : kqxkZ < q�(1+↵)

 
. (5.2)

We denote the set of all prime numbers P, and define

PM = P \ [M, 2M ]. (5.3)

The cardinality of a set A is denoted #A. We also define the prime-counting
function ⇡(x) as the number of primes, p 2 P, such that p  x. The Prime
Number Theorem states that

lim
x!1

⇡(x)

x/ log(x)
= 1. (5.4)

52



This is a classical result in number theory, which can be found in [3]. In
particular, it follows from the Prime Number Theorem that

lim
M!1

#PM

M/ log(M)
= 1. (5.5)

Thus, given ⇤ large enough, we know that

#PM � M

2 logM
, 8M � ⇤. (5.6)

Let us choose a sequence of integers {Mk}k2N such that

⇤ < M1 < 2M1 < M2 < 2M2 < . . . ,

and thus (5.6) holds for all elements of the sequence. For a fixed ↵ > 0, we
define the set

S↵ :=
1\

k=1

[

p2PMk

�
x 2 [0, 1] : kpxkZ  p�(1+↵)

 
. (5.7)

Note that S↵ depends on the sequence {Mk}k2N. We will show that it is
possible to choose a sequence {Mk} such that the resulting set S↵ is a Salem
set with dimension 2/(2 + ↵).

If we define the set

Eq(↵) :=
�
x : [0, 1] : kqxkZ  q�(1+↵)

 
, (5.8)

then it follows from (5.2) and (5.7), that

E↵ :=
1\

k=1

1[

q=k

Eq(↵), S↵ :=
1\

k=1

[

p2PMk

Ep(↵).

Moreover, for any q 2 N, it follows that

Eq(↵) = [0, q�(1+↵)�1][
q�1[

m=1


m

q
� q�(1+↵)�1,

m

q
+ q�(1+↵)�1

�
[[1�q�(1+↵)�1, 1].

(5.9)
Since Eq(↵) is a finite union of closed sets, it is itself a closed set for each
q 2 N. This in turn implies that

[

p2PMk

Ep(↵),

53



is a closed set, since PMk
is finite. As arbitrary intersections of closed sets are

closed, it follows that

S↵ =
1\

k=1

[

p2PMk

Ep(↵),

is closed. On the other hand, we know that S↵ ⇢ [0, 1], and so S↵ is actually
a compact set. Furthermore, it follows from the way the sequence {Mk}1k=1 is
defined that Mk � k. Whence it follows that

[

p2PMk

Ep(↵) ⇢
1[

q=k

Eq(↵),

for each k 2 N. Consequently, we know that S↵ ⇢ E↵. Moreover, from (5.9)
it is clear that 0, 1 2 Eq(↵) for all q 2 N. Thus, we know that 0, 1 2 S↵, and
both S↵ and E↵ are therefore non-empty.

We will now prove that 2/(2 + ↵) is an upper bound for the Hausdor↵
dimension of the set E↵. The proof presented here is inspired by the proof
presented in chapter 9 of Wol↵ [10].

Proposition 5.1. The set E↵ has Hausdor↵ dimension dimH (E↵)  2/(2 +
↵).

Proof. We can cover E↵ by

E↵ ⇢
1[

q=k

Eq(↵),

for any fixed k 2 N. We also know that Eq(↵) consists of q � 1 intervals with
length 2q�(1+↵)�1, and 2 intervals of length q�(1+↵)�1. Let " > 0, and assume
that q�(2+↵) < ". Then by a rough estimate, we have

H
s
" (Eq(↵))  (q � 1)(2q�(2+↵))s + 2q�s(2+↵)  2sq�s(2+↵)+1.

Therefore, if we let k�(2+↵) < ", we get

H
s
" (E↵) 

1X

q=k

2sq�s(2+↵)+1.

By the integral test it follows that

1X

q=k

2sq�s(2+↵)+1  Ck2�s(2+↵),
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which goes to zero as k ! 1 if and only if s > 2/(2 + ↵). This shows that

H
s(E↵) = 0,

whenever s > 2/(2 + ↵). Thus, we can conclude that dimH (E↵)  2/(2 +
↵).

There is also a similar result for the set S↵, where we can bound the
Hausdor↵ dimension of S↵ by 2/(2 + ↵).

Corollary 5.1.1. The set Sa has Hausdor↵ dimension dimH (S↵)  2/(2+↵).

Proof. This statement follows from the fact that S↵ ⇢ E↵. In particular, from
proposition 5.1 we have

dimH (S↵)  dimH (E↵) 
2

2 + ↵
,

since any cover of E↵ is also a cover of S↵.

5.2 Construction of a Probability Measure on S↵

The goal of this section is to construct a probability measure µ↵ 2 P(S↵),
which satisfies the bound

|bµ↵(⇠)|  C"|⇠|�
1

2+↵+",

for every " > 0. Given such a construction, it follows that S↵ is a Salem set
with dimension 2/(2 + ↵). Since any µ 2 P(S↵) is a probability measure on
E↵, it also follows that E↵ is a Salem set with dimension 2/(2 + ↵). Hence,
we have a deterministic construction of Salem sets for any dimension � =
2/(2 + ↵) 2 (0, 1). However, this construction relies on a few preliminary
results. It is these results we will now present before we end the section with
the construction of a probability measure on S↵.

Let M 2 N be such that

R :=
1

(4M)1+↵
<

1

2
. (5.10)

Define the function FM on [�1/2, 1/2] by

FM(x) =

(
15
16R

�5(R2 � x2)2, |x|  R,

0, R < |x|  1
2 .

(5.11)
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A simple calculation shows that

F 00
M(x) =

(
15
4 R

�5 (3x2 �R2) , |x|  R,

0, R < |x|  1
2

, (5.12)

This means that FM is twice di↵erentiable, yet the second derivative is not
continuous at |x| = R. On the other hand, the second derivative of FM is
bounded, and so FM 2 C1,1(R). Since FM is supported on [�1/2, 1/2], it is
possible to extend FM to a periodic function on R with period 1. We can
therefore associate to FM the Fourier series

X

n2Z

a(M)
n e2⇡inx,

where the coe�cients are given by

a(M)
n =

Z 1
2

� 1
2

FM(t)e�2⇡intdt. (5.13)

It is possible to achieve some bounds on the Fourier coe�cents found in (5.13).
This leads us to the following lemma.

Lemma 5.2. The Fourier coe�cients for the function FM satisfy

a(M)
0 = 1, |a(M)

m |  1, |a(M)
m |  m�2R�2, (5.14)

for every m 2 Z.

Proof. For simplicity, we will use the abbreviation a(M)
m = am, as M and thus

FM is fixed. Let us start by showing that a0 = 1. This follows from a simple
calculation using the definition of FM in (5.11), as

a0 =
15R�5

16

Z R

�R

(R2 � x2)2dx =
15R�5

16

✓
R4x� 2

3
R2x3 +

1

5
x5

◆ ���
x=R

x=�R

=
15R�5

16

✓
8R5

15
� �8R5

15

◆
= 1.

It is clear from (5.11) that |FM | = FM . As such, it follows from the triangle
inequality and the non-negativity of FM , that

|aM | 
Z 1

2

� 1
2

|FM(t)|dt = a0 = 1.
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For the final claim in (5.14), we note that FM vanishes at the boundary
|x| = 1/2, and so does the first derivative F 0

M . The second derivative is given
in (5.12) and so using integration by parts twice yields

am =

Z 1
2

� 1
2

FM(x)e�2⇡imxdx = � 1

4⇡2m2

Z 1
2

� 1
2

F 00
M(x)e�2⇡imxdx.

Whence the final claim follows from the triangle inequality,

|am| 
1

4⇡2m2

Z R

�R

|F 00
M(x)|dx  15R�5

16⇡2m2

Z R

�R

(3x2 +R2)dx

=
15

4⇡2
m�2R�2  m�2R�2.

With the bounds given on the Fourier coe�cients in lemma 5.2, it follows
that the Fourier series of FM converges uniformly to FM . As such, we have

FM(x) =
X

n2Z

a(M)
n e2⇡inx. (5.15)

We now continue with the construction of µ↵. We begin by defining the
new function

qM(x) :=
X

p2PM

FM(px) =
X

m2Z

X

p2PM

a(M)
m e2⇡impx. (5.16)

Since FM 2 C1,1(R) and 1-periodic, it follows from (5.16) that qM 2 C1,1(R),
and that qM is a 1-periodic function. However, we want to scale qM with a
constant cM such that cMbqM(0) = 1. To find this constant, we use (5.16) to
write the Fourier coe�cients of qM as

bqM(k) =

Z 1
2

� 1
2

qM(x)e�2⇡ikxdx =
X

m2Z

X

p2PM

a(M)
m �k,mp, (5.17)

where �k,mp is 1 when k = mp, and zero otherwise. Note that when k = 0,
only terms with m = 0 will contribute. This results in

bqM(0) =
X

p2PM

a(M)
0 = #PM , (5.18)
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where we used lemma 5.2 to conclude that a(M)
0 = 1. Hence, the function

gM(x) :=
qM(x)

#PM
(5.19)

is precisely the scaled version of qM we wanted. Since FM is a non-negative
function, it follows that qM and gM are also non-negative functions.

Proposition 5.3. If gM(x) > 0, then there exists p 2 PM such that kpxkZ 
p�(1+↵)

.

Proof. If gM(x) > 0, then there is at least one p 2 PM such that FM(px) > 0
by the definition of gM . However, FM is a 1-periodic function, and FM(px) > 0
only when |px�m|  R for some m 2 Z. This follows from (5.11). Using the
definition of R, we can see that

|px�m|  R =
1

(4M)1+↵
 1

(2p)(1+↵)
 p�(1+↵), (5.20)

since p  2M , whenever p 2 PM .

Our aim is to construct a measure µ↵ supported on S↵ by repeated multi-
plication of densities gMk

, for a sequence of integers {Mk}k2N. We introduce
the function

✓(x) := (1 + |x|)�
1

2+↵ log(e+ |x|) log log(ee + |x|),

for a cleaner presentation. Since ✓ 2 C1(R) ⇢ Cb(R), we can also introduce
the constant ⇥ := supx2R ✓(x) < 1.

The following proposition is key in constructing our measure.

Theorem 5.4. For every  2 C1,1
0 (R), and � > 0, there exists a positive

integer M0 = M0( , �) � ⇤ such that

|d gM(⇠)� b (⇠)|  �✓(⇠), (5.21)

for ⇠ 2 R, and all M � M0.

The proof of theorem 5.4 is proven in the next subsection, as we will now
proceed to construct a non-negative bounded measure on S↵. The construc-
tion relies on recursively finding a sequence {Mk}1k=1, which gives a Cauchy
sequence in the uniform norm on the Fourier side.
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We start by fixing a non-negative function � 2 C1,1
0 (R), with supp � ⇢ [0, 1]

and � > 0 on (0, 1). Moreover, we require
Z

R
�(x)dx = 1.

Now, fix 0 < � < 1/2. Then by theorem 5.4 we can find M1 � M0(�, �2�1)
such that ���[�gM1(⇠)� b�(⇠)

���  �2�1✓(⇠).

Note that since gM 2 C1,1(R), we know that �gM 2 C1,1
0 (R) whenever � 2

C1,1
0 (R). In particular, �gM1 2 C1,1

0 (R), and so we can continue the process.
Namely, we can find M2 � M0(�gM1 , �2

�2), such that
��� \�gM1gM2(⇠)� [�gM1(⇠)

���  �2�2✓(⇠).

This means that we can find a sequence Mk+1 � M0(�
Qk

j=1 gMj , �2
�(k+1)),

such that
������

 
�

k+1Y

j=1

gMj

!^

(⇠)�
 
�

kY

j=1

gMj

!^

(⇠)

������
 �2�(k+1)✓(⇠). (5.22)

Now define the sequence of functions Gk :=
Qk

j=1 gMj , where G0 = 1. By
(5.22), we have

|\�Gk+1(⇠)� d�Gk(⇠)|  �2�(k+1)✓(⇠)  ⇥�2�(k+1),

where ⇥ = sup⇠2R ✓(⇠). This shows that the sequence {d�Gk}1k=0 is Cauchy in
the uniform norm.

For each k 2 N, let us define the non-negative measure dµk = �Gkdx,
where dx refers to the usual Lebesgue measure. Then the sequence {bµk}k2N is
Cauchy in the uniform norm. The non-negativity follows the fact that � and
gMk

are non-negative functions for any k 2 N. Moreover, since any Cauchy
sequence is bounded and �Gk � 0 for all k 2 N, it follows that

sup
k2N

µk(R) = sup
k2N

d�Gk(0) < 1.

Thus, by proposition 2.9 there exists a subsequence converging weakly to a
measure µ↵ 2 M ([0, 1]). However, since the sequence {d�Gk}1k=0 is Cauchy
in the uniform norm, the entire sequence must converge pointwise to bµ↵. It
therefore follows from proposition 2.10 that µk * µ↵.
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It remains to show that µ↵ 6= 0. For this, we use that G0 = 1, and use a
telescoping sum. Thus, for any k 2 N

|µk(R)� 1| = |d�Gk(0)� d�G0(0)| 
kX

i=1

|d�Gi(0)� \�Gi�1(0)|  �
kX

i=1

2�i✓(0).

Since the sum is bounded by 1 for any k, and ✓(0) = 1, it follows that for any
k 2 N,

3

2
> 1 + � � µk(R) � 1� � >

1

2
.

In particular, we can show that µ↵ 6= 0 since

µ↵(R) =
Z 1

0

dµ↵ = lim
k!1

Z 1

0

dµk = lim
k!1

µk(R) >
1

2
.

Thus, by the same argument, we know that 1/2 < µ↵(R) < 3/2.
Let us now show that µ↵ is supported on S↵. This follows from propo-

sition 5.3. To see why, we note that if �(x)Gk(x) > 0, then gMj(x) > 0 for
all j 2 {1, . . . , k}. By proposition 5.3, we can conclude that supp gMj ⇢S

p2PMj
Ep(↵). This means that

supp µk ⇢
k\

j=1

[

p2PMj

Ep(↵).

Whence, it follows that supp µ↵ ⇢ S↵.
For the decay of µ↵ on the Fourier side, we note that there is some ⇠0 > 0

such that (1+ |⇠|)�2 < ✓(⇠) whenever |⇠| > ⇠0. This follows from the fact that
(1 + |⇠|)�2 tends to zero faster than ✓(⇠) as |⇠| ! 1. Thus, we can estimate
the decay

|bµa(⇠)| = lim
k!1

|bµk(⇠)|  lim
k!1

kX

j=1

|bµj(⇠)� bµj�1(⇠)|+ |bµ0(⇠)|

 lim
k!1

kX

j=1

�2�j✓(⇠) + C1(1 + |⇠|)�2  C✓(⇠),

whenever |⇠| > ⇠0. This shows that for any " > 0,

|bµa(⇠)|  C|⇠|�
1

2+↵+", |⇠| > ⇠0.
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Theorem 5.5. The set S↵ is a Salem set with dimension 2/(2 + ↵).

Proof. By using corollary 5.1.1, we know that

dimH (S↵)  2/(2 + a).

Moreover, define the measure P↵ by

P↵ =
µ↵

µ↵(R)
2 P(S↵).

Then for |⇠| > ⇠0,

| bPa(⇠)| 
C

µ↵(R)
|⇠|�

1
2+↵+",

for any " > 0. We can therefore conclude that 2/(2+↵)  dimF (S↵). Whence
it follows that S↵ is a Salem set with dimension 2/(2 + ↵).

Corollary 5.5.1. The set E↵ is a Salem set with dimension 2/(2 + ↵).

Proof. We know that any probability measure on S↵ is a probability measure
on E↵ since S↵ ⇢ E↵. Thus, the result follows directly from theorem 5.5 and
proposition 5.1.

5.3 Proof of Theorem 5.4

We will now start the process of proving theorem 5.4. For this, we first need
a few lemmas.

Lemma 5.6. Let M 2 N. Then given any integer k 2 N, we have

#{Prime factors of k inside PM}  log k

logM

Proof. Since k has a unique prime factorization, we can write

k =
Y

p2P

p↵p =
Y

p2PM

p↵p
Y

p2P\PM

p↵p ,

where ↵p 2 N[ {0}. The number of prime factors in PM is therefore given by

#{Prime factors of k inside PM} =
X

p2PM

↵p.
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Since for each p 2 PM we have p � M , we get

k �
Y

p2PM

p↵p �
Y

p2PM

M↵p .

Taking the logarithm on both sides yields

log k �
X

p2PM

↵p logM ) log k

logM
�

X

p2PM

↵p.

The next lemma gives a bound on the coe�cients bgM(k).

Lemma 5.7. There exists a constant A = A(↵) > 0 such that for all M �
max{4,⇤}, we have

|bgM(k)| AM�1 logM, 8k 2 Z\{0}
|bgM(k)| A|k|�

1
2+↵ log |k|, 8k 2 Z with |k| > (4M)2+↵

Proof. We start by recalling the definition of qM , given in (5.17). Combining

the definition of qM with lemma 5.2, where we use that |a(M)
m |  1, we have

|bqM(k)| 
X

m2Z

X

p2PM

�k,mp = #{(m, p) 2 Z⇥ PM : k = mp}.

The number of points (m, p) which satisfy k = mp, is nothing more than the
numbers of prime factors of |k| in PM . By lemma 5.6 we have a bound on the
number of prime factors of |k| 2 N inside PM . Thus, for any k 2 Z\{0} we
arrive at

|bqM(k)|  log |k|
logM

.

Let us now consider the case 1  |k|  (4M)2+↵. From (5.19), the defini-
tion of gM , together with (5.6) since M � ⇤, we get

|bgM(k)| = |bqM(k)|
#PM

2 logM log |k|
M logM

= 2
log |k|
M

2M�1(2 + ↵)(log 4 + logM)  4(2 + ↵)M�1 logM,

where the last inequality follows from the fact that M � 4.
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Let us now assume |k| > (4M)2+↵, and recall from lemma 5.2 that |a(M)
m | 

m�2R�2, where R = (4M)�(1+↵). We can therefore improve the bound on bqM ,
namely

|bqM(k)| 
X

m2Z

X

p2PM

m�2R�2�k,mp.

Since k = mp, we have a lower bound on |m| given by

|m| = |k|
p

� |k|
2M

.

Thus, when combining these two inequalities, we get

|bqM(k)|  (2M)2|k|�2R�2
X

m2Z

X

p2PM

�k,mp 
1

4
(4M)4+2↵|k|�2 log |k|

logM
,

where we used that R�2 = (4M)2+2↵. Now, since M � ⇤, we know that (5.6)
holds, and so we can bound bgM(k) by

|bgM(k)|  2 logM

M
|bqM(k)|  2(4M)3+2↵|k|�2 log |k|  2|k|�

1
2+↵ log |k|.

It remains to show that |bgM(k)|  AM�1 logM whenever |k| > (4M)2+↵.
In order to show this, we need to investigate the function

h(x) := x� 1
2+↵ log x.

Notice that |bgM(k)|  2h(|k|) whenever |k| > (4M)2+↵. Furthermore, we can
easily see that the derivative of h satisfies

h0(x) = x� 1
2+↵�1

✓
1� 1

2 + ↵
log x

◆
< 0,

for all x > e2+↵. In particular, if 4M > e, then h : [(4M)2+↵,1) ! [0,1)
defines a monotonically decreasing function. Since 4M � 16 > e, it follows
that h((4M)2+↵) � h(|k|) whenever |k| > (4M)2+↵. As such, we can conclude
that

|bgM(k)|  2|k|�
1

2+↵ log |k|  2(2+↵)M�1(logM+log 4)  4(2+↵)M�1 logM,

since M � 4. Thus, the result follows by choosing A(↵) = 4(2 + ↵).
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Lemma 5.8. Assume M � max{4,⇤}, and � 2 C1,1
0 (R) is given. Then there

exists a constant B = B(�,↵) > 0 such that

|d�gM(⇠)� b�(⇠)|  BM�1 logM,

for all ⇠ 2 R.

Proof. We start by recalling one of the basic properties of the Fourier trans-
form, namely

dey�(⇠) = b�(⇠ + y), where ey(x) := e�2⇡iyx.

In particular, if we write gM as a Fourier series, then

d�gM(⇠) =
X

n2Z

bgM(n)[e�n�(⇠) =
X

n2Z

bgM(n)b�(⇠ � n).

From the way gM was defined, bgM(0) = 1, which leads to

d�gM(⇠)� b�(⇠) =
X

n2Z,n 6=0

bgM(n)b�(⇠ � n) =
X

|n|2N

bgM(n)b�(⇠ � n). (5.23)

Since � 2 C1,1
0 (R), we can use integration by parts twice. Thus, for every

⇠ 6= 0,

|b�(⇠)| =
����
Z

R
e�2⇡i⇠·x�(x)dx

���� =
1

4⇡2|⇠|2

����
Z

R
e�2⇡i⇠·x�00(x)dx

����

k�00k1
�(supp(�))

4⇡2
|⇠|�2 = C|⇠|�2.

If ⇠ = 0, we have the bound |b�(0)|  k�kL1 . Actually, the last bound holds
for any ⇠ 2 R. As such, there is a constant C0 = C0(�) such that

|b�(⇠)|  C0(1 + |⇠|)�2.

Using the decay of b�, we can easily achieve a bound for (5.23), namely

|d�gM(⇠)� b�(⇠)| 
X

|n|2N

|bgM(n)||b�(⇠ � n)|

C0

X

|n|2N

|bgM(n)|(1 + |⇠ � n|)�2. (5.24)
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Since M � max{4,⇤}, we can use lemma 5.7 to conclude that

|bgM(n)|  AM�1 logM.

It therefore follows from (5.24), that

|d�gM(⇠)� b�(⇠)|  C0AM
�1 logM

X

|n|2N

(1 + |⇠ � n|)�2. (5.25)

We now want to investigate the sum which arises in (5.25). If we fix ⇠ 2 R,
then we can note that ⇠ 2 [n⇠, n⇠ + 1] for some n⇠ 2 Z. As such, for any
m 6= n⇠ we have that |⇠ � m| � |n⇠ � m| 2 N. We can therefore bound the
sum as

X

|n|2N

(1 + |⇠ � n|)�2 =
X

n⇠

(1 + |⇠ � n|)�2 +
X

n>⇠

(1 + |⇠ � n|)�2

2
1X

k=1

k�2 =
⇡2

3
. (5.26)

It follows from (5.25) that we have the bound

|d�gM(⇠)� b�(⇠)|  BM�1 logM,

where B = C0A⇡2/3.

We are now ready to present the proof of theorem 5.4.

Proof of theorem 5.4. Fix � > 0 and � 2 C1,1
0 (R). We begin by making two

general observations, and then proceed by treating the cases of small and large
values of ⇠ separately.

First of all, for each constant B > 0, there exist another constant C =
C(B, �), for which

B  � log log (ee + |⇠|),
when |⇠| � C. This follows from the fact that log log (ee + |⇠|) tends to infinity
as |⇠| ! 1, while � and B are independent of ⇠.

Secondly, by construction we have

✓(0) = 1�
1

2+↵ log e log log ee = 1.

Moreover, the function ✓(⇠) has no zeros on each finite interval [0, a) for a > 0.
As such, there exists a constant c(a) > 0 such that

inf
|⇠|2[0,a)

✓(⇠) � c > 0.
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Whence, for each constant B > 0 there exists an integer N = N(B, a, �) such
that

BM�1 logM  �c  inf
|⇠|2[0,a)

�✓(⇠),

for all M � N as the function M�1 logM tends to zero as M ! 1.
Recall that we can apply lemma 5.8 for any M � max{4,⇤}. Let us first

consider values of ⇠ in the range |⇠| < 2(4M)2+↵ for some M � max{4,⇤}.
By rewriting the inequality, we have

M > 2�
5+2↵
2+↵ |⇠|

1
2+↵ , M�1 < 2

5+2↵
2+↵ |⇠|�

1
2+↵ .

Applying lemma 5.8, together with the fact that x�1 log x is a monotonically
decreasing function for x > e, there is a constant B = B(�,↵) such that

|d�gM(⇠)� b�(⇠)| BM�1 log(M)

B2
5+2↵
2+↵ |⇠|�

1
2+↵

✓
1

2 + ↵
log |⇠|� 5 + 2↵

2 + ↵
log 2

◆

B0|⇠|�
1

2+↵ log |⇠|  B1(1 + |⇠|)�
1

2+↵ log (e+ |⇠|),

for some constant B1 = B1(�,↵) whenever 2�
5+2↵
2+↵ |⇠|

1
2+↵ > e. In fact, this

ensures that |⇠| > 25+2↵. Note that there is nothing special about the choice
of M , as long as M � max{4,⇤} such that we can apply lemma 5.8.

By the first observation there exists a constant C = C(B1, �) such that for
all |⇠| � C,

B1  � log log (ee + |⇠|).
Now, define C1 = C1(�,↵, �) = max{C(B1, �), e2+↵25+2↵}. Then for all M >

2�
5+2↵
2+2↵C

1
2+↵
1 , it follows that

|d�gM(⇠)� b�(⇠)| �(1 + |⇠|)�
1

2+↵ log (e+ |⇠|) log log (ee + |⇠|)
�✓(⇠),

whenever C1  |⇠| < 2(4M)2+↵.
For the case |⇠| < C1, it follows from the second observation that there

exists an N = N(B,C1, �) such that

|d�gM(⇠)� b�(⇠)|  BM�1 log(M)  �✓(⇠),

whenever

M � M1 = M1(�,↵, �) := max

⇢
4,⇤, N,


2�

5+2↵
2+2↵C

1
2+↵
1

�
+ 1

�
,
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where [·] denotes the integer part. This shows that for all M � M1,

|d�gM(⇠)� b�(⇠)|  �✓(⇠), |⇠| < 2(4M)2+↵. (5.27)

Now assume that |⇠| � 2(4M)2+↵ for some M , and recall the expression
we found in (5.24),

|d�gM(⇠)� b�(⇠)|  C0

X

|n|2N

|bgM(n)|(1 + |⇠ � n|)�2.

The sum can be divided into two parts, namely |⇠ � n| < |⇠|/2 and |⇠ � n| �
|⇠|/2. In the first sum, where |⇠�n| < |⇠|/2, we must have |⇠|/2 < |n| < 3|⇠|/2.
Whence it follows that

X

|⇠�n|< |⇠|
2

|bgM(n)|(1 + |⇠ � n|)�2  sup
|⇠|
2 <|n|< 3

2 |⇠|
|bgM(n)|

X

|n|2N

(1 + |⇠ � n|)�2

2 sup
|n|> |⇠|

2

|bgM(n)|
X

n2N

1

n2
,

where the last inequality follows from (5.26), as well as taking the supremum
over a larger set. Since |⇠|/2 � (4M)2+↵, it follows from the second result in
lemma 5.7 that we can bound the supremum, and so

2 sup
|n|> |⇠|

2 �(4M)2+↵

|bgM(n)|
X

n2N

1

n2
⇡

2

3
A

✓
|⇠|
2

◆� 1
2+↵

log

✓
|⇠|
2

◆

A1(1 + |⇠|)�
1

2+↵ log (e+ |⇠|),
for some constant A1. Here we have again used the fact that |bgM(n)| is bounded
by a monotonically decreasing function by lemma 5.7.

Now, by the first observation there exists a constant M2 = M2(�,↵, �),
such that C0A1  �/2 log log (ee + |⇠|), whenever |⇠| � 2(4M2)2+↵. Thus, we
have

C0

X

|⇠�n|< |⇠|
2

|bgM(n)|(1 + |⇠ � n|)�2  �

2
✓(⇠), (5.28)

whenever |⇠| � 2(4M)2+↵ for all M � max{4,⇤,M2}.
Let us now treat the case |⇠ � n| > |⇠|/2. By applying the first result of

lemma 5.7, we obtain
X

|⇠�n|� |⇠|
2

|bgM(n)|(1 + |⇠ � n|)�2 AM�1 logM
X

|⇠�n|� |⇠|
2

|(1 + |⇠ � n|)�2

2Ae�1
X

k> |⇠|
2

k�2,
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where we have used the fact that x�1 log x has a maximum at x = e for x � 1.
It then follows from the integral test that

X

k> |⇠|
2

k�2 
 
4|⇠|�2 +

Z 1

|⇠|
2

x�2dx

!
 6|⇠|�1,

which again implies

X

|⇠�n|� |⇠|
2

|bgM(n)|(1+|⇠�n|)�2  12Ae�1|⇠|�1  12Ae�1(1+|⇠|)�
1

2+↵ log (e+ |⇠|),

since |⇠| > 2(4M)2+↵. We can therefore find an integer M3 = M3(�,↵, �), such
that

12Ae�1C0 < �/2 log log (ee + |⇠|),

whenever |⇠| � 2(4M3)2+↵. It then follows that for |⇠ � n| > |⇠|/2, that

X

|⇠�n|� |⇠|
2

|bgM(n)|(1 + |⇠ � n|)�2  �

2
✓(⇠) (5.29)

whenever |⇠| � 2(4M)2+↵ for all M � max{4,⇤,M3}. Thus, by combining
(5.28) and (5.29), we have for any M � max{4,⇤,M2,M3} the bound,

|d�gM(⇠)� b�(⇠)|  �✓(⇠), |⇠| � 2(4M)2+↵. (5.30)

To finish the proof, we define M0 = M0(�,↵, �) := max{M1,M2,M3}.
Then for any M � M0, we have

|d�gM(⇠)� b�(⇠)|  �✓(⇠),

for all ⇠ 2 R by (5.27) and (5.30). Since � 2 C1,1
0 (R) and � > 0 was arbitrary,

while ↵ is assumed to be fixed, we can repeat the proof for any choice of �
and �, and conclude that there exists an M0 = M0(�, �) such that for any
M � M0,

|d�gM(⇠)� b�(⇠)|  �✓(⇠),

for all ⇠ 2 R.
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