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Abstract

In this thesis, a shared parameter model is suggested to account for missing data not at
random (MNAR) due to dropout in follow-up studies. The proposed model is motivated
by and evaluated for a large follow-up study of blood pressure, using data from the Trøn-
delag Health Study (HUNT). The goal is to draw unbiased inferences about parameters
describing the systolic blood pressure in HUNT2 based on data from HUNT1. In order
to do so, the fact that some participants drop out before HUNT2 must be taken into ac-
count. If the probability of dropout is directly related to the underlying blood pressure in
HUNT2, then the data are MNAR and the dropout process needs to be explicitly modelled
together with the blood pressure in order to obtain valid inference. The shared parameter
model (SPM) proposed is such a joint model. It consists of a linear blood pressure model
and a logistic dropout model, connected through a shared individual random effect. Both
the blood pressure model and the dropout model are specified with the blood pressure in
HUNT1, age and sex as covariates, but age is included through a smooth function in the
dropout part. The model is a Bayesian latent Gaussian model, suitable for the integrated
nested Laplace approximations (INLA) methodology for approximate Bayesian inference.
Inference is obtained using R-INLA.

Parameter estimates obtained from SPM are compared to those obtained from a naive,
linear Bayesian blood pressure model with the same covariates as SPM, which ignores
the dropout process and assumes that the data are missing at random (MAR) instead of
MNAR. Furthermore, two simulation studies are conducted, in which the naive model and
SPM are tested on data with known parameters, when missingness is MNAR and MAR,
respectively.

Fitting SPM to the HUNT data yields clearly different parameter estimates than the esti-
mates from the model assuming MAR. SPM indicates that participants with a high, under-
lying blood pressure in HUNT2 have an increased probability of dropout, implying that
the data are MNAR. The simulation studies support this. Therefore, a naive model assum-
ing MAR is by all accounts insufficient, and a joint modelling approach is necessary to
make unbiased blood pressure inference.
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Sammendrag

I denne oppgaven blir en delt-parameter-modell foreslått for å ta hensyn til ikke-tilfeldige
manglende verdier (missing not at random, MNAR) i oppfølgingsstudier. Denne modellen
er motivert av, og evaluert på, en stor oppfølgingsstudie av blodtrykk, med data fra Helse-
undersøkelsen i Trøndelag (HUNT). Målet er å forventningsrett estimere parametere som
beskriver blodtrykket i HUNT2 basert på data fra HUNT1. For å få til dette må det tas
hensyn til at en del deltagere dropper ut av studiet før HUNT2. Hvis sannsynligheten for
å ikke møte opp i HUNT2 er direkte relatert til det underliggende blodtrykket man har
ved HUNT2, så er dataene MNAR. I så fall må utdroppingsprosessen modelleres sam-
men med blodtrykket for å kunne få gyldig inferens. Delt-parameter-modellen (shared
parameter model, SPM) som blir foreslått er en slik felles modell. Den består av en
lineær blodtrykksmodell og en logistisk utdroppingsmodell, sammenkoblet av en delt in-
dividuell, tilfeldig effekt. Både blodtrykksmodellen og utdroppingsmodellen er spesifis-
ert med blodtrykket i HUNT1, alder og kjønn som kovariater, men alder blir modellert
ikke-lineært i utdroppingsmodellen. Modellen er Bayesiansk, nærmere bestemt en latent
Gaussisk modell, noe som gjør den egnet for integrated nested Laplace approximations-
metodologien (INLA) for approksimativ Bayesiansk inferens. R-INLA blir brukt til mod-
elltilpasning.

Paremeterestimater fra SPM er sammenlignet med estimater fra en naiv, lineær Bayesiansk
blodtrykksmodell med de samme kovariatene som SPM, men som antar at utdropping er
betinget tilfeldig (missing at random, MAR) i stedet for MNAR. Videre blir to simuler-
ingsstudier gjennomført, der den naive modellen og SPM blir testet på data med kjente
parametere, når manglende verdier er henholdsvis MNAR og MAR.

Tilpasning av SPM til HUNT-dataene gir markant annerledes parameterestimater enn mod-
ellen som antar MAR. SPM indikerer at deltagere med et høyt, underliggende blodtrykk
ved HUNT2 har større sannsynlighet for å ikke møte opp, noe som gjør at dataene er
MNAR. Simuleringsstudiene støtter opp under dette. Derfor er en naiv modell som antar
MAR etter alt å dømme utilstrekkelig, og en tilnærming der utdropping modelleres sam-
men med blodtrykk er nødvendig for å oppnå forventningsrette estimater.
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1 | Introduction

According to the World Health Organization (2019), more than one billion people world-
wide are suffering from hypertension, more commonly known as high blood pressure. Hy-
pertension means that the pressure in the arteries is consistently elevated. It is defined as
a systolic blood pressure level above 140 mmHg and/or diastolic blood pressure above 90
mmHg. Having blood pressure above these levels, the benefits of treatment, either through
medication or change of lifestyle, clearly outweigh the risks of treatment (Williams et al.,
2018). Being hypertensive increases for instance the risks of cardiovascular diseases and
chronic kidney disease, and is therefore a prominent cause of premature death (Whelton,
1994; Lewington et al., 2002; Jha et al., 2013). Due to the high prevalence and poten-
tially severe complications, hypertension is regarded as a major health problem worldwide
(Kearney et al., 2005). Therefore, from a public health perspective, research on blood
pressure related issues is highly important.

To survey the blood pressure of a population is within the main scope of the Trønde-
lag Health Study, HUNT. As the entire population of former Nord-Trøndelag county has
been invited to participate, HUNT is Norway’s largest health study. The data are obtained
over four decades, from the mid 1980s until today, through four population surveys so
far, HUNT1 to HUNT4. The HUNT data consist of questionnaire data and clinical mea-
surements and samples. Originally, the main goals were to address arterial hypertension,
diabetes, screening of tuberculosis and quality of life, but the scope has gradually ex-
panded (Krokstad et al., 2013). The four parts of the HUNT study can together be seen as
an example of a longitudinal study, in which participants are followed over time.

In this work, the focus is restricted to data from HUNT1 and HUNT2. The data in HUNT1
were collected in 1984-1986, with around 77,000 participants, while the HUNT2 survey
was carried out in 1995-1997, with around 65,000 participants. Out of those, 47,000 also
participated in HUNT1. See Krokstad et al. (2013) for a full cohort profile.

The data from HUNT1 and HUNT2 are well suited for blood pressure research. The blood
pressure, alongside with other information, is provided for a large number of individuals.
As the participants of HUNT1 are followed up after around ten years, it is possible to look
at the development of blood pressure, and make inference on parameters describing this de-
velopment. In blood pressure research using data from follow-up studies such as HUNT1
and HUNT2, this is typically of interest (Sparrow et al., 1982; Wilsgaard et al., 2000).
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However, not all of those that took part in HUNT1 are also participating in HUNT2. There
might be various reasons for such dropout, for example that the person had died, moved
out of the area, was too sick to participate or did not have the time to take part. Participants
not showing up cause data to be missing. Missing data are common in statistics, and are
almost always present in longitudinal studies, and especially frequent in clinical trials and
epidemiological studies (Verbeke and Molenberghs, 2000).

Missing data might lead to biased or inefficient inference if the missing values are ignored
or inappropriately handled (Little and Rubin, 2002). The most common way to handle
missing data is to do a so-called complete-case analysis (Schafer and Graham, 2002), in
which only those individuals without any missing values are included in the analysis. Al-
though this is an intuitive and simple procedure, there might be major disadvantages with
this method. In particular, parameter estimates obtained from the observed sample might
be biased compared to those of the full, underlying population, which in turn might lead
to wrong conclusions about the population. Therefore, it is usually vital to consider the
missing data.

It is possible to classify the missingness of values depending on how the missing values
are related to the data (Little and Rubin, 2002). How one should handle the missing data
depends in turn on this missing data mechanism. In the HUNT Study, there might, on the
one hand, be no explainable reason why participants of HUNT1 are missing in HUNT2.
If the outcome of the study is the blood pressure in HUNT2, then neither observed covari-
ates from HUNT1 nor the underlying blood pressure in HUNT2, which would have been
observed if the participant was not missing, are in this case related to the probability of
not showing up. The data are then said to be missing completely at random (MCAR). In
this case, a complete-case analysis will give unbiased inference. This is however a strong
assumption, and is rarely the case in practice (Fitzmaurice, 2008; Wu, 2010).

On the other hand, dropout before HUNT2 might somehow be related to the blood pres-
sure the person has at the time of HUNT2, either directly or indirectly. If the cause of
data being missing is unrelated to the missing values themselves, but depends on other ob-
served variables, the data are said to be missing at random (MAR). For example, this is the
case if older people tend not to show up in HUNT2. Then the probability of being missing
depends on the age, which is observed, and the age might in turn be correlated with the
blood pressure. However, conditionally on age, subjects are missing at random. The dis-
tribution of the observed sample might be biased compared to that of the full population,
but there are many good and efficient methods to handle the missing values when the data
are MAR. This includes multiple imputation, thoroughly presented by Van Buuren (2018),
and maximum likelihood methods (Little and Rubin, 2002). Together, MCAR and MAR
are usually referred to as ignorable missing data mechanisms (Little and Rubin, 2002).

Whether or not participants are missing might also be directly related to the values that
would have been observed if the person was not missing. For instance, people with high
blood pressure, not exclusively explained by the observed covariates, might be more likely
to not show up in HUNT2. If so, the data are missing not at random (MNAR), which is
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a non-ignorable missing data mechanism (Little and Rubin, 2002). In longitudinal stud-
ies, this class of missing values is also called informative dropout (Diggle and Kenward,
1994). If this is the case, the distribution of the observed sample is different from that of
the full population, leading to biased inference. As opposed to data being MCAR or MAR,
it is not straightforward to handle data being MNAR. In order to do so, the missing data
process needs to be modelled together with the blood pressure measurements.

In this work, the overall goal is to validly model the blood pressure in HUNT2 based on
data from HUNT1. A few variables from HUNT1 are therefore selected as covariates.
These variables are the systolic blood pressure, age and sex. The systolic blood pressure
in HUNT1 is assumed to be highly correlated with the blood pressure in HUNT2 and is
therefore a natural choice. Furthermore, age and sex are both well-established influential
factors on the blood pressure level (Whelton, 1994). Later on, BMI is also added as a
covariate.

However, since missing values caused by dropout are present, it is not straightforward to
obtain valid blood pressure inference. As it is not possible to explicitly state the missing
data mechanism of the data at hand, the typical approach of formulating a model assum-
ing that the data are MAR and hence ignoring the dropout process is conducted to begin
with. If the data actually are MAR, then such a naive approach is sufficient, but it provides
biased inference if the data in reality are MNAR. Therefore, a joint model for the blood
pressure and the missingness of blood pressure values is proposed. In general, joint mod-
elling of measurements and dropout in longitudinal studies is a common approach (Diggle
and Kenward, 1994; Little, 1995; Verbeke and Molenberghs, 2000). In this work, the joint
model is a shared parameter model, in which a random effect is shared between the blood
pressure model and the dropout model (Wu and Carroll, 1988; Vonesh et al., 2006; Steins-
land et al., 2014). Both the shared parameter model and the naive model are Bayesian
models, fitted using the integrated nested Laplace approximations (INLA) methodology
through R-INLA (Rue et al., 2009). INLA is a fast alternative for approximate Bayesian
inference for latent Gaussian models. Latent Gaussian models can contain a large variety
of different functions of covariates, including for example the possibility of adding non-
linear and random effects, allowing a large degree of flexibility when modelling through
INLA. In the shared parameter model, such a non-linear smoothing term is included in the
dropout model.

In Chapter 2, background theory behind some of the most important concepts of this work
are presented. This includes missing data theory, in which the missing data mechanisms
MCAR, MAR and MNAR are further elaborated. In addition, an introduction to Bayesian
inference and latent Gaussian models are presented, before the INLA methodology used to
perform approximate Bayesian inference for latent Gaussian models are discussed. Then,
in Chapter 3, the data used from HUNT1 and HUNT2 are introduced and explored. Ex-
ploratory models of the blood pressure in HUNT2 and the dropout process, based on some
covariates in HUNT1, are also formulated, and the resulting parameter estimates from
these models are discussed. In Chapter 4, the method of this work is presented. This in-
cludes a detailed formulation of the models used, i.e. the naive blood pressure model and
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the shared parameter model. Simulation studies, where the shared parameter model and
the naive model are tested on data with known parameters, are introduced. A small analysis
of prior sensitivity and an extension of the models with BMI added as a covariate are also
considered. Further, in Chapter 5, the results are presented and interpreted, before further
discussion and proposals for future work are given in Chapter 6, together with some con-
clusive remarks. A few supplementary remarks and R code are provided in the appendices.
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2 | Background theory

2.1 Missing data

Data with missing values might cause difficulties when one wants to draw unbiased in-
ferences from the data. The information hidden behind missing values could be of im-
portance, and statistical conclusions might therefore be wrong when these values are not
accounted for. How one should handle the missing values depends largely on how the
missingness of values is related to the data. According to Little and Rubin (2002), such
missing data mechanisms can be divided into three categories. These are respectively miss-
ing data completely at random (MCAR), missing data at random (MAR) and missing data
not at random (MNAR). The data are MCAR if values are missing without any patterns,
MAR if the probability that data are missing depends on other observable data and MNAR
if the probability of missingness depends directly on the missing values themselves.

To exemplify these missing data mechanisms, consider a clinical study in which the blood
pressure is the outcome of interest. If some participants accidentally forget to show up to
get their blood pressure measured, then the data will be MCAR. Whether or not the blood
pressure value is missing for a participant is in this case unrelated to both observed and
unobserved data, and is instead entirely random. On the other hand, if men have a larger
tendency of not showing up than women, then the probability that a blood pressure mea-
surement is missing depends on sex, which is observed, and the data are MAR. Sex might
in turn be correlated with the underlying blood pressure value, but conditionally on sex,
the blood pressure values are missing at random. Alternatively, if those with high under-
lying blood pressure, even after conditioning on other observable data, do not show up for
their blood pressure measurement, then the data are MNAR. Now, whether or not a blood
pressure value is missing is directly related to the value that would have been observed if
it was not missing.

The following notation used to present missing data theory is partly based on Little and
Rubin (2002). Let Y = (X,y) denote the matrix of the entire dataset, including the
covariates X and the response variable y. This is the underlying, complete data, which
would have been observed in the absence of missing data. Assume that the covariates are
fully observed, but that there are missing values in the response variable. Then, y can be
divided into y = (yo,ym), where yo and ym are the observed and unobserved part of y,
respectively. Further, let m be a missing indicator vector, which has the value mi = 1 if
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yi is missing, and mi = 0 if yi is observed. The three missing data mechanisms are infor-
mally sketched in Figure 2.1. Z represents here the possible explanations of missingness
that are completely unrelated to both X and y.

X Z X Z X Z

y mmyy m

MCAR MAR MNAR

Figure 2.1: Illustration of causes of missingness m of variable y under the different missing data
mechanisms. X represents completely observed covariates, y represents the response variable that
is partly missing, and Z represents the component of causes of missingness not related to X or y.

The difference between full data and observed data is highly important. The interest lies in
the full data. However, inferences about the full data that are based on incomplete observa-
tions must rely on assumptions about the missing response distribution. The distribution
of response measurements is characterized by f(y|X,θ), where θ are some parameters
describing this distribution. Similarly, the missing data mechanism is specified through
the conditional distribution of the missing data indicatorm given the data, f(m|X,y,ψ),
where ψ are unknown parameters describing the distribution. If the data are MCAR, then
the missing data mechanism can be simplified to

f(m|y, X,ψ) = f(m|ψ), (2.1)

meaning that the distribution of missingness does not depend on any of the data, observed
or not. Further, if the data are MAR, the missing data mechanism is instead given by

f(m|y, X,ψ) = f(m|yo, X,ψ), (2.2)

Missingness is now independent of the missing response values ym conditionally on ob-
served responses yo and covariates X . If the data are MNAR, however, the missing data
mechanism can not be simplified further, so the missingness is given by

f(m|y, X,ψ) = f(m|yo,ym, X,ψ). (2.3)

The distribution may still depend on yo and X , as when data are MAR, but the crucial
point is now the additional dependence on ym.

Usually, it is of interest to estimate the parameters θ that describes the distribution of
measurements. In a Bayesian setting, thoroughly presented in the upcoming sections of
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the chapter, Bayes’ formula can be used to obtain posterior parameter estimates, such that

f(θ|y, X) =
f(y|X,θ)f(θ)

f(y|X)
∝ L(θ|y, x)f(θ). (2.4)

When ignoring the missing data process, the likelihood of θ can be written as

Lign(θ|y, X) ∝ f(yo|X,θ) =

∫
f(yo,ym|X,θ)dym, (2.5)

where the missing values ym are integrated out. Maximizing this, a maximum likelihood
estimate is obtained. Inserting (2.5) into (2.4) together with a prior distribution for θ, gives
a posterior distribution for θ, and Bayesian inference is obtained. Inference based on this
likelihood is valid if the missing data mechanism can be ignored.

Instead of ignoring the missing data mechanism, one would normally consider the full
likelihood. This is a joint distribution of y andm, and can be written as

f(y,m|X,θ,ψ) = f(y|X,θ)f(m|y, X,ψ). (2.6)

The actually observed data are (yo,m), in addition to X. Therefore, similarly as with the
likelihood (2.5) ignoring the missing data mechanism, the full likelihood becomes

Lfull(θ,ψ|yo, X,m) ∝ f(yo,m|X,θ,ψ)

=

∫
f(yo,ym|X,θ)f(m|yo,ym, X,ψ)dym.

(2.7)

Bayesian inference under the full model for y andm is given by

f(θ,ψ|yo, X,m) =
f(yo,m|X,θ,ψ)f(θ,ψ)

f(yo,m|X)

∝ Lfull(θ,ψ|yo, X,m)f(θ,ψ),

(2.8)

where the full likelihood (2.7) is combined with a prior distribution for θ and ψ.

The question is now when inference about θ should be based on the full likelihood (2.7)
and when it can be based on the simplified likelihood (2.5) ignoring the missing data
mechanism. In general, MCAR and MAR are said to be ignorable, meaning that the
simpler likelihood can be used. If the data are MAR, (2.2) holds. Then, by using (2.5),
(2.7) can be written as

Lfull(θ,ψ|yo, X,m) ∝ f(yo,m|X,θ,ψ)

= f(m|yo, X,ψ)

∫
f(yo,ym|X,θ)dym

= f(m|yo, X,ψ)f(yo|X,θ) ∝ Lign(θ|y, X).

(2.9)
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As the likelihood can be written on the form (2.9) when data are MAR, then likelihood
and Bayesian inference for the parameters θ and ψ can be done ignoring the missing
data process when θ and ψ are distinct and have independent priors (Little and Rubin,
2002). Therefore, as valid inference is obtained when missing data are MCAR or MAR
without taking the missing process into account, these mechanisms are called ignorable.
However, when the conditions for ignoring the missing process are not met, the data are
non-ignorable. This is the reality when data are MNAR. It is not possible to tell explicitly
whether or not data at hand are MNAR, but if this is the case, the missing process also
needs to be modelled in order to obtain valid inference.

Figure 2.2: Illustration of the different missing data mechanisms with an underlying linear relation-
ship between x and y. The true regression line fitted to all points are solid, whereas the regression
line fitted to only the observed points under the respective missing data mechanism is dashed.

The missing data mechanisms are illustrated in a simple linear regression setting in Fig-
ure 2.2, where y is regressed onto the covariate x. 100 correlated bivariate normal points
(xi, yi) are generated, before half of them are removed. In the left plot, 50 observations
are removed completely at random, making the data MCAR. In the middle plot, the 50
observations with the largest x-values are removed, making the data MAR. To the right,
the 50 points with the largest y-values are removed, so the data are MNAR. In these plots,
the true regression line, which would have been fitted in the absence of missing data, is
plotted as a solid line, while the regression lines fitted to the observed observations only,
are dashed. Both under MCAR and MAR, the regression line is unbiased, whereas the
regression line is clearly downward biased under MNAR.
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How one should handle the missing data depends strongly on the missing data mechanism
and the objective of study. The most traditional method to handle missing data is a so-
called complete-case analysis, in which those rows of the dataset with any missing values
are deleted. If the data are MCAR, then a complete-case analysis will provide unbiased
inferences. Otherwise, a complete-case analysis might lead to severely biased inferences.
If the data are MAR, then a complete-case analysis might give biased results, depending
on what the objective is. If the interest lies in the conditional distribution of a variable y
with missing values, given completely observed X , then a complete-case analysis is satis-
factory if the data are MAR. This is the case in a regression setting with missing values in
the response variable. The incomplete cases give no information to the regression of ym
onto X , so unbiased maximum likelihood estimates are obtained after deleting the cases
with missing values (Little, 1992). This can be seen from the middle plot of Figure 2.2.
If the interest instead lies in the marginal distribution of the variable y, then an analysis
based on only the complete records will be biased under MAR. For example, the mean of
the observed observations yo in the middle plot of Figure 2.2 will differ from that of the
full, underlying y. Bias is also present in a regression analysis with missing values in X
being MAR, but where y is known. In these cases, however, there exist good methods,
such as multiple imputation, to handle the missing data and correct for the bias.

If the data are MNAR, fundamental identifiability issues are introduced, simply because
the fact that the missing data are not observed means that there are no data with which to
estimate the distribution of the missing values. In these cases, one also needs to model the
missing data process in order to obtain valid inference. In other words, when ignorability
is not assumed to be a suitable assumption, a more general class of models can be used,
allowing missing data indicators to somehow depend on missing responses themselves.
These models parametrize the conditional dependence between m and ym, given yo and
X . However, this association structure can not be identified from the observed data with-
out the benefit of untestable assumptions. Therefore, inference depends on a combination
of unverifiable parametric assumptions and possibly, in the Bayesian setting, informative
prior distributions.

There are different approaches to formulating such models accounting for non-ignorable
missing data, each differing in how the full model (2.6) for the data y and missingnessm
is factorized. Selection models use the factorization

f(y,m|X,θ,ψ) = f(y|X,θ)f(m|y, X,ψ), (2.10)

whereas pattern-mixture models write the joint distribution

f(y,m|X,θ,ψ) = f(y|X,m,θ)f(m|X,ψ), (2.11)

where the factorization is reversed compared to that of selection models.

Another way to handle non-ignorable missing data is alternatively to use a shared pa-
rameter model (Wu and Carroll, 1988), in which the missingness and data can be jointly
modelled with a vector of shared random effects. This distribution is formulated as

f(y,m|ε, X,θ,ψ) = f(y|ε, X,θ)f(m|ε, X,ψ), (2.12)
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where ε are the shared random effects. The shared parameter approach appeals strongly to
intuition, suggesting that y andm have a common, unobserved cause. The shared random
effects framework is discussed further in Chapter 4, where a shared parameter model for
non-ignorable missing blood pressure data is proposed.

For models dealing with non-ignorable missing data, one must be aware that identifiability
of parameters is an important issue, as there may be too many nuisance parameters (Fitz-
maurice et al., 1996; Wu, 2010). Due to the potential complexity of non-ignorable models,
the models can be non-identifiable if there is not sufficient information in the data, mean-
ing that two different sets of parameters may lead to the same observed likelihood. To
show algebraically that all of the parameters in non-ignorable models are identifiable is
not trivial (Fitzmaurice et al., 1996). In practice, one might often find out empirically that
not all parameters are fully identifiable (Wu, 2010).

2.2 Bayesian inference

There exist two main paradigms for statistical analysis. With a classical, frequentist ap-
proach, the parameters are considered to be fixed and unknown, and the goal is to estimate
the true parameters from the data. By contrast, in Bayesian statistics, the parameters are
instead characterized by probability distributions. Given data Y = (X,y), a parameter
vector θ and potentially a vector of hyperparameters φ, the goal in Bayesian inference
is therefore to obtain the posterior distributions f(θi|X,y) and f(φj |X,y). The poste-
rior distributions are obtained after specifying a model, specifying prior distributions for
the parameters of the model, and then update the prior information about the parameters
using the model and the data. In other words, the posterior distributions are obtained by
combining prior information known beforehand and the information provided by the data,
quantified by the likelihood. The likelihood summarizes the information the data have
about the parameters. The maximum likelihood estimator, which maximizes the likeli-
hood function, is typically used as point estimator in frequentist inference. However, in
Bayesian inference, the likelihood and prior information are combined through Bayes’ for-
mula, which is on the form (2.4).

Prior probability distributions represent the knowledge one has in advance, a priori, about
θ and φ. If the prior knowledge about a parameter is specific, then this probability dis-
tribution is a so-called informative prior. On the other hand, vague prior beliefs can be
represented by a diffuse probability distribution. In this case, most weight is put on the
information provided by the data.

The posterior distributions obtained are often summarized by some quantities. For point
estimates, the posterior mean, median or mode are typical choices. Uncertainty is typically
represented by the standard deviation of the posterior distribution, or by forming credible
intervals based on quantiles of the distribution. For example, the 2.5th and 97.5th quantiles
can be used to make a 95% equal-tailed credible interval for a parameter.
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Most often, it is complicated to express the posterior distribution in closed form (Daniels
and Hogan, 2008). Therefore, the most common approach to Bayesian inference is to
obtain a sample from the posterior distribution using techniques that do not need explicit
evaluation of the denominator, which is a normalizing constant, of the posterior distribu-
tion.

Traditionally, Markov chain Monte Carlo (MCMC) sampling has been used to fit Bayesian
models. The idea of MCMC algorithms is to obtain a sample from the posterior distribu-
tion by construction of a Markov chain having the posterior distribution of interest as
stationary distribution. Marginal posteriors and the posterior of functions of the param-
eters are obtained by doing Monte Carlo integration using the sample from the Markov
chain. A detailed presentation of MCMC methods can for example be found in Gelman
et al. (2014). Although MCMC algorithms are extremely flexible, they turn often out to
be slow and might even become computationally unfeasible (Blangiardo and Cameletti,
2015). Therefore, the newly developed INLA algorithm (Rue et al., 2009), which is a fast
and accurate algorithm for approximate Bayesian inference, can be used as an alternative
to MCMC algorithms for special cases of latent Gaussian models. The concepts behind
this algorithm are discussed in the next sections.

2.3 Latent Gaussian models
The INLA methodology is designed for a subgroup of so-called latent Gaussian mod-
els, which a wide range of different Bayesian models are. In order to understand latent
Gaussian models, it is useful to also know the concepts of generalized linear models and
generalized additive models. These types of models are briefly introduced in this section.

2.3.1 Generalized linear models
In generalized linear models, first introduced by Nelder and Wedderburn (1972), a distri-
bution is assumed for the observed response data y = (y1, · · · , yn). In contrast to ordinary
linear regression, the distribution does not have to be Gaussian, as long as it is part of the
exponential family of distributions. The distribution of yi is characterized through a linear
predictor ηi which is defined as the mean µi through an appropriate link function g(·),
such that ηi = g(µi). The linear predictor is given by

ηi = β0 +

M∑
m=1

βmxmi, (2.13)

where β0 defines the intercept and β = (β1, · · · , βM ) quantifies the linear effects of the
covariates X = (x1, · · · ,xM ) on the linear predictor η.

If g(·) is the identity function, then this model is a linear model. However, for binary re-
sponses y, meaning that they take on the values 0 and 1 only, the distribution of y is gener-
ally chosen to be the Bernoulli distribution, which is equivalent to a binomial distribution
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with a single trial. In this case, µi is interpreted to be the probability pi that yi takes the
value 1. A common link function is now the logit function, ηi = logit(pi) = log( pi

1−pi ),
with yi ∼ Bernoulli(pi), making the model a logistic regression model. Logistic regres-
sion models are used to model the probabilities of certain events to happen. A general
introduction to logistic regression can for example be found in James et al. (2013).

In the missing data setting, logistic regression is suitable to model the missing process.
For instance, logistic regression is commonly used to model the probability of dropout
in longitudinal studies, when missingness is assumed to be MNAR and a dropout model
therefore is included as a part of a joint model (Diggle and Kenward, 1994; Molenberghs
et al., 1997).

2.3.2 Generalized additive models

When making statistical models, one might often find that a model with only linear ef-
fects of covariates on the linear predictor as in (2.13) is insufficient to capture the true
relationship. In generalized additive models, developed by Hastie and Tibshirani (1990),
this restriction is relaxed, as the linear predictor now depends linearly on unknown smooth
functions of covariates. The linear predictor is an additive predictor given by

ηi = β0 +

M∑
m=1

fm(xmi), (2.14)

where f = (f1, · · · , fM ) are functions defined in terms of the covariatesX = (x1, · · · ,xM ).
In such models allowing for non-linearities, the true shapes of the functions defining the
non-linear relationships are typically not known and are usually estimated, either through
semi-parametric or non-parametric methods (Gómez-Rubio, 2020). Such smoothing meth-
ods are useful to model complex relationships between the covariates and the additive pre-
dictor.

A random walk model can for instance be used to model such non-linearities (Fahrmeir
and Tutz, 2001). In the Bayesian framework, in a random walk model of order 1, a prior
is set on the function value at knots, such that

f(ki+1)− f(ki) ∼ N(0, σ2), i = 1, . . . ,K − 1. (2.15)

Similarly, in a random walk model of order 2, a prior is set on the second-order differences

f(ki+1)− 2f(ki) + f(ki−1) ∼ N(0, σ2), i = 2, . . . ,K. (2.16)

Fitting smooth functions to the data in this way allows for a large flexibility when mod-
elling.
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2.3.3 Latent Gaussian models
Now, latent Gaussian models are defined through a structured additive predictor given by

ηi = β0 +

M∑
m=1

βmxmi +

L∑
l=1

fl(zli) + εi, (2.17)

where β0 defines the intercept, β = (β1, · · · , βM ) quantifies the linear effect of the covari-
ates X = (x1, · · · ,xM ) on the additive predictor, and where f = (f1, · · · , fL) are a set
of functions defined in terms of some covariates Z = (z1, · · · , zL). In regression models,
these functions can model non-linear covariate effects, such as random walk smoothing
functions described above for generalized additive models, but also different random ef-
fects. Therefore, the linear predictor can include both fixed effects and random effects.
The latent components of interest in (2.17) can be collected in a set of latent parameters
θ = {β0,β,f}. Now, a latent Gaussian model is obtained if all elements of θ have Gaus-
sian priors assigned, making latent Gaussian models a subset of all Bayesian structured
additive regression models on the form (2.17), which includes generalized linear models
and generalized additive models. Further, φ = {φ1, . . . , φk} denotes the vector of possi-
ble hyperparameters. Their prior distributions do not have to be Gaussian for the model to
be a latent Gaussian model.

2.4 Integrated nested Laplace approximations
The INLA methodology, introduced by Rue et al. (2009), is designed for latent Gaussian
models described above, which are models with a structured additive predictor on the form
(2.17) and with Gaussian priors assigned to the latent parameters. Further, the INLA algo-
rithm exploits properties of Gaussian Markov random fields and Laplace approximations
for computationally efficient Bayesian inference. These concepts are briefly introduced
here, following Blangiardo and Cameletti (2015) closely.

With observed data y = (y1, · · · , yn), the likelihood function is given by

f(y|θ,φ) =

N∏
i=1

f(yi|θi,φ), (2.18)

where there is a connection between each observation yi and only one element of θ.

A multivariate normal prior on θ having mean 0 and precision matrixQ(φ), which is the
inverse of the covariance matrix, is assumed. Thus, the density function becomes

f(θ|φ) = (2π)−n/2|Q(φ)|1/2 exp(−1

2
θTQ(φ)θ), (2.19)

where | · | denotes the matrix determinant. θ is now a latent Gaussian field. Due to the
Markov property, Q(φ) will be a sparse matrix if the components of θ are assumed to
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be conditionally independent. As a result, θ is a Gaussian Markov random field (Rue and
Held, 2005). In turn, this leads to computational benefit.

The joint posterior distribution of θ and φ can be obtained through Bayes’ formula and
combining (2.18) and (2.19), such that

f(θ,φ|y) ∝ f(φ) · f(θ|φ) · f(y|θ,φ)

∝ f(φ) · f(θ|φ) ·
N∏
i=1

f(yi|θi,φ)

∝ f(φ) · |Q(φ)|1/2exp
(
− 1

2
θTQ(φ)θ +

n∑
i=1

log
(
f(yi|θi,φ)

))
,

(2.20)

where f(φ) is a prior distribution for the hyperparameters.

In Bayesian inference, the objectives are to obtain the marginal posterior distributions of
each element of the parameter and hyperparameter vectors,

f(θi|y) =

∫
f(θi,φ|y)dφ =

∫
f(θi|φ,y)f(φ|y)dφ (2.21)

and

f(φk|y) =

∫
f(φ|y)dφ−k. (2.22)

Therefore, f(φ|y) and f(θi|φ,y) must be computed in order to obtain all the relevant
marginals.

In the INLA algorithm, a Laplace approximation is used to produce numerical approx-
imations to the posterior distributions. In order to understand Laplace approximations,
consider the integral ∫

f(x)dx =

∫
exp (log f(x))dx, (2.23)

where f(x) is the density function of a random variable X . If log f(x) is represented
by a Taylor series expansion evaluated in x∗ = arg max

x
log f(x), then the fact that

∂ log f(x)
∂x

∣∣∣
x=x∗

= 0 yields an approximation to the integral given by

∫
f(x)dx ≈ exp(log f(x∗))

∫
exp

(
− (x− x∗)2

2

∂2 log f(x)

∂x2

∣∣∣
x=x∗

)
dx. (2.24)

The shape of the integrand is the same as the density of the normal distribution. By setting
σ2∗ = −1/∂

2logf(x)
∂x2

∣∣∣
x=x∗

,

∫
f(x)dx ≈ exp(logf(x∗))

∫
exp
(
− (x− x∗)2

2σ2∗

)
dx. (2.25)
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The integrand can now be seen as the kernel of a normal distribution with mean x∗ and
variance σ2∗ . Further, integrating over the interval (α, β) then gives the approximation∫ β

α

f(x)dx ≈ f(x∗)
√

2πσ2∗(φ(β)− φ(α)), (2.26)

where φ(·) is the cumulative density function of the normal distribution with mean x∗ and
variance σ2∗ . This is the Laplace approximation of the integral (2.23), used in the INLA
algorithm when approximating the posterior distributions of the parameters and hyperpa-
rameters.

Further, the joint posterior distribution of the hyperparameters is approximated by

f(φ|y) =
f(θ,φ|y)

f(θ|φ,y)

∝ f(y|θ,φ)f(θ|φ)f(φ)

f(θ|φ,y)

≈ f(y|θ,φ)f(θ|φ)f(φ)

f̃(θ|φ, y)

∣∣∣
θ=θ∗(φ)

=: f̃(φ|y),

(2.27)

where f̃(θ|φ, y) is the Gaussian approximation, obtained through the Laplace method, of
f(θ|φ,y), and θ∗(φ) is the mode for a given φ.

Further, there are three available options to estimate the posterior f(θi|φ,y) of the param-
eters. The fastest option is to use the marginals of the Gaussian approximation already
computed. Another possibility is to perform a Laplace approximation one more time, or
otherwise to use a so-called simplified Laplace approximation (Rue et al., 2009). Using
the approximation f̃(θi|φ,y) obtained by one of these methods, together with the approx-
imation f̃(φ|y) from (2.27), the approximation to the marginal posterior of the parameters
f(θi|y) in (2.21) is numerically solved through

f̃(θi|y) ≈
∑
j

f̃(θi|φ(j),y)f̃(φ(j)|y)∆j , (2.28)

where φ(j) is a grid of relevant integration points with corresponding weights ∆j . The
grid of integration points are found by locating the mode φ∗ of f̃(φ|y) and then exploring
the distribution from there.

Although INLA is designed for latent Gaussian models, it is worth noticing that not all
such models can be fitted efficiently by the algorithm. The INLA algorithm is most ef-
ficient when θ is a Gaussian Markov random field, due to effective numerical methods
for sparse matrices through a Cholesky decomposition. The number of hyperparameters
should also be small, typically between 2 and 5, and not exceeding 20 (Rue et al., 2009;
Wang et al., 2018). The reason for this restriction is to limit the dimensions in the numeri-
cal integration, as it can be expensive to integrate out a large number of hyperparameters.
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A more comprehensive review of the theory behind INLA can be found in Rue et al.
(2009), Blangiardo and Cameletti (2015) and Wang et al. (2018).

A package in R called R-INLA has been developed to perform approximate Bayesian in-
ference with the INLA algorithm. This package is used in this work. R-INLA can for
instance handle models with multiple likelihoods (Martins et al., 2013). Hence, it is well
suited for joint modelling of blood pressure measurements and dropout, as is done in this
work.
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3 | HUNT Study data and
exploratory analysis

In this work, data from the Trøndelag Health Study, HUNT, are used for blood pressure
modelling. More specifically, the two first health surveys, HUNT1 and HUNT2, are con-
sidered. In this chapter, the dataset and its variables are described and explored, with a
special focus on the dropout process from HUNT1 to HUNT2.

3.1 Variables from HUNT1 and HUNT2

The full data from HUNT1 and HUNT2 contain large amounts of information. Numerous
available variables provide information ranging from clinical measurements such as blood
pressure and BMI, to whether or not the participants have or have had different diseases
and use medication. Also, demographic data and questionnaire data covering lifestyle-
related issues such as alcohol consumption, smoking and exercising are provided, to men-
tion a few. In this work, however, the interest lies in those that participated in HUNT1
and their corresponding systolic blood pressure in HUNT2, which is missing if the partic-
ipant dropped out prior to HUNT2. The dataset considered in this work consists of a few,
selected variables from HUNT1, that are used as covariates in the models, to predict the
blood pressure in HUNT2.

In order to reduce the complexity of the models, only a few variables from HUNT1 are
selected. These variables are the systolic blood pressure, age, sex and BMI. From HUNT2,
the systolic blood pressure, which is the outcome of interest, is included. However, also
a missing indicator variable, which is created, is included from HUNT2. This is a binary
variable,

mi =

{
1, if participant i is missing in HUNT2,
0, if participant i is observed in HUNT2,

(3.1)

i.e. stating whether or not a participant has missing blood pressure measurements in
HUNT2, and hence are regarded as dropped out of the study.
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The variables considered are summarized in Table 3.1.

Table 3.1: Summary of variables.

Variable Type Description

Response (HUNT2) BP2 Numeric Systolic blood pressure (mmHg)
m Binary Observed (0) or missing (1) BP2

Covariates (HUNT1)

age Numerica Age (years)
sex Binary Female (0) or Male (1)
BP1 Numerica Systolic blood pressure (mmHg)
BMI Numerica Body Mass Index (kg/m2)

a Continuous covariates are standardized before the models are fitted.

The dataset consists originally of a large number of missing values, but only the partici-
pants with complete records from the variables of interest in HUNT1 are included in the
dataset. The only variable with missing values is therefore the blood pressure in HUNT2,
BP2, corresponding to m = 1. After limiting the number of included participants this
way, 57351 participants are considered. These are the ones participating in HUNT1, with
no missing values in any of the variables considered from HUNT1. Out of those, 37445
(65.3%) have a blood pressure measurement in HUNT2. 19906 (34.7%) do not have a
blood pressure measurement in HUNT2 and are regarded as missing.

It is worth making a comment about the blood pressure variables from HUNT1 and HUNT2,
BP1 and BP2. Some of the participants are using blood pressure medication at the time
of HUNT1 or HUNT2. As it is of interest to look at the underlying systolic blood pres-
sure, which would have been observed in the absence of any blood pressure medication,
the blood pressure needs to be adjusted in these cases. Therefore, as suggested by Tobin
et al. (2005), 15 mmHg is added to the measured systolic blood pressure of the participants
using blood pressure medication in HUNT1 or HUNT2, in order to neutralize the effect
of medication. However, a minor note by doing so is that in HUNT1, the question about
current blood pressure medication only applied to a subset of the participants. Because of
how the question was asked, 714 of the participants stated in HUNT1 that they had been
using blood pressure medication previously, but they did not state whether they used it at
the time of HUNT1. These participants did not get their blood pressure adjusted. Hence,
not all of those actually using blood pressure medication in HUNT1 did get their blood
pressure adjusted for treatment effects. Consequently, a small fraction of the participants
considered should have had a higher blood pressure in HUNT1 than they had in this work.

3.2 Exploratory data analysis
A descriptive summary of the variables is given in Table 3.2. Each continuous variable
is described in terms of mean and standard deviation. For the binary variable sex, the to-
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tal number and fraction of participants belonging to each sex are stated. The summary is
given for the participants overall, but also separately for those that showed up in HUNT2
and for those that did not.

Table 3.2: Descriptive statistics. Continuous variables are described with mean and standard devi-
ation, while the binary variable sex is described in terms of the number and fraction females and
males, respectively.

Status in HUNT2
Summary HUNT1 Observed Missing

Variable (n = 57351) (n = 37445, 65.3%) (n = 19906, 34.7%)
BP2 - 143.7 ± 24.6 -
Age 48.8 ± 17.3 45.0 ± 14.2 55.8 ± 20.1
BP1 139.3 ± 24.9 134.6 ± 21.3 148.3 ± 28.5
BMI 25.2 ± 3.9 24.9 ± 3.7 25.6 ± 4.4
Sex

Female 28947 (50.5%) 19864 (68.6%) 9083 (31.4%)
Male 28404 (49.5%) 17581 (61.9%) 10823 (38.1%)

Figure 3.1: Density plots of the continuous variables.
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To complement the information provided in Table 3.2, the distributions of the continuous
variables are shown in Figure 3.1. Further, Figure 3.2 shows how the distributions of blood
pressure, age and BMI in HUNT1 are for those that also participated in HUNT2 and for
those that did not. From Table 3.2 and Figure 3.2, it can clearly be seen that the charac-
teristics in HUNT1 differ between the participants that are observed and the participants
that are missing in HUNT2. Naturally, a large portion of those that had a high age in
HUNT1 did not show up in HUNT2. Also, the individuals that dropped out had on aver-
age a slightly higher systolic blood pressure in HUNT1. By contrast, the distribution of
BMI for those dropping out is almost similar to the distribution of BMI for those showing
up in HUNT2. In Table 3.2, it is shown that men are more likely than women to drop out,
as 38.1% of the men drop out compared to 31.4% of the women. That there are clearly
different characteristics in HUNT1 between those that show up in HUNT2 and those that
do not motivates why it is vital to take missing values into account.

Figure 3.2: Distributions of blood pressure, age and BMI, respectively, in HUNT1, of the partici-
pants that also participated in HUNT2 (blue) and those that did not (grey).

3.3 Exploratory modelling
In order to explore how the different covariates influence the blood pressure in HUNT2,
a simple frequentist blood pressure model is fitted to the data. This is a linear regression
model with the blood pressure in HUNT2 as response variable, and the variables from
HUNT1 as covariates. Only the participants with a measured blood pressure in HUNT2
are included, since the rest are missing. The model is therefore a complete-case model, in
which the dropout process is ignored. The numerical covariates are all standardized in the
following. The model is given by

BP2,i = α0 + αBP · BP1,i + αage · agei + αsex · sexi + αBMI · BMIi + εi, (3.2)

where α0, αBP, αage and αsex are regression coefficients and ε is a normally distributed
individual random effect.
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In Table 3.3, resulting parameter estimates are presented. It can be seen that the blood
pressure and age in HUNT1 have most impact on the blood pressure ten years later. For
instance, if one has a blood pressure in HUNT1 that is one standard deviation higher than
the mean, then the systolic blood pressure in HUNT2 is on average 16.2 mmHg higher, ac-
cording to the model. Also sex and BMI play important roles, and all variables are highly
significant.

Table 3.3: Summary of the simple linear blood pressure model (3.2) fitted to those who participated
in both HUNT1 and HUNT2.

Estimate Std. Error Pr(>|t|)
α0 148.9416 0.1241 < 2e−16
αBP 16.1638 0.1242 < 2e−16
αage 6.5582 0.1256 < 2e−16
αsex -1.4112 0.1775 1.9e−15
αBMI 1.5266 0.1018 < 2e−16

Also, a logistic model with the missing indicator variable in HUNT2 as response is fitted
in order to model the dropout process. As whether or not a person shows up in HUNT2 is
a binary variable, a logistic model is suitable. The same covariates as in the linear blood
pressure model are included, such that

logit(pi) = log
( pi

1− pi
)

= β0 + βBP · BP1,i + βage · agei+

βsex · sexi + βBMI · BMIi,
(3.3)

where β0, βBP, βage and βsex are regression coefficients and pi is the probability that
participant i of HUNT1 does not show up in HUNT2, i.e. mi = 1, such that mi ∼
Bernoulli(pi).

Table 3.4 summarizes the dropout model. Age is the most important factor explaining
whether or not participants show up in HUNT2, but also sex and the measured blood pres-
sure in HUNT1 are important. A high age, high blood pressure in HUNT1 and being a
male increase the dropout probability considerably, whereas high BMI slightly decreases
the probability of not showing up.

In Figure 3.3, the coefficients of the dropout model are interpreted in terms of probability
of dropout. To the left, the probability of dropout before HUNT2, according to this model,
is plotted as a function of the blood pressure in HUNT1 for males and females, respec-
tively, for a person being 50 years old and having a BMI of 22 in HUNT1. To the right,
the probability of dropout is plotted as a function of age for a participant with systolic
blood pressure in HUNT1 of 140 and a BMI of 22. As the dropout probability changes
dramatically from low to high age, and from low to high BP1, it is clear that these two
factors have major impact on whether or not one shows up in HUNT2.
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Table 3.4: Summary of the logistic dropout model (3.3).

Estimate Std. Error Pr(>|z|)
β0 -0.8637 0.0136 < 2e−16
βBP 0.3059 0.0114 < 2e−16
βage 0.5092 0.0114 < 2e−16
βsex 0.3325 0.0187 < 2e−16
βBMI -0.0871 0.0100 < 2e−16

Figure 3.3: Probability of dropout given by a simple dropout model for females and males, as a
function of BP1 and age, respectively. To the left, the participant is 50 years old and has a BMI of
22 in HUNT1. To the right, the participant has a systolic blood pressure of 140 and a BMI of 22 in
HUNT1.

Since the dropout regression itself is highly significant, meaning that some of the coeffi-
cient estimates other than the intercept with a high certainty deviate from zero, the data are
at least MAR. For example, as increasing age gives a higher chance of being missing, the
group of missing individuals is not a completely random subsample of the participants in
HUNT1. If the data really are MAR, and not MNAR, the parameter estimates of the simple
blood pressure model (3.2), in Table 3.3, are unbiased. However, the observed blood pres-
sure distribution in HUNT2 is biased to that of the full population. Figure 3.4 serves as an
example of how MAR provides biased distributional properties. Here, the blood pressure
in HUNT2 is predicted for those missing, and the distribution of predicted blood pressures
is compared to the observed distribution. The predicted distribution obtained from the
linear model differs substantially from the distribution of the observed blood pressures.
Therefore, if one for example wants to report the mean systolic blood pressure of the pop-
ulation based on the dataset used in this work, it is not enough to take the mean of the
observed blood pressures in HUNT2. In order to obtain an unbiased marginal distribution
of BP2, the covariates need to be taken into account (Little and Rubin, 2002).
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Figure 3.4: The distribution of observed blood pressures in HUNT2, together with the distribution
of the predicted blood pressures in HUNT2 of those that dropped out prior to HUNT2, using the
blood pressure model (3.2).

From this first exploration, it is clear that the variables considered from HUNT1 are in-
fluencing the blood pressure in HUNT2, based on the participants showing up in both
of the surveys. Also, the variables influence the probability of dropout, so the data are
clearly at least MAR. However, it is not possible to tell by inspection whether the data
really are MNAR. In the next chapter, a Bayesian model accounting for MNAR dropout is
formulated and compared to a Bayesian model assuming MAR dropout. In order to keep
the models simple, BMI is kept out of the models to begin with, as BMI, according to
the dropout model (3.3), is the least important covariate in explaining dropout. Later on,
however, BMI is reintroduced.
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4 | Models and method

The main goal of this work is to formulate a model that is able to make unbiased infer-
ences about parameters describing the blood pressure in HUNT2 based on HUNT1. Two
different Bayesian models are therefore proposed in this chapter. These are, respectively, a
naive blood pressure model, introduced in Section 4.1, and a joint model, more specifically
a shared parameter model, introduced in Section 4.3. The models presented are all fitted
using the INLA framework through R-INLA, and the continuous covariates are standard-
ized.

The naive model proposed in Section 4.1 ignores the dropout process and hence assumes
that the data are MAR, similarly as the frequentist, exploring model (3.2) in Chapter 3.3.
By contrast, the model proposed in Section 4.3 takes the dropout process into account
together with the blood pressure model. The dropout process has to be well specified in
order for such joint models to work (Mason et al., 2010). Therefore, a separate, naive
dropout model is formulated in Section 4.2, in which possible non-linear effects between
the covariates and the additive predictor are explored. The results from this modelling
provide the basis for the dropout part of the joint model.

A major advantage of Bayesian modelling, in addition to the fact that one can incorporate
data from external sources or prior knowledge, is that these models relatively easy can
be adapted to allow for a possible non-ignorable missing data mechanism. This is done
by adding a link between the missing values of the blood pressure model and the dropout
model which models the probability of being missing. The blood pressure and dropout
parts of the model are then jointly fitted. This is the case in the shared parameter model
that is formulated in Section 4.3. The core of this model is that a random effect is shared
between the blood pressure model and the dropout model.

4.1 Naive blood pressure model

With BP1, age and sex as covariates, a simple Bayesian linear blood pressure model is
given by

BP2,i = α0 + αBP · BP1,i + αage · agei + αsex · sexi + εi, (4.1)
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where εi ∼ N(0, σ2
ε ), with prior distributions assigned to the coefficients and σ2

ε .

The coefficients have assigned the prior distributions

α0, αBP, αage, αsex ∼ N(0, 106), (4.2)

where the large variances reflect vague prior beliefs. Further, the prior used for σε is

σ2
ε ∼ invGamma(1, 5 · 10−5), (4.3)

which also contains little specific prior information about σε.

This model is in the following referred to as the naive model. The reason for this is that
the model assumes that the data are MAR, but not MNAR. The participants with miss-
ing blood pressure measurements in HUNT2 do not contribute to the likelihood, and the
dropout process is ignored. Hence, if one were to assume that the data are MAR, then such
a model is sufficient to provide unbiased inferences, but inferences are not valid if the data
actually are MNAR.

4.2 Dropout model
Within the joint modelling approach that is proposed in the next section as an alternative
to the naive model (4.1), a model for the dropout process also needs to be specified. There-
fore, in this section, a naive logistic dropout model is proposed, in which the assumption
of a linear relationship between the covariates and the additive predictor is relaxed. Thus,
the continuous covariates BP1 and age are modelled through smooth functions allowing
for non-linear effects, such that

logit(pi) = β0 + f(BP1,i) + f(agei) + βsex · sexi,

mi ∼ Bernoulli(pi),
(4.4)

where f(·) is a random walk model of order 2 as described in Chapter 2.3.

The goal of fitting this model is to investigate whether the covariates BP1 and age are
related non-linearly to the additive predictor in the dropout process, in order to be able to
specify this correctly in the shared parameter model formulated in the next section. Ma-
son et al. (2010) illustrate the importance of formulating a missing model which is a good
approximation to the true missing process in order for joint models to reduce the bias from
MAR models in the presence of MNAR, and to avoid convergence difficulties. Possible
non-linearities could be discovered from (4.4), and hence be incorporated into the upcom-
ing joint model to prevent such issues.

Priors are now set to the coefficients of the models and to the variance of the second order
differences of the random walk models in (4.4), as given by (2.16). These priors are,
respectively,

β0, βsex ∼ N(0, 106), (4.5)
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and
σ2
BP, σ

2
age ∼ invGamma(1, 5 · 10−5). (4.6)

These priors all incorporate non-specific prior information about the parameters into the
model.

4.3 Shared parameter model

To account for data being MNAR, one generally needs to model the missing process to-
gether with the measurements. A naive blood pressure model as presented in Section 4.1
is then not satisfactory, as inferences must be made based on the full likelihood (2.7). In
order to formulate a joint model for blood pressure values and the dropout process in the
presence of data assumed to be MNAR, a shared parameter model inspired by Steinsland
et al. (2014) is introduced. A shared random effect is included in the factorization of the
full likelihood, such that the factorization takes the form (2.12). The random effect ε char-
acterizes the individual-specific blood pressure levels in HUNT2. By sharing this effect,
a certain dependence between the blood pressure in HUNT2 and the dropout process is
induced.

The shared parameter model (SPM) consists of two submodels, which is one model for the
blood pressure, and one model for the dropout process, connected through ε. The blood
pressure model is

BP2,i = α0 + αBP · BP1,i + αage · agei + αsex · sexi + εi, (4.7)

with the same covariates as the naive model. ε is a normally distributed random effect,
εi ∼ N(0, σ2

ε ).

Further, ε is shared with the missing data model, such that there is a relationship between
the blood pressure model and the dropout model. The dropout process is modelled by
logistic regression, given by

logit(pi) = β0 + βBP · BP1,i + f(agei) + βsex · sexi + c · εi, (4.8)

such that pi is the probability that participant i will drop out before HUNT2. The missing
data indicator is then mi ∼ Bernoulli(pi). Here f(·) is a random walk model of order 2.
Further, c is an association parameter that, when different from zero, directly links the two
submodels and makes missingness dependent on the underlying, potentially unobserved
blood pressure in HUNT2 through the random effect εi. Due to this, the term shared pa-
rameter model is slightly misleading, since in fact ε is treated as a covariate, and not a
parameter, in the dropout submodel.

When fitting the separate dropout model (4.4) which includes smooth functions allowing
for non-linear covariate effects, it turns out that age is clearly non-linear in the dropout
process. This can be seen from Figure 5.1 in Chapter 5.1. This is the reason why age is
fitted through a random walk function of order 2 in the dropout part (4.8) of the shared
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parameter model. σ2
age is the corresponding variance of the prior set to the second-order

differences (2.16).

Further, the parameters of SPM have prior distributions assigned given by

α0, αBP, αage, αsex, β0, βBP, βsex ∼ N(0, 106), (4.9)

where the variances are large in order to reflect vague prior knowledge.

The prior distributions of the hyperparameters must also be specified in order to obtain
Bayesian inference from the shared parameter model. Prior distributions of the variances
σ2
ε and σ2

age of the random effects are

σ2
ε , σ

2
age ∼ invGamma(1, 5 · 10−5). (4.10)

Further, the prior used for the association parameter c is

c ∼ N(0, 1). (4.11)

This prior reflects an initial belief that the parameter is not too far away from zero.

4.4 Inference from models
The objectives of inference for hierarchical Bayesian models are the posterior distributions
of the latent variables and the hyperparameters. For the shared parameter model, a tradi-
tional approach would be to use Markov chain Monte Carlo methods to sample from the
posterior distributions of the latent variables θ = (α0, αBP1

, αage, αsex, β0, βBP1
, βsex, f)

and the hyperparameters φ = (σ2
age, σ

2
ε , c). However, these methods are often not very

efficient. With Gaussian priors assigned to the the latent variables, the shared parameter
model can be shown to be a latent Gaussian Markov random field model, instead making
it suitable for the INLA methodology.

The structured additive predictor of the shared parameter model can be written on the form
(2.17),

ηi = β0 +

M∑
m=1

βmxmi +

L∑
l=1

fl(zli) + εi, (4.12)

where f models the effects of age in the dropout process. In addition, the random iid
effect ε is copied into the linear predictor for the binomial observations, with the scaling
parameter c. Since the latent variables have Gaussian priors, the shared parameter model
is a latent Gaussian model.

Further, the latent variables are conditionally independent, so both the blood pressure
model and the dropout model are Gaussian Markov random field models. Hence, the
joint model is also a Gaussian Markov random field model. Additionally, the number of
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hyperparameters φ is small. Therefore, the shared parameter model satisfies the condi-
tions for models that can be fitted efficiently by INLA.

The joint model consists of both Gaussian observations, which are the blood pressures,
and of binomial observations, which are the missing data indicator values. INLA supports
models with multiple likelihoods, and it is possible to group the observations such that
they have different additive predictors. Here, the data are divided into two groups such
that the blood pressure data have a Gaussian likelihood assigned and the missing data in-
dicators have a binomial likelihood assigned. The latent variables corresponding to each
group are then linked by manipulating the structure of the data frame containing the two
response variables and the covariates. If the number of individuals in the data is n, then
the length of the additive predictor is 2n. The latent variables in the Gaussian model are
only defined for i = 1, . . . , n, while the latent variables in the binomial model are defined
for i = n+ 1, . . . , 2n. See the R code in Appendix B for details.

It should be noted that technically, when specifying the model in INLA, ε is split into ε1
and ε2, two separate normally distributed individual random effects with variances σ2

ε1 and
σ2
ε2 , respectively. It is in fact ε1 which is shared with the dropout part of the model. How-

ever, identifiability issues arise when σε1 , σε2 and c are simultaneously to be estimated. In
order to overcome this, σε2 is fixed. Here, it is fixed to a small value, 0.01. This means that
almost all variability is concentrated to σε1 , so σε ≈ σε1 . ε2 can thus be neglected. One
can therefore without harm use ε and ε1 interchangeably. Thus, only ε and σε are referred
to.

Now, inferences can be obtained based on the joint likelihood of the blood pressure ob-
servations and the missing indicator observations, together with the prior distributions
defined. Similarly, the naive blood pressure model has Gaussian priors assigned with con-
ditional independence between the latent variables, so the model is a Gaussian Markov
random field, making it also suitable for the INLA framework.

Both the naive model and the shared parameter model are fitted to the HUNT data. The
main interest lies now in the posterior estimates of the parameters of the blood pressure
model, α0, αBP, αage and αsex, from the two different approaches. Also, interest lies in
the variability σε estimated from the two models, and, especially, the parameter c of the
shared parameter model, as this is an indication of data being MNAR if it differs from zero.

4.5 Simulation studies

Two simulation studies are conducted in order to test the performance of the naive model
and the shared parameter model on data with known, underlying dropout processes and
parameters.

The simulation studies are based on the participants of the HUNT dataset. Further, the
parameter estimates obtained by the shared parameter model are used to simulate blood
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pressures in HUNT2 and simulate the dropout process for HUNT2. The parameters used
in the first simulation study, given in Table 4.1, coincide with the posterior mean parame-
ter estimates from SPM on the HUNT data. Since the true c is non-zero in this simulation
study, the data are MNAR.

Table 4.1: Parameters used to simulate blood pressures in HUNT2 and to simulate the dropout
process for HUNT2 in the simulation studies.

Parameter True value in study 1 True value in study 2
α0 152.49 152.49
αBP 17.45 17.45
αage 7.31 7.31
αsex -0.53 -0.53
β0 0.13 0.13
βBP 0.26 0.26
βsex 0.44 0.44
σε 18.10 18.10
c 0.046 0

In this simulation study, 100 new datasets are simulated. For each dataset, a shared param-
eter model and a naive model are fitted. The simulation procedure is given in Algorithm
1. The estimates obtained over the 100 simulations by the two approaches are evaluated
by looking at the mean of posterior means, bias and coverage. The bias of a parameter
estimate is here, in fact, a mean of biases over the 100 fitted models, and is given by

Bias(θ̂) =
1

100

100∑
s=1

(θ̂s − θ), (4.13)

where θ̂s is the posterior mean parameter estimate of a true parameter θ in simulation s.
In addition, for each fitted model, a 95% equal-tailed credible interval As is obtained for
each parameter. An indicator function,

Is(θ) =

{
1, θ ∈ As,
0, θ /∈ As,

states whether or not the true, underlying parameter θ is covered by this interval in sim-
ulation s. Further, the coverage of a parameter is the fraction of simulations where the
credible interval covers the true parameter. Thus, it is defined by

C =
1

100

100∑
s=1

Is(θ). (4.14)

Using these evaluation criteria, the shared parameter model can be compared with the
naive model on the known MNAR data.
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Algorithm 1: Simulation studies
Initialize true α0, αBP1 , αage, αsex, β0, βBP1 , f(age), βsex, c, σε
for s in 1:100 do

Create εs ∼ N(0, σ2
ε )

Give all participants new BP2 using α0, αBP1
, αage, αsex and εs

Make some participants missing in HUNT2 using β0, βBP1
, βsex, f(age), c and

εs
Fit SPM
Fit naive model

end
return Parameter estimates obtained by each model in each simulation

In addition, a second simulation study is conducted, in which the underlying parameters
are such that the data are MAR instead of MNAR. The posterior mean estimates from
SPM on the HUNT data are still used to simulate new underlying blood pressures and to
simulate the dropout process in HUNT2, but the parameter c is now set to 0 instead of the
posterior mean provided by SPM. Except this, all parameters used are similar to those of
the first part of the simulation study, as given in Table 4.1. Since the true value of c now is
0, there is no connection between the underlying blood pressure in HUNT2 and whether
one shows up in HUNT2, after according for the observed covariates. Since the data are
MAR, the naive model is expected to provide unbiased inferences. In order for the shared
parameter model to be reliable under MNAR, it is vital that it also estimates the parame-
ters unbiased under MAR, and that the association parameter c is estimated to be close to 0.

Similarly as the first simulation study, the second study also follows Algorithm 1. 100 new
datasets are generated, and for each simulated dataset, both a shared parameter model and
a naive model are fitted. The results are summarized through the mean of posterior means,
coverage and bias.

4.6 Prior sensitivity

The association parameter c in the shared parameter model is of special interest, as this pa-
rameter identifies the dependence between the underlying blood pressure in HUNT2 and
the dropout process, if there is such a dependency. It is therefore of interest to see whether
inferences vary depending on the choice of prior for c. A small analysis of prior sensitivity
is conducted, in which the shared parameter model is fitted to the HUNT data with three
different Gaussian priors for c. The different priors tested are given in Table 4.2. SPM-P2
has a prior for c with higher variance than the original SPM, whereas the prior in SPM-P3
has a non-zero mean. Parameter estimates obtained from the three different models are
still compared to those obtained from the naive model.
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Table 4.2: Name of the different shared parameter models and their corresponding prior for c.

Model name Prior for c
SPM N(0, 12)

SPM-P2 N(0, 102)
SPM-P3 N(1, 12)

4.7 Extended models with BMI
The blood pressure model looked at so far is mostly for illustrative purposes, as it only
includes a few, although very important, covariates. One would typically consider explor-
ing more complex models, in which more covariates, or possibly interaction effects, are
included as well. In the exploratory modelling section 3.3, BMI was shown to be an im-
portant factor in predicting the blood pressure in HUNT2, based on the participants that
showed up. Therefore, a first natural extension is to add BMI to the shared parameter
model, and then see how the parameter estimates change. BMI is added as a covariate,
both in the blood pressure part and in the dropout part. Correspondingly, the naive model
is also fitted with BMI added.

The naive model and the blood pressure part of the shared parameter model become

BP2,i = α0 + αBP · BP1,i + αage · agei + αsex · sexi + αBMI · BMIi + εi, (4.15)

while the dropout part of the shared parameter model is

logit(pi) = β0 + βBP · BP1,i + f(agei) + βsex · sexi + βBMI · BMIi + c · εi. (4.16)

Prior distributions are the same as defined in sections 4.1 and 4.3, together with the addi-
tional priors αBMI, βBMI ∼ N(0, 106).
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5 | Results

To begin with in this chapter, the resulting non-linear effects in the dropout model (4.4)
are presented. These results provide the basis for the dropout model specification in SPM.
Then, parameter estimates obtained from SPM and the naive model on the HUNT data are
compared. Further, results from the simulation studies, from the prior sensitivity analy-
sis and from the extended models with BMI are presented, before a few remarks about
computational issues are provided.

5.1 Non-linear effects in dropout model
In the separate dropout model (4.4) formulated in Section 4.2, the covariates BP1 and age
are modelled through a random walk model of order 2. The resulting effects of these co-
variates on the additive predictor are plotted in Figure 5.1. Here, the effect of BP1 is more
or less linear, whereas the age effect is clearly non-linear. The youngest participants of
HUNT1 are less likely to show up in HUNT2 than middle-aged participants. The proba-
bility of dropout then increases considerably the older one gets, after a certain age. Hence,
this motivates the inclusion of the non-linear age effect in the dropout part of the shared
parameter model, while it is justified to model BP1 linearly.

Figure 5.1: Effects of the covariates BP1 and age on the additive predictor in the dropout model
(4.4).
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5.2 Parameter estimates

The parameter estimates obtained when fitting the naive model and the shared parameter
model to the HUNT data are presented in Table 5.1. Further, the posterior densities of the
blood pressure parameters obtained by the naive model and the shared parameter model
are shown in Figure 5.2.

Table 5.1: Parameter estimates, in terms of posterior mean and 95% equal-tailed credible interval,
obtained by the shared parameter model and the naive model.

SPM Naive
Posterior mean 95 % CI Posterior mean 95 % CI

α0 152.49 (152.23, 152.74) 148.97 (148.72, 149.22)
αBP 17.45 (17.21, 17.69) 16.64 (16.40, 16.88)
αage 7.31 (7.06, 7.56) 6.88 (6.63, 7.13)
αsex -0.53 (-0.89, -0.17) -1.31 (-1.67, -0.95)
β0 0.13 (0.04, 0.22) - -
βBP 0.26 (0.23, 0.29) - -
βsex 0.44 (0.40, 0.49) - -
σε 18.10 (17.98, 18.18) 17.48 (17.39, 17.56)
c 0.046 (0.046, 0.046) - -

Figure 5.2: Posterior distributions of α0, αBP, αage, αsex, σε and c from the shared parameter
model and the naive model.
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The parameter estimates obtained from the shared parameter model deviates from those
obtained from the naive model. The blood pressure parameters α0, αBP, αage and αsex are
all estimated to be clearly larger by the shared parameter model than by the naive model.
As the association parameter c is estimated to be non-zero in the shared parameter model,
the model indicates that the data are MNAR. Since this parameter is estimated to be larger
than zero, participants with a large, positive residual ε in the underlying blood pressure
model have a higher chance of not showing up in HUNT2 than those with smaller or neg-
ative residuals. Thus, more people with a high underlying blood pressure at the time of
HUNT2, not explained by the covariates of the model, do not show up than people with a
lower blood pressure, according to SPM.

The differences of the parameter estimates between SPM and the naive model are reason-
able if the data are MNAR as SPM suggests. For instance, if many of the observations
with largest residuals are missing, then it is natural that the naive model underestimates
the true variability of the data and hence estimates σε to be lower than SPM. Furthermore,
the fact that the intercept is underestimated in the naive model is also reasonable if many
of the largest blood pressure values in HUNT2 are missing. Similarly, since an increase
of BP1, age and sex means a higher probability of dropout, it is also explainable that the
naive model underestimates the corresponding parameters αBP, αage and αsex if the data
actually are MNAR as SPM suggests. The reason for this is that participants with for ex-
ample a high age, that were likely to be missing if the data only were MAR, might not be
missing after all due to a negative residual and hence a low blood pressure. This results
in an underestimation of the corresponding regression coefficient of the covariate. This
is exactly what can be seen in Figure 2.2. In the plot to the right, the data are MNAR,
but dropout is also covariate-dependent, since the covariate is positively correlated with
the probability of dropout, exactly as is the case with BP1, age and sex. Therefore, as
the complete-case naive model in the figure then underestimates both the intercept and the
regression coefficient, it is also natural that the naive blood pressure model does the same
on the HUNT data if SPM provide valid inference. In any case, if the parameter estimates
from SPM are valid, then the naive model clearly proves its insufficiency.

In Figure 5.3, the probability of dropout for females with average systolic blood pres-
sure in HUNT1 are plotted as a function of the residuals of the underlying blood pressure
model, according to the shared parameter model, for three different ages. The probabil-
ity of dropout is plotted for ±2 standard deviations of the residual ε. The figure shows
the effect of the term cε in the dropout part of the model, (4.8). Although an estimate
of c = 0.046 at first sight might look small, Figure 5.3 shows the opposite. The proba-
bility of dropout increases drastically with increased residual, and hence increased blood
pressure. The model therefore states that there is a clear connection between the under-
lying blood pressure one has at the time of HUNT2, and whether or not one shows up.
Also, the different dropout probabilities for different age groups are clearly illustrated in
this figure. For example, an 80-year old participant of HUNT1, with a large residual, and
hence a high underlying blood pressure at the time of HUNT2, will almost certainly not
show up in HUNT2. By contrast, a 50-year old participant in HUNT1 with a low under-
lying blood pressure at the time of HUNT2 will with great probability show up in HUNT2.
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Figure 5.3: Probability of dropout for females with average systolic blood pressure in HUNT1 for
three different age groups, as a function of their residual of the underlying blood pressure model,
according to SPM.

5.3 Simulation studies

The results from the first simulation study, where the underlying data are MNAR, are pre-
sented in Table 5.2. Mean of the posterior means, bias and coverage of the parameter
estimates obtained from the 100 simulated datasets are reported for the two models.

The shared parameter model clearly estimates the parameters better than the naive model.
Biases are lower, and coverages are higher for all parameters. Having that said, the shared
parameter model still underestimates the parameters somewhat, and coverages are rela-
tively low, especially of the intercept and of σε and c. In general, the shared parameter
model states that there is a MNAR effect in the data, but that the effect is slightly lower
than it really is.

Even though there are small biases in the estimates from SPM, it is interesting to see that
the mean of the posterior means from the naive model in this simulation study, given in
Table 5.2, almost coincide with the posterior means of the naive model on the true data,
given in Table 5.1. The naive model therefore produces similar results on the known data
simulated from the SPM parameters as on the true data. This could be an indication of the
fact that the data really are MNAR as suggested by SPM.
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Table 5.2: Summary of the parameter estimates obtained from the shared parameter model and the
naive model in the first simulation study, when the underlying data are MNAR.

SPM Naive
True Mean Bias Coverage Mean Bias Coverage

α0 152.49 151.50 -0.99 0.14 148.94 -3.55 0
αBP 17.45 17.23 -0.22 0.49 16.65 -0.80 0
αage 7.31 7.20 -0.11 0.82 6.94 -0.37 0.13
αsex -0.53 -0.75 -0.22 0.71 -1.35 -0.82 0
β0 0.13 0.11 -0.02 0.96 - - -
βBP 0.26 0.25 -0.01 0.79 - - -
βsex 0.44 0.42 -0.02 0.75 - - -
σε 18.10 17.70 -0.40 0.12 17.45 -0.65 0.03
c 0.046 0.033 -0.013 0.07 - - -

Figure 5.4: Density plots of the posterior means from the shared parameter model and the naive
model obtained over the 100 simulated datasets in the first simulation study. The black line shows
the true value of the parameter, whereas the blue and red lines indicate the mean of posterior means
from SPM and the naive model, respectively.

In Figure 5.4, the distributions of the 100 posterior means obtained in the first simulation
study from SPM and the naive model are plotted for α0, αBP, αage, αsex, σε and c. Al-
though it is clear that the posterior means of the shared parameter model estimates are
much closer to the true parameter values than the posterior means from the naive model, it
is evident that there are some identifiability issues involved. Thus, the INLA algorithm has
problems exploring the posterior distributions correctly. To go deeper into this is outside
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the scope of this thesis. In any case, the resulting posterior distributions are in most of
the simulations slightly shifted from being around the true value. Similar behavior could
possibly also be the case when fitting SPM to the true HUNT data, although this is difficult
to state categorically. However, biases are unquestionably reduced going from the naive
model to SPM on the MNAR data. Still, to investigate the identifiability issues further and
possibly optimize SPM is of interest in future work.

In Table 5.3, the results from the second simulation study are presented. Here, the true
value of c is 0, meaning that the data really are MAR and not MNAR. The naive model
provides in this case more or less unbiased estimates. The shared parameter model also
estimates the parameters with little bias and relatively high coverage, but performs at first
sight not completely as well as the naive model. However, Figure 5.5 explains why there
are marginally higher biases from SPM in this simulation study. In this figure, the distri-
butions of the posterior means of α0 and c, obtained from the 100 simulated datasets, are
shown. It is clear that the posterior means are more or less concentrated around the true
parameter values, but a few extreme outliers are present. It is not unlikely that these out-
liers also are the result of some identifiability issues. These outliers influence the mean of
posterior means to become slightly biased. Due to this, also the coverages of the estimated
parameters from SPM become marginally lower than from the naive model, except the
coverage of α0, which is considerably lower regardless of the outliers. However, if these
few outliers are disregarded, the shared parameter model provides more or less unbiased
estimates to the parameters when the data are MAR, and it performs as good as the naive
model.

Table 5.3: Summary of the parameter estimates obtained from the shared parameter model and the
naive model in the second simulation study, when the underlying data are MAR.

SPM Naive
True Mean Bias Coverage Mean Bias Coverage

α0 152.49 152.84 0.35 0.58 152.49 0.00 0.96
αBP 17.45 17.52 0.07 0.87 17.46 0.01 0.98
αage 7.31 7.41 0.10 0.90 7.31 0.00 0.96
αsex -0.53 -0.73 -0.20 0.85 -0.54 -0.01 0.97
β0 0.13 0.12 -0.01 0.92 - - -
βBP 0.26 0.32 0.06 0.89 - - -
βsex 0.44 0.48 0.04 0.89 - - -
σε 18.10 18.30 0.20 0.49 18.20 0.10 0.21
c 0 0.010 0.010 0.33 - - -

38



Figure 5.5: Distributions of the posterior means of α0 and c from the 100 shared parameter models
fitted in simulation study 2.

5.4 Prior sensitivity

The shared parameter model is in addition fitted with three different priors for c, given in
Table 4.2, in order to see whether the model is sensitive to the choice of prior for c. 95%
credible intervals for the parameters obtained from the three models are shown in Table
5.4. Further, 95% credible intervals for the parameters of the blood pressure model are
plotted in Figure 5.6 for the three different shared parameter models and the naive model.

Table 5.4: 95% credible intervals obtained from the three different shared parameter models with
the priors for c given in Table 4.2.

Model
SPM SPM-P2 SPM-P3

α0 (152.23, 152.74) (152.35, 152.86) (152.26, 152.77)
αBP (17.21, 17.69) (17.23, 17.21) (17.21, 17.70)
αage (7.06, 7.56) (7.08, 7.58) (7.07, 7.57)
αsex (-0.89, -0.17) (-0.87, -0.15) (-0.89, -0.17)
β0 (0.04, 0.22) (0.03, 0.19) (0.03, 0.19)
βBP (0.23, 0.29) (0.24, 0.29) (0.23, 0.29)
βsex (0.40, 0.49) (0.40, 0.49) (0.40, 0.49)
σε (17.98, 18.18) (17.98, 18.19) (17.98, 18.17)
c (0.046, 0.046) (0.048, 0.048) (0.047, 0.047)

The resulting parameter estimates across these shared parameter models are consistent.
Hence, the shared parameter model is apparently not highly prior sensitive with respect
to the prior for the association parameter c which indicates how much MNAR the data
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Figure 5.6: 95% credible intervals of the blood pressure model parameters from the naive model
and the three shared parameter models with different priors for c

are. However, a further prior sensitivity analysis, in which several different kinds of priors
for c, also other than normal distributions, are tested, could be conducted in further work.
In addition, a prior sensitivity analysis where the priors of the other parameters also are
varied is of interest.

5.5 Extended models with BMI
BMI is added as a covariate to the shared parameter model, both to the blood pressure
part and the dropout part of the model, and also to the naive model. Resulting parameter
estimates after the models are fitted to the HUNT data are given in Table 5.5. Furthermore,
in Figure 5.7, the 95% equal-tailed credible intervals of α0, αBP, αage and αsex are plotted
for the models with and without BMI as an additional covariate.

An interesting result is that the estimate of c increases noticeably. The posterior mean is
now 0.059 compared to 0.046 without BMI, meaning that SPM suggests an increasing
degree of MNAR after BMI is added. It is not necessarily intuitive that adding BMI to the
model should lead to this. The case with BMI is that it is a relatively important covariate
in the blood pressure model, as can be seen from the parameter estimates in Table 5.5, but
in opposite to the other covariates included, it is not at all important in explaining whether
one shows up in HUNT2, as βBMI is estimated to be around 0. A possible explanation of
why the model suggests a stronger degree of MNAR could therefore be that large residuals

40



Table 5.5: Parameter estimates, in terms of posterior mean and 95% equal-tailed credible interval,
obtained by the shared parameter model and the naive model when BMI is included as a covariate.

SPM Naive
Posterior mean 95 % CI Posterior mean 95 % CI

α0 153.25 (152.99, 153.50) 148.95 (148.70, 149.20)
αBP 17.20 (16.95, 17.45) 16.17 (15.92, 16.41)
αage 7.16 (6.90, 7.41) 6.56 (6.31, 6.81)
αsex -0.48 (-0.84, -0.12) -1.42 (-1.77, -1.07)
αBMI 1.38 (1.17, 1.59) 1.53 (1.32, 1.73)
β0 0.09 (0.01, 0.16) - -
βBP 0.27 (0.24, 0.30) - -
βsex 0.47 (0.43, 0.52) - -
βBMI 0.02 (-0.01, 0.04) - -
σε 18.03 (17.89, 18.18) 17.22 (17.21, 17.23)
c 0.059 (0.059, 0.059) - -

might be more correlated with dropout after BMI is added to the model than before. Par-
ticipants with a large ε before BMI is added might get the residual explained to a certain
degree simply by adding BMI into the blood pressure model. Then, since BMI does not
contribute much to explain dropout, large residuals are even more correlated with dropout
after adding BMI than before, and hence, c is larger.

Figure 5.7: 95% credible intervals of the blood pressure model parameters of SPM and the naive
model, with and without BMI as a covariate.
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Figure 5.8: Posterior distribution of αBMI obtained from SPM and the naive model after BMI is
added as a covariate.

In the blood pressure model, the parameter estimates change slightly when adding BMI,
as shown in Figure 5.7. However, the estimates from SPM and the naive model change
almost synchronically with and without BMI, except the estimate for α0, which increases
in SPM but remains the same in the naive model. In Figure 5.8, the posterior distributions
of αBMI obtained from SPM and the naive model are plotted. The two distributions are
to a certain degree overlapping. This is, in accordance with the discussion in Section 5.2,
natural as BMI is not of much importance in the dropout process. If data are MNAR but
dropout is not dependent on a covariate, then bias is added to the intercept, but the corre-
sponding regression coefficient of that covariate remains unbiased.

5.6 Note on computational issues

As the shared parameter model is complex and as there are much data available, a few
numerical and computational issues worth mentioning arise. Firstly, the resulting param-
eter estimates obtained by the shared parameter model vary slightly each time the model
is fitted to the same data, also with the same priors. Secondly, when fitting the SPM, the
posterior estimate of c has an extremely low standard deviation, meaning that the estimate
is highly concentrated, as can be seen in Figure 5.2. The posterior mean of c varies in the
interval [0.046, 0.048] each time the model is fitted to the HUNT data, but the posterior is
always extremely concentrated around the mean.

Additionally, when performing the simulation studies, there were some numerical issues.
When fitting the shared parameter model to many of the simulated datasets, a warning
showed up, stating that one of the eigenvalues of the Hessian matrix, which is used when
exploring the distribution f̃(φ|y) in the INLA algorithm, was negative, and that it was
changed to become positive. This could possibly have influenced the precision of the es-
timates of the shared parameter model in the simulation studies. However, the estimates

42



were more or less consistent across the simulations, also when all Hessian eigenvalues
were positive.

Also, in order for the shared parameter model to be able to converge, it is of huge im-
portance to formulate a well-specified dropout process. For instance, a shared parameter
model with a linear age effect in the dropout model does not converge within a reasonable
time. Difficulties in achieving convergence when the dropout model is misspecified is in
accordance with the findings by Mason et al. (2010). To allow for age to be modelled
non-linearly is therefore a key to obtain meaningful results. The blood pressure model
could also potentially include non-linear effects, but this is again more computationally
expensive. Supplementary discussion of this is found in Appendix A.
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6 | Discussion and conclusion

In this work, blood pressure data from HUNT1 and HUNT2 are considered, when some
participants drop out of the follow-up study prior to HUNT2. Such missing values are
commonly assumed to be MAR, but models that are based on this assumption might pro-
vide severely biased inferences if the data under study actually are MNAR. In the presence
of data being MNAR, blood pressure data and the dropout process need to be jointly mod-
elled. One approach for such modelling is proposed in this work, in which an individual
random effect is shared between the blood pressure model and the dropout model. This
shared parameter model is a Bayesian latent Gaussian Markov random field model. Ap-
proximate Bayesian inference is therefore obtained by fitting the model using the INLA
methodology, through R-INLA. Inferences are compared to those obtained by a naive
Bayesian model assuming MAR. Further, simulation studies are conducted in order to test
the models on known, underlying parameters.

The parameter estimates obtained from the shared parameter model differ clearly from
those obtained from the naive model. The association parameter c is estimated to be larger
than zero, indicating that the data are MNAR. The results from the simulation studies par-
tially support this.

Although the results seemingly show that the data are MNAR, one cannot categorically
state that the parameter estimates obtained from the shared parameter model reflect the
underlying truth. There are no possibilities to test empirically whether the data are MAR
or MNAR, since that information is not available from the observed data. Every MNAR
model has a MAR counterpart, meaning that they have exactly the same fit to the ob-
served data, but differ in their predictions of the unobserved outcomes (Molenberghs et al.,
2008). In general, in missing data problems, the conclusions about the dropout mechanism
could therefore depend crucially on untestable distributional assumptions. If adding a non-
random dropout component to a model leads to a noticeable change of the likelihood, then
some real structure of the data is identified that the original model does not encompass
(Kenward, 1998). Therefore, the fact that parameter estimates change remarkably from
the naive model to the shared parameter model might tell more about the inadequacy of
the naive model rather than the adequacy of the shared parameter model. Many authors
underline the importance of being careful with interpreting evidence for or against data
being MNAR by only using the data under study (Molenberghs and Verbeke, 2005). How
well a model fits observed data can be assessed, but it is not possible to assess its fit to un-
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observed data given the observed data. Therefore, a sensitivity analysis is recommended,
in which, for example, different statistical models are considered simultaneously (Verbeke
and Molenberghs, 2000). How stable inferences are across these models can be an indi-
cation of how much confidence one can place in them. A general strategy for sensitivity
analysis is to consider different dependencies between the missing data process and the
outcome or covariates (Verbeke and Molenberghs, 2000). A thorough approach to sen-
sitivity analysis in the shared parameter framework is given by Creemers et al. (2010).
Another approach to Bayesian sensitivity analysis can be found in Daniels and Hogan
(2008).

It is also worth making a few remarks regarding some aspects of the data used from
HUNT1 and HUNT2. For instance, as made clear in Chapter 3, all participants with miss-
ing values in the covariates from HUNT1 are removed from the analysis. In the dataset
considered here, also training and educational level were included as variables, so only
participants who also had records for these variables were selected. In total, 21851 indi-
viduals, who were only partly participating in HUNT1, were disregarded. In this work,
only missing values in the response variable are considered. Still, missing values in the
covariates could possibly affect the inferences drawn. Therefore, to also take missing co-
variate values into account in similar blood pressure studies would be interesting to look
closer at in future work.

Another aspect worth some discussion is the fact that many of the oldest participants of
HUNT1 do not show up in HUNT2 simply because they do not live anymore. Still, they
are here regarded as having an underlying blood pressure at the time of HUNT2. This
assumption is reasonable to question, as they in fact are dead. However, many of them
might have died a short time before HUNT2, and their death could also be related to the
blood pressure they had at the time of their death. The simplification done in this work
is therefore not completely unreasonable. Ideally, one should perhaps include a binary
variable stating whether the participants are dead or not in HUNT2 if that information is
available, and separately model the dropout process for those that still are alive.

The models presented in this work are formulated with the purpose of illustrating how to
account for data being MNAR. Typically, several other covariates and different effects are
also included when modelling. The blood pressure model considered in this work could
for instance include non-linear effects similarly as the dropout model of SPM. However,
this is not done here. Further discussion around this matter is given in Appendix A.

In addition to extending the models to become more complex, other different approaches
to further work are of interest. A thorough sensitivity analysis should be performed to
check the robustness of the parameter estimates across different modelling assumptions.
Also, as discussed previously, it is of interest to have a closer look at issues concerning
parameter identifiability of SPM. Accordingly, possible adjustments to the shared parame-
ter model should be considered. In addition, a detailed study of prior sensitivity is another
suggestion for further work.

46



To summarize, it is evident from this work that wrongly assuming MAR when the data in
reality are MNAR might lead to large biases. There is a clear indication that blood pres-
sure data in HUNT are MNAR due to dropout. This indication is based on the parameter
estimates obtained directly from the models, in addition to the results from the simulation
studies. Even though the shared parameter model might not provide completely unbiased
inferences, the naive model assuming MAR is by all accounts insufficient. Also, if the data
actually are MAR, then the shared parameter model, according to the second simulation
study, would provide more or less valid inferences. Hence, the shared parameter model is
clearly preferable to the naive model. However, further analysis of sensitivity of different
modelling assumptions should be conducted in order to be even more confident in the pa-
rameter estimates describing the blood pressure development.
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A | Non-linear effects in blood
pressure model

In the shared parameter model, age is modelled with a random walk-function of order
2 in the dropout part (4.8) after a separate dropout model (4.4) showed that age is not
linear with respect to the log-odds of dropout. This specification is vital in order for the
shared parameter model to converge. Having that said, in the naive blood pressure model,
and in the blood pressure part of the shared parameter model, all covariates are modelled
linearly. A blood pressure model allowing for non-linearities could instead have been
proposed, such that

BP2,i = f(BP1) + f(age) + αsex · sex + εi, (A.1)

where f(·) is a random walk-model of order 2. When fitting this model, BP1 turns out
to be linear, but the effect of age on the additive predictor is actually non-linear, as can
be seen in the left plot of Figure A.1. Therefore, a non-linear effect of age should per-
haps be included in the blood pressure model as well as in the dropout model. However,
there are several reasons for not doing so in this work. Firstly, introducing a random walk-
function into the blood pressure models would reduce the interpretability of the models.
Secondly, when specifying age non-linearly in the blood pressure part of the shared param-
eter model, it takes about twice as long time to fit the model, so it is not of computational
benefit. Thirdly, and most importantly, the effect of age on the additive predictor in the
blood pressure part of the shared parameter model turns actually out to be linear, as can
be seen from the right plot of Figure A.1, even after allowing it to be non-linear. Thus,
specifying the effect of age non-linearly in the dropout part is sufficient to have a linear
effect of age in the blood pressure part. Therefore, it is reasonable to model all covariates
completely linearly in the blood pressure models. Also, the most important in this work is
to have the naive blood pressure model and the blood pressure part of the shared parameter
model identically specified, such that they are comparable.
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Figure A.1: Effect of age on the additive predictor in a naive blood pressure model when modelled
with random walk function of order 2, and in the blood pressure part of a shared parameter model
where age is modelled through a random walk function of order 2 both in the blood pressure and
dropout submodels.
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B | R code

B.1 Fitting models

l i b r a r y ( INLA )
l i b r a r y ( b r i n l a )
INLA : : i n l a . dyn load . workaround ( )

# Data loa de d i n t o t h e da ta frame d f

n <− nrow ( df )

s igma2 <− 0 . 0 1 # S e t t o a n e g l e c t a b l e v a l u e

# Prepare t h e r e s p o n s e v a r i a b l e s
y . g a us s i an <− c ( df $bp2 , rep (NA, n )
m. binomial <− c ( rep (NA, n ) , df $ miss ing )
j o i n t . response <− l i s t ( y . gauss ian ,m. binomial )

# S p e c i f y number o f t r i a l s f o r t h e b i n o m i a l r e s p o n s e v a r i a b l e
N t r i a l s <− c ( rep (NA, n ) , rep ( 1 , n ) )

l i n e a r . c o v a r i a t e s <− data . frame (
a l p h a . 0 = c ( rep ( 1 , n ) , rep (NA, n ) ) ,
beta . 0 = c ( rep (NA, n ) , rep ( 1 , n ) ) ,
y . BP1 = c ( df $bp1 , rep (NA, n ) ) ,
y .AGE = c ( df $ age , rep (NA, n ) ) ,
y . SEX = c ( df $ sex , rep (NA, n ) ) ,
y . BMI = c ( df $bmi , rep (NA, n ) ) ,
m. BP1 = c ( rep (NA, n ) , df $ bp1 ) ,
m.AGE = c ( rep (NA, n ) , df $ age ) ,
m. SEX = c ( rep (NA, n ) , df $ sex ) ,
m. BMI = c ( rep (NA, n ) , df $bmi ) ,

)
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random . c o v a r i a t e s <− data . frame (
y . eps1 = c ( 1 : n , rep (NA, n ) ) ,
m. eps1 = c ( rep (NA, n ) , 1 : n )

)

j o i n t . data <− c ( l i n e a r . c o v a r i a t e s , random . c o v a r i a t e s )
j o i n t . data $Y = j o i n t . response

formula . spm = Y ~ −1 + a l p h a . 0 + y . BP1 + y .AGE + y . SEX +
beta . 0 + m. BP1 + m. SEX +
f (m.AGE, model=" rw2 " , c o n s t r =T ) +
f ( y . eps1 , model=" i i d " ) +
f (m. eps1 , copy=" y . eps1 " , f i x e d =F , param=c ( 0 , 1 ) )

# Copy eps1 i n t o b i n o m i a l d r o p o u t p r o c e s s
# Use o p t i o n param t o s e t mean and p r e c i s i o n f o r Gauss ian
# p r i o r f o r a s s o c i a t i o n parame te r

# F i t SPM:
spm <− i n l a ( formula . spm , f a mi ly =c ( " g a u s s i a n " , " b i n o m i a l " ) ,

data= j o i n t . data , N t r i a l s = N t r i a l s , v e r b o s e =T ,
c o n t r o l . f a mi ly = l i s t ( l i s t ( i n i t i a l = l o g (1 / s igma2 ^ 2 ) ,
f i x e d =T ) , l i s t ( ) ) )

# Use c o n t r o l . f a m i l y t o f i x s igma2 . S p e c i f i e d t h r o u g h
# log−p r e c i s i o n

# Naive model :
formula . n a i v e <− bp2 ~ bp1 + age + sex
n a i v e <− i n l a ( formula . na ive , f a mi ly =" g a u s s i a n " ,

data=df )
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B.2 Simulation studies

# Load r e s u l t s o b t a i n e d from SPM i n B . 1 i n o r d e r t o
# s i m u l a t e new BP2 and d r o p o u t p r o c e s s

# True c o e f f i c i e n t s are p o s t e r i o r means from SPM:
a . 0 <− spm$summary . f i x e d [ [ 1 ] ] [ 1 ]
a . bp1 <− spm$summary . f i x e d [ [ 1 ] ] [ 2 ]
a . age <− spm$summary . f i x e d [ [ 1 ] ] [ 3 ]
a . sex <− spm$summary . f i x e d [ [ 1 ] ] [ 4 ]
b . 0 <− spm$summary . f i x e d [ [ 1 ] ] [ 5 ]
b . bp1 <− spm$summary . f i x e d [ [ 1 ] ] [ 6 ]
b . sex <− spm$summary . f i x e d [ [ 1 ] ] [ 7 ]
# Obta in sigma as sd i n s t e a d o f p r e c i s i o n :
s igma <− b r i . h y p e r p a r . summary ( spm ) [ 2 ]
c . s im1 <− b r i . h y p e r p a r . summary ( spm ) [ 3 ]
c . s im2 <− 0 # True c i s 0 i n s i m u l a t i o n s t u d y 2

# C re a t e f u n c t i o n r e c r e a t i n g t h e non− l i n e a r age e f f e c t
# i n t h e d r o p o u t p r o c e s s
age . c o e f f <− f u n c t i o n ( age , age . spm , b . age . spm ) {

b . age <− b . age . spm [ which ( age . spm== age ) ]
}

age . spm <− spm$summary . random $m.AGE [ [ 1 ] ]
b . age . spm <− spm$summary . random $m.AGE [ [ 2 ] ]
b . age <− sapply ( age , age . c o e f f , age . spm=age . spm ,

b . age . spm=b . age . spm )

# C re a t e f u n c t i o n s i m u l a t i n g d r o p o u t p r o c e s s
make . miss ing . i n d i c a t o r <−

f u n c t i o n ( n , b . 0 , b . bp1 , b . age , b . sex , c , eps , df ) {
l o g i t _p <− b . 0 + b . bp1∗df $ bp1 + b . age +

b . sex ∗df $ sex + c∗ eps
p <− exp ( l o g i t _p ) / (1+ exp ( l o g i t _p ) )
p [ l o g i t _p >600] <− 1 # Avoid n u m e r i c a l e r r o r
prob <− r u n i f ( n )
miss ing <− p> prob
re turn ( as . numeric ( miss ing ) )

}

num . sim <− 100 # Number o f s i m u l a t i o n s

# F i r s t s i m u l a t i o n s t u d y :
f o r ( i i n 1 : num . sim ) {
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p r i n t ( p a s t e 0 ( i , " / " ,num . sim ) )
eps1 <− rnorm ( n , mean=0 , sd=sigma )
eps2 <− rnorm ( n , mean=0 , sd = 0 . 0 1 )

df $ bp2 <− a . 0 + a . bp1∗df $ bp1 + a . age ∗df $ age +
a . sex ∗df $ sex + eps1 + eps2

df $ miss ing <− make . miss ing . i n d i c a t o r ( n , b . 0 , b . bp1 ,
b . age , b . sex , c . sim1 , eps1 , df )

df $ bp2 [ df $ miss ing ==1] <− NA

# Use t h e code i n B . 1 t o f i t SPM and n a i v e model
# Save t h e r e s u l t s

}

# Repea t u s i n g c . s im2 i n s t e a d o f c . s im1 f o r t h e second
# s i m u l a t i o n s t u d y
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