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Abstract

This paper proposes a formation control method for two underactuated unmanned surface vessels (USVs) to follow curved paths in
the presence of ocean currents. By uniting a line-of-sight (LOS) guidance law and the null-space-based behavioral control (NSB)
framework, we achieve curved path following of the barycenter, while maintaining the desired vessel formation.

The closed-loop dynamics are investigated using cascaded systems theory, and it is shown that the closed-loop system is USGES
and UGAS, while the underactuated sway dynamics remain bounded. Simulations show that the barycenter task errors converge to
zero, validating the theoretical results, while a small cross-track error is observed in the experiments.

Keywords: Underactuated systems, Marine vehicles, Path following, Line-of-sight, Null-space-based behavioral control,
Formation control

1. Introduction

In recent years, the presence of autonomous vehicles has
become more prominent, with self-driving cars being one of
the most well-known fields. Another active area of research
is within the maritime field, with a focus on both autonomous
underwater and surface vessels. A significant advantage of au-
tonomous systems is their ability to plan and execute tasks with
reduced need for human interference. Current research areas
include path planning and following, collision avoidance, and
maneuvering in dynamic environments under the influence of
disturbances such as wind, ocean currents, and waves for ap-
plications such as transportation, seafloor mapping, and in the
oil and gas industry. Traditionally, these tasks have been per-
formed using a single vessel. Some tasks, however, may be too
complex to be solved by an individual system or be of such a na-
ture that multiple systems are required to cooperate. With this,
new challenges arise of how path following can be achieved
while maintaining a desired overall formation.

The path following control problem for single underactuated
marine vessels has been considered in several publications, see
for instance [1, 2, 3, 4, 5, 6, 7]. The line-of-sight (LOS) ap-
proach, by steering the vessel towards a point ahead on the
path, is widely used to solve the path following problem, due
to its intuitive structure and ability to counteract environmental
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disturbances, e.g. [2, 4]. When considering the control prob-
lem for formations of marine vessels, several leader-follower
approaches have been proposed where the follower adapts its
speed and position relative to the leader to obtain the desired
formation, e.g. [8, 9, 10, 11]. However, leader-follower meth-
ods suffer from the fact that communication is unidirectional,
meaning the leader will not adapt its speed to the follower.

The problem of straight-line path following formations of
marine vessels is studied in [12, 13, 14]. The case without
ocean currents is studied in [12, 13], where the desired forma-
tion is obtained through each vessel in the formation using a
LOS guidance law to follow the desired path, while the desired
along-path distance between each vessel is obtained with a non-
linear velocity control law. Similarly, in [14], the guidance law
is extended with an integral LOS (ILOS) controller to counter-
act constant irrotational ocean currents. However, all of these
methods are restricted to straight-line paths.

Another approach to the formation control problem is the
null-space-based (NSB) behavioral control scheme, e.g. [15,
16, 17]. This centralized guidance system decomposes the con-
trol objective into different prioritized tasks, which are solved
independently of each other using a closed loop inverse kine-
matics (CLIK) algorithm. The solutions of each task are then
combined by projecting the solution of one task into the null-
space of the higher-priority task. Expressing the control objec-
tives in terms of fundamental tasks simplifies the control system
design, as the tasks can be designed independently and then as-
sembled to compose a complex behavior which could be diffi-
cult to create with a single objective function.

This paper aims to propose a formation path following
method that may be realized using only traditional sensors for
estimating absolute velocities, such as an inertial measurement
unit (IMU) and a global navigation satellite system (GNSS),
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which are available for most vessels. This is achieved by ex-
tending and combining the results for curved LOS path follow-
ing for single USVs from [4] with the NSB framework pre-
sented in [15, 17]. By replacing the barycenter CLIK control
law with a LOS guidance law, we inherit the path following
properties of the well-studied LOS guidance law, while the
NSB control scheme is used to design the overall system be-
havior, utilizing the advantages of both methods. Contrary to
[4], where relative velocities are used, we will specify the LOS
guidance law in terms of absolute velocity, eliminating the need
for expensive sensors for measuring the relative velocities.

The closed-loop stability of the proposed LOS guidance law
for path following of the barycenter, combined with the surge
and heading autopilots from [18] is analyzed using a cascaded
system approach. Using the results from [19], we show that
the closed-loop system is USGES and UGAS, while the under-
actuated sway dynamics are bounded. The LOS guidance law
is then integrated into the NSB framework and the theoretical
results are verified through both simulations and experiments.

The paper is organized as follows. Section 2 gives a math-
ematical description of the unmanned surface vessel (USV)
model. The control objectives are formalized in Section 3,
while the control system is presented in Section 4. In Section 5
we show that the closed-loop barycenter path following system
is USGES, while the underactuated sway dynamics are proven
to be bounded. Section 6 and Section 7 present the results of the
guidance law from simulations and experiments respectively.
Finally, Section 8 presents the conclusions and future work.

2. Vessel Model

2.1. The Vessel Model

The state of a marine surface vessel is given by the vector η ,[
x, y, ψ

]T which describes the position and orientation w.r.t the
inertial frame i. The vector ν , [u, v, r]T contains the linear and
angular velocities given in the body-fixed coordinate system b,
where u is the surge speed, v the sway speed and r the yaw rate.

The ocean current velocity, denoted Vc, expressed in the in-
ertial frame, satisfies the following assumption:

Assumption 1. The ocean current in the inertial frame is as-
sumed to be constant and irrotational, i.e. Vc ,

[
Vx,Vy, 0

]T
.

Furthermore, there exists a constant Vmax > 0 such that ‖Vc‖ =√
V2

x + V2
y < Vmax, i.e. the ocean current is bounded.

Moreover, νr , ν−νc is the relative velocity of the vessel, where
vc , [uc, vc, 0]T is the ocean current velocity expressed in the
body-fixed frame b and obtained from vc = R(ψ)Vc, where
R(ψ) is the rotation matrix from b to i, defined as:

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (1)

The kinematics and dynamics of the marine vessel are described

by the 3-DOF maneuvering model [20, 2, 18]:

η̇ = R(ψ)ν (2a)
MRBν̇ + CRB(ν)ν = −MAν̇r − CA(νr)νr

− D(νr)νr + Bf. (2b)

The vector f , [T, δ]T is the control input vector, containing
the surge thrust T and the rudder angle δ, respectively. The
matrix MRB = MT

RB > 0 is the rigid-body mass and inertia
matrix, CRB is the rigid-body Coriolis and centripetal matrix,
MA = MT

A > 0 is the hydrodynamic added mass matrix and CA
is the added mass Coriolis and centripetal matrix. Furthermore,
D is the hydrodynamic damping matrix, and B ∈ R3×2 is the
actuator configuration matrix.

Assumption 2. The USV is port-starboard symmetric.

Assumption 3. The body-fixed coordinate system is located at
a distance (x∗g, 0) from the USV’s center of gravity along the
center-line of the vessel.

The matrices can be defined as

Mx ,

m
x
11 0 0
0 mx

22 mx
23

0 mx
23 mx

33

 , B ,

b11 0
0 b22
0 b23


Cx(z) ,

 0 0 −mx
22z2 − mx

23z3
0 0 m11z1

mx
22z2 + mx

23z3 −m11z1 0


D(νr) ,

d11 + dq
11ur 0 0

0 dx
22 dx

23
0 dx

32 dx
33

 , (3)

for x ∈ {RB, A}. The structure of Mx and D follows from As-
sumptions 2–3 and the structure of Cx is parametrized accord-
ingly to [20]. To separate the sway-yaw subsystem, such that
the yaw control does not affect the sway motion, the distance x∗g
from Assumption 3 is chosen such that M−1BM = [τu, 0, τr]T ,
where M = MRB+MA. Such a transformation does always exist
for port-starboard symmetric vessels [1].

2.2. Vessel Model in Component Form
The model can be written in component form as

ẋ = cos(ψ)u − sin(ψ)v (4a)
ẏ = sin(ψ)u + cos(ψ)v (4b)
ψ̇ = r (4c)

u̇ = −
d11 + dq

11u
m11

u +
(m22v + m23r)

m11
r

+ φT
u (ψ, r)θu + τu (4d)

v̇ = X(u, uc)r + Y(u, uc)vr (4e)

ṙ = Fr(u, v, r) + φT
r (u, v, r, ψ)θr + τr, (4f)

where m ji , mRB
ji + mA

ji and θu = θr =
[
Vx,Vy,V2

x ,V
2
y ,VxVy

]T

and the expressions for φT
u (ψ, r), X(u, uc), Y(u, uc), Fr(u, v, r)

and φT
r (u, v, r, ψ) are given in Appendix A. The functions

X(u, uc) and Y(u, uc) are bounded for bounded inputs, and the
following condition holds true for Y(u, uc):
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Assumption 4. The function Y(u, uc) satisfies

Y(u, uc) ≤ −Ymin < 0, ∀u ∈ [0,Ud] . (5)

3. Control Objectives

The control objective is to make two underactuated USVs
perform curved path following while aligning themselves such
that the vector between them is perpendicular to the path with
a desired inter-vessel distance. We propose a method where
curved LOS path following is combined with the NSB frame-
work, as it is proven in [4] that underactuated UAVs are able
to counteract constant ocean currents with LOS guidance for
curved paths. Moreover, the NSB framework simplifies the
control system design by splitting the problem into fundamental
tasks.

Specifically, we choose the following three tasks, sorted by
priority: collision avoidance, vessel formation and barycenter
path following. The first task, running at the highest prior-
ity, aims to avoid collisions between the vessels to ensure their
integrity. The second task aims to control the vessels’ posi-
tions such that they maintain a desired cross-track distance from
the barycenter, perpendicular to the path. This task will have
the highest priority during regular operation when the collision
avoidance task is deactivated. The last task, running at the low-
est priority, aims to move the vessels’ barycenter along the de-
sired path. Consequently, this task will only take effect when
the task’s solution does not conflict with the solutions of the
higher-priority tasks.

The first two tasks are defined according to [17]. To solve
the third task, the objective of the control system is to make the
barycenter of the two vessels converge to and follow a given
smooth path P while maintaining a desired total speed Ud =√

u2
d + v2 tangential to the path in the presence of unknown con-

stant irrotational ocean currents. The path P is parametrized
using a path variable θ ∈ R with respect to the inertial frame.
Moreover, for each point on the path,

(
xp(θ), yp(θ)

)
∈ P, a path

tangential frame is introduced, see Figure 1. Using these def-
initions, the path following errors pp

pb , [xp
pb, y

p
pb]T expressed

in the path tangential frame is found to be[
xp

pb
yp

pb

]
=

cos
(
γp(θ)

)
− sin

(
γp(θ)

)
sin

(
γp(θ)

)
cos

(
γp(θ)

) T [
xb − xp(θ)
yb − yp(θ)

]
, (6)

where γp(θ) is the path tangential angle and pb = [xb, yb]T is the
barycenter position, to be defined later, expressed in the inertial
frame. Hence, the task errors xp

pb and yp
pb express the position of

the barycenter along the path frame tangential and orthogonal
axis respectively. The barycenter path following objective is
thus fulfilled if the trajectory of both vessels makes xp

pb and yp
pb

converge to zero.

4. Control System

In this section, we first present the surge and yaw autopi-
lots. Then, in Section 4.2, the NSB approach for generating

pb

P(
xp(θ), yp(θ)

)
T

N

yp
pb xp

pb

γp(θ)
X

Y

xb

yb

Figure 1: Definition of the path and barycenter path following errors.

the references for the autopilots is presented. Specifically, the
high-priority NSB tasks of collision avoidance and vessel for-
mation, and the corresponding CLIK algorithm and transforma-
tion to autopilot references, are presented. In Sections 4.3–4.5,
the LOS guidance law for solving the third task, i.e. barycenter
path following, is presented. The solutions of the barycenter
path following task, vd,3, are integrated into the NSB frame-
work by projecting the task solutions onto the null-spaces of
the higher-priority tasks, removing the components from lower-
priority tasks that would conflict with the higher-priority tasks.
The combined solutions from the NSB framework, vNSB, are
then used to generate references for the autopilots, see Figure 2.

4.1. Surge and Yaw Controllers
To control the surge and yaw states to their desired refer-

ences, we will use the same autopilots as in [18] due to their
ocean current adaptation capabilities. Defining the error states

ũ = u − ud (7a)
ψ̃ = ψ − ψd (7b)
˙̃ψ = ψ̇ − ψ̇d (7c)

ξ =
[
ũ, ψ̃, ˙̃ψ

]T
, (7d)

the following adaptive feedback linearizing PD-controller with
sliding-mode is used to ensure tracking of the desired heading

τr = −Fr(u, v, r) − φT
r (u, v, r, ψ)θ̂r + ψ̈d

− (kψ + λkr)ψ̃ − (kr + λ) ˙̃ψ − kd sign
( ˙̃ψ + λψ̃

)
(8a)

˙̂θr = γrφ
T
r (u, v, r, ψ)

( ˙̃ψ + λψ̃
)
, (8b)

where the gains kψ, kr, λ, γr are constant and positive and the
function sign(x) returns 1, 0 and −1 when x is positive, zero and
negative, respectively. Further, a combined feedback lineariz-
ing and sliding-mode P-controller is used to track the desired
surge speed

τu = −
1

m11
(m22v + m23r) r +

d11

m11
ud − φ

T
u (ψ, r)θ̂u

+ u̇d +
dq

11

m11
u2 − kuũ − ke sign(ũ) (9a)

˙̂θu = γuφ
T
u (ψ, r)ũ. (9b)
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4.2. NSB Collision Avoidance and Vessel Formation Tasks
For each task, we define a task variable σ ∈ Rm:

σ = f(p), (10)

where p = [pT
1 ,p

T
2 ]T ∈ R4 is the concatenated vector of system

configurations, pi ∈ R2 is the position of vessel i, expressed in
the inertial frame and f : R4 → Rm is the task function which
maps the system configuration to the task variable, see [15]. To
track the desired task reference, σd(t), we use the CLIK algo-
rithm presented in [15]

vd = J† (σ̇d + Λσ̃) ∈ R2, (11)

where σ̃ = σd − σ is the task error, J ∈ Rm×4 is the
configuration-dependent task Jacobian matrix, (·)† denotes the
Moore-Penrose pseudoinverse and Λ ∈ Rm×m > 0 is a matrix
of proportional gains. Now, let vd,i denote the solution of the ith

priority task, given by (11). The velocities of each task are then
combined by

vNSB = vd,1 +
(
I − J†1J1

)[
vd,2 +

(
I − J†2J2

)
vd,3

]
, (12)

where I are the identity matrices of appropriate dimensions.
The desired NSB velocity is decomposed into surge and yaw
references by extending the method proposed in [15] with
sideslip compensation, omitting vessel subscripts:

ud = UNSB
1 + cos (χNSB − χ)

2
(13)

ψd = χNSB − arctan
(

v
ud

)
︸       ︷︷       ︸

βd

, (14)

where UNSB and χNSB are the norm and direction of vNSB, re-
spectively, and χ is the course of the vessel. The second term
of (14) is the desired sideslip angle for each vessel, to make
the vessel’s course parallel to the path when the vessel’s sway
speed is non-zero.

Specifically, the collision avoidance task for the ith vessel is
defined as

σca = ‖pi − po‖ ∈ R, (15)

where pi, po ∈ R2 are the positions of the ith vessel and the
other vesssel, respectively, expressed in the inertial frame. The
task is only activated when the inter-vessel distance is below a
certain threshold, i.e. σca < σca,d. As (15) is scalar, the colli-
sion avoidance gain in (11) is reduced to λca ∈ R. Moreover,
the vessel formation task is defined as

σ f = p1 − pb ∈ R2, (16)

where p1 is the position of the first vessel. To fulfill the ves-
sel formation control objective, the desired task function value,
σp

f ,d, is expressed in the path tangential frame and transformed
to the inertial frame by:

σ f ,d = R(γp(θ))Tσp
f ,d. (17)

To be able to specify the weighting for along- and cross-track
formation task errors independently, we express the vessel for-
mation gain in terms of Λp

f which is transformed similarly to
(17) to obtain the vessel formation gain Λ f .

NSB

Autopilots Vessel 1

Autopilots Vessel 2

σd, σ̇d

ud,1, ψd,1 f η1, ν1

ud,2, ψd,2 f η2, ν2

Figure 2: Block diagram of the control system.

4.3. Barycenter Kinematics

The barycenter given the two vessel positions can be ex-
pressed as:

σb = pb =
1
2

(p1 + p2) . (18)

Next, as the position of the barycenter cannot be controlled di-
rectly, only through each of the vessels, the barycenter kinemat-
ics is expressed in terms of the kinematics of each vessel (2a)
by taking the time derivative of (18)

ẋb =
1
2

[
u1cosψ1−v1sinψ1+u2cosψ2−v2sinψ2

]
(19a)

ẏb =
1
2

[
u1sinψ1+v1cosψ1+u2sinψ2+v2cosψ2

]
. (19b)

The path following error dynamics is then computed by substi-
tuting (19) into the time derivative of (6)

ẋp
pb =

1
2

U1 cos
(
χ1−γp

)
+

1
2

U2 cos
(
χ2−γp

)
−θ̇(1−κ(θ))yp

pb (20a)

ẏp
pb =

1
2

U1 sin
(
χ1−γp

)
+

1
2

U2 sin
(
χ2−γp

)
−κ(θ)θ̇xp

pb, (20b)

where κ(θ) is the curvature of P at θ and χi the course of vessel
i.

4.4. Path Parametrization

As the path is parametrized by the path variable θ, it is possi-
ble to use the update law of the path variable as an extra degree
of freedom when designing the controller [21]. As in [4], where
the update law is chosen to obtain a desirable behavior of the
xp

pb dynamic, a similar approach will be used here where the up-
date law is chosen such that the propagation speed of the path
tangential frame cancel the undesirable terms of (20a):

θ̇=
1
2

U1 cos
(
χ1−γp

)
+

1
2

U2 cos
(
χ2−γp

)
+kθ fθ

(
xp

pb,y
p
pb

)
, (21)

where kθ ∈ R>0 is a control gain and fθ : R2 → R is a function
satisfying fθ(xp

pb, y
p
pb)xp

pb > 0 that we use to ensure a desirable
along-track error dynamics. Specifically, we choose:

fθ
(
xp

pb, y
p
pb

)
=

xp
pb√

1 +
(
xp

pb

)2
. (22)
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Inserting (21) into (20a) we obtain the following along-track
error dynamics

ẋp
pb = −kθ

xp
pb√

1 +
(
xp

pb

)2
+ θ̇κ(θ)yp

pb, (23)

where the choice of fθ introduces a stabilizing term in the along-
track error dynamics.

4.5. Guidance Law
To obtain path following for the barycenter, we choose the

following LOS guidance law:

χb,d = γp(θ) − arctan

 yp
pb

∆
(
pp

pb

)  . (24)

The guidance law consists of two terms. The first term is a feed-
forward term of the path tangential angle and the last term is a
traditional line-of-sight term for steering the barycenter towards
the desired path, see Fig. 3. Contrary to the LOS guidance law
of [4], the ocean current observer and the ocean current depen-
dent term g used to compensate for the ocean current is not
present in (24) as the ocean current compensation is instead
handled by the adaptive autopilots (8)–(9). The solutions of the
LOS guidance law are then integrated into the NSB framework
by defining the desired barycenter task velocity

vd,3 = Ud

[
cos χb,d

sin χb,d

]
. (25)

Inspired by [4], the lookahead term ∆(pp
pb) is chosen to have

one constant part and one part depending on the path following
errors

∆
(
pp

pb

)
=

√
µ +

(
xp

pb

)2
+

(
yp

pb

)2
, (26)

where µ ∈ R>0 is a constant. Contrary to [4], the lookahead
distance is not required to depend on yp

pb for the conditions of
lemma 3 to hold; the proof is given in Appendix C. However,
we still choose to include the dependence on the cross-track
error to obtain a greater lookahead distance when the barycenter
is far away from the desired path.

Substituting (24) in (20b) we obtain the following cross-track
error dynamics

ẏp
pb =

1
2

Ud,1 sin
(
ψd,1 + ψ̃1 + βd,1 − γp

)
+

1
2

Ud,2 sin
(
ψd,2 + ψ̃2 + βd,2 − γp

)
− κ(θ)θ̇xp

pb

+
1
2

ũ1 sin
(
ψ1 − γp

)
+

1
2

ũ2 sin
(
ψ2 − γp

)
(27)

= −
1
2

(
Ud,1 + Ud,2

) yp
pb√

∆2 +
(
yp

pb

)2
− κ(θ)θ̇xp

pb

+ G1

(
ψ̃1, ũ1, ψd,1,Ud,1, ψ̃2, ũ2, ψd,2,Ud,2, y

p
pb

)
, (28)

where Ud,i =
√

u2
d,i + v2

i , βd,i are the total desired speed and
desired sideslip angle of vessel i, respectively, and G1(·) is a
perturbing term of the vessels autopilots’ error states:

G1(·) =
1
2

2∑
i=1

G2

(
ψ̃i, ũi, ψd,i,Ud,i, y

p
pb

)
(29)

with

G2(ψ̃, ũ, ψd,Ud, y
p
pb) = ũ sin

(
ψ − γp

)
+ Ud

(
1 − cos ψ̃

)
sin

arctan

yp
pb

∆


+ Ud cos

arctan

yp
pb

∆

 sin ψ̃. (30)

Note that G1(·) satisfy

G1

(
0, 0, ψd,1,Ud,1, 0, 0, ψd,2,Ud,2, y

p
pb

)
= 0 (31a)

‖G1(·)‖ ≤ ζ1
(
Ud,1,Ud,2

) ∥∥∥[ψ̃1, ũ1, ψ̃2, ũ2
]T ∥∥∥, (31b)

where ζ1
(
Ud,1,Ud,2

)
> 0. This shows that the perturbing term

G1(·) is zero when the perturbing states are zero, and has at most
linear growth in the perturbing states.

The desired yaw rate is found by substituting (24) into (14)
and taking the time-derivative:

rd = ψ̇d = κ(θ)θ̇ −
v̇ud − u̇dv
u2

d + v2

−
1

∆2 +
(
yp

pb

)2

∆ẏp
pb − yp

pb

 ∂∆

∂xp
pb

ẋp
pb +

∂∆

∂yp
pb

ẏp
pb

 . (32)

Substituting the along-track and cross-track error dynamics
(23) and (28) along with the sway dynamics (4e) we obtain

rd = κ(θ)θ̇ −
ud

u2
d + v2

(X(u, uc)r + Y(u, uc)v

− Y(u, uc)vc) +
u̇dv

u2
d + v2

−
1

∆2 +
(
yp

pb

)2

[ ∆ − yp
pb
∂∆

∂yp
pb

 [G1(·)

−
1
2

(
Ud,1 + Ud,2

) yp
pb√

∆2 +
(
yp

pb

)2
− κ(θ)θ̇xp

pb

]

− yp
pb
∂∆

∂xp
pb

[
− kθ

xp
pb√

1 +
(
xp

pb

)2
+ θ̇κ(θ)yp

pb

]]
. (33)

Remark 1. Looking at (33) it is clear how the expression of
ψ̇d contains terms depending on v̇, which depends on the un-
known ocean current uc and the relative surge and sway speeds
ur and vr. Interestingly, contrary to [4] where ψ̇d was also de-
pendent on unknown variables and could not be realised, this is
not an issue in (33). Specifically, in [4], the terms depending
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on the unknown ocean currents appeared through the along-
and cross-track error dynamics. As these states could not be
measured directly, they had to be calculated, requiring knowl-
edge about the unknown ocean current. However, in (33), the
terms depending on the unknown variables appear only through
the sway dynamics v̇ of the vessel, which can be measured us-
ing e.g. a IMU, and is therefore available for feedback. This,
comes from our choice of defining the LOS guidance law in
terms of absolute velocities, contrary to [4] where relative ve-
locities are used. Although this apparently is a small difference,
an important implication is that this allows (33) to be realised
by obtaining v̇ through available sensor measurement instead of
requiring knowledge about the unknown ocean current as ψ̇d in
[4, Eq. (35)].

P

pp

∆
(
pp

pb

) pLOS

pb

yp
pb

xp
pb xb U

LOS vector

ψ β
χ

χb,d

γp(θ)

Figure 3: Illustration of the LOS guidance law for path following for the
barycenter. The subscripts for the lower vessel’s states are omitted for sim-
plicity.

5. Closed-loop Analysis

In this section, we will analyse the closed-loop error dy-
namics of the barycenter path following task, described in Sec-
tions 4.3–4.5

The closed-loop error variables are defined as follows:

X̃1 ,
[
xp

pb, y
p
pb

]T
(34a)

X̃2,i ,
[
ũi,

˙̃ψi, si

]T
(34b)

X̃2 ,
[
X̃T

2,1, X̃
T
2,2

]T
, (34c)

where X̃2,i, contains the autopilot error states of each vessel,
that converge independent of X̃1, and the coordinate transfor-
mation si = ψ̃i + λ ˙̃ψi is applied motivated by [18]. Moreover,
we define the estimation errors θ̃x = θ̂x − θx, where x ∈ {u, r},
for each vessel respectively.

Thus, the error dynamics of the closed-loop barycenter path
following system consisting of the vessels, given by (4), and the

control laws (8)–(9) with the guidance laws (24) may be written
as

˙̃X1 =


−kθ

xp
pb√

1+
(
xp

pb

)2 + θ̇κ(θ)yp
pb

− 1
2 (Ud,1+Ud,2)yp

pb√
∆2+

(
yp

pb

)2 − κ(θ)θ̇xp
pb

 +

[
0

G1(·)

]
(35a)

˙̃X2,i =


−

(
d11
m11

+ ku,i

)
ũi − φ

T
u (·)θ̃u,i − ke,i sign(ũi)

−λiψ̃i + s
−kψ,iψ̃i − kr,isi − φ

T
r (·)θ̃r,i − kd,i sign(si)

 (35b)

˙̃θr,i = γrφ
T
r (u, v, r, ψ)si (35c)

˙̃θu,i = γuφ
T
u (ψ, r)ũi (35d)

v̇i = X(ud,i + ũi, uc)rdi + X(ud,i + ũi, uc)r̃i

+ Y(ud,i + ũi, uc)vi − Y(ud,i + ũi, uc)vc. (35e)

To solve the barycenter control objective defined in Section 3,
the error states X̃1 and X̃2 should converge to zero, while the
estimation errors θ̃r,i, θ̃u,i and the sway velocity vi should remain
bounded.

Lemma 1 (Forward Completeness). The trajectories of the
closed-loop system (35) are forward complete

Proof. The proof of this lemma is given in Appendix B.1.

Lemma 2 (Boundedness near (X̃1, X̃2) = 0). The system
(35e) is bounded near the manifold (X̃1, X̃2) = 0 if and only if
the curvature of P satisfies the following condition:

κmax , max
θ∈P
|κ(θ)| <

Ymin

Xmax
, Xmax , |X(u, uc)|∞. (36)

Proof. The proof of this lemma is given in Appendix B.2.

Lemma 3 (Boundedness near X̃2 = 0). The system (35e) is
bounded near the manifold X̃2 = 0, independently of X̃1, if
the conditions of lemma 2 is satisfied, and the constant term of
the lookahead distance is chosen accordingly to

µ >
4Xmax

Ymin − Xmaxκmax
, (37)

where Xmax , |X(u, uc)|∞ and κmax , maxθ∈P |κ(θ)|.

Proof. The proof of this lemma is given in Appendix B.3.

Theorem 1. Consider a θ-parametrized path denoted by
P(θ) =

(
xp(θ), yp(θ)

)
, with the update law (21) and a system

given by two vessels, each described by (4), giving the barycen-
ter kinematics (19). Furthermore, let the adaptive controllers
(8) and (9) be used as autopilots for each of the vessels, with the
guidance law (24). Then, under the conditions of Lemmas 1–
3, the barycenter follows the path P at the desired along-path
speed Ud(t) with bounded estimation errors and sway velocity,
and the origin of the closed-loop system (35a)–(35b) is an US-
GES equilibrium point.
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Proof. The proof follows along the lines of [4, Proof of Theo-
rem 1] for single vessel control but extended to two vessels and
making use of the results in [19] to prove USGES.

First, consider the unactuated sway-dynamics (35e). From
[18, Proposition 1] the origin of (35b) is UGES. Moreover,
by lemma 1 the closed-loop system (35) is forward complete
and thus the sway-dynamics (35e) is bounded near the mani-
fold X̃2 = 0. Thus, we can conclude that there exists a finite
time T > t0 such that the solutions of (35b) will be sufficiently
close to X̃2 = 0 to guarantee boundedness of vi.

Having established that the sway dynamics are bounded,
we will now utilize cascaded theory to analyze the cascade
(35a)–(35b), where (35b) perturbs the nominal dynamics (35a)
through the interconnection term G1(·). Note that the estimation
errors, and also the sway velocity which affects (35a)–(35b)
through Ud, can be treated as time-varying signals in the follow-
ing analysis since the system is forward complete by lemma 1.

First, consider the nominal dynamics given by the first term
of (35a). Taking the derivatives of the positive definite C1 Lya-
punov function candidate

V
(
X̃1

)
=

1
2

(
xp

pb

)2
+

1
2

(
yp

pb

)2
, (38)

along the trajectories of (35a) gives

V̇ = −X̃T
1 QX̃1 < 0, (39)

for which

Q =


kθ√

1+
(
xp

pb

)2 0

0 1
2

Ud,1+Ud,2√
µ+

(
xp

pb

)2
+2

(
yp

pb

)2

 > 0 (40)

is a positive definite matrix as kθ,Ud,1,Ud,2 > 0, implying that
V̇ is negative definite, and that the nominal system is UGAS.
Furthermore, to investigate USGES, the following bound can
be verified to hold ∀X̃1 ∈ Br

V̇ ≤ −qmin‖X̃1‖
2, (41)

with

qmin , λmin




kθ√
1+r2

0

0 1
2

Ud,1+Ud,2√
µ+3r2


 (42)

= min

 kθ
√

1 + r2
,

1
2

Ud,1 + Ud,2√
µ + 3r2

 (43)

for any ball Br ,
{
max{|X̃11|, |X̃21|} < r

}
, r > 0, where λmin(A)

is defined as the minimum eigenvalue of A. Thus, the condi-
tions of [19, Theorem 5] is fulfilled with k1 = k2 = 1

2 , a = 2
and k3 = qmin, and USGES can be concluded for the origin of
the nominal system given by the first term of (35a).

The perturbing system (35b) is proven UGES in [18], imply-
ing both UGAS and USGES. The conditions of [19, Theorem
5] are therefore trivially satisfied for the perturbing system.

The existence of positive constants c1, c2, η > 0 satisfying
[19, Assumption 1] is clearly satisfied by V in (38):∥∥∥∥∥∥ ∂V

∂X̃1

∥∥∥∥∥∥ ∥∥∥X̃1
∥∥∥ =

∥∥∥∥[xp
pb, y

p
pb

]T ∥∥∥∥2
= 2V

(
X̃1

)
∀
∥∥∥X̃1

∥∥∥ (44)∥∥∥∥∥∥ ∂V
∂X̃1

∥∥∥∥∥∥ =
∥∥∥X̃1

∥∥∥ ≤ η ∀
∥∥∥X̃1

∥∥∥ ≤ η, (45)

i.e. with c1 = 2 and c2 = η for any choice η > 0. Finally, the
conditions of [19, Assumption 2] must be investigated, i.e. the
assumption that the interconnection terms, the second vector
of (35a), has at most linear growth in X̃1. From (31b) it can
be seen that the interconnection term does not grow with the
states X̃1 as it can be bounded by linear functions of X̃2. All
conditions of [19, Proposition 9] are therefore satisfied, and the
origin of the closed-loop system (35a)–(35b)

(
X̃1, X̃2

)
= (0, 0),

is USGES and UGAS.
Boundedness of Eqs. (35c)–(35d) is established in the proof

of [18, Proposition 1] where it is shown that both θ̃r and θ̃r are
bounded. �

Remark 2. UGES cannot be achieved for the LOS guidance
law (24). This is an inherent limitation for all LOS guidance
laws due to the kinematic representation which introduces sat-
uration through the trigonometric functions, see [22].

6. Simulations

In this section, we present the results from numerical sim-
ulations of two identical underactuated USVs modeled by
(4), subject to a constant irrotational ocean current Vc ,
[−0.707,−0.707, 0]T . The simulations were performed using
the ODE4 solver in MATLAB/Simulink with a step size of
10 ms. The NSB collision avoidance and vessel formation
task objectives (15)–(16) are specified by σca,d = 20 m and
σ f ,d = [0, 20 m]T , with the control gains λca = 1 and Λp

f =

diag(2.5, 0.3), respectively. The desired surge speed is chosen
constant as ud = 3 m s−1 and the desired path to follow is de-
fined as

P ,

xp(θ) = θ

yp(θ) = 300 sin (0.005θ) ,
(46)

which satisfies the condition of lemma 2 as maxθ∈P |κ(θ)| =

0.0075 < Ymin/Xmax ≈ 0.0882. Furthermore, the required
bound for µ to satisfy the condition of lemma 3 can be cal-
culated to be µ > 49.5704 m, which is satisfied by choosing
µ = 50 m. The controller gains are chosen as kψ = 1.2, kr = 1.3,
λ = 100, kd = 10, ku = 0.1 and ke = 0.1, with the adaptive gains
chosen as γr = 5 and γu = 1.

The simulations present an ideal situation, and the simula-
tion results can thus be expected to comply with and thus val-
idate the theoretical results. The experiments which are per-
formed at sea, on the other hand, will inherently include mea-
surement noise, model parameter errors and unmodeled dynam-
ics and disturbances, and can thus not be expected to demon-
strate convergence to the equilibrium point. Instead, the exper-
iments were performed to investigate the performance of the
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Figure 4: Path following of the desired sinusiodal path.

method for full-scale USVs under real conditions, and in par-
ticular the robustness of the method. The exponential stability
of the system, as stated in Theorem 1, should provide some ro-
bustness. Specifically, the exponential stability result predicts
that the system will converge to a neighborhood of the equi-
librium point with radius dependent on the magnitude of the
system perturbation [24, Lemma 9.2]

The resulting trajectories of both vessels and the barycenter
trajectory are shown in Fig. 4. It can be observed that the ves-
sels maintain their desired formation while making the barycen-
ter follow the desired path. It can also be seen that the curved
path and the ocean currents make both vessels operate with a
non-zero sideslip angle. The path following errors of the three
tasks can be seen in Fig. 5 which shows the barycenter task er-
rors converging to zero. The collision task can be observed to
be initially active, when the inter-vessel distance is below the
safe-distance σca,d, driving the vessels away from each other to
maintain their integrity. Once the inter-vessel distance becomes
above the activation threshold, the task is deactivated. More-
over, it can be observed that the vessel formation task errors
grow during the turns while converging towards zero elsewhere.

Thus, we can conclude that the barycenter task errors con-
verge to zero in an ideal situation, as expected from theory, and
consequently validates Theorem 1.

7. Experiments

In this section, results from experiments at sea are presented.
The experiments were performed using the Odin and Frigg
USVs which are under development by FFI. They are 11 m long
and 3.5 m wide and propelled by a dual waterjet system. How-
ever, at maneuvering speeds, the waterjets are linked together,
rendering the system underactuated. On the day of the experi-
ments, the sea state was calm, i.e. only ripples. There will at
any time be ocean currents in the sea where the experiments
were performed, but knowledge about the ocean current’s mag-
nitude and direction was unavailable.

We did not have the opportunity to implement new autopilots
at Odin and Frigg, so the adaptive autopilots (8)–(9) could not
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Figure 5: NSB errors of the desired sinusiodal path.

be implemented. Instead, the existing surge and heading autopi-
lots had to be used. These are PI and PD controllers for surge
and heading, respectively, which are tuned to give asymptotic
stability.

The desired along-path speed was chosen constant as ud =

3 m s−1, while the lookahead distance was chosen as µ = 100 m.
The NSB task objectives of the collision avoidance and vessel
formation tasks were chosen according to Section 6, with the
NSB task gains chosen as λca = 1 and Λp

f = diag(0.3, 0.1),
respectively.
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Figure 6: The vessels positions along with desired and actual barycenter path.

The resulting motion of the vessels is shown in Fig. 6. The
vessels maintained the desired formation on the straight-line
path segments, while the error was bounded during turns, as
shown in Fig. 7. For the barycenter task, a small cross-track
error of 1− 2 m can be observed. We believe that the reason for
this deviation is the lack of ocean current adaptation in the ex-
isting autopilots, and that the adaptation of (8)–(9) could signif-
icantly reduce the cross-track error as predicted by theory and
illustrated in the simulations. Moreover, rather large vessel for-
mation task errors can be observed, especially during the sec-
ond turn. We believe that these errors are caused by sub-optimal
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NSB task gains caused by the limited timespan in which the ex-
periments had to be executed, and that these errors could be
significantly reduced in a well-tuned system.

As previously noted, demonstrating robustness against fac-
tors not described in the mathematical model is a primary role
of the experimental study. The experiments showed that the
barycenter converged to within a neighborhood of the origin,
and thus demonstrate that the proposed method provides some
robustness as predicted by theory.
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Figure 7: NSB task errors. The collision avoidance task is deactivated through-
out the whole experiment since the inter-vessel distance is never below the ac-
tivation threshold σca,d , and thus omitted from the figure.

8. Conclusions and Future Work

In this paper we have proposed a formation control method
for two underactuated USVs to follow curved paths in the pres-
ence of ocean currents. This is achieved by integrating a LOS
guidance law for curved path following of the barycenter into
the NSB framework together with the additional two tasks: col-
lision avoidance and vessel formation. We prove that the pro-
posed LOS guidance law combined with adaptive feedback lin-
earizing controllers with sliding mode for the surge and yaw au-
topilots, achieves convergence to the desired path, and that the
closed-loop system is USGES and UGAS while the underac-
tuated sway dynamics remains bounded. The resulting control
system requires only traditional sensors for estimating absolute
velocities, such as IMU and GNSS, removing the need of ex-
pensive sensors for measuring relative velocities.

Simulations show that the barycenter task errors converge to
zero in an ideal situation, confirming our expectations and val-
idating the theoretical results. In the experimental results, per-
formed at sea, the barycenter task errors converge to within a
neighbourhood of the origin with a small steady-state cross-
track error, demonstrating that the proposed method provides
some robustness against measurement noise, model parameter
errors and unmodeled dynamics and disturbances.

Future work may include extending the proposed method to
beyond two vessels, and perform experiments with the ocean
current adapting autopilots.
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Appendix A.

φT
u (ψ, r) =


−

d11+2dq
11u

m11
cos(ψ) − mA

11−mA
22

m11
r sin(ψ)

−
d11+2dq

11u
m11

sin(ψ) +
mA

11−mA
22

m11
r cos(ψ)

−dq
11 cos2(ψ)

−dq
11 sin2(ψ)

−2dq
11 cos(ψ) sin(ψ)


(A.1)

X(u, uc) =
1
Γ

(
m33

(
−d23 − m11(u − uc) − mRB

11 uc

)
+m23d33 + m23

(
m23(u − uc) + mRB

23 uc + mA
22uc

) )
(A.2)

Y(u, uc) =
1
Γ

(
− m33d22 + m23d32

+ m23

(
mA

22 − mA
11

)
(u − uc)

)
(A.3)

Fr(u, v, r) = −
m23

Γ
(−m11ru − d22v − d23r) +

m22

Γ

(
−

(
m22v − m23r

)
u + m11uv − d32v − d33r

)
(A.4)

where, Γ = m22m33 − m2
23 > 0. Further, the function

φT
r (u, v, r, ψ) =

[
φr1, . . . , φr5

]
is given by[

φr1
φr2

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
a1
a2

]
(A.5)

φr3 = −
m22

Γ

(
mA

11 − mA
22

)
cos(ψ) sin(ψ) (A.6)

φr4 =
m22

Γ

(
mA

11 − mA
22

)
cos(ψ) sin(ψ) (A.7)

φr5 =
m22

Γ

(
mA

11 − mA
22

) (
1 − 2 sin2(ψ)

)
(A.8)

where

a1 =
m22

Γ

((
mA

11 − mA
22

)
v +

(
mA

23 − mA
22

)
r
)
−

m23

Γ
mA

11r (A.9)

a2 =
m22

Γ

(
d32 −

(
mA

11 − mA
22

)
u
)
−

m23

Γ
d22. (A.10)

where

a1 =
m22

Γ

((
mA

11 − mA
22

)
v +

(
mA

23 − mA
22

)
r
)
−

m23

Γ
mA

11r (A.11)

a2 =
m22

Γ

(
d32 −

(
mA

11 − mA
22

)
u
)
−

m23

Γ
d22. (A.12)
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Appendix B.

Appendix B.1. Proof of Lemma 1
The proof follows along the lines of [23, Lemma 1] but is

extended to two vessels described by (4) expressed in terms of
absolute velocities, with the adaptive controllers (8) - (9).

First, consider forward completeness of the underactuated
sway dynamics (35e). From the boundedness of the vector
[X̃T

2,i, κ(θ), ud,i, u̇d,i, uc, vc]T there exist some scalar β0 ∈ R>0

such that ‖[X̃2,i, κ(θ), ud,i, u̇d,i, uc, vc]T ‖ ≤ β0. Moreover, from
(33) we can concluded the existence of some positive functions
ard (·) and brd (·) such that

|rd(·)| ≤ ard (µ, β0)|v| + brd (µ, β0). (B.1)

Then, choosing the Lyapunov function candidate (LFC), omit-
ting subscripts for simplicity

V1(v) =
1
2

v2, (B.2)

whose time derivative along the solutions of (35e) is:

V̇1(v) = X(ud + ũ, uc)rdv + X(ud + ũ, uc)r̃v

+ Y(ud + ũ, uc)v2 − Y(ud + ũ, uc)vcv. (B.3)

Using Young’s inequality, we conclude that the following
bound holds:

V̇1(v) ≤ Y(ud + ũ, uc)v2 + X(ud + ũ, uc)(r̃2 + v2)

+ X(ud + ũ, uc)(r2
d + v2)

− Y(ud + ũ, uc)(v2
c + v2) (B.4)

≤ αV + β (B.5)

where α ∈ R≥0, β ∈ R≥0 are positive scalars. As (B.5) is a
scalar system, the comparison lemma [24, Lemma 3.4] may be
used to bound the solutions of (B.5) by the scalar linear system

ẋ = αx + β (B.6)

whose solution is equal to

x(t) =
‖x(t0)‖α + β

α
eα(t−t0) −

β

α
. (B.7)

Hence, by the comparison lemma, the solutions of (B.5) must
be upper bounded by

V1(v) ≤
‖x(t0)‖α + β

α
eα(t−t0) −

β

α
. (B.8)

As V(v) is defined for all t up to tmax = ∞, it follows that v must
also be defined up to tmax = ∞. In the same way as [23], the
solutions of (35e) thus fulfills the definition of forward com-
pleteness in [25] and forward completeness of the solution of
(35e) can be concluded.

Forward completeness of the closed-loop system (35b) -
(35d) is established in [18, Proposition 1]. Having established
forward completeness of (35b) - (35e), only the forward com-
pleteness of (35a) remains before forward completeness may

be concluded for the whole closed-loop system (35). To show
forward completeness of the along- and cross-track error dy-
namics, consider the LFC

V2 =
1
2

(
xp

pb

)2
+

1
2

(
yp

pb

)2
, (B.9)

whose derivative along the solutions of (35a) is

V̇2 = −kθ

(
xp

pb

)2√
1 +

(
xp

pb

)2
+ G1(·)yp

pb

−
1
2

(
Ud,1 + Ud,2

) (
yp

pb

)2√
∆2 +

(
yp

pb

)2
(B.10)

≤ G1(·)yp
pb +

(
xp

pb

)2
(B.11)

Using Young’s inequality, along with the (31) we obtain the
following bound

V̇2 ≤ V2 +
1
2
ζ2

1
(
Ud,1,Ud,2

) ∥∥∥[ψ̃1, ũ1, ψ̃2, ũ2]T
∥∥∥2

(B.12)

≤ V2 + σ2

(
v1, v2, ψ̃1, ũ1, ψ̃2, ũ2

)
, (B.13)

where σ2(·) ∈ K∞. By viewing the arguments of σ2(·) as in-
puts to the along- and cross-track error dynamics, [25, Corol-
lary 2.11] is satisfied by (B.12) and forward completeness of
the solutions of (35a) can be concluded. Similarly to [23], the
arguments of σ2(·) are all forward complete, and are therefore
valid input signals according to [25]. Forward completeness
for the whole closed-loop system (35) is therefore established,
concluding the proof of lemma 1. �

Appendix B.2. Proof of Lemma 2
This proof follows along the lines of [23, Lemma 2] but is

extended to two vessels described by (4) expressed in terms of
absolute velocities, with the adaptive controllers (8) - (9).

To prove boundedness of v near the manifold (X̃1, X̃2) = 0,
recall the sway dynamics (35e):

v̇i = X(ud,i + ũi, uc)rdi + X(ud,i + ũi, uc)r̃i

+ Y(ud,i + ũi, uc)vi − Y(ud,i + ũi, uc)vc. (B.14)

We then consider the Lyapunov function candidate V(vi) = 1
2 v2

i ,
whose time derivative along the solutions of (35e) is:

V̇ = viv̇i = X(ud,i + ũi, uc)rdi vi + X(ud,i + ũi, uc)r̃ivi

+ Y(ud,i + ũi, uc)v2
i − Y(ud,i + ũi, uc)vcvi (B.15)

≤ X(ud,i, uc)rdi vi + axũird,ivi + X(ud,i, uc)r̃ivi

+ axũir̃ivi + Y(ud,i, uc)v2
i + ayũiv2

i

− Y(ud,i, uc)vcvi − ayũivcvi. (B.16)

Here, we have used the following properties of X(u, uc) and
Y(u, uc) from (A.2) - (A.3):

X(u, uc) = axu + bxuc + cx (B.17)
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Y(u, uc) = ayu + byuc + cy. (B.18)

Next, to find an upper bound of the term rd,ivi in (B.16), we
substitute the expression for rd from (33), omitting subscripts
for simplicity:

rdv = κ(θ)θ̇v +
u̇d

u2
d + v2

v2 −
v

∆2 +
(
yp

pb

)2

[
∆ẏp

pb

− yp
pb

 ∂∆

∂xp
pb

ẋp
pb +

∂∆

∂yp
pb

ẏp
pb

 ] − ud v̇v
u2

d + v2
(B.19)

= κ(θ)v
(

1
2

U1 cos
(
χ1 − γp

)
+

1
2

U2 cos
(
χ2 − γp

)
+

kθx
p
pb√

1 +
(
xp

pb

)2

)
+

u̇d

u2
d + v2

v2

−
udv

u2
d + v2

(
X(u, uc)r + Y(u, uc)v − Y(u, uc)vc

)
+

yp
pbv

∆2 +
(
yp

pb

)2

[
∂∆

∂xp
pb

(
−

kθx
p
pb√

1 +
(
xp

pb

)2

+ θ̇κ(θ)yp
pb

)
+

∂∆

∂yp
pb

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2

− κ(θ)θ̇xp
pb + G1(·)

)]
−

∆v

∆2 +
(
yp

pb

)2

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2

− κ(θ)θ̇xp
pb + G1(·)

)
. (B.20)

Now, we introduce a term F(X̃1, X̃2,∆, θ, ud, u̇d, v, vc, uc, r) to
collect all terms that grows linearly with v and the terms that
grow quadratically with v but vanish when X̃1 and X̃2 are zero:

rdv = v
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]
κ(θ)

(
1
2

U1 cos
(
χ1 − γp

)
+

1
2

U2 cos
(
χ2 − γp

) )
−

ud

u2
d + v2

Y(u, uc)v2

+ F(X̃1, X̃2,∆, θ, ud, u̇d, v, vc, uc, r), (B.21)

where the expression for θ̇ has been inserted in the first term
on the last line in (B.20) to extract the second term in the first
parenthesis on the first line of (B.21) and F(·) is given by

F(·) = v
[
κ(θ)

kθx
p
pb√

1 +
(
xp

pb

)2
+

u̇d

u2
d + v2

v2

−
udv

u2
d + v2

(
X(u, uc)r − Y(u, uc)vc

)
−

∆

∆2 +
(
yp

pb

)2

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2

− κ(θ)
kθ

(
xp

pb

)2√
1 +

(
xp

pb

)2
+ G1(·)

)

−
yp

pbv

∆2 +
(
yp

pb

)2

[
∂∆

∂xp
pb

kθx
p
pb√

1 +
(
xp

pb

)2

+
∂∆

∂yp
pb

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2
+ G1(·)

)]]
. (B.22)

Note how all terms with partial derivatives of ∆ and θ̇ are can-
celled due to skew-symmetry from the definition of the looka-
head distance (26):

∆

xp
pb

θ̇κ(θ)yp
pb −

∆

yp
pb

θ̇κ(θ)xp
pb =

xp
pb√

1 +
(
xp

pb

)2
+

(
yp

pb

)2
θ̇κ(θ)yp

pb

−
yp

pb√
1 +

(
xp

pb

)2
+

(
yp

pb

)2
θ̇κ(θ)xp

pb = 0. (B.23)

Furthermore, from (B.22) it can be seen that the function F(·)
may be upper bounded by the following inequality

|F(·)| ≤ F2(X̃1, X̃2,∆, θ, ud, u̇d, v, vc, uc, r)v2

+ F1(X̃1, X̃2,∆, θ, ud, u̇d, v, vc, uc, r)|v|, (B.24)

where F1,2(·) are positive functions with

F2(0, 0,∆, θ, ud, u̇d, v, vc, uv) = 0. (B.25)

Consequently, the term rdv may be upper bounded as:

rd,ivi ≤ |vi|

∣∣∣∣∣∣
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]∣∣∣∣∣∣|κ(θ)|12 (
|Ui| + |U j|

)
+ |F(·)| −

ud,i

u2
d,i + v2

i

Y(ui, uc)v2
i (B.26)

≤ |vi|

∣∣∣∣∣∣
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]∣∣∣∣∣∣|κ(θ)|12 (
|ui| + |vi| + |u j|

+ |v j|
)

+ |F(·)| −
ud,i

u2
d,i + v2

i

Y(ui, uc)v2
i (B.27)

≤
1
2

∣∣∣∣∣∣
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]∣∣∣∣∣∣|κ(θ)|v2
i + |F(·)|

+
1
2

∣∣∣∣∣∣
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]∣∣∣∣∣∣|κ(θ)|(|ui| + |u j|

+ |v j|
)
|vi| −

ud,i

u2
d,i + v2

i

Y(ui, uc)v2
i (B.28)

≤ |κ(θ)|v2
i −

ud,i

u2
d,i + v2

i

Y(ui, uc)v2
i
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+ |F(·)| + |κ(θ)|
(
|ui| + |u j| + |v j|

)
|vi|, (B.29)

where we have used the following boundedness property:∣∣∣∣∣∣
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]∣∣∣∣∣∣ ≤ 2. (B.30)

Remark 3. To be able to have |F(·)| be upper bounded by a
quadratic function of v, it is necessary to choose ∆ dependent
on xp

pb in (26), but it is not required to be dependent on yp
pb

for the conditions of lemma 2 to hold, which differs from [4],
where the lookahead distance had to depend on both xp

pb and
yp

pb. This, comes from our choice of defining the LOS guidance
law in terms of absolute velocities, contrary to [4] where rela-
tive velocities are used. Thus, the LOS guidance law (24) does
not include the ocean current observer and the ocean current
dependent term g from [4], as the ocean current compensation
is instead handled by the adaptive autopilots (8)-(9). Conse-
quently, the term in [23] that could grow unbounded in yb/p near
the manifold where g = −(yb/p + 1) is not present in (B.20), re-
moving the dependency on yp

pb in (26). The proof can be found
in Appendix C.

Having established an upper bound of the term rdv, we sub-
stitute (B.29) into (B.16) to obtain the following bound for V̇:

V̇ ≤
[
|κ(θ)|X(ud,i, uc) + Y(ui, uc)

]
v2

i + axũird,ivi

+ X(ud,i, uc)r̃ivi + axũir̃ivi + Y(ud,i, uc)v2
i

+ X(ud,i, uc)
[
|F(·)| + |κ(θ)|

(
|ui| + |u j| + |v j|

) ]
|vi|

+ ayũiv2
i − Y(ud,i, uc)vcvi − ayũivcvi. (B.31)

On the manifold where (X̃1, X̃2) = 0, the bound (B.31) simpli-
fies to:

V̇ ≤ [|κ(θ)|Xmax + Ymin] v2
i

+ X(ud,i, uc)
[
F1(0, 0,∆, θ, ud, u̇d, v, vc, uv)

+ |κ(θ)|
(
|ui| + |u j| + |v j|

) ]
|vi|. (B.32)

For sufficiently large vi, we observe that the quadratic term is
dominant. Consequently, boundedness of (B.32) is guaranteed,
since V̇ is negative definite for sufficiently large vi, that is:

|κ(θ)|Xmax + Ymin < 0, (B.33)

which is satisfied whenever the maximum curvature satisfies
(36). As V̇ is negative definite for sufficiently large vi, we can
conclude that V decreases for sufficiently large vi. Furthermore,
by extension, a decrease in V implies a decrease in v2

i and again
in vi. Consequently, vi cannot increase above a certain threshold
because this will make the quadratic term of (B.32) dominant
preventing further increase of vi. Hence, vi is bounded near the
manifold where (X̃1, X̃2) = 0, concluding the proof of lemma 2.
�

Appendix B.3. Proof of Lemma 3
This proof follows along the lines of [23, Lemma 3] but is

extended to two vessels described by (4) expressed in terms of
absolute velocities, with the adaptive controllers (8) - (9).

To prove boundedness of v near the manifold X̃2 = 0, recall
the sway dynamics (35e):

v̇i = X(ud,i + ũi, uc)rdi + X(ud,i + ũi, uc)r̃i

+ Y(ud,i + ũi, uc)vi − Y(ud,i + ũi, uc)vc. (B.34)

We then consider the Lyapunov function candidate V(vi) = 1
2 v2

i ,
whose time derivative along the solutions of (35e) is:

V̇ = viv̇i = X(ud,i + ũi, uc)rdi vi + X(ud,i + ũi, uc)r̃ivi

+ Y(ud,i + ũi, uc)v2
i − Y(ud,i + ũi, uc)vcvi (B.35)

≤ X(ud,i, uc)rdi vi + axũird,ivi + X(ud,i, uc)r̃ivi

+ axũir̃ivi + Y(ud,i, uc)v2
i + ayũiv2

i

− Y(ud,i, uc)vcvi − ayũivcvi. (B.36)

Here, we have used the following properties of X(u, uc) and
Y(u, uc) from (A.2) - (A.3):

X(u, uc) = axu + bxuc + cx (B.37)
Y(u, uc) = ayu + byuc + cy. (B.38)

Next, to find an upper bound of the term rd,ivi in (B.36), we
substitute the expression for rd from (33), omitting subscripts
for simplicity:

rdv = κ(θ)θ̇v +
u̇d

u2
d + v2

v2 −
v

∆2 +
(
yp

pb

)2

[
∆ẏp

pb

− yp
pb

 ∂∆

∂xp
pb

ẋp
pb +

∂∆

∂yp
pb

ẏp
pb

 ] − ud v̇v
u2

d + v2
(B.39)

= κ(θ)v
(

1
2

U1 cos
(
χ1 − γp

)
+

1
2

U2 cos
(
χ2 − γp

)
+

kθx
p
pb√

1 +
(
xp

pb

)2

)
+

u̇d

u2
d + v2

v2

−
udv

u2
d + v2

(
X(u, uc)r + Y(u, uc)v − Y(u, uc)vc

)
−

∆v

∆2 +
(
yp

pb

)2

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2

− κ(θ)θ̇xp
pb + G1(·)

)
+

yp
pbv

∆2 +
(
yp

pb

)2

[
∂∆

∂xp
pb

(
−

kθx
p
pb√

1 +
(
xp

pb

)2

+ θ̇κ(θ)yp
pb

)
+

∂∆

∂yp
pb

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2

− κ(θ)θ̇xp
pb + G1(·)

)]
. (B.40)
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Now, introduce a term H(X̃1, X̃2,∆, θ, ud, u̇d, v, vc, uc, r) to col-
lect all terms that have less than quadratic growth in v and/or
vanish when X̃2 = 0.

rdv = κ(θ)v
[
1 +

xp
pb

∆2 +
(
yp

pb

)2

](
1
2

U1 cos
(
χ1 − γp

)
+

1
2

U2 cos
(
χ2 − γp

) )
−

∆v

∆2 +
(
yp

pb

)2

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2
+ G1(·)

)

−
∆yp

pb

∆2 +
(
yp

pb

)2

∂∆

∂yp
pb

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2
+ G1(·)

)

−
ud

u2
d + v2

Y(u, uc)v2 + H(·), (B.41)

where

H(·) = v
[
κ(θ)

kθx
p
pb√

1 +
(
xp

pb

)2
+

u̇dv
u2

d + v2

−
udv

u2
d + v2

(
X(u, uc)r − Y(u, uc)vc

)
+

∆

∆2 +
(
yp

pb

)2 κ(θ)
kθ

(
xp

pb

)2√
1 +

(
xp

pb

)2

−
yp

pb

∆2 +
(
yp

pb

)2

∂∆

∂xp
pb

kθx
p
pb√

1 +
(
xp

pb

)2

]
. (B.42)

Similarly as in the proof of lemma 2, all terms with partial
derivatives of ∆ and θ̇ are cancelled due to skew-symmetry.
Consequently, the term rdv may be upper bounded as:

rd,ivi ≤ |vi|

∣∣∣∣[1 +
∆xp

pb

∆2 +
(
yp

pb

)2

]∣∣∣∣|κ(θ)|12 (
|Ui| + |U j|

)
+ |vi|

∣∣∣∣∣ 1
∆

∣∣∣∣∣ 1
2

(
|Ud,i| + |Ud, j| + |G1(·)|

)
+ |vi|

∣∣∣∣∣∣ yp
pb

∆2 +
(
yp

pb

)2

∣∣∣∣∣∣12 (
|Ud,i| + |Ud, j| + |G1(·)|

)
−

ud,i

u2
d,i + v2

i

Y(ui, uc)v2
i + |H(·)|. (B.43)

To further restrict the upper bound on rdv, we will utilize the
following inequalities:∣∣∣∣∣∣ yp

pb

∆2 +
(
yp

pb

)2

∣∣∣∣∣∣ ≤
∣∣∣∣∣ 1
∆

∣∣∣∣∣ (B.44)

|Ud,i| ≤ 4(|ui| + |vi| + |ũi|). (B.45)

Substituting (B.44) - (B.45) into (B.43) we obtain:

rd,ivi ≤
1
2

v2
i

∣∣∣∣∣∣
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]∣∣∣∣∣∣|κ(θ)|

+
1
2
|vi|

∣∣∣∣∣∣
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]∣∣∣∣∣∣|κ(θ)||ui|

+
1
2
|vi|

∣∣∣∣∣∣
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]∣∣∣∣∣∣|κ(θ)||U j|

−
ud,i

u2
d,i + v2

i

Y(ui, uc)v2
i + |H(·)|

+ |vi|

∣∣∣∣∣ 2
∆

∣∣∣∣∣ (2 (|ui| + |vi|) +
1
2
|ũi| + 2

(
|u j| + |v j|

)
+

1
2
|ũ j| + |G1(·)|

)
. (B.46)

Then, we substitute (B.30) into (B.46) and introduce the func-
tion Φ(·) to collect the remaining terms that have less than
quadratic growth in vi and/or vanish when X̃2 = 0:

rd,ivi ≤ v2
i

[
1
2
|κ(θ)|

∣∣∣∣∣∣
[
1 +

∆xp
pb

∆2 +
(
yp

pb

)2

]∣∣∣∣∣∣ +
4
∆

]
−

ud,i

u2
d,i + v2

i

Y(ui, uc)v2
i + Φ(·) (B.47)

≤ v2
i

[
|κ(θ)| +

4
∆

]
−

ud,i

u2
d,i + v2

i

Y(ui, uc)v2
i + Φ(·). (B.48)

From the definitions of Φ(·) and H(·) we can conclude the exis-
tence of some positive bounded functions
F0,2(X̃1, X̃2,∆, θ, ud, u̇d, v, vc, uc, r), such that:

Φ(·) ≤ F2(·)v2
i + F2(·)|vi| + F0(·) (B.49)

F2(X̃1, 0,∆, θ, ud, u̇d, v, vc, uc, r) = 0. (B.50)

Having established an upper bound of the term rdv, we substi-
tute (B.48) into (B.36) to obtain the following bound for V̇:

V̇ ≤ X(ud,i, uc)
([
|κ(θ)| +

4
∆

]
v2

i + Φ(·)
)

+ axũird,ivi

+ X(ud,i, uc)r̃ivi + axũir̃ivi + Y(ud,i, uc)v2
i

+ ayũiv2
i − Y(ud,i, uc)vcvi − ayũivcvi

−
ud,i

u2
d,i + v2

i

Y(ui, uc)v2
i (B.51)

≤

(
X(ud,i, uc)

[
|κ(θ)| +

4
∆

]
− Y(ud,i, uc)

)
v2

i

+ axũird,ivi + X(ud,i, uc)r̃ivi + axũir̃ivi + ayũiv2
i

− Y(ud,i, uc)vcvi − ayũivcvi + X(ud,i, uc)Φ(·). (B.52)

On the manifold where X̃2 = 0, the bound (B.52) simplifies to:

V̇ ≤
(
Xmax

[
κmax +

4
∆

]
− Ymin

)
v2

i

+ X(ud,i, uc)
(
F1(X̃1, 0,∆, θ, ud, u̇d, v, vc, uc, r)|vi|

+ F0(X̃1, 0,∆, θ, ud, u̇d, v, vc, uc, r)
)
. (B.53)

For sufficiently large vi, we observe that the quadratic term is
dominant. Consequently, boundedness of (B.53) is guaranteed,
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since V̇ is negative definite for sufficiently large vi, whenever
the following condition holds:

Xmax

[
κmax +

4
∆

]
− Ymin < 0. (B.54)

Using the lookahead distance definition in (26), we conclude
that this condition is fulfilled whenever the conditions of
lemma 3 is fulfilled:

µ >
4Xmax

Ymin − κmaxXmax
. (B.55)

Note how this is well defined as the denominator is nonzero and
positive whenever the condition from lemma 2 is satisfied. As
V̇ is negative definite for sufficiently large magnitudes of vi near
the manifold X̃2 = 0, the Lyapunov function candidate V(vi) =
1
2 v2

i must decrease for sufficiently large vi, and by extension, the
magnitude of vi must decrease for sufficiently large vi. Hence,
vi is bounded near the manifold where X̃2 = 0 if the constant
part of the lookahead distance µ is chosen accordingly to the
condition in lemma 3. �

Appendix C.

In this section we will prove that the lookahead distance ∆

in (26) is required to be dependent on xp
pb, but that it can be

chosen independently of yp
pb. This is in contrast to [4] where

the lookahead distance was required to be a function of both
xb/p and yb/p.

First, we will investigate the consequences of choosing the
lookahead distance in (26) independently of both xp

pb and yp
pb.

In this case, the expression for rdv in (B.20) reduce to

rdv = κ(θ)v
(

1
2

U1 cos
(
χ1 − γp

)
+

1
2

U2 cos
(
χ2 − γp

)
+

kθx
p
pb√

1 +
(
xp

pb

)2

)
+

u̇d

u2
d + v2

v2

−
udv

u2
d + v2

(
X(u, uc)r + Y(u, uc)v − Y(u, uc)vc

)
−

∆v

∆2 +
(
yp

pb

)2

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2

− κ(θ)θ̇xp
pb + G1(·)

)
, (C.1)

as the partial derivatives of ∆ with respect to xp
pb and yp

pb will be
zero. Now, we want to take a closer look at the term:

v
∆κ(θ)θ̇xp

pb

∆2 +
(
yp

pb

)2 . (C.2)

Focusing on the ith vessel. Inserting the expression for θ̇, and
isolating the part independent of xp

pb and depending on the part
Ud,i we get:

vi

∆κ(θ)xp
pb

∆2 +
(
yp

pb

)2

1
2

Ui cos
(
χi − γp

)
. (C.3)

From the definition Ui =

√
u2

i + v2
i , the growth of Ui is pro-

portional with vi. Thus, the growth of (C.3) can be represented
by:

v2
i

∆κ(θ)xp
pb

∆2 +
(
yp

pb

)2 . (C.4)

If ∆ is chosen independently of xp
pb it is clear how this term will

go to infinity for large values of xp
pb. However, if ∆ is chosen to

grow at least linearly with xp
pb, then (C.4) will not diverge as

lim
xp

pb→∞

κ(θ)
(
xp

pb

)2(
xp

pb

)2
+

(
yp

pb

)2 = 1, (C.5)

or converge to zero if ∆ grows more than linear in xp
pb. Thus,

if ∆ is chosen independently of xp
pb, rdv could grow unbounded

with xp
pb making it impossible to show boundedness of the sway

dynamics.
Next, we will show that the lookahead distance can be chosen

independently of yp
pb, which is in contrast to [23] where it was

shown that the lookahead distance also needed to be chosen
dependent on yb/p. Lets consider the case where the lookahead
distance in (26) depend on xp

pb, but is independent of yp
pb. Then,

the expression for rdv in (B.20) reduces to:

rdv = κ(θ)v
(

1
2

U1 cos
(
χ1 − γp

)
+

1
2

U2 cos
(
χ2 − γp

)
+

kθx
p
pb√

1 +
(
xp

pb

)2

)
+

u̇d

u2
d + v2

v2

−
udv

u2
d + v2

(
X(u, uc)r + Y(u, uc)v − Y(u, uc)vc

)
−

∆v

∆2 +
(
yp

pb

)2

(
− 1

2
(
Ud,1 + Ud,2

)
yp

pb√
∆2 +

(
yp

pb

)2

− κ(θ)θ̇xp
pb + G1(·)

)
+

yp
pbv

∆2 +
(
yp

pb

)2

[
∂∆

∂xp
pb

(
−

kθx
p
pb√

1 +
(
xp

pb

)2

+ θ̇κ(θ)yp
pb

)]
. (C.6)

Using the same approach as earlier, we isolate the term

v
∂∆

∂xp
pb

κ(θ)θ̇

(
yp

pb

)2

∆2 +
(
yp

pb

)2 , (C.7)

which with the same reasoning as before reduces to:

v2
i
∂∆

∂xp
pb

κ(θ)

(
yp

pb

)2

∆2 +
(
yp

pb

)2 . (C.8)
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It is clear how this term is bounded for all values of yp
pb even

when ∆ depends only on xp
pb. When comparing this to the term

from [23, Eq. (83)]:

v2
r

Cr

∂∆

∂xb/p
κ(θ)

∆yb/p(yb/p + g)(
∆2 +

(
yb/p + g

)2
)3/2 , (C.9)

it is clear how (C.9) can grow unbounded in yb/p near the man-
ifold where g = −(yb/p + 1) as the term, near the manifold,
reduces to

v2
r

Cr

∂∆

∂xb/p
κ(θ)

∆yb/p(
∆2 + 1

)3/2 , (C.10)

which can only be bounded by choosing ∆ dependent on yb/p.
However, from our choice of expressing the LOS guidance law
in terms of absolute velocities, combined with a set of adaptive
autopilots for ocean current compensation, the ocean current
dependent term g is not present in (24). Consequently, there is
no manifold where (C.8) can grow unbounded in yp

pb, implying
the lookahead distance (26) can be chosen independently of yp

pb.

References

[1] E. Fredriksen and K. Y. Pettersen, ”Global κ-exponential way-point ma-
neuvering of ships: Theory and experiments”, Automatica, vol. 42, no. 4,
pp. 677 - 687, 2006.

[2] E. Børhaug, A. Pavlov and K.Y. Pettersen, ”Integral LOS Control for Path
Following of Underactuated Marine Surface Vessels in the Presence of
Constant Ocean Currents”, in Proc. 47th IEEE Conference on Decision
and Control, Cancun, Mexico, Dec. 9-11, 2008, pp. 4984-4991.

[3] W. Caharija, M. Candeloro, K.Y. Pettersen and A.J. Sørensen, ”Relative
Velocity Control and Integral LOS for Path Following of Underactuated
Surface Vessels”, in Proc. 9th IFAC Conference on Manoeuvring and
Control of Marine Craft, Arenzano, Italy, pp. 380-385, Sep. 2012.

[4] D.J.W. Belleter, M. Maghenem, C. Paliotta and K.Y. Pettersen, ”Observer
Based Path Following for Underactuated Marine Vessels in the Presence
of Ocean Currents: A Global Approach”, Automatica, Vol. 100, Feb.
2019, pp. 123-134.

[5] M. S. Wiig, K.Y. Pettersen, E-L. M. Ruud and T. R. Krogstad, ”An In-
tegral Line-of-Sight Guidance Law with a Speed-dependent Lookahead
Distance”, Proc. 2018 European Control Conference, Limassol, Cyprus,
June 12-15, 2018.

[6] S.-R. Oh and J. Sun, ”Path Following of Underactuated Marine Surface
Vessels using Line-of-Sight Based Model Predictive Control”, Ocean En-
gineering, vol. 37, no. 2, pp. 289 - 295, 2010.

[7] A. P. Aguiar and A. Pascoal, ”Dynamic positioning and way-
pointtracking of underactuated AUVs in the presence of ocean currents”,
in Proc. 41st IEEE Conference on Decision and Control, Las Vegas, NV,
USA, Dec. 10-13, 2002, pp. 2105 - 2110 vol.2.

[8] E. Kyrkjebø, K.Y. Pettersen. M. Wondergem and H. Nijmeijer, ”Output
synchronization control of ship replenishment operations: Theory and ex-
periments”, Control Engineering Practice, Vol. 15, No. 6, 2006, pp. 741-
755.

[9] L. Lapierre, D. Soetanto and A. Pascoal, ”Coordinated motion control
of marine robots”, in Proc. 6th IFAC Conference on Manoeuvring and
Control of Marine Craft (MCMC 2003), Girona, Spain, Sept 17-19, 1997,
pp 217-222.

[10] M. Breivik, V. E. Hovstein, and T. I. Fossen, ”Ship formation control: A
guided leader-follower approach”, in Proc. 17th IFAC World Congress,
Seoul, Korea, 2008, pp 16008-16014,

[11] D.J.W. Belleter and K.Y. Pettersen, ”Leader-Follower Synchronisation for
a Class of Underactuated Systems” in Nonlinear Systems: Techniques for
Dynamical Analysis and Control, Eds. N. van de Wouw, E. Lefeber, I.
Lopez Arteaga, Lecture Notes in Control and Information Sciences, Vol.
470, Springer-Verlag, 2017, pp. 157-179.

[12] E. Børhaug, A. Pavlov and K.Y. Pettersen, ”Cross-track formation con-
trol of underactuated surface vessels”, in Proc. 45th IEEE Conference on
Decision and Control, December 13-15 2006, San Diego, California, pp.
5955-5961.

[13] E. Børhaug, A. Pavlov, E. Panteley and K.Y. Pettersen,”Straight Line
Path Following for Formations of Underactuated Marine Surface Ves-
sels”, IEEE Transactions on Control Systems Technology, Vol. 19, No.
3, 2011, pp. 493-506.

[14] D.J.W. Belleter and K.Y. Pettersen, ”Path Following for Formations of
Underactuated Marine Vessels under Influence of Constant Ocean Cur-
rents”, in Proc. 53rd IEEE Conference on Decision and Control, Los An-
geles, CA, Dec. 15 - 17, 2014.

[15] F. Arrichiello, S. Chiaverini and T. I. Fossen, ”Formation Control of Un-
deractuated Surface Vessels using the Null-Space-Based Behavioral Con-
trol,” in Proc. 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Beijing, 2006, pp. 5942-5947.

[16] F. Arrichiello, H. Heidarsson, S. Chiaverini and G. S. Sukhatme, ”Coop-
erative caging using autonomous aquatic surface vehicles,” in Proc. 2010
IEEE International Conference on Robotics and Automation, Anchorage,
AK, May, 2010, pp. 4763-4769.

[17] F. Pereda, H. G. de Marina, J.M. Giron-Sierra and J. Jimenez, ”Towards
automatic oil spill confinement with Autonomous Marine Surface Vehi-
cles”, in Proc. OCEANS 2011, Santander, Spain. June 6-9, 2011, pp. 1-6.

[18] S. Moe and K.Y. Pettersen, ”Set-Based Line-of-Sight (LOS) Path Follow-
ing with Collision Avoidance for Underactuated Unmanned Surface Ves-
sel”, in Proc. 24th Mediterranean Conference on Control and Automa-
tion, Athens, Greece, June 21-24, 2016.

[19] K.Y. Pettersen, ”Lyapunov Sufficient Conditions for Uniform Semiglobal
Exponential Stability”, Automatica, Vol. 78, 2017, pp. 97-102.

[20] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Con-
trol. John Wiley & Sons, Ltd, 2011.

[21] L. Lapierre and D. Soetanto, ”Nonlinear path-following control of an
AUV”, in Ocean Engineering, vol. 34, no. 11-12, pp. 1734-1744, 2007.

[22] T. I. Fossen and K. Y. Pettersen, ”On uniform semiglobal exponential sta-
bility (USGES) of proportional line-of-sight guidance laws”, Automatica,
Vol 50, Issue 11, 2014, pp. 2912-2917.

[23] D.J.W. Belleter, M. Maghenem, C. Paliotta and K.Y. Pettersen, ”Observer
Based Path Following for Underactuated Marine Vessels in the Presence
of Ocean Currents: A Global Approach - With proofs”, arXiv e-prints,
2018, arXiv:1810.06974.

[24] H. Khalil. Nonlinear Systems. Prentice Hall, 2002.
[25] D. Angeli and E. D. Sontag. ”Forward completeness, unboundedness ob-

servability, and their lyapunov characterizations”, Systems & Control Let-
ters, 38(4):209217, 1999.

15


