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Abstract

Maintaining intestinal homeostasis and health is important to enhance the
performance of farmed teleost fish. However, the intestinal mucosa barrier is
challenged by a number of factors, which lead to damage of the mucosal barrier. The
occurrences of cell death, including apoptosis, pyroptosis, necroptosis as well as
secondary injury by cell lysis, are closely related to gut homeostasis and pathogenesis
of intestinal mucosa barrier damage in most farmed teleost fish. However, the
mechanisms behind intestinal mucosal barrier damage are not well studied. Here we
summarized the factors causing the damage of gut mucosal barrier. Further we
discussed the intracellular and interstitial signaling pathways potentially regulating
intestinal homeostasis and cell death, including the immunologically-silent apoptotic
forms and non-apoptotic inflammatory cell death, which may improve our
understanding of the damage progression and facilitate the development of

intervention strategies.

Keywords: teleost fish, gut health, intestinal mucosal barrier, damage, gut microbiota,

cell death
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Abbreviation:

GI, gastrointestinal; IECs, intestinal epithelial cells; PCD, programmed cell death;
PAMPs, pathogen-associated molecular patterns; DAMPs, damage-associated

molecular patterns; PRRs, pattern recognition receptors.

Introduction

The global fishery and aquaculture data derived from the OECD-FAO
Agricultural Outlook 2017-2026 show that global fish production is projected to reach
194 million tonnes in 2026, and aquaculture will continue to be one of the fastest
growing food sectors (OECD/FAO, 2017). The sustainable increases in aquaculture
production require improved fish breeding and genetics, disease detection and control,

sustainable nutrition and feeds, as well as enhanced production systems (Finegold

2009; Pelletier et al. 2018).

Maintaining intestinal homeostasis is important to enhance the performance of
farmed teleost fish. The basic features of the gastrointestinal (GI) tract and its function
in teleost fish are similar as that of other vertebrates although teleost fish have many
different feeding habits, diet types, nutrient requirements and physiological conditions
(Day et al. 2014; Lokka and Koppang 2016; McCue et al. 2017; Zhao and Pack 2017).
In vertebrates, the GI tract is the largest surface of the body which is exposed to the

intestinal contents and consequently faces many challenges including bacteria,
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parasites, viruses, antigens and toxins from the luminal contents (Gomez et al. 2013;
Lokka and Koppang 2016; Rombout et al. 2011). As the key determinant of gut health,
the intestinal mucosal barrier in teleost fish is made up of mucous layer, epithelium
and lamina propria, which separates the luminal contents from the underlying tissues.
It is the most important and selective barrier that functions in maintaining cellular and

tissue homeostasis (Chen et al. 2015; Gomez et al. 2013; Marjoram et al. 2015).

Like other animals, teleost fish are sensitive to exposure to the xenobiotics which
can induce cellular stress responses and mucosal barrier damage in the GI tract
(Hamilton et al. 2017; Lokka and Koppang 2016; Ringo et al. 2010). Moreover, the
time in which teleost fish must adjust to the internal and external environment is short
because the intestinal environment is always dynamic and complex in fish, and its
homeostasis is fragile (Benjamin and Eric 2015; Pérez et al. 2010). Particularly,
seawater fish have regular challenges in that they are constantly dehydrated and need
to drink seawater that can be contaminated by numerous pathogens and damaging
agents (Dehler et al. 2017). Disruptions of the fine-tuned intestinal mucosal barrier
resulted in permeability defects through intracellular, transcellular and paracellular
routes. However, the cause of formation as well as the cellular and molecular
mechanisms involved in the regulation of intestinal tissue damage in farmed teleost
fish (zebrafish regarded as representative of economically farmed teleost fish if
mentioned) are poorly understood, and here we review current knowledge about the

factors and the associated mechanisms.
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Part 1. Factors causing the damage of intestinal mucosal barrier in farmed

teleost fish

The gut health of farmed teleost fish is challenged by a number of factors
including host, microbial and other environmental factors, which can disturb intestinal
homeostasis (Table 1). Once the host fails to resist or neutralize the negative effects of
external stimuli, the intestinal mucosa barrier loses its structural integrity
and dysfunction occurs (Marjoram et al. 2015; Ringg et al. 2007a, b; Xia et al. 2013).
The progress of intestinal mucosa barrier damage in teleost fish appears to be a
progressive convergence of diverse signaling, which derived from the regulatory

components underlying different overlapping cell layers (Fig. 1).

Imbalance of host-microbiota symbiosis

Host-microbiota interactions within the intestinal ecosystem are essential for
gastrointestinal homeostasis and pathogen defense (Bledsoe et al. 2018; Pérez et al.
2010; Ringe et al. 2016). The microbial communities, their metabolites and
components are necessary for immune responses and can regulate the susceptibility of
the host to gastrointestinal disorders (Butt and Volkoff 2019; Rooks and Garrett 2016).
In response to microbiota (Pseudomonas aeruginosa PAO1) colonization in zebrafish

gut, a systemic signal intestinal Serum amyloid A (Saa) can be induced to decrease
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inflammatory tone and bactericidal activity, and enhance damage repair by restricting
of the aberrant activation of neutrophils (Murdoch et al. 2019). Disturbance of the
balance of gut-microbiota might lead to dysbiosis, allowing translocation and invasion
of enteric bacteria, including Aeromonas hydrophila (A. hydrophila) and Vibrio
anguillarum (V. anguillarum) due to increased pathogen susceptibility of host (Gomez
et al. 2013; Liu et al. 2016; Yang et al. 2017). Tran et al. (2018) pointed out gut
microbiota alternations are associated with intestinal disease (enteritis) in grass
carp (Ctenopharyngodon idellus), due to the change of specific metabolic pathways
related to xenobiotics biodegradation and metabolism in diseased fish. Studies in
zebrafish model with human intestine inflammatory bowel disease
(IBD)-like enterocolitis have indicated that gut microbiota regulates intestinal
epithelial gene expression by suppressing a nuclear receptor transcription factor
Hepatocyte nuclear factor 4 alpha (Hnf4a) (Davison et al. 2017). Similar regulatory
mechanisms have been found in human and mice, suggesting that microbial
suppression of Hnf4a may be a conserved feature of transcriptional programs. It is
involved in the intestinal inflammatory networks and the progression of intestinal

mucosal barrier damage.

Nutritional imbalance and environmental stimulus

The gut health of teleost fish is affected by a variety of nutritional and

environmental factors, which regulate the composition of gut microbiota, the immune,
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endocrine and nervous system (Piazzon et al. 2017).Ifthe presence of influence
factors exceeds the tolerance limits, they may be harmful to intestinal homeostasis of
fish trough direct and/or indirect influences (Arias-jayo et al. 2018; Wang et al. 2019b;

Xia et al. 2018).

Nutritional imbalance with excessive or deficient dietary supplementation in fat,
energy, and sugar may cause local and systemic inflammation, resulting in disorders
of gut and metabolic health. Previous studies suggest that high supplementation of
plant-based alternative protein in fish feeds, such as dietary gossypol, soybean meal
(SBM) and broad bean, containing antinutritional factors (ANFs), can cause intestinal
barrier damage that is accompanied with apoptosis and necrosis in the intestinal
epithelial cells (IECs), and lead to intestinal oxidative stress, inflammation (enteritis)
in some farmed teleost fish species, such as Atlantic salmon (Salmo salar), juvenile
turbot (Scophthalmus maximus), rainbow trout (Oncorhynchus mykiss), yellow
catfish (Pelteobagrus filvidraco) and grass carp (Ctenopharyngodon idella) (Gajardo
et al. 2017; Green et al. 2013; Gu et al. 2018; Jiang et al. 2018; Li et al. 2018; Miao et
al. 2018; Mosberian-Tanha et al. 2016; Wang et al. 2019b). Similar consequences
were found in fish fed low or high-fat diets, which caused the damage of
intestinal physical ~structure and immune barrier function, and led to gut
microbiota dysbiosis and intestinal inflammation in fish (Arias-jayo et al. 2018; Feng
et al. 2017). Moreover, dietary deficiency of certain microelements, such as

phosphorus, magnesium and pyridoxine, which impair the intestinal integrity and
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immune function in grass carp (Ctenopharyngodon idella) (Chen et al. 2018; Wei et al.

2018; Wu et al. 2018b).

Ecotoxicological studies have revealed that widespread pollutants of the aquatic
ecosystems adversely impact the intestinal homeostasis of freshwater and marine fish
through immunotoxicologic effects on enterocyte and macrophages. Chronic exposure
to chemical contaminants, such as the dissolved metal, organophosphorous pesticides
and microplastic particles, which can be ingested and accumulated in aquatic
organisms, cause gut dysbiosis, enterocyte damages, intestinal barrier dysfunction and
inflammation (BariSi¢ et al. 2018; Lei et al. 2018; Mijo3ek et al. 2019). Begam and
Sengupta (2015) found that mercury at a sub-lethal concentration induced intestinal
inflammatory damage in the fresh water fish Channa punctatus Bloch. The intestinal
histopathological features were characterized by villi cracking, mucosal folding
lesions, epithelium fragmentation, decline in the number of goblet cells, and damage

of enterocyte and macrophage (Begam and Sengupta 2015).

Immune dysfunction

Dysregulation of inflammatory cytokines, chemokines, and immune cell
recruitment and activation in the lamina propria may trigger intestinal barrier defects,
and additional exposure to diverse stimuli, such as pathogens and DAMPs released

from died cells, may result in a amplification loop of damage signals (Maloy and
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Powrie 2011; Nunes et al. 2014). Overexpression of proinflammatory cytokines has
been detected in various intestinal cell types including immune cells and IECs in
human and mice, which is a key element in the development of intestinal
inflammatory diseases (Haines et al. 2016). Chronic proinflammatory milieu
accumulates high concentration of ROS as well as matrix metalloproteinases
(MMPs), that in turn exacerbate intestinal mucosal wounds by disruption of the
extracellular matrix and epithelial junction, and result in further invasion of
pathogens (Leoni et al. 2015). When fresh water teleost Channa punctatus were
exposed to mercuric chloride, the immunomodulation of intestinal macrophages is
compromised, leading to overexpression of pro-inflammatory cytokines
(e.g., TNF-a and IL-6 ), which may be involved in the inflammatory damage in the

intestinal epithelium (Begam and Sengupta 2015).

Host-specific genetic/epigenetic/phenotypic factors

The genetic background of teleost fish determines the susceptibility of the GI
tract, and influences the gut microbial composition, especially under the challenge of
various danger factors (Brown et al. 2019; Marancik et al. 2015). Deficiency in the
intestinal barrier-related genes, such as the class III PI3-kinase (phosphoinositide
3-kinase, PIK3C3), macrophage-stimulating protein (MSP) and its receptor RON
(Recepteur d'Origine Nantais), causes disorder of IECs polarity, results in

spontaneous intestinal inflammation with [BD-like features, and increases
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susceptibility toward epithelial damage in zebrafish (Torraca and Mostowy 2018;
Witte et al. 2014; Zhao et al. 2018; Zhao and Pack 2017). Moreover, the evolution and
modification of epigenomic factors allow host cells to regulate gene expression
without altering the genetic code, and this leads to develop potent mechanisms by
which vertebrate cells can transcriptionally respond, quickly or stably, to
environmental signals (Marjoram et al. 2015; Stilling et al. 2014). Marjoram et al.
(2015) revealed that loss of function of epigenetic regulator ubiquitin-like protein
containing PHD and RING finger domains 1 (whrfl) induced reduction of DNA
methylation and epigenetic repression at the ¢nfa promoter, resulting in intestinal
barrier loss, IECs shedding and apoptosis, chronic inflammation, and IBD-like

intestinal disease.

Enteric nervous system dysfunction

The enteric nervous system (ENS) is the largest and most complex part of the
peripheral nervous system, which modulates essential intestinal functions including its
motility, secretion and blood flow (Alonso et al. 2014; Kulkarni et al. 2018; Yoo and
Mazmanian 2017). It plays an important role in maintaining intestinal health by
sensing the dynamic ecosystem of the GI tract, and sustaining the balance of gut
microbiota composition (Ganz 2018; Rolig et al. 2017; Taylo et al. 2016). Zebrafish
has emerged as a powerful model to study gastrointestinal diseases that

associated with ENS disorders. The role of the ENS have been analyzed using
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zebrafish mutant larvae, which are especially established by genetic mutation of
certain conserved regulatory factors, such as the glial cell line-derived neurotrophic
factor (GDNF)/RET proto-oncogene, the transcription factors sex-determining-region
Y-box 10 (SOX10) and paired-like homeobox 2b (PHOX2B) (Roy-Carson et al. 2017;
Taylor et al. 2016). In zebrafish model of humans hirschsprung disease (HSCR) with
ENS dysfunction, lack of the normal development of zebrafish ENS, that resulted
from a mutation in gene soxI0, altered gut motility parameters and impaired
pathogen clearance, which led to bacterial overgrowth and dysbiosis, and then

intestinal inflammation (Rolig et al. 2017).

Part 2. Cell death modes determining gut mucosal homeostasis in farmed teleost

fish

Intestinal epithelial cells have evolved a series of well-regulated programs to
prevent penetration, pathogen translocation and tissue damage (Enyedi and
Niethammer 2015; Ramanan and Cadwell 2016). During the normal physiological
differentiation and maturation of IECs, high proliferative rates coexist with cellular
demise under tight regulation contributing to maintenance of epithelial barrier

functions (Delgado et al. 2016; Gudipaty and Rosenblatt 2017).

Under multiple abnormal physiological and pathological conditions, induction of

programmed cell death (PCD) in IECs is a defense mechanism for immune reactions
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or local homeostasis (Fig. 2). According to the distinct morphological features,
signaling pathways and immunological effects, PCD includes different forms of cell
death, such as apoptosis, necroptosis and pyroptosis, which are associated with the
intestinal mucosal barrier as reported in mammals (Flieger et al. 2018; Nunes et al.
2014; Wen et al. 2017). Disturbance of these genetically regulated processes triggers
excessive cell death in the intestinal epithelial layer, and these signals in turn interact
with a range of cell-intrinsic and cell-extrinsic regulatory modules. Defects in these
homeostatic modules may impair the vital functions of intestinal mucosal barrier, and
induce the pathophysiological damage of the intestinal epithelium (Frank and Vince
2019; Gudipaty and Rosenblatt 2017; Nunes et al. 2014; Sharma and Kanneganti

2017).

Apoptosis

Apoptosis is a highly regulated programmed cell death under the regulation of
proteolytic caspases cascade, characterized by special morphological features that
differ from other cell death forms, but seems to be similar in higher eukaryotes
(Alberts et al. 2002; Fuchs and Steller 2011; Kale et al. 2012; Marquez-Jurado et al.
2018). Defects in the signaling pathways of apoptosis directly or indirectly trigger
pathological death signals, known as secondary necrosis (Giinther and Seyfert 2018;

Oropesa-Avila et al. 2015).
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Most of the core regulatory molecules that are necessary for apoptosis are
evolutionarily conserved between teleost fish and mammals (AnvariFar et al. 2017;
dos Santos et al. 2008; Giri et al. 2018; Li et al. 2011; Sakamaki et al. 2007). The
signaling pathway of apoptotic IECs in fish can be categorized into
caspase-8-mediated death receptor pathway, caspase-9-mediated mitochondria
pathway, and ER stress-related pathway. The regulation of apoptosis in fish intestine
is related to gene expression of pro-apoptotic proteins (Apaf-1, Bax and FasL) and
anti-apoptotic proteins (Bcl-2, IAP and Mcl-1b), and the activation of caspases (-2, -3,
-7, -8 and -9), which may be linked with the c-terminal Jun Kinase (JNK) signaling

pathway (Ronza et al. 2011; Wei et al. 2018).

Necroptosis

In case of the failure of the apoptotic caspase activation, there is an alternative
programmed cell death called necroptosis (Galluzzi et al. 2018; Negroni et al. 2017).
Necroptosis plays an important role in control of tissue damage, inflammation and
epithelial homeostasis in response to a variety of physiological and pathological
conditions (Dannappel et al. 2014; Moerke et al. 2019; Negroni et al. 2017; Pasparakis

and Vandenabeele 2015).

Necroptosis is linked to the pathogenesis of fish diseases due to the release of

residual bacteria into permissive extracellular milieu. In zebrafish tuberculosis models,
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high tumour-necrosis factor (TNF) promoted early macrophage resistance to
mycobacteria  infection through mitochondrial ROS, and subsequently
infected-macrophage undergone necroptosis and lysis that contributed to extracellular
bacterial proliferation (Roca et al. 2013). Insight into the regulatory mechanisms of
necroptosis is helpful to develop some potential therapeutic interventions against
inflammatory diseases. Roca et al. (2013) reported that preventing necroptosis using
drug inhibition or combined genetic blockade of the key regulators conferred
resistance to pathogen infection. The necroptosis in fish cells is essentially dependent
on the activation of kinase domain of receptor interacting protein (RIP), and the
RIP1-RIP3-mediated pathway is highly conserved from human to teleost fish. One of
putative teleost RIP3 homologues has been cloned from liver of the half-smooth
tongue sole Cynoglossus semilaevis, designated CsRIP3. Ectopic CsRIP3
overexpression enhances the sensitivity of human HeLa cells to TNFa-induced
necroptosis through intracellular CsRIP3-MLKL interaction, suggesting that the
function of RIP3 is conserved in human and fish. In response to the pathogen Vibrio
and viral mimic poly (i:c) challenges, the expression of CsRIP3 is upregulated in
various tissues of Cynoglossus semilaevis, including liver, heart, head kidney, spleen

and gill, but it is unclear in intestine (Ge et al. 2018).

Pyroptosis

Pyroptosis is a necrotic form of regulated cell death and differs from necroptosis
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because of the requirement of inflammatory caspases (Amarante-Mendes et al. 2018;
Frank and Vince 2019; Weinlich et al. 2017). During the pyroptosis process, both
canonical and noncanonical inflammasome activation promote the maturation of
proinflammatory cytokines IL-1p and IL-18, which in turn shows an inhibitory effect
on autophagy, and triggers the lytic form of inflammatory cell death, including
pyroptosis and necroptosis (Rathinam et al. 2016; Gutierrez et al. 2017). Pyroptosis
exerts pleiotropic effects in intestinal homeostasis or damage control (Blazejewski et
al. 2017; Bortolotti et al. 2018), playing importantroles in defense against
intracellular pathogens, removal of compromised IECs, and regulation of mucosal
immune responses (Lei-Leston et al. 2017; Pellegrini et al. 2017; Sellin et al. 2015;
Strowig et al. 2012; Zmora et al. 2017). Aberrance of pyroptosis in vivo may
contribute to the pathogenesis of autoinflammatory diseases (Seveau et al. 2018;

Strowig et al. 2012).

Activation of inflammasome in zebrafish IECs has been involved in the
pathologies of intestinal inflammation and functional dysregulation induced by
high-cholesterol (HCDs) diets, which leads to Caspase-1 (DrCaspase-A) activition
(Progatzky et al. 2014). Differently, activation of the caspy2-noncanonical
inflammasome in zebrafish intestine has been indicated to strengthen the defense
against enteric pathogens infection. Knockdown of caspy2 in zebrafish larvae results
in prominent pathological signs of gut inflammation, due to the loss of immune

defenses against bacterial infection (Yang et al. 2018). Certain aspects of the caspy2
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non-canonical inflammasome pathway in zebrafish are complementary to the model

of mammalian enteritis.

The progression to pyroptotic or secondary necrotic cell death in mammal cells
can be mediated by an deafness autosomal dominant nonsyndromic sensorineural 5
(DFNAS5) gene in a caspase-3-dependent manner, that resembles GSMD-mediated
pyroptotic pathways (Rogers et al. 2017). DFNAS5 is one of the most ancient
gasdermin members that has been found in diverse species from teleost fish to
humans (de Beeck et al. 2012; Tamura et al. 2007). In zebrafish, DFNAS5 is also
defined as GSDME. Sequence alignment has shown that the gasdermin-N domain of
zebrafish GSDME is similar with human and mice. There are two forms of zebrafish
GSDME, named GSDMEI1 and GSDME2 (referred to here as DFNAS5a and DFNA5b),
with each of them sharing about 50% sequence similarity with human GSDME.
Zebrafish GSDMEI1 can be specifically cleaved and activated by caspase-3, which
switches chemotherapy drugs- or TNF-induced apoptosis to pyroptosis. However, no

caspase-3 cleavage motif has been observed in zebrafish GSDME2 or lancelet

GSDME (Wang et al. 2017).

Secondary injury by cell lysis

Endogenous stress signals, known as damage-associated molecular patterns

(DAMPs) and bioactive inflammatory mediators that released from necrotic cells,
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alone or in combination with PAMPs, may initiate a series of inflammatory responses
in intestine (Nanini et al. 2017; Sharma and Kanneganti 2017). The effects of
endogenous signal molecules are diverse in gut pathology. Certain inflammatory
mediators play an important role in reparative process of intestinal mucosal barrier by
promoting pathogen expulsion and maintain cellular homeostasis. However, extensive
inflammatory responses may aggravate the damage of intestinal mucosal barrier

through this feedback loop (Huang et al. 2018).

Progression to secondary necrosis is considered as a consequence of improper
clearance of apoptotic cells, resulting from either genetic anomalies and/or a
persistent disease state (Sachet et al. 2017; Szondy et al. 2014). In experimental and
natural pasteurellosis  induced by the Gram  negative Photobacterium
damselae ssp. piscicida (Phdp) infection insea bass, fish enterocytes undergone
caspase 3-mediated apoptosis (anoikis) and detached from intestine mucosa, which
were terminated by secondary necrosis and lysis due to lack of elimination by
phagocytosis (do Vale et al. 2007a). This is because macrophages and neutrophils in
the spleen, head kidney and gut lamina propria were impaired by the
extensive secondary necrosis, especially as it was accompanied by the release of a
highly tissue-damaging enzyme neutrophil elastase (do Vale et al. 2007b; Silva et al.
2013). The released cytotoxic molecules by secondary necrosis have been implicated
in the pathogenesis of the necrotic tissue lesions observed in the diseased fish (do Vale

Acetal. 2016).
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Part 3. Assessment of intestinal mucosal damages in teleost fish models

The histopathology and signaling molecules of intestinal inflammation and tissue
injury in teleost fish have been studied in experimental enteritis models established by
chemical or biological means. The structural and functional damage of the intestinal
mucosa barrier is usually assessed from histopathological, hematological, biochemical
and bacteriological perspectives. Previous studies have established a series of

assessment indexes for description of the pathology of intestinal injury.

The morphological changes of the GItract and its cells can be analyzed by
means of special staining techniques combined with light microscopy or electron
microscopy. Previous studies have summarized the histopathological features of fish
intestine, mainly including loss of epithelial integrity, edema, inflammatory cell
infiltration, disintegration of tight junctions, presence of cell debris in the lumen,
basal hydropic degeneration of enterocytes, disorganization of microvilli, extrusion of
epithelial cells, hydropic mitochondrial damage, and/or presence of bacteria-like
particles (Del-Pozo et al. 2010; Kong et al. 2017; Ringe et al. 2010). The
histopathological features of the GI tract of fish may vary depending on
different causative agents, fish species, intestinal segments and cell types (Salinas et

al. 2008; Ringg et al. 2007b).
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Usually, the intestinal structural integrity of farmed teleost fish is evaluated by
tight junctional complexes and intestinal mucosal barrier permeability, which can be
assessed by serum bacterial endotoxin or DNA, d-Lactate and cytotoxins (Grant 2015;
Gu et al. 2018; Huang et al. 2015; Kong et al. 2017; Mosberian-Tanha et al. 2016).
Other serum parameters, such as malondialdehyde (MDA), superoxide dismutase
(SOD), alanine aminotransferase = (ALT), diamine oxidase (DAO),
glutathione-peroxidase (GSH-Px), catalase (CAT) and antioxidant capacity (TAC)
activities, which have been speculated to be a secondary reaction to the intestinal
damage, indirectly indicate the pathological state of oxidative damage as well as

the severity of local tissue damage (Jiang et al. 2018).

Intestinal epithelial cells undergoing different forms of cell death show distinct
morphological features, which facilitate specific methods for identifying cell
characteristics. Annexin V-FITC and PI staining is an assessment method for cell
membrane integrity, and has been widely used to distinguish apoptosis from necrosis
(Goldsmith et al. 2013, 2016; Klsditz and Fadeel 2019). Apoptotic cells in the latest
stages are characterized by condensation of the cytoplasm and nucleus, and
internucleosomal cleavage of DNA, which can be tested by TUNEL assay and DNA
fragmented analysis. The positive cells or tissues with fluorescent labeling are
analyzed by fluorescence microscopy or flow cytometry (Goldsmith et al. 2016; Gu

et al. 2018). The ultra microstructure of damaged cells can be observed through
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electron microscope imaging, showing different morphological features of the cells

(Del-Pozo et al. 2015; Huang et al. 2015).

In the past decades, zebrafish has been widely used as model organism
for studying intestinal damage and inflammation similar to gastrointestinal diseases in
human and farmed teleost fish (Butt and Volkoff 2019; Lickwar et al. 2017; Oehlers et
al. 2013; Torracaand Mostowy 2018). The zebrafish model allows functional
genomic analysis based on targeted genome-editing tools, such as mutagenesis with
zinc-finger nuclease (ZFNs), transcription activator-like effector nucleases (TALENS),
CRISPR/Cas9, siRNA and morpholino oligonucleotide-based knockdown assays
(Kawahara et al. 2016; Murdoch et al. 2019; Varshney et al. 2016). Furthermore, the
fish intestinal cell lines, such as fathead minnow (FHM, minnow epithelial cells)
and channel catfish enteric epithelial cells (Skirpstunas and Baldwin 2002) and
the rainbow trout (Oncorhynchus mykiss) cell line (RTgutGC) (Langan et al. 2017;
Minghetti et al. 2017; Pumputis et al. 2018; Wang et al. 2019a), possess the
functional features of intestinal epithelial cells, can be used as an efficient in
vitro model to reveal the molecular mechanisms of intestinal mucosal barrier

damage.

Part 4. Conclusions and future perspectives

To maintain the gut health in farmed teleost fish, the potential risks of
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exposure to exogenous stimuli must be properly assessed. Furthermore, appropriate
preventive and protective practices are required to maintain the intestinal homeostasis
of farmed fish that are often confronted with adverse stimuli in the intensive

aquaculture.

Previous studies have suggested that dietary supplementation with probiotics
(Gisbert et al. 2013; Hao et al. 2017; Standen et al. 2015), prebiotics (Carbone and
Faggio 2016; Ringe et al. 2010) or postbiotics (Abid et al. 2013; Ringo et al. 2016)
are favorable to the intestinal health and homeostasis in various fish species
(Hoseinifar et al. 2018; Kuebutornye et al. 2019; Standen et al. 2016). Dietary
probiotics administration regulates intestinal homeostasis by reducing the
morphological and functional damage of the host’s intestinal mucosal barrier and
inflammation (Kong et al. 2017). Optimal dietary supplementation with postbiotic
feed additives, such as sodium butyrate, improves the growth performance, disease
resistance, intestinal immune and physical barrier function in fish by inhibiting
oxidative damage and apoptosis of intestinal cells (Tian et al. 2017; Wu et al. 2018a).
These studies indicate that supplementation of selected probiotics, prebiotics, and/or

postbiotics can improve intestinal health of aquatic animals.

Further, integrative analysis of multiple complex regulatory networks associated
with intestinal mucosal damage, including protein-protein interaction networks,
transcriptional regulation networks, signal transduction networks, biochemical or

metabolic networks, will promote the illumination of the signaling pathways. Deeper
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understanding of these signaling pathways may allow the design of effective
strategies in favor of early diagnosis and optimized therapeutic intervention against

structural and functional disorders of the intestinal mucosa barrier in farmed teleost

fish.
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Figure 1. Diagram of the pathogenesis of intestinal mucosal barrier damage

The development of intestinal mucosa barrier damage is associated with disorder
of diverse signals. Intestinal epithelial cells recognize potential risk factors, known as
extrinsic PAMPs or endogenous DAMPs, through specific pattern recognition
receptors (PRRs), that induce programmed cell death (PCD) in IECs. Disorder of the
cell death progress leads to excessive cell death which disrupts the intestinal integrity.
Defects of intestinal permeability potentially allow bacterial translocation through
intracellular, transcellular or paracellular routes, and dysbiosis or infection of gut
microbiota which may trigger sustained immune responses and complex cytokines
release. The progressive convergence of diverse signal modules with defective
regulation promotes the course of intestinal mucosal barrier damage. PAMPs,
pathogen-associated molecular patterns; DAMP, damage-associated molecular

patterns.

Figure 2. Model of cellular damage in intestinal epithelium

Cell death is closely related to the pathogenesis of intestinal mucosa barrier
damage in teleost fish. Disturbance of the genetically regulated processes triggers
excessive cell death in the intestinal epithelium. Signals from apoptosis, pyroptosis,
necroptosis, as well as secondary injury by cell lysis in turn interact with a range of

cell-intrinsic and cell-extrinsic regulatory modules.
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