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Abstract
Let uk be a solution of the Helmholtz equation with the wave number k, �uk + k2uk = 0 , on (a small ball in) either ℝn , �n , or 
ℍ

n . For a fixed point p, we define Muk
(r) = maxd(x,p)≤r |uk(x)|. The following three ball inequality 

is well known, it holds for some � ∈ (0, 1) and C(k, r, 𝛼) > 0 independent of uk . We show that the constant C(k, r, �) grows 
exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the 
Cauchy problem for the Helmholtz equation on Riemannian manifolds.
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1 Introduction

In the present work, we study constants in the three ball 
inequality for solutions of the Helmholtz equation. We 
begin by recalling Hadamard’s celebrated three cir-
cle theorem. Let f be a holomorphic function in the disk 
𝔻R = {z ∈ ℂ ∶ |z| < R} . Then its maximum function

satisfies the convexity condition

for any r0, r1 < R and � ∈ (0, 1) . The proof of (1.1) is based 
on the fact that log |f | is a subharmonic function. Note that 

by the maximum principle (1.1) also holds when the maxi-
mum is taken over circles.

Surprisingly, Hadamard’s theorem generalizes to other 
classes of functions, such as solutions of second order ellip-
tic equations and their gradients. We refer the reader to the 
article [11] of Landis and to the survey [1]. Three spheres 
theorems for the gradients of harmonic functions and, more 
generally, harmonic differential forms can be found in [15]. 
The three ball theorem for solutions of the Helmholtz equa-
tion on Riemannian manifolds were studied in [16]. This 
has various applications, for example it was one of the tools 
used to estimate the Hausdorff measure of the nodal sets of 
Laplace eigenfunctions, see [12, 13].

We consider the Helmholtz equation

on a domain D in a Riemannian manifold (M, �) . For D = M 
and M being a closed manifold without boundary, solutions 
of (1.2) are L2-eigenfunctions of the Laplacian. One of 
the important facts for analysis on closed manifolds is the 
existence of an orthonormal basis for L2(M) consisting of 
eigenfunctions of the Laplacian. The classical example is the 
Fourier basis on the circle �1 . Such an orthonormal basis can 
be used to solve the heat, wave, and Schrödinger equations 
on closed manifolds, under certain conditions.

Muk
(2r) ≤ C(k, r, �)Muk

(r)�Muk
(4r)1−�

Mf (r) = max
|z|≤r

|f (z)|

(1.1)Mf (r
�

0
r1−�
1

) ≤ Mf (r0)
�Mf (r1)

1−� ,

(1.2)�Muk + k2uk = 0
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We study properties of functions that satisfy the Helm-
holtz equation on some geodesic ball in the manifold. Fix a 
point p ∈ M and denote by B(p, r) the geodesic ball of radius 
r centered at p. Then for a function u we define

The following doubling inequality holds for Laplace eigen-
functions on a closed manifold

where C1 and C2 are constants only depending on the Rie-
mannian manifold (M, �) . Inequality (1.3) was first shown 
by Donnelly and Fefferman [5]. Later Mangoubi [16, Theo-
rem 3.2] gave a new proof by showing the stronger local 
inequality

for small r, some fixed � ∈ (0, 1) , and constants C3 and C4 
only depending on the curvature. Further results on the 
propagation of smallness for eigenfunctions were obtained 
in [14]. In this article, we show that (1.4) is sharp in the 
following sense: The coefficient C3e

C4kr in (1.4) cannot be 
replaced by a function growing subexponentially in kr as 
k grows. This is done by constructing special families of 
solutions of the Helmholtz equation on Euclidean spaces, 
hyperbolic spaces, and the standard spheres.

We also compare (1.4) with the increased stability for 
solutions of the Cauchy problem for the Helmholtz equa-
tion studied in [3, 8, 10]. Roughly speaking, the idea is 
that one can estimate the solution in the interior of some 
convex domain from an a priori bound and an estimate of 
the Cauchy data on some part of the boundary. Moreover, 
the estimate does not depend on k. For solutions of the 
Helmholtz equation in a geodesic ball B(p,R) we prove 
for r < R1 < R that

and call (1.5) the reverse three ball inequality. A more gen-
eral result can be found in [2, Sect. 1.3], where delicate ques-
tions regarding localization of solutions of the Schrödinger 
equation are considered. We deduce (1.5) from a similar esti-
mate for the H1 norms where the constant does not depend 
on k. The H1 estimate is proved by a Carleman-type inequal-
ity, that can be found in [3, 9].

The structure of the paper is as follows. We prove the 
sharpness of the three ball inequality (1.4) in Sect. 2. 
In Sect. 2.1 we present the argument for the Euclidean 
space, while the arguments for the hyperbolic space and 
the sphere are given in Sect. 2.2. We prove inequality (1.5) 

Mu(r) = max
x∈B(p,r)

|u(x)|.

(1.3)Muk
(2r) ≤ C1e

C2kMuk
(r),

(1.4)Muk
(3r) ≤ C3e

C4krMuk
(2r)�Muk

(8r)1−� ,

(1.5)
�B(p,r)

u2
k
dvol ≤ C(r,R1)

�B(p,R1)⧵B(p,r)

u2
k
dvol,

in Sect. 3. Finally, we give a simple estimate for the loca-
tion of the first positive zero of the Bessel functions, and 
collect some comparison theorems for solutions of the 
Sturm–Liouville equations in “Appendix”.

2  The three ball inequality

2.1  Bessel functions and the Helmholtz equation 
in ℝn

Let Jl denote the Bessel function of the first kind. We have 
collected some facts about the Bessel functions in “Appen-
dix A”. If Ym is an eigenfunction of the Laplace operator on 
the sphere �n−1 with eigenvalue m(m + n − 2) then

solves the Helmholtz equation (1.2). Moreover, any solution 
of (1.2) in ℝn (or in the unit ball) can be decomposed into a 
series of such solutions.

In order to study the constant in the three ball inequality 
(1.4) that involves the maximum function, we analyze the 
behavior of the Bessel functions. From now on we assume 
that n = 2 for simplicity. Our results can be easily extended 
to all dimensions n ≥ 2.

Lemma 2.1 Let 0 < 𝛾 < 𝛿 < 1 and set � =
√
1 − �2 . Then 

there exists a constant C,  only depending on � and �, such 
that for any positive number m we have

Proof The strategy is to apply the Sturm comparison theo-
rem, see Theorem B.2. We apply the theorem to the Bessel 
function Jm solving the Bessel equation

and a solution of the Euler equation

Let y be the solution of (2.2) satisfying the initial conditions

We know that Jm is positive and increasing on [0, m]. The 
latter can be verified using the second derivative test and 
inserting the argument of the first maximum of Jm into the 
equation

uk(r, �) = r1−n∕2Jm+n∕2−1(kr)Ym(�)

(2.1)Jm(𝛾m) < C
(
𝛾

𝛿

)𝛽m

Jm(𝛿m).

(
xJ�

m
(x)

)�
+

x2 − m2

x
Jm(x) = 0,

(2.2)
(
xy�(x)

)�
+

(
�
2 − 1

)
m2

x
y(x) = 0.

y(�m) = Jm(�m) and y�(�m) = J�
m
(�m).
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Moreover, notice that for x ∈ [�m, �m] we have

Hence all the conditions in the comparison theorem are sat-
isfied and we conclude that y(x) ≤ Jm(x) on [�m, �m].

Any solution of the Euler equation (2.2) is on the form

Using that

we conclude that c1 > 0 and |c2| < c1𝛾
2m𝛽m2m𝛽 . Thus

and

where q = q(𝛾 , 𝛿) > 0 . It follows that

  ◻

We can now prove the main result of this section.

Theorem 2.2 Assume that there is an � ∈ (0, 1) and a con-
stant C(k, r, �) such that for any solution uk of the Helmholtz 
equation (1.2) the following three ball inequality holds

Then C(k, r, �) grows at least exponentially in kr. More 
precisely, C(k, r, �) ≥ ced�kr, where c and d are absolute 
constants.

Proof Consider solutions of the Helmholtz equation on the 
form

The maximal function then simplifies to

We now use the fact that for m > 0 the maximum of Jm(x) 
is attained in the interval (m,m(1 + �(m))) , where �(m) → 0 

x2J��
m
(x) + xJ�

m
(x) + (x2 − m2)Jm(x) = 0.

x2 − m2
≤ (�2 − 1)m2.

y(x) = c1x
m� + c2x

−m� .

Jm(𝛾m) = y(𝛾m) > 0 and J�
m
(𝛾m) = y�(𝛾m) > 0,

Jm(𝛾m) = c1(𝛾m)
m𝛽 + c2(𝛾m)

−m𝛽
< 2c1(𝛾m)

m
𝛽

y(𝛿m) > qc1(𝛿m)
m𝛽 ,

Jm(𝛾m) < 2c1(𝛾m)
m𝛽

<
2

q

(
𝛾

𝛿

)m𝛽

y(𝛿m)

<
2

q

(
𝛾

𝛿

)m𝛽

Jm(𝛿m).

(2.3)Muk
(2r) ≤ C(k, r, �)Muk

(r)�Muk
(4r)1−� .

uk(r, �) = Jm(kr) sin(m�).

Muk
(r) = max

0≤x≤kr
|Jm(x)|.

as m → ∞ . This is a well known result on the asymptotic of 
the first zero of the Bessel functions, for the convenience 
of the reader we include a simple proof in “Appendix A”. 
We choose m0 such that �(m) ≤ 1∕3 when m ≥ m0 . Assume 
first that

Then given r we can find m ≥ m0 such that

This  implies  kr < 5m∕6 and 2kr > 4∕3m  .  Then 
Muk

(4r) = Muk
(2r) and we can reduce (2.3) to

Set � = 5∕6 and � =
1+�

2
=

11

12
 . Applying Lemma 2.1 together 

with

and Muk
(r) < Jm(𝛾m) we conclude that

for some positive constant d that can be computed. Finally, 
since m > 6kr∕5 we get the required estimate when 
r > k−1m1.

Now for r ≤ k−1m1 we consider the solution 
uk(r, �) = J0(kr) . Then Muk

(r) = J0(0) since

and we conclude that C(k, r, �) ≥ 1 for any r > 0 . Choosing 
c < e−𝛼dm1 we have for all r > 0 that

  ◻

2.2  Solutions of the Helmholtz equation 
on the sphere and hyperbolic space

In this section we repeat the argument of the sharpness of the 
three ball inequality on the hyperbolic space and sphere. We 
show in particular that assumptions on the sign of the cur-
vature do not lead to better behavior of the constant in the 
three ball inequality. Again, we use the spherical symmetry of 
the spaces and separation of variables to construct a solution 
of (1.2) that is the product of a radial and a spherical factor. 

kr > m1 = max{4, 2m0∕3}.

6kr∕5 < m < 3kr∕2.

(
Muk

(2r)

Muk
(r)

)�

≤ C(k, r, �).

Muk
(2r) > Jm(m) > Jm(𝛿m)

C(k, r, �) ≥

(
Muk

(2r)

Muk
(r)

)�

≥ ce�dm,

J0(0) = max
x≥0

|J0(x)|,

C(k, r, �) ≥ ce�dkr.
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On the sphere the radial part is given by Legendre polynomi-
als. For the hyperbolic space the radial part is also explicitly 
known, see [4, p. 4222 Eq. (2.26)]. Once again, in our argu-
ment we only use the differential equation for the radial part.

We define

Fur thermore, we use the associated functions 
cosK (r) =

(
sinK (r)

)�
, cotK (r) =

cosK (r)

sinK (r)
 , and tanK (r) =

1

cotK (r)
 . 

Then the Laplacian of a simply connected n-dimensional 
Riemannian manifold (M, �) with constant sectional curva-
ture K is given in polar coordinates by

In this section, we work in two dimension . Assume that 
uk(r, �) = R(r)�(�) is a solution of the Helmholtz equation. 
Then R(r) satisfies the equation

Let � = K∕k2 and let L
�,m(�) be the solution of the differen-

tial equation

where L
�,m is well-defined at � = 0 and positive on some 

interval (0, �) . Then for m > 0 we have L
�,m(0) = 0 . Note 

that when K = 0 this equation becomes the Bessel equation. 
Setting R(r) = L

�,m(kr) we get a solution to (2.5). Then (2.6) 
can be rewritten in the Sturm–Liouville form as

We begin by estimating the maximum point of L
�,m from 

below. Let

Note that for � ≤ R
�
 we have that sin

�
(�) is increasing, or 

equivalently that cos
�
(�) ≥ 0.

(2.4)sinK (r) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

sin
�√

Kr
�

√
K

, when K > 0

r, when K = 0

sinh
�√

−Kr
�

√
−K

, when K < 0

.

�M =
d2

dr2
+ (n − 1) cotK (r)

d

dr
+

1

sin2
K
(r)

�
�n−1 .

(2.5)
sin2

K
(r)

(
R��(r) + cotK (r)R�(r)

R(r)
+ k2

)

= −
�
�1�(�)

�(�)
= m2.

(2.6)
sin2

�
(�)L��

�,m
(�) + sin

�
(�) cos

�
(�)L�

�,m
(�)

+
(
sin2

�
(�) − m2

)
L
�,m(�) = 0,

(2.7)
(

sin
�
(�)L�

�,m
(�)

)�

+
sin2

�
(�) − m2

sin
�
(�)

L
�,m(�) = 0.

R
𝜅
=

�
∞, 𝜅 ≤ 0,
𝜋

2
√
𝜅
, 𝜅 > 0.

Proposition 2.3 Let 0 < 𝜌
∗
1
< 𝜌

∗
2
< ⋯ < R

𝜅
 be the points 

where L
�,m attains local maximums and minimums before 

R
�
 . Then ||

|
L
�,m

(
�
∗
i

)|
|
|
 is a decreasing sequence in i. Moreover, 

the first local maximum �∗
1
 satisfies �∗

1
≥ sin−1

�
(m).

Proof At �∗
1
 we have L�

�,m
(�∗

1
) = 0 and (2.7) implies that

By the second derivative test it is not possible to have a 
maximum before sin−1

�
(m) , implying the lower bound for 

the first local extremum.
The remaining part of the proposition follows from 

Sonin–Pólya oscillation theorem, see Theorem B.3. The con-
ditions in the oscillation theorem are satisfied on the interval 
(
sin−1

�
(m),R

�

)
 since sin

𝜅
(𝜌) > 0,

and

Thus the sequence |L
�,m(�

∗
i
)| is decreasing.   ◻

Remark 2.4 For m = 0 , by analyzing the differential equation 
(2.6), we see that L�

�,0
(0) = 0 . Then the proof of Proposi-

tion 2.3 implies that L
�,0(�) satisfies L

�,0(0) ≥ |L
�,0(�)| for 

𝜌 > 0.

Now our aim is to prove an analog of Lemma 2.1. The 
next four results show how we can control the ratio of two 
values of L

�,m.

Lemma 2.5 Let �2 ∈ (0,R
�
) and � ∈ (0, 1) satisfy the ine-

quality sin
�
(�2) ≤ �m . Then for 𝜌1 < 𝜌2 and � =

√
1 − �2 

we have the bound

Proof We compare the function L
�,m to a solution of the 

equation

By the assumption we have

on the interval 
[
�1, �2

]
 . Let y be the solution to (2.8) that 

satisfies the initial conditions

sin2
�

(
�
∗

1

)
L��
�,m

(
�
∗

1

)
+
(
sin2

�

(
�
∗

1

)
− m2

)
L
�,m

(
�
∗

1

)
= 0.

(sin2
�
(�) − m2)∕ sin

�
(�) ≠ 0,

(

sin
𝜅
(𝜌)

sin2
𝜅
(𝜌) − m2

sin
𝜅
(𝜌)

)�

= 2 cos
𝜅
(𝜌) sin

𝜅
(𝜌) > 0.

L
�,m(�2)

L
�,m(�1)

≥
1

2

[(
tan

�
(�2∕2)

tan
�
(�1∕2)

)�m

−

(
tan

�
(�2∕2)

tan
�
(�1∕2)

)−�m
]

.

(2.8)(sin
�
(�)y�(�))� +

m2(�2 − 1)

sin
�
(�)

y(�) = 0.

sin2
�
(�) − m2

≤ (�2 − 1)m2 = −�2m2
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Then the comparison theorem implies that L
𝜅,m(𝜌2) > y(𝜌2).

The explicit solution to (2.8) is given by

The first maximum �∗
1
 of L

�,m satisfies sin
�
(�∗

1
) ≥ m implying 

that 𝜌2 < 𝜌
∗
1
 . Therefore L

𝜅,m(𝜌1) > 0 and L�
𝜅,m

(𝜌1) > 0 . Thus 
we have the inequality

since (tan
𝜅
(𝜌∕2))� > 0 . We conclude that c1 > 0 and simi-

larly to Lemma 2.1 we get

The estimate of c2 from below implies that

Combining the last two inequalities gives the result.   ◻

Corol lar y  2 .6  Suppose  tha t  K > 0  and  tha t 
𝜌1 < 𝜌2 < min{R

𝜅
,m𝛿} for some � ∈ (0, 1) . For � =

√
1 − �2 

we have the estimate

Proof We note  tha t  sin
𝜅
(𝜌2) < 𝜌2 < m𝛿  .  Apply-

ing Lemma  2.5 and using the elementary inequality 
b tan x ≥ tan bx for b ∈ (0, 1) , the result follows since

  ◻

Corollary 2.7 Let K < 0 and suppose that

for some � ∈ (0, 1) .  Then for � =
√
1 − �2  and 

A = sin
�

(
�2

)
∕�2 we have

Proof Since 
√
�𝜅�𝜌 < 𝜋∕2 and sinh is convex we have

Applying Lemma 2.5 together with

y(�1) = L
�,m(�1) and y�(�1) = L�

�,m
(�1).

y(�) = c1 tan
�m
�
(�∕2) + c2 tan

−�m
�

(�∕2).

−c1 tan
2𝛽m
𝜅

(𝜌1∕2) < c2 < c1 tan
2𝛽m
𝜅

(𝜌1∕2),

L
𝜅,m(𝜌2) > y(𝜌2)

> c1(tan
𝛽m
𝜅
(𝜌2∕2) − tan2𝛽m

𝜅
(𝜌1∕2) tan

−𝛽m
𝜅

(𝜌2∕2)).

L
𝜅,m(𝜌1) = y(𝜌1) < 2c1 tan

𝛽m
𝜅
(𝜌1∕2).

(2.9)
L
�,m(�2)

L
�,m(�1)

≥
1

2

[(
�2

�1

)�m

−

(
�2

�1

)−�m
]

.

tan
�
(�2∕2)

tan
�
(�1∕2)

=
tan(

√
��2∕2)

tan(
√
��1∕2)

≥
�2

�1

.

𝜌1 < 𝜌2 < min{R|𝜅|, 2m𝛿∕3}

(2.10)
L
�,m(�2)

L
�,m(�1)

≥
1

2

[(
�2

A�1

)�m

−

(
�2

A�1

)−�m
]

.

sin
𝜅

(
𝜌2

)
≤ 2𝜌2 sinh (𝜋∕2)∕𝜋 < 3𝜌2∕2 < m𝛿.

gives (2.10), since

  ◻

We want to estimate the ratio of the values of L
�,m at two 

points 𝜌2 > 𝜌1 > sin−1
𝜅
(m) . In contrast with the Bessel func-

tions, we do not locate the maximum precisely.

Lemma 2.8 Suppose that 0 < 𝜌1 < R|𝜅| and sin
𝜅
(𝜌1) > 𝜉m, 

where 𝜉 > 1 . There is an absolute constant C > 0 such that

Proof Let �∗
1
 be the first local maximum of L

�,m . By Proposi-
tion 2.3 if 𝜌1 > 𝜌

∗
1
 then the left-hand side of (2.11) is one and 

the statement becomes trivial.
The rest of the proof relies on the comparison of L

�,m and 
a solution of the equation

on the interval (�1,∞) . Solutions to (2.12) are of the form

where �2 = �
2 − 1 . Let d = � log(tan

�
(�1∕2)) and choose a 

solution y of (2.12) on the form

with initial data y(�1) = L
�,m(�1) and y�(�1) = L�

�,m
(�1) . This 

gives the values

Applying the comparison theorem, we get

Since sin and cos are bounded by 1, we estimate C2∕L�,m(�1) 
from above to prove (2.11). In order to estimate C2 , we 
see that the assumption 𝜌1 < 𝜌

∗
1
 implies L

𝜅,m(𝜌) > 0 and 
L�
𝜅,m

(𝜌) > 0 on the interval (0, �1) . Equation (2.7) shows that 

(log(tanh x))� ≥
𝜌2

√
−𝜅

sinh
�

𝜌2

√
−𝜅

�

x

for x < 𝜌2

√
−𝜅∕2,

tan
�
(�2∕2)

tan
�
(�1∕2)

=
tanh(

√
����2∕2)

tanh(
√
����1∕2)

≥
�2

A�1
.

(2.11)
max

�
|L

�,m(�)|

max
�≤�1

|L
�,m(�)|

≤ 1 +
C

(� − 1)m
.

(2.12)(sin
�
(�)y�)� +

m2(�2 − 1)

sin
�
(�)

y = 0

y(�) = c1 cos(� log(tan�(�∕2))) + c2 sin(� log(tan�(�∕2))),

y(�) = C1 cos(� log(tan�(�∕2)) − d)

+ C2 sin(� log(tan�(�∕2)) − d),

C1 = L
�,m(�1), C2 =

L�
�,m

(�1) sin�(�1)

�
.

L
�,m(�2) ≤C1 cos(� log(tan�(�2∕2)) − d)

+ C2 sin(� log(tan�(�2∕2)) − d).
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L��
𝜅,m

(𝜌) < 0 when � ∈ (�0, �1) , where �0 = sin−1
�
(m) . Then 

the Taylor formula gives

Consequently,

For K > 0 the inequality

implies that 𝜌1 − 𝜌0 > (𝜉 − 1)m . For K < 0 , we note that

if cosh x1 < c−1 . Using the assumption 𝜌1 < R|𝜅| , we con-
clude that 𝜌1 − 𝜌0 > c(𝜉 − 1)m , where c = (cosh�∕2)−1 . 
Finally, we obtain

  ◻

Now we are ready to prove that the coefficient in the 
three ball theorem grows exponentially in rk if we restrict 
ourselves to balls with sufficiently small radius r.

Theorem 2.9 Let (M, �) be either a hyperbolic plane or a 
sphere and denote its curvature by K. Suppose that for some 
� ∈ (0, 1) there exists a constant C

�
(k, r,K) such that for any 

solution uk to the Helmholtz equation (1.2) the following 
inequality holds

Then

where c1 and c2 only depend on K.

Proof Consider the family of functions

L
𝜅,m(𝜌0) − L

𝜅,m(𝜌1) + (𝜌1 − 𝜌0)L
�

𝜅,m
(𝜌1) < 0.

L�
𝜅,m

(𝜌1) <
L
𝜅,m(𝜌1) − L

𝜅,m(𝜌0)

𝜌1 − 𝜌0

<
L
𝜅,m(𝜌1)

𝜌1 − 𝜌0

.

x1 − x0 > sin x1 − sin x0 when x1 > x0

x1 − c sinh x1 > x0 − c sinh x0 when x1 > x0,

max
�≥�1

|L
�,m(�)| ≤

√

C2
1
+ C2

2

≤ L
�,m(�1)

(

1 +
C

(� − 1)m

)

.

Muk
(2r) ≤ C

𝛼
(k, r,K)Muk

(r)𝛼Muk
(4r)1−𝛼 ,

0 < r <
𝜋

8
√
�K�

.

(2.13)C
�
(k, r,K) ≥ c�

1
ec2�kr,

uk,m(r, �) = L
�,m(kr) sin (m�),

where m is a non-negative integer. By construction, uk,m 
solves the Helmholtz equation. Thus for any m we have the 
inequality

where

Note that choosing m = 0 gives C
�
(k, r,K) ≥ 1 by 

Remark 2.4. Thus if we assume that kr < C1 for some con-
stant C1 , we may choose c2 and c1 small enough such that the 
inequality holds.

Assume first that K < 0 so that (M, �) is the hyperbolic 
plane. If kr > C1 we choose a positive integer m such that 
10m < 18kr < 11m . We apply (2.10) with �1 = kr and 
𝜌2 = 𝜇kr < 2kr , where � = 19∕17 . Then 𝜌2 < 2∕3m𝛿 with 
𝛿 < 1 . We obtain

where � =
√
1 − �2 and

Therefore q = 𝜇∕A > 1 is an absolute constant and we have

Thus there are c1 > 0 and c2 > 0 such that

On the other hand, we have 2kr > 𝜉m for � = 10∕9 . Apply-
ing (2.11) we get

where C0 is an absolute constant. Note also that m ≳ kr . 
Then (2.13) follows for negative curvature.

Assume now that K > 0 so that (M, �) is a sphere. If 
kr > C1 we choose m to be a positive integer such that 
10m < 12kr < 11m . We first let �1 = kr and �2 = 13kr∕12 
and apply (2.9) with � = 143∕144 . Thus (2.14) fol-
lows whenever kr > C1 . Using (2.11) with �1 = 2kr we 
need to check that 2𝜌1 > 𝜉𝜋m for some 𝜉 > 1 . Note that 

C
�
(k, r,K) ≥

(
Mm(2kr)

Mm(kr)

)�(
Mm(2kr)

Mm(4kr)

)1−�

,

Mm(�) = max
x≤�

|L
�,m(x)|.

Mm(2kr)

Mm(kr)
≥

L
�,m(�2)

L
�,m(�1)

≥
1

2

[(
�2

A�1

)�m

−

(
�2

A�1

)−�m
]

,

A = sin
𝜅

(
𝜌2

)
∕𝜌2 < sin

𝜅
(2kr)∕(2kr)

<4 sinh(𝜋∕4)∕𝜋 < 10∕9.

(2.14)
Mm(2kr)

Mm(kr)
≥

1

2
(q�m − q−�m).

Mm(2kr) ≥ c1 exp(c2m)Mm(kr).

Mm(4r)

Mm(2r)
=

max
�≤4kr |L�,m(�)|

max
�≤2kr |L�,m(�)|

≤ 1 + C∕m ≤ C0,
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2𝜌1 = 4kr > 10∕3m and choose 𝜉 <
10

3𝜋
 . Then (2.13) follows 

for positive curvature.   ◻

3  The reverse three ball inequality

The question of stability of the solution to the Cauchy prob-
lem for the Helmholtz equation and the dependence of the 
estimates on the wave number k was studied by many authors, 
see e.g., [3, 8, 10, 19]. We include a special case of the results 
adapted to the case of Riemannian manifolds to demonstrate 
the difference between the usual three ball theorem and the 
reverse one.

Let (M, �) be a Riemannian manifold with sectional cur-
vature satisfying

We denote by gradM and �M the gradient and Laplace opera-
tors on functions on M. Let B be a geodesic ball with diam-
eter strictly less than the injectivity radius of (M, �) . Addi-
tionally, in the case that K > 0 we assume that the diameter 
of B is strictly less than �

2
√
K

.

Theorem  3.1 Let uk solve the Helmholtz equation 
�Muk + k2uk = 0 in B = B(p,R) and let r < R1 < R . There 
exists C = C(r,R1) such that

The result is very closed to a particular case of the result 
in [3], we sketch the proof for the convenience of the reader.

We say that a function � ∶ B → ℝ is strictly convex if its 
Hessian is positive definite. We choose a point x such that 
x ∉ B(p,R) but R + dist (x, p) is strictly less than the injectiv-
ity radius and than �

2
√
K

 for the case K > 0 , and consider 
�(y) = dist (x, y)2 . This function is smooth on B since the met-
ric on the Riemannian manifold is assumed to be smooth and 
x ∉ B while B is contained in the ball of the injectivity radius 
around x. Moreover, Hess (�) is (uniformly) positive definite 
on B and � has no critical points, see [18, Theorem 6.4.8] and 
the preceding discussions. By repeating the computations of 
[3, Lemma 1], where it is also pointed out that the result holds 
on Riemannian manifolds, we obtain the following point-wise 
inequality. Let w ∈ C2(B) and let v = et�w , then

��(X,X) ≤ sec(X,X) ≤ K�(X,X).

(3.1)
�B(p,r)

u2
k
dvol ≤ C(r,R1)

�B(p,R1)⧵B(p,r)

u2
k
dvol,

where b = −tv�M� − 2t⟨ gradMv, gradM�⟩M and

Lemma 3.2 Let (M, �) and B be as above. Then there exists 
a constant c0 > 0 such that for any function w ∈ C2

0
(B) and 

k ≥ 0 the following inequality holds

Proof We repeat the argument given in [3, Corollary 1]. 
Integrating the last inequality over a ball B and taking into 
account that functions a and b have compact supports in B, 
we conclude that the divergence term disappears. For the 
next two terms, which contain the Hessian of � , we use the 
convexity inequality

and the computation

Finally, the last term is estimated as

Combining these inequalities, we get

when t > t0 . The powerful feature of the last inequal-
ity is that c1 and t0 do not depend on k (but depend on 
� which we fix). Finally, we fix some t > t0 and let 
M = maxB e

2t� and m = minB e
2t� . Then (3.2) holds with 

c0 = c1mmin{t3, t}M−1 .   ◻

e2t�(�Mw + k2w)2 ≥ 2 div (b gradMv + a)

+ 4t⟨HessM(�) gradMv, gradMv⟩M

+ 4t3⟨HessM� gradM�, gradM�⟩Mv
2

+ t⟨ gradM�M�, gradMv⟩Mv,

a = t

(
|
|
|
|
gradMv

|
|
|
2
M
−
(
k2 + t2

|
|
|
gradM�

|
|
|

2

M

)

v2
)

gradM�.

(3.2)
�B

|�Mw + k2w|2 dvol ≥ c0
�B

|w|2 + | gradMw|
2
M
dvol.

⟨HessM� gradMf , gradMf ⟩M ≥ c
�
� gradMf �

2
M

gradMv = et�( gradMw + tw gradM�).

�
�t⟨ gradM�M�, gradMv⟩Mv

�
�

≤ �t� gradMv�
2
M
+ �

−1t� gradM�M��
2
M
v2.

�B

|�Mw + k2w|2e2t� dvol

≥ c1
�B

(
t3|w|2e2t� + t| gradw|2e2t�

)
dvol,
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Suppose now that uk is a solution of the Helmholtz equa-
tion (1.2) in a ball B(p, R) that satisfies the conditions in 
Theorem 3.1. We apply inequality (3.2) to w = uk� , where 
� ∈ C2

0
(B) is compactly supported on B and equals to one on 

a smaller ball B1 ⊂⊂ B . This gives the inequality

The last inequality implies that for any r < R such that 
BR = B(x,R) and Br = B(x, r) are geodesic balls satisfying 
the conditions in Lemma 3.2, there is a constant C2(r,R) 
such that

Inequality (3.3) shows that if u2
k
+ | grad uk|

2 is small on the 
annulus BR ⧵ Br , then it is small on the whole ball BR . For 
the Euclidean space an alternative proof can be obtained 
by decomposing a solution uk into series of products of 
Bessel functions and spherical harmonics. From this, one 
can deduce (3.3) from the Debye asymptotic of the Bessel 
functions.

To compare with the previous section and finish the proof 
Theorem 3.1, we can also use Caccioppoli’s inequality to 
control the Sobolev norm of uk by its L2-norm.

Lemma 3.3 (Caccioppoli’s inequality) Let 𝜀 > 0 and let 
R = R(M) be small enough. Furthermore, let 𝜀 < r < R − 2𝜀 . 
We denote

Assume that uk ∈ C2(�) and �Muk + k2uk = 0 in �+ . Then 
there exists a constant C = C(M) such that

Proof There exists a smooth function �+ with compact sup-
port in �+ that satisfy �+ = 1 on � and || grad�+

|
| ≤

C

�
 and 

|�M�+| ≤
C

�2
 . Then, using the divergence theorem, we have

�B1

|uk|
2 + | grad uk|

2 dvol

≤
1

C0
�B⧵B1

|uk�M� + 2 grad uk ⋅ grad�|
2 dvol.

(3.3)
�Br

|uk|
2 + | grad uk|

2 dvol

≤ C2(r,R)
�BR⧵Br

|uk|
2 + | grad uk|

2 dvol.

� =B(x,R) ⧵ B(x, r),

�+ =B(x,R + �) ⧵ B(x, r − �), and

�− =B(x,R − �) ⧵ B(x, r + �).

k2
�
�−

u2
k
dvol −

C

�2 ��

u2
k
dvol

≤
�
�

|
| grad uk

|
|
2
dvol

≤

(

k2 +
C

�2

)

�
�+

u2
k
dvol.

Hence

On the other hand, choosing a similar function �− ∈ C∞
0
(�) 

such that �− = 1 on �− , we conclude that

  ◻

Finally, we go back to the inequality (3.3), and apply the 
Caccioppoli inequality. Rename R1 = R + � and r1 = r − � . 
This gives the following estimate of the L2-norm of a solution 
to the Helmholtz equation by its L2 norm on an annulus

for any r1 < R1 . Then for k > C𝜀−1 the inequality (1.5) fol-
lows. For k < C𝜀−1 , we use (3.3) and the Caccioppoli ine-
quality again, to see that

Thus, since k < C𝜀−1 , the inequality (1.5) follows also for 
that case. This conclude the proof of Theorem 3.1.

Appendix A: The first positive zero 
of the Bessel function

Let l be a non-negative half-integer, and let �  denotes the 
gamma function. The Bessel function Jl is a solution to the 
second order ODE

k2
∫
�+

�+u
2
k
dvol = −

∫
�+

�+uk�Muk dvol

=
∫
�+

⟨ grad uk, grad
�
�+uk

�
⟩ dvol

=
∫
�+

�+
�
� grad uk

�
�
2
dvol

−
1

2 ∫
�+

u2
k
�M�+ dvol.

�
�

|
| grad uk

|
|
2
dvol ≤

(
k2 + C�−2

)

�
�+

u2
k
dvol.

�
�

| grad uk|
2 dvol ≥ k2

�
�−

u2
k
− C�−2

�
�

u2
k
dvol.

k2
�Br1

u2
k
dvol ≤

�Br

| grad uk|
2 dvol + C�−2

�Br

u2
k
dvol

≤ (k2 + C�−2)
�BR1

⧵Br1

u2
k
dvol

+ C�−2
�Br1

u2
k
dvol,

�Br

|uk|
2 dvol ≤ C(r,R)(k2 + C�2)

�BR1
⧵Br1

|uk|
2 dvol.

(A.1)�
2J��

l
(�) + �J�

l
(�) +

(
�
2 − l2

)
Jl(�) = 0,
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which is bounded at the origin and normalized by the 
condition

For alternative definitions and many useful asymptotic for-
mulas for the Bessel functions we refer the reader to [17].

It is well known that the first positive zero of Jl , usually 
denoted by jl , satisfies jl ≍ l + cl1∕3 as l → ∞ . We already 
explained in the proof of Lemma 2.1 that jl > l and we give a 
simple proof of the inequality jl ≤ l + cl1∕3 . This will be done 
by comparing the Bessel equation to the following equation

on the interval � ∈ [l + l1∕3,+∞).
Suppose that al < 1 satisfies

Then the Sturm–Picone comparison theorem, see Theo-
rem B.1, implies that between any two zeros of yl there is 
a zero of Jl . It is easy to check that yl(�) = �

−1∕2 cos(al�) 
solves (A.2) and has roots at (�∕2 + k�)∕al for k ∈ ℤ . We 
choose al = l−1∕3 . Then (A.3) holds for l large enough. 
Hence Jl has a root on the interval [l + l1∕3, l + l1∕3 + �l1∕3] 
and jl ≤ l + (� + 1)l1∕3.

Appendix B: Comparison theorems 
for Sturm–Liouville equations

Classical Sturm–Liouville theory is concerned with second 
order differential equations on the form

Special cases of Sturm-Liouville equations are the radial 
solutions to the Helmholtz equation, see (2.5). To estimate 
solutions to these radial equations in Sect. 2.2, we compare 
them to some more simple Sturm–Liouville equations. To 
do this we use the following classical theorems:

Theorem B.1 (Sturm–Picone Comparison Theorem, [7, 
Theorem B]) Let y1 and y2 be non-zero solutions to

on the interval [a, b]. Assume that 0 < p2 ≤ p1 and q1 ≤ q2, 
and let z1 and z2 be two consecutive zeros of y1 . Then either 
y2 has a zero in the interval (z1, z2), or y1 = y2.

Theorem B.2 (Sturm Comparison Theorem, [6, Chap. 13.7]) 
Let y1 > 0 on (a, c) and y2 be non-zero solutions to

lim
�→0

�
−lJl(�) = 2−l� (l + 1)−1.

(A.2)�
2y��

l
(�) + �y�

l
(�) + (a2

l
�
2 − 1∕4)yl(�) = 0

(A.3)(l + l1∕3)2(1 − a2
l
) ≥ l2 − 1∕4.

(p(x)y�(x))� + q(x)y(x) = 0 on [a, b].

(p1(x)y
�

1
(x))� + q1(x)y1(x) = 0,

(p2(x)y
�

2
(x))� + q2(x)y2(x) = 0,

on the interval (a, c) ⊂ [a, b] . Assume that p > 0 and q2 ≤ q1 
on [a, b]. Furthermore,  assume that

Then y1(x) < y2(x) for all x ∈ (a, c).

It is also important for us to estimate the maximum of 
some solutions to the Helmholtz equation. To limit the 
search, we use the following theorem:

Theorem B.3 (Sonin–Pólya Oscillation Theorem, [6, Chap. 
13.7]) Let y be a solution of the differential equation

where p and q are continuously differentiable functions on 
[a, b]. Suppose that p > 0, q ≠ 0 and (pq)� > 0 on (a, b). 
Then the successive local maximums of |y(x)| form a 
decreasing sequence.
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