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A B S T R A C T   

Cascading failures may occur in many technical systems where the failure of one component triggers successive 
events. Safety barriers like safety instrumented systems are installed in many industries to prevent failures and 
failure propagations. However, little attention has been paid to the impacts of safety instrumented systems 
employed to prevent cascading failures in the literature. This paper proposes a novel method for analyzing how 
the performance of safety instrumented systems influences the protection against and mitigation of cascading 
failures. It considers SIS reliability and SIS durability in the mitigation of cascading failures. The method uses 
recursive aggregations based on the reliability block diagram and is verified with Monte Carlo simulations. The 
application is illustrated with a practical case study, where the proposed method is found beneficial to identify 
the criticality of safety instrumented systems in consideration of their locations and performance.   

1. Introduction 

Cascading failures (CAFs) are multiple failures in which the failure of 
one component leads to high stress and a consequently high failure 
probability in other components [1]. CAFs are a concern for many 
technical systems, such as railway signaling systems, power distribution 
networks, process systems, industrial communication networks, and 
internet systems [2,3]. Functional dependencies and interactions exist 
commonly among components, and thus a single failure can negatively 
influence other parts in the same system. As a result, CAFs may cause 
catastrophes in technical systems without proper preventions and mit-
igations [4,5]. 

The awareness of CAFs is not new. In the past decade, much research 
has aimed at developing models to evaluate the effects of CAFs and 
associated preventive measures. These models can be categorized as 
topological, probabilistic, state-transition, and simulations. In the 
context of topological models, some efforts have been devoted to 
assessing mitigation measures of CAFs based on complex network theory 
[6–9] and graph theory [10–12]. Probabilistic models have been applied 
to quantify the ability of preventions against CAFs in risk propagations 
[13–16]. State-transition models, such as Markov processes, Petri nets, 
and Bayesian networks, have effectively analyzed CAFs [17–21]. Be-
sides, simulations like the Monto Carlo simulation (MCS) have been used 

in analyzing the systems associated with CAFs in many application 
areas, including power and gas networks, traffic-power, and infra-
structure systems [22–24]. 

To prevent CAFs, Safety instrumented systems (SISs) can install as a 
type of safety barrier. SISs are widely employed to reduce accidents in 
the process industries and other sectors [25]. An SIS applies elec-
trical/electronic/programmable electronic (E/E/PE) technologies to 
detect and act upon hazardous situations arising in the assets [26]. The 
assets can be humans, equipment, or process sections. They are called 
equipment under control (EUC) in the generic standard IEC 61508 [26]. 
An SIS generally consists of three main subsystems: sensors (e.g., level 
transmitters, gas detectors, and push buttons), logic solvers (e.g., pro-
grammable logic controllers and industrial computers), and final ele-
ments (e.g., shutdown valves and circuit breakers). As illustrated in 
Fig. 1, the sensors detect possible abnormal situations (e.g., CAFs), and 
the logic solvers activate, then the final elements act according to the 
sensor inputs. The event upon which an SIS is activated is considered a 
demand [1]. A typical example of SISs to prevent CAFs is an automatic 
fire extinguishing system (AFES)1. An AFES activates when a fire or gas 
leakage at a tank is detected. If the SIS fails to extinguish or control the 
fire at a specific time, the fire can propagate and affect several facilities 
[27]. 

SIS performance is of great significance to ensure the safety of EUC 
systems [28]. Several indicators can reflect SIS performance, such as 
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specificity, functionality, reliability, response time, capacity, durability, 
robustness, audit-ability, and independence [25,29,30]. Among them, 
reliability is the most crucial for SISs since it expresses the ability of an 
SIS to protect EUC systems at a specific time [1]. 

The SIS reliability is related to the ability to respond on-demand as 
expected. For example, when a fire occurs, an AFES is expected to start 
to splash water. If an SIS works on-demand, it is reliable. However, many 
SIS failures cannot be detected immediately after their occurrences. 
Instead, those failures can be revealed upon actual demands or period-
ical proof tests with noticeable delays. Such failures are called failures 
on demand (FODs). In applications, a specific measure, the probability 
of failure on demand (PFD), is widely applied for FODs of SISs [26]. If 
the proof test intervals are fixed, the average PFD within one interval as 
PFDavg is a commonly used reliability measure [22]. PFDavg can be ob-
tained by simplified formulas [1], IEC 61508 formulas [26], the PDS 
method [31], and Markov models [19,32]. 

In recent years, PFDavg and SIS reliability have been intensively 
studied. For example, Cai et al. [28] have proposed a method for eval-
uating SISs with heterogeneous components based on Bayesian net-
works. Liu and Rausand have considered different demand modes for the 
SIS reliability analysis [19,33]. Alizadeh and Sriramula [34] have 
developed an unreliability model for redundant SISs using Markov 
chains. Meng et al. [35] have modeled the SIS reliability measures in 
AltaRica 3.0. Xie et al. [36] have considered the reliability of redundant 
SISs where dependent failures may occur. An analytical approach for 
simplification of complex Markov model has been proposed in SIS reli-
ability analysis [37]. In addition, Ding et al. [38] have derived a diverse 
redundancy method based on system degradation using a reliability 
block diagram to evaluate the SIS reliability. Yu et al. [39] have 

proposed a fuzzy reliability assessment for SIS taking account of com-
mon cause failures. 

However, little attention has been paid to the impacts of SISs 
employed to protect against CAFs. In addition, the currently defined SIS 
reliability is insufficient to evaluate the overall SIS performance in 
preventing and mitigating CAFs. That is because the demands on SISs for 
preventing or mitigating CAFs may not be instantaneous [3]. As a result, 
even though an SIS can respond to demands, it may fail afterward. For 
example, fires can last few seconds or several days, and AFESs must 
operate for a specified period to suppress fires. Such a period is defined 
as a prolonged demand duration. During this period, SISs are often 
exposed to high stress and thereby have more chances to fail. 

Therefore, it is of interest to examine whether an SIS is reliable while 
responding and how an SIS performs after activation. The former is 
related to SIS reliability, whereas the latter is related to SIS durability. 
Durability represents how long an SIS can perform its safety instru-
mented functions and withstand stress. The failures related to durability 
are called failures during demand (FDDs) in this study. In other words, 
SISs that are employed against CAFs may suffer from intensive degra-
dations and failure before demands are complete. 

Considering both FODs and FDDs, it is thus challenging to use 
straightforward traditional methods to evaluate the SISs against CAFs. 
For example, fault tree analysis is often used for the specific analysis of 
the accident, and it is difficult to cope with dependent issues such as 
CAFs [40]. In addition, Markov models have a problem in dealing with a 
large-scale system where CAFs occur [37,41]. Furthermore, the formulas 
listed in IEC 61508 do not consider CAFs [42]. Therefore, a new method 
to assess the performance of SISs against CAFs is required. 

This paper proposes a method for analyzing how SIS performance 

Nomenclature 

CAF cascading failure 
SIS safetyinstrumented system 
AFES automatic fire extinguishing system 
PFD probability of failure on demand 
FOD failure on demand 
MCS Monte Carlo simulation 
EUCi EUC component i 
ti EUCi fails at time ti 
TDD demand duration 
fSISij (t) probability density function of time to failures in SISij 

R̃i(t) conditional reliability of EUCi by time t 
θν(t) probability that CAF event ν occurs by time t 
δh,g(t) probability that EUCh fails and g SIS event occurs by time t 
λSIS scale parameter of Weibull distribution for SIS 
T(λSIS) simulated time to failure within SIS with λSIS 
γi probability that failures are cascaded from EUCi 

RBD reliability block diagram 
EUC equipment under control 
SIL safety integrity level 
PFDavg average PFD in a test interval 
FDD failure during demand 
RAW risk achievement worth 
t observing time 
SISij SIS between EUCi and EUCj 
μ time at an FDD occurrence 
fi(t) probability density function of time to failures in EUCi 

R̃Ωn− F (t) conditional reliability of subsystem Ωn− F by time t 
η,η1 random variable generated from a uniform [0, 1] in 

simulations 
Qν(t) conditional probability for ν CAF event by time t 
αSIS shape parameter of Weibull distribution for SIS 
Ti(λi) simulated time to failure within EUCi with λi 
TSIS operating time of SIS from activation to the failed state  

Fig. 1. A general configuration of an EUC system and an SIS.  
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influences the protection against and mitigation of CAFs. This paper’s 
novelty and main contributions are two folds: 1) developing a new 
method to model SISs against CAFs and evaluate their effectiveness; 2) 
revealing the influences of reliability and durability of SISs on the 
mitigation of CAFs. 

The benefits of the proposed method include the following: 1) 
providing precise and holistic performance analysis considering SIS 
reliability and durability; 2) considering time-dependent failures on SISs 
while responding and after activation, and there is no limitation on 
failure distributions; 3) offering guidelines for the SIS design and 
deployment to improve the reliability of EUC systems. 

The rest of the paper is organized as follows. Section 2 illustrates the 
models of CAFs and SISs. Section 3 suggests the method for evaluating 
the impacts of SISs associated with their failures. In Section 4, an illus-
trative example is provided and is verified by Monte Carlo simulations. A 
practical case study in the oil and gas industry is presented in Section 5. 
Finally, in Section 6, we conclude and discuss future works. 

2. Modeling SISs against cascading failures 

2.1. Modeling cascading failures 

CAFs are identified in the literature by many names, such as induced 
failures, domino failures, propagated failures, and interaction failures 
[43-45]. This paper deals with CAFs between EUC components. The case 
that CAFs within SISs have been studied in work [36]. CAFs are assumed 
to originate from a fault in an EUC component, triggering successive 
failures of other parts of EUC systems. For example, when an external 
leakage of flammable gases from a valve is detected, a failure in a control 
system can cause a valve misclosure and sudden pressure increases. 

In previous research [36,46-48], cascading probability γi ∈ [0,1] has 
been introduced as a measure of propagation easiness. This measure is 
also employed in this paper. Given that EUCi fails, the probability that 
the failure cascades to other components is γi. The failure propagation is 
shown as a dotted curved arrow in Fig. 2 (a). Cascading probability 
influences the extent of CAFs damages. It can be estimated based on test 
data or historic failure records [48]. The probability that there are no 
CAFs is denoted by γi (γi = 1 − γi). 

2.2. Modeling SISs against CAFs 

Fig. 2(b) illustrates that SISij is installed to prevent failure propaga-
tion from EUCi. This paper focuses on the situations that demands on 
SISs are prolonged (e.g., 2 hours or more). An SIS may fail due to failures 
in any of its three main subsystems (i.e., the sensors, logic solvers, and 
final elements). The failures can be classified into two groups:  

• FOD refers to an event when an SIS cannot act on demands (e.g., the 
inability to activate an AFES). An FOD is always a dangerous unde-
tected failure, as defined in IEC 61508 [26]. It is hidden until upon 
demand or in a proof test. An SIS is often considered as-good-as-new 
after a proof test [1]. If the proof test interval is not changed, PFDavg 
is the same in the whole life. PFDavg is also used to determine if an SIS 

satisfies a specified safety integrity level (SIL) [26]. IEC 61508 de-
fines four SILs: SIL 1 (the lowest level) through SIL 4 (the highest 
level) [26].  

• FDD refers to an event when an SIS fails during a prolonged demand 
(e.g., an AFES stops operating even though the fire has not been 
suppressed). Since an FDD is revealed immediately, it is similar to 
those dangerous detected failures defined in IEC 61508 [26]. The 
difference is that FDD is also undetectable by continuous monitoring. 
It is natural to assume an FDD can be found upon a demand or test. 
Time to FDD reflects the capability of SISs to resist stress during 
demands. It is reasonable to use known distributions with probability 
density functions fSISij (t) for FDD, such as a Weibull distribution. 

Fig. 3 depicts the sequence of failure events associated with Fig. 2(b). 
An initiating event is a hazardous event like overheating or a short 
circuit in the EUC system. EUCi may fail due to hazardous events, which 
causes a fire. The fire can propagate to the other components with 
cascading probability γi. An FOD may occur when the demand on SISij 
presents. SISij may also fail due to FDD even if it is activated. The failures 
in SISij, including FOD and FDD, determine the outcomes of EUCj. 

This paper focuses on the performance of SISs starting from haz-
ardous events, meaning that the moment t = 0 in this context is the 
occurrence of a hazardous event. In other words, the EUC system is as- 
good-as-new until t = 0. The EUC system is still functioning in a 
degraded mode under hazardous events. Let ti denote time that EUCi 
fails, and a fire propagates from EUCi. Then, a demand on SISij occurs. 
The condition of the SIS is unknown when it needs to be activated, and it 
may be working or failed due to a hidden failure. An FOD may thus be 
observed at time ti. Let μ represent time when an FDD occurs. TDD de-
notes a demand duration of SISij. Fig. 4 describes failure time in EUCi and 
SISij. 

Let Pij(t) denote the probability that SISij fails by time t, considering 
FOD and FDD. The probability Pij(t) can be obtained as: 

Pij(t) = Pr
(
SISij fails by time t

)

= PFD(ti)+ [1 − PFD(ti)]P(TSIS ≤ (t − ti))

= PFD(ti) + [1 − PFD(ti)]

∫ t
0 fi(ti)

∫ t
ti

fSISij (μ − ti)dμdti
∫ t

0 fi(t)dt
(1)  

where TSIS denotes the operating time of SISij from activation to the 
failed state. TSIS is assumed to be less than TDD, because the demand is 
prolonged. 

Accordingly, let Pij(t) denote the probability that the SISij functions 
by time t. The probability Pij(t) can be obtained as: 

Pij(t) = Pr
(
SISij is functioning by time t

)

= [1 − PFD(ti)]P(TSIS ≥ (t − ti))

= [1 − PFD(ti)]

∫ t
0 fi(ti)

[
1 −

∫ t
ti

fSISij (μ − ti)
]
dμdti

∫ t
0 fi(t)dt

(2) 

Fig. 2. An EUC system with CAF and SIS.  
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3. Performance analysis considering CAFs and SISs 

A recursive aggregation method based on reliability block diagrams 
(RBDs) is proposed in this section. The method builds on the previous 
studies of multi-state systems with failure propagation time [47]. The 
method in this paper is applied to EUC systems in which SISs are 
employed to intervene in CAF propagation. We take EUC system reli-
ability into account in the analysis of SIS performance in the context of 
CAFs. The term of system reliability in the following sections refers to 
the reliability of EUC systems. EUC systems are constructed as typical 
series-parallel structures. 

3.1. Reliability analysis with conditional failures 

System reliability can usually be calculated with reliability functions 
derived from RBDs as long as there are two states of components 
(functioning and failed) [49]. However, when the system is subject to 
CAFs, the components are not independent. Consequently, the general 
rules for structure functions cannot be applied. Reliabilities with con-
ditions are therefore introduced to complement the RBD method. Here, 
three scenarios may arise considering the states of EUCi and CAFs: 1) 
EUCi functions; 2) EUCi fails, and the failure is not cascaded; 3) EUCi 
fails, and the failure is cascaded, as shown in Fig. 5. 

Fig. 3. The sequences of failure events.  

Fig. 4. An illustration of time to failure in EUCi and SISij.  
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The conditional reliability of EUCi, denoted by R̃i(t), is defined as the 
probability that EUCi is functioning at time t given no CAF from EUCi. No 
CAF phenomena include the two scenarios: 1) EUCi functions; 2) EUCi 
fails, and the failure is not cascaded. Hence, the probability of no CAF, 
denoted by Pr(No CAFs ), is equal to Ri(t) + γiRi(t) or 1 − γiRi(t). 
Accordingly, the probability that a CAF occurs Pr(CAF occurs ) is equal 
to γiRi(t). The conditional reliability R̃i(t) can be described as: 

R̃i(t) =
Pr(EUC functions )

Pr(No CAFs )
=

Ri(t)
Ri(t) + γiRi(t)

=
Ri(t)

1 − γiRi(t)
(3) 

If the failure in EUCi will never be cascaded out, the conditional 
reliability R̃i(t) is defined to be equal to the reliability Ri(t). 

Consider a system Ωnwith n components EUCi (i= 1,2,…, n) orga-
nized in a series structure. One can obtain the conditional system re-
liabilities by time t as: 

R̃Ω, series(t) =
∏n

i=1
R̃i(t) (4) 

Similarly, the conditional reliability of a parallel system with n 
components EUCi can be obtained as: 

R̃Ω, parallel(t) = 1 −
∏n

i=1

(
1 − R̃i(t)

)
(5) 

The conditional system reliability for an arbitrary series-parallel 
system can be obtained based on Eq.s (4) and (5). The method is 
similar to the traditional RBD method [49], replacing component re-
liabilities by corresponding conditional reliabilities. 

3.2. Reliability of an EUC system 

This section presents the method for analyzing the reliability of an 
EUC system. The following assumptions are made:  

• The two states are considered for EUCi: functioning or failed. 
• The time to failure in EUCi follows a known distribution with prob-

ability density functions, denoted by fi(t).  
• There are no repairs and inspections during demand durations. 

First, consider a system Ωn with n components structured as a series- 
parallel system, and only one CAF may occur from EUCi to EUCj. If the 
CAF occurs and an SIS is functioning with the probability of Pij(t), EUCj 
is protected from the CAF by the safety function of the SIS. It implies that 
only EUCi is in a failed state at time t for this system. On the contrary, 
when the CAF occurs and an SIS fails with the probability of Pij(t), EUCj 
is impacted by the CAF. Both EUCi and EUCj are in failed states at time t. 
Pij(t) corresponds to the conditional reliability R̃Ω− i(t) in case that the 
SIS is functioning. Similarly, Pij(t) corresponds to the conditional reli-
ability R̃Ωn− (i,j) in case that the SIS is in a failed state. Hence, the reliability 
of the system Ωn by time t is listed as follows: 

RS(t) = Pr(No CAFs )R̃Ωn (t)

+ Pr(CAF occurs )

[

Pij(t)R̃Ωn− (i,j) (t) +Pij(t)R̃Ωn− (i) (t)
]

=
[
1 − γiRi(t)

]
R̃Ωn (t) + γiRi(t)

[

Pij(t)R̃Ωn− (i,j) +Pij(t)R̃Ωn− (i) (t)
]

(6)  

where Ωn− (i,j) and Ωn− (i) are the subsystems with functioning compo-
nents. R̃Ωn− i and R̃Ωn− (i,j) denote the corresponding conditional reliabilities 
of Ωn− (i,j) and Ωn− i. The failed components can be removed when 
calculating system reliability, meaning that their reliabilities are 
replaced by zero. One can obtain R̃Ωn− (i) and R̃Ωn− (i,j) based on Eq.s (4) and 
(5). 

Second, consider a system Ωn with multiple CAFs. Subsystem 
Ωm(Ωm ∈ Ωn) has m EUC components with CAFs, denoted by CAF1, 
CAF2, CAF3, …and CAFm. Cascading probabilities are γ1, γ2, γ3,…, and 
γm. All possible combinations of CAF occurrence are considered. The 
event θ1 describes no CAF in subsystem Ωm (θ1 =

CAF1 ∩ CAF2… ∩ CAFm). The event θ2 is a situation when CAFs generate 
from the first component (θ2 = CAF1 ∩ CAF2… ∩ CAFm). The event 
when all CAFs occur in m components is denoted by θ2m (θ2m =

CAF1 ∩ CAF2… ∩ CAFm). The probability θν(t)(ν ∈ ∀(1,2…2m)) de-
scribes that the CAF event θν occurs by time t, and it is given as follows: 

θν(t) =
∏m

i=1

[
γiRi(t)

]mod

(⌊

ν− 1
2i− 1

⌋

,2

)

[
1 − γiRi(t)

]

(

1− mod

(⌊

ν− 1
2i− 1

⌋

,2

))

(7) 

Assume the CAF event θν is connected to a specific subsystem 
Ων(Ων ∈ Ωm) where CAFs are triggered from the components. Assume 
EUCh (EUCh ∈ ∀Ων) is linked to l SISs denoted by SISh1, SISh2, SISh3, …, 
and SIShl. All possible combinations of the SISs’ states (i.e., functioning 
or failed) are considered SIS events. The event δ1 involves no SIS failure 
(δ1 = SISh1 ∩ SISh2… ∩ SIShl). The event δ2 involves one failure in SISh1 

(δ2 = SISh1 ∩ SISh2… ∩ SIShl). The event when all SISs fail is denoted by 
δ2l (δ2l = SISh1 ∩ SISh2… ∩ SIShl). The probability δh,g(t)(g ∈ ∀(1,2…2l))

describes that EUCh fails and the SIS event δg occurs by time t, and it is 
given as follows: 

δh,g(t) =

∫ t
0 fh(th)

∏l
j=1

[
Ph,j(t)

]mod

(⌊
g− 1
2j− 1

⌋

,2

)
[

Ph,j(t)
]

(

1− mod

(⌊
g− 1
2j− 1

⌋

,2

))

dth

∫ t
0 fh(t)dt

(8)  

where 

Ph,j(t) = PFDavg,hj +
(
1 − PFDavg,hj

)
∫t

th

fSIShj (μ − th)dμ 

Fig. 5. Three scenarios considering EUCi and CAFs.  
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Ph,j(t) =
(
1 − PFDavg,hj

)

⎡

⎣1 −
∫t

th

fSIShj (μ − th)dμ

⎤

⎦

Ph,j(t) is the probability that SIShj has failed by time t, while Ph,j(t) is 
the probability that SIShj is functioning at time t. EUCh fails at time th. 
PFDavg,hj denotes the steady-state probability for FOD in SIShj. SISs are 
critical safety barriers so that they are often designed to be highly reli-
able under normal conditions [50]. PFD(t) is relatively small and varies 
slightly. It is unnecessary to determine the probability as a function of 
time, and an average value is sufficient for FOD [1]. Furthermore, IEC 
61508 distinguishes four SILs relating to PFDavg, rather than PFD(t) 
[26]. Therefore, in Eq. (8), we use PFDavg to represent PFD(ti) 
approximately. 

Combing all SIS events, conditional probability for the CAF event θν 
by time t is obtained as: 

Qν(t) =
∏

h∈∀Ων

∑2l

g=1
δh,g(t)R̃Ωn− F (t) (9)  

where Ωn− F denotes a subsystem with the functioning EUC components, 
and R̃Ωn− F (t) denotes the conditional reliability by time t for the sub-
system Ωn− F. Eventually, system reliability can be obtained as: 

RS(t) =
∑2m

ν=1
θν(t)Qν(t) (10) 

In short, system reliability can be obtained by applying the following 
steps:  

1 Define a subsystem comprising m EUC components that may trigger 
CAFs and calculate their conditional reliabilities.  

2 Generate all combinations of CAFs and compute probabilities of CAF 
events.  

3 For each CAF event, generate all SIS states’ combinations and 
compute probabilities of SIS events.  

4 Based on RBDs, compute conditional reliabilities for all SIS events.  
5 Obtain system reliability by combining conditional reliabilities for 

all CAF events. 

The following section introduces an example. Then, a practical case 
is used to present the method’s effectiveness. 

4. Example and verifications 

4.1. An illustrative example 

Consider a system Ωn with three EUC components (the RBD of this 
system is shown in Fig. 6). Subsystem Ωm represents a subsystem with m 
EUC components that may trigger multiple CAFs. The subsystem Ωm 
includes the components EUC1 and EUC2. The cascading possibilities are 
γ1 and γ2. SIS12, SIS13 SIS21 and SIS23 are installed to prevent and miti-
gate CAFs propagation. The probability of FODs is PFDavg,12, PFDavg,13, 
PFDavg,21, and PFDavg,23. 

The reliability of the EUC system is calculated using the following 
five steps: 

Step 1: According to Eq. (3), the conditional reliabilities of EUC1, 
EUC2, and EUC3 considering CAFs are obtained as: 

R̃1(t) =
R1(t)

1 − γ1R1(t)

R̃2(t) =
R2(t)

1 − γ2R2(t)

R̃3(t) = R3(t)

Step 2: By using Eq. (7), the probabilities of the CAF events are ob-
tained as: 

θ1(t) =
[
1 − γ1R1(t)

]
⋅
[
1 − γ2R2(t)

]

θ2(t) =
[
γ1R1(t)

]
⋅
[
1 − γ2R2(t)

]

θ3(t) =
[
1 − γ1R1(t)

]
⋅
[
γ2R2(t)

]

θ4(t) =
[
γ1R1(t)

]
⋅
[
γ2R2(t)

]

Step 3: By using Eq. (8), the probabilities of the SIS events are ob-
tained as: 

δ1,1(t) = 1 

Fig. 6. RBD of an EUC system with CAFs and SISs.  
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Fig. 7. The MCS flowchart for failure propagations.  
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δ2,1(t) =

∫ t
0 f1(t1)

[(
1 − PFDavg,12

)(
1 −

∫ t
t1

fSIS12 (μ − t1)dμ
)][(

1 − PFDavg,13
)(

1 −
∫ t

t1
fSIS13 (μ − t1)dμ

)]
dt1

∫ t
0 f1(t)dt   

δ2,2(t) =

∫ t
0 f1(t1)

[
PFDavg,12 +

(
1 − PFDavg,12

) ∫ t
t1

fSIS12 (μ − t1)dμ
][(

1 − PFDavg,13
)(

1 −
∫ t

t1
fSIS13 (μ − t1)dμ

)]
dt1

∫ t
0 f1(t)dt   

δ2,3(t) =

∫ t
0 f1(t1)

[(
1 − PFDavg,12

)(
1 −

∫ t
t1

fSIS12 (μ − t1)dμ
)][

PFDavg,13 +
(
1 − PFDavg,13

) ∫ t
t1

fSIS13 (μ − t1)dμ
]
dt1

∫ t
0 f1(t)dt   

δ2,4(t) =

∫ t
0 f1(t1)

[
PFDavg,12 +

(
1 − PFDavg,12

) ∫ t
t1

fSIS12 (μ − t1)dμ
][

PFDavg,13 +
(
1 − PFDavg,13

) ∫ t
t1

fSIS13 (μ − t1)dμ
]
dt1

∫ t
0 f1(t)dt   

δ3,1(t) =

∫ t
0 f2(t2)

[(
1 − PFDavg,21

)(
1 −

∫ t
t2

fSIS21 (μ − t2)dμ
)][(

1 − PFDavg,23
)(

1 −
∫ t

t2
fSIS23 (μ − t2)dμ

)]
dt2

∫ t
0 f2(t)dt   

δ3,2(t) =

∫ t
0 f2(t2)

[
PFDavg,21 +

(
1 − PFDavg,21

) ∫ t
t2

fSIS21 (μ − t2)dμ
][(

1 − PFDavg,23
)(

1 −
∫ t

t2
fSIS23 (μ − t2)dμ

)]
dt2

∫ t
0 f2(t)dt   

δ3,3(t) =

∫ t
0 f2(t2)

[(
1 − PFDavg,21

)(
1 −

∫ t
t2

fSIS21 (μ − t2)dμ
)][

PFDavg,23 +
(
1 − PFDavg,23

) ∫ t
t2

fSIS23 (μ − t2)dμ
]
dt2

∫ t
0 f2(t)dt   

δ3,4(t) =

∫ t
0 f2(t2)

[
PFDavg,21 +

(
1 − PFDavg,21

) ∫ t
t2

fSIS21 (μ − t2)dμ
][

PFDavg,23 +
(
1 − PFDavg,23

) ∫ t
t2

fSIS23 (μ − t2)dμ
]
dt2

∫ t
0 f2(t)dt   
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Step 4: According to Eqs. (4) and (5), the conditional reliabilities of 
the subsystems considering CAFs can be obtained as: 

R̃Ωn (t) =
[
R̃1(t)+ R̃2(t) − R̃1(t)R̃2(t)

]
R̃3(t)

R̃Ωn− 1 (t) = R̃2(t)R̃3(t)

R̃Ωn− 2 (t) = R̃1(t)R̃3(t)

R̃Ωn− (1,2) (t) = R̃Ωn− (1,3) (t) = R̃Ωn− (2,3) (t) = R̃Ωn− (1,2,3) (t) = 0   

Step 5: The system reliability RS(t) can be calculated using Eq. (10): 

By removing the subsystems whose reliabilities with conditions are 
equals to zero, the system reliability can be obtained as: 

RS(t) = θ1(t) R̃Ωn (t) + θ2(t)δ2,1(t)R̃Ωn− 1 (t) + θ3(t)δ3,1(t)R̃Ωn− 2 (t) (11) 

Notice that the calculations regarding θ4(t) are excluded since the 
system is down when EUC1 and EUC2 fail simultaneously. 

4.2. Verifications of the proposed formulas 

Monto Carlo simulations (MCSs) were conducted to check the val-
idity of the proposed method and Eq. (11) in the previous sections. Fig. 7 
is a flowchart of MCSs constructed in MATLAB. The flowchart illustrates 
the simulation process of the example in section 4.1. The principals 
should be the same for different examples, but details may be modified 
according to the algorithm and configurations. The proposed method 
can be applied to any arbitrary type of failure distribution. In this case, 
the time to failures in EUC components is assumed to follow an expo-
nential distribution, while time to FDD in SISs is assumed to follow a 
Weibull distribution. An exponential random variable, denoted by Ti(λi), 
expresses the time to failure in EUCi. A variable η is a random variable 
generated from a uniform [0, 1]. If η is smaller than cascading proba-
bility γi, CAFs occur in the simulations. Similarly, η1 is another random 
variable generated from a uniform [0, 1]. An FOD occurs when η1 is 
smaller than FOD probability (i.e., PFDavg of SISs). Time T(λSIS) denotes 
the simulated time to FDD of SISs, which is reflected by time (μ − ti) in 
Fig. 4. Time Ts denotes simulated time to system failure. 

The EUC components and SISs are assumed to be identical. Without 
losing generality, γ1 and γ2 are assigned to 0.2 and 0.3, respectively. The 
other parameters are presented in Table 1. Fig. 8 shows the system 
reliability profiles in 2 hours. Here, we run the simulations with 106 MC 
iterations. System reliability calculation using the proposed method in 
this paper gives the same results as the simulations for all three cases. 
Thus, it is demonstrated that the method in this paper is suitable for 
evaluating system reliability considering CAFs and SISs. 

5. Case study 

This section conducts a practical case study in the oil and gas in-
dustry to illustrate deploying SISs based on the proposed method. A EUC 
system consists of three separators (EUC1, EUC2, and EUC3), one 
scrubber (EUC4), and three compressors (EUC5, EUC6, and EUC7), as 

shown in Fig. 9. The separators separate production fluids into oil, gas, 
and water, and the scrubber is used to wash unwanted pollutants from 
the gas stream. Finally, the compressors are applied to increase gas 
pressure and temperature. 

In this case, hazardous events like overheating or short circuits can 
result in failures of the EUC system. We assume that the failures in EUC2 
and EUC6 can initiate fires. The fires can propagate to the components 
located in the same facility, as shown in Fig. 9. They cannot cause fires in 
the rest of the components because of separation systems like firewalls. 
Time to failure in an EUC component is assumed to follow a Weibull 
distribution with a scale parameter λEUC and a shape parameter αEUC. 
Cascading probabilities are denoted by γ2 and γ6. The parameters used 
in this case study are presented in Table 2. In general, such parameters 
can be obtained from historical statistics, vendor data, and equipment 
certifications. The failure probability of EUC components and SISs is 
much higher than in regular operations. That is because they are sup-
posed to be exposed to high stress in hazardous events in this case. 

AFESs are installed to suppress and extinguish fires. Each AFES is for 
the analysis generalized as SISij. As shown in Fig. 9, SIS24 and SIS25 can 
prevent failure propagation from EUC2, while SIS64 and SIS67 can pre-
vent failure propagation from EUC6. For all SISij, PFDavg is assigned to be 
10− 3 for FODs to achieve the required SIL 3 requirements, i.e., the 
maximum allowed value of a SIL 3 function. Time to FDD is assumed to 
follow a Weibull distribution with scale parameter λSIS and shape 
parameter αSIS. The parameters of SISs are summarized in Table 3. 

5.1. System reliability calculation 

The reliability of the EUC system can be calculated using Eq. (10). 
The EUC system is evaluated by considering the following states of the 
SISs: (1) perfect SISs, (2) SISs with FOD, and (3) SISs with FOD and FDD. 
Here, γ2 and γ6 are set at 0.5. The calculation results are shown in 
Fig. 10. Since we focus on the situations when demands on SISs are 
prolonged (e.g., 2 hours or more), it is reasonable to observe the reli-
ability in the first two hours as an example. As seen, the reliability 
profiles of the EUC systems with (1) perfect SISs and (2) SISs with FOD 
are almost the same. That means the effects of FOD are relatively low. 
The reliability gap between the EUC systems with (1) perfect SISs and 
(3) SISs with FOD and FDD is noticeable. The effects of FDD can explain 
such a gap. The reason is that we focus on what happens after a haz-
ardous event, and the probability of FOD is extremely low. The 

Table 1 
The parameters of the illustrative example.   

SIS EUC  

Failures Parameter Value Parameter Value 

Case 1 No SIS - - λi  0.2/hour  
No SIS - - αi  1 

Case 2 FOD PFDavg,ij  0.1 - -  
FDD λij  0.08/hour λi  0.2/hour   

αij  1 αi  1 
Case 3 FOD PFDavg,ij  0.2 - -  

FDD λij  0.16/hour λi  0.1/hour   
αij  2 αi  1  

RS(t) = θ1(t)δ1,1(t) R̃Ωn (t) + θ2(t)
[

δ2,1(t)R̃Ωn− 1 (t) + δ2,2(t)R̃Ωn− (1,2) (t) + δ2,3(t)R̃Ωn− (1,3) (t) + δ2,4(t)R̃Ωn− (1,2,3) (t)
]

+θ3(t)
[

δ3,1(t)R̃Ωn− 2 (t) + δ3,2(t)R̃Ωn− (2,1) (t) + δ3,3(t)R̃Ωn− (2,3) (t) + δ3,4(t)R̃Ωn− (1,2,3) (t)
]
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reliability gaps can be changed when λSIS and PFDavg are set differently. 
It implies that it is reasonable to pay more attention to the effects of FDD 
when considering the high stress from CAFs. 

5.2. Sensitivity analysis 

Given that SISs are installed, the reliability of the EUC system is 
impacted by the strength of CAFs (i.e., cascading probability γ) and the 
capacity of SISs (i.e., PFDavg in terms of FOD and scale parameters λSIS 

for FDD). This section will carry out sensitivity analyses to understand 
the influences of these parameters. 

5.2.1 Effects of origins of CAFs 
To evaluate the impacts of CAFs, we observe the situations when 

cascading probabilities γ2 and γ6 are changed, keeping the other pa-
rameters as constants. For example, cascading probability γ2 is 
increased, meaning that the failure is more likely to affect the others due 
to geographical location (e.g., closing to the center of an industrial area). 

Fig. 8. System reliability for three cases using calculation and simulations.  

Fig. 9. RBD with CAFs and SISs of the case study.  
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γ2 and γ6 are assigned from 0 to 0.5. The other parameters are presented 
in Table 2 and Table 3. The result at time t = 2 hours is provided in 
Figure 11. The 3D plot indicates that the system reliability is more 
sensitive to γ6 than γ2, which means that CAFs generated from EUC6 are 
more critical to system reliability in this case. In other words, if EUC6 is 
physically closer to other parts of the production system, the system is 
more vulnerable in case of fires. 

5.2.2 Mitigating effects of SISs 
The mitigating effects of SISs are considered in this section. Now, the 

cascading probabilities γ2 and γ6 are kept constant and set equal to 0.5, 
while the values of PFDavg for FOD and scale parameters for FDD are 

changed. We assume that the same values are applied for all SISs since 
the SISs are identical and perform similar safety functions. The system 
reliabilities with increasing Log10(PFDavg) at the different observing 
times (e.g., t = 0.5, 1, 1.5, 2 hours) are presented in Fig. 12. For clarity, 
the ranges of SILs are SIL 1 to SIL 4. As seen, when changing 
Log10(PFDavg), the trend of the system reliability in the four subplots are 
approximately similar. The system reliabilities remain almost un-
changed when SISs are at SIL 2 or higher. If the SIL of the SISs drops to 
SIL1, the system reliabilities decrease dramatically. In other words, SISs 
mitigate CAFs almost as well at SIL 2 as at SIL 4. This analysis provides 
information on improving system reliabilities with increasing SILs 
regarding safety integrity. In practice, it is beneficial to determine proof 
test intervals of SISs to satisfy the SIL safety requirements and the EUC 
reliability requirements. 

Fig. 13 illustrates how the system reliability is impacted when the 
scale parameters λSIS varies. For example, by t = 2 hours, the system 
reliabilities with λSIS, 1.5λSIS, 2λSIS, 2.5λSIS 3λSIS of SISs are 0.74, 0.70, 
0.66, 0.64 and 0.63, respectively. The system reliabilities do not 
decrease linearly with higher values of the scale parameters. Thus, it is 
necessary to analyze how specific SISs mitigate CAFs and deploy suitable 
SISs, and it will be discussed in the following sections. 

5.3. Criticality analysis of SISs 

Based on the method in Section 3, criticality analysis is carried out to 
identify optimal solutions of SISs in protecting against CAFs. We 
consider three variables related to optimal solutions: location, number, 
and cost of SISs. Specifically, risk achievement worth (RAW), denoted by 
IRAW(SIS|t), is employed as the critical analysis. It is defined as the ratio 
of the system unreliability if an SIS is not present (or in the failed state) 
with the system unreliability if an SIS is functioning at time t [49]: 

IRAW(SIS|t) =
1 − h(0SIS,RS(t))
1 − h(1SIS,RS(t))

(12) 

Fig. 10. System reliability profiles for different states of SISs.  

Table 3 
The parameters of SISs in the case study.  

SISij FOD FDD  
λSIS(/hour)  αSIS  (PFDavg) 

SIS24  0.42 2.0 10− 3  

SIS25  0.33 2.0 10− 3  

SIS64  0.41 2.0 10− 3  

SIS67  0.18 2.0 10− 3   

Table 2 
The parameters of EUC components in the case study.  

EUCi Components λEUC (/hour)  αEUC  

1 Separator 1 0.21 1.4 
2 Separator 2 0.12 1.3 
3 Separator 3 0.24 1.2 
4 Scrubber 0.17 1.5 
5 Compressor 1 0.32 2.1 
6 Compressor 2 0.32 2.1 
7 Compressor 3 0.32 2.1  
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Fig. 11. System reliability considering γ2 and γ6 at t = 2 hours.  

Fig. 12. System reliability considering PFDavg of SISs for FOD.  
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where h(0SIS,RS(t)) denotes system reliability without an SIS, 
while h(1SIS,RS(t)) denotes system reliability with an SIS. When 
IRAW(SIS|t) is large, the status of SIS can result in a comparatively sig-
nificant change in the system reliability significantly at time t. 

By combining Eqs. (10) and (12), IRAW(SIS|t) is obtained in Table 4. 
The parameters are shown in Table 2 and Table 3. Solution No.16 with 
the four SISs has the most significant effects in achieving system reli-
ability against CAFs. On the other hand, no. 7 (SIS24, SIS64) effects are 
found approximately the same as ones of three SISs in solution No.12 
(SIS24, SIS25, and SIS64). The reason is that the effects on preventing 
CAFs of solutions No.3 (SIS25), No.5 (SIS67), and their combination 
No.10 (SIS25, SIS67) are restricted. That implies that those SISs have less 

influence on the system reliability in comparison with the others. 
The cost of SIS deployment can also be considered in the analysis. We 

assume that the installation cost is roughly the same for all SISs and 
equal to a. Then, IRAW(SIS|t)/a reflects the improvement of system 
reliability by installing an SIS. The analysis results are summarized in 
Table 4. Solution No.4 (SIS64) is the worthiest solution if only one SIS is 
considered. If two SISs are considered, the most efficient solutions are 
No.7 (SIS24, SIS64) and No.11 (SIS64, SIS67). This analysis can help the 
designers compare the effectiveness of solutions with a limited budget 
for installing SISs. 

In addition to IRAW(SIS|t), we can also obtain the system reliability 
profiles to compare different solutions. For example, we consider two 
potential solutions: No.6 (SIS24, SIS25) and No.11(SIS64 and SIS67). 
Fig. 14 indicates that the two solutions effectively improve system 
reliability, but solution No. 11 always has more significant effects in 
protecting against CAFs than solution No.6. It implies that SIS64 and 
SIS67 are more critical for the system reliability than SIS24 and SIS25. In 
other words, SIS64 and SIS67 can more effectively protect the 1oo3 
subsystem (i.e., EUC5, EUC6, EUC7) from CAFs than the others. 

6. Conclusions and future research 

This paper has proposed a novel method to evaluate the performance 
of SISs that are employed to protect the EUC system against CAFs. The 
method considers failures of SISs in responding and after activation and 
so analyzes SIS reliability and durability in performance analysis. The 
proposed method can provide designers and operators with information 
for the SIS design and deployment, thereby improving the safety and 
reliability of the EUC system. This paper applies the proposed method to 
SISs and EUC systems, but it can also be adopted in other safety barriers 
in industrial series-parallel systems. 

The method is verified through simple applications, but it efficiently 
manages large systems with a limited number of CAFs. If the number 
increases, the combinations of CAFs grow exponentially. In that case, the 

Fig. 13. System reliability considering scale parameters of SISs for FDD.  

Table 4 
Calculation results for different solutions at t = 2 hours.  

No. SIS R(t) IRAW(SIS|t) cost IRAW(SIS|t)/a  

1 No 0.56 - - - 
2 SIS24  0.59 1.07 a  1.07 
3 SIS25  0.56 1.00 a  1.00 
4 SIS64  0.64 1.22 a  1.22 
5 SIS67  0.56 1.00 a  1.00 
6 SIS24 , SIS25  0.59 1.07 2a  0.54 
7 SIS24 , SIS64  0.68 1.38 2a  0.69 
8 SIS24 , SIS67  0.59 1.07 2a  0.54 
9 SIS25 , SIS64  0.64 1.22 2a  0.61 
10 SIS25 , SIS67  0.56 1.00 2a  0.50 
11 SIS64 , SIS67  0.67 1.33 2a  0.67 
12 SIS24 , SIS25, SIS64  0.68 1.38 3a  0.46 
13 SIS24 , SIS25, SIS67  0.59 1.07 3a  0.36 
14 SIS24 , SIS64, SIS67  0.70 1.47 3a  0.49 
15 SIS25 , SIS64, SIS67  0.67 1.33 3a  0.44 
16 SIS24 , SIS25, SIS64, SIS67  0.71 1.52 4a  0.38  
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calculation efficiency of the method is expected to be further improved. 
However, the method is applicable for systems incorporating a moderate 
number of CAFs in most cases. 

This paper has focused on SIS reliability and durability, but the other 
indicators, such as response time, capacity, and robustness, can also be 
important. Hence, they can be the research in the future. In addition, the 
assumption of constant cascading probability is somewhat restrictive; 
statistical dependency (e.g., time-dependent cascading probability) can 
be considered. Another direction of future work is extending the method 
to more complex systems (e.g., network systems and hierarchical sys-
tems) to investigate more interdependent relationships between SISs 
and CAFs. 
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