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Abstract

The restrictive measures implemented in response to the COVID-19 pandemic have trig-

gered sudden massive changes to travel behaviors of people all around the world. This
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study examines the individual mobility patterns for all transport modes (walk, bicycle, motor-

cycle, car driven alone, car driven in company, bus, subway, tram, train, airplane) before

and during the restrictions adopted in ten countries on six continents: Australia, Brazil,

China, Ghana, India, Iran, Italy, Norway, South Africa and the United States. This cross-

country study also aims at understanding the predictors of protective behaviors related to

the transport sector and COVID-19. Findings hinge upon an online survey conducted in May

2020 (N = 9,394). The empirical results quantify tremendous disruptions for both commuting

and non-commuting travels, highlighting substantial reductions in the frequency of all types

of trips and use of all modes. In terms of potential virus spread, airplanes and buses are per-

ceived to be the riskiest transport modes, while avoidance of public transport is consistently

found across the countries. According to the Protection Motivation Theory, the study sheds

new light on the fact that two indicators, namely income inequality, expressed as Gini index,

and the reported number of deaths due to COVID-19 per 100,000 inhabitants, aggravate

respondents’ perceptions. This research indicates that socio-economic inequality and mor-

bidity are not only related to actual health risks, as well documented in the relevant literature,

but also to the perceived risks. These findings document the global impact of the COVID-19

crisis as well as provide guidance for transportation practitioners in developing future

strategies.

Introduction

The COVID-19 (coronavirus disease 2019) pandemic presents a major challenge for all of

humanity and is a huge calamity of the 21st century [1]. Initially spreading in China [2] and

facilitated by our hypermobile society and transportation hubs [3–6], this new highly transmis-

sible respiratory syndrome severely broke out in Italy and Iran in March 2020 and then spread

at extraordinary rates to other countries, with the United States having the most number of

infected patients by May 2020 [7].

The lack of vaccine or clinically effective medical interventions have prompted unprece-

dented health, social and economic challenges and disruptions [8, 9], thus stressing the need

for reshaping the overall design of global resilience [10]. As the greatest risk for infectious dis-

eases spreading within shared travel modes, such as air travel and mass transit, is related to the

fact that individuals are in close proximity in a confined environment [11, 12], a number of

mobility restrictions have been enacted in most countries to slow down the transmission of

the COVID-19 (i.e., social distancing, complete/partial lockdown, required/voluntary

quarantining and closure of schools and workplaces) and ease the pressure on health facilities

[13–15].

Notwithstanding the “Stay-At-Home (SAH)” message promoted across the globe and the

“Work-From-Home (WFH)” reality subsequently achieved whenever possible [16], it is still

unclear to what extent individuals have modified their attitude in response to the bans on free

movement [17]. As mobility is closely connected to regular habits and reproducible patterns

[18], the restrictive measures can represent a “game changer” for all of society entailing perma-

nent behavioral effects comparable to life events and structural shifts among travel modes [19,

20]. Disease risk perceptions are a critical component for properly understanding behavioral

changes and altered travel patterns [21–23].
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The overarching goal of this research is to shed light on the social and mobility implications

of COVID-19 on passenger travels for all transport modes (walk, bicycle, motorcycle, car

driven alone, car driven in company, bus, subway, tram, train, airplane) by investigating (i) the

effect of localized travel restrictions for three main travel purposes (work/education, free-time

and leisure) and (ii) the socio-economic predictors connected to perceived risks. Accordingly,

people’s travel behaviors before and during the restrictions and their perceptions concerning

the transport sector and the pandemic risks have been assessed in ten countries on six conti-

nents with a web-based survey: Australia, Brazil, China, Ghana, India, Iran, Italy, Norway,

South Africa and the United States (hereafter, also referred to by their acronyms AU, BR, CH,

GH, IN, IR, IT, NO, ZA and USA, respectively). Moreover, as the consequences of COVID-19

can be compared to the effects engendered by a large-scale natural disaster [24], this study

includes both developed and developing countries across six continents in order to character-

ize the impact in different socio-economic contexts [25–27].

The evaluation of perceived risks in the transport sector due to the COVID-19 pandemic is

performed in this study pivoting on the Protection Motivation Theory. This major social psy-

chological model was developed by Ronald Rogers [28, 29] and accounts for how individuals

modify attitudes and behavioral styles when interpreting (threat appraisal) and reacting (cop-

ing appraisal) to fear appeals and stressful stimuli. Furthermore, the perceived risk, regarded

as a distal predictor of intentions and behavioral change, is a cornerstone of the Health Belief

Model [30–32], which explains the likelihood of engagement in health-promoting behavior in

response to stimuli or cues to action.

Considering the existing literature, few studies have focused on measuring the impacts of

COVID-19 on individuals on a multi-country scale simultaneously. The large international

data collection efforts have been dedicated to consumer sentiment in thirty-four countries

[33], personal beliefs about the pandemic across six countries [34], individual protective mea-

sures in twenty-one countries [35] and mental well-being across fifty-eight countries [36]. The

findings of this investigation can be used for documenting the impacts of the COVID-19 crisis

on a global scale.

Materials and methods

This study collected all the empirical data by means of an online survey. The information

regarding the individual mobility patterns and the travel perceptions were gathered deploying

matrix-level and Likert-type scales questions [37]. The structure of the survey [38] can be sub-

divided into seven main parts: Introductory Part, Part A, Part B, Part C, Part D, Part E and

Part F. In the Introductory Part respondents were asked about their demographic profile (age,

gender, location, education), whether they worked/studied remotely (Work-From-Home,

WFH) because of the restrictions and their Commuting Distance (CD). The frequency of use

of each transport mode during and before the enactment of the restrictions was investigated in

Part A (travels related to work/study) and Part B (travels related to free time). Part C dealt with

the frequency of four activities, namely purchasing essential goods, purchasing nonessential

goods, visiting relatives and joining social gatherings. The answers respondents could choose

from in Part A, Part B and Part C were “more than 3 times per week”, “2–3 times per week”, “1

time per week”, “2–3 times per month”, “1 time per month”, “less than 1 time per month”,

“never”. The survey also focused on understanding the risk perceptions encompassing the

transport sector and the pandemic according to the Protection Motivation Theory as three

Likert-type queries (Part D, Part E, Part F) pivoted on three corresponding dimensions: per-

ceived probability of contracting COVID-19 for different transport modes (vulnerability

appraisal, Part D), perceived effectiveness of the associated restrictions to limit the virus
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transmission (response efficacy, Part E) and expected time for the transportation sector to

recover (level of confidence, Part F). The perceived probability of contracting COVID-19 for

different transport modes (Part D) and the perceived effectiveness of the associated restrictions

to curb the virus transmission (Part E) were assessed using two 7-point Likert-type scales rang-

ing from 1 to 7, where the lower and upper limits represent “extremely low” and “extremely

high”, respectively (responses in Part D) or “extremely ineffective” and “extremely effective”,

respectively (responses in Part E). Furthermore, the participants provided their anticipated

recovery time of the transportation system in their region/province/state, in their country and

in the world (Part F) according to the following options: less than 6 months, between 6 and 12

months, between 12 and 18 months, between 18 and 24 months and more than 24 months;

each response has been associated with a discrete value ranging from 1 to 5. The overall struc-

ture of the survey is reported in Table 1.

The survey was distributed between the 11th and the 31st of May 2020 in Australia, Brazil,

China, Ghana, India, Iran, Italy, Norway, South Africa and the United States. The question-

naire was created with Google Forms and WenJuanXing and the same content was conve-

niently translated into Chinese, English, Italian, Norwegian, Persian and Portuguese. Overall,

all the survey questions were designed to be brief and concise. The linguistic validity across the

ten countries was pursued following a translation-back-translation approach [39]: after trans-

lating the survey into local languages, the survey was back translated. The research team care-

fully addressed and resolved all the discrepancies to ensure full linguistic equivalence.

The survey was distributed using a combination of purposive and snowball techniques [40,

41]: this included direct emails to personal contacts, university students and posts to social and

professional networks including but not limited to Facebook, LinkedIn, Twitter, Instagram,

Skype, WhatsApp, WeChat, Weibo, QQ and Douban. Additional respondents were gained via

snowball sampling through the forwarding of email invitations by initial recipients and shares

of original social media posts (e.g., retweets). Only adult respondents could join the survey and

informed written consent was obtained from all of them consistent with the Declaration of

Helsinki. The survey study was reviewed and approved by two major institutional review

boards, namely Norwegian Centre for Research Data (reference code 332877) and Ohio Uni-

versity Office of Research Compliance (reference code 20-E-199). Overall, 9,394 responses

were collected and the formed dataset is publicly available [38].

Notably, COVID-19 has struck different locations with varying intensity at different times.

However, based on the COVID-19 response stringency index [42], all the investigated coun-

tries had implemented their most restrictive policies by the 11th of May. Therefore, all the sur-

vey participants were able to compare their mobility behavior “before” (retrospective

questions) and “during” (current questions) the pandemic. Notwithstanding the possible

Table 1. Survey structure.

PART TOPIC

Introductory Part Demographics, Work-From-Home (WFH), Commuting Distance (CD)

Part A Frequency of use for each transport mode related to work/study travels

Part B Frequency of use for each transport mode related to free time travels

Part C Frequency of four mobility purposes

Part D Perceived probability of contracting the virus for each transport mode

Part E Perceived effectiveness of the restrictions for each transport mode

Part F Expected time for the transportation sector to recover

Parts composing the survey and topics dealt with [38].

https://doi.org/10.1371/journal.pone.0245886.t001
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distorted recalls from partially forgotten or telescoped occurrences [43–46], retrospective

questions are deemed to produce reliable responses if the investigated time is smaller than one

year [47, 48]. Considering that the survey data collection was accomplished in May 2020 and

that the curfew measures were enacted in all the investigated countries between January and

March 2020 [42], the retrospective questions of this study refer to a temporal span varying

from some weeks to very few months; therefore, the questionnaire responses describing the

travel behaviors before the enforcement of the restrictions are not likely to be largely biased.

Following the survey, the study conducts statistical analyses to explore the possible correla-

tions between health risks and individual perceptions considering ten key indicators pertain-

ing to three macro socio-economic areas relevant for this international study [49, 50].

Individual variables are gender, education and age. Country-related variables include popula-

tion density and socio-economic condition as measured by the Gini index [51], Inclusive

Development Index [52] and Human Development Index [53]. Additional variables reflect the

epidemiological situation in each country as indicated by the reported number of confirmed

cases and the reported number of deaths per 100,000 inhabitants [7] and the share of the popu-

lation working from home, as measured by the survey. The central hypothesis of this study is

that income inequality and pandemic-related death toll are the main drivers for changes in

cognitive behaviors towards travel and perceived risks.

A Negative Binomial Model (NBM) was the regression method adopted to find the correla-

tions between the response variables for Part D, Part E, Part F and the explanatory variables.

NBM regression is a Generalized Linear Model and it was chosen as the hypotheses necessary

to perform simpler analyses (i.e., ANOVA or linear regression) were not fulfilled (such as nor-

mality of the residuals) [54, 55]. Gender and education were treated as the categorical explana-

tory variables, while all the other factors as continuous ones. All the statistical analyses were

accomplished with the software package IBM SPSS Statistics version 26.

Results and discussion

Survey outreach

The geographical distribution and the demographic information of the sample are reported in

Fig 1. Overall, the survey included a balanced representation by gender (male 50.9% and

female 48.9%) with total of 9,394 participants. Respondents tended to be younger and middle-

aged adults (32.6 ± 11.6, for mean ± SD hereafter) and were also notably comprised by those

with higher levels of education (81.3% held at least a bachelor’s degree). Thus, the results here

Fig 1. Survey outreach. Sample size, geographical distribution of respondents within each country (percent), gender split, median age, Commuting Distance (CD) under

pre-pandemic conditions and Work-From-Home (WFH) rate. Maps are adapted for illustrative purpose from images that are publicly available according to Creative

Commons 4.0 License [59–68].

https://doi.org/10.1371/journal.pone.0245886.g001
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likely reflected changes in behavior and perceptions among upper classes, particularly in the

less wealthy countries where internet access to the online-administered survey was less ubiqui-

tous. In all of the Figures and Tables, the countries are listed according to decreasing reported

number of pandemic-related deaths per 100,000 inhabitants calculated between the 11th and

the 31st of May 2020 [7]. During this timeframe corresponding to the survey distribution, the

countries with the highest and the lowest reported death tolls per 100,000 individuals were

Italy (54.3) and Ghana (0.1), respectively.

At the same time, it must be acknowledged that this study was not exempt from a notable

limitation that web-based surveys commonly have [56], especially when considering the need

for getting the questionnaire rapidly distributed given the quickly growing disruptions. The

survey sample, albeit substantial, cannot be regarded as demographically representative of the

entire population in each of the ten countries by age or gender but rather as indicative of the

perceptions of the general public; moreover, inadequate internet access may have been

encountered in developing countries during the survey. Another relevant circumstance one

should be aware of when interpreting the results is the seasonality of mobility [57, 58], as in

the northern and southern hemisphere the pre-pandemic season was winter and summer,

respectively.

Changes to travel behavior

The mobility restrictions exerted a major impact on the way in which work is done and its

availability. The work or school Commuting Distance (CD) prior to the pandemic (14.6 ± 25.0

km) was essentially evaporated for the largest part of the respondents as 87.1 percentage of the

population sampled shifted to an online or remote environment (Work-From-Home, WFH),

this is in good accordance with other studies quantifying the refraining from travelling [69,

70]. The lowest WFH rate, although still a supermajority, was found in Ghana (73.2%), Nor-

way registered the highest WFH rate (95.7%).

The restrictive measures have massively impacted individual mobility patterns related to

both commuting and non-commuting travel for all transport modes considered in the study as

depicted in Fig 2A and 2B, respectively. The results displayed in Fig 2A only take into consid-

eration the respondents who, notwithstanding the restrictions, did not work from home dur-

ing the COVID-19 pandemic (12.9% of the population sampled). The use frequency of non-

public transport modes has different degrees of change across the surveyed countries; the larg-

est increases in the number of “never” responses were registered in Iran for walk (+11.3%) and

in Ghana for cycle (+10.2%) and car driven alone (+13.7%). Depending on the country, sub-

stantial changes were also found for public transportation; the most significant hikes in the

quantity of “never” responses were obtained in Iran for subway/tram (+18.7%), in Australia

for train (+7.2%) and in Norway for car driven in company (+12.6%), bus (+19.4%) and air-

plane (+4.9%). Considering average values assessed across the countries, the transport modes

facing the largest and smallest increase in the amount of “never” responses were bus and car

driven in company (+9.0% and +7.7%) on the one hand and airplane and car driven alone

(+1.9% and +2.1%) on the other. The most significant reductions in the quantity of “more

than 3 times per week” were related to walk (-5.4%) and bus (-5.4%).

Furthermore, regardless of the pandemic, the findings are useful to characterize the com-

muting patterns in the surveyed countries. It is evident that the habits of respondents from

China, India and Ghana cover the entire modal range as already observed elsewhere [71],

while people in the United States prefer driving car at the expense of public transportation.

Furthermore, a significant use of airplanes was found for respondents in China; which is a

determining feature for the trend of the global air travel market [72].
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Fig 2B refers to the non-commuting mobility of the entire population sampled. Across all

countries, use of all transport modes generally plummeted. Considering average values esti-

mated for all the respondents, the amount of people reporting they never used bus, car driven

in company, airplane, train had a remarkable hike of +22.7%, +16.2%, +16.0%, +15.6%

Fig 2. Mobility before and during the implementation of pandemic-related restrictive measures. Mobility related to commuting travels of survey respondents who did

not work from home during restrictions (N = 1,210) (A) and mobility related to non-communing travels of all survey respondents (N = 9,394) during free time (B) and for

different purposes (C).

https://doi.org/10.1371/journal.pone.0245886.g002
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respectively. The share of respondents saying they never walked during the pandemic

increased by 15.5%, implying that a substantial proportion of people drastically reduced simply

going outside. Reductions in use of any mode varied by country. Italy (+27.3%) and Iran (+-

22.1%), two countries hit hard relatively early in the pandemic, saw the greatest increases in

respondents stating they did not use any of the transport modes. Conversely, the smallest

decreases in travel were registered in those countries with the lowest pandemic-related death

toll per 100,000 inhabitants, namely China (+5.7%) and Ghana (+3.1%). These findings are in

line with previous studies shedding light on the negative relationship between pandemics

(SARS, Ebola, MERS) and travel demand for both work and recreational purposes [73–75].

Looking at changes to non-commute trips, Fig 2C shows the frequency of four mobility pur-

poses: purchasing essential goods, purchasing nonessential goods, visiting relatives and joining

social gatherings. As observed elsewhere [76, 77], even if the restrictions have not significantly

modified the amount of individuals reporting “never” response related to buying essential

goods (+6.0%), people did so less frequently than before the pandemic: the quantity of “more

than 3 times/week” and “2–3 times/week” responses decreased by -14.9% and -12.8%, respec-

tively. Considering each country, the biggest reductions referring to the amount of “more than

3 times/week” responses were observed in Iran (-27.6%) and Norway (-25.3%). In line with the

findings reported in Fig 2B, people drastically reduced the mobility associated with free-time

travels: notably, approximately 50% of the respondents in Italy, Brazil, South Africa and India

never went out to purchase nonessential goods, visit relatives or hang out with friends. Referring

to these three mobility activities assessed across the studied countries, the average increase in

the number of “never” responses was +32.0%, +31.4%, +39.3%, respectively. Similar to the

results discussed in Fig 2B, the least significant variations were registered in the countries char-

acterized by the smallest death toll per 100,000 inhabitants, namely China (+12.0%) and Ghana

(+15.6%). Overall, in line with aggregate findings evaluated by Information Technology compa-

nies [78, 79] and application software [80], the COVID-19 restrictive measures were highly

effective to limit and radically alter mobility via every mode and for any purpose.

Transportation perceptions

The study characterized the risk perceptions related to the transport sector and the pandemic

by deploying the three Likert-type queries (Part D, Part E, Part F) formulated according the

Protection Motivation Theory. Fig 3 displays the mean value of the responses assessed for each

country. The same values with the associated standard deviations are reported in more detail

in S1 Table. The internal consistency of the responses collected for Part D, Part E and Part F

was high as the values of Cronbach’s alpha were equal to 0.834, 0.888 and 0.820, respectively.

Considering the responses to Part D reported in Fig 3A, the perceived probability of con-

tracting the virus increased when an individual shifted from non-public to public transport

modes. The two safest transport modes were deemed to be driving the car alone (2.15 ± 1.44 in

the Likert scale) and riding a motorcycle (2.64 ± 1.52). On the other hand, respondents

believed that the two most dangerous travel modes were airplane (5.44 ± 1.61) and bus

(5.39 ± 1.65). Subway/tram and trains were also seen as relatively risky with mean values on

the upper half of the scale. The avoidance of public transport modes is in accordance with pre-

vious findings portraying the precautionary behaviors in response to a perceived pandemic

threat [81]. In alignment with the Protection Motivation Theory, respondents significantly

reduced travel by the modes appraised as the riskiest ones as discussed for Fig 2B.

For Part E on efficacy of the travel restrictions, the average response scores were comprised

between 4.16 ± 1.67 for bicycles and 4.83 ± 1.81 for airplanes, respectively. Looking at Fig 3B,

the variation in sentiment is quite small, as this may have been one of the harder questions for
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respondents to answer. Notably, across all modes, it is possible to observe that survey partici-

pants from Australia, Iran, China on one hand and from Brazil, Ghana on the other hand were

respectively associated with the highest and the lowest response scores. Furthermore, when

addressing Part F as displayed in Fig 3C, the respondents believed that the transportation sys-

tem would recover approximately between 12 and 18 months in their region/province/state

Fig 3. Perceptions encompassing mobility and pandemic. Perceived probability of contracting COVID-19 (A) and

perceived effectiveness of curbing COVID-19 (B) for transport modes according to a Likert-type scale varying from

“1 = extremely low/ineffective” to “7 = extremely high/effective”. Perceived time needed by the transportation sector to

completely recover (C) according to the scale “1 = less than 6 months”, “2 = between 6 and 12 months”, “3 = between

12 and 18 months”, “4 = between 18 and 24 months”, “5 = more than 24 months”.

https://doi.org/10.1371/journal.pone.0245886.g003
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(2.43 ± 1.37) and country (2.87 ± 1.39) and between 18 and 24 months worldwide

(3.61 ± 1.45).

The Negative Binomial Model (NBM) was employed to find statistically significant correla-

tions between the respondents’ opinions treated as response variables and any of the ten

explanatory variables comprising demographic information, socio-economic status and epide-

miological situation. Due to collinearity issues, only seven predictors were considered in the

analyses: gender, education, age, Gini index, population density, WFH percentage and number

of pandemic-related deaths per 100,000 inhabitants for each country. The parameters of the

regression and the statistical significance are displayed in Table 2. The likelihood ratio Chi-

square and the Deviance/df ratio are reported in S2 Table and in S3 Table, respectively.

Considering the significant predictors (p< .05) for the responses to Part D, the perceptions

were strongly associated with Gini index and number of deaths per 100,000 individuals. Fur-

thermore, focusing on non-public transport modes, additional predictors came into play: age,

population density and WFH percentage. As for the perceived effectiveness associated to travel

restrictions (Part E), the COVID-19 death toll per 100,000 individuals was the only significant

predictor across nearly all transport modes. Depending on the geographical extension consid-

ered, all the predictors were statistically correlated to the results of Part F. Overall, it can be

inferred that the perceptions of the entire population strongly hinged upon two factors: Gini

index and the reported number of pandemic-related deaths per 100,000 inhabitants.

The correlation between socio-economic status and health is well established in epidemiologic

research [82]. Previous compositional studies linking income inequality, measured here by Gini

index, to morbidity at high levels of geographical aggregation are documented in population epi-

demiology [83–85]. The deprivation assessed by income inequality explains how socio-economic

gradients influence health and well-being [86, 87], and this has also been accounted for by neo-

material interpretation [88]. Income inequality is a determinant of population health, in particu-

lar at large scale cross-country analyses [89, 90]. Different from the perceived vulnerability, the

actual vulnerability to disease infection has largely been attributed to socio-economic status. Such

studies have focused on different types of diseases, mainly HIV, smoking-related complications

and pandemics [91–93]. This research sheds new light on the fact that socio-economic inequality,

expressed here as Gini Index, and morbidity do not only aggravate actual health risks, as well doc-

umented in Protection Motivation Theory, but also perceived risks.

This may indicate accurate appraisal by participants of the risk associated with inequality.

In several behavioral models the effect of perceived risk on actual behavior is moderated by

one or more factors which capture a person’s ability to control or direct their own behavior

[29, 94, 95]. These changes in mobility may reflect not only differences in the perceived risk of

various transport modes, but also the availability or ability to choose alternative transport

modes [96, 97]. Conversely, higher perceived risk may reflect lower perceived or actual control

over exposure to risk [98]. Inequality may therefore affect perceived risk via impacts on the

availability of different transport modes.

A consideration must be made regarding the demographic indicators (age, gender, education).

The study documents that demographic factors that are often clearly correlated at national level

with pandemic-related risk protective and preventive behavior [50, 99, 100] are not statistically

significant in this cross-country survey. Observing each predictive variable for all the data related

to Part D, Part E and Part F, gender and education are seldom statistically significant.

Conclusions

As public transport typically brings people into close contact in a confined space, stark mobil-

ity restrictions have been dully adopted to flatten the curve of COVID-19 infections, thus
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Table 2. Results from negative binomial model (NBM) regression method.

Part D a,b Walk Bicycle Motorcycle Car alone Car shared

Male | Female -.068 ± .025�� -.050 ± .025� -.048 ± .025ns .020 ± .026ns .012 ± .024ns

Education 1 | 6 .269 ± .300ns .459 ± .300ns .384 ± .302ns .399 ± .312ns .114 ± .298ns

Education 2 | 6 .203 ± .120ns .346 ± .120�� .291 ± .121� .556 ± .121��� .050 ± .118ns

Education 3 | 6 .129 ± .052� .088 ± .053ns .065 ± .053ns .130 ± .055� .048 ± .050ns

Education 4 | 6 .058 ± .043ns .043 ± .044ns .064 ± .044ns .122 ± .046�� .015 ± .042ns

Education 5 | 6 .020 ± .044ns .043 ± .045ns .042 ± .046ns .074 ± .047ns .049 ± .043ns

Age -.005 ± .001��� -.005 ± .001��� -.005 ± .001��� -.006 ± .001��� -.004 ± .001��

Gini .008 ± .002��� .010 ± .002��� .013 ± .002��� .013 ± .002��� .004 ± .002��

Deaths -.005 ± .001��� -.004 ± .001��� -.005 ± .001��� -.005 ± .001��� -.003 ± .001��

Density .000 ± .0001�� .000 ± .0001��� .001 ± .0001��� .001 ± .0001��� .000 ± .0001ns

WFH -.008 ± .003�� -.011 ± .003��� -.019 ± .001��� -.009 ± .003�� -.019 ± .003���

Bus Metro/Tram Train Airplane

Male | Female -.038 ± .023ns -.040 ± .027ns -.040 ± .025ns -.036 ± .024ns

Education 1 | 6 -.211 ± .298ns -.284 ± .340ns -.138 ± .307ns -.180 ± .308ns

Education 2 | 6 -.232 ± .117� -.271 ± .125� -.152 ± .119ns -.198 ± .119ns

Education 3 | 6 -.016 ± .049ns -.068 ± .056ns -.023 ± .051ns -.020 ± .050ns

Education 4 | 6 -.033 ± .040ns -.059 ± .046ns -.046 ± .043ns -.036 ± .042ns

Education 5 | 6 -.010 ± .041ns -.018 ± .047ns -.008 ± .044ns .002 ± .043ns

Age -.002 ± .001ns -.001 ± .001ns -.001 ± .001ns .000 ± .001ns

Gini .006 ± .002��� .005 ± .002�� .007 ± .002��� .004 ± .002��

Deaths .000 ± .001ns .002 ± .001� .001 ± .001ns .001 ± .001ns

Density .000 ± .0001ns .000 ± .0001ns .000 ± .0001ns .000 ± .0001ns

WFH -.008 ± .003�� .001 ± .003ns -.003 ± .003ns .004 ± .003ns

Part E a b Walk Bicycle Motorcycle Car alone Car shared

Male | Female -.033 ± .026ns -.046 ± .027ns -.042 ± .027ns -.035 ± .026ns -.001 ± .026ns

Education 1 | 6 -.093 ± .303ns .125 ± .321ns -.225 ± .346ns .095 ± .309ns -.048 ± .323ns

Education 2 | 6 .066 ± .120ns .061 ± .121ns .124 ± .120ns .028 ± .123ns .003 ± .120ns

Education 3 | 6 .037 ± .055ns .023 ± .055ns .014 ± .056ns .017 ± .056ns .033 ± .054ns

Education 4 | 6 -.017 ± .046ns -.010 ± .047ns -.007 ± .047ns -.004 ± .047ns -.018 ± .045ns

Education 5 | 6 .003 ± .047ns .009 ± .047ns .001 ± .048ns .012 ± .048ns .013 ± .047ns

Age .001 ± .001ns .001 ± .001ns .001 ± .001ns .001 ± .001ns -.001 ± .001ns

Gini -.004 ± .002� -.003 ± .002ns .002 ± .002ns -.002 ± .002ns -.001 ± .002���

Deaths .000 ± .001ns .000 ± .001ns .000 ± .001ns .001 ± .001ns -.001 ± .001ns

Density .000 ± .001ns .000± .0001ns .000 ± .0001ns .000 ± .0001� .000 ± .0001ns

WFH -.001 ± .001ns .001 ± .003ns -.001 ± .003ns .001 ± .001ns -.009 ± .003���

Bus Metro/Tram Train Airplane

Male | Female .019 ± .024ns .004 ± .029ns .009 ± .026ns .007 ± .026ns

Education 1 | 6 -.292 ± .317ns -.038 ± .309ns -.254 ± .314ns -.264 ± .325ns

Education 2 | 6 -.051 ± .118ns -.121 ± .125ns -.084 ± .120ns -.159 ± .121ns

Education 3 | 6 .006 ± .051ns -.061 ± .060ns -.017 ± .055ns -.023 ± .053ns

Education 4 | 6 -.043 ± .043ns -.053 ± .050ns -.055 ± .046ns -.069 ± .044ns

Education 5 | 6 .014 ± .044ns .009 ± .052ns .008 ± .047ns .002 ± .045ns

Age -.002 ± .001ns -.001 ± .001ns -.002 ± .001ns -.002 ± .001ns

Gini -.003 ± .002ns .000 ± .002ns .000 ± .002ns .001 ± .002�

Deaths -.002 ± .001�� -.003 ± .001�� -.003 ± .001�� .004 ± .001���

Density .000 ± .0001ns .000 ± .0001ns .000 ± .0001ns .000 ± .0001ns

WFH -.008 ± .003�� .001 ± .004ns -.005 ± .003ns -.005 ± .003ns

(Continued)
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forcing entire populations to radically modify their travel behavior and shaping a worldwide

change which is unprecedented in human history compared to other recent epidemics (MERS,

SARS, Ebola). This research focused on comparing people’s mobility before and during the

restrictions and the associated perceived risks in ten countries: Australia, Brazil, China,

Ghana, India, Iran, Italy, Norway, South Africa and the United States. These findings can be

rendered:

1. The significant mobility disruptions related to the restrictions enforced to tackle the

COVID-19 pandemic pertained all transportation modes and all travelling purposes, albeit

the extent of the transformations was different for each surveyed country.

2. Using negative binomial regressions, the main socio-economic drivers of change in travel

cognitive behaviour and individual perceptions were income inequality, expressed as Gini

index, and the reported death toll due to COVID-19 per 100,000 inhabitants.

3. The results of this study indicate that socio-economic inequality and morbidity are not only

related to actual health risks, as well documented in Protection Motivation Theory and

Health Belief Model literature, but also to the perceived risks.

As the COVID-19 pandemic is likely to entail a long-term effect on transport mode choice

and people’s cognitive assessment towards travel, transit operators need to carefully take into

consideration the modal split changes and, regardless of socio-economic inequalities, endeavor

to gain public trust and make journeys less risky by interpreting the pandemic as a “catalyst for

change” [101] and “hallmark of recovery” [102]. The findings of this study can provide guidance

for transport practitioners and policy makers to develop mobility strategies and intervention

mechanisms to combat the current crises and future pandemics facilitating the interventions

according to a user’s perspectives. Further research including replications of such behavioral sur-

veys and the analysis of empirical travel data is necessary to understand longer term implications.

Table 2. (Continued)

Part F a,b In the region In the country In the world

Male | Female -.001 ± .027ns -.052 ± .026� -.067 ± .025�

Education 1 | 6 .306 ± .324ns .242 ± .318ns .055 ± .313ns

Education 2 | 6 .291 ± .127� .253± .125� -.015 ± .124ns

Education 3 | 6 .050 ± .055ns .079 ± .054ns -.019 ± .052ns

Education 4 | 6 -.020 ± .046ns -.038 ± .045ns -.057 ± .043ns

Education 5 | 6 .001 ± .047ns -.012 ± .046ns -.031 ± .044ns

Age .005 ± .001��� .004 ± .001�� -.001 ± .001ns

Gini .001 ± .002ns .001 ± .002ns -.004 ± .002�

Deaths .005 ± .001��� .005 ± .001��� .001 ± .001ns

Density .000 ± .0001�� .000 ± .0001��� .000 ± .0001���

WFH -.006 ± .003� -.004 ± .003ns .004 ± .003ns

aSuperscripts are ns = non-significant

� = p < .05

�� = p < .01

��� = p < .001.
bAbbreviations are “Education 1” = Primary school, “Education 2” = Middle school, “Education 3” = High school, “Education 4” = BSc, “Education 5” = MSc,

“Education 6” = PhD.

Parameters estimates, standard deviation and statistical significance (B ± S.E.a) for the responses to perceived probability of contracting COVID-19 (Part D), perceived

effectiveness of curbing COVID-19 (Part E) and perceived time needed by the transportation sector to completely recover (Part F).

https://doi.org/10.1371/journal.pone.0245886.t002
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