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Summary

Society is dependent on a reliable electricity supply for its normal operation.
Blackouts can have severe societal consequences and are sometimes termed ex-
traordinary events. These events are often associated with a high impact and a
low probability of occurring. Extraordinary events can have consequences that
are deemed unacceptable, yet due to their low probability of occurrence they are
not sufficiently identified and communicated through the means of traditional
reliability analysis. Operators need tools to plan and operate the power system
to ensure that the risk of extraordinary events is reduced in a cost-efficient man-
ner. As a response to this, it is necessary to develop new methods to understand,
analyze and communicate the risks and uncertainties related to extraordinary
events in power systems.

This thesis contributes to this task in four ways:

• A method of calculating transmission line unavailability due to correlated
threat exposure is proposed. The method contributes to an improved un-
derstanding of the probability of an unwanted event.

• Protection system misoperation can further weaken the power system fol-
lowing an initial event, and is an important part of many extraordinary
events. A compact and generalized method of including protection system
failures and misoperation in power system reliability analysis is developed.
The method is used to study the interaction between adverse weather and
protection system misoperations.

• Extraordinary events that are caused by natural hazards are often asso-
ciated with long outage durations due to physical infrastructure damage.
However, limitations in the available data can make it difficult to parameter-
ize models which include outage durations. A model to predict transmission
line down-times is constructed as a possible solution to this challenge.

• Appropriate communication of risk is necessary for stakeholders to make
sound risk-informed decisions. The thesis develops novel risk visualizations
to support this. The risk visualizations incorporates both the consequences
in terms of energy not supplied and also a measure of the criticality for the
affected end-users.

v



vi



List of Figures

1.1 Historical extraordinary events, categorized by cause of the event. . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Power system vulnerability and associated bow-tie model, adapted
from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Progression of an unwanted event, from threat exposure to conse-
quence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Restoration process following a permanent fault of one component,
example using key terms. Time not to scale. . . . . . . . . . . . . . 15

2.4 Faults registered in FASIT for overhead transmission lines, 2008-
2017. By cause, voltage level, and nature of outage. . . . . . . . . 17

2.5 Markov chain with two components and two weather states, adapted
from [81,83]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Generic fragility curve of a component. . . . . . . . . . . . . . . . . 19

2.7 Example power system, adapted from [84,92]. . . . . . . . . . . . . 20

2.8 Simplified composite unit model for line i, adapted from [84]. . . . 21

2.9 Reliability block diagram of cut-set including protection system
misoperation, adapted from [94]. . . . . . . . . . . . . . . . . . . . 22

2.10 Consequence classification of blackouts, illustration adapted from
[30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 Customer damage functions at reference time1. Norwegian Kroner
(2017 values) per kW [101]. . . . . . . . . . . . . . . . . . . . . . . 24

vii



2.12 Risk matrix. Adapted from [30,105]. . . . . . . . . . . . . . . . . . 25

2.13 Risk diagram with uncertainty boxes. . . . . . . . . . . . . . . . . 26

3.1 Line segment lengths. Main transmission line in red, towers as
yellow points. Illustrative example using data from [111,112]. . . . 32

3.2 Illustrative example of line-specific fragility curve with superim-
posed histogram of hourly line segment IM observations. . . . . . . 34

3.3 Illustrative example of time-series of calculated hourly failure prob-
abilities for an overhead transmission line. . . . . . . . . . . . . . . 35

3.4 Correlation matrix. Wind-dependent failure probability for 9 over-
head transmission lines. . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Survival function fitting (a) and approximation (b). . . . . . . . . 38

3.6 Illustration of unavailability algorithm applied with a 150-hour
time-series of failure probability. . . . . . . . . . . . . . . . . . . . 40

3.7 Two adjacent transmission lines, i,j [40]. . . . . . . . . . . . . . . . 42

3.8 Busbars as vertices, edges as transmission lines [40]. . . . . . . . . 43

3.9 Transmission lines as vertices, edges as propagation paths [40]. . . 44

3.10 Failure probability of components of a cut-set, dependency mode
failure probability, and failure probability and unavailability of
cut-set [40]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 Conceptual model of transmission line down time [41]. . . . . . . . 52

3.12 BN model of transmission line down time, conditioned on wind as
the external threat. Down-time duration in hours [41]. . . . . . . . 53

3.13 Comparison between the predicted distribution of down-times due
to wind using the BN approach, and actual observed down-times
(n=11) in the Norwegian transmission system. . . . . . . . . . . . 54

3.14 Risk diagram including uncertainty bands, for the unavailability
of a cut-set. Recreated from [42]. . . . . . . . . . . . . . . . . . . . 56

3.15 The Roy Billinton Test System (RBTS) [117]. . . . . . . . . . . . . 57

3.16 Hourly time-series of load, failure probability and unavailability
used in the case study. . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



3.17 Construction of outage duration distributions for sets of transmis-
sion line(s). Cumulative distributions. . . . . . . . . . . . . . . . . 61

3.18 Paired histograms of expected ENS and CENS for the 15 cut-sets
with the highest expected ENS values. . . . . . . . . . . . . . . . . 64

3.19 Stepwise construction of risk diagram with uncertainty boxes and
a “dot-and-line” representation. . . . . . . . . . . . . . . . . . . . . 65

3.20 Risk diagram using a “dot-and-line” representation: Probability
and consequence (ENS). . . . . . . . . . . . . . . . . . . . . . . . . 66

3.21 Risk diagram using uncertainty boxes: Probability and conse-
quence (ENS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.22 Risk diagram using a “dot-and-line” representation: Probability
and criticality (CENS). . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



x



List of Tables

1 List of Symbols 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

2 List of Symbols 2/3. . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

3 List of Symbols 3/3. . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1.1 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Elicited triangular distributions, in hours [41]. . . . . . . . . . . . . 52

3.2 Customer types and customer cost functions at buses used in case
study2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Annual indices for the transmission lines. . . . . . . . . . . . . . . 63

A.1 Historical extraordinary events. . . . . . . . . . . . . . . . . . . . . 133

B.1 SHELF elicitation record - Part 1: General . . . . . . . . . . . . . 136

B.2 SHELF elicitation record - Part 1: Definitions . . . . . . . . . . . . 137

B.3 SHELF elicitation record - Part 2: Eliciting a Continuous Distri-
bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.1 CENS correction factor by month. . . . . . . . . . . . . . . . . . . 139

C.2 CENS correction factor by day of week. . . . . . . . . . . . . . . . 139

C.3 CENS correction factor by hour. . . . . . . . . . . . . . . . . . . . 140

xi



xii



List of Symbols

Table 1: List of Symbols 1/3.

3.1 Time-series of failure probability
p(y|λ) Probability of y given λ
y Vector of annual failure rates
n Number of years of observation
λ Exponential distribution rate parameter
l(y|λ) Likelihood of y given λ
β Gamma distribution rate parameter
α Gamma distribution shape parameter
Γ(∗) Gamma function
IM Intensity Measure
w Wind speed [m/s]
t Time identifier [h]
d Transmission line length [m]
l Transmission line identifier
s Line segment identifier
erf(∗) Error function
p Probability of failure
µ Log-normal distribution scale parameter
σ Log-normal distribution shape parameter
k Time period under consideration [years]

xiii



Table 2: List of Symbols 2/3.

3.2 Unavailability
r Outage duration [h]
R Random variable of outage duration
n Number of observations
µ Log-normal distribution scale parameter
σ Log-normal distribution shape parameter
E(∗) Expected value of random variable *
Var(∗) Variance of random variable *
F (∗) Cumulative distribution function
S(∗) Survival function
∆ Difference between two observations
P Number of intervals
a Interval identifier
o Offset
t Time identifier
k Inflation factor
CS A set of components
P(U) Probability of unavailability

3.3 Dependent failures: Protection systems
FT1− FT4 Fault Type(s)
G A graph
V A vertex set
E An edge set
b Bus identifier
l = {u, v} Edge element, representing a transmission line between bus u and v
n Total number of buses
m Total number of transmission lines
c Bus connecting two adjacent transmission lines
s = {a, b} Set of a- and b- side identifiers of transmission lines
P sl Protection system of line l on its s-side

ps,λl Specific annual failure rate of a protection system
ps,ml Conditional probability of missing operation of the protection system

ps,ul
Conditional probability of unwanted non-selective
tripping of the protection system

∪ Union (probability)
i Target line
j Source line
A = [ai,j ] Adjacency matrix between source lines and target lines
PT3− PT4 Probability matrices
λ Failure rate
λ′ Equivalent failure rate
λD Dependency mode failure rate
U Unavailability
r Outage duration [h]
� Element-wise Hadamard division

xiv



Table 3: List of Symbols 3/3.

3.4 Restoration times due to permanent faults
α Dirichlet concentration parameters
k Number of categories in α
y Vector of observations for each category

3.5 Visualization and communication
p(λi,t) Probability of failure of line i at time t
i Line identifier
t Time identifier [h]
y Number of years of observations
POR Permanent Outage Rate
w Share of failures due to wind
ρ Spearman’s correlation coefficient
J Set of system states
p(u) Probability of unavailability
p(λ) Probability of failure
n Number of components in the set
F (∗) Cumulative distribution function
c(r) Cost function at reference time
f CENS correction factor
r Outage duration
U Unavailability
λ Failure rate
λ{x,y},: Time-series of failure probability for the set {x,y}
b Bus identifier
Pinterr,b,t Interrupted power at bus b at time t
E(∗) Expected value of random variable *

xv



xvi



Abbreviations

AUD Australian Dollars
BN Bayesian Network
CDF Cumulative Density Function
CENS Cost of Energy Not Supplied
ENS Energy Not Supplied
ENTSO-E European Network of Transmission System Operators
FASIT Fault And Supply Interruption information Tool
FOR Forced Outage Rate
FT Fault Type
HILP High Impact Low Probability
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IEV International Electrotechnical Vocabulary
IM Intensity Measure
MC Markov Chain
MLE Maximum Likelihood Estimator
MoM Method of Moments
NERC North American Electric Reliability Corporation
NOK Norwegian Kroner
PDF Probability Density Function
POR Permanent Outage Rate
RBTS Roy Billinton Test System
RTS Reliability Test System
SF Survival Function
SHELF SHeffield ELicitation Framework
TSO Transmission System Operator
USD U.S. dollars
VOLL Value of Lost Load

xvii



xviii



Contents

Acknowledgements iii

Summary v

List of Figures vii

List of Tables xi

List of Symbols xiii

Abbreviations xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective, scope and limitations . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theoretical foundations 9

2.1 Vulnerability and risk . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Terms, definitions and data . . . . . . . . . . . . . . . . . . . . . . 12

xix



2.3 Dependence models . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Correlated weather . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Protection system misoperation . . . . . . . . . . . . . . . . 19

2.4 Quantification and communication of risk . . . . . . . . . . . . . . 22

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Contributions 29

3.1 Time-series of failure probability . . . . . . . . . . . . . . . . . . . 30

3.2 Unavailability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Dependent failures: Protection systems . . . . . . . . . . . . . . . . 41

3.3.1 Incorporating protection system failures using approximate
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Incorporating time-varying failure probability due to weather 47

3.4 Restoration times due to permanent faults . . . . . . . . . . . . . . 51

3.5 Visualization and communication . . . . . . . . . . . . . . . . . . . 55

3.5.1 Continuation of the risk visualization . . . . . . . . . . . . . 57

4 Conclusion and further work 69

Bibliography 70

Publications 85

Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xx



Appendices 131

A Historical events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B Expert elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C CENS correction factors . . . . . . . . . . . . . . . . . . . . . . . . 139

xxi



xxii



Chapter 1: Introduction

1 Introduction

Society is dependent on a reliable supply of electricity for its normal operation.
The power system is an important and critical infrastructure, and blackouts can
have severe consequences for society. There are many examples of historical
blackouts that have had a significant societal impact. Malfunctioning software
and inadequate operator awareness caused the 2003 U.S. - Canada blackout which
affected an estimated 50 million people, and had an estimated total cost between
$4 billion and $10 billion USD in the U.S. alone [1,2]. The storm Dagmar swept
across Norway, Sweden and Finland in 2011, causing 1.7 million end-users to
experience interrupted power, which for some lasted for more than 25 days [3].
Renewable energy penetration, lack of system inertia and severe weather caused
the disconnection of 850 thousand customers in South Australia, and a subsequent
estimated cost of $367 million AUD [4,5].

Extraordinary events, such as blackouts with high societal consequences, have a
high impact and a low probability, and are often referred to as HILP events [6].
Such events can be considered tail-end events, and is considered not well enough
covered by traditional reliability analysis [7–9]. Operators need tools to plan and
operate the power system to ensure both a reliable and resilient power system,
reducing the risk of HILP events in a cost-efficient manner. As a response to this,
it is necessary to develop new methods to understand, analyze and communicate
the risks and uncertainties related to extraordinary events in power systems.

1.1 Motivation

The transmission system is usually operated within the N-1 criterion, i.e., the
system is able to withstand the failure of one component without any interruption
of service. The power system is a highly reliable system, and the occurrence of
multiple simultaneous or near simultaneous failures of its components due to
random and independent events is very unlikely although not impossible. A
more likely scenario is that the system is subject to a threat which multiple
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components are exposed to simultaneously, e.g. due to extreme weather. This
causes a correlated threat exposure and higher failure probability for the exposed
components within a compressed period of time. Another typical scenario is
dependent failures, due to shared infrastructure or failure propagation. The
former causes multiple component outages due to a common cause, such as two
overhead transmission lines experiencing the collapse of a shared tower, while
the latter causes multiple outages due to a fault at one location propagating to
another component, e.g. through protection system misoperation. One or more
power system failures can be understood as an unwanted event which may lead
to interruption of electricity supply [6].

Natural hazards are of particular interest when it comes to HILP events. En-
vironmental factors are by far the largest contributor to Energy Not Supplied
(ENS) in the Norwegian transmission system in the 33-420kV grid, and are more
generally a major factor affecting the reliability of supply [10,11]. Although there
are different taxonomies and cause analyses available, natural hazards stands out
as a prominent cause of major blackouts [3,12–15]. A distinction between natural
hazard events and power system initiated events is offered in [16] where natural
hazard events are understood to be caused mainly by factors related to the envi-
ronment, while power system initiated events are mainly caused by technical or
operational failures in the power system.

This is a useful initial differentiation as natural hazard events are often faced
with unique challenges. Extreme weather can cause multiple components in the
power system in certain geographical areas to be under high stress from external
forces at the same time. This spatial and temporal correlation in exposure can
increase the probability of simultaneous or near simultaneous multiple outages
of exposed components in a limited geographical area, leading to the failure
bunching phenomenon [17]. Natural hazards can also cause extensive physical
damage to components in the system which must be repaired before supply can
be restored. Reparation and restoration following a natural hazard event may
be further hampered by, for instance, continued adverse weather, debris after a
disaster or damages to other critical infrastructures [16, 18, 19]. Out of the 66
major blackouts surveyed in [20] it is found that most power system blackouts
are initiated due to bad weather.

A common theme in the analysis of extraordinary events is cascading failures.
Cascading failures starts with a ”trigger” event, e.g. one or multiple component
outages, which continues with generations of dependent events [21]. Dependencies
can cause some weaknesses to be realized only after an initiating event [13, 22–
26]. One example is protection system failures [27], where misoperation of the
protection system may cause a further weakening of the system following an
initial failure. This weakening can lead to more complex sequences of events such
as uncontrolled cascades and subsequent blackouts. A useful observation is that
mitigating risk of the initiating event can reduce the frequency of blackouts, while

2



Chapter 1: Introduction

limiting propagating can reduce their size [21].

One example of a cascading event is the 2019 UK blackout. The event is most
commonly thought to have been initiated by a lightning strike to a transmis-
sion line. The protection system of the line operated correctly to clear the
fault. Nonetheless, the event was immediately followed by 1480 MW of genera-
tion losses, in part attributed to unexpected behavior of control and protection
systems following the lightning strike. The event itself did not cause any ma-
jor physical damage to the power system and the system was restored within
approximately 40 minutes [28,29].

The criticality of historical extraordinary events has previously been illustrated
along the axes of duration and magnitude of the event [16,30]. Figure 1.1 provides
an overview of some notable historical extraordinary events in the period of 1965-
2021, categorized by cause of the event (details can be found in Appendix A). In
particular the duration of the event is usually longer when it comes to natural
hazard events, which often entail large societal consequences. Long restoration
times are often associated with major storms, earthquakes or other events which
cause damage to infrastructure. The two natural hazard events with the short-
est average interruption duration (UK 2019 and US 1998) in the figure are both
initiated by lightning strikes. Other events with long average interruption dura-
tions are associated with severe infrastructure damage such as the Canadian ice
storm in 1998, the cyclone in France in 1999, and the storm Gudrun in Sweden
in 2005. The criticality of extraordinary events is however not only dependent on
the magnitude and duration of the events but is also affected by the impact on
health and life, and the social and economic consequences due to the event [6].
Considerable work has been performed in valuating lost load for customers, in
terms of economic consequences, incorporating elements such as which customers
are affected and when the power interruption occurs [31–33].

Due to their significant consequences it is important to better understand the
risk of extraordinary events. A traditional definition of risk put forward in [34] is
that risk is a function of a scenario, a probability and a consequence. Traditional
reliability indices in power systems are often derived from expected values, where
failure rates, outage durations and interrupted power are important variables.
Relying on expected value can lead to the fallacy of the expected value, where
low probability events are consumed into the mean [35]. As noted in [36], ex-
pected loss does not adequately capture events with low probabilities and high
consequences - which are often the case for blackouts in the modern power sys-
tem. Some consequences of blackouts may be unacceptable, even if they are
not reflected into the expected value. This risk aversion among consumers and
policy-makers may justify grid investments beyond the theoretical optimum [9].
Thus it is also important to incorporate uncertainty and the distributions of the
relevant variables into the risk assessment.
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Figure 1.1: Historical extraordinary events, categorized by cause of the event.

Uncertainty can broadly be classified into two categories [37]: Aleatory uncer-
tainty is associated with natural variability or randomness and is considered irre-
ducible. Epistemic uncertainty is associated with lack of knowledge, and knowl-
edge acquisition contributes to reducing this form of uncertainty. There are ways
in which aleatory uncertainty can become epistemic, e.g. through advances in
science, and there are epistemic uncertainties that are known but can be reduced
to random behavior in detailed analysis. These two forms of uncertainty affect
power system reliability evaluations [38]. Changing weather conditions, seasonal
supply and demand, and inherent variability are just some of the parameters
which can potentially produce outcomes which are worse than expected.

Identifying, understanding and communicating risks associated with extraordi-
nary events can thus be an important part of risk-informed decisions among
relevant decision makers. This thesis is a contribution to this.

1.2 Objective, scope and limitations

The objective of the thesis is to develop methodologies for understanding and
communicating uncertainties and risks related to extraordinary events. The fol-
lowing research questions have been defined to reach the objective:
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1 How do time-varying failure rates affect the rate of unwanted events?

2 How do interactions between the failure bunching phenomena and protec-
tion misoperation contribute to unwanted events?

3 What are the contributions to long restoration times caused by natural
hazard events?

4 How can risk of extraordinary events be communicated and visualized?

This thesis limits itself to considering the risk of extraordinary events from a
transmission system operator (TSO) perspective. The work considers the risk,
uncertainty and communication of extraordinary events from a planning perspec-
tive, largely avoiding the operational perspective.

1.3 Contributions.

Theme Paper

Delimitation
Development of a qualitative framework for analyzing
high-impact low-probability events in power systems

Spatio-temporal
correlation

Transmission line unavailability
due to correlated threat exposure

Propagating
events

Reliability of supply and the impact of weather
exposure and protection system failures

Restoration times
A Bayesian Network approach to pre-
dicting transmission line down times

Risk
visualization

Identification, visualization and reduction of
risk related to HILP events in power systems

Outage duration

Interru
pted

power

P
ro

b
a

b
il

it
y

Figure 1.2: Contributions

Initially, a qualitative framework for analyzing HILP events was developed (see
Paper A in Table 1.1). It is acknowledged that it is impossible to model all
aspects relevant to HILP events accurately in a single analysis, and the framework
is a tool to define, decompose and delimit the analysis according to which problem
the analysis is trying to respond to. A delimitation is performed according to
the objective and the associated research questions. This paper is not considered
part of the thesis but is included as an appendix.
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To answer the first research question, a new method of calculating time-series for
component unavailability due to time-varying threats, such as for example, wind
or lightning, was developed in Paper 1. The model is based on historical time-
series of failure probabilities for overhead transmission lines, and distributions of
outage durations. This gives a more realistic view of the probability of overlap-
ping outages. The model is transferable to other components or threats. The
motivation behind developing the approach is to estimate how the probability
of reaching an unwanted event consisting of one or more overlapping component
outages changes when there is spatio-temporal correlation in threat exposure.
Using time-series of unavailability of components also enables simple compari-
son with corresponding time-series of consequences due to the unwanted event.
This paper contributes to an improved understanding of the probability of the
unwanted event.

Paper 2 combines the effects of spatio-temporal correlation in threat exposure,
with an early stage of propagating events: dependent failures through protection
system misoperation. Further weakening of the power system following a failure
can cause the system to quickly move from a secure, to an alert one, to a state
of thermal overloads or instability. As extreme weather can cause periods with a
high probability of failure, dependent protection misoperation will cluster in the
same time periods. This paper develops a generalized method for incorporating
propagating failures between adjacent transmission lines due to protection system
misoperation, based on graph theory. The method is extended from traditional
reliability analysis to be applicable to time-series of failure probabilities. This
article provides answers to research question 2.

Paper 3 contributes to the prediction of overhead transmission line down times,
answering the third research question. This paper structures and decomposes
what causes long restoration times due to permanent failures requiring repair fol-
lowing extreme weather. This is a response to the limited work on the restoration
time of components for use in power systems vulnerability or resilience analysis.
A Bayesian Network (BN) model of transmission line down times is constructed
based on expert judgments and historical data. The model can be used to con-
struct down time distributions that are conditioned on time- and location-specific
information, both for existing and potential new overhead transmission lines. The
BN structure and decomposition of the model visualizes the contributions to long
down times.

Identification, visualization and reduction of risk is explored in Paper 4, at-
tempting to answer research question 4. The paper discusses different approaches
to analyzing extraordinary events. It argues for a distinction between extreme
weather scenarios that are constructed to represent an extreme case, and those
which follows historical patterns in terms of probability of occurrence. The former
can have great exploratory value in finding outages with high impact. The latter
can be assigned a probability, which is arguably a necessary condition to perform
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Table 1.1: List of publications

Paper 1 [39] E. S. Kiel and G. H. Kjølle, “Transmission line unavail-
ability due to correlated threat exposure,” in 2019 IEEE
Milan PowerTech, PowerTech 2019, jun 2019.

Paper 2 [40] E. S. Kiel and G. H. Kjølle, “Reliability of Supply and
the Impact of Weather Exposure and Protection System
Failures,” Applied Sciences 11, no. 1 (2021): 182.

Paper 3 [41] E. S. Kiel and G. H. Kjølle, “A Bayesian Network ap-
proach to predicting transmission line down times,” Proc.
30th Eur. Saf. Reliab. Conf. and the 15th Probabilistic
Saf. Assess. Manag. Conf., 2020.

Paper 4 [42] E. S. Kiel and G. H. Kjølle, “Identification, visualization
and reduction of risk related to HILP events in power
systems,” 2019 54th Int. Univ. Power Eng. Conf. UPEC
2019 - Proc., sept 2019.

Paper A [26] I. B. Sperstad and E. S. Kiel, “Development of a qualita-
tive framework for analysing high-impact low-probability
events in power systems,” in Safety and Reliability - Safe
Societies in a Changing World - Proceedings of the 28th
International European Safety and Reliability Confer-
ence, ESREL 2018, CRC Press, 2018, pp. 1599–1608.

a full risk analysis. A simple metric is constructed to show which lines have
historically had the largest impact on expected energy not supplied (ENS). Dif-
ferent methods of risk visualization are discussed, and a probability-consequence
diagram including uncertainty bands is suggested.

The work in Paper 4 is then extended to include the cost of ENS as a measure
of the criticality for affected end-users due to extraordinary events. Risk visual-
izations based on uncertainty boxes are further developed in the extended work.
The novel risk visualizations are assumed to convey the key information on risk
relevant to expected and extraordinary events.

1.4 Thesis structure

The remainder of the thesis is structured as follows. In Chapter 2 the theoretical
framework for analyzing extraordinary events is presented. This chapter initially
gives an introduction to vulnerability and risk, before introducing important
definitions and sources of data used in the thesis. The role of dependent outages
is then further explored through two particular contributors to extraordinary
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events, extreme weather and protection system misoperation. Lastly, methods
of visualizing and communicating risks in the power system domain is presented.
Chapter 3 discusses the papers that makes up the thesis, sometimes with added
or reduced detail, to highlight or clarify elements in the published papers. The
subsection dealing with risk visualization contains an extension of the published
work in Paper 4. The contributions to the objective of the thesis and individual
research questions are presented in Chapter 4 alongside recommendations for
future research.
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Chapter 2: Theoretical foundations

2 Theoretical foundations

The power system is a critical infrastructure upon which other infrastructures
and societal functions rely [43–45]. Small failures of a critical infrastructure can
have widespread consequences for other critical infrastructures and consequently
for society as a whole. Reliability analysis analysis primarily deals with the
expected behavior of the power system; however, rare events can constitute high
or unacceptable risks that reliability analysis is not able to communicate. This
chapter explores some of the current literature and methods used to analyze and
evaluate the risk of extraordinary events in power systems. Common terminology
and dependence models especially relevant to extraordinary events is given special
attention.

Reliability analysis gives a measure of the system’s ability to perform its in-
tended function, and its expected behavior. Newer concepts such as vulner-
ability and resilience analysis deal with the inability or ability of the system
to withstand strains, and the effects of consequent failures. While reliability
may adequately capture the expected behavior of the system, it may fail to cap-
ture high-consequence scenarios which are included in vulnerability and resilience
analysis [7, 8, 46]. Extraordinary, extreme, catastrophic or HILP events are rare,
and thus they can have an negligible effect on the expected value of risk, even if
the associated consequence is severe. The consequences of these tail-end events
may however be deemed unacceptable, and should thus be considered [30,35].

The concepts of resilience and vulnerability have historically grown out of natural-
and social-science research traditions, respectively, and while the former has had
a more positivist approach the two fields have grown increasingly similar. Both
concepts can be considered as ways of responding to stress and as part of the
field of adaptive risk management [47]. Vulnerability may be seen as degree to
which the system may react adversely to a threat, while resilience the ability
to resist adverse effects [47–49]. There are a large number of approaches and
definitions related to resilience and vulnerability applicable to power systems
(see e.g. [50–52]), and resilience could be seen as the inverse - or the antonym -
of vulnerability [6, 37].
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Vulnerability can be understood in a number of different ways depending on the
issue at hand, and the methodological approach employed [26, 52]. For the pur-
poses of this thesis, vulnerability is understood as an expression for the problems
a system faces to maintain its function if a threat leads to an unwanted event and
the problems the system faces to resume its activities after the event occurred,
where an unwanted event is defined as one or more power system component
outages potentially leading to an interruption in the supply of electricity for the
end user [6, 53]. This definition is general, and is applicable both to failures
due to external threats and causal mechanisms such as cascading events. The
usage of the definition is based on years of developed vulnerability analysis, in-
dicator development and methodologies of analyzing extraordinary events (see
e.g. [26, 30, 53–56]), summarized in a comprehensive framework for vulnerability
analysis in [6]. This framework is used as a basis for the analysis of risk and
uncertainty related to extraordinary events in this thesis.

The remainder of the chapter is structured as follows: Section 2.1 introduces
the conceptual bow-tie model of vulnerability in the power system, and clarifies
terms and definitions, and their relationship to risk. Section 2.2 presents the
Norwegian fault data registration system (FASIT), and definitions related to the
registration of faults. Section 2.3 presents common dependencies relevant for the
analysis of the vulnerability of the power system. In Section 2.4 quantification
and visualization of risk is introduced.

2.1 Vulnerability and risk

Figure 2.1 gives an outline of the vulnerability concept as understood by this the-
sis. The vulnerability framework upon which this thesis bases itself decomposes
vulnerability into several dimensions. On one axis is the power system internal-
/external dimension, while another concerns if it is related to the occurrence of
an unwanted event or the consequence of the event [6]. A bow-tie diagram de-
picting the relationship between an unwanted event from cause to consequence,
and the associated mitigating barriers (see e.g. [37, p.119]) is superimposed on
to the figure to illustrate the risk management process related to a given un-
wanted event. A distinguishing feature of power system vulnerability is that it
is understood as an internal characteristic of the power system: A threat may
lead to an unwanted event depending on the susceptibility of the system. An
unwanted event may similarly lead to different end-user consequences depending
on the coping capacity of the power system [6].

The relevance of the susceptibility and coping capacity of the system is decided by
external factors, through its exposure to threats, and the criticality of the power
system consequence. A threat is understood as any indication, circumstance
or event with the potential to disrupt or destroy a critical infrastructure or any
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Figure 2.1: Power system vulnerability and associated bow-tie model, adapted
from [6].

element thereof [57], and the relevance is decided in accordance to what degree
the system is exposed to the threat. Typical threats may be natural hazard
events such as severe weather, human threats through intended and unintended
actions, or operational/technical decided by the operational stress on the system
components. A power system consequence can be measured in several ways
that will be discussed later in the thesis, but one possible measure is ENS in
terms of MWh. However, the criticality of an extraordinary event reflects the
external impact on society due to the power system consequence, depending on
the end-user’s dependence on the electricity supply. An extraordinary event is
then understood as a sequence of events that leads to a critical consequence, i.e.
a blackout [6].

Barriers can be related the vulnerability of the power system and are influenced
by technical, human and organizational factors. Barriers related to susceptibility
aims to prevent threat exposure from causing an unwanted event and can be
factors such as the technical condition of components, operative competence,
and operator awareness. Barriers related to the coping capacity are intended to
avoid or reduce the consequence of an unwanted event and may be the availability
of spare parts, competence and skill in system restoration, or the availability of
contingency plans [37,53].

The risk associated with a scenario has been defined as a function of its probability
and consequence [34] and as such the path from threat to criticality defines the
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risk of an extraordinary event. Viewing the power system in isolation gives limited
information about the associated risk to society. The power system might be
highly vulnerable to a threat that it is never exposed to, and similar consequences
can have a widely different criticality for society when the dependence on power
of the affected customers is taken into account. The risk of an extraordinary
event thus also takes into account power system’s external properties, such as
threat exposure and criticality for the end-user, which will be further highlighted
later in this chapter.

The concept of vulnerability can also be related to resilience. Although the
perspective of resilience is not used in this thesis, it is useful to relate the two
concepts, as a significant amount of academic work is currently being undertaken
on the topic. There is no commonly accepted definition of resilience in the power
system domain [8, 58, 59], but a definition of resilience which is analogous to the
vulnerability definition used in this thesis is proposed in [6] as the ability of the
system to maintain its function if a threat leads to an unwanted event and the
problems the system faces to resume its activities after the event occurred. The
end goals of resilience, robustness and rapidity, can be analogous to the suscepti-
bility and coping capacity of the system supported by the means of resourcefulness
and redundancy [6, 60, 61]. The conceptual resilience triangle [60, 62] or trape-
zoid [63] can also be represented with vulnerability specific terms, to a similar
effect.

Figure 2.2 shows a timeline where the interaction between threat exposure and
susceptibility of the power system develops into an unwanted event. The coping
capacity of the system decides the interrupted power and interruption duration,
and as a result the consequence of the unwanted event.

As is noted in [26], it is impossible to analyze all relevant aspects related to
extraordinary events quantitatively, and it is necessary to decompose and delimit
the analysis according to the purpose of the analysis. The purpose of this thesis
is to develop methods to understand, quantify and communicate risk related
to extraordinary events in the power system. A delimitation of the analyses is
therefore decided by the representation of risk: The probability of the unwanted
event, and the criticality of the resulting consequences for the end-users.

2.2 Terms, definitions and data

The FASIT (a Fault And Supply Interruption information Tool) reporting tool
was developed in the 1990’s and implemented in 1995 as a common tool for reli-
ability data collection and reporting for operators in the Norwegian transmission
and distribution grid [64]. Over the years it has been further developed, and def-
initions have been updated as the requirements from the regulatory authorities
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Figure 2.2: Progression of an unwanted event, from threat exposure to conse-
quence.

have evolved. The FASIT system links standardized fault reports with databases
containing information on the faulty equipment, and the affected delivery points
and customers. A Cost of Energy Not Supplied (CENS) scheme was introduced
in 2001 and included in the FASIT system. FASIT has been used by all network
companies at all voltage levels, including the Norwegian Transmission System
Operator (TSO), Statnett, since 2006. The standardized and mandatory report-
ing scheme has thus contributed to historical fault statistics which has enabled
monitoring of trends over time [64–67]. The FASIT reporting scheme has its own
terms and definitions to ensure consistent reporting of faults and interruptions
in the Norwegian power system. Some of the definitions in FASIT have been
incorporated into the Nordel - and later the ENTSO-E - guidelines for grid dis-
turbance classification [68], and revisions have been made to make the terms and
definitions better harmonized with other international standards [66, 69]. Other
common sources of relevant English terms and definitions related to the relia-
bility of supply are available from the IEEE [70, 71], IEC [72], ENTSO-E [68]
or NERC [73]. The definition sets have grown from their own traditions and is
heavily interconnected in terms of terminology. As such there is a need to clarify
some key terms that will be used throughout this thesis.

A key term when it comes to the delivery of electrical power is the delivery point,
or a “point, power transformer or busbar in the grid where the electricity is
exchanged”. This may be connected to an end-user who are defined as “buyers
of electrical energy who do not resell all the energy” [68]. A supply interruption
is understood as a ”customer load disconnection from the electric power supply”
[72], where the interruption duration of such an event is understood as “the time
period from the initiation of an interruption until service has been restored to
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the affected customers” [71]. Energy not supplied (ENS) is understood as “the
estimated energy which would have been supplied to end users if no interruption
and no transmission restrictions had occurred” [68]. The emphasis of this thesis
is on grid disturbances, or “outages, forced or unintended disconnection or failed
re-connection of breaker as a result of faults in the power grid” [68,69], and does
not include planned outages.

When dealing with extraordinary events, often caused by the physical destruction
of infrastructure, it is important to clarify the element of analysis. A system unit
is understood as “a group of components which fulfils a main function in the power
system” and is delimited by circuit breakers, whereas a component is “equipment
which fulfils a main function in a unit”. A component can be further divided into
sub-components: isolators, towers, etc., which are considered sub-components of
an overhead transmission line [68]. A distinction between a unit and a component
is clarified in [71]: A unit is a functional facility which transfers power between
designated points, while a component is a specific piece of equipment. Units
are often named after the distinguishing component of the unit. The concept
of a unit has similar understandings in the different reliability standards, and is
sometimes referred to as an item [72], or an element [73].

A failure of a component is understood as a “loss of ability to perform as required”
and is considered an event which leads to a fault which means an “inability of
a component to perform its required function”. A “fault that has not become
apparent” is considered a latent or hidden fault up until the point of fault de-
tection [72]. When registering a fault in FASIT, a “set of circumstances that
leads to failure” is specified as the failure cause. A distinction is also made be-
tween a primary failure which is a “failure of an item not caused either directly
or indirectly by the failure of another item”, and a secondary failure which is
caused by the failure of another item. A permanent fault is understood as a
fault where the component or unit is damaged and cannot be restored to ser-
vice until repair or replacement is completed, while a temporary fault means that
“the unit or component is undamaged and is restored to service through manual
switching operations without repair being performed, but possibly with on-site
inspection”, meaning that no other action than a reconnection of circuit break-
ers, replacement of fuses or signal acknowledgement is required [68]. Common
cause failures are especially relevant when it comes to harsh weather, and are
understood as “failures of multiple items, which would otherwise be considered
independent of another, resulting from a single cause” [72].

A component is considered in a down-state or unavailable while it is “unable
to perform as required, due to an internal fault”. Faults are related to the
concept of an outage. This is understood as “[t]he component or unit is not
in the in-service state; that is, it is partially or fully isolated from the system”
[68], where in-service means that the component or unit is “energized and fully
connected to the system” [70]. An outage may be due to a failure but this is
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Figure 2.3: Restoration process following a permanent fault of one component,
example using key terms. Time not to scale.

not necessarily always the case. An un-faulted, or healthy, component can be in
the outage state due to planned maintenance or incorrect operation of protection
systems. A latent fault of a protection system can similarly be present without
it immediately leading to an outage. The thesis deals with situations where the
outage of one or the simultaneous outage of multiple components is considered,
however, detailed analysis of fault clearing times is not part of the work. In
the case of a permanent fault, the component must be brought back to the in-
service state. The understanding of repair time used in FASIT (and ENTSO-E)
is largely similar to the understanding of corrective maintenance time used in
IEC [72]; however, they do have points of shared terms with different definitions.
The understanding of repair time in this thesis follows the ENTSO-E/FASIT
definition.

Figure 2.3 provides an overview of some key terms used in this thesis, illustrated
by the process of returning a component to the in-service state following a per-
manent fault. Text marked in gray is rarely used but is included to clarify what
are considered parts of the different terms. The progression of the restoration
process following a real event may diverge from this stylized example but it offers
an overview of the relationship between the terms used.

An outage event involves “the outage occurrence of one or more units or com-
ponents”. Similarly, the ”outage occurrence of a single system component”, or
”the concurrent outage of two or more system components” is termed a contin-
gency [72]. As the transmission system is operated according to the N-1 criterion,
it is relevant to consider outage events involving two or more component outages,
if the goal is to identify end-user consequences.

The notion of a cut-set is often used in reliability analysis. A cut-set can be
understood as a “set of basic events whose occurrence (at the same time) ensures
that the top event occurs” in a fault-tree. The top event in the context of this
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thesis is “an event which causes an interruption of service to customers” in terms
of interrupted power. A cut-set can be considered minimal if “the set cannot be
reduced without losing its status as a cut-set” [74, p.103]. A set is sometimes
used interchangeably with a contingency, and does not necessarily imply that the
set causes interrupted power at the end-user.

The power system consists of highly reliable components, and although positive in
itself, it can be a challenge to characterize failure behavior using limited statistical
failure data [75]. Data availability becomes even more relevant when attempting
to investigate multivariate relationships. Subsetting the data based on more than
one to two variables can leave few to no observations of events in some categories.
Lack of data a particular a challenge when it comes to restoration and repair times
in FASIT. Different interpretations and complexity in collection and registration
have led these data to be voluntary to report, and thus incomplete [67]. This
does however highlight the importance of continued efforts to collect standardized
fault reports.

Figure 2.4 shows faults recorded in FASIT for overhead transmission lines, in
the period of 2008-2017, separated by cause, voltage level and nature of the
fault. It is worth noting that the majority of faults are caused by environmental
factors, with wind, lightning and snow/ice being the most frequent contributors.
However, only 7% of the registered faults are considered permanent (requiring
repair). Despite the contribution of lightning to the frequency of faults, these
faults are more often temporary in nature, compared to faults caused by, for
example, wind or ice/snow [10]. A list of all fault causes and sub-causes used for
classification of faults in Norway can be found in [68, pp. 70–72].

The FASIT database holds a great deal of information that could be used for, for
example, failure rate estimation. The methodological options available, however,
become limited when data are scarce. A possibility is to “pool” data for similar
components, e.g. across voltage levels [75], but this may obscure important dif-
ferences, both in terms of the susceptibility of the components and how exposed
to threats they are. Adjustments of pooled annual failure rates based on inspec-
tion data have been proposed in [76]. Bayesian statistics can alleviate some of
the challenges of limited data through combining prior domain knowledge with
observed data, as is performed for feeder lines in [77]. Historical failure rates and
weather data have been used together with a Bayesian updating scheme to esti-
mate line-specific annual failure rates of overhead transmission lines in [78, 79].
This approach incorporates both the threat exposure of the transmission lines
through historical weather data, and the susceptibility of the lines through pre-
viously observed failures.
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Figure 2.4: Faults registered in FASIT for overhead transmission lines, 2008-2017.
By cause, voltage level, and nature of outage.

2.3 Dependence models

Independent multiple outage occurrences rarely occur, as the intersection of in-
dependent probabilities of failure for sets of multiple, highly reliable components
is small. Related, or dependent, multiple outage occurrences are often the case in
large blackout events. There are a number of mechanisms which can cause depen-
dent outage occurrences. In the most recent IEC taxonomy, these are separated
into a category of outages due to a common cause, and a category for “other”
mechanisms [72]. The term common mode outages is not used in this thesis to
avoid confusion due to varying, sometimes overlapping, definitions with common
cause outages, e.g. [70, IEEE 4.2.2.2.1] [72, IEV 692-05-05]. A common-cause
outage occurrences is however understood as “a related multiple-outage occur-
rence with a single external initiating event where the outages involved are not
consequences of each other”. A categorization of different causes which may re-
sult in dependent outage events is presented in [80]. Weather-related outages are
a category which may typically cause a common-cause outage occurrence, while,
for example, protection system misoperation belongs in the other category.
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2.3.1 Correlated weather

Markov models have been a common tool to model dynamic systems, e.g. to
incorporate weather effects and protection system failures in power system relia-
bility analysis [81–84]. In more recent works on power system resilience, fragility
curves paired with weather data - either historical weather, constructed scenar-
ios, or a combination of the two - have been used to model the impact of severe
weather on the resilience of the power system [78,85].

Figure 2.5 shows a Markov Model with two components (1 and 2), with two con-
dition states (up and down arrows) and two weather states (normal and adverse
weather). The model is an illustrative adaptation from [81, 83], and captures
any failure bunching between the two components due to adverse weather. The
model assumes constant transition rates, where λ denotes the failure rate of the
component in normal weather and λ′ the failure rate in adverse weather. The
transition from adverse to normal weather, and vice versa, is denoted by an and
na respectively. Repair is modeled as only being possible in normal weather, and
denoted by µ. In [81] an approximate annual failure rate for the failure of both
components is deduced from a three-state weather model, which can be used to-
gether with a minimal cut-set approach to reliability evaluation. The model has
multiple simplifications - such as assuming an exponential distribution for the
transition rates and no repair in adverse weather. Markov models can become
very complex as the number of states and transitions increases, and, as is men-
tioned in [80], it can also be very difficult to parameterize the transition rates in
the model. Markov Models to incorporate adverse- and correlated weather are
simplifications and yield results suitable from a reliability perspective.
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Figure 2.5: Markov chain with two components and two weather states, adapted
from [81,83].
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A more recent development in the modeling of severe weather in power systems
is the use of fragility curves [78, 85, 86]. Fragility curves describe the conditional
probability of failure of a component, subject to a range of possible stresses the
system may be exposed to. These fragility curves are often modeled with the cu-
mulative distribution function of a distribution, often the log-normal distribution.
Fragility curves can be developed in various ways, such as through expert judg-
ments, empirical observations or structural models, to mention just a few [87].
Figure 2.6 shows an illustration of a fragility curve for a component, exposed
to a stress of a certain value, termed an intensity measure (IM). The intensity
measure is a function of stress the component faces, such as e.g. wind speed,
ground motion, temperature, etc., depending on which threat is being consid-
ered. The reliability of the system can then be calculated from the individual
component models with their own unique threat exposure. Fragility curves can
be paired with historical weather, or generated weather scenarios, to incorporate
time and location (and implicitly also weather) dependent failure probability pat-
terns. This is sometimes referred to as the spatio-temporal correlation in failure
probability between the components [88].
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Figure 2.6: Generic fragility curve of a component.

2.3.2 Protection system misoperation

Protection systems are designed to detect and isolate faults and disturbances,
and are an important part of the power system. They are also a potential source
of dependent failures, which may contribute to the initial stages of a cascade.
A failure to isolate faults can have consequences on the power system, and thus
protection systems are deployed with backup systems in case the primary protec-
tion system fails. Operation of the backup protection system can cause healthy
components to be isolated from the system, and it is necessary to weigh the
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dependability and security of the protection system in its design [89]. Both de-
pendability and security are facets of the reliability of protection systems, where
the former is understood as the degree of certainty of correct operation, and the
latter the degree of certainty that it will not operate incorrectly [90, 91]. This
is also reflected in the classification of protection systems misoperations during
faults in the NERC reliability standards [73]:

• Failure to trip: A failure of a Composite Protection System to operate
for a Fault condition for which it is designed.

• Slow trip: A Composite Protection System operation that is slower than
required for a Fault condition if the duration of its operating time resulted in
the operation of at least one other Element’s Composite Protection System.

• Unnecessary trip: An unnecessary Composite Protection System opera-
tion for a Fault condition on another Element.

It has been observed that failure to trip and unnecessary trips constitute the
largest categories of protection system misoperation [91]. Figure 2.7 shows an
example power system that is a useful aid for the remainder of the section. The
figure illustrates two adjacent transmission lines with a protection system at
each end. A failure to trip of the primary protection system following a fault
at the source line causes the backup protection system at the target line to
react. Similarly, an unnecessary trip would cause the backup protection system
at the target line to react to a correctly cleared fault at the source line. In these
instances, healthy lines are isolated from the system.

∼
ia ib ja jb

Connecting bus c

Target line i Source line j

Figure 2.7: Example power system, adapted from [84,92].

A Markov model was developed for the inclusion of protection system failures
and failure to trip in composite generation and transmission system reliability
analysis in [82]. However, the model is complex and includes many states, which
limits its direct applicability in power systems reliability analysis. This was one of
the motivations for creating a Markov model with reduced states, incorporating
unnecessary tripping and failure to trip of the protection systems, in [84]. The
work initially designed a simplified composite unit model for the availability (up-
state) of a component, as seen in Figure 2.8. The figure depicts the up-state of
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i⇑iλ̄⇓

ija⇓

ijx⇓

λ̄i

µ̄i

λaj

µaj

λjx

µxj

Figure 2.8: Simplified composite unit model for line i, adapted from [84].

a component i⇑, a self-induced down-state due to failure of the component or

its protection systems iλ̄⇓, or an induced down-state of the component due to a

misoperation of one, ija⇓ , or both, ijx⇓ , protection systems following a fault at the
adjacent component j. From this, an analytical systems reliability evaluation was
developed. The analytical solution is however only practical for a system with
few system states, and an alternative solution using Monte Carlo simulation was
simultaneously proposed.

To avoid complex Markov models, approximate equations were designed to in-
corporate protection system failures and misoperations in a minimal cut-set ap-
proach in [27]. The work identifies four unique fault types which have a bearing
on the isolation of a given transmission line: Fault type 1 is due to a failure of
the transmission line itself. Fault type 2 is the result of spontaneous unwanted
operation of the line’s own protection systems. Fault type 3 occurs due to a
fault at an adjacent line which is not correctly cleared by the primary protection
system, causing the backup protection system to isolate both lines. Fault type
4 occurs when an adjacent line experiences a failure which is correctly cleared,
but the backup protection system experience an unwanted non-selective tripping
and isolates the otherwise healthy line. Together, these fault types comprise the
equivalent failure rate of the line. Figure 2.9 illustrates a reliability block diagram
of the cut-set of two adjacent transmission lines, x and y. A dependency mode
failure rate λDx,y is calculated to take into account misoperation of the protec-
tion systems causing both lines to be isolated due to a failure of only one of the
lines. Using approximate methods [93], equivalent failure rates, unavailability
and outage durations are calculated for the cut-set. The method depends on the
topology of the system, and different equations must be used depending on the
adjacency of transmission lines in the cut-set.
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λ′x

λ′y

λDx,y

Figure 2.9: Reliability block diagram of cut-set including protection system
misoperation, adapted from [94].

2.4 Quantification and communication of risk

There are multiple definitions and understandings of risk [36,95]. A basis for this
thesis understanding of risk, is the definition put forward by Kaplan and Garrick
as risk as a function of the consequence and probability of a scenario [34].

It can be difficult to determine the severity of a power system blackout. There are
considerations such as power interrupted, but also the conditions under which the
blackout occurs, the duration of the event, people affected and so on. There are
also relative considerations for the system operator, such as the size of the power
system in both electrical and geographical terms, and consumer dependence on
power. This is suggested to be reduced into the axes of power interrupted and
outage duration in [30], and is reflected in Figure 2.10. The rationale is that
many of the more detailed considerations are related to the these two overarching
factors, e.g. number of customers affected through interrupted power or the
experienced severity of those affected through the duration of the event, although
the categorizations for what is critical are up to the system operator to decide.
It is pointed out that particularly long duration blackouts may be critical if they
pass a certain duration especially during winter, which is reflected in the kink
in the border between the classifications near the axes. The product of the axes
could be represented as a single point value in the form of Energy Not Supplied
(ENS) in terms of [MW ·h]. Although ENS is a useful measure of consequence, it
does not directly translate into criticality for society. Nonetheless, a considerable
volume of work was been conducted on the cost of energy not supplied (CENS)
that is a useful added layer to ENS in terms of criticality for end-users affected
by a power interruption.

CENS is used to consider the socioeconomic impact of reliability in the power
system. For the purposes of this thesis, CENS is used interchangeably with the
concept of value of lost load (VOLL), following the understanding in [96]. An aim
is to balance the cost of reliability with the cost of power interruptions. The cost
of power interruptions to customers is however not readily available information
and different approaches have been developed to estimate these costs. Direct
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Figure 2.10: Consequence classification of blackouts, illustration adapted from
[30].

approaches includes studies of the economic consequences of previous blackouts,
surveys or interviews with end-users to assess the willingness to pay/avoid black-
outs, where the respondent is asked to assess the damage cost related to different
scenarios. Indirect approaches are typically based on the production factor, where
the cost is related to the drop in production due to the loss of an input factor.
Different methods of calculating the CENS also incorporate various factors such
as customer types, time of interruption, interruption duration, weather or if the
customers have been notified of the interruption in advance [31,33,96,97].

Network operators in Norway have an regulated revenue cap, to ensure good so-
cioeconomic performance in a monopolistic market. More importantly, CENS to
customers is deducted from the allowed annual revenues, incentivizing network
operators to maintain their assets and make the necessary new investments to
avoid power outages in a socioeconomic manner [98]. The calculated CENS takes
into account which customer groups are affected, when the interruption happens,
and the duration of the interruption, and is applicable for all disconnects in in-
stallations above 1 kV. A normalized CENS for each customer group is calculated
at a reference time based on survey information, before it is adjusted according
to when the interruption occurs. The survey mostly combines elements of the
direct worth and willingness to pay approaches to estimate customer costs related
to power interruptions. The CENS model takes into account (net) private cus-
tomer costs. These include monetary costs, which are relatively easy to measure
in terms of money such as lost production, destroyed equipment or goods, and
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any added operating costs. It also takes into account non-monetary costs, e.g.
inconvenience and loss of free time. Net costs to the rest of society for actors that
are not themselves directly affected by the interruption are not included in the
CENS [32, 99, 100]. Figure 2.11 shows the CENS cost rates at a reference time
(as of 2020 [101]) as a function of different interruption durations for different
customer groups. Although CENS only captures a proportion of the criticality of
an extraordinary event, it nonetheless incorporates much more information about
the criticality of the event from the customer perspective than pure ENS.
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Figure 2.11: Customer damage functions at reference time1. Norwegian Kroner
(2017 values) per kW [101].

This does however only classify the consequence side of the risk. A convenient
and understandable method of presenting risk is the risk matrix. Risk matrices,
as a tables representing categories of likelihood (or probability) of a scenario and
the associated consequence, have been widely used in risk management. The
tool enables the quick and easily compiled ranking and comparisons of risks for
attention, and the graphical representation aids decision making regarding risk.
Their use has however been heavily criticized for numerous reasons [102]. Few
risk categories, or identical ratings to very different risks are some commonly
objections, to mention just a few. Especially relevant to this thesis, however,
is the limited ability to reflect uncertainty in input and output variables [102–
104]. Some of these shortcomings are illustrated in Figure 2.12 displaying a
risk matrix where three (numbered) risks are included. Each dot in the relevant
square represents the judgment of the expected risk due to the associated scenario,
placed according to continuous scales. To exemplify, the judgment of risks 1

1The reference time varies among customer groups but all reference times are on weekdays
in January between 06:00 and 17:00 [101].
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and 3 is notably different on the continuous scales but both are considered low
risk in a discrete categorization. Risk 2 is considered medium in the discrete
categorization, yet the risk - as the product of the probability and consequence
on the continuous scale - is lower than that of risk 3. There is also no clarity in
the uncertainties related to the categorization of the risks, and extreme outcomes
or frequencies may be consumed into the expected value.
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Figure 2.12: Risk matrix. Adapted from [30,105].

A common division in the classification of uncertainty is between aleatory and
epistemic uncertainty. The former is sometimes referred to as inherent- or irre-
ducible uncertainty, and is caused by natural variation such as varying weather
conditions. The latter is tied to a lack of knowledge, or ignorance, and can be
reduced through the acquisition of new knowledge [37, p. 501]. The choice of
classification may be considered philosophical (is there aleatory uncertainty at
all if knowledge exist which can reduce it?), but from a modeling perspective it is
an important distinction which reflects the modeling choices that are made [106].
More specifically, the choice reflects which components of the model are consid-
ered completely random (aleatory), and which components are attempted to be
modeled in detail to reduce variation (epistemic). It is also important to convey
that processes which could be considered epistemic uncertainty in reality, may
be treated as aleatory uncertainty in the model due to considerations such as
complexity, computational requirements or accuracy requirements. This conveys
which uncertainties are actually reduced in the analysis, and yields transparency
for the decision maker [106].

In power systems, the probability and consequence of a scenario can change
throughout the year together with the weather and operational states. Annual
indices reflect an expected value of the probability and consequence of a sce-
nario throughout the year, often combined into an aggregated measure of risk,
such as an annual expected ENS. Aggregating such events into an expected value
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Figure 2.13: Risk diagram with uncertainty boxes.

can hide large observational outliers, such as a few rare events with very high
consequences, if the relative contribution of other events with low - or no - con-
sequences dominates the expected value. To avoid such events being hidden, it
is important to quantify and visualize the more extreme possibilities in both the
probability and consequence axis.

Continuous scale risk diagrams incorporating measures of uncertainty have been
suggested to alleviate some of the challenges related to risk matrices [105, 107].
Uncertainty bands for the consequence dimension, incorporating epistemic un-
certainty have been suggested in [108]. Uncertainty boxes, covering both the
probability and consequence dimension are suggested in [105]. Uncertainties re-
lated to the natural variation of weather, the actual fragility of the component,
the operating state of the system or affected customer groups can yield very dif-
ferent risks in different periods of time. Figure 2.13 shows a continuous scale
risk diagram with uncertainty boxes. Each box represents the uncertainty of a
given scenario, where the middle cross gives the expected value of the risk. This
representation of risk incorporates uncertainty which should also be conveyed to
the decision maker.

2.5 Summary

This section has introduced the concept of power system vulnerability and how
it relates to extraordinary events, from threats to criticality of interrupted power

26



Chapter 2: Theoretical foundations

for end users. Key terms and definitions were introduced alongside the FASIT
reporting scheme.

Methods of incorporating failure bunching effects and spatio-temporal correla-
tion in failure probabilities were introduced, to support the investigation of how
time-varying failure rates affect the rate of unwanted events. Models to include
protection system failures and misoperation were presented to show how an ini-
tiating event can cause a further weakening of the system through dependent
events, potentially leading to a cascade. Protection system misoperations are
conditional on an initial failure and could have a interaction effect with failure
bunching, further heightening the risk of extraordinary events in adverse weather,
which will be explored further in answering research question 2.

The risks related to extraordinary events are related to the frequency or proba-
bility of a scenario, and the consequences of the scenario. The consequence of the
scenario is often related to theENS to the customers, as a function of the inter-
ruption duration and magnitude. Availability and generalizability of statistical
data to aid in characterizing failure behavior were discussed, alongside possible
mitigating strategies. Lack of data is especially relevant for repair and restoration
times in the Norwegian FASIT database. Coupled with the importance of the in-
terruption duration in establishing the consequence of an extraordinary event, it
is a valuable contribution to better understand and model long restoration times
caused by permanent failures requiring repair.

Interruption duration is also important when it comes to the criticality of the
consequence for the affected end-users. One way of incorporating criticality into
the risk picture is to rely on previously developed methods of estimating a cost of
ENS for the end-users. Different risk-visualizations are explored, primarily focus-
ing on risk diagrams including uncertainty bands or uncertainty boxes. This form
of risk visualization incorporates information beyond the expected risk through
conveying uncertainties in the probability and consequence axes.
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3 Contributions

The objective of this thesis is to develop methodologies for understanding and
communicating uncertainties and risks related to extraordinary events. Four re-
search questions have been defined to narrow down the topic. The research ques-
tions can be broadly categorized into four different themes: 1) Spatio-temporal
correlation in failure frequency and subsequent unavailability of components, i.e.
due to harsh weather. 2) Initial stages of propagating events through protection
system misoperation. 3) Long infrastructure restoration times due to physical
damage following natural hazard events. 4) Risk identification and visualization.

This chapter presents the contributions to answering the research questions for-
mulated in this thesis. Section 3.1 provides an implementation of the methods
developed in [78] with minor modifications which is used as a basis for many of
the methods presented later in the thesis. Section 3.2 contributes to answering
research question 1 through developing a method for calculating time-series of
component unavailability due to time-varying threats such as, for example, wind
or lightning. Section 3.3 combines the effects of spatio-temporal correlation with
dependent failures due to protection system misoperation, thus contributing to
answering research question 2. A Bayesian Network model is developed to pre-
dict transmission line down times due to permanent failures requiring repairs in
Section 3.4. The model decomposes transmission line down time into smaller,
constituent parts, and thus sheds light on research question 3. Methods of com-
municating risk and uncertainty related to extraordinary events in power systems
are discussed and presented Section 3.5.
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3.1 Time-series of failure probability

Time-series of hourly failure probabilities can be calculated in a number of ways,
depending on data availability and need for accuracy. For weather-related phe-
nomena, the combined use of historical failure data and weather conditions as
seen in [78,79] can be of great help in capturing historical susceptibility to given
threats, as well as failure bunching effects. Time-series of hourly wind-dependent
failure probabilities are generated according to the method presented in [78], with
minor modifications in this section.

Unique annual failure rates for overhead transmission lines are calculated by a
Bayesian updating procedure taking into account historical failures. Fragility
curves are then fitted to a measure of weather exposure for each line segment
of the line. This is combined with line segment information and historical wind
speeds to construct time-series of historical failure probability due to wind. An
underlying assumption behind the Bayesian updating scheme is that we have
some general knowledge about the failure rate of certain component types. How-
ever, some transmission lines may be less robust and over time experience more
failures than others. This new information can be incorporated into the previous
knowledge through Bayesian inference. This is done by combining a prior as-
sumption about the failure rate of comparable transmission lines, observing the
likelihood of historical events for the specific line, and constructing a posterior
distribution of the annual failure rate where information from both sources is in-
corporated. Details on the Bayesian updating scheme presented in the following
section can be found in [78] and [109, p. 44].

To find the likelihood of the data the annual failure rate is modelled with a
Poisson-distribution, where y is the number of failures per year and λ the param-
eter value. The probability density function (PDF) is given by (3.1).

p(y|λ) =
λye−λ

y!
(3.1)

Given a vector y = {y1, y2, ..., yn} of observed annual failures over n years, the
likelihood of the data is found in (3.2).

l(y|λ) =

n∏

i=1

λye−λ

yi!

∝ y
∑
yie−nλ

(3.2)

The conjugate prior of the Poisson distribution is the gamma distribution, with
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parameter values α and β (3.3). A gamma distribution with α = 1, in practice
an exponential distribution, with rate β = 1/λ is opted for, following the original
work. A historical failure rate for comparable lines has been found to be, 0.78
per 100 km, of which 90% are temporary and out of these 19% due to wind [78],
and is near identical to what has been found in the source material for this
thesis. To reflect permanent failures, a prior wind dependent failure rate of
λ = 0.78 · 0.1 · 0.19 ≈ 0.015 is chosen.

p(λ) =
βαλα−1e−λβ

Γ(α)

∝ λα−1e−λβ
(3.3)

This is then inputted into the Bayes formula to find the posterior distribution in
(3.4). The result is a gamma distribution with updated parameters α′ = α+

∑
yi

and β′ = β + n. The posterior gamma distribution has an expected value given
by E(X) = α′

β′ , which is the updated failure rate, λ′.

p(λ|y) =
l(y|λ)p(λ)

p(y)

∝ λα+
∑
yi−1e−λ(β+n)

(3.4)

A fragility curve is then fitted to a measure of wind exposure for each line segment
to distribute the failures in time, before the probability of failure for each line
is calculated. The aim of the fitting process is to find the parameters of a line-
specific fragility curve which yields an expected annual failure rate of the line
which is equal to that found in the Bayesian updating process. The calculated
annual failure rate after curve fitting is held equal to the annual failure rate found
by Bayesian updating in the previous step to maintain consistency.

An overhead transmission line l is divided into multiple line segments s, separated
by transmission towers. For each line segment, an intensity measure (IM ) is
calculated. The IM gives a measure of the wind exposure of the different line
segments, dependent on the line length d and wind speed w cubed at time t (3.5).
The weather data used to calculate wind exposure of line segments are historical
hourly wind speeds in a 1-kilometer grid using re-analysis data from [110]. Line
segment length data are found by splitting transmission lines by tower positions,
as seen in Fig. 3.1.

IM t
l,s = dl,s · (wtl,s)3 (3.5)
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288 meters
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Figure 3.1: Line segment lengths. Main transmission line in red, towers as yellow
points. Illustrative example using data from [111,112].

The distribution of IM for all line segments in a single line is then fitted with
a fragility curve shaped by the lognormal cumulative distribution function (3.6).
The fragility curve gives the probability of failure for the line segments at different
values of IM. It is assumed that the fragility curve is the same for all times, and
for all line segments within each line. Hence there is only one set of parameters
µ and σ for each line, valid at all times.

ptl,s = F (IM t
l,s;µl, σl) =

1

2
+

1

2
erf

[
ln(IM t

l,s)− µl√
2σl

]

where: IM t
l,s, µl, σl > 0

(3.6)

The aim of the fitting process is to find the parameters of a line-specific fragility
curve which yields an expected annual failure rate for the line as a whole equal to
that found in the Bayesian updating process. To achieve this, a set of historical
failures and a time-series of wind belonging to the same period for k = [0, T ]
years are considered. The fragility curve is fitted at the line segment level but
during the optimization process the result is constrained to the annual failure
rate of the line. This is done by considering the probability of failure for a line
l as the series system of its line segments (3.7). The annual failure rate of the
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line found during the optimization process can be calculated from the resulting
time-series of failure probabilities (3.8).

ptl = 1−
m∏

s=1

(1− ptl,s) (3.7)

λ̂l =
1

k

T∑

t=0

ptl (3.8)

The Brier Score (3.9) is used as a loss function in the fitting process and is the
squared difference between the estimated probability and the actual occurrence
of the event. Observed failure of a line at a given time, otl , is compared to the
calculated probability of failure of the line at the same point in time. Using
the previous equations, the loss function can be expressed in detail (3.10). This
formulation of the optimization is slightly different from that found in [78].

BS =
1

N

N∑

t=1

(ptl − otl)2 (3.9)

g(IM t
l,s;µl, σl) =

1

N

N∑

t=1

[[
1−

m∏

s=1

(1− F (IM t
l,s;µl, σl))

]
− otl

]2

(3.10)

Using the historical IM measure for the different line segments of the line, the
parameter values can be found. The minimization of the loss is held under the
constraint that the sum of the annual failure rate estimated from the fragility
curve fitting is held equal to the Bayesian updated failure rate (3.11).

µl, σl = arg min
s.t. λ̂l=λ′

l

g(IM t
l,s;µl, σl) (3.11)

The curve fitting of the fragility curve to the historical IM measures of the lines
can be computationally heavy. To save on computations, low-wind values could
be removed from the curve-fitting procedure. Typically, it is possible to set a
lower wind limit at 15 m/s. The historical percentage of failures occurring below
15 m/s wind speeds is around 20% [67]. For this work, all wind speeds are
considered, as there is no requirement for repeated and fast calculation of the
fragility curves. An illustrative example of a fitted fragility curve can be seen
in Fig. 3.2. The figure shows how the line-specific fragility curve, defined by µl
and σl yields a probability of failure at different IM values. The gray histogram
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shows a distribution of historical IM values for the line segments. A sample of
hourly failure probabilities due to wind exposure for one line (λ′ ≈ 0.3) can be
seen in Fig. 3.3.

Figure 3.2: Illustrative example of line-specific fragility curve with superimposed
histogram of hourly line segment IM observations.

Using historical wind data for real transmission lines captures correlations in
failure probability between them. This is typically the case where transmission
lines in the same geographical area are exposed to the same weather at the
same time, which can cause failure bunching effects. The correlation in failure
probability between 9 overhead transmission lines is presented in Figure 3.4 using
the method presented in this section and Norwegian weather data from [110].
Data for lines 1 to 8 were collected from the same geographical area, while line 9
belongs to a widely different geographical area with different weather, as reflected
in the correlation matrix. Lines 4 and 5 are located parallel to each other, and
are thus exposed to the same weather. This is one example of how the method
incorporates weather zones into the time-series of failure probability.

The method developed in [78] and implemented here is a useful basis for further
work. It incorporates historical weather into time-series of failure probability,
thus taking into account the spatio-temporal correlation in failure probability
between lines. It also provides a method to include information about the trans-
mission lines’ susceptibility to wind into the model, even when faced with scarce
data. These are both important aspects to consider when it comes to the vul-
nerability of the system when the unwanted event is the simultaneous outage of
more than one transmission line. This is therefore used as a basis for further
work in this thesis.
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Figure 3.3: Illustrative example of time-series of calculated hourly failure proba-
bilities for an overhead transmission line.
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Figure 3.4: Correlation matrix. Wind-dependent failure probability for 9 over-
head transmission lines.
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3.2 Unavailability

The following section is based on the work published in Paper 1 [39] and devel-
ops a method for calculating transmission line unavailability due to correlated
threat exposure, contributing to answering research question 1. Transmission
systems are largely developed and operated in accordance with the N-1 criterion,
and the simultaneous outage of multiple components is thus of special interest
when considering extraordinary events. Spatio-temporal correlation in the fail-
ure of components can cause blackouts to occur more often than anticipated.
Additionally, events caused by natural hazards are associated with longer out-
age durations due to mechanical damage or limitation to accessibility for repairs.
This subchapter demonstrates how time-series of component unavailability due
to external threats can be calculated based on predefined outage distributions
and time-series of failure probability. The resulting time-series of unavailability
can be used to predict the expected occurrence of contingencies.

The method includes three main steps: Time-series of failure probability for
components in the system are constructed using the method outlined in 3.1.
Outage duration distributions are found from historical data. These are then
combined by an algorithm to form time-series of probability that the components
are unavailable.

Initially, data on outage durations for transmission lines are fitted to a log-normal
distribution represented by a probability density function (PDF) in (3.12), where
r denotes the outage duration.

f(r) =
1

rσ
√

2π
e
−

(ln(r)− µ)2

2σ2 (3.12)

The expected value and variance, respectively, from the historical data are sum-
marized for the random variable of outage durations R in (3.13) and (3.14), where
n is the total number of observations and ri are individual data points.

E(R) =
1

n

n∑

i=1

ri (3.13)

V ar(R) =

∑n
i=1(ri − E(R))2

n− 1
(3.14)

Using the Method of Moments (MoM), parameter estimates for the log-normal
distribution LN ∼ (µ, σ) is calculated in (3.15) and (3.16). Other parameter fit-
ting alternatives are available, such as the maximum likelihood estimation (MLE),
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although MoM is used to maintain the mean of the distribution with the observed
mean in the data.

µ = ln

[
E(R)2

√
V ar(R) + E(R)2

]
(3.15)

σ =

√
ln
[
1 +

V ar(R)

E(R)2

]
(3.16)

To find the probability that the component is in a failed state x hours after a
failure event, the survival function S(x) is used. The survival function is the
complement of the cumulative distribution function (CDF), denoted F (x), and
can be expressed by (3.17).

S(x) = 1− F (x) = 1−
∫ x

0

f(r)dr (3.17)

The true outage duration function is a continuous distribution, while the time-
series resolution is in one-hour intervals. The analysis represents the probability
of a component being unavailable in a given hour, thus a mean value needs to
be calculated for the given time interval. To achieve this the trapezoidal rule is
used, (3.18), where P is the number of intervals used in the calculation of the
mean value in the given hour, (t− 1, t).

∫ t

t−1

S(x)dx ≈
P∑

a=1

S(xa−1) + S(xa)

2
∆xa (3.18)

A simpler and computationally lighter alternative to using the trapezoidal rule
is to select an offset, o ∈R(0, 1), for the survival function, which is assumed to
represent the mean of the survival function within hourly intervals sufficiently
well (3.19).

∫ t

t−1

S(x)dx ≈ S(x− o) (3.19)

If the survival function was a linear function, this would be the middle of the
interval (t − 1, t). The choice of solution depends on the error tolerance, com-
putational capacity and the shape of the distribution considered. An illustrative
example of the different approaches, using FASIT data, can be found in Fig-
ure 3.5. The figure shows a sample survival function, an offset solution where
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(a) Observed outage duration of power lines
(132kV-420kV), 2006-2016

(b) Survival function and representative point
approximations.

Figure 3.5: Survival function fitting (a) and approximation (b).

o = −0.5 for the mean value of the interval, the approximated mean calculated
by the trapezoidal rule with P = 5 and P = 1000. The latter serves as a baseline
for comparison between the solutions.

The tail-end of the outage duration distribution is cut off in the algorithmic
approach. The cut-off limit is a consideration between necessary accuracy and
computational cost. The impact of the adjustment is to keep the results consis-
tent, where the sum of outage durations is kept the same as without a cut-off,
but at a cost to the shape of the distribution (inflated values before the cut-
off). The alternative expectation formula is used to make the adjustments (see
e.g. [113]), which states that the integral from zero to infinity of the survival func-
tion for a continuous non-negative random variable equals the expected value of
the distribution (3.20). Hence, an inflation factor k can be calculated (3.21).

E(R) =

∫ inf

0

[S(x)]dx (3.20)

k =
E(R)∫ 1000

0
[1− F (x)]dx

(3.21)

Combining failure probabilities with outage duration curves, we obtain a measure
of the probability that the line is unavailable at a given time. This is illustrated
in pseudo-code in Algorithm 1. The algorithm traverses the time-series of failure
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probabilities and appends any additional outages a number of time-steps ahead
in time, taking into account any previous unavailability at the potential time of
failure.

Algorithm 1 Algorithm for calculating unavailability

Input: time-series of t failure probabilities
Output: time-series of t unavailability probabilities

Initialization:
pt ← failure probability at time t
S(x)← outage survival function at time x since failure
ut ← unavailability probability at time t
cutoff← limit to forward propagating time-steps
k ← inflation factor due to cut-off
LOOP Process:

1: for all increasing time steps t do
2: for x in range(0, cut-off) do
3: ut+x+ = pt · (1− ut) · S(x) · k
4: end for
5: end for
6: return ut

Figure 3.6 shows the algorithm applied to a 150-hour time window. Each line
represents the added probability of the line being unavailable due to a failure
at a given time-step. The surface of the graph is the cumulative probability of
unavailability for the line due to all previous failures within the cut-off window.
The probability of a set of components, CS, being unavailable at the same time,
t, is the calculation of the joint independent probability of unavailability for the
components in the set: P (U tcs) =

∏
i∈CS P (U ti ).

The method contributes to identifying the risk of extraordinary events in several
ways. By incorporating the historical weather patterns into the unavailability of
lines, the spatio-temporal correlation in threat exposure is included. The output
of the method can be paired with a time-dependent consequence analysis, and in
this way give a more complete view of the historical risk of extraordinary events
in the system. It is also possible to identify lines which have a high impact on
a given consequence metric, such as ENS, informing decisions regarding which
hardening measures to implement.
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Figure 3.6: Illustration of unavailability algorithm applied with a 150-hour time-
series of failure probability. Each colored line represents how the failure probabil-
ity at one time-step adds to the probability of unavailability for the transmission
line at the current- and later time-steps. The surface of the plot show the calcu-
lated unavailability of the transmission line once the algorithm is completed.
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3.3 Dependent failures: Protection systems

The following section is based on the work published in Paper 2 [40] and presents
a compact and generalized method for including protection system failures and
misoperation in power system reliability analysis which can be combined with
time-series of failure probability due to adverse weather. This is a contribution
to answering research question 2. Extreme weather is known to cause failure
bunching in the electrical transmission system. However, protection systems can
also contribute to the worsening of the system state through spontaneous, missing
or unwanted operation of the protection system. The latter two types of failures
only occur when an initial failure has happened, and thus are more likely to
take place when the probability of failure of transmission lines is high, such as
in an extreme weather scenario. This causes an exacerbation of failure bunching
effects, increasing the risk of extraordinary events. It is thus useful to combine
the effects of extreme weather exposure and protection system reliability.

The following is a compact generalization of including protection system failures
in reliability analysis using approximate methods. It extends the solution to be
applicable to time-series of failure probability. This section only includes some
conceptual clarifications and the general idea underlying Paper 2 [40], while the
full set of equations can be found in the original work. The starting point of
the work is the failure of overhead transmission lines, and subsequent protection
system misoperations causing adjacent lines to be isolated from the system.

In [27] four fault types (FTs) are identified, two of which are related to the depen-
dent isolation of healthy lines due to protection system misoperations following
an initial failure: Fault type 1 (FT1) is the failure rate of the transmission line.
Fault type 2 (FT2) represents failures due to the spontaneous unwanted opera-
tion of a line’s own protection system, and is not a dependent failure in this sense.
Fault type 3 (FT3) occurs when there is a failure on a neighboring line that is
not correctly cleared due to missing operation of the neighboring line’s protection
system, and thus causes the line in focus to be isolated from the system. Fault
Type 4 (FT4) is a result of a fault on the neighboring line that is correctly cleared
by the neighboring line’s protection system but causes an unwanted non-selective
tripping of the line in focus.

Propagating events makes it necessary to consider the adjacency between com-
ponents. Traditionally, a power system can be considered a graph G where each
bus belongs to a vertex set V , and each transmission line belongs to an edge set
E, where each edge element l = {u, v} represents a transmission line between bus
u and v (3.22) – (3.24). The method presented makes use of the fact that this
graph in its traditional power system representation can be reformed to take into
account paths of propagation between components.
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G = (V,E) (3.22)

V = {b1, b2, . . . , bn} (3.23)

E = {l1, l2, . . . , lm} =
{
{u1, v1}, {u2, v2}, . . . , {um, vm}

}
(3.24)

Two different categorizations can be considered: The target line, i, for which an
event may propagate to, and the source line j at which the propagating failure
from line j to i is initiated. In the method, two lines must be connected through
a shared bus, c, for propagation to be considered. Sometimes it is necessary to
refer to a line without referencing if it is a source or a target line, in which case
it is denoted with the subscript l and corresponds to an element in the edge set.
The lines are associated with a failure rate λl. Each line is associated with two
protection systems P sl on each end, with the set s = {a, b} denoting which of the
two protection systems it is referencing. See Figure 3.7.

Pai λi P bi Paj λj P bj

Connecting bus c

Target line i Source line j

Figure 3.7: Two adjacent transmission lines, i,j [40].

For a line, the bus connected on the a-side protection system side is denoted u,
and v is connected on the b-side. The protection systems are associated with
three parameters: 1) a specific annual failure rate ps,λl , 2) a conditional prob-
ability of missing operation ps,ml , and 3) a conditional probability of unwanted
non-selective tripping at the target line upon a correctly cleared failure at an
adjacent source line ps,ul . Unwanted non-selective tripping can be considered

side-independent, and denoted pul = P (pa,ul ∪ pb,ul ). The primary concern of the
approach is conditional probabilities, and how a failure or protection system re-
sponse at one transmission line can cause an adjacent line to be isolated from the
system.

To achieve this, an adjacency matrix is constructed for each side of the source
line. An adjacency matrix indicates connections between vertices in the initial
graph, and represents the system in a form where the vertices are transmission
lines, and the edges are directed paths of failure propagation between the lines.
The side of the protection system is taken into account by making two adjacency
matrices. The approach is presented in (3.25), to form the two adjacency matrices
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As. The idea is that if the a-side protection system of the source line j shares
a bus ui or vi with the target line i, then the corresponding element aai,j = 1,
otherwise 0. Matrices are typeset in uppercase regular font, vectors are typeset
in lowercase bold italics, while scalar values such as specific elements of vectors
or matrices are typeset with italic fonts.

As =
[
asi,j
]

=



a1,1 . . . a1,l

...
. . .

...
al,l . . . al,l


 (3.25)

where:

aai,j =

{
1 if uj ∈ {ui, vi}
0 Otherwise

abi,j =

{
1 if vj ∈ {ui, vi}
0 Otherwise

s ∈ {a, b}
i ∈ {1, ..., l}
j ∈ {1, ..., l}

Figure 3.8 shows a 4-bus system represented as a graph, with vertices repre-
senting busbars and edges representing transmission lines. Figure 3.9 shows the
transformed graph after applying (3.25), where a failure and/or missing function
of the protection system at the source line j can cause the adjacent line to be
isolated from the system.

b1 b2

b3 b4

l1 = {1, 2}

l2 = {1, 3} l3 = {2, 4}

l4 = {3, 4}

Figure 3.8: Busbars as vertices, edges as transmission lines [40].
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l1

l2 l3

l4

a a
1,3

a
a
1,
2

a
a
2,
1

a a
2,4

a b
3,1

a
b
4,
3

a
b
3,
4

a b
4,2

A-side of source line

B-side of source line

Figure 3.9: Transmission lines as vertices, edges as propagation paths [40].

Aa =




0 1 1 0
1 0 0 1
0 0 0 0
0 0 0 0


 , Ab =




0 0 0 0
0 0 0 0
1 0 0 1
0 1 1 0


 (3.26)

The adjacency matrices can be further modified to incorporate the conditional
probability that a failure at a source line will isolate the target line. The resulting
probability matrices (PT) are the basis for further calculations of the identified
fault types. FT3 is related to a failure on an adjacent line, which is not correctly
cleared by the adjacent line’s protection system. The probability of missing
operation of the protection system on the s side for a given line is represented
by the column vector ps,ml . A matrix containing the probability that a failure
propagates from the source line j to the target line i through the FT3 mechanism
is created, named PT3, by multiplying the adjacency matrix with the diagonal of
a vector containing the probability that the line’s protection system misoperates
(3.27). The probability of misoperation is considered equal for all protection
systems in the example, at 0.0205. Multiplying the probability matrix PT3 with
a vector containing the (ordered) annual failure rates of the lines, λ = {2, 3, 4, 5},
gives a vector of FT3 contributions from adjacent lines for each target line (3.29).

PT3 =
∑

s

[
As · diag(ps,m)

]
(3.27)
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PT3 =




0 1 1 0
1 0 0 1
0 0 0 0
0 0 0 0


 · diag




0.0205
0.0205
0.0205
0.0205


+




0 0 0 0
0 0 0 0
1 0 0 1
0 1 1 0


 · diag




0.0205
0.0205
0.0205
0.0205




=




0 0.0205 0.0205 0
0.0205 0 0 0.0205
0.0205 0 0 0.0205

0 0.0205 0.0205 0




(3.28)

ft3 = PT3 · λ

=




0 0.0205 0.0205 0
0.0205 0 0 0.0205
0.0205 0 0 0.0205

0 0.0205 0.0205 0


 ·




2
3
4
5


 =




0.1435
0.1435
0.1435
0.1435




(3.29)

Similarly, FT4 is the result of a working protection system response at the source
line following a failure but unwanted non-selective tripping at the target line
(3.30).

PT4 =
∑

s

[[
As · diag(1− ps,m)

]T · diag(pu)
]T

(3.30)

The topology of the system is then incorporated into the failure probability ma-
trices, which can be used with equations in a general form to solve reliability
evaluations using either approximate methods, or where time-series of failure
probability are used as input.

3.3.1 Incorporating protection system failures using ap-
proximate methods

Initially, an equivalent failure rate, λ′ is calculated for each line (3.32). This is
done by summing the failure rate of target line i (FT1), its protection systems
(FT2), isolation of healthy lines due to missing protection system response at a
neighboring source line j (FT3) or unwanted non-selective tripping of the target
line’s protection system following a failure at an adjacent line (FT4) (3.31).
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ft1i = λl ; ft2i =
∑∑∑

s

pλ,sl ; ft3i = PT3 · λl ; ft4i = PT4 · λl (3.31)

λ′ = ft1 + ft2 + ft3 + ft4 (3.32)

From this, equivalent unavailability and outage durations for all target lines
are found in (3.33)-(3.34), where the vectors of fault type contributions are
paired with vectors of the associated repair or switching times using element-wise
Hadamard operations. As opposed to the other fault types, FT3 is dependent on
the switching time at the source line, j, rather than the target line i. To include
this, the contribution of the unavailability from the source to target line is carried
through the probability matrix for FT3.

U ′ = ft1 ◦ rFT1 + ft2 ◦ rFT2 + PT3 · [λ ◦ rFT3] + ft4 ◦ rFT4 (3.33)

r′ = U ′ � λ′ (3.34)

Second order cut-sets involving the two lines x and y can be calculated from this
in a general form, using the adjacency matrix to avoid distinctions in equations
between lines in different topologies. This involves two considerations: If two
lines in a cut-set are adjacent and experience a FT3 or FT4 where the source and
target line are in the cut-set, there is a dependency between them. Everything else
should be treated as independent events. This is done by first finding dependent
failures which occur in the cut-set: for each line in the cut-set an adjustment
to the independent failure rate - i.e. the dependent failures stemming from a
given line in the cut-set - is calculated for each line. This is exemplified for line
x in (3.35), where λax is the adjustment to the failure rate of line x due to a
dependent failure initiated by a failure at line y . This is carried through into an
adjustment to the unavailability of the line due to independent events in (3.36),
and a new outage duration in (3.37). If the lines in the cut-set are not adjacent,
these relevant elements of the probability matrices will be zero, and there are
zero adjustments.

λax = (pt3x,y + pt4x,y) · ft1y (3.35)

Uax =
(
pt3x,y · rFT3

y + pt4x,y · rFT4
x

)
· ft1y (3.36)
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rnx = (U ′x − Uax )/(λ′x − λax) (3.37)

The adjustments due to dependent events are then represented as a dependency
mode failure rate in (3.38), with an associated outage duration in (3.39).

λD{x,y} = λax + λay (3.38)

rD{x,y} =

{
(Uax + Uay )/λD{x,y} if λD{x,y} > 0

0 Otherwise
(3.39)

The equivalent annual failure rate, expected annual unavailability and expected
restoration time for the cut-set including any potential dependent failures are
then calculated in (3.40)-(3.42).

λ′{x,y} =
(λ′x − λax)

(
λ′y − λay

) (
rnx + rny

)

8760
+ λD{x,y} (3.40)

U ′{x,y} =
(λ′x − λax)

(
λ′y − λay

) (
rnx · rny

)

8760
+ λD{x,y} · rD{x,y} (3.41)

r′{x,y} =
U ′{x,y}
λ′{x,y}

(3.42)

3.3.2 Incorporating time-varying failure probability due to
weather

Time-series of failure probabilities may be used to incorporate time-varying fail-
ure probabilities, e.g. due to wind, lightning, etc. Primarily, the challenge is
to create time-series adjustments for the dependent failures stemming from FT3
and FT4, as well as a time-series for the dependency mode failure rate. Cal-
culation of the unavailability due to the failures is performed using the method
outlined in Section 3.2. Failure rates are now considered with a time dimension,
and when referring to the time-series of failure probability for a single line, the
column vector is denoted λ:,l. The fault types for a single target line i are given
in (3.44)-(3.48).
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λs =
[
λst,l
]

=



λ1,1 . . . λ1,l

...
. . .

...
λt,1 . . . λt,l


 (3.43)

FT1:,i = λ:,l (3.44)

FT2:,i = [ft2t,i], where ft2t,i =

∑
s p

λ,s
l

8760
(3.45)

FT3:,i =
∑

j

[λ:,j · pti,j ] (3.46)

FT4:,i =
∑

j

[λ:,j · pti,j ] (3.47)

λ′:,i = FT1:,i + FT2:,i + FT3:,i + FT4:,i (3.48)

When calculating the unavailability and failure probability of second order cut-
sets it is necessary to adjust FT3 and FT4 to account for adjacency as was
performed in the approximate equations, for both lines x and y, as seen in (3.49)-
(3.50). A time-series of dependency mode failure probability for the two lines in
conjunction is calculated in (3.51). Again, the adjustments and dependency mode
failure rate are equal to zero if the lines are not adjacent.

FT3′:,x = FT3:,x − FT1:,y · pt3x,y (3.49)

FT4′:,x = FT4:,x − FT1:,y · pt4x,y (3.50)

λD
:,{x,y} = FT1:,y · pt3x,y + FT1:,y · pt4x,y

+ FT1:,x · pt3y,x + FT1:,x · pt4y,x
(3.51)

U′:,{x,y} = U′:,x ◦U′:,y + UD
:,{x,y} (3.52)

λ′:,{x,y} = U′:,x ◦ λ′:,y + U′:,y ◦ λ′:,x + λD
:,{x,y} (3.53)

Using the method outlined in section 3.2, time-series of unavailability of the
cut-sets can be calculated as shown in (3.52) and (3.53). An application of
the method considering a cut-set involving two adjacent lines is exemplified in
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Figure 3.10. The top graph shows the equivalent failure rates for the individual
components as seen in isolation. The middle graph shows the failure rate of
the cut-set including and excluding protection system failures and misoperation.
The bottom graph shows the unavailability of the cut-set under the same two
conditions. It is illustrative that the failure probability of the cut-set is near
four-fold at the tenth hour if protection system misoperation is included.

Figure 3.10: Failure probability of components of a cut-set, dependency mode
failure probability, and failure probability and unavailability of cut-set [40].

Propagating events can contribute to the occurrence of extraordinary events.
The method outlined in this section is a compact and generalized method for
including protection system failures and misoperation in power system reliabil-
ity analysis which can be combined with time-series of failure probability due
to adverse weather. Protection system misoperation follows an initial failure,
and propagating failures cluster around periods of high failure probability from
other causes. This can further increase risks associated with failure bunching
effects, as the probability of an unwanted event may be underestimated if protec-
tion system misoperation is not included in the analysis. The method presented
incorporates the topology of the system, and the use of adjacency matrices to
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include dependent failures is a useful tool to do this.
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3.4 Restoration times due to permanent faults

The following section is based on the work published in Paper 3 [41] and explores
a Bayesian Network approach to predicting transmission line down times, con-
tributing to answering research question 3. While there has been a substantial
amount of work on the failure probability of transmission lines in severe weather,
more detailed work on the restoration time has been limited. The latter is of
high importance as extreme weather can cause considerable damage to power
system infrastructure and delayed access to the failure site, subsequently lead-
ing to increased down times and long-lasting power supply interruptions. Limited
historical data of varying levels of quality challenges the ability to generalize fixed
statistical down time distributions to different transmission lines under different
conditions. An alternative to relying on (often lacking) historical data is to build
a logical model. The proposed method is to use a Bayesian Network (BN) model
to systematically predict transmission line down times.

There are a variety of reasons as to why a component or unit is isolated from
the system. To narrow down the scope of the analysis, the target variable is
considered to be transmission line down time due to permanent forced outages
requiring physical repair or replacement of equipment. The aim is to make a
predictive model that can act as a support in the analysis of extreme events,
particularly long outage durations due to physical damage to the infrastructure.
The model designed to incorporate time-dependent information - when the failure
occurs -, line-specific information - such as accessibility to line segments - and type
of threat which causes the failure. Initially, a conceptual model of the restoration
process following a failure is drafted, before it is subsequently reduced into a more
sparse BN model.

The conceptual model of transmission line down times was developed in coopera-
tion with experts from the Norwegian TSO. The model is based on the logic and
terminology used in the Norwegian FASIT reporting scheme [64], and serves as
an overarching guide to which variables and causal mechanisms should be con-
sidered. After populating the conceptual model, the potential benefits and capa-
bility of accurate modeling of the different elements was considered. In Figure
3.11 the conceptual model is presented, with arrows indicating causal relation-
ships. Dashed lines and gray boxes indicates variables and relationships which
were omitted in the final BN.

A benefit of BNs is that they can take information from different sources. In
this particular case, three sources exists: Expert judgment through a structured
elicitation process, historical fault data, and assumptions about the duration of
the weather event. Expert judgments were elicited through structured interviews
following the SHELF [114] protocol to minimize bias. Distributions for variables
related to the work-process, i.e. delays and repair time, were also elicited. Tri-
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Figure 3.11: Conceptual model of transmission line down time [41].

angular distributions were selected as there was high uncertainty in the expert
responses. The elicited distributions can be found in Table 3.1.

Table 3.1: Elicited triangular distributions, in hours [41].

Variable Min Mode Max
Hours delay

Working hours 1.5 3 6
Night 4 6 8
Evening 4 10 20

Day delay
Weekend 4.5 11 15

Accessibility
High 0.5 2 4
Medium high 0.5 3 5
Medium 1 4 6
Medium low 2 6 10
Low 5 10 15

Repair time
Tower 84 190 350
Insulator 9 18 36
Phase line 16 68 123
Top line 15 43 60
Other 4.5 8 16

Daylight delay
Darkness 5.5 10 12

Data from the FASIT system were used as a source of historical failures, and
to model the relationship between which subcomponents of the transmission line
were more likely to fail due to different threats. There are few observations of
permanent failures in the data and a Bayesian updating scheme is performed
for these categorical data (see e.g. [109, p.69]). A multinomial likelihood with
a Dirichlet prior leads to a Dirichlet posterior with updated parameters (3.54),
where k is the number of categories, α a vector of parameters for each category,
and y is a vector of the number of observations within each category. An unin-
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formative Dirichlet prior of α = 1 is chosen due to limited previous knowledge.

f(θ|y) ∝
k∏

j=1

θ
α′

j−1

j

α′j = αj + yj

(3.54)
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Figure 3.12: BN model of transmission line down time, conditioned on wind as
the external threat. Down-time duration in hours [41].

The BN structure is used to predict down time durations for specific lines at dif-
ferent times by updating variables or conditioning on when or where the failure
is more likely to occur. This is seen in Figure 3.12, where variables are repre-
sented as boxes, and conditional dependence is represented as directed edges.
Time-dependent information (month, time of day, and whether it is a weekday)
can be combined with line-specific information, such as accessibility categories
of the various line segments of the line. Time-series of log-normal distribution
parameters for the outage duration are created. The resulting time-series can
be used to calculate the probability of unavailability for transmission lines, using
time-varying failure probabilities and outage durations.

The available data on permanent failures - especially when narrowed down by
specific cause, i.e. threat - are scarce and have high uncertainty. Reporting of
repair times is not mandatory due to the uncertainty related to interpretation
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Figure 3.13: Comparison between the predicted distribution of down-times due
to wind using the BN approach, and actual observed down-times (n=11) in the
Norwegian transmission system.

and registration in the FASIT database, and thus does not necessarily represent a
true value of the distribution. A comparison of the results from the BN approach
and historical observations of permanent failures due to wind for overhead trans-
mission lines as registered in the FASIT database can be seen in Figure 3.13. The
pink histogram represents samples generated by the BN, while the blue histogram
represents data of actual observed down-times. The solid line represents a fit-
ted log-normal probability density function (PDF) for the BN sample, while the
dashed line represents the log-normal PDF of the observed down-times. To en-
sure a comparable data-to-method sample, the historical observations have been
filtered with a lower bound of 5 hours to ensure that the material does not include
restoration processes not performed at the fault-site, i.e. switching of breakers.

Having a good understanding of down times due to physical destruction of in-
frastructure is an important part of understanding the consequence dimension of
the risk related to extraordinary events. Historical data are scarce, with unclear
quality and generalizability. The approach decomposes the contributing factors
to down times following permanent faults into a conceptual model, which is then
used to construct a BN. Using a BN allows us to incorporate relevant information
from various sources in the task of predicting transmission line down times. The
BN structure also allows conditioning on input variables, such as when the failure
occurs, which threat caused it, or the accessibility of the affected transmission
line. The presented BN approach to predicting transmission line down times can
serve as an alternative to using historical data.
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3.5 Visualization and communication

The following section is in part based on the work published in Paper 4 [42] and
explores methods for communicating and visualizing risks related to extraordi-
nary events, contributing to answering research question 4. A challenge with
extraordinary events is that they belong to tail-end probabilities, and are not
communicated clearly through the methods established in traditional reliability
analysis. Their low probability may cause consequences to become negligible
additions to the expected value. To visualize this, a risk matrix can be used
with categorical variables describing the probability and consequences in prede-
termined intervals.

However, placing a scenario in risk matrices is not straightforward. The span of
probabilities and consequences can be wide and uncertain, and the risk is not
necessarily appropriately captured as a single value in a single risk category. Dif-
ferent methods have been suggested to alleviate some of the challenges associated
with risk matrices. One method for handling this inherent uncertainty is to in-
troduce a degree of belief into the estimate, introducing a third axis. Another
is to introduce uncertainty bands along the already established dimensions of
probability and consequence. The uncertainty bands are connected to an ex-
pected value of probability and consequence as a center-point, and illustrates the
maximum and minimum values along the different axes [105,107].

For the purposes of illustrating blackouts due to natural hazard events, the com-
pression of high probabilities of failures within a short span of time in periods
with high consequences is especially relevant. Most of the time, the probability of
contingencies occurring due to a weather-related event is near zero. Illustrating
time-series with many probability-consequence pairs related to the same scenario
through their mean value may therefore be misleading. Introducing uncertainty
bands, or the related uncertainty boxes, gives a measure of the outer edges of the
information, i.e. high-risk periods.

Paper 4 presents different risk visualizations supported by a case study with
varying load and failure probabilities. The purpose was to show how aggregate
values can hide potentially extreme scenarios, especially if the load and failure
probabilities are correlated. This was exemplified by the hourly probability that
a cut-set was unavailable, and the associated interrupted power if the cut-set was
indeed unavailable at that hour.

Figure 3.14 shows an example of the construction of a risk diagram including
uncertainty bands for a given cut-set, as presented in Paper 4. Red scatters
represents observations of hourly probability-consequence pairs. The purple circle
represents the expected values of the contingency, while the black lines represents
uncertainty bands along the different axes. Note that the expected value of the
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probability is near zero, while the expected interrupted power is approximately 32
MW. The scaling of the axes makes it difficult to distinguish the probability of the
cut-set being unavailable, hence a log-scale is a good alternative representation.
The key question is if the combination of a center-point and uncertainty bands
adequately communicates the important uncertainty in the components of risk
inherent in the real data (red scatters). Cluttering in the graph may become
a challenge when several cut-sets are considered in the same graph. This could
have a negative effect on the ability to judge risk for the recipient [115,116]. It is
therefore also useful to consider what information is necessary for the recipient
to take informed decisions.

Figure 3.14: Risk diagram including uncertainty bands, for the unavailability of
a cut-set. Recreated from [42].

Arguably it could be said that the expected value holds important information
about the expected risk, as do the high-end of the uncertainty band of the hourly
probability (there are periods of very elevated probability that this cut-set is
unavailable). The uncertainty band representing interrupted power on the right
hand side of the center-point communicate that the interrupted power can be
almost three times higher than the expected value. The uncertainty bands on the
left- and lower side of the center-point do however hold limited useful information:
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The lower end of the probability is often near zero, and the interrupted power
may similarly be zero in some cases. The expected value and the maximum value
in combination sufficiently convey the most important aspects of the risk to a
decision maker. Omitting the minimum side of the uncertainty bands would also
contribute to sparsity, and remove cluttering if multiple cut-sets are compared
on the same graph.

3.5.1 Continuation of the risk visualization

The work in Paper 4 incorporated time-varying failure probabilities and loads,
and visualization of the risk associated with a cut-set as a function of the prob-
ability of unavailability, and the interrupted power at the corresponding time
of unavailability. The use of uncertainty bands to reveal uncertainty related to
extraordinary events was also explored. Although interesting in itself, a more
common representation is risk as a function of the probability that the sce-
nario occurs, and the associated consequences in terms of energy not supplied
(ENS). The following subsection is an extension of the work presented in Paper
4, where the cost of energy not supplied (CENS) is incorporated in the conse-
quence/criticality dimension, taking into account the criticality of the event for
the affected end-users. Risk visualizations are further developed to limit the
amount of information to what is most relevant in the graphic representation of
risk. The extended work is exemplified with a case study.

Case study

Bus 1 Bus 2

Bus 3 Bus 4

Bus 5

Bus 6

1 6 2 7

85

9

3

4

G G

Figure 3.15: The Roy Billinton Test System (RBTS) [117].

The case study illustrates the risk associated with wind-dependent failures, caus-
ing permanent outages and thus potentially severe consequences. The basis of
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the case study is the topology from the Roy Billinton Test System [117], seen in
Figure 3.15. To generate a realistic case, time-series of historical failure probabil-
ities due to wind for nine overhead transmission lines in the Norwegian grid was
created using the method in [39], based on [78]. The failure probability due to
wind is weighted so that the annual failure rate of the transmission lines match
the Permanent Outage Rate (POR) in the RBTS test system, and the share
of failures due to wind observed in the historical data for 300-220kV overhead
transmission lines in Norway in the period 2009-2018 [10]. In (3.55) p(λi,:) is a
generated time-series of failure probability for line i, y = 9 is the number of years
in the time-series, POR is the Permanent Outage Rate as is presented in the
RBTS case-study [117], and w = 0.31 is the share of failures due to wind.

∑

t

p(λi,t) = y · PORi · w (3.55)

The load demand of the system in the case study is based on the actual con-
sumption in Norway from the period of 2006-2014, gathered from the Norwegian
TSO, Statnett [118]. Using real system load data combined with actual weather
conditions at the same time gives a more realistic picture of the risk the system
has been exposed to. Figure 3.16 shows the time-series of historical load demand,
where the load demand is presented as the share of maximum load for the system
over the 9-year period, and a time-series reflecting the probability of at least one
component in the system failing due to a permanent wind-dependent outage. The
Spearman’s rank correlation between the load and failure probability is ρ = 0.20,
indicating a positive correlation. This relationship between wind-dependent out-
ages and load in the Norwegian transmission system becomes even more clear
for the the time-series of unavailability with a ρ = 0.47. This shows a potential
positive correlation between the probability and consequence associated with an
unwanted event scenario.

A distribution of the outage duration for each overhead transmission line was
generated using the method outlined in [41], with one log-normal distribution
representing the outage duration for the line throughout the entire year. It is as-
sumed that the outage duration of the transmission line is equal to the component
down time. These distributions are used together with the time-series of failure
probability to generate time-series of the probability that the transmission line
is unavailable due to a permanent wind-related outages using the method in [39].
The unavailability of higher order sets is the (independent) intersection of the
components of the set being unavailable at the same time.

The failure probability of the higher order sets is the probability of any combi-
nation of failures and simultaneous transmission line unavailability that causes
the set to occur at that time. To generate the equations, consider a set S where
each component i can either be unavailable (si,j = p(ui)) or fail (si,j = p(λi))
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Figure 3.16: Key variables in the case study: Hourly time-series of share of
maximum load demand for the system (top panel), hourly probability of one or
more transmission lines experiencing a failure (mid panel), hourly probability of
one or more transmission lines in the system being unavailable (bottom panel).
Spearman’s correlation coefficient, ρ, is calculated between the time-series of
hourly maximum load demand and the two other time series.
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in a given set state j. For a set of n components, there are k = 2n combina-
tions of possible set states. For all states, the probability that the set occurs is
the product of all possible combinations of failures and unavailability, minus the
probability that all components in the set are unavailable due to previous failures
(3.56). This is exemplified for a set of two transmission lines in (3.57).

p(λ{i,...,n}) =

k∑

j

n∏

i

si,j −
n∏

i

ui (3.56)

p(λ{1,2}) = p(λ1) · p(u2) + p(u1) · p(λ2) + p(λ1) · p(λ2) (3.57)

An extreme scenario outage event is created. The scenario assumes that at the
process of restoring the transmission lines to service has not been initiated for
any of the lines in the set when the set occurs. The outage duration of the set is
assumed to be equal to the time it takes for the first component of the set to be
restored to service. This is found analytically from the cumulative distribution
function (CDF) of the outage distribution for sets including only one transmission
line. The outage duration distribution for sets with more than one line is found by
sampling (n = 100000) individual component outage occurrences. The extreme
outage event scenario assumes that the outage duration of the set is equal to
the 90th percentile of the distribution. An illustrative example of the process of
creating an outage distribution for a set including two components is found in
Figure 3.17. The figure shows the probability that the individual transmission
lines have been repaired in the top two panels, and the probability that both lines
are unavailable in the bottom panel. The CDF is plotted alongside the sample
distribution. The CDF of the minimum of the distributions for a set S with
n > 1 can be found by evaluating the set’s constituent CDF’s at the same values,
F (x)S = 1−∏n

i (1− F (x)i), see e.g. [119].

The time-series of power consumption in Figure 3.16 is divided into 100 equal-
sized bins, representing a percentage of the peak load in the RBTS. This is used
together with an AC Optimal Power Flow (OPF) with generation rescheduling
and load shedding to calculate the potential interrupted power at the different
load points due to a contingency, as specified in [120,121]. The analysis considers
contingencies up to the 3rd order. This yields time-series of interrupted power at
the 6 buses for each contingency.

To incorporate the criticality of ENS for the customer, each bus of the RBTS is
associated with a customer type, as found in [122], classified by the Norwegian
CENS arrangement [101]. The CENS arrangement is a measure of the socioe-
conomic costs of interrupted power dependent the time of the interruption, the
interruption duration and the affected end-users. Besides reflecting a stipulated
cost to the customer, CENS also has a direct impact on the grid operator, mak-
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Figure 3.17: Construction of outage duration distributions for sets of transmission
line(s). Cumulative distributions representing the predicted outage duration of
two overhead transmission lines (top and mid panel), and the outage duration
distribution of the set containing the two lines in a generated extreme scenario
outage event (bottom panel). The blue histograms in each panel represent the
random sample of outage durations following the analytical rule represented by
the orange line.
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ing it an important measure of criticality for both the operator and the affected
customers.

Table 3.2: Customer types and customer cost functions at buses used in case
study2.

Bus Type Cost function at reference time [NOK/kW]

2 Industry c(r)Ref,2 = 660.9 + 41 · (r − 4)
3 Energy-intensive industry c(r)Ref,3 = 102.3 + 3.1 · r
4 Residential c(r)Ref,4 = 444.5 + 13.3 · (r − 24)
5 Public service c(r)Ref,5 = 521.5 + 19.8 · (r − 8)
6 Agriculture c(r)Ref,6 = 74.2 + 16.1 · (r − 4)

The Norwegian CENS arrangement is the result of surveys conducted, stipulating
the cost of outages of different durations at a reference time, as seen in Table
3.2. The stipulated cost at the reference time is then subjected to correction
factors taking into account the month, day and hour the outage occurs. The cost
of interrupted power (NOK/kW) for an end-user interruption at time t with a
duration r, using appropriate correction factors f for month, day and hour is
calculated in (3.58). The correction factors can be found in Appendix C.

c(r)t = c(r)Ref · fmonth · fday · fhour (3.58)

Annual indices for the individual transmission lines can be found in Table 3.3.
The annual failure rate, λ, is calculated as the sum of failure probability in the
time-series divided by number of years of observations, as is the annual unavail-
ability, U . Approximate equations (see e.g. [93]) assume that new outages in the
set happens at a fixed rate during the outage of the previous component(s). This
does not hold true when there are correlated failure probabilities. The mean out-
age duration is thus found either from the outage distribution of the individual
line, or as r = U/λ for higher order sets.

Equation (3.59) shows the calculation of the potential CENS of a set {x, y} if
the set occurs at a specific time, t. Interrupted power calculated from the time-
varying load demand is used rather than the interrupted power at a reference
time. This ensures that the calculated CENS and the time-series of failure prob-
ability reflects the historical conditions in load and threat exposure. The inter-
rupted power is multiplied with the associated cost function and summed across
all buses, b. This gives a measure of the potential economic impact of the outage
at each time-step. The annual expected CENS is calculated in (3.60). The annual

2Customer types at buses following [122]. Customer cost functions at reference time for
outage durations above 8 hours for all customer types except the “residential” category which
uses outage durations between 24 and 74 hours, from [101].
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Table 3.3: Annual indices for the transmission lines.

Line λ[f/y] r[h] U [h/y]

1 0.463 61.8 28.6
2 1.544 92.0 142.0
3 1.235 88.4 109.2
4 0.309 108.6 33.5
5 0.309 102.3 31.6
6 0.463 97.4 45.1
7 1.544 74.8 115.5
8 0.309 106.4 32.8
9 0.309 99.6 30.7

expected CENS is the sum of hourly potential CENS weighted by the probability
of the outage occurrence, divided by the number of years the time-series covers.

CENS{x,y},t =
∑

b

[P{x,y},interr,b,t · c(r{x,y})b,t] (3.59)

E(CENS{x,y}) =

∑
t λ{x,y},t · CENS{x,y},t

y
(3.60)

Results

Figure 3.18 shows the ranked distribution of the 15 cut-sets with the highest
expected ENS given that an outage occurs, paired with the associated expected
CENS. Only cut-sets containing more than one component are considered, to
highlight the impact of multiple overlapping outages. Annual expected CENS
for the same cut-sets follows much of the same distribution as for the ENS but
there are some instances where the divergence between the consequence and the
criticality. This illustrates some of the impact of taking the criticality for the
customer into account when performing the risk assessment. This discrepancy is
especially apparent for cut-set {1, 6}. This particular cut-set (as does the cut-
sets it is a subset of: {1, 2, 6} and {1, 3, 6}) has two features that can explain
this discrepancy. The occurrence of this cut-set causes interrupted power in most
system load scenarios. The interrupted power due to the cut-set also primarily
affects the loads at bus 3 (energy intensive industry) and 6 (agriculture), which
have a low CENS for long outage durations compared to other customer types.
This combined causes a high ENS on one side, and a low CENS compared to
similar ENS affecting other customer types on the other. Although the expected
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values are a good measure of the reliability of the system, these can conceal
periods with high potential consequences and associated risk.
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Figure 3.18: Paired histograms of expected ENS and CENS for the 15 cut-sets
with the highest expected ENS values. Grey bars illustrate the Annual Expected
ENS of the cut-set which can be seen on the left hand side y-axis, while the green
bars represent the associated CENS for the same cut-set (as seen on the right
hand side y-axis).

Figure 3.19 shows different representations of the hourly risk associated with cut-
set {5, 8} over the span of the case study. As noted in [6,30], what is acceptable
risk is inherently a political question, and ultimately up to the transmission sys-
tem operator to decide. On the graph, linear risk limits have been superimposed
to illustrate how the expected risk can be considered medium, or even close to
low, while the an extreme event may be well into the critical territory. Dashed
horizontal lines are added in sub-figures (a), (b) and (c) to show the limits of
the highest and lowest probability of the outage occurrence of the scenario. The
dashed vertical line in (a) shows the minimum criticality of an event of an ex-
pected duration. The dashed vertical line in (b) shows the maximum criticality
of a constructed extreme event scenario. Together these lines makes up the outer
borders of the uncertainty box in sub-figure (c), where dashed lines cross the
expected hourly probability and criticality of the scenario, intersecting in the
expected hourly risk of the scenario marked by a red dot. The latter can be
multiplied by the number of hours in the year to find the expected annual CENS
of the scenario.
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(a) (b)

(c) (d)

Figure 3.19: Stepwise construction of risk diagram with uncertainty boxes for a
cut-set in the case study and a reduced “dot-and-line” representation of the risk.
(a) Scatter-plot representing the pairwise hourly observations of failure probabil-
ity and criticality of an event with an expected duration (grey scatters), red dot
representing the expected risk across observations. Dashed lines represents the
upper and lower bounds of failure probability (vertical), and the lower bound of
criticality (horizontal). (b) Scatter-plot representing the pairwise hourly failure
probability and criticality of an extreme scenario (blue scatter), with vertical
dashed line showing the upper bound of criticality. (c) Uncertainty-box repre-
senting the risk associated with the cut-set, using information from sub-figure (a)
and (b). (d) A reduced “dot-and-line” representation of the upper right quadrant
of the uncertainty box in (c).

65



Chapter 3: Contributions

The lower and left quadrants of the uncertainty box in Figure 3.19 (c) hold limited
information relevant to the risk of extraordinary events beyond the expected
values. In many cases both the minimum probability and criticality are zero, and
the overall risk relevant to reliability analysis is contained within the expected
value. The upper-right quadrant holds the relevant information about the tail
end risk associated with the extreme scenario. In Figure 3.19 (d) the diagonal
from the expected values to the maximum values are drawn to represent the
information contained in the upper-right quadrant of the uncertainty box. This
“dot-and-line” representation reduces the amount of clutter but still conveys the
key information contained in the graph. It also compresses the necessary span of
the axes which aids when comparing multiple contingencies. The most relevant
information related to the risk of extraordinary events is however still contained
in the graph.

Figure 3.20: Risk diagram using a “dot-and-line” representation: Probability and
consequence (ENS).

Figure 3.20 shows a risk graph using the dot-and-line representation for the 5 sets
of transmission line outages in the case study with the highest identified hourly
risk in the extreme scenario as a function of failure probability and ENS. The
cut-sets are listed in order from highest to lowest risk in the extreme scenario.
Using this representation, the ordering of the cut-sets is different from what is
found in Figure 3.18. Cut-set {1, 2, 6} in particular was ranked as the 11th when
considering expected ENS but when considering the risk in the extreme scenario it
is considered the 3rd. The cut-set also has a much higher potential ENS due to an
extreme scenario than any of the other cut-sets in the graph. This potential of an
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Figure 3.21: Risk diagram using uncertainty boxes: Probability and consequence
(ENS).

extraordinary event was not readily communicated by Figure 3.18 or the expected
value. The proposed graph readily communicates key information regarding the
risk associated with a scenario and the potential for an extraordinary event.

Figure 3.21 shows the same risks scenarios as 3.20 visualized using the full un-
certainty boxes. The y-axis is cut off at 10−8 but the lower bounds extends
further. This representation of multiple cut-sets in a single graph contains more
information but is difficult to decipher. Much of the information contained in
the graph is not strictly relevant to extraordinary events and the inclusion of this
information hampers the easy identification of scenarios that could potentially
lead to extraordinary events. The proposed “dot-and-line” representation con-
tributes to sparsity and clarity when communicating the important information
related to expected and extraordinary events, compared to a graph using the full
uncertainty boxes. This makes it easier to compare multiple cut-sets in the same
graph.

Figure 3.22 shows a similar graph, where the five contingencies with the highest
risk as a function of failure probability and CENS in the extreme scenario are
included in the graph. Cut-set {1, 2, 6} is no longer included in the list of cut-sets
due to a lower criticality associated with an extreme scenario, despite its high
potential ENS. Differences in customer groups affected by the power interruption
should the cut-set occur also change the ranking of other cut-sets. The CENS
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Figure 3.22: Risk diagram using a “dot-and-line” representation: Probability and
criticality (CENS).

measure of criticality incorporates some of the impact ENS has external to the
power system. The criticality of an extraordinary event should inform the grid
operator’s prioritization of mitigating efforts.

Conclusion

There are multiple novelties in the contribution. The CENS is included as a
measure of criticality for the affected end-users. This can yield substantially dif-
ferent results when analyzing some cut-sets due to differences in affected customer
groups. Risk, as a function of probability and criticality can also inform the grid
operators’ prioritization of mitigating or grid hardening efforts, also in the case
of extraordinary events. A method of visualizing risk of extraordinary events in
power systems is developed.

The “dot-and-line” risk visualization is developed to include relevant uncertain-
ties in the probability and consequence/criticality axes. The visualization is a
reduction of the uncertainty boxes that has previously been suggested as a method
for incorporating tail-end events into risk visualizations. This is justified in that
only one quadrant of the uncertainty boxes holds information relevant to expected
and extraordinary events, and it is sufficiently represented by the expected value
and the most extreme event. This reduces cluttering when multiple cut-sets are
visualized simultaneously.
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4 Conclusion and further work

The objective of the thesis was to develop methodologies for understanding and
communicating uncertainties and risks related to extraordinary events. Four re-
search questions were developed to contribute in reaching the objective:

How do time-varying failure rates affect the rate of unwanted events? This The
method of calculating time-series of unavailability of components in Paper 1 is
novel in itself, and gives a clear output that can be visually inspected. It is a
possible alternative method for incorporating correlated threat exposure due to,
for instance, harsh weather, compared to existing methods such as multi-state
weather models that can become highly complex and difficult to parameterize.
The method combines the previous work on time-varying failure probabilities
in [78] with an iterative algorithm that combines the failure probability and
outage duration of single components. The probability and consequences of a
contingency which includes multiple components can easily be calculated as com-
binations of its constituent parts. The results of the method aids in identifying
components and sets of components that can be considered parts of high-risk
contingencies. This information can thus be used for targeted grid hardening
efforts.

How do interactions between failure bunching phenomena and protection system
failures contribute to unwanted events? The method developed in Paper 2 com-
bines two forms of dependencies: correlated threat exposure between components
causing failure bunching due to weather, and dependent outages caused by protec-
tion systems misoperations. The combination of these two forms of dependencies
is a novelty in itself. The method extends the work in [27], and, by taking a
graph-theoretical approach, the topology of the system is incorporated into the
reliability equations. The use of probability matrices to include protection sys-
tem misoperation in reliability evaluations is then made applicable to time-series
of component failures. The use of the developed probability matrices could be
a useful tool to incorporate protection system misoperation into other forms of
analysis, such as those relying on Monte Carlo methods.
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What are the contributions to long restoration times caused by natural hazard
events? Long restoration times due to permanent failures caused by natural
hazard events is one of the major challenges when it comes to extraordinary
events. However, the transmission system is highly reliable and there is limited
historical data available to create generalized fixed down-time distributions for
different components with varying degrees of accessibility. Paper 3 proposes a
solution to this challenge by decomposing the down-time duration of overhead
transmission lines into constituent parts which are analyzed individually, before
it is put together to predict transmission line down time distributions. This
is done by combining limited statistical data and expert judgments in a logical
model using a Bayesian Network. The decomposition of the problem and reliance
on different sources of information to parameterize the model is a novelty in
itself. The model can be updated based on threat-, time- and location-dependent
information, thus making it a versatile tool that can contribute to improved
modeling of component down times. The framework developed in the paper
has multiple potential further developments: The conceptual model can serve as
a basis for further development and refinement of the overarching model, and
new data sources incorporated using the methods in the paper can improve the
parametrization of the model(s).

How can the risk of extraordinary events be communicated and visualized? A
contribution to answering this research question was presented in Paper 4 and
further developed in Section 3.5 of this thesis. There are several contributions to
this field of research in the work: The inclusion of criticality for the end-users in
the calculation of the risk related of extraordinary events is one. Criticality in
terms of CENS due to outage occurrences is based on stipulated costs to the end-
users which experiences an interruption, and is reflected through an economic
impact for the system operator. It is thus a measure of criticality that clearly
covers the interests of both the end-user and the system operator, and contributes
to a socioeconomically sound operation of the power system. CENS, unlike many
other measures of criticality, has a clear quantitative interpretation which makes
it ideal for representation in a continuous scale risk diagram. Risk diagrams
including uncertainty boxes are considered, and further developed in this work.
A reduced “dot-and-line” representation of the traditional uncertainty boxes is
proposed, as it is assumed to contain important information regarding probability
and consequence of risk related to extraordinary events. This is a further novelty
in the work presented. Visualization of tail-end risk in a clear and concise manner
is an area that could benefit from continued research. The incorporation of
criticality in the risk diagram could also potentially spur the inclusion of measures
of criticality other than CENS using similar methods. Looking beyond monetary
values as a measure of criticality would be a welcome addition to this branch of
power systems risk analysis.
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[115] S. Ognjanovic, M. Thüring, R. O. Murphy, and C. Hölscher, “Display
clutter and its effects on visual attention distribution and financial
risk judgment,” Applied Ergonomics, vol. 80, pp. 168–174, Oct.
2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0003687019300924

[116] D. Spiegelhalter, M. Pearson, and I. Short, “Visualizing Uncertainty
About the Future,” Science, vol. 333, no. 6048, pp. 1393–1400, Sep.
2011. [Online]. Available: https://www.sciencemag.org/lookup/doi/10.
1126/science.1191181

[117] R. Billinton, S. Kumar, N. Chowdhury, K. Chu, K. Debnath, L. Goel,
E. Khan, P. Kos, G. Nourbakhsh, and J. Oteng-Adjei, “A reliability test
system for educational purposes - basic data,” IEEE Transactions on Power
Systems, vol. 4, no. 3, pp. 1238–1244, aug 1989.

[118] Statnett, “Data From The Power System: Pro-
duction and Consumption,” 2020. [Online]. Available:
https://www.statnett.no/en/for-stakeholders-in-the-power-industry/
data-from-the-power-system/{#}production-and-consumption

[119] M. Shaked, “On the Distribution of the Minimum and of the
Maximum of a Random Number of I.I.D. Random Variables,” in
A Modern Course on Statistical Distributions in Scientific Work.
Dordrecht: Springer Netherlands, 1975, pp. 363–380. [Online]. Available:
http://link.springer.com/10.1007/978-94-010-1842-5 29

[120] G. H. Kjølle, I. B. Sperstad, and S. H. Jakobsen, “Interruption costs and
time dependencies in quality of supply regulation,” in 2014 International
Conference on Probabilistic Methods Applied to Power Systems, PMAPS
2014 - Conference Proceedings. Durham: IEEE, 2014, pp. 1–6.

[121] W. Wangdee and R. Billinton, “Impact of load shedding philosophies on
bulk electric system reliability analysis using sequential Monte Carlo sim-
ulation,” Electric Power Components and Systems, vol. 34, no. 3, pp. 355–
368, 2006.

[122] I. B. Sperstad, S. H. Jakobsen, and O. Gjerde, “Modelling of corrective ac-
tions in power system reliability analysis,” in 2015 IEEE Eindhoven Pow-
erTech. IEEE, jun 2015.

[123] O. P. Veloza and F. Santamaria, “Analysis of major blackouts from 2003
to 2015: Classification of incidents and review of main causes,” Electricity
Journal, vol. 29, no. 7, pp. 42–49, sep 2016.

82

https://linkinghub.elsevier.com/retrieve/pii/S0003687019300924
https://linkinghub.elsevier.com/retrieve/pii/S0003687019300924
https://www.sciencemag.org/lookup/doi/10.1126/science.1191181
https://www.sciencemag.org/lookup/doi/10.1126/science.1191181
https://www.statnett.no/en/for-stakeholders-in-the-power-industry/data-from-the-power-system/{#}production-and-consumption
https://www.statnett.no/en/for-stakeholders-in-the-power-industry/data-from-the-power-system/{#}production-and-consumption
http://link.springer.com/10.1007/978-94-010-1842-5_29


BIBLIOGRAPHY

[124] CERC, “Report on the Grid Disturbance on 30th July 2012 and
Grid Disturbance on 31st July 2012.” Central Electricity Regulatory
Commission, Tech. Rep., Aug. 2012. [Online]. Available: http:
//www.cercind.gov.in/2012/orders/Final Report Grid Disturbance.pdf

[125] J. Araneda, H. Rudnick, S. Mocarquer, and P. Miquel, “Lessons from
the 2010 Chilean earthquake and its impact on electricity supply,” in
2010 International Conference on Power System Technology. Zhejiang,
Zhejiang, China: IEEE, Oct. 2010, pp. 1–7. [Online]. Available:
http://ieeexplore.ieee.org/document/5666023/

[126] S. Giovinazzi, T. Wilson, C. Davis, D. Bristow, M. Gallagher, A. Schofield,
M. Villemure, J. Eidinger, and A. Tang, “Lifelines performance and
management following the 22 February 2011 Christchurch earthquake,
New Zealand,” Bulletin of the New Zealand Society for Earthquake
Engineering, vol. 44, no. 4, pp. 402–417, Dec. 2011. [Online]. Available:
https://bulletin.nzsee.org.nz/index.php/bnzsee/article/view/232

[127] ENTSO-E, “Report on Blackout in Turkey on 32st March 2015,” ENTSO-
E: Project Group Turkey, Tech. Rep., Sep. 2015. [Online]. Available: https:
//eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/
Regional Groups Continental Europe/20150921 Black Out Report v10 w.
pdf

[128] TenneT, “Enabling the change: Integrated Annual Report
2015,” TenneT, Netherlands, Annual report, Mar. 2016. [On-
line]. Available: https://www.tennet.eu/fileadmin/user upload/Company/
Investor Relations/Annual Report/TenneT-AR15 UK.pdf

[129] A. Nordrum, “Transmission Failure Causes Nationwide Black-
out in Argentina,” IEEE Spectrum: Technology, En-
gineering, and Science News, 2019. [Online]. Avail-
able: https://spectrum.ieee.org/energywise/energy/the-smarter-grid/
transmission-failure-causes-nationwide-blackout-in-argentina

[130] U.S. Energy Information Administration, “Extreme winter weather
is disrupting energy supply and demand, particularly in Texas,”
Today in Energy, Feb. 2021. [Online]. Available: https://www.eia.gov/
todayinenergy/detail.php?id=46836

[131] G. H. Kjølle, O. Gjerde, and M. Hofmann, “Vulnerability and security
in a changing power system,” SINTEF Energy Research, Trondheim,
Norway, Technical Report TR A7278, Jul. 2013. [Online]. Avail-
able: https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/
2598690/TR%2bA7278.pdf?sequence=2&isAllowed=y

83

http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf
http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf
http://ieeexplore.ieee.org/document/5666023/
https://bulletin.nzsee.org.nz/index.php/bnzsee/article/view/232
https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Regional_Groups_Continental_Europe/20150921_Black_Out_Report_v10_w.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Regional_Groups_Continental_Europe/20150921_Black_Out_Report_v10_w.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Regional_Groups_Continental_Europe/20150921_Black_Out_Report_v10_w.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Regional_Groups_Continental_Europe/20150921_Black_Out_Report_v10_w.pdf
https://www.tennet.eu/fileadmin/user_upload/Company/Investor_Relations/Annual_Report/TenneT-AR15_UK.pdf
https://www.tennet.eu/fileadmin/user_upload/Company/Investor_Relations/Annual_Report/TenneT-AR15_UK.pdf
https://spectrum.ieee.org/energywise/energy/the-smarter-grid/transmission-failure-causes-nationwide-blackout-in-argentina
https://spectrum.ieee.org/energywise/energy/the-smarter-grid/transmission-failure-causes-nationwide-blackout-in-argentina
https://www.eia.gov/todayinenergy/detail.php?id=46836
https://www.eia.gov/todayinenergy/detail.php?id=46836
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2598690/TR%2bA7278.pdf?sequence=2&isAllowed=y
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2598690/TR%2bA7278.pdf?sequence=2&isAllowed=y


BIBLIOGRAPHY

[132] E. Allen, G. Andersson, A. Berizzi, S. Boroczky, C. Canizares, Q. Chen,
S. Corsi, J. Dagle, A. Danell, I. Dobson, R. Farmer, P. Gomes, N. Hatziar-
gyriou, J. F. Hauer, S. Imai, C. Jiang, P. Kundur, S. Larsson, J. D. McCal-
ley, and W. Wong, Blackout Experiences and Lessons, Best Practices for
System Dynamic Performance, and the Role of New Technologies. IEEE,
2007.

[133] S. Larsson and A. Danell, “The black-out in southern Sweden and eastern
Denmark, September 23, 2003.” in 2006 IEEE PES Power Systems
Conference and Exposition. IEEE, 2006, pp. 309–313. [Online]. Available:
http://ieeexplore.ieee.org/document/4075763/

[134] Eurelectric, “Impacts of Severe Storms on Electric Grids,” EU-
RELECTRIC - Task Force on Power Outages, Brussels, Bel-
gium, Tech. Rep. Ref : 2006-181-0001, Jan. 2006. [Online].
Available: https://web.archive.org/web/20130921054333/http://www.
globalregulatorynetwork.org/Resources/ImpactsofSevereStorms.pdf

[135] J. Barkans and D. Zalostiba, “Blackout Prevention and Power System
Self-Restoration,” in EUROCON 2007 - The International Conference on
”Computer as a Tool”. Warsaw, Poland: IEEE, 2007, pp. 1547–1554.
[Online]. Available: http://ieeexplore.ieee.org/document/4400262/

[136] D. Johnson, “The triangular distribution as a proxy for the beta distribu-
tion in risk analysis,” Journal of the Royal Statistical Society Series D: The
Statistician, vol. 46, no. 3, pp. 387–398, sep 1997.

84

http://ieeexplore.ieee.org/document/4075763/
https://web.archive.org/web/20130921054333/http://www.globalregulatorynetwork.org/Resources/ImpactsofSevereStorms.pdf
https://web.archive.org/web/20130921054333/http://www.globalregulatorynetwork.org/Resources/ImpactsofSevereStorms.pdf
http://ieeexplore.ieee.org/document/4400262/


Publications

85



86



Paper I

Paper I

P
a
p

e
r

I

The paper ”Transmission line unavailability due to correlated threat ex-
posure” is published by IEEE in the proceedings of the 2019 IEEE Milan
PowerTech conference. ©IEEE 2019. In reference to IEEE copyrighted ma-
terial which is used with permission in this thesis, the IEEE does not endorse
any of NTNU’s products or services. Internal or personal use of this material
is permitted. If interested in reprinting/republishing IEEE copyrighted mate-
rial for advertising or promotional purposes or for creating new collective works
for resale or redistribution, please go to http://www.ieee.org/publications_

standards/publications/rights/rights_link.html to learn how to obtain a
License from RightsLink.

Cite as:
E. S. Kiel, G. H. Kjølle
“Transmission line unavailability due to correlated threat exposure”
2019 IEEE Milan PowerTech conference proceedings, jun 2019
DOI: 10.1109/PTC.2019.8810845
URL: https://doi.org/10.1109/PTC.2019.8810845

Co-author declaration:
The publication was conceptualized by the candidate, who was the main con-
tributor to the literary review, methodology, writing of associated computer pro-
grams and visualizations, as well as the analysis of the results. This was done
with contributions from the second author in the form of supervision, discussions
and input on prepared material. The candidate produced an original draft, and
incorporated review comments and editing.

87

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
https://doi.org/10.1109/PTC.2019.8810845


Transmission line unavailability due to correlated
threat exposure

Erlend Sandø Kiel
Department of Electric Power Engineering

NTNU - Norwegian University of Science and Technology
Trondheim, Norway
erlend.kiel@ntnu.no

Gerd Hovin Kjølle
Department of Electric Power Engineering

SINTEF Energy Research/NTNU
Trondheim, Norway

Abstract—Blackouts in the power system are rare events that
can have large consequences for society. Successful preparation
and prevention of such events calls for models capable of
predicting their occurrence. The simultaneous outage of multiple
components is of special interest in an N-1 secure transmission
grid. Spatio-temporal correlation in probability of failure for
components can cause blackouts to occur more often than
anticipated. This paper demonstrates a new method of calculating
time-series of component unavailability due to external threats
based on historical data. The time-series of unavailability can
be used to predict the expected occurrence of contingencies
throughout the year. A test case is presented where an hourly
time series of wind dependent failure probabilities and historical
outage durations of transmission lines are combined to illustrate
the proposed method. The results show that the simultaneous
unavailability of multiple transmission lines may be significantly
larger than estimated using traditional reliability analysis.

Index Terms—Power system reliability, resilience, risk analysis.

I. INTRODUCTION

The electrical power system is a highly complex, critical
infrastructure on which society depends. Blackouts are rare
but with potentially severe consequences, and due to these
properties they are sometimes referred to as High Impact
Low Probability (HILP) events. In an N-1 secure transmission
grid multiple contingencies, or failure of multiple components,
must occur in overlapping time-frames to cause blackouts.
Harsh weather, such as wind, lightning and icing are some
of the most common causes of transmission line failures
and subsequent blackouts [1], [2]. Such events often occur
in short and intense periods of weather exposure such as
severe storms [3]. The overlap in time and place of failures
due to correlated threats is of high importance. The timing
of when a contingency occurs can also affect the associated
consequences. Thus, it is necessary to develop models that
capture spatio-temporal correlation in threat exposure.

Capturing HILP events using traditional power system
reliability methods can be difficult. The emerging field of
power systems resilience methodology goes beyond traditional

The research leading to these results has received funding through the
project “Analysis of extraordinary events in power systems” (HILP) (Grant
No. 255226), co-funded by the Research Council of Norway, Statnett and
Fingrid.

reliability assessments and aim to capture such low probability
events [3]. Although there are no commonly accepted defini-
tion of resilience in the power systems domain, a proposed
definition is found in [4] as “the ability to withstand and
reduce the magnitude and/or duration of disruptive events,
which includes the capability to anticipate, absorb, adapt to,
and/or rapidly recover from such an event”. In [5], it is argued
that “a main difference between a reliable power grid and
a resilient power grid is that, in the latter, low probability-
high consequence events (e.g. extreme weather events) are
specifically considered and handled, with the ability to learn
from past occurrences”.

The two main paths to capture spatio-temporal correlaction
in threat exposure has either been to use Monte Carlo simula-
tion techniques or contingency enumeration approaches, con-
sidering multiple weather states [6], [7]. It has been considered
that for single contingency events, contingency enumeration
may be best suited, however for more complex systems and
higher order contingencies Monte Carlo simulation techniques
may produce better results [8]–[10].

This paper proposes a method of calculating time-series
of unavailability probability of transmission lines based on
historical data, and can serve as an alternative to Sequential
Monte Carlo simulations. The probability of higher order con-
tingencies can be calculated from the time-series unavailability
of single components. The method answers two of the set of
risk-triplets put forwards by Kaplan [11], namely what can
happen (the scenario) and how likely is it that this scenario
happens (likelihood). However, by also knowing the ’when’
of the scenario, it is possible to make some inferences of the
last of the triplets: the consequence of the scenario.

The main contribution of this article is to calculate time-
series of probability of contingencies occurring due to threats
that are spatio-temporally correlated. It is also a benefit that
each primary parameter in the analysis - the failure rate and
outage duration - can be analyzed separately before being
combined into an expected unavailability of components. The
production of historical time series of unavailability makes
it possible to couple the analysis with other time-dependent
information, for example measures of consequence of a given
contingency in a specific period of time. The method is
transparent and the resulting data can form the basis for



further analysis, or serve as a benchmark when develop-
ing other methods for predicting HILP events. The method
is exemplified for transmission lines using wind dependent
failure- and outage durations, as they are well known to
contribute to failure bunching effects in the power system
[10], [12]. Results from the analysis can be used, for example,
to prioritize maintenance and repair, strengthening of system
components, rerouting or undergrounding transmission lines,
or improvement of emergency and preparedness plans [10].

The rest of the paper is structured as follows: Section II
defines central terms and introduces the practical implemen-
tation of the method such as the inclusion of failure rates,
outage duration curves and the calculation of unavailability of
transmission lines. In Section III, a sample case study on a
4-bus test system is presented to show the relevance of the
method, before the paper is concluded in Section IV.

II. METHOD

The proposed method calculates the expected instantaneous
unavailability of transmission lines. The method is exempli-
fied using unplanned transmission line outages due to wind,
although the approach can be applied to other components
that are subject to spatio-temporally correlated threats. Instan-
taneous unavailability can be defined as the ”probability that
an item is not in a state to perform as required at a given
instant” [13], where ”a given instant” is here understood as
the time-scale granularity of the analysis, which is set to one
hour in this example. Instantaneous unavailability will from
now on simply be referred to as unavailability.

The method consists of three different steps. Initially, a
time series of failure probabilities of transmission lines due
to wind exposure is either created or served as an input
into the analysis. Probability distributions of outage durations
are then parameterized using historical data. These outage
distributions are then combined with failure probabilities to
create a measure of unavailability of transmission lines.

A. Failure probabilities

Time series of hourly failure probabilities can be calculated
in a number of ways, depending on data availability and need
for accuracy. For weather related phenomena, the combined
use of historical failure data and weather conditions as seen
in [14], [15] can be of great help to capture historical suscep-
tibility to given threats, as well as failure bunching effects.

Time-series of hourly wind dependent failure probabilities
are generated according to the method of [14], with Bayesian
updating of failure rates and fragility curve estimation based
on historical failure and wind exposure. Initially, unique annual
failure rates for each line is calculated by doing a Bayesian
updating using the historical average failure rate due to wind
of all comparable lines in the system, and actual failures due
to wind for individual lines in a given time-span. A fragility
curve is then fitted to a wind exposure measure for each line
segment to distribute the failures in time, before the probability
of failure for each line is calculated as a series system of
failure probability of its line segments. The calculated annual
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Fig. 1. Hourly probability of line failure. Sample.

failure rate after curve fitting is held equal to the annual
failure rate found by Bayesian updating in the previous step to
maintain consistency. The weather data used to calculate wind
exposure of line segments is historical hourly wind speeds in
a 1 kilometer grid based on [16]. A more detailed description
of how to construct the time-series of failure probabilities can
be found in [14].

In this paper a slight alteration of the original method is
done. The fragility curve is not cut off at a lower wind-speed
limit. The relatively low probability of failure at the low end of
the fragility curve matches well with the historical percentage
of failures occurring below 15 m/s wind-speeds at about 20
percent [17], which is the justification of this alteration. A
sample of the calculated hourly failure probabilities due to
wind exposure for one line can be seen in Fig. 1, showing
the hourly probability of failure for a transmission line due to
wind exposure.

B. Outage duration

Events caused by natural hazards are also associated with
longer outage durations due to mechanical damage or lim-
itation to accessibility for repairs [1], [18]. The aim of the
following subsection is to create an outage duration curve that
represents the probability of a component still being out of
operation a given number of hours following a failure caused
by wind exposure.

Outage duration curves is constructed using data from the
Norwegian fault and disturbance database, FASIT [17], [19].
The database contains information on historical failures of
components, delivery point interruptions, and restoration and
repair times. Outage duration is here understood as the time
from a failure occurs until the component is again ready for
operation and covers both temporary and permanent failures.

The outage durations due to wind exposure from the FASIT
data show a right skewed distribution of outage durations as
shown in the histogram in Fig. 2. Other sources of outage
and repair statistics show similar patterns [20], [21]. The two-
parameter log-normal distribution is a good choice to represent



the data, which is in line with what was found by [20]. The
log-normal distribution is given by (1), where f(r) is the
probability density function (PDF) of the distribution of outage
durations of r hours.

f(r) =
1

rσ
√
2π
e
−
(ln(r)− µ)2

2σ2 (1)

The moments found from the FASIT data are then used
to fit a log-normal PDF of outage duration by modifying the
equations for the mean and variance. The method of moments
approach is used to ensure that the mean and variance found
in the data is maintained. The mean (2) and variance (3) of the
outage duration data is used to fit the parameters of the log-
normal distribution in (4) and (5). D represents the random
variable of outage duration, while di represents the unique
outage duration observations in hours.

E(D) =
1

n

n∑

i=1

di (2)

V ar(D) =

∑n
i=1(di − E(D))2

n− 1
(3)

µ = ln

[
E(D)2√

V ar(D) + E(D)2

]
(4)

σ =

√
ln
[
1 +

V ar(D)

E(D)2
]

(5)

Furthermore, we want to know the probability that a com-
ponent has not been restored by a given time, x. This can be
found through the survival function (SF) of the distribution.
The survival function S(x) is the complement of the cumu-
lative distribution function (CDF) denoted F (x), and can be
expressed as in (6).

S(x) = 1− F (x) = 1−
∫ x

0

f(r)dr (6)

The function now describes the probability that a component
is in a failed state for a given number of hours after a
failure event. The original outage duration data and the fitted
distribution can be seen in Fig. 2. However, the outage duration
function is a continuous distribution while the time-series is in
one-hour intervals. To account for this, the approximate mean
value of each time-step is calculated using the trapezoidal rule.

C. Unavailability probability

When failure probabilities are combined with outage dura-
tion probabilities, we get a measure of probability of the line
being unavailable at a given time. Unavailability is calculated
algorithmically by looping through failure probability time-
series and applying the outage probability functions. The logic
behind the approach is best illustrated in pseudo-code, seen in
Algorithm 1. After looping through all time-steps, an approx-
imation of the expected unavailability of the transmission line
at a given time is achieved. The algorithm shows only the
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Fig. 2. Observed outage duration of power lines (132-420kV) 2006-2016.

calculation of unavailability for a single transmission line but
can be repeatedly applied to any number of components.

The algorithm appends the expected unavailability at time
t to a given number of time-steps x ahead of time up until
a given cutoff, taking into account the probability that the
line is already unavailable due to a previous failure. The
cutoff in forward looking time-steps is a trade-off between
computational efficiency and accuracy, and is set to 1000 hours
after the failure in this example.

To correct for the accuracy impact of the chosen 1000 hour
cutoff, we need to compare the area under the SF-curve when
considering the integration of the curve towards infinity versus
an upper bound of 1000 hours. For the former, the alternative
expectation formula (see e.g. [22]) is used, which states that
the integral from zero to infinity of the SF for a continuous
non-negative random variable equals the expected value of the
distribution (7). For the latter, numerical integration is used to
approximate the area under the curve. The ratio of these two
areas, k in (8), can then be used to inflate numbers before the
cutoff. This ensures that the sum of outage duration is kept
the same as without a cutoff.

E(X) =

∫ ∞

0

[1− F (x)]dx (7)

E(D)∫ 1000

0
[1− F (x)]dx

= k (8)

The result of running the algorithm is given in Fig. 3, which
shows the hourly expected unavailability due to wind for a
single transmission line using the proposed method. The figure
is based on the failure probabilities found in Fig. 1 and outage
duration curve in Fig. 2.



Algorithm 1 Algorithm for calculating unavailability
Input: time-series of t failure probabilities
Output: time-series of t unavailability probabilities

Initialisation:
pt ← failure probability at time t
S(x)← outage survival function at time x since failure
ut ← unavailability probability at time t
cutoff← limit to forward propagating time-steps
k ← inflation factor due to cutoff
LOOP Process:

1: for all increasing time steps t do
2: for x in range(0, cutoff) do
3: ut+x+ = pt · (1− ut) · S(x) · k
4: end for
5: end for
6: return ut
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Fig. 3. Hourly probability of line unavailability. Sample.

III. SAMPLE CASE

The goal of this approach is to better capture spatio-
temporal correlations in unavailability due to weather. A test
case is presented to exemplify. Unavailability is calculated
using both the proposed method, and a traditional analytical
method paired with a contingency enumeration approach [23]
as the base case. The results are then compared.

A 4-bus test network, given in [24], presented in [25], is
used to illustrate the test case. The 4-bus test network can be
seen in Fig. 4. Every line in the test-network is given a capacity
of 135 MW. Both generators have the capacity to cover all
demand on their own. Load point 1 (L1) is the prioritized load
point due to a higher cost of Energy Not Supplied (ENS). Only
minimal cutsets are enumerated. Two operating states (OS) are
considered, a high- and a light-load state, which have their
own minimal cuts. The high demand state (OS2) covers the
months December, January and February, while the light-load
state (OS1) covers the remaining months.

A divergence from the original test case is that individual
reliability input data for overhead transmission lines in the test

Fig. 4. 4-bus OPAL network [24].

TABLE I
MODIFIED RATING AND RELIABILITY DATA, TRANSMISSION LINES

Line Rating
[MW]

Failure rate
[failures/year]

Outage time
[hours/failure]

1 135 0.118 11.42
2 135 0.375 11.42
3 135 0.069 11.42
4 135 0.229 11.42

TABLE II
DELIVERY POINT LOAD DEMAND

DP Light load (OS1)
[MW]

Heavy load (OS2)
[MW]

L1 60 100
L2 30 75

TABLE III
INTERRUPTED POWER [MW] DUE TO MINIMAL CUTSETS (MC)

Light load (OS1) Heavy load (OS2)
MC\DP L1 L2 L1 L2
{2} - - - 40
{3} - - - 40
{2,3} 60 30 100 -
{2,4} 60 - 100 -
{3,4} - 30 - -

network is calculated, based on historical weather and outage
durations. This is done to ensure that the same mean values
are used in both the base case and the proposed method. The
modified rating and reliability data is given in Table I. The
delivery point load demand for the different operating states
are given in Table II. Minimal cut-sets (MC) are associated
with an interrupted power (Pinterr) at specific delivery points
(DP) in different operating states (OS), given in Table III.

The base case is a contingency enumeration approach using
average failure rates and outage durations as input to the eval-
uation of the unavailability of the components. Approximate
methods are used to calculate equivalent failure rates, outage
durations and unavailability for higher order contingencies.
Equations for this can be found in any number of reliability
textbooks, see e.g. [26]. Expected annual unavailability for
each operating state and delivery point is calculated as the
product of the annual failure rate and outage duration weighted
according to the duration of each operating state, exemplified



in (9) for OS1 (9 out of 12 months). Expected Annual ENS
(AENS) is calculated as in (10).

UMC,OS1 = λMC · rMC ·
9

12
(9)

AENSMC,OS,DP = UMC,OS · Pinterr,MC,OS,DP (10)

The proposed method relies on the same minimal cutsets
and power interrupted, and has the same average failure
rates and outage times as the base case. However, the input
to the reliability evaluation is time series of failure prob-
abilities and distributions of outage durations. Time series
of hourly unavailability covering 25 years of observations
for four transmission lines is constructed using historical
weather data and outage durations. Single line contingencies
are calculated using the proposed algorithm. The correlation
of failure probabilities between lines are given in Table IV.
Higher order contingencies can be calculated as a system of
independent components in parallel (see e.g. [27]) given the
weather exposure. The expected unavailability of the resulting
time series, ut, in the months of the different operating states
can be summed up and adjusted for the number of years of
observations, y, to find annual unavailability of the cutsets in
the associated operating states, as seen in (11).

UOS =

∑n
t=1,t∈OS ut

y
(11)

TABLE IV
CORRELATION OF FAILURE PROBABILITIES BETWEEN LINES

Line
1 2 3 4

Line

1 1.00 0.74 0.17 0.60
2 0.74 1.00 0.11 0.57
3 0.17 0.11 1.00 0.21
4 0.60 0.57 0.21 1.00

The calculated expected annual unavailability and AENS
are compared in the different approaches. Single line un-
availability can be seen in Fig. 5. Numbers in bars represent
the percentage difference in unavailability when comparing
the proposed method to the base case for each operating
state. Although single line contingencies occur with the same
expected number of hours each year in the two approaches,
the displacement of when unavailability occurs has an effect
on ENS, as single line contingencies only cause ENS in OS2.
The difference in ENS as a result of this displacement can be
observed in Table V. ENS during OS2 for line 2 and 3 is
82% and 79% higher respectively, using the proposed method
than in the base case. This is a reflection of harsher weather
during the winter months which is more accurately captured
by the time-series unavailability in the proposed method.

Spatio-temporal correlations and the associated failure
bunching come into play for second order contingencies. The
total unavailability of second order contingencies have notably
lower estimates during the winter months in the base case
compared to the proposed method, especially when failure
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probabilities are highly correlated. Results in Fig. 6 illustrate
this: Unavailability of the minimal cutset lines 2 and 4 due
to wind in OS2 is 899% higher than in the base case, and
the annual ENS is 387% higher. The reason for this increase
is two-fold. First, the hourly average expected unavailability
is higher during the winter months in this sample. Secondly,
periods of high expected unavailability for the two compo-
nents coincide due to spatio-temporal correlation in weather
exposure for this cutset, thus causing the product of the two
probabilities to sum to larger values than if this was not the
case. This effect is not captured by the base case method.

Single line contingencies dominate the expected annual
unavailability and ENS, compared to the second order con-
tingencies. However, the effects of higher order contingencies
are more relevant to consider in a N-1 secure transmission grid.
The difference in expected annual unavailability and ENS is
239% and 290% higher, respectively, compared with the base
case for second order contingencies.



TABLE V
SUMMARY RESULTS

Base case Proposed method ∆
Unavailability [h/y]
Line 2 4.2789 4.2726 0 %
Line 3 0.7901 0.7897 0 %
Line 2 Line 3 0.0004 0.0007 80 %
Line 2 Line 4 0.0013 0.0051 302 %
Line 3 Line 4 0.0002 0.0006 163 %
Single lines 5.0689 5.0623 0 %
2nd order contingencies 0.0019 0.0065 239 %
Total 5.0708 5.0687 0 %
AENS [MWh/y]
Line 2 42.7886 77.9177 82 %
Line 3 7.9005 14.1269 79 %
Line 2 Line 3 0.0357 0.0670 88 %
Line 2 Line 4 0.0895 0.4358 387 %
Line 3 Line 4 0.0053 0.0064 21 %
Single lines 50.6891 92.0445 82 %
2nd order contingencies 0.1305 0.5093 290 %
Total 50.8195 92.5538 82 %

IV. CONCLUSION

In this paper we have developed a method of calculating
time-series unavailability of components in the electrical trans-
mission system due to external threats that exhibit spatio-
temporal correlation. The solution is exemplified in a test
case, which shows that the proposed method captures spatio-
temporal correlation in threat exposure more accurately than
the base case method. When combining the time-series output
of expected unavailability with a consequence analyses we get
a more complete view of the associated risks. In the test case,
this results in an almost four times higher AENS due to a
second order cutset with highly correlated wind exposure.

The proposed method must make a trade-off between the
need for accuracy and computational efficiency, and as a
consequence it relies on several approximations in distributing
outage durations in time. However, comparison of single line
contingencies show that there are small differences in annual
expected unavailability in the approaches, which indicates that
the effects of the approximations are limited. It can be argued
that the benefits of capturing the spatio-temporal correlations
in the analysis of higher order contingencies outweighs the
negative impact of these approximations.

By identifying lines that has a high impact on a given
consequence metric, such as ENS, in conjunction with other
lines, strengthening measures can be prioritized and initiated
on lines that have the greatest consequence reducing effects.
The proposed method is a useful approach that may contribute
to reducing the probability of HILP events and thereby, to a
more resilient grid.
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Abstract: Extreme weather is known to cause failure bunching in electrical transmission systems.
However, protection systems can also contribute to the worsening of the system state through
various failure modes—spontaneous, missing or unwanted operation. The latter two types of
failures only occur when an initial failure has happened, and thus are more likely to happen when
the probability of failure of transmission lines is high, such as in an extreme weather scenario.
This causes an exacerbation of failure bunching effects, increasing the risk of blackouts, or High
Impact Low Probability (HILP) events. This paper describes a method to model transmission line
failure rates, considering both protection system reliability and extreme weather exposure. A case
study is presented using the IEEE 24 bus Reliability Test System (RTS) test system. The case study,
using both an approximate method as well as a time-series approach to calculate reliability indices,
demonstrates both a compact generalization of including protection system failures in reliability
analysis, as well as the interaction between weather exposure and protection system failures and
its impact on power system reliability indices. The results show that the inclusion of protection
system failures can have a large impact on the estimated occurrence of higher order contingencies for
adjacent lines, especially for lines with correlated weather exposure.

Keywords: protection systems; failure bunching; extreme weather; reliability; HILP; extraordinary events

1. Introduction

Society is dependent on a reliable supply of electricity for its normal operation, and
thus power outages can have severe consequences. Major blackouts are often due to
multiple component outages, caused by environmental factors [1–5], and/or dependent
failures such as protection system failures [6]. The increased probability of failure of
one or more components in a short period of time due to extreme weather has been
termed failure bunching, and models have been developed to capture such effects in power
system reliability studies by using both analytical methods and Monte Carlo simulation
methods [7–10]. Large blackouts are often a consequence of complex series of events,
such as cascading failures [11]. A distinction in the structure of cascading blackouts is
made in [12] between a triggering event, which can be simple component failure(s), and
generation of propagating events, caused by preceding events and a change in the power
system state.

One of the causes of propagating events is the misoperation of protection systems [4,11,13].
Overlapping outages of highly reliable components, whose probability is the product of the
individual component outage probabilities, can be rather small even if their individual probabil-
ities are relatively high. Dependent failures, such as protection system failures, can however
lead to the same set of simultaneous component outages with a much higher probability than
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what the simultaneous independent outages might suggest [14]. This will in turn increase the
risk of the scenario, as a function of its probability and consequence [15]. Previous studies
have shown how protection system failures can have a significant impact on system reliability
evaluation [16,17]. Combining the effects of failure bunching with protection system failures
may give more realistic picture of the power system reliability assessment.

The hypothesis in this paper is that the combination of failure bunching effects and
protection system failures will increase the risk of blackout events. To the best of our
knowledge, this hypothesis was not investigated before in a quantifiable manner with
respect to system reliability. The goal of this paper is to carry out investigations to verify
the proposed hypothesis. The unique contributions made in this paper are as follows:
A generalized compact system of equations using graph theory has been formulated to
quantify the impact of protection system failures on power system reliability, based on [17].
Graph theory helps establish a systematic identification of propagation of transmission
line failures due to misoperation of protection systems. These equations are then used to
incorporate the effects of failure bunching due to harsh weather on the system reliability.
Subsequently, these equations are applied to time-series of failure probability of transmis-
sion lines specifically due to wind conditions. It should be noted that the procedure is not
only applicable to wind-dependent threats but can be used with any time-varying threats,
e.g., due to other weather conditions.

The paper is structured as follows: In Section 2, previous work on failure bunching
effects and protection system reliability is presented, together with a short review of graph
theory and its use in this study of power systems reliability. In Section 3, a general and com-
pact method for calculating reliability indices including protection system misoperations is
presented, using both approximate methods and a time-series method. Section 4 presents
a case study where the method is applied, before the paper is concluded in Section 5.
This paper is an extension of the work presented in [18], incorporating an extended litera-
ture review, updated equations, calculation of unavailability for the time-series method,
additional illustrations as well as an extended case study and results.

2. Failure Bunching and Protection System Failures

Harsh weather has long been known to cause common cause failures within short
periods of time, often termed failure bunching. One way of incorporating such effects is to
use multi-state Markov models or similar approximate methods when calculating reliability,
another is to utilize Monte Carlo simulation techniques [3,19,20]. In [19], the effect of failure
bunching due to wind exposure is captured using historical failure data and a Bayesian
updating scheme to estimate annual wind dependent failure rates of transmission lines.
The annual failure rate is then spread out in time by combining fragility curve modeling
and a dataset of historical wind speeds for the lines in question. This results in hourly
time-series of wind dependent failure probability for the lines. This approach has been
applied to create similar time-series of failure probability due to other weather effects such
as icing and lightning, which is further used together with a Monte Carlo-based tool to
calculate system consequences in terms of interrupted power and interruption costs in [21].

In [10] an analytical technique is used to calculate time-series of expected unavailability
of transmission lines due to wind conditions, instead of using a Monte Carlo approach. For
each hour, the probability of failure of the transmission line is paired with a distribution of
outage duration. An iterative algorithm then appends the probability of the component
being unavailable due to a failure at a specific time for a given number of hours ahead
in time. A contingency enumeration approach, defining outage combinations as cut-
set structures [22,23] is used together with the time-series of expected unavailability of
transmission lines to calculate annual Energy Not Supplied (ENS) for the system.

In this paper, a failure of a component is understood as a loss of ability to perform as
required, leading to a fault, where the former is understood as an event, while the latter is
understood as a state [24]. An outage is understood as the loss of ability of a component to
deliver power, which may or may not cause an interruption of service to customers [25].
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A contingency is understood as an outage occurrence of a single system component, or
the concurrent outage of two or more system components [24]. A set is sometimes used
interchangeably with a contingency. A cut-set is understood as a contingency which causes
end-user consequences in terms of interrupted power. A cut-set is said to be minimal if the
set cannot be reduced without loosing its status as a cut-set [26].

Protection systems are expected to be both dependable and secure [6,17]. Missing
operation of the protection system occurs if it fails to react appropriately to a situation
it is designed to respond to and would be a shortfall of the dependability of the system.
Similarly would an unwanted operation occur if the protection system reacts to conditions
it is not designed to react to, and is a shortfall of the security of the system [17]. This cor-
responds to the protection system misoperation types defined in [27]. Protection systems
have previously been incorporated in power systems reliability analysis in multiple ways,
such as through Markov models [14,16] and approximate methods [17,28].

Dependability and security were the basis in [17] to construct different scenarios in
which protection system reliability can cause a transmission line to be isolated from the
network. This gave rise to four fault types [17]: Fault type 1 (FT1) is the failure rate of the
transmission line in focus. Fault type 2 (FT2) represents failures due to the spontaneous
unwanted operation of a line’s own protection system. Fault type 3 (FT3) is explained by
a situation where a failure occurs on a neighboring line but is not correctly cleared due
to missing operation of the neighboring line’s protection system, and thus causes the line
in focus to be isolated from the system. Fault Type 4 (FT4) is a result of a fault on the
neighboring line that is correctly cleared by the neighboring line’s protection system but
causes an unwanted non-selective tripping of the line in focus. An equivalent failure rate
for each line is then constructed as a summation of these four failure type contributions. The
method is a contingency enumeration approach, where an approximate system reliability
evaluation is used to obtain reliability indices for predefined minimal cut-sets. A more
detailed presentation of the approach can be found in [17].

Complex network theory and graph-theoretic approaches have been used in the litera-
ture on cascading failures to study the power system, e.g., to identify critical components
[29–31]. Protection system failures and misoperation have a propagating effect between
components, and it is similarly necessary to consider the adjacency between them. The
power system lends itself to a graph-based representation. A graph (G) is an object con-
sisting of an ordered vertex set (V) and edge set (E) joining the vertices through its two
connected buses u and v, as seen in (1)–(3), where n is the number of vertices in the graph
and m is the number of edges in the graph, see e.g., [32,33]. Intuitively, it is natural to
think of buses, b, as vertices and components such as transmission lines, l, as edges when
it comes to representing the power system as a graph. An illustrative graph representation
of a 4-bus power system following these conventions can be seen in Figure 1.

In the following, the graph-based representation of relationships between components is a
useful tool to incorporate protection system failures into power system reliability analysis.

G = (V, E) (1)

V = {b1, b2, . . . , bn} (2)

E = {l1, l2, . . . , lm} =
{
{u1, v1}, {u2, v2}, . . . , {um, vm}

}
(3)
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b1 b2

b3 b4

l1 = {1, 2}

l2 = {1, 3} l3 = {2, 4}

l4 = {3, 4}

Figure 1. Illustrative graph of a 4-bus power system.

3. Method

In this section, a general and compact method for calculating reliability indices in-
cluding protection system misoperations is postulated, using both approximate methods
and a time-series method, based on the definitions of fault types as originally proposed
in [17]. The basis for approximate methods is [34] in Section 3.1, and that for a time-series
approach is [10] in Section 3.2.

In power systems, we normally look at buses as vertices and transmission lines as
edges. However, the idea behind the proposed methodology in this paper is to see vertices
as transmission lines and edges as dependencies. This structure can then be utilized to
calculate the contribution to failure rates at a given transmission line, given failures at
adjacent lines.

When including protection system failures into the system, we consider two different
types of lines in each case: the target line i, for which we wish to calculate the failure rates,
and the source line j, which is adjacent to the target line and contributes to the failure rate
of the target line through propagation of protection system failures. The target- and source
lines are adjacent lines if they are connected to a common bus, as seen in Figure 2. The
subscript l is used when it is not specific if the line is a target or a source line.

Pa
i λi Pb

i
Pa

j λj Pb
j

Connecting bus c

Target line i Source line j

Figure 2. Two adjacent transmission lines, i and j.

A line is associated with a protection system on each end. These are referred to as
the a-side and the b-side protection system, represented as the set s = {a, b} for simplicity.
For a line l, the failure rate of the line λl , and the two protection systems, Ps

l are consid-
ered. The protection systems have three parameters: (1) a specific annual failure rate, λs

l ,
(2) a conditional probability of missing operation, ps,m

l , if the line experiences a failure,
and (3) upon a correctly cleared failure of an adjacent line, a conditional probability of
unwanted non-selective tripping at the target line, ps,u

l . The associated outage duration, r,
is denoted with a subscript indicating which line is considered, and a superscript indicating
which fault type it is applicable to. All line- and protection system specific information is
represented as ordered column vectors.

The primary concern is how misoperation of the protection system of one transmission
line can cause an adjacent line to be isolated from the system. The system can initially
be considered a graph G, where each edge l = {u, v} represents a transmission line, and
the buses are represented by vertices, which are unique observations of u and v. Let u
represent the a-side connecting bus of a transmission line, and v the b-side connecting bus
of the line. An adjacency matrix indicates connections between vertices and is used to
represent the system in a form where vertices are transmission lines and edges are directed
paths of failure propagation between the lines. An adjacency matrix is constructed for
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each side of the source line, As in (4), to take into account which side of the source line is
connected to the target line. The adjacency matrix is an ordered l ∗ l-matrix, where rows
represent a target line i and columns represent a source line j. If line j is connected to line i
through its s-side, it is marked with a digit 1 in the appropriate element of the matrix, 0
otherwise. Matrices are typeset in uppercase regular font, vectors are typeset in lowercase
bold italic, while scalar values such as specific elements of vectors or matrices are typeset
with italic fonts.

As =
[
as

i,j
]
=




a1,1 . . . a1,l
...

. . .
...

al,l . . . al,l


 , where : (4)

aa
i,j =

{
1 if uj ∈ {ui, vi}
0 Otherwise

ab
i,j =

{
1 if vj ∈ {ui, vi}
0 Otherwise

s ∈ {a, b}
i ∈ {1, . . . , l}
j ∈ {1, . . . , l}

The system can now be represented as a transformed graph, where transmission lines
are represented as vertices, and directed edges are possible paths of failure propagation
due to protection system failures. Figure 3 gives a visual representation of the 4-bus system
presented in Figure 1, where the adjacency matrices defines the directed edges between the
source line and the target line in the graph.

l1

l2 l3

l4

a a
1,3

aa 1,2

aa 2,1

a a
2,4

a b
3,1

ab 4,3

ab 3,4
a b
4,2

A-side of source line

B-side of source line

Figure 3. Transformed 4-bus system. Transmission lines as vertices, edges as propagation paths.
Labeled edges correspond to elements in the resulting adjacency matrices marked with a digit 1.

The adjacency matrix can then be further modified to incorporate the probability that
a failure on a source line will propagate to a target line. From the initial equations in [17],
it is clear that only FT3 and FT4 stem from adjacent lines and as such these fault types will
receive the primary focus in this paper.

FT3 is related to a failure on an adjacent line, which is not correctly cleared by the
adjacent line’s protection system. The probability of missing operation of the protection
system on the s side for a given line is represented by the column vector ps,m

l . A matrix
containing the probability that a failure propagates from the source line j to the target line i
through the FT3 mechanism is created, named PT3, by modifying the adjacency matrix (5).

PT3 = ∑
s

[
As · diag(ps,m)

]
(5)
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PT3 only takes into consideration the properties of line j’s protection systems. The
same probability matrix for FT4, a failure on the source line causing an unwanted non-
selective tripping of the protection systems at the target line, PT4, must consider protection
system properties of both the target line and the source line. The probability of line j
successfully clearing a failure on its own line is included first in (6), followed by the proba-
bility of an unwanted non-selective tripping at line i, incorporated through transposing
the matrix. Note that the probability of spontaneous unwanted operation is represented
by a single column vector since the target line response is considered side-independent,
where pu

l = P(pa,u
l ∪ pb,u

l ).

PT4 = ∑
s

[[
As · diag(1− ps,m)

]T · diag(pu)
]T

(6)

Matrices representing the probability of different fault types propagating from a
source line to a target line have now been established. These can be applied to calculate
systems reliability indices for cut-sets. Two methods are presented here: an approximate
method of system reliability using annual failure rates including protection system failures,
and a method to calculate time series of probability of failure due to different fault types,
which can be used together with [10] to calculate unavailability of cut-sets.

3.1. Approximate Method

This approach starts by calculating the equivalent failure rate of each line by consid-
ering each line a target line. The equivalent failure rate is calculated based on the failure
rate of the line itself (FT1) and its protection systems (FT2), and the fault types FT3 and
FT4 propagating from adjacent lines, following the method in [17]. FT1 and FT2 are only
dependent on information of the line itself and is repeated for reference here (7) and (8).
FT3 and FT4 are calculated by using the associated probability matrices (9) and (10). The
multiplication of the matrices with the line failure rate vectors gives vectors of FT3 and
FT4 failure rate contributions from all source lines at the target line.

f t1i = λl (7)

f t2i = ∑∑∑
s

λs
l (8)

f t3i = PT3 · λl (9)

f t4i = PT4 · λl (10)

Equivalent failure rate, incorporating protection system failures is then calculated as
λ′ in (11).

λ′ = f t1 + f t2 + f t3 + f t4 (11)

From this, equivalent unavailability and outage durations for all target lines is found
in (12) and (13), where the vectors of fault type contributions are paired with vectors
of the associated repair or switching times using element-wise Hadamard operations
(◦ signifies the Hadamard product, where cij = aij · bij, and � is used for Hadamard
division, see e.g., [35] for an introduction). A slight adjustment is made when incorporating
unavailability due to FT3. As opposed to the other fault types, FT3 is dependent on the
switching time at the source line, j, rather than that at the target line i. To include this, the
contribution of the unavailability from the source line to target line is carried through the
probability matrix for FT3.

U′ = f t1 ◦ rFT1 + f t2 ◦ rFT2 + PT3 · [λ ◦ rFT3] + f t4 ◦ rFT4 (12)

r′ = U′ � λ′ (13)
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Vectors containing reliability indices for single lines are now established. Second order
cut-sets involving two lines x and y can now be calculated in a general form, avoiding a
distinction in equations between adjacent and non-adjacent lines by utilizing the matrix of
adjacency adjusted probabilities. If two lines in a cut-set are adjacent and they experience a
FT3 or a FT4 where the source line is the other line in the cut-set, they will both surely be
unavailable. This means that these dependent failures should be treated separately from
the independent failures. Adjustments for dependent failures between individual lines in
the cut-set are created in (14) and (15) before calculating the new expected restoration time
of the cut-set due to independent failures in (16).

λa
x =

(
pt3x,y + pt4x,y

)
· f t1y (14)

Ua
x =

(
pt3x,y · rFT3

y + pt4x,y · rFT4
x

)
· f t1y (15)

rn
x = (U′x −Ua

x)/(λ
′
x − λa

x) (16)

However, to account for both lines in the cut-set failing simultaneously due to the
occurrence of a FT3 or FT4 of an adjacent line also in the cut-set, an added dependency
mode failure rate, λD, is created in (17). The dependency mode failure rate and the expected
unavailability due to these dependent events is used to calculate the associated expected
restoration time in (18). It is important to note that if the lines are not adjacent, the elements
{x, y} and {y, x} in the probability matrices will be zero, and hence all adjustments and the
dependency mode failure rate will be zero. The failure rate of the cut-set will be calculated
on the basis of independent component failures if the components are not adjacent.

λD
{x,y} = λa

x + λa
y (17)

rD
{x,y} =

{
(Ua

x + Ua
y)/λD

{x,y} if λD
{x,y} > 0

0 Otherwise
(18)

The equivalent annual failure rate, expected annual unavailability and expected
restoration time for the cut-set including any potential dependent failures are then calcu-
lated in (19)–(21).

λ′{x,y} =
(λ′x − λa

x)
(

λ′y − λa
y

)(
rn

x + rn
y

)

8760
+ λD

{x,y} (19)

U′{x,y} =
(λ′x − λa

x)
(

λ′y − λa
y

)(
rn

x · rn
y

)

8760
+ λD

{x,y} · rD
{x,y} (20)

r′{x,y} =
U′{x,y}
λ′{x,y}

(21)

3.2. Time Series Method

Time series of failure probability can be used to incorporate varying failure prob-
abilities due to exposure to external threats, e.g., wind, lightning, icing etc., leading to
failure bunching effects. For time series, unavailability and associated reliability indices for
cut-sets are calculated using the time series of different fault types, dependent on adjacency,
as explained in this subsection. The algorithmic method outlined in [10] is used to calculate
resulting unavailability and further reliability indices.

The addition of a time dimension to failure rates makes it necessary to make alterations
to the equations in Section 3.1. The probability matrices established in Section 3 can still be
used, assuming that the probability of a failure propagating is time independent. Time-
series of hourly failure probabilities for a set of lines, as presented in (22), is now considered.
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When referring to the time-series of failure probability for a single line, the column vector
is denoted λ:,l. The fault types for a single target line i are given in (23)–(27).

λs =
[
λs

t,l
]
=




λ1,1 . . . λ1,l
...

. . .
...

λt,1 . . . λt,l


 (22)

FT1:,i = λ:,l (23)

FT2:,i = [ f t2t,i], where f t2t,i =
∑s λs

l
8760

(24)

FT3:,i = ∑
j
[λ:,j · pt3i,j] (25)

FT4:,i = ∑
j
[λ:,j · pt4i,j] (26)

λ′:,i = FT1:,i + FT2:,i + FT3:,i + FT4:,i (27)

When calculating the unavailability and failure probability of second order cut-sets it
is necessary to adjust FT3 and FT4 to account for adjacency as was done in the approximate
equations, for both lines x and y, as seen in (28) and (29). A time series of dependency
mode failure probability for the two lines in conjunction is calculated in (30). Again, the
adjustments and dependency mode failure rate are equal to zero if the lines are not adjacent.

FT3′:,x = FT3:,x − FT1:,y · pt3x,y (28)

FT4′:,x = FT4:,x − FT1:,y · pt4x,y (29)

λD
:,{x,y} = FT1:,y · pt3x,y + FT1:,y · pt4x,y + FT1:,x · pt3y,x + FT1:,x · pt4y,x (30)

For the cut-set itself, time-series of unavailability of individual lines with updated
fault type values for FT3 and FT4 is calculated. The unavailability due to dependent faults
is calculated as a separate time series, using restoration times according to the relevant line
and the fault type. The calculation of unavailability is done using the method outlined
in [10]. The result is a time series of the probability of the component being unavailable
at a given point in time, which together with the unavailability due to the dependency
mode failure probability is combined to the unavailability of the cut-set in (31). Once the
time-series of unavailability is established, this is used to calculate the failure probability
of the cut-set in (32).

U′:,{x,y} = U′:,x ◦U′:,y + UD
:,{x,y} (31)

λ′:,{x,y} = U′:,x ◦ λ:,y + U:,y ◦ λ:,x + λD
:,{x,y} (32)

4. Case Study

A test case is constructed to exemplify the combined effect of failure bunching due
to weather and protection system failures on power systems reliability. The test case is
based on the topology and annual failure rates from the 24-bus IEEE Reliability Test System
(RTS) [36] with added protection systems. Only Permanent Outage Rates (POR) for the
branches are considered. A representation of the system with numbered branches can
be seen in Figure 4. A contingency enumeration approach is employed to evaluate the
reliability of the system. A consequence analysis is performed at peak load, using an AC
OPF algorithm with load shedding, as described in [37] yielding interrupted power at load
points for the different cut-sets. The calculated interrupted power is used together with the
unavailability of the cut-sets to calculate their respective contributions to annual Expected
Energy Not Supplied (ENS) of the system.
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Figure 4. Twenty-four-bus Reliability Test System (RTS) [36] with component labels. Overhead
transmission line unless otherwise noted.

Time series of hourly probability of failure due to wind conditions is calculated
according to the method outlined in [19]. The time series covers 30 years of hourly estimated
failure probabilities due to wind for actual lines in the Norwegian transmission system
based on historical weather. This incorporates correlated weather exposure between lines
in the data material. For the time-series, 75 percent of the failure probability is assumed to
be constant, while 25 percent is scaled wind dependent failure probability varying at an
hourly interval. Transformers and cables are assumed unaffected by wind, and are given a
constant failure rate throughout the year. Annual failure rates due to permanent outages
for the branches and the associated outage durations can be found in [36]. All protection
systems are assumed to have an annual failure rate λs

l = 0.025. The probability of missing
operation of the protection system is assumed to be Ps,m

s = 0.0205. The probability of
unwanted non-selective tripping of the protection systems is assumed to be Ps,u

l = 0.007.
Repair of protection system units, relevant to FT2, is assumed to be 2 h. FT3 and FT4 are
associated with a 0.5 h switching time. These parameter values are in line with the case
study presented in [17].

Unavailability of the different cut-sets are calculated in four ways: (1) A base case
using an approximate method of reliability evaluation not including protection system
failures [34]. (2) An approximate method including protection systems failures, as outlined
in Section 3.1. (3) A time-series method including wind-dependent failure rates, as outlined
in [10]. (4) A time-series method including wind-dependent failure rates adjusted for
protection system faults, as outlined in Section 3.2. A simplification is done compared
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to the original approach in [10] when calculating time-series of unavailability, where
restoration times are assumed to be constant values, rather than distributions.

Adjacency matrices are created and weighted according to dependent probabilities
and failure rates following the procedure in Section 3 to incorporate protection system
reliability into the analysis. The results can be illustrated for the single line, branch 35, in
Figure 5, where vertices are transmission lines and the directed edges show the adjacency
between the lines. The line-style of the edges indicates the source line protection system
side (A-side is dashed, B-side is dotted). To accumulate results, all edges leading into
a vertex are summed up to see the contribution of FT3 and FT4 from the adjacent lines.
Note the double connection between lines 34 and 35 appearing, causing line 34 to contribute
to FT3 and FT4 at line 35 through two separate paths.

35

34 36

37 29

35
FT1 = 0.3800
FT2 = 0.0500
FT3 = 0.0365
FT4 = 0.0243

λ′ = 0.4908

FT3 : 0.0078

FT4 : 0.0052

FT3 : 0.0070

FT4 : 0.0046

FT3 : 0.0078

FT4 : 0.0052

FT3 : 0.0
07

0

FT4 : 0.0
04

6

FT3 : 0.0
07

0

FT4 : 0.0
04

6

A-side of source line

B-side of source line

Figure 5. Contributions to fault type 3 (FT3) and FT4 for line 35 from adjacent lines. FT1–FT4 and
adjusted failure rate for line 35. Annual values.

Figure 6 shows a 40 hour sample of the probability of failure for the individual com-
ponents in the cut-set {26, 27}, as well as the calculated unavailability of the cut-set, to
illustrate the method. The lines in the cut-set are adjacent at a single bus. In the top panel,
the independent failure probabilities of the lines are relatively high, peaking around the
tenth hour, while the dependency mode failure probability is comparably low. The depen-
dency mode failure rate does however have a large impact on the failure probability of the
cut-set due to its additive nature, as seen in the mid panel, where the failure probability of
the cut-set is calculated with and without the inclusion of protection system failures. The
resulting unavailability of the cut-set, illustrated in the lower panel, shows the impact of
protection system failures as a short spike in unavailability compared to the case exclud-
ing protection system failures. This spike is due to the notably shorter outage durations
associated with FT3 and FT4 of only thirty minutes, as compared with the permanent
outage duration of independent faults for the lines at 11 hours. The unavailability only
considering independent failures, with longer outage durations, is illustrated by the more
rounded, dotted line.

The failure rates for sets of components in different categories are summarized in
Table 1. These are not necessarily cut-sets causing load curtailment for the RTS at peak load,
however, but show the impact on failure rate and unavailability of the methods described
in the paper on different sets of network components in different topologies. For single
lines, the approximate and time-series methods yield similar results. This is expected, as
the time-series method only points out when the failure occurs but does not alter the annual
failure rate in any way. The inclusion of protection systems has a limited impact on the
annual failure rate for individual cables and lines but a large impact for transformers. This
is due to the initially low failure rate of the transformers, when paired with a comparably
high failure rate of its protection systems affecting FT2 in addition to contributions from
adjacent lines through FT3 and FT4. For second order sets where the components are not
adjacent, the sets containing at least one component with a constant failure rate, e.g., cables,
are similar across the methods. The inclusion of protection systems causes a small increase
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in the failure rate but there is no effect due to weather. However, when looking at sets
including two overhead transmission lines, the effect of correlated weather causes a large
increase in failure rate from the approximate method to the time series method, both not
including protection systems. The failure rate increases sharply for sets where components
are adjacent when protection systems are included in the evaluation. More importantly,
the frequency of occurrence of some states is notably greater when protection systems and
weather effects are both taken into consideration.
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Figure 6. Individual failure probability of components in cut-set {26, 27} and dependency mode
failure probability for a 40 hour time-window. Failure probability and unavailability of cut-set,
including and excluding protection system failures.

Table 1. Annual failure rate for outages within different set categories [λ/y].

Set Information Method 1

Approximate Time Series

Connection Components No PS PS No PS PS

- Cable 0.570 0.773 0.570 0.773
- Line 12.250 15.534 12.250 15.534
- Transformer 0.100 0.673 0.100 0.673

None Cable-Cable 0.000 0.001 0.000 0.001
None Cable-Line 0.027 0.035 0.027 0.038
None Cable-Trans 0.004 0.006 0.004 0.006
None Line-Line 0.155 0.202 0.627 0.755
None Line-Trans 0.094 0.127 0.093 0.138
None Trans-Trans 0.000 0.003 0.000 0.003

1 bus Cable-Line 0.003 0.172 0.003 0.173
1 bus Cable-Trans 0.001 0.026 0.001 0.026
1 bus Line-Line 0.020 1.477 0.111 1.581
1 bus Line-Trans 0.015 0.330 0.015 0.332
1 bus Trans-Trans 0.000 0.007 0.000 0.007

2 buses Line-Line 0.001 0.204 0.010 0.214

1 Approximate and time-series method, excluding and including protection system failures (PS).
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In terms of unavailability of sets of components, Table 2 shows a somewhat different
story. The single contingency of a transformer has a 5.7 times increase in failure probability
when protection systems are included in the analysis but has nearly no change in expected
unavailability. This is due to the short outage durations associated with protection systems
failures in the model. Again, sets of components which are both exposed to correlated
weather, such as overhead transmission lines, experience the largest increase in annual
unavailability. The most extreme being the case of two overhead lines sharing both buses,
where the time-series method including protection systems reliability has an expected
unavailability 20 times higher than what is found using the approximate method without
including protection systems failures.

ENS for the system calculated using the different methods is shown in Table 3. The
transmission system is usually operated by the N-1 criterion, and only second order
contingencies are considered here. Considering cut-sets consisting of two components
with no shared buses, the majority of increase in ENS stems from the inclusion of weather
effects in the model, affecting overhead transmission line cut-sets. For cut-sets with
adjacent components, the inclusion of protection systems has the largest impact compared
to the base case, although weather effects have almost the same impact as the inclusion
of protection systems for overhead transmission line cut-sets within this category. The
impact seen in second order cut-sets suggests that protection systems and weather effects
are important aspects to consider when evaluating the reliability of supply.

Table 2. Annual unavailability for outages within different set categories [h/y].

Set Information Method

Approximate Time Series

Connection Components No PS PS No PS PS

- Cable 15.390 15.641 15.372 15.624
- Line 130.780 134.747 129.571 133.921
- Transformer 76.800 77.462 76.570 77.230

None Cable-Cable 0.005 0.005 0.005 0.005
None Cable-Line 0.206 0.215 0.203 0.212
None Cable-Trans 0.094 0.097 0.094 0.096
None Line-Line 0.826 0.876 3.415 3.575
None Line-Trans 0.988 1.027 0.976 1.009
None Trans-Trans 0.162 0.164 0.161 0.163

1 bus Cable-Line 0.024 0.109 0.024 0.109
1 bus Cable-Trans 0.041 0.053 0.040 0.053
1 bus Line-Line 0.111 0.842 0.630 1.395
1 bus Line-Trans 0.158 0.319 0.156 0.318
1 bus Trans-Trans 0.108 0.112 0.107 0.111

2 buses Line-Line 0.008 0.109 0.057 0.161

Table 3. Energy Not Supplied (ENS) due to second order cut-sets, calculated using different methods;
in MWh/year.

Cut-Set Information Method

Approximate Time Series

Connection No PS PS No PS PS

Unconnected 373 390 999 1032
of which is Line-Line 211 222 839 867
Connected at 1 bus 22 125 107 214
of which is Line-Line 9 71 94 160

Total 395 515 1107 1246
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The approach can support decision makers in taking appropriate actions based on
risk and socioeconomic considerations. The revelation of cut-sets with a high ENS may
guide prioritization in grid hardening efforts, such as enhancing robustness of lines, un-
dergrounding of overhead transmission lines, or investment in new transmission routes.
Identification of adjacent cut-sets with high failure rates due to propagating failures may
similarly support prioritized inspection and maintenance efforts of the associated protec-
tion systems.

5. Conclusions

In this paper we have shown a compact and generalized method of including pro-
tection system failures in power system reliability analysis, based on a graph-theoretical
approach. The use of adjacency matrices in the approach is novel. This incorporates the
topology of the grid and possible paths of failure propagation due to protection system
misoperation into the reliability analysis as a set of matrix operations. The method was
extended further to account for time-series of failure probability in the analysis, allowing
for inclusion of both protection system misoperation and time-varying failure probabilities
throughout the year due to weather exposure.

Our investigations confirm the hypothesis that the combination of failure bunching
effects and protection system failures adversely impact power system reliability. A case
study was presented to show the effect on reliability of supply when weather exposure and
protection system misoperation were implemented into the analysis. The case study shows
that taking protection system reliability and the adjacency of transmission lines into account
can have a large impact on the contribution to annual ENS from certain cut-sets due to the
propagation of protection system failures. Since protection system misoperation follows
an initial failure, propagating failures cluster around periods of high failure probability
from other causes, and further increase risks associated with failure bunching effects. Thus,
taking a time-series approach to capture time-varying failure rates including protection
system failures can more accurately quantify the reliability of supply. This is especially
important for more frequently occurring second order cut-sets. Taking the time-series
approach would also be especially relevant when considering multiple operating states
throughout the year. The results of the analysis can support decision makers in risk-based
prioritization of grid hardening, inspection or maintenance efforts.

The compact and generalized method presented can be implemented with ease on
large power systems. The results can be used to prioritize preventive and corrective
measures aiming to reduce risks associated with unwanted events in the power system. The
use of adjacency matrices to incorporate dependencies between component outages in the
reliability evaluation was exemplified using an approximate method and an analytical time-
series method. The use of the probability matrices could, however, also be implemented
into Monte Carlo based tools to the same effect.
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1 INTRODUCTION 

A high-impact low-probability (HILP) event, also re-
ferred to as an extraordinary event, is an event with a 
high societal impact and a low probability to occur. 
In power systems, such events are often understood 
as blackouts, i.e. wide-area power interruptions. A 
number of such major blackout events have occurred 
in the last few decades (Bompard et al. 2013, Hillberg 
2016), each resulting in critical consequences to soci-
ety. Such events therefore receive great attention both 
by power system operators and other stakeholders, 
such as researchers and the general public, despite 
their low probability of occurrence. Partly due to this 
low probability, these events typically are not cap-
tured in conventional reliability and risk analyses, 
which calls for analysis approaches specific to HILP 
events. 

HILP events historically involve a multitude of di-
verse and disparate threats and complex sequences of 
events, which present the analysts and researchers 
studying them with numerous uncertainties. Relevant 
aspects that can be taken into account in quantitative 
modelling of HILP events include: failure bunching 
due extreme weather (Panteli and Mancarella 2015),  
other natural hazards, cascading outages (Vaiman et 
al. 2012, Dobson and Newman 2017), dynamic phe-
nomena, system protection schemes (Hillberg et al. 
2012), corrective actions (Vadlamudi et al. 2016), 

and valuation of the societal impact. Different ap-
proaches and methodologies exist for quantitatively 
analysing these events (Gjerde et al. 2011), including 
methods of identifying unwanted events, causal anal-
ysis, consequence analysis, and risk and vulnerability 
evaluation. Such methods typically focus on one or a 
subset of all potentially relevant aspects. The realiza-
tion is that there is no single methodology covering 
all these aspects that is suitable for analyzing HILP 
events in power systems (Kjølle et al. 2013), and the 
full set of aspects is too comprehensive to analyse 
quantitatively. Without a clear understanding of what 
specifically is the problem to be solved or decision to 
be supported, and consequently which aspects are im-
portant to capture, elaborate quantitative analysis may 
be of limited value.  

In this paper, we take a broader view on HILP 
events and present the development of a qualitative 
framework for analysing HILP events in power sys-
tems. A qualitative framework provides the analyst 
with a more complete overview of the set of problems 
and a starting point for detailed analysis. Previous 
work on HILP events largely focus on methods of de-
tailed, quantitative analysis (Vaiman et al. 2012), but 
some work on the more conceptual level also exists. 
For instance, (Watson et al. 2014) developed a frame-
work for resilience metrics for energy infrastructures. 
In (Veeramany et al. 2016), an overarching modelling 
framework is formulated under which different mod-
els can be integrated for an multi-hazard risk assess-
ment of power system HILP events. The cascading 
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aspect of some  HILP events is discussed conceptu-
ally in (Vaiman et al. 2012, Dobson and Newman 
2017). 

The qualitative framework presented in this paper 
is based on an existing framework for power system 
vulnerability analysis (Kjølle et al. 2013, Kjølle and 
Gjerde 2015). The present paper advance previous 
work and attempts to consolidate relevant aspects of 
HILP events in a consistent and all-encompassing 
mapping. This framework explicitly discusses and 
structures uncertainties related to different decision 
problems. The framework is presented in Section 2, 
which forms the bulk of this paper. Subsection 2.1 
shows how mapping relevant aspects and their rela-
tionships to a bow tie model provides a more com-
plete overview of HILP events. Subsection 2.2 to 
Subsection 2.4 presents an approach to defining, de-
limitating and decomposing decision problems re-
lated to HILP events. This provides a starting point 
for quantitative analysis, as discussed in Section 2.4, 
and a basis for taking into account uncertainties, 
which is discussed in Section 2.5. Throughout these 
subsections, concrete examples of problems are dis-
cussed to illustrate the application of the framework. 
Finally, Subsection 3 concludes the paper and indi-
cates future work in refining and applying the frame-
work. 

2 QUALITATIVE FRAMEWORK FOR HILP 
EVENTS 

The qualitative framework presented in this paper is 
based on the conceptual bow tie model and a previ-
ously developed framework for power system vulner-
ability analysis (Kjølle et al. 2013, Kjølle and Gjerde 
2015). The bow tie model describes the relationship 
between causes and consequences of unwanted 
events, which are here defined as power system fail-
ures. Note that the unwanted event in the centre of the 
bow-tie is not by itself a HILP event, but it could be 
the initiating event of a sequence of events with criti-
cal consequences that constitutes the HILP event.  

2.1 Getting a better overview of relevant aspects 

The bow tie model can be used as a visual aid in struc-
turing the causes and consequences of unwanted 
events as illustrated in Figure 1. This figure gives a 
comprehensive overview of aspects relevant to HILP 
events in power systems and how these relate to each 
other. Such an overview is useful when structuring an 
analysis of HILP events. 

 
 
 

 
Figure 1. Overview of a relevant aspects of HILP events in 
power systems mapped to a bow-tie model. 

 
The left-hand part of the figure shows schemati-

cally how the exposure of the power system to differ-
ent threats can cause power system failures, and the 
right-hand part shows how power system failures can 
result in consequences external to the power system, 
i.e. societal impact. The criticality of the conse-
quences can be measured along different dimensions, 
but for the illustrations in this paper we will consider 
total end-user power interruption (MW) and interrup-
tion duration (hours) as the two principal dimensions. 
Each HILP event could, in principle, also be associ-
ated with a probability.  Other relevant factors include 
the types of end-users affected and the dependence of 
the society on electricity supply; for further discus-
sion of the definition of “critical”, we refer to (Kjølle 
et al. 2013, Kjølle and Gjerde 2015).  

 Relevant threats on the left-hand side include con-
ditions related to the operating state of the power sys-
tem (e.g. challenges related to the power import/ex-
port situation, prior outages, etc.), natural hazards 
such as major storms and human threats. Barriers on 
the left-hand side of the bow tie reduce the suscepti-
bility of the power system to threats. These barriers 
reduce the probability of unwanted events through 
preventive actions such as condition monitoring, pre-
ventive maintenance and vegetation management. 
Some barriers also preemptively increase the coping 
capacity of the system to reduce the probability of 
critical consequences in case an unwanted event does 
occur. This category of barriers includes preventive 
scheduling, grid reconfiguration and islanding in 
preparation for a major storm.  

Barriers on the right-hand side of the bow-tie are 
intended to reduce the consequence of power system 
failures and correspond to the coping capacity of the 
power system with respect to these unwanted events. 
Examples of such barriers are corrective actions such 
as emergency generation rescheduling, controlled 
load shedding, controlled islanding, and various sys-
tem protection schemes. Other barriers are associated 
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with the restoration of system operation after power 
has been interrupted, for instance the black-start ca-
pability of generators and the availability of spare 
parts, equipment and competent personnel.  

To illustrate the distinction between these two 
types of barriers, we have in Figure 1 superimposed a 
timeline with an example of how the interrupted 
power could develop as a function of time throughout 
the course of the HILP event. The sequence of events 
after the occurrence of the initiating event can be 
broadly separated in a blackout progression phase and 
a restoration phase. Corrective action barriers are as-
sociated with the blackout progression phase and pri-
marily intended to reduce the amount of interrupted 
power, whereas barriers associated with the restora-
tion phase generally intended to reduce the restoration 
time and thus the interruption duration. 

2.2 Defining and framing the problem 

The analysis of HILP events in power systems is a 
broad problem area involving different decision prob-
lems as well as more fundamental research problems. 
The question one needs to ask is why one is interested 
in analyzing HILP events the first place. It is neces-
sary with a clear definition the problem and a clear 
understanding of the motivation and purpose of solv-
ing the problem.   

Figure 2 shows two dimensions that can be used to 
frame problems related to HILP events: The time 
scales for power system-related decisions and rele-
vant stakeholders or decision makers. The figure also 
indicates the motivation of the stakeholders with re-
gards to HILP events. The two dimensions in Figure 
2 determine what information is available to the ana-
lyst and thus what uncertainties must be taken into ac-
count. This will be discussed in more detail in Sec-
tion 2.5. 

Here we will distinguish between operational, tac-
tical and strategic decisions by the time scale of the 
planning horizon that is considered. Following the 
classification in (GARPUR Consortium 2016), these 
three time scales correspond to system operation (in-
cluding both real-time operation and day-ahead oper-
ational planning), asset management, and system de-
velopment or planning, respectively. Note that other 
references may use other terms and definitions for the 
time scales. For instance, (Watson et al. 2014) distin-
guishes between system planning decisions and pol-
icy decisions, and (Yang and Haugen 2015) defines 
both strategic and operational decisions as planning 
decision, which are in turn distinguished from instan-
taneous or emergency decisions. 

  

 
Figure 2. Two dimensions relevant for framing problems related 
to HILP events: The stakeholder or decision maker, and the time 
scale of relevant decision problems. 
 

Stakeholders can be differentiated in terms of their 
influence over power system related decisions, and 
since system operators have the most direct influence, 
we will in the following take the perspective of the 
system operator as a decision maker. Furthermore, we 
will focus on transmission system operators (TSOs) 
since distribution system operators (DSOs) have less 
influence over decisions relevant for wide-area power 
interruptions. In practice, decisions will be taken by 
different departments and at different levels in the or-
ganisation, but in the following we simply refer to the 
decision maker as “the system operator”. 

To put the more general problem of analysing 
HILP events in a decision-making context, Figure 3 
shows some examples of relevant decision problems 
for system operators, sorted by time scale. These de-
cision problems will be defined in broad terms below 
and be used in the following sections to illustrate the 
qualitative framework. Although we do not define the 
decision problems formally in terms of their objective 
function etc. as done e.g. in (GARPUR Consortium 
2016), it is important to keep in mind that these relia-
bility management decisions typically involve some 
form of trade-off between costs and reliability of sup-
ply. The value of reliability of supply is sometimes 
monetized in the form of expected interruption costs, 
i.e. the cost of energy not supplied. 

 

 
 
Figure 3. Examples of decision problems for transmission sys-
tem operators with relevance for the analysis of HILP events. 

 
Selection of system development plan: An example 

of a strategic decision problem is the evaluation of 
candidate system development plans (e.g. for new 
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transmission lines) and selection of the best candi-
date. Regulation may dictate that a socio-economic 
cost-benefit analysis of the candidates is performed. 
Ideally, the cost of energy not supplied associated 
with possible HILP events should be included in such 
an analysis. 

Designing system protection schemes: System pro-
tection schemes (SPSs) are important examples of 
barriers on the right-hand side of the bow-tie, and the 
system operator has to plan which SPSs to implement. 
The motivation of implementing an SPS  could be to 
increase the transmission capacity of the system as 
well as to increase the coping capacity of the system 
with respect to the occurrence of contingencies that 
would otherwise result in critical consequences (Hill-
berg et al. 2012). 

Prioritize inspection and maintenance efforts: The 
system operator has to decide how to best allocate 
limited resources for preventive actions such as inten-
sified inspection and maintenance and improved con-
dition monitoring of power system components. Mit-
igating certain susceptibilities could help reduce the 
risk of HILP events as well as more ordinary events. 

Spare parts etc. for critical components: If the 
power system is vulnerable to the loss of certain com-
ponent, e.g. a transformer, the decision can be made 
to provide for spare parts to reduce the duration of 
potential power interruptions. 

Decide when preventive action is needed: During 
operation, preventive actions such as generation re-
scheduling may be needed e.g. due to the develop-
ment of threat exposure and/or the operating state. 
The first step for the system operator is to correctly 
assess the situation and decide whether or not to ef-
fectuate preventive actions. 

Rescheduling generation e.g. to prepare for ex-
treme weather: During an extreme weather event the 
near-simultaneous failure of multiple transmission 
lines (failure bunching) is more likely. In this case, 
one relevant preventive action is to reschedule gener-
ation in a way that makes the power system better able 
to cope with failures on one or several transmission 
lines. 

2.3 Defining and delimiting the analysis 

Decision making for problems as exemplified above 
can be supported by the analysis of HILP events. One 
way of defining and delimitating “analysis of HILP 
events” is to consider sub-problems distinguished by 
the objective of the analysis. One possible classifica-
tion is:  
1) identifying critical contingencies 
2) identifying critical operating states  
3) identifying critical barriers  
4) assessing the contributions to the overall reliabil-

ity of supply 
Each of these sub-problems can be associated with 
different parts of the bow-tie model as illustrated in 

Figure 4. In practice, the objectives may be overlap-
ping and the sub-problems may be combined in one 
of the same analysis. The classification may neverthe-
less be useful in discussing specific decision prob-
lems and the underlying motivation. 
 

 
 
Figure 4. The placement in the bow tie model of different criti-
calities and sub-problems relevant in the analysis of HILP 
events. 

2.3.1 Identify critical contingencies 
A critical contingency is here understood as a failure 
or unplanned outage of a power system component 
that may potentially result in critical consequences. 
One purpose of identifying critical contingencies is to 
identify critical power system components with the 
motivation to strengthen or introduce appropriate bar-
riers, cf. Section 2.3.3. 

One example of a system operation decision in-
volving the identification of critical contingencies is 
the (optimal) preventive rescheduling of generation in 
preparation for an extreme weather event. In this case, 
the system operator should ideally know which (crit-
ical) higher-order contingencies to take into account 
when rescheduling. In the context of system develop-
ment, one would like to identify critical contingencies 
in the candidate development plans to reduce the vul-
nerabilities of the development plan that is selected. 
Another purpose of identifying critical contingencies 
can be to screen contingencies to be considered as in-
put to more detailed (e.g. dynamic) analysis. 

2.3.2 Identify critical operating states 
We here understand a critical operating state as an op-
erating state which in combination with a critical con-
tingency potentially result in critical consequences. 
The motivation for identifying these could be to in-
crease the situational awareness of the system opera-
tors, which has previously been identified as being 
crucial to avoid HILP events (Johansson, E. et al. 
2010). Situational awareness is relevant for opera-
tional decisions on which corrective actions to carry 
out after a contingency has occurred. Identifying crit-
ical operating states prior to contingencies may also 
be important to be able to decide when preventive ac-
tion is needed. 
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2.3.3 Identify critical barriers 
The identification of critical barriers may be used in 
selecting barriers to strengthen, and the identification 
of critical barriers that are missing may be used in 
proposing new barriers to put in place. This involves 
corrective barriers such as well-designed system pro-
tection schemes, or preventive barriers such as in-
spection and maintenance. For the latter example, the 
decision of which components to prioritize also de-
pends on the identification of critical contingencies. 

2.3.4 Assessing the contributions to the overall reli-
ability of supply 

An underlying premise of this work is that conven-
tional power system reliability analysis methods do 
not fully capture HILP events. The reliability of a 
power system can be defined as “the probability of its 
satisfactory operation over the long run. It denotes the 
ability to supply adequate electric service on a nearly 
continuous basis, with few interruptions over an ex-
tended time period” (Kundur et al. 2004). The overall 
reliability of supply may be quantified by reliability 
indices such as the expected annual energy not sup-
plied. Over the long run, HILP events do contribute 
to these reliability indices, but their contribution may 
be underestimated by conventional reliability analy-
sis methods. For instance, this may happen when the 
methods do not capture failure bunching, protection 
system failures, or any of the other aspects and de-
pendencies that may conspire to result in a HILP 
event. Furthermore, the short-term impact of a HILP 
event may be disproportional to their long-run visibil-
ity in expected values of reliability indices and there-
fore warrant separate treatment (Vaiman et al. 2012). 
These are some of the reasons why methods of vul-
nerability analysis focusing on HILP events have 
been advocated to complement traditional risk and re-
liability analysis methods (Johansson et al. 2013, 
Kjølle and Gjerde 2015). 

Nevertheless, estimates of reliability indices are 
used by system operators as part of their reliability 
management processes also for decisions relating to 
HILP events. An example is the selection of system 
development plans for a given region, supported by a 
socio-economic cost-benefit analysis including ex-
pected interruption costs. If the region is exposed to 
strong winds, this could motivate capturing the con-
tribution of HILP events due to failure bunching ef-
fects in the estimated interruption costs. 

2.4 Decomposition in quantitative analysis 

After defining the purpose of the analysis, one needs 
to consider which quantities the analysis method 
needs to estimate and which of them is most im-
portant to estimate accurately. Here we will consider 
three primary output parameters: 1) The probability 
of an event and its consequence in terms of 2) power 
interrupted and 3) interruption duration. As illustrated 
in Figure 5, these output parameters are broadly 

speaking associated with different parts of the bow-
tie model. To assess the consequences of an unwanted 
event, it is sufficient to consider the right-hand side 
of the bow-tie: The interrupted power is primarily de-
termined by the sequence of events within the phase 
labelled “blackout progression”, and the interruption 
duration is primarily determined by the events in the 
restoration phase. On the other hand, to determine the 
probability of a HILP event, characterized by a given 
consequence, one has to consider both the left-hand 
side (with the label “threat exposure” in Figure 5) and 
the right-hand side of the bow-tie. 
 

 
 
Figure 5. Illustration of how the problem of analysing extraordi-
nary events can be decomposed and delimitated based on what 
quantity one is focusing on estimating. 
 

To approach more quantitative analysis and con-
sideration of different uncertainties, we overlay the 
bow tie model with a schematic data flow diagram for 
the analysis in Figure 6. A cause analysis is depicted 
on the left-hand side of the bow tie that gives as out-
put the failure rate (or the probability of failure during 
a certain time interval) for a given unwanted event 
(i.e. a given power system failure). Such a module 
could for instance be based on a fault tree. Failure 
bunching effects, for example due to major storms, 
could be incorporated in this step using existing tools 
for estimation of wind-dependent failure rates, as 
done in (Solheim et al. 2016). 

The consequence analysis on the right-hand side of 
Figure 6 is divided in two modules representing the 
blackout progression phase and the restoration phase, 
respectively. The module for the blackout progression 
phase models system responses and resulting power 
interruptions. It could be based on an event tree 
model, power flow analysis, dynamic analysis, etc. 
This module can take as input electrotechnical param-
eters describing the power system and its operational 
limits as well as parameters describing the actions and 
responses in the system. For instance, if the analysis 
method is based on an event tree accounting for cor-
rective action failures (Vadlamudi et al. 2016), input 
parameters can be conditional probabilities determin-
ing the probability of different sequences of events. 
The restoration phase module represents the restora-
tion process. For instance, the restoration time could 
be modelled by average outage times of the compo-
nents involved, in which case such outage times are 
needed as input. Alternatively, the restoration process 
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could be modelled in more detail, which would re-
quire additional input parameters. 

When analyzing system protection schemes to 
identify critical barriers for certain unwanted events, 
it may not be important for the purpose of the analysis 
to consider what caused these unwanted events. For 
such an analysis, one could omit the left-hand side of 
Figure 6 and focus on the first part of the consequence 
analysis, e.g. using dynamic analysis to estimate the 
power interrupted. On the other hand, if the objective 
is to assess the contribution to the overall reliability 
of supply, one would typically also have to represent 
power system restoration in the analysis.  

 

 
Figure 6. Schematic of quantitative analysis (blue, within the 
bow-tie) with input data (green parallelograms) and output data 
(purple). 

 
In the determination of the consequences illus-

trated in Figure 6, the consequence analysis stops af-
ter finding the interruption magnitude and duration. 
However, as mentioned in Section 2.1, the societal 
impact of an HILP event is not determined by these 
two parameters alone. The box labeled societal fac-
tors in Figure 6 represent other factors determining 
the societal impact, such as the type of customers 
(end-users) and the criticality of the loads that are in-
terrupted. Consequences of power interruptions are 
typically monetized using interruption cost functions 
determined by customer surveys, but these interrup-
tion costs give only a lower bound for the total socio-
economic costs of the power interruption (GARPUR 
Consortium, 2016). Estimating quantitatively the im-
pact on society more widely might involve modelling 
of the interactions between the power system and 
other infrastructures (Johansson et al. 2015). 

2.5 Taking into account uncertainties 

HILP events can be argued to be inherently associated 
with uncertainties (Taleb 2010, p. xxviii). Factors 
such as the operating state, the technical condition of 
components and failure bunching effects due to ad-
verse weather all have their own individual uncertain-
ties. HILP events are often the results of multiple, in-
teracting factors and circumstances. As such, their 
combined uncertainty is larger than the uncertainty of 
the individual factors.  

First, it is common to classify uncertainties as ei-
ther aleatory, i.e. associated with random variability, 
or epistemic, i.e. associated with a lack of knowledge. 
Given that HILP events are characterized by a scarce 
experience base and severe lack of knowledge, epis-
temic uncertainties are especially important to con-
sider. Next, following a similar classification as in 
(Rausand 2013), we will broadly distinguish between 
three types of uncertainties: 
 Input data uncertainties 
 Modelling uncertainties 
 Completeness uncertainties 

For the analysis of HILP events in power systems, 
these types of uncertainties can be related to Figure 6 
as follows. Input data uncertainties and modelling un-
certainties are related to green and blue boxes, respec-
tively. The additional category that we have here cho-
sen to label “completeness uncertainty” represents 
uncertainty associated with the completeness of the 
models of the system. Although there are different 
ways to understand this term (Rausand 2013, Aven 
2016), and “completeness uncertainty” may not be 
unambiguously distinguished from “modelling uncer-
tainty”, we find the term useful to describe uncer-
tainty associated with aspects omitted and/or outside 
the scope of the analysis. As an example, a conse-
quence analysis starting from a given set of contin-
gencies (i.e. covering only the right-hand side of Fig-
ure 6) does not explicitly consider what might have 
caused the contingencies.  If the problem was to iden-
tify effective system protection schemes, for instance, 
threat and susceptibility aspects may not have been 
within the scope of the analysis. 

Sources of incompleteness in the analysis can be 
either known or unknown to the analyst (Aven 2016). 
If the analyst is unaware that an aspect is not consid-
ered in the analysis, this uncertainty can be labelled 
an “unknown unknown” (Feduzi and Runde 2014). 
Here, we use this term in a wider sense to refer to lack 
of knowledge that is implicit, i.e. a form of epistemic 
uncertainty associated with “what we don't know we 
don't know”. Furthermore, we focus on “unknown 
unknowns” that are “knowable”, i.e. that can in prin-
ciple be transformed into “known unknowns” (Feduzi 
and Runde 2014). 

Another way to classify uncertainties related to an 
analysis of HILP events that is more specific to the 
domain of power systems is to consider uncertainties 
related to the aspects discussed in Section 2.1. An ex-
ample of such a classification is illustrated in Figure 
7. Here, each of the categories along the vertical axis 
corresponds to one of the components of quantitative 
analysis that were illustrated in Figure 6. This shows 
how a domain-specific classification can be com-
bined with the generic uncertainty classification dis-
cussed above: For each category, a given analysis is 
associated with uncertainty (indicated along the hori-
zontal axis) related to the accuracy of modelling as-
sumptions and the input data.  
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Figure 7. Example of classification and assessment of uncertain-
ties associated with analyses of HILP events. 

 
This multi-dimensional classification of uncertain-

ties can be used to structure a qualitative assessment 
of the strength of background knowledge (Aven et al. 
2014, p. 87) underlying a given analysis: If an aspect 
is modelled in a simplified or inaccurate manner, the 
knowledge of this aspect that is represented in the 
analysis is weak and the uncertainty is correspond-
ingly high. Even if the modelling of an aspect is ac-
curate, the uncertainty is still high if the associated 
input data represented in the analysis is inaccurate.  

Such a structured assessment of the uncertainties 
of a HILP event analysis can be used by the analyst 
to rank which uncertainties are most important (Aven 
et al. 2014) to improve the overall accuracy and suit-
ability of the analysis. More accurate modelling of an 
aspect often implies longer computation times. In 
practice, a trade-off must therefore be made between 
computational efficiency and accuracy, and trade-offs 
must be made between the modelling accuracy for the 
different aspects considered in the analysis. 

An explicit qualitative assessment of uncertainties 
can also be used as a basis for comparing different 
analyses and informing the decision maker of their 
uncertainties (Aven et al. 2014). As an example, one 
can consider methods designed to analyse cascading 
outages. A number of such methods have been devel-
oped, each focusing on different subsets of the mech-
anisms and aspects involved in cascading outages. 
Considerable efforts have already been devoted to re-
viewing and validating such methods (Vaiman et al. 
2012, Bialek et al. 2016), but there are still many open 
questions that may limit their credibility in decision 
making. More explicit classification and assessment 
of their uncertainties, scope and purpose could help 
inform system operators of which methods are most 
suitable for different problems.  

Completeness uncertainty is not included as a sep-
arate dimension in Figure 7, but if an aspect is not 
covered in an analysis, the modelling uncertainties re-
lated to this aspect can be regarded as high. However, 

to fully characterize the completeness uncertainty di-
mension of the analysis one needs to identify and un-
cover “unknown unknowns”. It has been argued that 
to do so, the analysis needs to be placed in a suffi-
ciently broad framework and avoid starting out with 
a too narrow view of the problem (Feduzi and Runde 
2014, Aven 2016). A qualitative mapping of relevant 
aspects to the analysis as proposed in this paper can 
contribute to transforming “unknown unknowns” to 
“known unknowns”, or in other words making im-
plicit assumptions and uncertainties explicit. Com-
municating such uncertainties associated with the 
completeness of the analysis can change, from the 
perspective of the decision maker, a “unknown un-
known” to a “known unknown”. To give a simple ex-
ample: When deciding on system protection schemes 
to mitigate cascading outages and the analysis does 
not model the dynamics of rotor angle stability, the 
decision maker should be aware that the type of cas-
cading events characterized by generators losing syn-
chronism is omitted from the analysis. 

As mentioned in Section 2.2, the time scale of the 
decision problem is relevant for what information is 
available during the analysis and hence what is uncer-
tain and what is known. For instance, the system op-
erator knows the operating state to a good approxima-
tion during real-time system operation, whereas this 
information is not available for an analysis for long-
term planning purposes (Vaiman et al. 2012). For the 
example of cost-benefit analysis including the contri-
butions of wind-related failures, the analyst needs to 
assume a selection of operating states expected to be 
representative of the future, and this is associated with 
additional uncertainties. For the example of preven-
tive rescheduling in preparation of a major storm, 
more information is available on the operating state 
over the planning horizon, although this is still imper-
fect information as one may have to consider the fore-
cast uncertainties.  

3 CONCLUSIONS AND FUTURE WORK 

This paper proposes a qualitative framework for ana-
lysing HILP events in power systems that may com-
plement or guide more quantitative analysis. Mapping 
relevant aspects of such HILP events to a bow tie 
model provides the analyst with a broad overview of 
the set of problems at hand and a starting point for 
detailed analysis. Although the full set of aspects is 
too comprehensive to analyse quantitatively, the qual-
itative framework provides a basis for decomposing 
and delimitating the problem: Defining precisely the 
purpose of the analysis, one can then choose what as-
pects need to be modelled accurately and which as-
pects one is choosing to omit. Omitting and neglect-
ing aspects of the overall problem introduce 
uncertainties in the analysis, but by being explicit 
about what is omitted and assumed one reduces the 
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amount of “unknown unknowns” in the analysis and 
may thus support more well-informed decisions. 

Further work will test the applicability of the 
framework in case studies of real problems related to 
HILP events. The approach for defining the purpose 
of an analysis and delimitating the problem presented 
will also be used to guide the development and appli-
cation of methods for quantitative analysis of HILP 
events. Furthermore, the classification of models and 
input data for the analysis may form the basis for con-
sidering which methods are most appropriate for han-
dling different types of uncertainties related to mod-
elling choices and input data. 
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Appendix A: Historical events

Table A.1: Historical extraordinary events.

Country Year ID
Average
interruption
duration [h]

Disconnected
load [MW]

Category Sources

India 2012 IN 2012 5.0 48000 Technical [123,124]
Chile 2010 CL 2010 72.0 3000 Natural [125]
New Zealand 2011 NZ 2011 24.0 255 Natural [126]
Turkey 2015 TR 2015 5.0 32200 Technical [127]
Netherlands 2015 NL 2015 3.0 1500 Technical [128]
UK 2019 UK 2019 0.7 2000 Natural [28]
Argentina 2019 AR 2019 5.0 13000 Technical [129]
USA 2021 US 2021 60.0 20000 Natural [130]
Sweden 2005 SE 2005 79.3 1400 Natural [16, 131]
Sweden 1983 SE 1983 2.1 11920 Technical [16,132]
Swe./Den. 2003 SE/DK 2003 2.7 6600 Technical [2, 16,131,133]
Norway 2004 NO 2004 0.5 2400 Technical [16, 132]
Norway 2011 NO 2011 15.0 1152 Natural [3]
USA 1977 US 1977 13.0 6000 Natural [1, 16]
USA 1998 US 1998 9.5 950 Natural [1, 16]
USA 1965 US 1965 6.5 20000 Technical [1, 16]
USA/Canada 2003 US/CA 2003 16.0 61800 Technical [1, 16]
Italy 2003 IT 2003 6.7 27000 Technical [16, 132]
Finland 2011 FI 2011 11.0 13649 Natural [3]
France 1999 FR 1999 100.0 4000 Natural [16, 134]
France 1978 FR 1978 4.1 29000 Technical [16,132]
Belgium 1982 BE 1982 6.0 2400 Technical [16,135]
Canada 1998 CA 1998 125.0 8000 Natural [16, 131]
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Appendix B: Expert elicitation

The following appendix describes the expert elicitation process, following the
guidance of the SHELF protocol [114]. Table B.1 provides a introduction to the
elicitation workshop. Table B.2 describes the variables of interest, and the ques-
tions posed to the experts. Table B.3 gives a summary of the elicited individual
expert judgments. The group discussion and process of developing the final dis-
tributions is presented in the following paragraph. The final distributions after
processing can be found in Paper IV [41]. The experts’ names have been omitted
for the purpose of privacy.

After the individual expert elicitations were conducted, the results were given to
the facilitator without sharing information between the experts. Each elicited
distribution was presented to the group and discussed. A linear interpolation
of the parameters of the distributions was decided upon for in most cases. The
discussions were supported by a third person acting as a Rational Impartial Ob-
server (RIO) with knowledge of the failure statistics, giving input on values that
seemed improbable or could indicate that the question may have been misinter-
preted. It became apparent that some of the categories posed some challenges in
interpretation. Expert A had included considerations such as weather and lack of
available transport into the variables related to accessibility. After discussing the
comparison with Expert B an agreement was reached that Expert B’s judgments
for this category were more applicable to the scenario described. Expert A also
had no input on the nighttime delay, and Expert B’s judgment was decided upon
for this category as well. During the elicitation process, it also became clear that
the experts could not differentiate between Saturdays and Sundays in terms of
delays. As a result, the same elicited values were used to form a single variable
for “weekend”.
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Table B.1: SHELF elicitation record - Part 1: General

Workshop Expert elicitation - Transmission line down times

Date 21.11.2019

Attendance,
roles and
expertise

Facilitator: PhD Candidate. Expert 1: Line man organizer
(Northern Norway). Expert 2: Line man organizer (South-
western Norway). Rational Impartial Observer (RIO): Leader,
fault statistics.

Purpose of
elicitation

To build a model of transmission line down times due to perma-
nent failures. The purpose of the model is to alleviate some of
the challenges related to lack of data. This is especially relevant
for long outage durations which can have severe consequences
for affected customers. The contribution of the experts’ judg-
ments will give a more realistic picture of the potential conse-
quences of such events.

This record Participants are aware that this elicitation will be conducted
using the Sheffield Elicitation Framework, and that this docu-
ment, including attachments, will form a record of the session.

Orientation,
training and
evidence

RIO was included in the process of developing the conceptual
model from which the elicited variables were decided. Experts
were sent a brief description of the variables, the elicitation
process, and the quantities of interests of a scaled beta and a
triangular distribution ahead of the workshop. The participants
were encouraged not to discuss between themselves until after
the individual elicitation process was finished.

Strengths
and weak-
nesses

Participants have strong knowledge of overhead transmission
line repairs. RIO has strong knowledge of the definitions and
processes related to transmission line down times. Participants
come from different regions in Norway, which is a strength in
terms of variety in different geographical and environmental
conditions. However, it can also be a potential weakness that
experienced processes can be substantially different based on
location. To avoid an overly complex model, all processes that
are not specifically weather dependent are assumed to be un-
der ideal conditions. This can lead to inaccuracies. Weather
effects are incorporated in the larger model through component
dependence and weather delays.
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Table B.2: SHELF elicitation record - Part 1: Definitions

General It is to be assumed that each elicited variable reflects the du-
ration in ideal conditions, and should not explicitly incorpo-
rate considerations such as harsh weather or other external
factors. Failures can be at any location in the geographical
area. All elicited distributions represents a duration of a
process or delay expressed in hours.

Time of day Duration from failure until personnel are available at rally
point, ready to travel to the fault location due to a failure
at different times of the day. Assume that the failure oc-
curs during a weekday. This is divided into three variables:
Working hours (07.00-16.00), Evening (16.00-22.00), Night
(22.00-07.00).

Weekend Assume that the failure takes place during a weekend. How
much time is added to when the personnel are available at
the rally point compared to during a weekday?

Daylight Assume that the failure occurs when there is no daylight.
How much extra time will this cause in terms of fault finding
and delays in the reparation process?

Repair Assume that a permanent failure occurs. Equipment and
personnel are at the fault site, and there is ideal weather.
How much time will it take to repair the fault for the differ-
ent components: tower, insulator, phase line, top line, other
(e.g. loop, etc.)?

Weather
delay

Assume that the failure occurs due to one of the following
causes: wind, snow/ice, lightning, landslide. How much
extra time should be expected in involuntary delays before
transport from the rally point to the fault location?

Accessibility Consider potential line segment locations where a failure
can occur. Categorize how easy it is to access the fault
locations. “High” is the location of the most accessible lo-
cations, “Low” is the location of the most difficult to access
locations, while “Medium” characterizes the average acces-
sibility of all line segments. “Medium high” and “Medium
low” represents the areas in between. How long will it take
to travel from the rally-point to the fault location in the
different accesibility categories?
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Table B.3: SHELF elicitation record - Part 2: Eliciting a Continuous Distribution

Introduction It was initially planned to elicit a scaled beta distribution
for the variables. However, when introducing the scaled
beta, some challenges became apparent. There was uncer-
tainty among experts as to how to fit the distribution 25
and 75 percentage values, and to what extent they were
comfortable with placing these values to begin with. Fol-
lowing the advice of [136] the more intuitive and easier to
parameterize triangular distribution was opted for instead.

Distribution Triangular. Elicited quantities are plausible lower and up-
per limits, and the most likely value. The elicited values
are presented below in the form “Category - Variable - l
m u”, where l is the set of plausible lower bound, m is the
median and u is the plausible upper bound. The elicited
values are ordered according to which expert submitted
the value. No response is symbolized with a dash (-).

Category Variable Lower Median Upper

Time of day Working hours 1,2 2,4 4,8
Evening 4,4 4,8 6,10
Night -,4 -,10 -,20

Weekend Saturday 4,5 4,18 6,24
Sunday 4,5 4,18 6,24

Daylight Darkness 6,5 8,12 8,16

Repair Tower 96,72 200,180 450,240
Insulator 6,12 6,30 24,48
Phase line 8,24 36,100 96,150
Top line 6,24 14,72 24,96
Other 3,6 4,12 8,24

Accessibility High 60,0.5 120,2 240,4
Medium high -,0.5 -,3 -,5
Medium -,1 -,4 -,6
Medium low -,2 -,6 -,10
Low 96,5 126,10 330,15
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Appendix C: CENS correction fac-
tors

Table C.1: CENS correction factor by month.

Month Agriculture Residential Industry Commercial
Public
service

Energy-
intensive
industry

1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.10 1.00 1.00 1.00 1.00 1.00
3 1.10 0.90 0.87 1.00 0.67 1.00
4 1.10 0.90 0.87 1.00 0.67 1.00
5 0.90 0.80 0.87 1.00 0.67 1.00
6 0.90 0.70 0.86 1.02 0.51 1.00
7 0.90 0.60 0.86 1.02 0.51 1.00
8 0.90 0.60 0.86 1.02 0.51 1.00
9 1.00 0.70 0.88 1.06 0.58 1.00
10 1.00 0.90 0.88 1.06 0.58 1.00
11 1.10 0.90 0.88 1.06 0.58 1.00
12 1.10 1.00 1.00 1.00 1.00 1.00

Table C.2: CENS correction factor by day of week.

Day Agriculture Residential Industry Commercial
Public
service

Energy-
intensive
industry

Weekday 1.00 1.00 1.00 1.00 1.00 1.00
Saturday 1.10 1.15 0.13 0.45 0.30 1.00

Sunday/Holiday 1.10 1.15 0.14 0.11 0.29 1.00
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Table C.3: CENS correction factor by hour.

Time Agriculture Residential Industry Commercial
Public
service

Energy-
intensive
industry

0000–0600 0.80 0.65 0.12 0.11 0.43 1.00
0600–0800 1.00 1.05 1.00 1.00 1.00 1.00
0800–0900 0.90 1.05 1.00 1.00 1.00 1.00
0900–1200 0.90 0.75 1.00 1.00 1.00 1.00
1200–1600 0.70 0.75 1.00 1.00 1.00 1.00
1600–1800 1.00 1.05 1.00 1.00 1.00 1.00
1800–2000 1.00 1.05 0.14 0.30 0.31 1.00
2000–2100 0.80 1.05 0.14 0.29 0.31 1.00
2100–2400 0.80 0.80 0.14 0.29 0.31 1.00
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