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ABSTRACT

The vortex system around the step surface of a step cylinder with a diameter ratio D=d ¼ 2 at Reynolds number (ReD) 3900 was investigated
by directly solving the three-dimensional Navier–Stokes equations. Formation mechanisms and vortex dynamics of the complex vortex system
were studied by performing a detailed investigation of both the time-averaged and instantaneous flow fields. For the time-averaged flow, includ-
ing the known junction and edge vortices, in total, four horseshoe vortices were observed to form above the step surface in front of the upper
small cylinder. The crossflow width of the four horseshoe vortices varies differently as they convect downstream. Moreover, we captured a pair
of base vortices and a backside horizontal vortex in the rear part of the step surface behind the small cylinder. For the instantaneous flow, hair-
pin vortices were found to form between the legs of two counter-rotating horseshoe vortices located on the same side of the step cylinder.
Furthermore, in the small step cylinder wake, Kelvin–Helmholtz vortices were observed to shed at an unexpectedly high shedding frequency.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0041234

I. INTRODUCTION

The flow around a uniform circular cylinder has been a popular
research topic for several decades because of its simple geometry and
vast flow phenomena in its wakes. As the Reynolds number ReD
¼ UD=� varies (D represents the diameter of the circular cylinder, U
and � are the free-stream velocity and the kinematic viscosity, respec-
tively), the cylinder wake flow exhibits distinctly different behaviors.1,2

When ReD is less than 5, there is no flow separation around the cylin-
der. As ReD increases to the range 5 < ReD < 40, the flow separates on
the cylinder wall to form a fixed pair of vortices behind the cylinder,
and there is no vortex shedding. For 40 < ReD < 180, periodic two-
dimensional vortex shedding occurs. When ReD exceeds 180, the wake
becomes three-dimensional. Williamson1 reported the well-known
mode A and mode B at ReD ¼ 184� 194 and ReD ¼ 200� 250,
respectively. When the Reynolds number becomes larger than
ReD � 300, the cylinder wake flow becomes completely turbulent. The
boundary layer over the cylinder surface stays laminar in a wide
Reynolds number regime 300 < ReD < 2� 105, which is known as
the subcritical flow regime.2 In this regime, the particular Reynolds
number 3900 is a benchmark, at which there are many accurate
numerical simulations3–6 and experimental studies.7,8

Besides the circular cylinder, due to the extensive applications in
marine engineering, e.g., the underwater hull of Single Point Anchor
Reservoir (SPAR)-buoy floating offshore wind turbines9 and the steel
lazy wave risers,10,11 the flow around the step cylinder illustrated in
Fig. 1(a) has also attracted attention in recent years. In 1992, Lewis
and Gharib13 experimentally investigated the wake of a single-step cyl-
inder with 1 < D=d < 2 at Reynolds number ReD ¼ UD=� in the
range 35 < ReD < 200. They identified three vortex interaction
modes, namely direct mode when D=d < 1:25, indirect mode when
D=d > 1:55, and transition mode when 1:25 < D=d < 1:55. In direct
mode, vortices shed from the small cylinder directly interact with those
from the large cylinder in a narrow region. The wake is dominated by
two frequencies fS and fL corresponding to shedding frequencies of the
spanwise vortex structures behind the small and large cylinder, respec-
tively. In the indirect mode, one more frequency f3 (which is also
referred to as fN by Dunn and Tavoularis14) was identified in a so-
called modulation zone, in which no direct interaction was found
between vortices with fS and fL. Dunn and Tavoularis14 validated the
indirect mode through experimental investigations in the wake of a
step cylinder with D=d � 2 at 63 < ReD < 1100. Based on the three
dominating frequency components behind the step cylinder, they
identified three types of spanwise vortex cells: (1) S-cell vortex with the
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highest shedding frequency fS behind the small cylinder, (2) L-cell vortex
shed from the large cylinder with shedding frequency fL, and (3) N-cell
vortex with the lowest shedding frequency fN located between the S- and
L-cell regions. An illustration of these three vortex cells are shown in
Fig. 1(b). According to Refs. 15 and 16, the average length of the N-cell
vortex was found to decrease with increasing ReD or decreasing D/d.
Due to the different shedding frequencies of S-, N-, and L-cell vortices,
complex vortex interactions and dislocations occurring between these
three main vortex cells were observed and analyzed in Refs. 16–20.
Similar spanwise vortex cells and the vortex interactions between them
were also observed and investigated in the dual-step cylinder wakes.21–23

In addition to the three main spanwise vortex structures, the
streamwise vortex system around the step surface has also been investi-
gated in several previous studies.14,24,25 In an experimental study of the
flow around a single-step cylinder with D=d ¼ 2 at ReD ¼ 1100, Dunn
and Tavoularis14 identified two kinds of streamwise vortices: a pair of
edge vortices and a junction vortex. Edge vortices form around the lead-
ing edge of the step surface, while a junction vortex originates upstream
of where the small cylinder interacts with the step surface. On the same
side (þY or –Y side) of the step cylinder, these two types of vortices
rotate in opposite directions. Morton et al.24 verified the existence of the
junction and edge vortices in their numerical investigations at a slightly
higher Reynolds number, ReD ¼ 2000. Besides, McClure et al.25 and Ji
et al.26,27 reported the existence of a similar streamwise vortex system in
flow around dual-step cylinders. McClure et al.25 further concluded that
the junction vortex primarily connects to the vortices shed from the
large cylinder, while the edge vortex mainly connects to the small cylin-
der vortices. However, despite these well-verified findings, there still
exist more flow details needed to be thoroughly described and investi-
gated. For example; how different types of streamwise vortices develop
in the flow around the step cylinder, how these vortices interact with
each other, and whether other types of streamwise vortices exist around
the step surface when ReD increases.

Besides the step cylinder, the time-averaged streamwise vortex
system has also been investigated in the wake of both surface-mounted
finite circular and square cylinders. Sumner and Heseltine,28 Sumner
et al.,29 and Zhang et al.30 reported that a dipole type, a quadrupole
type, or a six-vortices type appears depending on the aspect ratio and
the Reynolds number of the surface-mounted cylinder. Moreover,
near the free-end, Park and Lee,31 Krajnovic,32 and Hain et al.33

observed a pair of streamwise tip vortices. By investigating the instan-
taneous and phase-averaged flow around surface-mounted cylinders,
recent studies34,35 suggested that the tip vortices are primarily caused
by the deformed main spanwise vortices that connect back to the free
end.

As mentioned before, ReD ¼ 3900 is a benchmark for the flow
past a uniform circular cylinder, where there are many accurate
numerical and experimental studies. However, until now, no one has
investigated flow around a step cylinder at such Reynolds number. As
a pioneer, the present study investigates the flow around a single-step
cylinder with D=d ¼ 2 at ReD ¼ 3900 by using direct numerical simu-
lations (DNS). Our primary objectives are to investigate the formation
mechanisms, vortex dynamics, and interactions between the vortices
around the step position. Therefore, we restrict our analysis and dis-
cussions to the flow regions close to the step surface. Section II intro-
duces the flow problem and the numerical methodology. In Sec. III, by
analyzing the time-averaged flow, the vortex system around the step
surface is described. In addition to the conventional junction and edge
vortices, four other vortices are discussed. In Sec. IV, based on the
instantaneous flow field, the formations of hair-pin vortices and
Kelvin–Helmholtz vortices with an unexpectedly high shedding fre-
quency are described.

II. NUMERICAL SIMULATIONS
A. Flow configuration

In the present study, we investigate the flow around a step cylin-
der as shown in Fig. 1(a). The uniform incoming flow U is in the posi-
tive x-direction. The side and top-down views of the flow domain are
illustrated in Fig. 2. The streamwise length and the crossflow width of
the computational domain are Lx and Ly. The inlet plane is located Lx1
upstream from the center of the step cylinder, and the outlet plane is
placed Lx2 downstream. In the crossflow direction, the step cylinder is
located in the middle of the domain. The spanwise height of the
domain is Lz, where the length of the small and large cylinders occupy
l and L, respectively. Detailed information of the flow domains used in
the present study is summarized in Table I. Boundary conditions are
as follows:

• The inlet boundary: uniform velocity profile u ¼ U, v ¼ 0,
w ¼ 0;

• The outlet boundary: Neumann boundary condition for velocity
components (@u=@x ¼ @v=@x ¼ @w=@x ¼ 0) and constant zero
pressure condition (p¼0);

• The other four sides of the computational domain: free-slip
boundary conditions (For the two vertical sides: v ¼ 0,
@u=@y ¼ @w=@y ¼ 0, For the two horizontal sides: w ¼ 0,
@u=@z ¼ @v=@z ¼ 0);

• The step cylinder surfaces: no-slip and impermeable wall.

FIG. 1. (a) A sketch of the step cylinder geometry. The diameters of the small and
large cylinders are d and D, respectively. l and L denote the length of the small and
large cylinders. The origin is located at the center of the interface between the small
and large cylinders. The uniform incoming flow U is in the positive x-direction. The
three directions are referred to as streamwise (x-direction), crossflow (y-direction),
and spanwise (z-direction). (b) Perspective view of the instantaneous wake behind
a single-step cylinder with D=d ¼ 2 at ReD ¼ 3900, taken at an arbitrary moment
with the flow fully developed. The wake structures are shown by the isosurfaces of
k2 ¼ −2 (Ref. 12) from our simulation. To ease the observation, color contours of
crossflow velocity v/U are plotted in the (x, z)-plane at y=D ¼ 0.
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B. Computational method

In this DNS study, the governing equations contain a mass con-
servation Eq. (1) and a time-dependent full three-dimensional incom-
pressible Navier–Stokes Eq. (2):

$ � u ¼ 0; (1)

@u
@t

þ ðu � $Þu ¼ �$2u� 1
q
$p; (2)

where 5 is the Del operator, � is the kinematic viscosity of the fluid,
and q is the constant fluid density. For all simulations, a thoroughly
validated finite-volume-based numerical code MGLET (Multi Grid
Large Eddy Turbulence)36,37 is used to directly solve the governing
Eqs. (1) and (2) without introducing any turbulence model. In
MGLET, Eqs. (1) and (2) are first discretized on a 3-D staggered
Cartesian grid. Then, by using the midpoint approximation, the dis-
cretized equations are integrated over the surfaces of the discrete

volumes. This leads to a second-order accuracy in space. In time, the
discretized equations are integrated with Williamson’s third-order
low-storage Runge-Kutta scheme.38 A constant time step Dt is used to
ensure a CFL (Courant-Friedrichs-Lewy) number smaller than 0.5.
The pressure corrections are achieved by using Stone’s implicit proce-
dure (SIP).39

The solid surface of the step cylinder is handled by an immersed
boundary method (IBM). We use an unstructured triangular mesh to
represent the surface of the geometry, and transfer information to
IBM to block grid cells bounded by this surface. Detailed description
and validation of this IBM can be found in Peller et al.40 The computa-
tional domain is first divided into equal-sized cubic grid boxes, named
the level-1 box. In each grid box, there are N � N � N equal-sized
cubic grid cells. For the region where complex flow phenomena
appear, e.g., the regions close to the step cylinder and the region where
vortices form, the grid boxes (the level-1 box) are equally divided into
eight small cubic grid boxes, named the level-2 box. In every level-2
grid box, there are also N � N � N grid cells. This means that the
grid resolution in the level-2 box is two times finer than that in the
level-1 box. This grid refinement-process goes on automatically until
the finest grid level is reached. The grid structure in case Fine-B in the
geometrical symmetry plane (the (x, z)-plane at y/D¼ 0) is plotted in
Fig. 3 to schematically illustrate the grid structure.

Details of the mesh used in the simulations are summarized in
Table I. Since all grid cells are cubic, the minimum grid cell size
(Dc=D) is the same in x, y, and z directions. The four cases with the
different minimum grid cell sizes (Dc=D), i.e., the Coarse, Medium,
Fine-A and Very Fine cases, are set up for the grid study. In the geom-
etry study, the mesh in the Fine-A case is also used with the cases
Fine-B and Fine-C, in which the vertical lengths of the small (l) and
large cylinder (L) parts are varied.

C. Grid convergence, spanwise length convergence,
and statistical convergence

The detailed discussions about grid convergence, spanwise length
convergence, and statistical convergence are provided in the
Appendix. Based on the outcome of these considerations, we conclude
that the mesh and configuration in the Fine-B case (see in Table I) are
sufficiently good for reliable DNS simulations in this study. The statis-
tical results obtained during the time period tU=D ¼ 350� 850 is suf-
ficiently steady for the investigations in this study. All simulations
were performed on an SGI (Silicon Graphics) ALTIX ICE X SLES—
11sp3 cluster at NTNU. In the case Fine-B, there are six levels of grids

FIG. 2. Computational domain, origin, and coordinate system are illustrated from
(a) side view and (b) top-down view.

TABLE I. Detailed mesh and domain information of all simulations in this study. The case Coarse has five levels of grids, and the other cases all have six levels of grids. The
cases Coarse, Medium, Fine-A, and Very Fine are used for the grid study. The cases, Fine-A, Fine-B, and Fine-C are used for the spanwise-length study. As shown in Fig. 3,
the minimum grid cells (Dc=D) cover the region around the step cylinder.

Case Min. cell size Dc=D Time step DtU=D Domain size (Lx � Ly � Lz)/D l / D L / D Lx1 Lx2 Number of grid cells (�109)

Coarse 0.010 0.0025 81:60� 38:40� 14:40 4.80 9.60 28.80 52.80 0.20
Medium 0.00625 0.0015 74:80� 40:80� 18:00 6.00 12.00 27.20 47.60 0.84
Fine-A 0.005 0.0012 81:60� 38:40� 14:40 4.80 9.60 28.80 52.80 1.21
Very Fine 0.004 0.0010 81:92� 40:96� 15:36 5.12 10.24 30.72 51.20 2.67
Fine-B 0.005 0.0012 81:60� 38:40� 24:00 9.60 14.40 28.80 52.80 2.02
Fine-C 0.005 0.0012 87:04� 43:52� 32:64 10.88 21.76 32.64 54.40 2.71
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containing in total 2:02� 109 grid cells, with minimum grid cell size
Dc=D ¼ 0:005. To run this case, we used 3360 processors (2 GB mem-
ory per processor) for at least 800 000 time steps. This single case con-
sumed in total approximately 1.87 million CPU (central processing
unit) hours. Recently, the same code MGLET has been used for simu-
lations of wake flow behind other cylindrical structures at the same
Reynolds number 3900 in Refs. 5, 41, and 42 where similar minimum
grid cell size and CFL criteria were used.

III. TIME-AVERAGED FLOW AROUND THE STEP
SURFACE

Similar to the flow around a finite-length cylinder,28,30,35 the
appearance of the time-averaged streamwise vortices is also a distinc-
tive feature of the flow around the step surface of the step cylinder. In
Fig. 4(a) by plotting the isosurfaces of time-averaged k2 ¼ −9, a four
horseshoe vortex system is identified in Fig. 4(a), where H1, H2, H3,
and H4 are clear. Besides the conventional junction vortex (H1) and
edge vortex (H3) reported in Refs. 14, 24, and 25, two new-observed
vortices (H2 and H4) are identified. Figure 5(a) illustrates the evolu-
tion of these horseshoe vortices by projecting streamlines on several
planes. To ease the observation, vortex cores [red lines in Fig. 5(a) and
5(b)] are calculated by using Tecplot post-processing software, which
uses algorithms based on techniques outlined by Ref. 44. Additional
information about the flow and vortices is shown in Fig. 5(b), where
the vortex core lines and the limiting streamlines are projected on the
step surface. Moreover, the time-averaged streamlines in the symmetry
plane (y=D ¼ 0) are plotted in Fig. 6(a) and 6(b). Based on Figs. 5 and
6(a), one can see that the main horseshoe vortex H1 is caused by both
the leading edge separation and the impingement of the flow at the
upstream surface of the step cylinder. When the flow approaches the
step cylinder, an upward flow along the large cylinder is driven by
the pressure difference between the stagnation pressure on the large
cylinder and the pressure above the step surface at the same stream-
wise position. As the upward flow reaches the leading edge of the large
cylinder, it separates and deflects to the incoming flow direction. After
impinging the upstream surface of the small cylinder in the symmetry
plane at the attachment saddle point A1 (the blue dot at z/D¼ 0.26) in
Fig. 6(a), a part of the flow is directed upward and some move down-
ward. The majority of the downward flow attaches to the step surface
at the attachment saddle point A2 (the green dot at x/D ¼ −0.28), and
recirculates into the main horseshoe vortex H1. The other downward
flow separates along the small cylinder wall at the separation saddle
point S1 (the red triangle at z/D¼ 0.03) and induces the formation of

vortex H2. The formation of vortex H3 is caused by the separation of
the backward flow beneath the vortex H1 on its way back to the lead-
ing edge of the large cylinder at the separation point S2 (the red dot at
x/D ¼ −0.42). The corresponding local separation line is marked by
the green dashed curve in Fig. 5(b). The neighboring H1 and H3 vorti-
ces are counter-rotating. Due to topological reasons, the vortex H4
appears upstream of H3 and rotates in the same direction as H1. As
shown in Fig. 6(a), without formation of H4, the flow induced by the
counterclockwise rotating vortex H3 would conflict with the incoming
flow. Between the counter-rotating vortices H3 and H4, a reattach-
ment saddle point A3 is observed, as shown by the green triangle at

FIG. 3. An illustration of the multi-level
grids in the (x, z)-plane at y=D ¼ 0. Each
square represents a slice of correspond-
ing cubic Cartesian grid box that contains
N � N � N grid cells. Here, there are six
levels of grid boxes as indicated by num-
bers. Owing to different minimum grid cell
sizes, different cases studied in this study
have either five or six levels of grid boxes.

FIG. 4. (a) The time-averaged vortex structures around the step surface are illus-
trated by the isosurface of the time-averaged k2 ¼ �9 at the top-down viewpoints
colored by the time-averaged streamwise vorticity xx (xx ¼ @w=@y � @v=@z).
(b) Same as (a) but k2 ¼ �0:2. In (a) and (b), the main vortices around the step
surface are indicated. The red dotted lines mark the position x=D ¼ 0. (Note: The
vortex structures in this paper were checked by plotting both the isosurfaces of k2
(Ref. 12) and Q (Ref. 43). No obvious difference was observed. To ease the pre-
sentation and discussion, only the isosurface of k2 is used.).
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x=D ¼ �0:46 in Fig. 6(a). In Figs. 5(c) and 5(d), the horseshoe vorti-
ces H1-H4 are illustrated by three-dimensional streamlines in different
colors.

After these four horseshoe vortices (H1, H2, H3, and H4) form
in front of the step cylinder, they wrap around the small cylinder and
advect downstream. Based on Figs. 5(a) and 6(a), one can see that the
conventional edge vortex14,24 (Er) rotates in the same direction as H3.
Furthermore, the time-averaged isosurface of k2 in Fig. 4(a) and the

instantaneous isosurface of k2 in Fig. 9(b) clearly show that as the
horseshoe vortex H3 forms and wraps to the downstream, this vortex
takes the role as the conventional edge vortex. However, this formation
mechanism of the edge vortex (H3) is different from that reported by
Dunn and Tavoularis.14 They suggested that when the incoming flow
is blocked by the small cylinder and pushed sideways by the rotating
junction vortex, it spills over the edges of the step surface and rolls up
into the edge vortex. However, Fig. 4 and 5 in this study clearly show

FIG. 5. (a) Time-averaged streamlines
projected on several planes close to the
step surface. The main vortex compo-
nents are indicated. (b) Time-averaged
streamlines projected on the step surface.
The attachment saddle point A2, the reat-
tachment saddle point A3, the separation
saddle point S2, a backside separation
saddle point S3, and two focal points Fl
and Fr are marked by the green dot,
green triangle, red dot, red diamond, red
circle, and red dotted circle, respectively.
The critical point for H1 and H3 is illus-
trated by two dashed black lines at
x=D ¼ 0:27. The local separation line is
illustrated by a green dashed line in (b). In
(a) and (b), the vortex core lines are plot-
ted as red curves. (c) Three-dimensional
flow evolution pattern with H1 in red, H2 in
black, H3 in brown, H4 in purple, Br in
blue, and Bl in green. (d) Same as (c) but
view from behind.

FIG. 6. (a) Time-averaged streamlines in a (x, z)-plane at y=D ¼ 0 in the fore part of the step cylinder, the four horseshoe vortices (H1, H2, H3, and H4) are indicated. The
same markers used in Fig. 5(a) are used here: the attachment saddle point A2, the reattachment saddle point A3, the separation saddle point S2, a backside separation saddle
point S3 are marked by the green dot, green triangle, red dot, and red diamond, respectively. Moreover, an attachment saddle point A1 and a separation saddle point S1 are
marked by a blue dot and red triangle, respectively. (b) Same as (a) but in the rear part of the step cylinder, the backside horizontal vortex (BH) is marked. (c) and (d) show
the corresponding time-averaged magnitude of velocity < MU > =U contours in (a) and (b), respectively.
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that the edge vortex is a horseshoe vortex caused by the local separa-
tion of the backward flow beneath the junction vortex H1. Indeed,
both the junction and edge vortex are close to each other and the step
surface, making it difficult to isolate them and investigate their forma-
tion mechanisms experimentally. Different from H1, H2, and H3 that
extend relatively far into the wake flow (x=D > 0.5), H4 ends at
x=D � 0. As shown in Figs. 4(a) and 4(b), when k2 changes from −9
to −0.2, H1, H2, and H3 extend further downstream and merge into
mean recirculation wakes. However, H4 still ends around x=D ¼ 0, as
marked by the red dashed lines in Fig. 4(b). Further discussions about
how H4 ends will be provided in Sec. IV.

Another obvious feature is the different developments of H1 and
H3. Figure 5(b) clearly shows that for x=D > 0 the width of H1 gradu-
ally increases as moving to the downstream, while the width of H3
gradually decreases. The width here is referred to as the crossflow dis-
tance between the legs of the horseshoe vortex. Due to the different
development tendencies, we define a critical position x=D ¼ 0:27 for
H1 and H3 as marked by the black dashed lines in Fig. 5(b). Upstream
of it, the width of H3 is larger than that of H1. Downstream of it, the
scenario is opposite. We find that it is the fact that H1 and H3 locate
in different spanwise regions that causes their qualitatively different
spatial evolution. As shown in Figs. 5(a), 6(a), and 7(a), when H1 and
H3 wrap around the small cylinder and extend to x=D ¼ 0:1, H1 is
still located above the step surface (z=D > 0), while H3 already
extends outside and below the step surface (z/D < 0). In Fig. 8, in com-
parison, the time-averaged streamlines behind the small and large cyl-
inder are plotted in the (x, y)-planes at z=D ¼ 0:1 and z=D ¼ �0:05.
The vortex core lines of H1, H2, and H3 are also projected in
these planes. One can see that around the small cylinder, at
0 < x=D < 0:75, the incoming flow has an outward flow direction.

The width of the recirculation region gradually increases. On the con-
trary, behind the large cylinder part, the incoming flow has an inward
flow direction at 0 < x=D < 0:75. According to these different flow
directions, from x=D ¼ 0:1 to x=D ¼ 0:7, the width of H1 increases
from 0.98D in Fig. 7(a) to 1.15D Fig. 7(b), while the width of H3
decreases from 1.00D to 0.90D. Moreover, due to the same reason, the
width of H2 also slightly increases as it extends downstream above the
step surface, as shown in Figs. 5(b) and 6(a). At a spanwise position far
away from the step surface, due to the diameter ratio, the wake width
behind the small cylinder is smaller than that behind the large cylin-
der. Close to the step surface, however, for the wakes behind the small
and large cylinders to smoothly connect with each other, the flow
behaves differently behind the small and the large cylinders. A similar
four-horseshoe vortex system has also been reported in flow past a
wall-mounted cylinder,45–47 but never been observed before in the
flow around a step cylinder. Moreover, the newly observed opposite
tendencies of crossflow widths of the horseshoe vortices are unique.
The behavior of the crossflow width is normally the same for different
vortex components of a horseshoe vortex system in the near wake of
flow around wall-mounted cylinders.

In addition to these four characteristic horseshoe vortices, we
capture a pair of counter-rotating base vortices (Br and Bl) generated
from two focal points Fr and Fl on the step surface behind the small
cylinder, as shown in Fig. 5(b). Between them, another backside hori-
zontal vortex (BH) is identified. Although similar focal points and vor-
tex structures have been reported in the flow around a wall-mounted
cylinder,48–50 it is surprising to observe the formation of these vortices
in such a narrow step surface with only 0.25D radial width. Figure 5(b)
and 6(b) show that when the back-flow caused by the recirculations
reaches the trailing edge of the large cylinder in the (x, z)-plane at
y=D ¼ 0, vortex BH forms in the same way as H1 does, as explained
in the previous paragraph. The corresponding backside separation
saddle point is marked by the red diamond in Figs. 5(b) and 6(b).
Moreover, Figs. 6(c) and 6(d) show that the strength of the back-flow
is much weaker than that of the incoming flow. Consequently, differ-
ent from the incoming flow that induces four vortices (H1, H2, H3,
and H4) in the forepart of the step surface, the weak back-flow only
induces one backside horizontal vortex (BH) on the rear part of the
step surface. Additionally, when the recirculation flow behind the
small cylinder reaches the two focal points Fr and Fl on the step sur-
face, it spirals upward and moves into the positive x�direction to
form a pair of base vortices (Br and Bl), as indicated in Figs. 5(c) and 5
(d). The corresponding swirls caused by these base vortices are seen in
the (y, z)-plane at x=D ¼ 0:7 in Fig. 7(b), as highlighted by the black

FIG. 7. (a) Time-averaged streamlines in a (y, z)-plane at x/D¼ 0.1. (b) Same as (a) but at x=D ¼ 0:7. The horseshoe vortex H1, H2, and H3 and the base vortex are
marked. Note: the slight asymmetry in (b) is caused by the marginal statistical time-sampling. The detailed discussion can be found in Appendix 3.

FIG. 8. (a) Time-averaged streamlines in a (x, y)-plane at z=D ¼ �0:1. (b) Same
as (a) but at z=D ¼ 0:05. The vortex core lines corresponding to H1, H2, and H3
are projected in (a) and (b) by the blue, red and green dotted lines, respectively.
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dashed circles. Due to the modest strength of the recirculation flow,
the backside horizontal vortex (BH) and the pair of base vortices (Br

and Bl) are weaker compared to the horseshoe vortices. We can only
observe four horseshoe vortices in the isosurface plot of k2 ¼ �9 in
Fig. 4(a). BH, Br, and Bl become visible only in the isosurface plot of
k2 ¼ �0:2. Moreover, the colors of the streamwise vorticity xx on the
isosurfaces of Br and Bl are obviously lighter than those of H1 and H3.
These facts confirm the weaker of BH, Br, and Bl .

IV. INSTANTANEOUS FLOW AROUND THE STEP
SURFACE

The instantaneous isosurface of k2 is presented in the step
region in Figs. 9 and 10. The boundary layer is laminar in the fore
part of the step cylinder, therefore the four horseshoe vortices seen in
the time-averaged flow field are also clearly observed in the instanta-
neous flow field at x=D < 0. On the other hand, the vortex structures
corresponding to BH, Br, and Bl are difficult to identify in the instan-
taneous flow. These vortices are located in the turbulent wake of the
small cylinder, which makes them indistinguishable in the small tur-
bulent eddies. For x=D > 0, complex vortex interactions and small
turbulent eddies appear. Two instantaneous features are remarkable:
the formation of hairpin vortices between the horseshoe vortices,

and the formation of secondary spanwise vortices close to the rear
part of the small cylinder.

By plotting iso-surfaces of k2 ¼ �0:2 at six consecutive time
instants in Fig. 10, two stages are identified in the formation process of
the hairpin vortices: the initial stage [from Figs. 10(a)–10(c)] and the
developed stage [in Figs. 10(d)–10(f)] which are marked by the red
and black colors, respectively. Unlike the hairpin vortex structures that
form between two counter-rotating streamwise vortices located on dif-
ferent sides of the obstacle structures,51,52 in this study, the hairpin
vortex forms between the legs of two counter-rotating vortices H1 and
H3 on the same side of the step cylinder. Additionally, before the hair-
pin vortex forms, a special vortex bridge appears between two co-
rotating vortices H1 and H4. This stage is referred to as the initial
stage. From Figs. 10(a)–10(c), as H4 extends from x=D ¼ 0 to x=D
� 0:12 a vortex bridge gradually forms between H1 and H4 as marked
by a black circle. In Fig. 10(d), when the vortex bridge separates from
H4 and reconnects to H3, a hairpin vortex forms between two
counter-rotating vortices H1 and H3, as indicated by the black dotted
curve. In parallel, H4 shrinks back to x=D ¼ 0, which explains the fact
that the time-averaged H4 ends at x=D � 0 in Fig. 4, as mentioned in
Sec. III. At the developed stage, from Figs. 10(d)–10(e), just in front of
the hairpin vortex marked by the black dashed curve, two additional

FIG. 9. (a) Instantaneous isosurface of k2 ¼ −2 together with color contours of crossflow velocity v/U in the (x, z)-plane at y=D ¼ 0. The Kelvin–Helmholtz vortex and the S-
cell vortex are marked by the red and black lines, respectively. (b) A zoomed-in view of the step region (black rectangle) in (a). The streamwise position x=D ¼ 0 is marked by
a short green line.

FIG. 10. Consecutive instantaneous isosurfaces of k2 ¼ −0.2 showing developments of vortex structures around the step position in the ReD ¼ 3900 case. The vortices H1,
H3, and H4 are marked by the green, pink and blue lines, respectively. (a) tU/D¼ 860.052, (b) tU/D¼ 860.172, (c) tU/D¼ 860.292, (d) tU/D¼ 860.364, (e) tU/D¼ 861.060,
and (f) tU/D¼ 861.300. The end position of H4 (the blue curve) is marked by the red triangle. The corresponding animation can be found in the supplementary file.
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hairpin vortices form, as indicated by the red and green dashed curves.
These three hairpin vortices nest together to form a hairpin vortex
group. From Figs. 10(e)–10(f), this vortex group convects downstream
from x=D � 0:7 to x=D � 1. To clearly show the formation process
of the hairpin vortices, we upload an animation to the supplementary
material, from which one can clearly see that, in every vortex group,
two or three hairpin vortices form in every 0.3D/U.

Another remarkable instantaneous phenomenon is the secondary
spanwise vortices as highlighted by the red lines in Fig. 9(a). These
vortices, similar to those caused by the Kelvin–Helmholtz (KH) insta-
bility, are formed before the main spanwise S-cell vortices [the black
lines in Fig. 9(a)] shed from the small cylinder. A pair of correspond-
ing spiral flows (Fsr and Fsl) are clearly captured in the time-averaged
streamlines on the step surface in Fig. 5(b). The frequency of conven-
tional KH vortices53,54 follows:

fKH=fK ¼ 0:0235� Re0:67; (3)

in which fKH and fK represent the shedding frequency of the KH vortex
and the corresponding main Karman vortex, respectively. The main
Karman vortex behind the small cylinder in this study is referred to as
fS in Fig. 11. The ratio between the KH and main Karman vortices in
this study (i.e., fKH/fS¼1.6/0.2� 8) is two times higher than the empir-
ical value from Eq. (3) (i.e., 0:0235� 19500:67 � 4 where Red instead
of ReD is used because the focused KH vortex appears behind the small
cylinder). The conventional KH vortex is caused by the KH instability,
which amplifies the convection of perturbations in the shear layer.
According to the previous study by Robinson,55 in which flow along a
solid wall was considered, the formation of the hairpin vortices was
observed to help promote convection of velocity perturbations from
the wall to the flow in the upper region. Figure 12 shows that closer to
the group of hairpin vortices the velocity fluctuation clearly becomes
stronger in the region where KH vortices form. This implies that the
KH vortex in this study is caused by the combined effects of both the
KH instability and the instability transported by the horseshoe vortex.
This causes the unexpectedly high shedding frequency fKH.

V. CONCLUSIONS

In this study, we use DNS to investigate both the time-averaged
and instantaneous flow fields around the step cylinder with D=d ¼ 2
at ReD ¼ 3900. In general, our results show good agreement with

previous studies14,24–26 with respect to the formation of the junction
and edge vortices around the step surface of the step cylinder.
Moreover, similar base vortices identified in the flow past a wall-
mounted cylinder by Refs. 48–50 are also captured in the rear part of
the step surface. Furthermore, our numerical results provide more
complete and detailed information about the flow around the step
surface.

The time-averaged iso-surfaces of k2 and time-averaged stream-
lines show that, due to the flow impingement, flow recirculation and
flow separations on the junction surfaces between the root of the small
cylinder and the step surface, four horseshoe vortices (H1, H2, H3,
and H4) form above the step surface in front of the upper small cylin-
der. In addition to the conventional junction vortex (H1) and the edge
vortex (H3), two additional horseshoe vortices H2 and H4 are clearly
identified. The resulting four horseshoe vortex system is therefore
identified. Under the influence of the different flow behaviors in the
wakes of the small and large cylinders, the H1, H2, and H3 vortices
develop differently. When they reach x=D > 0 and extend down-
stream, the crossflow widths of H1 and H2 continue to increase; how-
ever, the crossflow width of H3 decreases. Consequently, a critical
point for H1 and H3 is defined. Moreover, in the rear part of the step
surface (x=D > 0), we capture a pair of base vortices (Br and Bl) and a
backside horizontal vortex (BH).

By detailed investigations of the instantaneous flow, we find that
the four horseshoe vortices clearly exist in both the time-averaged and
instantaneous flow field. In the forepart of the step surface (x=D < 0),
the vortices H1, H2, H3, and H4 are quite stable and only slightly fluc-
tuate in time. On the other hand, vortices Br; Bl , and BH are difficult
to identify in the instantaneous flow due to their weak strength. As H4
extends to x=D > 0, a vortex bridge gradually forms between the legs
of two co-rotating horseshoe vortices H1 and H4. After this vortex
bridge separates from the end of H4 at x=D � 0:12, a hairpin vortex
forms between the legs of two counter-rotating horseshoe vortices H1
and H3 located on the same side of the step cylinder. In the neighbor-
ing region upstream of this hairpin vortex, either one or two more
hairpin vortices form before convecting to the wake region dominated
by small turbulent eddies. Another remarkable phenomenon is the
appearance of Kelvin–Helmholtz (KH) vortices with an unexpectedly
high shedding frequency behind the small cylinder. Our results suggest
that their appearances are caused by the combined effects of both the
KH instability and the instability transported by the horseshoe
vortices.

FIG. 11. Crossflow velocity (v) spectra at positions ðx=D; y=D; z=DÞ ¼ (0.53, 0.4,
0.2) and (3, 0.6, 0.2) are plotted in black and red, respectively. The frequency com-
ponents corresponding to fS and fKH are marked. Note that the frequency is nondi-
mensionalized based on the small cylinder’s diameter (d). (The value of fKH can
also be measured from the movie in the supplementary material.)

FIG. 12. (a) Contours of time-averaged magnitude velocity fluctuation < M0
UM

0
U >

=UU plots in a horizontal plane at z/D¼ 0.2, together with instantaneous contours
of k2 ¼ �9 at tU=D ¼ 860:36 plot in red color; (b) Same as (a) but at z=D ¼ 3.
The same instantaneous contours of k2 ¼ �9 in (a) are directly projected in (b).
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Based on the discussions in this paper, an overall schematic of
the flow around the step surface of the step cylinder with D=d ¼ 2 at
ReD¼ 3900 is illustrated in Fig. 13, where the main time-averaged vor-
tex structures and flow features are identified. To ease observations,
the geometry of the small cylinder is omitted.

SUPPLEMENTARY MATERIAL

See the supplementary material for movie files.
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APPENDIX: GRID CONVERGENCE, SPANWISE
LENGTH CONVERGENCE, AND STATISTICAL
CONVERGENCE

This study focuses on the flow around the step surface of the
step cylinder. Therefore, in this section, we execute the convergence
tests in the region close to the step surface, i.e., the S- and N-cell
regions [see in Fig. 1(b)].

1. Grid convergence

Table II shows the Strouhal number (St) and the time-
averaged drag coefficient (CD ) obtained in the S- and N-cell regions.
In these two regions, we capture two dominating frequencies StS
and StN, corresponding to the shedding frequencies of the main S-
and N-cell vortices. The time-averaged drag coefficient is normal-
ized as

CDj ¼ Fxj
0:5qAjU2

; j ¼ S;N; (A1)

where the subscript S represents the small cylinder part covered by
the S-cell vortex at 1 < z=D < 4, and N represents the large cylin-
der part covered by the N-cell vortex at �4 < z=D < �1. Aj is the
projected areas of the different parts in the (y, z)-plane. One can
easily calculate: AS=D2 ¼ 1:5, and AN=D2 ¼ 3. When the mesh is
refined from the case Coarse to Very Fine, the data in Table II
shows converging trends of all quantities listed. Moreover, in
Fig. 14, we plot the time-averaged streamwise velocity < u > =U
and the time-averaged pressure coefficient (< CP >) along a verti-
cal sampling line located at (x/D, y/D) ¼ (2.02, 0). < CP > is
defined as

< CP >¼ < P > �P0
0:5qU2

; (A2)

where < P > is the time-averaged pressure along the sampling line
and P0 is the pressure at the inlet boundary. The curves in Fig. 14
clearly show a converging tendency from the Coarse case to the
Very Fine case. Especially in the region (−5 < z=D < 3) close to the
step position (z=D ¼ 0), we barely see any difference between
the Fine-A and Very Fine cases.

2. Spanwise length convergence

Due to the large number of grid cells and the smaller time
step, the computational cost of the Very Fine case is significantly
higher than that of the Fine-A case. Therefore, in the spanwise
length convergence test, we built Fine-B and Fine-C by using the
same grid structures in Fine-A, and changed the lengths of both the
small (l) and large cylinder (L) cylinders (see in Table I).

FIG. 13. Schematic of the flow field for
the single-step cylinder with D=d ¼ 2 at
ReD ¼ 3900 showing the main flow fea-
tures. To ease observations, the surface
of the small cylinder is omitted.

TABLE II. Strouhal numbers of the two dominating vortex cells (S-cell,
StS ¼ fSD=U, and N-cell, StN ¼ fND=U) are shown in the second and third col-
umns. They are obtained by means of a discrete Fourier transform (DFT) of continu-
ous velocity data along a vertical sampling line with density 0.01D parallel to the z�
axis at position (x/D, y/D) ¼ (2.02, 0), over at least 300 time units (D/U). In the last
two columns, the time-averaged drag force coefficients are calculated by using Eq.
(A1). Subscript S stands for the small cylinder part 1 < z=D < 4, N stands for the
large cylinder part in the N-cell region −4 < z=D <−1.

Case StS StN CDS CDN

Coarse 0.42 0.18 1.02 0.87
Medium 0.42 0.19 0.97 0.86
Fine-A 0.43 0.19 0.95 0.85
Very fine 0.44 0.19 0.94 0.85
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Figure 15 shows the distributions of < u > =U and < CP >
along a vertical sampling line at (x/D, y/D) ¼ (2.02, 0) in the Fine-
A, Fine-B, and Fine-C cases. The results show that the free-slip wall
boundary condition at the top and bottom of the domain have rela-
tively strong influences on the results in the Fine-A case. Especially
at z=D ¼ �9 which is close to the bottom boundary (z=D ¼ �9:6)
in Fine-A, < u > =U and < CP > in Fine-A are only one-third and
half of those in Fine-B and Fine-C, respectively. On the other hand,

the difference between the blue (Fine-B) and green (Fine-C) dotted
curves is very small, especially in the region around the step
position at �5 < z=D < 3. Furthermore, in Fig. 16, we plot the
time-averaged streamwise vorticity < xx > D=U contours and the
time-averaged k2 contours in a (y, z)-plane at x=D ¼ 0:3, which is
in the step area just behind the small cylinder. The results of Fine-A
show obvious differences when comparing with the results of Fine-
B and Fine-C. On the other hand, the difference between results of

FIG. 14. (a) Distribution of time-averaged streamwise velocity (< u > =U) along a sampling line at (x/D, y/D) ¼ (2.02, 0) in the Coarse, Medium, Fine-A, and Very Fine
cases. (b) Same as (a) but for the time-averaged pressure coefficient (< CP > =U).

FIG. 15. (a) Distribution of time-averaged streamwise velocity (< u > =U) along a sampling line at (x/D, y/D) ¼ (2.02, 0) in the Fine-A, Fine-B, and Fine-C cases. (b) Same
as (a) but for the time-averaged pressure coefficient (< CP > =U).

FIG. 16. (a) Contours of time-averaged streamwise vorticity < xx > D=U ¼ 64 and 68 plotted in a (y, z)-plane at x/D¼ 0.3. Solid and dashed lines represent positive and
negative values. (b) Contours of time-averaged k2 ¼ �9 (Ref. 12) plotted in the same plane used in (a).
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Fine-B (the black curves) and Fine-C (the green curves) is negligi-
ble. The overlap between the green and black curves proves that the
spanwise length in Fine-B and Fine-C cases converge well in the
flow field close to the step surface.

3. Statistical convergence

The discussions in Secs. III and IV are based on both the
instantaneous and time-averaged flows, therefore a careful exami-
nation of the statistical convergence is necessary. We first simulated
case Fine-B for 350 time units (D/U) to ensure that the flow is prop-
erly developed. Then the time-averaged streamlines on the step sur-
face are calculated based on the velocity data with three different
sampling times: tU/D from 350 to 650 in Fig. 17(a), tU/D from 350
to 850 in Fig. 17(b), and tU/D from 350 to 950 in Fig. 17(c). Similar

time-averaged flow fields are shown in the upstream part of the step
surface (i.e., x=D < 0), where an attachment line, a reattachment
line, and one separation line are indicated. The detailed formation
mechanisms of these three special lines are described in Sec. III. At
their intersection points with the x�axis, the corresponding attach-
ment saddle point A2, reattachment saddle point A3, and separation
saddle point S2 are marked in Fig. 17. To describe the position of
the attachment, reattachment, and separation lines, we define the
position of their corresponding saddle points as their own position.
Based on Fig. 17 and Table III, one can easily see that the variation
tendencies of these three lines are similar. Moreover, the position of
the attachment and reattachment lines keep constant in all three
subplots in Fig. 17. Only the location of the local separation line
moves 0.02D upstream from Figs. 17(a)–17(b), then remains
unchanged from Figs. 17(b) and 17(c). Moreover, in Fig. 17(d), the

FIG. 17. (a) Time-averaged streamlines projected on the step surface based on the velocity data in the time range tU=D ¼ 350� 650. (b) Same as (a) but based on the
velocity data within tU=D ¼ 350� 850. (c) Same as (a) but based on the velocity data within tU=D ¼ 350� 950. (d) Same as (a) but based on the velocity data within
tU=D ¼ 650� 950. (e) Hydrogen bubble surface visualization on the step junction of a dual-step cylinder for ReD ¼ 2100, D/d ¼ 2 from Morton and Yarusevych.56 The
attachment saddle point A2, the reattachment saddle point A3, the separation saddle point S2, and the backside separation saddle point S3 are marked by the green dot, green
triangle, red dot, and red diamond, respectively.

TABLE III. Location of singular points for different sampling periods.

Time period (tU / D) A2 (x / D, y / D) A3 (x / D, y / D) S2 (x / D, y / D) S3 (x / D, y / D)

350–650 (−0.28, 0) (−0.46, 0) (−0.40, 0) (0.38, 0.05)
350–850 (−0.28, 0) (−0.46, 0) (−0.42, 0) (0.36, 0.03)
350–950 (−0.28, 0) (−0.46, 0) (−0.42, 0) (0.36, 0.02)
650–950 (−0.28, 0) (−0.46, 0) (−0.43, 0) (0.36, 0.02)
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time-averaged streamlines are plotted based on the velocity data
within tU/D¼ 650–950. The negligible difference between Figs. 17
(c) and 17(d) proves that no temporal feature appears after
tU/D¼ 650. Morton and Yarusevych56 used the hydrogen bubble
technique to illustrate the flow on the step surface of a dual-step
cylinder with D=d ¼ 2 at ReD ¼ 2100, as shown in Fig. 17(e).
Although the configuration and the Reynolds number are not the
same as in this paper, both the attachment line and the local separa-
tion line are similar and clear in their study and ours.

The second-order statistical convergence is also checked. In
Fig. 18, the contours of time-averaged magnitude velocity fluctua-
tions < M0

UM
0
U > =UU are plotted in a horizontal plane at

z/D¼ 0.2, based on three different time periods. Based on the
same time periods, Figs. 19(a) and 19(b) show the time-averaged
Reynolds shear stress < u0v0 > =UU at (x/D, z/D) ¼ (1, 7) and
(x/D, z/D) ¼ (2, −14), respectively. Both Figs. 18 and 19 indicate
that the differences in the 2nd order velocity fluctuations between
the time periods tU/D¼ 350–850 and tU/D¼ 350–950 are
negligible.

Considering that the step cylinder configuration used in this
study is symmetric about the x – z coordinate surface, under the
uniform incoming flow in the x�direction, the time-averaged wake
flow is also expected to be symmetric about the x�axis. However,
as highlighted by the red rectangle in Fig. 17, an unexpected asym-
metry appears on the rear part of the step surface at x=D > 0, where
a separation saddle point is marked by a red diamond. The cross-
flow distance between the red diamond and the center red dotted
line (y=D ¼ 0) can reflect the strength of the asymmetry. As shown
in Fig. 17 and Table III, the red diamond continuously moves closer
to the center red dotted line (y=D ¼ 0) as the simulation time
increases, i.e., the strength of the asymmetry in wake flow continues
to decrease with increasing simulation time length. If the simulation
time further increases, a symmetric wake flow can be expected,
where the red diamond will locate exactly on the center red dotted
line. However, we think it is too time-consuming and unnecessary
to run the simulation even longer just to obtain a completely sym-
metric time-averaged wake. Because first the asymmetry in Figs.
17(b) and 17(c) are already weak, the red diamond only deflects

FIG. 18. (a) Contours of time-averaged magnitude velocity fluctuation (< M0
UM

0
U > =UU) plots in a horizontal plane at z=D ¼ 0:2 based on the velocity data tU=D

¼ 350–650. (b) Same as (a) but based on the velocity data tU=D ¼ 350–850. (c) Same as (a) but based on the velocity data tU/D¼ 350–950.

FIG. 19. (a) Co-variance of the velocity fluctuations (< u0v0 > =UU) at (x/D, z/D) ¼ (1, 7). (b) Same as (a) but at (x/D, z/D) ¼ (2, −14).
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0:02� 0:03D away from the centerline. And more importantly, this
small asymmetry has no effect on our discussions in this study.

In general, based on the results presented in this section, we
conclude that the mesh and configuration in the Fine-B case (see
Table I) are sufficiently good for reliable DNS simulations in this
study. The statistical results obtained during both time periods
tU=D ¼ 350� 850 and tU=D ¼ 350� 950 are sufficiently con-
verged for the investigations in this study.
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