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As a vital key part of the modern offshore wind energy industry, floating offshore 

wind turbines (FOWT) are built to generate green renewable energy. Robust 

prediction of extreme loads during FOWT operation is an important safety 

concern. In this paper, the FAST code has been used to analyze offshore wind 

turbine internal bending moments due to environmental hydrodynamic wave 

loads, acting on a specific FOWT under actual local sea conditions. This paper 

advocates a computationally efficient Monte Carlo based methodology for 

estimating extreme load or response statistics, based on simulations or 

measurements. For this purpose, the averaged conditional exceedance rate 

(ACER) method is proposed. The methodology provides for accurate extreme 

value prediction, representing an efficient use of all available data. In this study 

the estimated return level values, obtained by the ACER method, are compared to 

the corresponding return level values obtained by the Gumbel method. Based on 

the overall performance of the proposed method, it is concluded that the ACER 

method can provide more robust and accurate prediction of extreme structural 

loads. The described approach may be well used at the design stage, while 

defining optimal wind turbine parameters that would minimize potential FOWT 

mechanical damage due to excessive environmental loadings. 
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1. Introduction 

Wind energy is one of the most important renewable green energy resources, 

satisfying the drive of an expanding offshore energy industry. Offshore wind power, or 

offshore wind energy, is typically generated by wind farms constructed offshore, 

usually on the continental shelf, harvesting wind energy and generating electricity. 

Offshore wind speeds are typically stronger compared to those onshore, therefore 

offshore wind power contribution in terms of electricity supplied is of significant 

industrial importance. 

Relatively low surface roughness of the ocean normally yields higher mean wind 

speeds. Recent developments within offshore wind turbines design have been obviously 

important for efficient generation of renewable energy. FOWTs are naturally exposed to 

turbulent wind flows and hydrodynamic loads, therefore their extreme load capacities 

are of significant engineering importance for FOWT design and operation. 

 There are usually two approaches for obtaining wind turbine design loads: (a) 

simulate events with rare occurrence that cause high load levels and are thus likely to be 

structural design drivers, and (b) simulate turbine response under normal operating 

conditions and extrapolate structural responses by fitting short-term probability 

distribution in its extreme tail (Dimitrov, 2016). Note that current study addresses long-

term probability distribution. According to IEC 61400-1 standard (IEC, 2005), both 

approaches for obtaining extreme design loads may be recommended. This paper 

intends to contribute to the second approach (b), as being more statistically accurate as 

it utilizes full statistical distributions, and not a single extreme load/response event. This 

study therefore advocates methodology that has been already validated for a wide range 

of marine structures such as various offshore platforms and vessels (Gaidai et. al., 2018; 

Zhang et. al., 2019; Gaidai et. al., 2016; Naess et. al., 2010; Naess et. al., 2009; Naess 



et. al., 2008; Naess and Moan, 2013).  Figure. 1 presents an example of FOWT in 

offshore operation, similar to the one studied in this paper. 

 

Figure. 1. An example of FOWT in offshore operation. 

Numerous studies have been conducted, aiming at accurate estimation of 

ultimate loads within the framework of offshore wind turbines design. Fogle et. al. 

(2008) applied global maxima and block maxima for loads extrapolation of a wind 

turbine. Ernst and Seume (2012) used data from FINO research platform to investigate 

turbulent intensity and determined extreme loads of a 5 MW wind turbine using a peak 

over threshold extrapolation method. Dimitrov (2016) compared four extrapolation 

techniques applied to wind turbine environmental loads. Li et. al. (2015) developed a 

MATLAB code for dynamic analysis of a semi-submersible type of floating wind 

turbine. Graf et al. (2016) evaluated the long-term fatigue loads of a floating wind 

turbine by using Monte Carlo method. Aggarwal et al. m(2017) studied the nonlinear 

short-term extreme responses of a spar-type floating wind turbine. Li et. al. (2018) 

studied effects of simulation length on accumulated fatigue damage.  



This paper aims at efficient use of simulated or measured structural data; for that 

purpose the averaged conditional exceedance rate (ACER) method has been adopted. 

The available structural load statistics is combined with a suitable class of parametric 

functions for describing the tail behavior of the extreme value distribution. Next, a 

comprehensive procedure for estimation of extreme values is obtained, that is not based 

on the assumption of a purely asymptotic distribution of the extreme values. This 

assumption is a distinctive feature of classical methods like Gumbel, Pareto, Weibull, 

peaks-over-threshold (POT) and other commonly used engineering techniques.  

In other words, the ACER method does not incorporate the generalized extreme 

value distribution (GEV) concept, which makes the ACER method more flexible to 

tackle real-life data sets which are never truly asymptotic. This inconsistency between 

the imposed asymptotic behavior on real-life nonasymptotic data has occasionally lead 

to grave errors in the predicted long return period design values.  

A clear engineering design advantage of the advocated approach, compared to 

e.g. a direct Monte Carlo method, is that much less simulations or measurements are 

needed to obtain equally accurate extreme value estimates. 

2. Environmental conditions 

High-quality metocean data with high temporal resolution is often difficult to 

find. The data source for this project was the National Oceanic and Atmospheric 

Administration (NOAA). The NOAA organization maintains an extensive network of 

floating data-collection buoys scattered throughout US and international waters. Data 

from these buoys can be found at the National Data Buoy Center 

(https://www.ndbc.noaa.gov/). 

The first step in this study was to download the data from the NOAA website. 



To ensure statistical significance of the data, only sites with at least 5 years of data were 

selected for processing. The selected sites also needed to include five measurement 

signals that were deemed necessary for offshore wind energy applications: mean wind 

speed, significant wave height, wave peak-spectral period, wind direction and wave 

direction. As the purpose of this paper is rather illustratory, only three major 

measurement signals have been chosen, that is however is not a limitation of the 

suggested approach.  Requirements for a wave direction measurement proved to be the 

most limiting, leading to 23 offshore sites that met all criteria. Figure. 2 shows locations 

and names of selected from the NOAA database sites. 

The data was collected and processed in different ways from different device 

sensors. The wind speed data was averaged over 8 min and reported hourly. The wind 

direction was averaged per direction with the same 8 min averaging period. The 

significant wave height was measured as the average height of the highest one-third of 

waves over a 20 min period, reported every hour. 

Peak-spectral period was the wave period with the maximum wave energy over 

this same 20 min wave measurement period. Wave direction was reported as the 

direction from which waves at the dominant period arrived. 

National Data Buoy Center Station Cape Elizabeth was finally selected for the 

present research. The measurement buoy was located 45 nautical miles Northwest of 

Aberdeen, Washington; it was located near the continental shelf edge at 125 m of water 

depth. Figure. 2 presents US National Data Buoy Centre stations along with Cape 

Elizabeth location marked in red (Stewart et. al., 2016). Joint wind-wave statistics for 

the above-mentioned location was estimated from the in situ measured metocean hourly 

historical data during 2010-2017 years.  



 

Figure. 2. US National Data Buoy Center stations. Cape Elizabeth is indicated in red. 

 

Figure. 3 presents a flow chart for the Monte Carlo based long term statistical 

analysis utilized in this paper. Note that by "sea state" the authors imply the full set of 

accounted environmental conditions, including wind speed. As already mentioned, only 

the National Data Buoy Center Station Cape Elizabeth was selected for the present 

research.  

 

Figure. 3. Flow chart for described long term statistical analysis. 

Post-processing of the data then continued with the extrapolating of the wind 

speed to a typical FOWT hub height of 90 m. The anemometers of Cape Elizabeth are 

placed at 5 m above sea level. Most engineering approaches use either log law or power 

law wind shear equations for the extrapolation, which can be seen in Eqs (1) and (2), 

respectively: 



                           𝑈(𝑧) = 𝑈(𝑧𝑟)
𝑙𝑛(𝑧)−𝑙𝑛(𝑧0)

𝑙𝑛(𝑧𝑟)−𝑙𝑛(𝑧0)
                                                 (1) 

                              𝑈(𝑧) = 𝑈(𝑧𝑟) (
𝑧

𝑧𝑟
)

𝛼

                                                     (2) 

with 𝑈(𝑧), 𝑈(𝑧𝑟) being the wind speed at height 𝑧 and the reference wind speed at 

height 𝑧𝑟  respectively. 𝑧0  is the surface roughness length and 𝛼  is the power law 

constant. In this paper the power law given by Eq. (2) has been preferred with 𝛼=0.14. 

For this study, the following conditionalities are used, as defined in the design 

standards: 

• Wind speed 𝑈 

• Significant wave height 𝐻𝑠  

• Peak-spectral period 𝑇𝑝  

In this paper a scatter diagram approach was adopted, namely the measured 

buoy data has been post-processed into an empirical multi-dimensional joint 

distribution, without any simplifications or assumptions. More specifically, the 

empirical joint probability density function (PDF)  𝑝(𝑈,  𝐻𝑠 𝑇𝑝)  has been estimated 

directly from the available metocean data, resulting in a three dimensional scatter 

diagram. Since the wind/wave misalignment has not been an input parameter for FAST 

simulation, only the three-dimensional probability space (𝑈,  𝐻𝑠 𝑇𝑝) has been adopted. 

Note that the described approach is well suited for higher dimensional scatter diagrams. 

Figure. 4 presents on the left: In situ wind speed versus significant wave height 

correlation pattern; on the right: (𝐻𝑠, 𝑇𝑝) contour plot,  𝑝( 𝐻𝑠 𝑇𝑝) = ∫ 𝑝(𝑈,  𝐻𝑠 𝑇𝑝) 𝑑𝑈. 



 

Figure. 4. Left: In situ wind speed versus significant wave height correlation pattern; 

Right: (𝑯𝒔, 𝑻𝒑) contour plot of the joint probability density 𝒑(𝑯𝒔 𝑻𝒑) = ∫ 𝒑(𝑼,  𝑯𝒔 𝑻𝒑) 𝒅𝑼. 

The above described approach can be regarded as a direct Monte Carlo long 

term simulation approach, which has the advantage of not incorporating various 

simplifications and assumptions, like e.g. Stewart et. al. (2016), where the wind speed 

was considered as an independent parameter (typical in many FOWT engineering 

applications). Note that Figure. 4, on the left, exhibits a clear correlation between wind 

speed 𝑈 and significant wave height 𝐻𝑠. Therefore, it is not always accurate to assume 

wind speed as an independent parameter. Note that this paper is not aiming at 

quantifying e.g. environmental correlation patterns, but rather at a qualitative study that 

advocates using scatter distributions without simplifications. An advantage of avoiding 

over-simplification of the empirical multi-dimensional probability distribution function 

(PDF) is highlighted by Figure. 4. 

For the current study, the total 12 different wind speed bins have been selected, 

ranging from 3 to 25 m/sec. For each wind speed bin (𝑈), about 30 corresponding sea 

states (𝐻𝑠, 𝑇𝑝)  with different probabilities have been selected for further numerical 

simulation. In this way, the scatter diagram three dimensional probability 

distribution 𝑝(𝑈,  𝐻𝑠 𝑇𝑝) has been properly taken into account within a frame of Monte 



Carlo simulated data sets. For details on how the ACER functions corresponding to 

different short term wind-sea states are combined into one long term ACER function, 

ACERk(𝜂) , with 𝜂 being the response (or load) level of interest, see Appendix Eq. 

(5A). 

Note that this study has relied on the NOAA buoy data, with subsequent 

application of a scatter diagram approach to get the empirical multi-dimensional PDF. 

The authors did not compare the resulting PDF to PDFs from satellite data, since this 

study is focusing on an approach of fully using distributions derived from scatter 

diagrams without simplifications, rather than aiming at producing quantitative 

engineering numerical values. 

3. Model description in brief 

The DeepCwind semi-submersible type supporting platform, namely OC4 semi-

submersible floating system of Robertson et. al. (2014) has been chosen for the current 

study. Figure. 5 shows the model of the semi-submersible platform, which consists of 

one main column and three outer offset columns. There are heave plates (base columns) 

attached to the bottom in order to reduce large heave motions. 

 

Figure.5. 1/50 scale model of the DeepCwind semi-submersible platform. 



Table 1 presents the main dimensions of the full scale semi-submersible 

platform. 

Table 1. Main dimensions of the semi-submersible platform. 

Item Value 

Platform draft 20.0 m 

Spacing between offset columns 50.0 m 

Length of upper columns 26.0 m 

Length of base columns 6.0 m 

Diameter of central column 6.5 m 

Diameter of offset (upper) columns 12.0 m 

Diameter of base columns 24.0 m 

The NREL 5-MW baseline wind turbine is placed on top of the OC 4 semi-

submersible platform. The diameter of the three-bladed rotor is 126 m and the hub 

height of the cylindrical tower is 90 m. Table 2 summarizes properties of the 5-MW 

baseline wind turbine.  

Table 2. Summary properties of 5-MW baseline wind turbines. 

Item Value 

Rotor orientation Upwind, 3 blades 

Cut-in/Rated/Cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s 

Rotor mass 110,000 kg 

Nacelle mass 240,000 kg 

Tower mass 347,460 kg 

Hub height 90 m 

 

FAST and AeroDyn account for applied aerodynamic and gravitational loads, 

enabling accurate numerical estimation of the wind turbine structural dynamics. The 



FAST software include various mechanical effects such as e.g. elasticity of the rotor 

tower, along with the elastic coupling between their motions and the motions of the 

support platform as well as dynamic coupling between the support platform motions 

and of the wind turbine motions. FAST employs a combined modal and multibody 

structural dynamics formulation, see Jonkman et. al. (2005). 

Numerical simulations for the current study were run with a sufficient number of 

degrees-of-freedom (DOFs), including FAST two flap wise and one edgewise mode 

DOFs per blade, one drivetrain torsion DOF, one variable generator-speed DOF, one 

nacelle yaw DOF, two fore-aft and two side-to-side tower mode DOFs, as well as 

floating system DOFs, namely three translational (surge, sway, and heave) and three 

rotational (roll, pitch, and yaw) DOFs of the platform, see Jonkman et. al. (2007). 

4. Dynamic analysis of wind turbine simulations 

In the present study, the aero-hydro-servo-elastic simulation code FAST 

Jonkman et. al. (2005) was used to simulate various coupled system responses. 

Stochastic wind fields are generated by TurbSim Jonkman (2009) on a 31×31 square 

grid with 145 m width. AeroDyn, which is the FAST code module, was able to model 

aerodynamics of baseline wind turbines using the blade element momentum method 

with proper consideration of rotor-wake effects and dynamic stall. Hydrodynamic loads 

were modelled by FAST HydroDyn Jonkman et. al. (2014) module, which incorporates 

Morison’s equation aimed at slender structures and potential flow theory suitable for 

large-diameter structures. The drag force term in Morison’s equation accounted for 

viscous drag forces acting on FOWT. The second-order wave forces have been taken 

into account in FAST numerical simulation as well, see Bayati et. al. (2014). According 

to IEC-61400-1 from the International Electro technical Commission (2005), at least 15 



short term simulations of 10 minute duration were required for ultimate loads 

extrapolation, aiming at 50-year return period under normal production conditions. 

Based on IEC-61400-3 from the International Electro technical Commission (2009), 

Design Load Case (DLC) 1.1, for the current study the total of 2550 times 10 min short 

term random realizations have been numerically simulated, with cut-in wind speed 3 

m/s and cut-out wind speed 25 m/s; wind speed scatter diagram bin size has been set to 

2 m/s. The total length of each simulation was set to 800 sec with first 200 sec being 

removed from post processing due to initial transient effects. Figure. 6 shows a sample 

time series of the tower base fore-aft bending moment and platform pitch. The mean 

value of the tower base fore-aft bending moment is non-zero because of the wind 

turbine thrust force and is proportional to the wind turbine thrust force. It indicates that 

ultimate structural loads are more likely to reach a certain extreme level when subject to 

large wind forces. Besides, the obvious fluctuating component is observed, and 

therefore the ultimate structural loads are determined by both aerodynamic and 

hydrodynamic excitation. 

 

Figure. 6. Sample time series of tower base fore-aft bending moments and platform pitch when 

𝑼𝒉𝒖𝒃 = 𝟏𝟏𝐦/𝐬. 
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Extensive experimental work of OC4 and OC5 projects have been conducted in 

order to provide experimental data which is useful in validating floating offshore wind 

turbine modelling tools, see e.g. Coulling et. al. (2013) and Benitz, et. al. (2015). The 

average error with respect to experimental results across OC5 FAST numerical results 

was about 10% under-prediction of the tower top ultimate shear load; about 14% under-

prediction for the tower-base load; about 20% under-prediction of the upwind mooring 

tension for wave-only cases, see Robertson et. al. (2017). The experimental validation 

results give the authors confidence in using FAST as a numerical simulation tool for the 

current study. 

5. Extreme load analysis 

This section, together with the Appendix, presents extreme value analysis results, which 

include the results obtained by the proposed ACER method, as well as Gumbel method 

predictions for comparison. The basic extreme value distribution provided by the ACER 

method can be written as follows, 

𝑃(𝜂) ≈ exp(−(𝑁 − 𝑘 + 1) ACERk(𝜂)),    (3) 

where ACERk(𝜂) denotes the ACER function of order k, and where N denotes the total 

number of data points in the time series analyzed. The ACER function expresses a 

conditional exceedance rate, which is extracted from the measured or simulated time 

series as detailed in the Appendix. A plot of the ACER functions will reveal the effect 

of statistical dependence between sampled data points in the time series. By studying 

the ACER plot, it may be decided what order is needed to obtain a good approximation 

to the extreme value distribution inherent in the data.  

Fig. 7 presents convergence diagnostics for the ACERk functions for the out-of-plane 

blade root bending moment. Note that this diagnostic plot has been based on a time 



series of sampled peak values. The practical consequence of this is that the peak values 

are considered independent for k = 1, which would yield similar results as the well-

known Poisson assumption, which is known for its accuracy in the absence of narrow 

band effects in the response process. For k > 1, dependence effects are taken into 

account with an accuracy that increases with increasing k. It is interesting to observe 

from the diagnostic plot of  Fig. 7 that already k = 2 captures most of the dependence 

effects on the ACER function. A prerequisite for this observation is that the time series 

consist of local peak values. Fig. 7 also shows that the ACER10 function, i.e. with the 

conditioning level 𝑘 = 10, provides a good candidate for deep tail estimation.  

 

Figure. 7 ACERk functions convergence diagnostics for the out-of-plane blade root bending 

moment. 

Fig. 8 presents the 50 years predicted response level along with 95% CI for the out-of-

plane blade root bending moment, note over-estimation of predicted response by 

Gumbel method. Note that extrapolation has different cut on markers 𝜂∗ for different 

channels, therefore the accuracy of extrapolation and CI width differ. In other words, 

different responses exhibit different quality of fitting. The cut on tail markers 𝜂∗ is the 

smallest (left) value on the horizontal axis on the ACERk (left) in Fig 8 and Fig 10; see 

Appendix Eq. (7A) for the tail marker definition.  



 

Figure. 8 Left: Blade root bending moment out-of-plane, 50yr predicted bending moment level.  

Stars (*) indicate ACER5 values, dashed lines (--) indicate 95% CI, horizontal line indicates 50 yrs 

level of interest; solid lines indicate extrapolated ACER10 and CI. Right: Gumbel fit. Scatter 

diagram probabilities set equal in both cases. 

Fig. 9 presents convergence diagnostics for the ACERk functions for the anchor tension 

with conditioning level 𝑘 running up to 30. This covers most of the characteristic time 

constants of the dynamics of the floater, which is the determining factor for the anchor 

forces. Note that conventional Gumbel fit does not account for scatter diagram 

probabilities, i.e. all maxima are expected to have equal probability. Therefore in this 

paper for the Gumbel fit, all analysed sea states were considered to be equally probable 

(i.e. neglecting scatter diagram probabilities).    

 

Figure. 9 ACERk functions convergence diagnostics for the anchor tension. 



Note again that individual local peaks have been extracted for ACERk estimation. Since 

the original simulated time series used a time increment 𝑑𝑡 = 0.2 sec, it was observed 

that on the average 10 discrete time steps with length of 𝑑𝑡 would correspond to the 

time between local peaks. Therefore, the average time lapse between neighbouring local 

peaks in ACERk estimation was 2 seconds.  Thus, ACER10 for the anchor tension local 

peak data would cover 20 seconds of declustering time span.    

For the anchor tension, the conditioning level 𝑘 for ACERk has been chosen to be equal 

10, according to a similar study as in Fig 7. Note that the necessity of a higher 

conditioning level 𝑘 signals the presence of stronger narrow band effects, as is indeed 

the case for tensile loads.  

In Fig. 10 is shown the predicted 50 yr anchor tension level, 50 yr.  Note that the ACER 

function tail in Fig. 10 on the left exhibits an almost straight line behaviour, as opposed 

to the concave shape in Fig. 8. This rather fat tailed distribution is typical for tensile 

loads, see for example the tether tension measured for a tension leg platform (TLP), see 

Teigen et. al. (2006), Næss et. al. (2007a), Næss et. al. (2007b), where the ACER 

functions become even markedly convex.  Of course, a global straight line in an ACER 

plot corresponds to a Gumbel distribution. Therefore, in this specific case, the ACER 

and Gumbel methods provide almost identical answers. Typically, the Gumbel 

distribution would only show up as an asymptotic limiting distribution, but in this 

specific case the ACER plot convincingly reveals that the Gumbel distribution is indeed 

a good global approximation.  



 

Figure 10. Left: Anchor tension, 50yr predicted tension level.  Stars (*) indicate ACER10 values, 

dashed lines (--) indicate 95% CI, horizontal line indicates 50 yrs level of interest; solid lines 

indicate extrapolated ACER10 and CI.  Right: Gumbel fit. Scatter diagram probabilities set equal in 

both cases. 

Note good agreement between ACER and Gumbel methods for predicted response level 

in Fig. 10. Table 1 presents various predicted FOWT response values for 20 and 50 

years return periods. 

 

Table 1 Various predicted FOWT load values for 20 and 50 years return periods.  Scatter diagram 

probabilities set unequal/equal. 

 20 years return period 50 years return period 

Out-of-plane bending moment 16.01/16.35MN·m 16.21/16.43 MN·m 

Tower-base side-to-side bending moment 37.91/38.64 MN·m 38.71/39.62 MN·m 

Tower-base fore-aft bending moment 170.61/173.11 MN·m 173.23/176.02 MN·m 

Anchor tension 6.25/ 6.58 MN 6.72/6.86 MN 

 

Regarding the comparison between the proposed ACER method and the Gumbel fit, it 

was found that although both estimates are within 95% CI of each other, the Gumbel fit 

yields about five times wider CI than ACER, if CI width is measured relatively to the 

predicted value itself.  Regarding validation of the proposed method versus direct 

Monte Carlo simulation, the total simulation length was reduced 100 times. The 

extreme value prediction obtained by the ACER method was in a proper agreement with 

direct Monte Carlo simulation of the full length (not reduced 100 times). This shows 



that the ACER method is at least 100 times more efficient than direct Monte Carlo 

simulation, making the proposed approach an attractive CPU saving engineering option.   

Regarding the relative simulation time of post-processing long term simulation 

results by the ACER method, compared to the FAST method, it is noted that the ACER 

method virtually took no computational effort, compared to the main FAST 

computational effort. 

6. Results and conclusions 

This study focused on the FOWT subjected to extreme environmental loads 

during operation, provided by Cape Elizabeth metocean conditions. In particular, 

various structural FOWT bending moments have been numerically simulated.  

One method to obtain load design values is the classical Gumbel method, which 

is based on adopting an asymptotic extreme value distribution. An alternative approach 

is a state-of-the-art method called the ACER method, which is based on a generalization 

of the Gumbel type extreme value distribution in combination with non-parametric 

ACER functions. The ACER method is implemented by expressing the extreme value 

distribution in terms of an empirical average conditional exceedance rate function. By 

fitting a parametric function to the empirical exceedance rate, it is shown that the tail 

behaviour of the empirical extreme value distribution can be quite accurately captured. 

The ACER method has been validated by application to a wide range of simulation 

models, and, in general, very accurate predictions were obtained, cf. Naess et. al. (2008, 

2009, 2010, 2013); Gaidai et. al. (2016, 2018); Jian et. al. (2018). 

It is shown that the asymptotic assumption, needed by conventional methods 

like the Gumbel method, may not be fully applicable to the analysed data set, i.e. the 

data are not extreme enough. The ACER method, on the other hand, does not rely on 



assuming asymptotic data.   

The accuracy of the ACER method was found to be more than twice better than 

the Gumbel one, based on a comparison of the ratio (confidence interval 

width)/(predicted value).  

Finally, the presented methodology has the following important advantages: 

▪ Any kind of FOWT response data can be analysed: either numerically simulated or 

measured.  

▪ Unlike asymptotic methods (Gumbel, Weibull, Pareto etc.), the presented method 

can be called pre-asymptotic, which means that the data set can be analysed more 

accurately and efficiently.  

▪ The presented method yields about four times narrower confidence interval, than a 

Gumbel based method, for the predicted FOWT loads. 

▪ The proposed methodology conveniently incorporates sea state environmental 

scatter diagrams, unlike other conventional methods, e.g. Gumbel.  

7. Appendix 

For a stationary or nonstationary stochastic process 𝑍(𝑡) , that has been 

simulated over a certain time interval (0, 𝑇), there are typically discrete process values 

𝑋1, … , 𝑋𝑁, that have been measured/simulated at equidistant time moments 𝑡1, … , 𝑡𝑁 in 

(0, 𝑇). The discrete process values could be exactly observed/calculated values of 𝑋(𝑡) 

at each 𝑡𝑗, 𝑗 = 1, … , 𝑁, or it could be maxima values over time intervals centered at the 

𝑡𝑗’s. The target is to accurately estimate the cumulative distribution function (CDF) of 

the extreme value 𝑀𝑁 = max { 𝑋𝑗  ; 𝑗 = 1, … , 𝑁}. It is of interest to estimate P(𝜂) =



Prob(𝑀𝑁 ≤ 𝜂) for large values of 𝜂. The following random functions are introduced 

Naess and Gaidai (2009) 

 

𝐴𝑘𝑗(𝜂) = 𝟏{𝑋𝑗 > 𝜂, 𝑋𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤ 𝜂} ,

𝑗 = 𝑘, … , 𝑁, 𝑘 = 1, 2, 3, … , 𝑁 

(1A) 

and  

 

𝐵𝑘𝑗(𝜂) = 𝟏{𝑋𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤ 𝜂} ,

𝑗 = 𝑘, … , 𝑁, 𝑘 = 1, 2, 3, …  , 𝑁 

 

(2A) 

where 𝟏{𝒜} = 1 if 𝒜 is true, while it is zero if not. For k = 1, 2, …, define the 

statistical distribution functions (CDFs) 

 

𝑃𝑘(𝜂) =  exp ( − ∑
𝔼[𝐴𝑘𝑗(𝜂)]

𝔼[𝐵𝑘𝑗(𝜂)]

𝑁

𝑗=𝑘

) ≈ exp ( − ∑ 𝔼

𝑁

𝑗=𝑘

[𝐴𝑘𝑗(𝜂)]),

𝜂 → ∞ 

(3A) 

As shown in Naess et. al. (2009), 𝑃𝑘(𝜂) → P(𝜂), as k increases. It is assumed that the 

long term response time series can be sub-divided into 𝐾 blocks such that 𝔼[𝐴𝑘𝑗(𝜂)] 

remains approximately constant within each block and such that ∑ 𝔼𝑗∈𝐶𝑖
[𝐴𝑘𝑗(𝜂)] ≈

∑ 𝑎𝑘𝑗𝑗∈𝐶𝑖
(𝜂) for a sufficient range of 𝜂-values, where 𝐶𝑖 denotes the set of indices for 

block with number 𝑖 ; with 𝑖 = 1, … , 𝐾 , and where 𝑎𝑘𝑗(𝜂) are the realized values of 

𝐴𝑘𝑗(𝜂)  for the simulated (or measured) time series, then ∑ 𝔼𝑁
𝑗=𝑘 [𝐴𝑘𝑗(𝜂)] ≈

∑ 𝑎𝑘𝑗
𝑁
𝑗=𝑘 (𝜂). Typically, each block would then consist of data from identical short term 

sea states within the long term time series.  Thus, it is obtained that, 

 𝑃𝑘(𝜂) ≈ exp ( − (𝑁 − 𝑘 + 1)𝜀�̂�(𝜂)) ,  𝜀�̂�(𝜂) =
1

𝑁 − 𝑘 + 1
∑ 𝑎𝑘𝑗

𝑁

𝑗=𝑘

(𝜂) , (4A) 



where the empirical (long term) ACER function of order k, 𝜀�̂�(𝜂), has been defined. 

Alternatively, for easy identification, 𝜀�̂�(𝜂) is also denoted as ACERk(𝜂). 

Now, consider a scatter diagram of 𝑚 = 1, . . , 𝑀 sea states, each sea state having 

probability  𝑝𝑚 , so that  ∑ 𝑝𝑚
𝑀
𝑚=1 = 1 . The long term ACER function may then be 

expressed as, 

𝜀�̂�(𝜂) = ∑ 𝜀�̂�(𝜂, 𝑚)𝑀
𝑚=1 𝑝𝑚 ,                                                     (5A) 

where 𝜀�̂�(𝜂, 𝑚) is the same function as in Eq. (4A), but corresponding to a specific sea 

state with number 𝑚. Each sea state of the scatter diagram would then correspond to a 

block in the discussion above.  As shown in Naess et. al. (2009), the long term extreme 

value distribution of  𝑀(𝑇) , based on the ACER function of order k, can then be 

expressed as follows, 

   𝑃(𝜂) ≈ exp(−(𝑁 − 𝑘 + 1) 𝜀�̂�(𝜂))                                                        (6A) 

where 𝜀�̂�(𝜂) is the empirical ACER function derived from Eq. (4A) or (5A) with k ≪

𝑁, where 𝑁 is the total number of data points in the time series analysed.   

The choice of what value of k to use in a specific case, depends on the dependence 

structure of the time series. For instance, if the response time series contains 

contributions from several narrow band modal responses, it is important to choose k 

large enough to cover a time span exceeding the longest characteristic time of the 

dynamics, which would typically be associated with the lowest spectral peak of the 

response spectrum. With such information available, it can then be decided whether 

f.ex. k = 2 can be used as a good approximation.  

As the order k increases, the accuracy of Eq. (6A) improves, but the amount of 

data for 𝜀�̂�(𝜂) estimation gets gradually less. Results from Section 5 of this paper show 



that the 𝜀�̂�(𝜂) functions converge conveniently fast with growing k, see (Naess et. al. 

2009; Naess et al. 2010).  

The  𝜀�̂�(𝜂) as functions of the response level 𝜂 are in general quite regular in the 

tail, i.e. for high values of 𝜂. More specifically, for 𝜂 ≥ 𝜂0, the tail behaves very closely 

like exp{−𝑎(𝜂 − 𝑏)𝑐 + 𝑑}  with 𝑎, 𝑏, 𝑐, 𝑑  being suitable constants for an appropriate 

threshold 𝜂0. This is based on the underlying assumption that the domain of attraction 

of the extreme value distribution belongs to the asymptotic Gumbel case. 

The optimization on the log-level was done by minimizing the following mean 

square error function F with respect to the four arguments 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 , 𝑑𝑘, 

  𝐹(𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘  )=∫ 𝜔(𝜂)
𝜂1

𝜂0

{ln(�̂�𝑘(𝜂)) − (𝑎𝑘(𝜂 − 𝑏𝑘)𝑐𝑘 − 𝑑𝑘)}2𝑑𝜂, 𝜂 ≥ 𝜂0 (7A) 

where  𝜂1 is a suitable data cut-off value, i.e. the largest response value where the 

confidence interval width can be calculated. The weight function 𝜔  was defined as 

𝜔(𝜂)={ln𝐶+(𝜂) − ln𝐶−(𝜂)}−2with (𝐶−(𝜂),  𝐶+(𝜂)) being a 95% confidence interval 

(CI), empirically estimated from the simulated data. The procedure for optimizing the 

parameters 𝑎k, 𝑏k, 𝑐k, 𝑑k was outlined in (Naess et. al. 2009; Naess et. al. 2010; Naess 

and Gaidai 2008; Naess and Gaidai 2009). 
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