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Abstract. We discuss generalizations of Rubio de Francia’s inequality for

Triebel–Lizorkin and Besov spaces, continuing the research from [5]. Two ver-
sions of Rubio de Francia’s operator are discussed: it is shown that a rotation

factor is needed for the boundedness of the operator in some smooth spaces

while it is not essential in other spaces. We study the operators on some “end”
spaces of the Triebel–Lizorkin scale and then use usual interpolation methods.

1. Introduction

If f is a function in L2([0, 1]) and I is an interval in Z, then by (MIf)(x) we de-

note the exponential polynomial (f̂1I)
∨(x) =

∑
n∈I f̂(n)e2πinx. For any collection

I of pairwise disjoint intervals I ⊂ Z such that
⋃
I∈I I = Z, we have

(1) ‖f‖L2 =
∥∥∥(∑

I∈I
|MIf |2

)1/2∥∥∥
L2
.

This is an equivalent reformulation1 of Parseval’s identity, one of the most funda-
mental results in harmonic analysis. For brevity, we can write the right expression
in (1) as

∥∥{MIf}I∈I
∥∥
L2(l2)

.

In form (1), Parseval’s identity has an extension to the spaces Lp([0, 1]). Namely,
for 2 ≤ p <∞, we have the following two-sided inequality:

(2) cp
∥∥{MIf}I∈I

∥∥
Lp(l2)

≤ ‖f‖Lp ≤ Cp
∥∥{MJf}J∈J

∥∥
Lp(l2)

,

where I is an arbitrary collection of pairwise disjoint intervals in Z, the collection
J is defined as

J def
=
{

(−2k+1,−2k]
}
k∈Z+ ∪

{
{0}
}
∪
{

[2k, 2k+1)
}
k∈Z+ ,

and the constants cp and Cp depend only on p (in particular, cp does not depend
on the choice of I). The left inequality have been obtained by Rubio de Francia [6]
in 1983, and the right inequality is the classical Littlewood–Paley theorem (see,
e.g., the exposition in [8]). By duality, if we interchange the left and the right
expressions in (2), we obtain correct estimates for 1 < p ≤ 2, provided

⋃
I∈I I = Z.

In what follows, we consider the whole line R instead of [0, 1]. In such a context,

the Fourier transform f̂ is also defined on R (so we consider collections of intervals
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1We are talking about the equivalence of two correct statements in the sense that they are
direct consequences of each other.

1

ar
X

iv
:1

70
5.

02
22

8v
1 

 [
m

at
h.

FA
] 

 5
 M

ay
 2

01
7



2 EUGENIA MALINNIKOVA AND NIKOLAY N. OSIPOV

on R) and relation (2) remains true, provided k runs over the whole Z in the
definition of J . In fact, the corresponding results are usually presented precisely
in this form (see [6, 8]).

Next, we note that Lp-classes do not exhaust the set of spaces studied in har-
monic analysis. In addition to them, there are many normed spaces that seem,
at first glance, to have no direct connection with each other: Sobolev spaces, the
BMO-space, Hölder–Zygmund classes of smooth functions, etc. But it is known
that the corresponding norms can be written in a uniform way: all these spaces
belong to the scale of Triebel–Lizorkin and Besov spaces. In this article, we outline
an overall picture: we discuss generalizations of Rubio de Francia’s inequality for
a substantial part of Besov–Triebel–Lizorkin scale (which includes all of the spaces
listed above). In this general context, we raise and answer a subtle question con-
cerning the presence or absence of the rotations in the operators that correspond
to Rubio de Francia’s inequality.

Now, let I = {Im} =
{

[am, bm]
}

be a finite or countable collection of pairwise
disjoint intervals in R such that

(3) 0 /∈ (am, bm)

for any m. Suppose ϕ is a Schwartz function such that supp ϕ̂ ⊂ (0, 1) (in particular,
supp ϕ̂ is separated from 0 and 1). We introduce the functions ϕm corresponding
to the intervals Im:

(4) ϕ̂m(t) = ϕ̂

(
t− am
bm − am

)
.

Consider two operators that transform scalar-valued functions to collections of func-
tions by the following formulas:

(5) Sϕ
I
f (x)

def
=
{

(f ∗ ϕm)(x)
}
m

and S̃ϕ
I
f (x)

def
=
{
e−2πi amx(f ∗ ϕm)(x)

}
m
.

Also we introduce two corresponding families of operators

Sϕ
def
=
{
Sϕ
I

}
I and S̃ϕ

def
=
{
S̃ϕ
I

}
I ,

where I runs over all possible collections of pairwise disjoint intervals in R satisfy-
ing (3).

The fact that for 2 ≤ p < ∞ the family Sϕ is uniformly bounded from Lp

to Lp(l2) is a version of Rubio de Francia’s theorem where we have substituted
smooth multipliers ϕm instead of 1Im .2 Its proof is contained in considerations

of [6]. In fact, Rubio de Francia deals with the family S̃ϕ. The matter is that the
factors e−2πi amx played a significant role in the proof: their presence allows to get

a Calderón–Zygmund type condition for the kernels of S̃ϕ
I

. But since the Lp-norms
are invariant under multiplications by unimodular functions and, in particular, are
rotation-invariant, the exponential functions can be dropped. Now we note that
the norms in all the other Triebel–Lizorkin spaces as well as in the Besov spaces

are not rotation-invariant. Therefore the boundedness of the families Sϕ and S̃ϕ

should be studied separately on such spaces.

2In the original form his result cannot be extended to some of the Besov and Triebel–Lizorkin
spaces (see [5]). In this article, we do not want to touch on issues that arise when dealing with

non-smooth multipliers.
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Some studies concerning the family with rotations can be found in [5], where the

author considers pointwise estimates for the operators S̃ϕ
I

in terms of sharp (oscilla-

tory) maximal functions. In particular, the results of [5] imply that S̃ϕ is uniformly

bounded on the Hölder–Zygmund spaces Ċs as well as on BMO. But it turns out
that in the context of the Besov–Triebel–Lizorkin scale those pointwise estimates
give much more: we are going to rely heavily on them in our considerations below.

The family Sϕ is also studied below. In particular, we are going to show that it

is not bounded on Ċs or BMO. But surprisingly, it turns out that the both of our
families are uniformly bounded on some other Triebel–Lizorkin and Besov spaces
with the norms that are not rotation-invariant.

2. Preliminaries

2.1. Triebel–Lizorkin and Besov spaces. We restrict ourselves to considering
only functions on the real line R. Let S, S ′, and P be Schwartz space, the space of
tempered distributions, and the space of all algebraic polynomials respectively.

Consider a function φ ∈ S such that supp φ̂ ⊂ [−2, 2] and φ̂ ≡ 1 on [−1, 1]. If
we introduce functions φj by the formula

(6) φ̂j(ξ) = φ̂
(
2−jξ

)
− φ̂

(
2−j+1ξ

)
, j ∈ Z,

then the collection {φj}j∈Z will be a resolution of unity, i.e., we will have

(7) supp φ̂j ⊂
[
− 2j+1, −2j−1

]
∪
[
2j−1, 2j+1

]
.

and ∑
j∈Z

φ̂j ≡ 1 on R \ {0}.

Definition 1. Let 0 < p < ∞, 0 < q ≤ ∞, and s ∈ R. We say that an element f
of the quotient space S ′/P belongs to the homogeneous Triebel–Lizorkin space Ḟ spq
if

‖f‖Ḟ s
pq

def
=
∥∥∥ ∣∣∣{2jsf ∗ φj

}
j∈Z

∣∣∣
lq

∥∥∥
Lp
<∞.

If we permute the Lp- and lq-norms, we obtain a definition of the Besov
spaces Ḃspq.

Definition 2. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and s ∈ R. We say that f ∈ S ′/P
belongs to the homogeneous Besov space Ḃspq if

‖f‖Ḃs
pq

def
=
∣∣∣{∥∥2jsf ∗ φj

∥∥
Lp

}
j∈Z

∣∣∣
lq
<∞.

Note that we have not define the spaces Ḟ s∞q. It turns out that a direct extension
of Definition 1 to p =∞ is not reasonable. Such a space would depend on the choice
of a dyadic resolution of unity participating in the definition (see [9]). A correct

definition of Ḟ s∞q follows from duality arguments and can be found, e.g., in [2, 9, 11].
There are some well-known facts about Triebel–Lizorkin and Besov spaces.

Proposition 1. We have

(i) Ḟ spp = Ḃspp if 0 < p <∞;

(ii) Ḃs∞∞
∼= Ċs if s > 0;

(iii) Ḟ kp2
∼= Ẇ p

k if 1 < p <∞ and k ∈ Z+;
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(iv) Ḟ 0
∞2
∼= BMO.

Here by Ċs, s > 0, we denote the homogeneous Hölder–Zygmund spaces. The
corresponding definition can be found, e.g., in [11, 1.4.5]. In the same place the
Besov norm is presented in the form that immediately implies (ii). Here we only

note that if s /∈ Z+, then the norm in Ċs is equivalent to the corresponding Hölder
norm:

‖f‖Ċs ∼= sup
x6=y

∣∣f (k)(x)− f (k)(y)
∣∣

|x− y|s−k
, k = [s].

Concerning (iii) and (iv), see [10, Chapter 5]. Here Ẇ p
k are homogeneous Sobolev

spaces, and (iii) includes, in particular, the fact that Ḟ 0
p2 = Lp, 1 < p <∞.

2.2. Sharp maximal functions. Let Pi be the space of algebraic polynomials of
degree strictly less than i. We agree that P0 = {0}.

Definition 3. Suppose3 1 ≤ p <∞, i ∈ Z+, and s ∈ [0, i]. Let h be a measurable
function on R. We define the maximal function Mp

i, s h by the formula

Mp
i, s h(x)

def
= sup

I3x
inf
P

1

|I|s

(
1

|I|

∫
I

|h− P |p
)1/p

,

where the supremum is taken over all the intervals containing x and the infimum
is taken over all the polynomials P ∈ Pi.

Definition 4. Let 1 ≤ p <∞ and s > 0. Suppose f ∈ L1
loc/P[s]+1. We say that

f ∈ Ċsp if

‖f‖Ċsp
def
=
∥∥Mp

[s]+1, s f
∥∥
Lp <∞.

We can extend this definition to Ċs∞. It is known (see [1, 4] and the exposition
in [3]) that the quantities ‖Mp

i, s f‖L∞ are equivalent for various p, and so we put

(8) ‖f‖Ċs∞
def
=
∥∥M2

[s]+1, s f
∥∥
L∞

.

We have (see [1, 3, 4])

Ċs∞ ∼= Ċs.
Following Triebel [11, 1.7.2], we put

(9) Ḟ s∞∞
def
= Ḃs∞∞

∼= Ċs, s > 0,

and state the following fact.

Proposition 2. If 1 ≤ p ≤ ∞ and s > 0, then for f ∈ Ḟ sp∞ we have

(10) Ḟ sp∞
∼= Ċsp.

This proposition is a consequence of [7, Theorem 1].

3A wider range of parameters p and s can be considered in this context, but those that are
indicated here suffice for our goals.
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2.3. Interpolation. The interpolation between Triebel–Lizorkin spaces is one of
the main components of our subsequent considerations.

Proposition 3. Interpolating between Ḟ spq-spaces, we can obtain another Triebel–
Lizorkin space as well as a Besov space depending on the interpolation method we
use.

(i) Let s0, s1 ∈ R, 1 ≤ q0 <∞, 1 ≤ q1 ≤ ∞, and 1 ≤ p0, p1 <∞. Suppose

0 < θ < 1, s = (1− θ)s0 + θs1,

1

p
=

1− θ
p0

+
θ

p1
, and

1

q
=

1− θ
q0

+
θ

q1
.

Applying the complex interpolation method, we have

(11)
[
Ḟ s0p0q0 , Ḟ

s1
p1q1

]
θ

= Ḟ spq.

(ii) Let s0, s1 ∈ R, s0 6= s1, 0 < q0, q, q1 ≤ ∞, and 0 < p < ∞. As above,
suppose

0 < θ < 1 and s = (1− θ)s0 + θs1.

Applying the real interpolation method, we have

(12)
(
Ḟ s0pq0 , Ḟ

s1
pq1

)
θ,q

= Ḃspq.

Part (i) of this theorem is contained in [2, Corollary 8.3]. Here [·, ·]θ is the
classical complex interpolation method with the interpolation property. Concerning
part (ii), see [10, 2.4.2, 5.2.5]

2.4. Vector-valued spaces. Let X be a Triebel–Lizorkin (p 6=∞) or Besov space.
Then by X∗ we denote the space of sequences

f = {fm}m∈N , fm ∈ S ′/P,

equipped with the corresponding norm where we substitute lengths in l2 instead of
absolute values. For example, if X = Ḟ spq, then X∗ has the norm

‖f‖
X∗

=
∥∥∥ ∣∣∣{∣∣{2jsfm ∗ φj

}
m∈N

∣∣
l2

}
j

∣∣∣
lq

∥∥∥
Lp
.

We leave the reader to determine what will be the norm in X∗ if we put X = Ḃspq.
By XN , N ∈ N, we denote the subspace in X∗ consisting of sequences such that
fm = 0 for m > N . Similarly substituting l2-norms instead of absolute values,
we can also introduce the maximal functions Mp

i, s as well as the spaces Ċsp (see

Definitions 3 and 4) for finite or countable collections of functions.
Since there is no difference whether we deal with absolute values or with lengths

of finite-dimensional vectors, we can assert the following.

Fact 1. All aforecited facts on Triebel–Lizorkin or Besov spaces X remain true for
the corresponding spaces XN independently on N .

Next, since the l2-norm is a limit of an increasing non-negative sequence, we
have ∥∥{fm}m∈N∥∥X∗ = lim

N→∞

∥∥{f1, . . . , fN , 0, . . . }∥∥XN

and, therefore, it suffice to deal only with the spaces XN . Namely, we can state the
following fact.
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Fact 2. If for finite collections I = {Im}Nm=1 of intervals the operators Sϕ
I

and

S̃ϕ
I

are bounded from X to XN uniformly in N and I, then this remains true for

countable collections I: the families S̃ϕ and Sϕ are uniformly bounded from X
to X∗.

Using considerations from [3, 5], we can prove the following proposition.

Proposition 4. Suppose 2 ≤ p < ∞, i ∈ Z+, and s ∈ [0, i). If f is a measurable
function such that Mp

i, s f is finite at least at one point, then f ∈ S ′ and we have
the following pointwise estimate:

(13) Mp
i, s

(
S̃ϕ
I
f
)
≤ CMp

i, s f,

where the constant C does not depend on I or f .

In [5], a similar estimate is proved for p = 2 and for non-smooth multipliers ϕ̂m.
But Rubio de Francia’s [6] theorem allows to prove that the same method can be
employed for all p ≥ 2; and the smoothness of ϕ̂m simplifies the arguments. Also
we note that this is the very place where we need the set supp ϕ̂ to be separated
from 0 and 1.

Relations (10) and (13) together with Facts 1 and 2 imply the following conse-
quence.

Proposition 5. Let 2 ≤ p ≤ ∞ and s > 0. If we put X = Ḟ sp∞, then the family S̃ϕ

will be uniformly bounded from X to X∗.

We also have (see [5] again) the following proposition.

Proposition 6. Let X = Ḟ 0
∞2
∼= BMO. Then the family S̃ϕ will be uniformly

bounded from X to X∗
def
= BMO(l2).

3. Formulation of the results

Definition 5. We say that γ ∈ L1 is non-degenerate if
∫ 0

−∞ e2πitγ(t) dt 6= 0.

The following fact justifies the term “non-degenerate”.

Fact 3. If γ ∈ L1 is a non-zero function such that γ̂ is non-negative and supported
in [0, 1], then γ is non-degenerate.

Proof. Let Φγ(x)
def
=
∫ x
−∞ e2πitγ(t) dt. We have Φ̂γ(ξ) = (2πiξ)−1 γ̂(ξ − 1) and

0∫
−∞

e2πitγ(t) dt = Φγ(0) =

∫
R

Φ̂γ(ξ) dξ =
1

2πi

2∫
1

γ̂(ξ − 1)

ξ
dξ.

Since γ̂ ≥ 0 and does not vanish on [0, 1], we get Φγ(0) 6= 0 and γ is non-degenerate.
�

Now we are ready to present our results.

Theorem 1. Let X = Ḟ spq. We determine various ranges for p, q, and s for each
case considered below.

(i) Let 2 ≤ p ≤ ∞, 2 ≤ q ≤ ∞, and s > 0. We modify this domain as follows
(see also Figure 1):
• if q = 2, then for p 6=∞ we consider all s ≥ 0;
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• if q = 2 and p =∞, then we consider only s = 0;
• if p =∞, then we exclude q ∈ (2,∞) from consideration.

If p, q, and s belong to the domain just described, then the family S̃ϕ is
uniformly bounded from X to X∗.

(ii) For 2 ≤ q ≤ p < ∞ and s ≥ 0 (see Figure 3), the family Sϕ is uniformly
bounded from X to X∗.

(iii) If X = Ḟ 0
∞2 or X = Ḟ s∞∞, s > 0, then there exists a collection I of pairwise

disjoint intervals such that the operator Sϕ
I

is not bounded from X to X∗
provided ϕ is non-degenerate.

So there are Triebel–Lizorkin spaces where only the family S̃ϕ is uniformly

bounded as well as spaces where both families Sϕ and S̃ϕ are uniformly bounded
(in spite of the fact that the corresponding norms are not rotation-invariant).

Similar result holds for the Besov spaces. Namely, we have the following theorem.

Theorem 2. Let X = Ḃspq.

(i) Let 2 ≤ p ≤ ∞, 0 < q ≤ ∞, and s > 0. If p = ∞, then we exclude
all q 6= ∞ from consideration (see Figure 2). For such p, q, and s, the

family S̃ϕ is uniformly bounded from X to X∗.
(ii) For 2 ≤ p <∞, 0 < q ≤ ∞, and s ≥ 0, the family Sϕ is uniformly bounded

from X to X∗.
(iii) Let X = Ḃs∞q for 0 < q ≤ ∞ and s ≥ 0. Then there exists a collection I of

pairwise disjoint intervals such that the operator Sϕ
I

is not bounded from X
to X∗ provided ϕ is non-degenerate.

As we will see, there is a deep connection between Theorems 1 and 2. The point
is that in order to prove their first parts, we will, in fact, interpolate between the
same spaces, but applying two different methods of interpolation.

We also mention the following non-linear quadratic operator that transform
scalar-valued functions to scalar-valued functions:

Gϕ
I
f =

∣∣Sϕ
I
f
∣∣
l2

=
∣∣S̃ϕ
I
f
∣∣
l2

It is a more “rough” operator: treating it, we deal with expressions of the form∣∣|a|l2 − |b|l2 ∣∣ instead of |a − b|l2 (it becomes clear what we mean if we put, e.g.,

X = Ċs). We also note that in order to study the operator Gϕ
I

, we should answer

the question: can the sequences Sϕ
I
f or S̃ϕ

I
f be presented as l2-valued functions?

We assume this neither in the definition of vector-spaced spaces X∗ nor elsewhere
above. Concerning this question, see, e.g., [5, Fact 2.1]. Here we do not investigate
problems related to the operator Gϕ

I
anymore.

4. The proofs

In order to prove parts (i) and (ii) of Theorems 1 and 2, it suffices (due to
Fact 2) to consider finite collections I of intervals that determine the operators. In
this case, Fact 1 allows to employ the whole theory of Triebel–Lizorkin and Besov
spaces.

4.1. Proof of Theorem 1, part (i). First, we consider the space Ḟ k22, k ∈ Z+,

which coincides with Ẇ 2
k (see Proposition 1).
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Lemma 1. If X = Ḟ k22, k ∈ Z+, then the family S̃ϕ is uniformly bounded from X
to X∗.

Proof. Let f ∈ X. We put

gm(x)
def
= e−2πi amx(f ∗ ϕm)(x)

(i.e., we have {gm} = S̃ϕ
I
f), and by the Plancherel theorem, we can write

(14)
∥∥{g(k)m

}∥∥2
L2(l2)

=
∑
m

lm∫
0

∣∣f̂(ξ + am)
∣∣2 ∣∣ϕ̂m(ξ + am)

∣∣2 |ξ|2k dξ,
where lm = bm − am. Rewrite each term with am ≥ 0 as∫

Im

∣∣f̂(ξ)
∣∣2 ∣∣ϕ̂m(ξ)

∣∣2 |ξ − am|2k dξ.
In this case we have |ξ − am| ≤ |ξ|, and, therefore, it can be estimated by

C

∫
Im

∣∣f̂(ξ)
∣∣2 |ξ|2k dξ.

For all the remaining terms in (14), we have bm ≤ 0, because 0 /∈ (am, bm) for
all m. In this case, we rewrite the discussed terms as

(15)

0∫
−lm

∣∣f̂(ξ + bm)
∣∣2 ∣∣ϕ̂m(ξ + bm)

∣∣2 |ξ + lm|2k dξ

and get rid of lm in the last factor.4 For this we verify that for ξ ∈ (−lm, 0), we
have

(16)
∣∣ϕ̂m(ξ + bm)

∣∣2 |ξ + lm|2k ≤ Ck|ξ|2k,

where Ck does not depend on m. We have ϕ̂m(ξ+ bm) = ϕ̂(1 + ξ/lm), and in order
to prove (16), we only need to verify that

ϕ̂(1− t) ≤ Ck
(

t

1− t

)k
for t ∈ (0, 1).

But this is true because ϕ̂ equals zero at 1 with all its derivatives.5 Thus, we have
that (15) can be estimated by

C

0∫
−lm

∣∣f̂(ξ + bm)
∣∣2 |ξ|2k dξ = C

∫
Im

∣∣f̂(ξ)
∣∣2 |ξ − bm|2k dξ.

But since we consider the terms where bm ≤ 0, the last expressions are lesser than

C

∫
Im

∣∣f̂(ξ)
∣∣2 |ξ|2k dξ.

4Thus, we show that it is not significant whether we shift am or bm to the origin.
5We could also use the fact that supp ϕ̂ is separated from 0 and 1, but we do not need this

restriction in order to prove Lemma 1.
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Figure 1. Part (i) of Theorem 1.

Combining it all together, at least for finite collections I we obtain∥∥S̃ϕ
I
f
∥∥2
X∗
∼=
∥∥{g(k)m

}∥∥2
L2(l2)

≤ C
∑
m

∫
Im

∣∣f̂(ξ)
∣∣2 |ξ|2k dξ ≤ C‖f‖2X .

Due to Fact 2, the lemma is proved. �

We know that S̃ϕ is bounded on Ḟ 0
∞2
∼= BMO (see Proposition 6) and on

Ḟ s∞∞
∼= Ċs as well (see Proposition 5).

Finally, let 2 ≤ p < ∞. We have the boundedness on Ḟ 0
p2
∼= Lp (see Rubio de

Francia’s [6] theorem), on Ḟ k22 for k ∈ Z+ (see Lemma 1 just proved), and on Ḟ sp∞
for s > 0 (see Proposition 5). Using the complex interpolation method (11) for the

couples
{
Ḟ 0
p2, Ḟ

k
22

}
and

{
Ḟ 0
p2, Ḟ

s
p∞}, we come to the desired result (see Figure 1).

4.2. Proof of Theorem 2, part (i). We already know that S̃ϕ is uniformly

bounded on Ḃs∞∞ = Ċs. For the remaining spaces we can use the real interpolation
method (12). Indeed, suppose 2 ≤ p < ∞ and s0, s1 > 0. Then part (i) of

Theorem 1 implies that if we take
{
Ḟ s0p∞, Ḟ

s1
p∞
}

or
{
Ḟ s0p2 , Ḟ

s1
p2

}
as an interpolation

couple, we come to the desired result (see Figure 2).

4.3. Proof of Theorem 2, part (ii). Denote gm
def
= f ∗ ϕm. By Rubio de Fran-

cia’s [6] theorem, we have∥∥{gm ∗ φj}m∥∥Lp(l2)
=
∥∥{f ∗ φj ∗ ϕm}m∥∥Lp(l2)

≤ C‖f ∗ φj‖Lp

and multiplying by 2sj and taking lq norms we obtain the required boundedness.

4.4. Proof of Theorem 1, part (ii). First, consider the spaces

X = Ḟ kp2
∼= Ẇ p

k , k ∈ Z+, 2 ≤ p <∞.
Suppose f ∈ X. By Rubio de Francia’s [6] theorem, we have∥∥{(f ∗ ϕm)(k)

}∥∥
Lp(l2)

=
∥∥{f (k) ∗ ϕm}∥∥Lp(l2)

=
∥∥Sϕ
I

[
f (k)

]∥∥
Lp(l2)

≤ C‖f‖X .

Therefore, in the case being considered, we have the desired result.
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Figure 2. Part (i) of Theorem 2.

Figure 3. Part (ii) of Theorem 1.

But due to part (ii) of Theorem 2, we also know that Sϕ is uniformly bounded
on the spaces

X = Ḟ spp = Ḃspp, 2 ≤ p <∞, s ≥ 0.

Using the complex interpolation method (11) (also see Figure 3), we conclude the
proof.

4.5. Proof of Theorem 2, part (iii). Suppose that ϕ is non-degenerate and set

I =
{

[1 + 2m, 1 + 2m+1]
}
m∈Z−

.

Now consider our functions φj that are generated by the function φ and form a
resolution of unity (see (6)). Due to (7) we have

supp φ̂0 ⊂ [−2, −1/2] ∪ [1/2, 2].
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Without loss of generality we can additionally assume that φ̂ ≡ 1 on [−3/2, 3/2].
Then we also have

(17) φ̂0 ≡ 1 on [−3/2, −1] ∪ [1, 3/2].

We define

f0
def
=
[

exp(2πi ·)1[0,+∞)(·)
]
∗ φ0.

By (7) the function f0 ∗φj does not vanish only if j = −1, 0, 1. This fact, together
with Definition 2 and the obvious estimate |f0 ∗ φj | ≤ C‖f0‖L∞ , implies

‖f0‖X ≤ C ‖f0‖L∞ <∞.

Next, we set

gm
def
= f0 ∗ ϕm and gjm

def
= gm ∗ φj ,

where ϕm is the function that corresponds (see (4)) to the interval [1+2m, 1+2m+1]:

ϕm(x) = exp
(
2πi (1 + 2m)x

)
2mϕ(2mx).

If 2m+1 ≤ 1/2, then due to (17) we have

g0m =
[

exp(2πi ·)1[0,+∞)(·)
]
∗ φ0 ∗ φ0 ∗ ϕm

=
[

exp(2πi ·)1[0,+∞)(·)
]
∗ ϕm = gm.

Therefore, in this case we can write

(18)
g0m(x) = gm(x) = e2πix

2mx∫
−∞

e2πitϕ(t) dt

= e2πixΦϕ(0) + e2πix
(
Φϕ(2mx)− Φϕ(0)

)
,

where Φϕ(x) =
∫ x
−∞ e2πitϕ(t) dt. Since ϕ is non-degenerate (see Definition 5), we

have

g0m(0) = Φϕ(0) 6= 0

provided 2m+1 ≤ 1/2. We also note that g0m are continuous functions. We have∥∥SϕI f0∥∥X∗ =

∣∣∣∣{2js
∥∥{gjm}m∥∥L∞(l2)

}
j

∣∣∣∣
lq
≥
∥∥{g0m}m∥∥L∞(l2)

= +∞.

4.6. Proof of Theorem 1, part (iii). By definition (9) we have Ḟ s∞∞ = Ḃs∞∞,

s > 0, and it remains to prove the statement for X = Ḟ 0
∞2
∼= BMO. We show that

the same example as above gives an unbounded operator from X to X∗.
Consider {gm}m as an element of the quotient space X∗. It is clear that gm(x)

are bounded by ‖ϕ‖1 uniformly in m and x. Therefore, for a sequence {Pm}m of
polynomials, the expression ∥∥{gm − Pm}m∥∥BMO(l2)

could be finite only if degPm ≤ 1 for all m.
Next, suppose 2m+1 ≤ 1/2 and x ∈ [0, 1/2]. Then by (18), we obtain

|gm(x)− Pm(x)− cm| ≥ |Φϕ(0)|| exp(2πix)− amx− bm| − |Φϕ(2mx)− Φϕ(0)|.
Then there exist subsets Em ⊂ [0, 1/2] and a number γ > 0 such that |Em| > γ
and

|gm − Pm − cm| > c0|Φϕ(0)| on Em
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provided m is small enough. Then∥∥{gm − Pm}m∥∥BMO(l2)
=∞.
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