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Abstract

Ordinary differential equations (ODEs) are at the core of a number
of subjects, including dynamics, finance, and predicting the weather.
The familiar Runge-Kutta methods are one of the most common ways
of obtaining numerical solutions to ODEs. However, the numerical
solutions provided by these methods may exhibit qualities that do not
align with what one would expect through analysis of the system of
equations. One example is when the exact solution is known to belong
to some submanifoldℳ of the ambient space in which the problem is
represented.

The goal of this thesis is to present PyLie, a Python framework for a
class of numerical integrators known as the Runge-Kutta Munthe-Kaas
methods. Based upon Lie groups and their associated Lie algebras,
these methods guarantee the conservation of invariants that may not
be satisfied by the standard Runge-Kutta methods. The basic theory
of such integrators is introduced, followed by the approach chosen for
implementing them in Python.

The framework is applied to three different problems from dynamics
and compared to the standard Runge-Kutta method as implemented in
the standard Python package SciPy. It is seen that PyLie performs as
expected with respect to the order of the methods and the conservation
of the equation’s invariants, outperforming SciPy.

The thesis concludes with suggestions for further improvements that
may be made to the software.
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Samandrag

Ordinære differensiallikningar (ODE-ar) er sentralt i fleire fagfelt;
til dels mekanikk, finans, og det å lage vêrmeldingar. Dei velkjende
Runge-Kutta metodane er ein av dei vanlegaste måtane å finne numeriske
løysingar til ODE-ar på. Det kan likevel hende at desse løysingane
har eigenskapar som ikkje svarar til det ein forventar ved å analysere
likningane. Eit døme er når det er kjend at den analytiske løysinga høyrer
til eit undermangfaldℳ av det omkringliggjande rommet problemet er
representert i.

Målet i denne avhandlinga er å introdusere PyLie, eit Python-
rammeverk for å løyse ODE-ar ved bruk av ein type numeriske integra-
torar, kjend som Runge-Kutta Munthe-Kaas-metodane. Desse metodane
er basert på Lie-grupper og deira tilhøyrande Lie-algebraar, og garanterer
å konservere invariantar som ikkje nødvendigvis blir tilfredsstilt av dei
vanlege Runge-Kutta-metodane. I avhandlinga blir den grunnleggjande
teorien for metodane introdusert, etterfølgd av ei skildring av korleis dei
vart implementert i Python.

PyLie brukast til å løyse tre ulike problem frå mekanikk, og saman-
liknast med implementeringa av ein Runge-Kutta-metode i det standard
Python-biblioteket SciPy. Ein ser at PyLie gjer det som forventa når det
gjeld orden for metodane, og å konservere på invariantar. Sistnemnde er
i motsetnad til SciPy.

Avhandlinga konkluderer med forslag til framtidige forbetringar av
programvara.
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Table of Notation

The following notation is used in the thesis, tabulated here for convenience.

Notation Meaning

ℳ A manifold.
X(ℳ) The set of all vector fields over the manifoldℳ.
)<ℳ The tangent space ofℳ at the element <.
)ℳ The tangent bundle ofℳ.
� A Lie group.
g The Lie algebra associated to the Lie group �.
Λ(6, <) The action of the Lie group element 6 on the manifold element <.
exp The exponential map from a Lie algebra g to its associated Lie group �.
�(G, <) The algebra action given by Λ(exp(G), <).
¤H(C) The derivative of H with respect to time C.
H= An approximation to the function H : R→ R= evaluated at time C= .
(= The hypersphere of radius 1 embedded in R=+1.
6(=) = O( 5 (=)) Asymptotic notation, i.e.

|6(=)| ≤ 0 5 (=) for some 0 > 0 for all = > =0 for some =0.
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Introduction

Thegoal of thismaster’s thesis is two-fold: Thefirst is to serve as an introduction
to numerically solving ordinary differential equations on non-linear manifolds
with the use of Runge-Kutta Munthe-Kaas methods. The second is to describe
the process of implementing these methods in a software package intended
for anyone interested in the subject matter and to demonstrate its use on a
number of examples.

Chapter 1 describes the issue of differential equations on manifolds,
introduces the notation used, andmotivates the need for specialized geometric
integrators.

Chapter 2 introduces Runge-Kutta Munthe-Kaas integrators as a way to
adapt existing Runge-Kutta methods to non-linear manifolds using Lie groups
and Lie algebras.

Chapter 3 discusses the implementation of these methods in Python using
an object-oriented approach. The source code is freely available, and it is
described how to extend it to solve problems that may not yet be supported by
the software.

Chapter 4 demonstrates the use of the software on three problems of
increasing complexity and compares the results to a standard integrator from
the Python library SciPy.

Finally, Chapter 5 concludes the thesis with a summary of the work done
so far and suggestions for further improvements that still remain as future
work.

xi





Chapter 1

Ordinary Differential Equations
on Manifolds

This chapter mostly contains basic theory on ordinary differential equations
(ODEs) and the use of Runge-Kutta methods to solve them. We expect that
much of the material will be familiar to the reader, but include it here to
define the notation used and to motivate the need for geometrical numerical
integrators.

This chapter presents some algorithms in the form of pseudocode. The first
line presents the name of the algorithm typeset in a Small caps font, followed
by a list of the input arguments. The following numbered lines describe the
behaviour of the algorithm. Algorithms will be referred to by their name.

1.1 Numerical solutions of ODEs in general
A general ordinary differential equation is a system of equations given by

¤H(C) = 5 (C , H(C)),
C ∈ [0, )],
H(0) = H0

(1.1)

for some H : R → R= , 5 : R × R= → R= , ) > 0, = ≥ 1. We use the notational
convention

¤H(C) B dH
dC (C),

which in the case where H ∈ R= for = > 1 is equivalent to

¤H(C) = dH
dC (C) =

[
dH1

dC (C),
dH2

dC (C), . . .
dH=
dC (C)

])
.

In the general case of (1.1), several approaches exist for calculating approximate
numerical solutions. In the following, H= denotes the numerical approximation

1



1. Ordinary Differential Equations on Manifolds

to the exact solution at time C= , i.e. H= ≈ H(C=). A large number of methods take
the approach of assuming H(C=) is known for some C= ∈ [0, )], and calculating
the “direction” of the solution H at time C = C= by some approximation
technique. The numerical approximation to the solution is obtained by
advancing the value of H(C=) by a step length ℎ in this direction. When the
problem is an initial value problem, as in (1.1), the value of the solution will
always be known at C = 0. This naturally extends to iterative numerical solvers:
Starting from C0 = 0, obtain the approximate solution H1 at C1 = ℎ > 0 using
the procedure above. Then repeat to find H2 ≈ H(2ℎ), H3 ≈ H(3ℎ), . . . until
reaching H# ≈ H()). We refer to each iteration as taking a step, and the scalar
parameter ℎ > 0 is referred to as the step length. A numerical method of this
kind is thus completely defined by describing the computations involved in
taking a step of length ℎ.1 All algorithms presented in this thesis will adhere
to this convention and only present the computation involved in a single step,
eliminating the need for boilerplate code in the pseudocode.

The simplest method using the general framework presented above is the
Explicit Euler method, in which a single step takes the following form:

ExplicitEuler( 5 , C= , H= , ℎ)
1 :1 = 5 (C= , H=)
2 return H= + ℎ:1

The seemingly arbitrary choice of assigning the value of 5 (C= , H=) to the variable
:1 will become clear as we move on to similar methods of greater complexity.
Each step of the explicit Euler method considers the direction of the solution
trajectory at the given point H= , and moves the solution in a step of length ℎ in
this direction as illustrated in Figure 1.1. The term explicit in the name of the
method refers to the fact that we are only using information about the solution
that is available at the current time. This is in contrast to implicit methods,
which involve solving an (in general non-linear) equation at each time-step
[17]. For instance, the implicit Euler’s method is given by

ImplicitEuler( 5 , C= , H= , ℎ)
1 solve :1 = 5 (C=+1 , H=+1)with respect to :1
2 return H= + ℎ:1

In line one, the unknown value of H=+1 must be found by solving an equation
at each step. As the work in this thesis will only concern explicit methods,
we will sometimes use simply Euler’s method to refer to the explicit Euler’s
method.

A slightly more involved explicit algorithm is Heun’s method, also known
as the explicit trapezoidal rule:

1This does not include the choice of ℎ, which in some methods is also adaptively updated
in each step by the numerical method in order to balance the numerical error with the
computational cost.

2



1.2. Numerical convergence

H0

H1 H2
H3

H4

H5

Figure 1.1: Illustration of the explicit Euler method in a vector field
in R2. The red line is the numerical solution, where each straight
segment (H= , H=+1) is of length ‖H=+1 − H= ‖ = ℎ.

Heuns( 5 , C= , H= , ℎ)
1 :1 = 5 (C= , H=)
2 :2 = 5 (C= + ℎ, H= + ℎ:1)
3 return H= + ℎ

2 (:1 + :2)
Here, as in Euler’s method, we begin by considering the trajectory of the
solution at the current point. One additional step is then performed by using
this value to produce an estimate of 5 (C=+1 , H=+1). Intuitively, this may be seen
as averaging the trajectory at two points to produce what is hopefully a better
estimate of H=+1.

1.2 Numerical convergence
One desirable property of the numerical approximations is that they are, in
some sense, close to the exact solution of the ODE in question. Given an
iterative method, define Hℎ# as the numerical solution of (1.1) at time C# , taking
however many steps # necessary to reach C# with step length ℎ. The global

3



1. Ordinary Differential Equations on Manifolds

error of a method is defined as

4#,ℎ = Hℎ# − H(C# ),
where H(C# ) is the exact solution at time C# . For ease of notation we will often
drop the subindex # , and simply write 4ℎ . A method is said to be convergent
if

lim
ℎ→0
‖4ℎ ‖ = 0,

see [37]. It may be shown that all methods considered in this thesis has a
global error which for smooth problems can be written as

4ℎ = 4?ℎ? + 4?+1ℎ?+1 + . . . = O(ℎ?) (1.2)

where ? ≥ 1 is an integer and 4? , 4?+1 are real coefficients. The number ? is
called the order of the method, and is the primary quantity of interest when
comparing iterative numerical methods.

1.3 Runge-Kutta Methods
The ideas behind ExplicitEuler and Heuns can be generalized to produce
estimates of arbitrary accuracy, collectively known as the Runge-Kutta methods
[35]. The algorithm for a method consisting of B stages is as follows:

GeneralRungeKutta( 5 , C= , H= , ℎ)
1 for 8 = 1 to B
2 solve :8 = ℎ 5

(
C= + 28ℎ, H= +∑B

9=1 08 9: 9
)
with respect to :8

3 return H= +∑B
8=1 18:8

The constants 18 , 28 and 08 9 are all parameters of the particular method in
question. Note that if 08 9 = 0 for all 9 ≥ 8 the method is explicit. The algorithm
may then be simplified to

ExplicitRungeKutta( 5 , C= , H= , ℎ)
1 for 8 = 1 to B
2 :8 = ℎ 5

(
C= + 28ℎ, H= +∑8−1

9=1 08 9: 9
)

3 return H= +∑B
8=1 18:8

4



1.4. Manifolds

The parameters of ExplicitRungeKutta may be efficiently presented in a
Butcher tableau:

21

22 021
...

...
. . .

2B 0B1 0B2 · · · 0BB
11 12 · · · 1B

,

or even more compactly,
2 �

1)
.

The condition for the method defined by a given tableau being explicit is now
that the matrix � is strictly lower-triangular.

The tableaus for Euler’s and Heun’s method are, respectively

0
1

and
0
1 1

1/2 1/2
.

One of the most widespread Runge-Kutta methods, known simply as Runge-
Kutta-4 (RK4), is given by

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

.

As the name suggests, this is a method of order 4 [16].

1.4 Manifolds

So far, we have assumed that for an ODE ¤H = 5 (C , H)where H ∈ R= , all points
D ∈ R= are permissible values for a solution. This is not always the case. If, for
instance, H(C) is the position of a mass connected to the origin by a rigid rod
of length ℓ (i.e. a pendulum), we would expect that ‖H(C)‖2 = ℓ for all times
C. Another example might be a physical system where H(C) ∈ R= encodes
the position and momentum of # particles—in this case, the conservation of
energy constrains the possible values of H to a subset of R= .

For a practical example of the above issues, we present the equations for
the mathematical pendulum in a Hamiltonian framework with momentum

5



1. Ordinary Differential Equations on Manifolds

ℓ

H0

(a)

> ℓ

H1

(b)

Figure 1.2: Illustration of a situation where explicit Euler fails. In (a)
we see the initial state for a pendulum with a rod of length ℓ under the
influence of gravity. The resulting force is orthogonal to the circle of
radius ℓ . In (b) we have taken a single step with explicit Euler, which
yields a numerical approximation with a rod with length greater than
ℓ .

?(C) and position @(C). The equations of motion are given by

¤? = − sin @, ¤@ = ?. (1.3)

The energy of the system, given by

�(?, @) = 1
2?

2 − cos @ (1.4)

is seen to be constant, as

d�
dC =

%�
%?

d?
dC +

%�
%@

d@
dC = ?

¤? + sin (@) ¤@ = ¤@ · ¤? − ¤? · ¤@ = 0.

In other words, the curve H(C) = (
?(C), @(C)) coincides with the level curves of

�.
However, the numerical integrators described in the previous section

provide no guarantee that these constraints are respected. Indeed, Figure 1.3
shows the result of solving (1.3) with ExplicitEuler. The obtained solution
immediately diverges, leading to an unsatisfactory result of little practical or
theoretical use. A simple illustration of the issue in this particular example is
given by Figure 1.2.

To formalize the issue, we denote byℳ ⊂ R= , 3 ≤ =, a 3-dimensional
differential manifold—that is, a 3-dimensional topological space equipped
with continuous local coordinate charts )8 : *8 ⊂ ℳ → R3 such that all

6



1.4. Manifolds

−10 −8 −6 −4 −2 0 2
@

−2

−1

0

1

2

?

Figure 1.3: Numerical solution (black dots) of the mathematical
pendulum (1.3), obtained with Euler’s method H=+1 = H= + ℎ 5 (C= , H=).
The initial condition was set to ?0 = 0, @0 = 0.4, the step length to
ℎ = 0.15, and the method took 260 steps. The solid lines are the level
curves of (1.4), which coincide with the analytical solution for various
initial values of the problem. The numerical solution clearly diverges.

overlapping charts )8 9 : R3 → R3 defined by ) 9 ◦ )−1
8 restricted to )8(*8 ∩* 9)

are diffeomorphisms [1]. For our purposes, however, it is sufficient to think of
manifolds as topological spaces where for all < ∈ ℳ there is a neighbourhood
* containing < which “looks like” Euclidean space.

One keyword in the above definition is differentiable. This means that for
all < ∈ ", there is a vector space )<ℳ called the tangent space ofℳ at < [25].
One useful way to define this is through curves: Let �(C) be a smooth curve in
ℳ such that �(0) = <. We may then take the time-derivative of � at C = 0 to
obtain a velocity vector E< , i.e. E< = ¤�(0); see Figure 1.4. The tangent space
of a manifoldℳ at the point < is a vector space given by the velocities of all
such curves at the point <. The following definition is taken from [15]:

)<ℳ B
E ∈ R

=

�������
there exists a continuously differen-
tiable � : (−�, �) → R= such that �(C) ∈
ℳ for C ∈ (−�, �) and �(0) = < and
¤�(0) = E

 .
The tangent bundle ofℳ is given by the (disjoint) union of the tangent spaces
of each point of the manifold:

)ℳ =
⋃
<∈ℳ

)<ℳ .

In general the tangent bundle )ℳ is not a linear space.
A more detailed description of manifolds may be found in e.g. [6, 25, 38].

7



1. Ordinary Differential Equations on Manifolds

(2

�(C)

<

E

Figure 1.4: A curve �(C) ∈ (2 with �(0) = < generating a vector
¤�(0) = E ∈ )<(2.

Examples of differentiable manifolds include the =-sphere (= for = ≥ 2,
the real line R, and Euclidean space R3 itself.

We may now define a differential equation on a manifoldℳ ⊂ R= using
the tangent bundle )ℳ. A vector field onℳ is a map 5 : R×ℳ (alternatively,
5 : ℳ → R=) such that

5 (C , H) ∈ )Hℳ for all H ∈ ℳ .

A vector field onℳ is called a section of )ℳ, and we write 5 ∈ X(ℳ) [34].
Given such a vector field,

¤H(C) = 5 (C , H) (1.5)

is a differential equation onℳ. A function H : R→ℳ that satisfies (1.5) is
called an integral curve or simply the solution to the equation [14].

We have already seen that applying any numerical method and simply
hoping for the good fortune of a solution inℳ will not do. The goal is thus
to leverage the knowledge ofℳ and 5 (C , H) to produce a numerical method
approximation to (1.5) that is guaranteed to satisfy H ∈ ℳ. This is the topic of
the next chapter.

8



Chapter 2

Geometric numerical
integration

The goal of geometric numerical integration is to preserve the geometric
properties of the problem. As an example, consider an ordinary differential
equation on the form

¤H(C) = �(C , H) · H, H(0) = H0 (2.1)

where H ∈ R= and � : R × R= → R=×= maps (C , H) to a skew-symmetric matrix.
One property of the solution to this equation is that ‖H(C)‖2 = ‖H0‖2 for all C.1

At C = 0 we may approximate (2.1) by “freezing” the vector field:

¤H(C) = �(0, H0)H.
The exact solution is

H(C) = exp
(
C�(0, H0)

)
H0 (2.2)

where exp
(
C�(0, H0)

)
is the matrix exponential, defined as

exp� =
∞∑
:=0

�:

:! = � + � +
1
2!�

2 + . . . . (2.3)

The matrix exponential is sometimes also denoted by 4�.
Equation (2.2) defines the simplest iterative Lie group integrator, known

as the Lie-Euler method:
LieEuler( 5 , C= , H= , ℎ)
1 return exp(ℎ 5 (C= , H=)) · H=
It can be shown that when � is a skew-symmetric matrix, exp� will be
orthogonal [19]. Thus, LieEuler ensures that ‖H=+1‖2 = ‖H= ‖2.

For now, we are restricted to equations of the type (2.1). The goal of this
chapter is to generalize the expression to differential equations described by
elements of a Lie group acting on the configuration manifold of H.

1Note that d
dC

1
2 ‖H(C)‖22 = H)�H = −H)�H, implying d

dC
1
2 ‖H(C)‖2 = 0 and ‖H(C)‖ = constant.

9



2. Geometric numerical integration

2.1 Lie groups and Lie algebras
A Lie group (�, ·) is a differential manifold that also has the structure of a group
where the maps (?, @) ↦→ ? · @ and ? ↦→ ?−1 are smooth for all ?, @ ∈ (�, ·)
[22]. We denote the identity element of a Lie group by 4. A large class of Lie
groups is the matrix Lie groups, where the group product is the usual matrix
multiplication. Some examples include:

GL(=) The general linear group of all invertible = × = matrices.

SL(=) The special linear group of all invertible =×=matriceswith determinant
one.

SO(=) The special orthogonal group of all orthogonal = × = matrices with
determinant one.

In this thesis, we simplify the notation and use � to refer to a general Lie
group.

A Lie algebra g is a vector space eqiupped with a bilinear skew-symmetric
map [ · , · ] : g × g→ g that satisfies the Jacobi identity:

[G, [H, I]] + [H, [I, G]] + [I, [G, H]] = 0 for all G, H, I ∈ g.
This map is called the Lie bracket [10]. For convience, we define adG : g→ g to
be the linear map adG(H) = [G, H] which allows for repeated applications of
the Lie bracket:

ad0
G(H) = H,

ad=G (H) = adG(ad=−1
G (H)) = [G, [G, G, [. . . [G︸             ︷︷             ︸

= times

, H]]]], = ≥ 1.

Each Lie group has an associated Lie algebra defined as the tangent space
of the group at the identity element; that is, the Lie algebra g associated with
the Lie group � is defined by g = )4�. The Lie bracket is then given by

[G, H] = %2

%C%B

����
C=B=0

6(C)ℎ(B)6−1(C)

where 6(C) and ℎ(B) are curves in � such that 6(0) = ℎ(0) = 4, 6′(0) = G,
ℎ′(0) = H. If � is a matrix Lie group, the Lie bracket is the matrix commutator

[G, H] = G · H − H · G.
The (left) Lie group action of a Lie group � on a manifoldℳ is a smooth

map Λ : � ×ℳ →ℳ which satisfies

Λ(4 , <) = < for all < ∈ ℳ, and
Λ(6 · ℎ, <) = Λ(6,Λ(ℎ, <)) for all 6, ℎ ∈ � and < ∈ ℳ .

10



2.1. Lie groups and Lie algebras

Given a element < ∈ ℳ the orbit of <, O(<) ⊆ ℳ is given by

O(<) = {
Λ(6, <) : 6 ∈ � }

,

see for instance [32]. If O(<) =ℳ, the group action is said to be transitive. In
particular, this means that for any pairs <1 , <2 ∈ ℳ there is a 6 ∈ � such that
Λ(6, <1) = <2. A manifoldℳ equipped with a transitive Lie group action is
said to be homogenous [42].

Note that any � ∈ g specifies a tangent �< ∈ )<ℳ by

�< B �∗ |< (�) =
d
dC

����
C=0
Λ(exp(C�), <), (2.4)

where exp: g→ � is defined as exp(�) = �(1), where � is in turn the solution
to the ODE

¤�(C) = ��(C), �(0) = 4.
In the case of � being amatrix Lie group, exp is the matrix exponential defined
in (2.3). The operator �∗ in (2.4) is called the infinitesimal generator of the action.

Define the algebra action � : g ×ℳ →ℳ by

�(�, <) = Λ(exp(�), <).

If the algebra action is transitive, any ODE onℳ may be written as

¤H(C) = �∗ |H ( 5 (C , H)), H(0) = H0 (2.5)

for some 5 : R ×ℳ → g; moreover, finding a (locally) transitive algebra action
will always be possible [28]. For sufficiently small C, the solution to (2.5) is
given by

H(C) = �(D(C), H0) (2.6)

where D(C) ∈ g satisfies

¤D(C) = dexp−1
D

(
5 (C ,�(D, H0))

)
, D(0) = 0. (2.7)

Here, dexp−1
D is the map

dexp−1
D =

I
4I − 1

���
I=adD

=
∞∑
==0

�=
=! ad=D (2.8)

where �= is the =th Bernoulli number.
The idea behind the Lie group integrators is now as follows, assuming H=

is available:

1. Formulate the ODE in the form of (2.5).

11



2. Geometric numerical integration

2. Use a standard RK method to find a numerical solution D=+1 to (2.7).
The value of dexp−1

D may either be calculated using an exact formula,
or, if this is not available, calculated using a truncated series with ? − 1
terms for a RK method of order ? [10]. If ? ≤ 2, this means dexp−1

D may
be replaced with the identity map.

3. Advance the numerical solution onℳ by H=+1 = �(D=+1 , H=).
For the first step, H0 is given as the initial condition. This translates to the
following algorithm, with the constants 08 9 , 18 and 28 being the coefficients of
any standard explicit Runge-Kutta method:

RungeKuttaMuntheKaas( 5 , C= , H= , ℎ)
1 for 8 = 1, 2, . . . , B
2 D8 = ℎ

∑8−1
9=1 08 9: 9

3 :8 = dexp−1
D8 5

(
C= + 28ℎ,�(D8 , H=)

)
4 E = ℎ

∑B
8=1 18:8

5 return �(E, H=)
This is referred to as a Runge-Kutta Munthe-Kaas method, abbreviated to
RKMK. This class of integrators was developed by Munthe-Kaas in a series of
papers in the 1990s [28, 29, 30, 31].

Table 2.1: The first few Bernoulli numbers �= , used to define dexp−1
D

in (2.8). Note that for = = 3, 5, 7, . . ., �= = 0. More terms can be found
at [40].

: �:

0 1
1 − 1

2
2 1

6
4 − 1

30
6 1

42
8 − 1

30
10 5

66
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Chapter 3

Geometric numerical
integration in Python

The methods discussed in the previous chapter have been implemented in
Python using object-oriented programming. This chapter will first introduce
the main concepts of this style of programming. Hopefully, this will serve
as sufficient motivation for why this programming paradigm is suitable for
implementing numerical algorithms in general, and methods based upon Lie
groups and algebras in particular. The rest of the chapter will be dedicated to
the architecture and use of the PyLie software.

3.1 Object-Oriented Programming

This introduction will be kept brief and only cover the core concepts needed
to understand the structure of programs written in an object-oriented style.
The interested reader may find a more comprehensive introduction to object-
oriented programming with examples written in Python in [11]. Readers
already familiar with object-oriented programming may safely skip this
section.

Basics

Object-oriented programming (OOP) is a programming paradigm where the
central concept is that of an object. In this context, an object is a collection of data,
attributes, and behaviours, methods. In several object-oriented programming
languages, including Python, objects are defined as instances of classes. The
class defines a type of object and the associated attributes and methods of all
such objects. A particular instance then defines the value of each attribute.
Both attributes and methods are accessed with dot notation: The attribute
value on the class instance object is accessed with object.value. Similarly,
methods are accessed by object.method() with any arguments to the method

13



3. Geometric numerical integration in Python

separated by comments between the parentheses. A method may have zero or
more arguments. In this text, methods will always be indicated by a pair of
parentheses after the method name.

As an example, the PyLie package implements a class called Solver, with
attributes for the matrix 0 and the vectors 1 and 2 associated with the Butcher
tableau of a given RKMK method. One instance of this class might be
explicit_euler where explicit_euler.a is the zero matrix, explicit_euler.c
the zero vector, and explicit_euler.b the one-dimensional unit vector.

Note that the attributes of an object may be of any type: Theymay be simple
types such as integers or arrays, or more complex types such as functions or
other objects. The latter is used extensively in PyLie.

Inheritance and Polymorphism

A key concept of OOP is that of inheritance. In short, this means that one class
of objects extends the functionality and/or the attributes of another class. The
inheriting class is know as a child class or a subclass of the predefined parent
class or superclass. As an example, consider a class so3 which is a subclass of
LieAlgebra. Any attribute or method of LieAlgebra will also be available to
so3. In addition, we may wish to implement e.g. the hat map ·̂ to transform
elements of the lie algebra from their R3 representation to a skew-symmetric
3-by-3 matrix—more on this in Section 4.1. We may then define this method
in the so3 class without affecting the LieAlgebra class.

Finally, we discuss the idea of polymorphism, where we may provide a
common programming interface to perform different tasks. A simple example
is the Python built-in len() function, which has two distinct behaviours
depending on whether the input is a list or a string.

For a more sophisticated example we may return to so3 and LieAlgebra.
The parent class LieAlgebra implements a method dexpinv(q, p, r) method
which numerically calculates an Ath order approximation of dexp−1

@ (?) using
the Lie bracket. However, in the case of so(3), we have an analytical expression
for this quantity that we would like to use instead. We may then implement
a method of the same name in the class definition of so3 to perform this
calculation, which will then be used by all instances of this class.

The following inheritance rules apply:

• All attributes and methods of a parent class are available to all child
classes.

• When a method of the same name is defined in both the parent class and
the child class, the definition of the child class takes precedence on all
instances of this class.

Both of these rules are illustrated in Figure 3.1.

14



3.2. The PyLie Package

A subclass may have more than one parent class. If two or more parent
classes define a method of the same name, the method of the parent class
specified first takes precedence.

3.2 The PyLie Package
The PyLie package is a framework for numerically solving ODEs with the
techniques described in Chapter 2. It is the original work of the author and
the main work of this thesis. The source code of the package is available at
[23]. The package may be installed from the Python Package Index with the
shell command displayed in Listing 1. The project may also be viewed at the

$ python -m pip install pylie

Listing 1: Installation of PyLie.

Python Package Index webpage [24]. PyLie is heavily inspired by the matlab
software DiffMan, introduced in [10].

As previously mentioned, this section is dedicated to describing the
architecture of the software and design choices made when writing the source
code. The practical use of the package is demonstrated in Chapter 4. A
complete code example where PyLie is used to solve an equation evolving on
SO(3) is included in Appendix A.

LieAlgebra

dexpinv()commutator()

so3

dexpinv()hat()

Figure 3.1: Diagram illustrating an example of class inheritance and
polymorphism. The class so3 is a child of LieAlgebra. The method
commutator() is available to the child class as it is defined in the
parent class. The child class definition of dexpinv() re-implements the
method of the same name in the parent class, and is an example of
polymorphism. The hat() method is only available on the child.
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3. Geometric numerical integration in Python

Code Structure

PyLie employs a modular design, where the central mathematical building
blocks of Chapter 2 are implemented as separate objects. This includes
manifolds, Lie groups, Lie algebras, and time steppers (numerical solvers).

The manifold object specifies the associated Lie group and Lie algebra.
It may also enforce certain constraints that any numerical representation
of elements of the manifold in question must satisfy. For instance, the
implementation of (2 ⊂ R3 will throw an error if it encounters a vector H that
does not satisfy ‖H‖2 = 1 to within a specified numerical accuracy.

The Lie group object defines the action Λ : � ×ℳ →ℳ of the group on
the manifold.

The Lie algebra object implements the exp map, the dexp−1 map, and in
some cases, auxiliary methods such as the hat map ·̂ to transform elements of
the Lie algebra from one numerical representation to another. If the associated
Lie group is a matrix Lie group, the Lie bracket is also available as the matrix
commutator.

The time stepper object defines the parameters of the various Runge-Kutta
Munthe-Kaas methods, and are perhaps the objects where inheritance proves
to be the most useful. The parent class implements a method step() that is
essentially the RungeKuttaMuntheKaas algorithm of the previous chapter
translated to Python. One might then add any specific method with B stages to
the package by creating a new class that inherits from the parent time stepper
class, and defines the Butcher coefficients � as a two-dimensional B × B array,
and 1 and 2 as arrays of length B.

The main purpose of this structure is flexibility. As it is implemented,
the time stepper has no knowledge of how the action or the exponential
map is implemented—this is delegated entirely to the Lie group and the Lie
algebra. This is similar to how the Runge-Kutta Munthe-Kaas algorithm itself
works: As long as the problem formulation and the underlying calculations
are performed correctly, the procedure will work for any Lie group and Lie
algebra.

One consideration is whether or not implementing a representation of a
given manifold and the corresponding Lie group and Lie algebra as three
separate classes is reasonable. Combining these three classes into one would
still work fine, and would emphasize the tight coupling between these math-
ematical objects—especially so for the Lie group and its corresponding Lie
algebra. However, separating the class definitions also has some clear advan-
tages. If there is a need to represent a certain group � or algebra g differently
for a given problem, altering only the necessary parts of the code are easier
with a modular design.1 The same Lie structures could also be useful for
different kinds of manifolds, which should implement varying constraints

1This is taken advantage of in the source code of the experiments in the following chapter,
where the class defining se(3)was used as a parent class to the implementation of se(3)# .
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3.2. The PyLie Package

$ python -m unittest discover src

.....

----------------------------------------------------------

Ran 5 tests in 2.319s

OK

Listing 2: The command used to run the tests in PyLie and the output of the
command.

to the numerical representation of their elements. Lastly, this code structure
makes it clear where to find the various methods of the numerical framework
when reading the source code.

Software Testing

A number of automated tests have been implemented to verify the correctness
of the various methods of the PyLie package. For instance, on such test
instance generates a random vector of length 1, applies the group action of a
random element of SO(3) on this element, and verifies that the result of this
mapping is also of length one.

The tests have been implemented with unittest, a part of the Python
Standard Library [13]. To run the tests, navigate into the root folder of the
PyLie package and run the shell command shown in Listing 2.

Solving a Differential Equation

In order to use the package to solve a differential equation, the function solve()

is provided. It accepts the following arguments:

f The function defining the differential equation in the form (2.5).

y The initial value H0.

t_start Initial time.

t_end End time.

h Step length.

manifold Text string corresponding to one of the supported manifolds.

method Text string corresponding to one of the supported timesteppers.

When this function is called, the following happens:

17



3. Geometric numerical integration in Python

1. The specified manifold object is created, and with it, the correct Lie
group and Lie algebra.

2. The specified time stepper is initialized with the appropriate implemen-
tations of the exp, dexp and Λmaps as defined by the Lie group and Lie
algebra classes associated with the manifold.

3. The required number of steps # is calculated. If necessary, the final
steplength is adjusted to be shorter.

4. The time stepper is used to calculate a numerical solution at each required
step.

5. The solution is returned packaged in an object with two attributes:

• Y, the solution represented as a two-dimensional array with each of
the # + 1 columns representing the solution at one step.

• T, an array of length#+1 containing the times at which the solution
was obtained.

The hierarcy of the process is illustrated in Figure 3.2.

solve()

f, y, t_start, t_end, h, manifold, method

Manifold Time stepper

Lie group Lie algebra

Figure 3.2: Data flow when solving an ordinary differential equation
with PyLie. The function is represented with an ellipse, whilst the
objects are represented with rectangles. Information flows in the
directions of the arrows. In other words, the objects Lie group and Lie
algebra provide their function definitions to the Manifold object, which
in turn pass them on to the Timestepper object.
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3.2. The PyLie Package

Implementing a NewManifold, Lie Group and Lie Algebra

In order to solve a problem on a manifold or with a Lie structure that is not
yet implemented to PyLie, the following classes and corresponding methods
must be implemented by the user after obtaining the source code from [23].2

• A manifold class, representingℳ. This class must be initialized with
an element H ∈ ℳ. The corresponding Lie group and Lie algebra must
be specified. If desired, the class may verify that H ∈ ℳ by checking
against some specified constraints. The manifold may also have an
optional description attribute, a short string describing the manifold.
See Listing 3 for an example.

• A Lie group class. Must implement the action Λ : � ×ℳ → ℳ, see
Listing 4.

• An optional Lie algebra class that implements analytical expressions for
the exp and/or the dexp−1

D maps. If the elements of the Lie algebra are
represented as matrices, the implementation of this class may be skipped
and the manifold may instead use the base LieAlgebra class. This class
uses the SciPy implementation of the matrix exponential [27, 39], as well
as a truncated series of matrix commutators to calculate exp and dexp−1

D ,
respectively.

In addition, the names of each newly implemented classmust bemade available
to functions in other files of the package. This is done through importing them
into the __init__.py files and adding their names as strings to the __all__

list defined in this file. This is due to the way Python modules work and
communicate with each other, see [12]. An example is shown in Listing 6.

Another requirement is that the methods are compatiblewith each other. In
short, this simply means that the representations of the elements of �, g and
ℳ are consistent across the different classes, so that a function calls combining
them. e.g. group.action(algebra.exp(g), m), will function without error.

Finally, the manifold must be made available to the solve() function. This
is done by importing it into the file solve/solve.py, and then adding the
imported object to the dictionary _MANIFOLDS with an appropriate string as its
key. This automatically adds it to the output of the function pylie.manifolds().

Implementing a New Time Stepper

If the required time stepper fits in the Runge-Kutta Munthe-Kaas as described
in the previous chapter, implementing a new time stepper is straightforward.
The new class must inherit from the existing ‘TimeStepper‘ class, accept a

2Some short examples of implementing new objects will be displayed in the included code
listings, but the best examples are found in the actual implementations in the source code.
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3. Geometric numerical integration in Python

manifold instance when initialized, and pass this on to the parent. In addition,
the class must define the Butcher tableau parameters �, 1 and 2, where �must
be a strictly lower-triangular B × B array, and 1 and 2 must be one-dimensional
arrays of length B. The number of stages and the order of the method must
also be specified for the solve()method to function correctly. See Listing 7 for
an example of implementing Heun’s method.

Another option is to implement a custom time stepper that is not formulated
with the RKMK framework, but still utilizes the structure of Lie groups. In
this case, the class must also define a step()method that calculates H=+1 given
5 , C= , H= , and the step length ℎ. The initialization method of the custom time
stepper must accept a manifold object as its argument, but it does not have
to use it. It cannot rely on other arguments without further modifications to
the entire PyLie package. At that point, it might be better to write the solver
as a standalone program. For an example of how to structure a custom time
stepper, see Listing 8.

In any case, the time steppermust bemade available to the solve() function.
This is done in a similar manner as with the manifold object: Import the
time stepper object and add its name as a string to the __all__ list in the file
timestepper/__init__.py. Finally, import it into solve/solve.py and add it to
the _METHODS dictionary with a suitable string as a key. This will automatically
add it to the output of the pylie.methods() function that lists all implemented
time steppers.
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3.2. The PyLie Package

# hmanifold/mymanifold.py

import numpy as np
from .hmanifold import HomogenousManifold

from ..liegroup import MyLieGroup

from ..liealgebra import MyLieAlgebra

class MyManifold(HomogenousManifold):
"""

Text describing the manifold, e.g. any restrictions

or its associated Lie group. Will appear in the output

of pylie.manifolds().

"""

# Make sure to pick a suitable initial value for y

def __init__(self, y=np.array([0, 0, 1])):
self.n = y.size

self.y = y

self.lie_group = MyLieGroup()

self.lie_algera = MyLieAlgebra()

# If desired, y can be checked against various constraints

# If so, the two followin methods must be implemented with the

# @decorators as indicated.

# This is optional.

@property

def y(self):
return self._y

@y.setter

def y(self, value):

if not some_condition:

raise ValueError(
"This is not a valid element of MyManifold"

)

self._y = value

Listing 3: An example of how to implement a new manifold in PyLie.
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3. Geometric numerical integration in Python

# liegroup/liegroup.py

class MyLieGroup(LieGroup):
def action(self, g, u):

# Implement the action here

return result

# Auxiliary methods may optionally be defined below

Listing 4: The minimum requirements to a definition of a Lie group class in
PyLie.

# liealgebra/liealgebra.py

class MyLieAlgebra(LieAlgebra):
def __init__(self, LieGroup):

# This binds the action of the corresponding

# to a self.action() method for use in exp and dexp,

# if necessary

super().__init__(LieGroup)

def exp(self, y):

# If y is a matrix, this method may be left undefined

# to use the scipy implementation of the matrix

# exponential instead

return result

def dexpinv(self, u, v, q: int):

# q denotes the order of dexp^{-1}_u (v)

# Again, this may be left undefined if

# u and v are matrices and you would like

# to use a truncated series with the matrix

# commutator.

return result

Listing 5: An example of how to implement a Lie algebra in PyLie. Note that
if the elements of the algebra are matrices, the base LieAlgebra class may be
used insted.
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3.2. The PyLie Package

# hmanifold/__init__.py

# Previously existing imports above

from .mymanifold import MyManifold

# Assuming __all__ is defined above

__all__ += ["MyManifold"]

Listing 6: Exposing a function to the rest of PyLie.

# timestepper/timestepper.py

class Heuns(TimeStepper):
def __init__(self, manifold):

super().__init__(manifold)
self.a = np.array([

[0, 0],
[1, 0]

])

self.b = np.array([0.5, 0.5])
self.c = np.array([0, 1])
self.order = 2
self.s = 2

Listing 7: An implementation of Heun’s method in PyLie.
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3. Geometric numerical integration in Python

# timestepper/timestepper.py

class CustomSolver(TimeStepper):
"""

Text describing the method. Will be included in the output of

pylie.methods()

"""

def __init__(self, manifold):

# To make exp, dexpinv and action available:

super().__init__(manifold)

def step(self, f, t, y, h):

# Calculate the next step here

return result

Listing 8: Example of how to implement a custom solver that does not utilize
the RKMK framework.
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Chapter 4

Numerical examples

In this chapter, we will present three different mechanical systems. We
describe their dynamics, and we apply Runge-Kutte Munthe-Kaas methods to
the resulting differential equations.

For each problem, we also calculate a reference solution using the RK45
integrator from SciPy with a low error tolerance [8, 39]. This solution is used to
approximate the error of the applied RKMKmethods as follows: Each problem
is solved in the timespan [0, )] for some ) > 0 using different step sizes ℎ8 . T
The reference solution is then used to calculate the corresponding global error
4ℎ8 . By plotting this error against the step size used in a logarithmically scaled
plot, a global error on the form (1.2) will appear as a straight line with slope ?.

Wewill also inspect the geometric properties of the numerical solutions and
compare these to a solution obtained with the RK45 method as implemented
in SciPy, used with the default accuracy parameters.

4.1 Rigid Body Equations

The rigid body equations, also known as the Euler equations, describe the
rotational motion of a body that is not acted upon by any forces and has some
given initial motion. The equations describe the angular velocity of the body
as a function of time, denoted $(C), relative to a coordinate system fixed to the
rigid body—see Figure 4.1.

As the body is not acted upon by any forces, the magnitude of the angular
velocity will remain constant. Thus, after scaling the equation, $(C) ∈ (2 for
all C, and so the equations may be expressed through the action of SO(3).
Representing elements of SO(3) as orthogonal 3-by-3 matrices, it can be shown
from the definition of the Lie algebra so(3) = )4SO(3) that its elements must
be 3-by-3 skew-symmetric matrices. To see this, let �(C) be a curve in SO(3)
such that �(0) = 4 = �, with � being the identity matrix. We have

�(C)) · �(C) = � ,
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G
H

I

$(C)

Figure 4.1: An illustration of a rigid body with angular momentum
$(C), the quantity of interest in the rigid body equations.

and so differentiating with respect to time at C = 0 yields

¤�(0)) + ¤�(0) = 0.

The hat map ·̂ : R3 → so(3) is a useful construct that lets us represent elements
of so(3) as vectors in R3 by the map

G1

G2

G3

 ↦→


0 −G3 G2

G3 0 −G1

−G2 G1 0

 .
Note that for G, H ∈ R3, ĜH = G × H where × : R3 × R3 → R3 is the usual
cross-product. If the body coordinate system is placed along the principal
axes of the rigid body, the equations of motions are given by

¤$(C) =


0 $3/�3 −$2/�2
−$3/�3 0 $1/�1
$2/�2 −$1/�1 0



$1

$2

$3

 (4.1)

where �: are the moments of intertia of the corresponding axes. A derivation
of the equations may be found in e.g. [18]. The equation is already on the form
of (2.5), so we may apply the RKMK methods directly with

5 ($) = −��−1$. (4.2)

Before moving on to the numerical results, we state the closed formulas
for the maps exp: so(3) → SO(3) and dexp−1

D : so(3) → so(3).
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4.1. Rigid Body Equations

The exponential map in so(3)
Let G ∈ R3 such that Ĝ ∈ so(3) and define  B ‖G‖2. We have that Ĝ3 = −2 Ĝ,
and so

Ĝ2:+1 = (−1):2: Ĝ for : = 0, 1, . . ..

By writing the exponential as

exp Ĝ =
∞∑
==0

Ĝ=

=! =
∞∑
==0

Ĝ2=

(2=)! +
∞∑
==0

Ĝ2=+1

(2= + 1)! (4.3)

we can solve for the odd and even terms separately to find
∞∑
==0

Ĝ2=+1

(2= + 1)! = Ĝ
∞∑
==0

(−1)=2=

(2= + 1) =
sin 


Ĝ , (4.4)

∞∑
==0

Ĝ2=

(2=)! = � + Ĝ
∞∑
==0

Ĝ2=+1

(2= + 2)! = � + Ĝ
2
∞∑
==0

(−1)=2=

(2= + 2)!

= � + Ĝ
2

2

(
1 −

∞∑
==0

(−1)=2=

(2=)!

)
= � + 1 − cos 

2 Ĝ2.

(4.5)

Thus, exp: so(3) → SO(3) is given by

exp Ĝ = � + sin 


Ĝ + 1 − cos 
2 Ĝ2 , (4.6)

known as Rodrigues’ formula [2].
The expression for dexp−1 may be found in a similar manner. First note

that for G, H, I ∈ R3,

[Ĝ , Ĥ]I = G × (H × I) − H × (G × I),
and so by the Jacobi identity,

[Ĝ , Ĥ] = �(G × H).
Identifying elements of so(3)with elements in R3, this implies

adG(H) = ĜH,
which again means

5 (adG)H = 5 (Ĝ)H.
From this, it is possible to show that

dexp−1
G =

Ĝ
exp Ĝ − � = � −

1
2 Ĝ −

2 −  cot (/2)
22 Ĝ2 ,

see [3].
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Numerical results

Equation (4.2) was solved with a variety of step sizes in order to approximate
the error of Explicit Euler, Heun’s method and Runge-Kutta Munthe-Kaas 4.
For each step length, the solution was compared to a SciPy solution of (4.1) at
time C = 30. We used $(0) = [cos(1.1), 0, sin(1.1)]) and � = diag(2.2, 1.0, 2.3).
The results, plotted in Figure 4.2, indicate that the methods perform as one
would expect. For small step sizes, the global error of RKMK4 seems to reach
a minimum and stops improving. This is due to the fact that it reaches an
accuracy comparable to that of the reference solution.

As $ ∈ (2, we expect all methods to satisfy $)=$= = 1 for all C= . We test
this by using a step length of ℎ = 0.5 to compute the solution in the timespan
[0, 1000], i.e. C= = =/2 for = = 0, 1, . . . , 2000, and then calculate 1 − $)=$= at
each step. The results, shown in Figure 4.3, demonstrate that for all RKMK
methods $)=$= − 1 is of order 10−15, i.e. the constraint is satisfied to within
machine precision [5]. For reference, we also perform the same experiment
with the RK45 method of SciPy, letting the algorithm decide its own step
length based on the standard error tolerance parameters. Here $)=$= − 1 is
seen to be of order 10−2.
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Figure 4.2: Approximation of the global error of the PyLie imple-
mentations of Explicit Euler (E1), Heun’s method (E2) and RKMK4
when applied to the rigid body equations. The reference solution
was computed with SciPy. The coloured lines are polynomials with a
single term of order ?. For the shortest step lengths, RKMK4 matches
the accuracy of the reference solution.
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with $= being a numerical solution to the rigid body eqations. This
value should equal 0.
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4.2. Heavy Top Equations

4.2 Heavy Top Equations
The heavy top equations describe the dynamics of a rigid body rotating about
a supported fixed point in a constant gravitational field. In [21], the equations
are given as

¤Ω = Ω × �−1Ω + <6Γ × ",
¤Γ = Γ × �−1Ω,

(4.7)

where

• Ω ∈ R3 is the body angular momentum vector,

• � = diag(�1 , �2 , �3) is the moment of intertia tensor,

• Γ = ')(C)43 represents the motion of the unit vector along the vertical
axis as seen from the rotating body,

• " is the constant vector in the body reference point of frame, going from
the point of support to the body’s centre of mass,

• < is the mass of the body, and finally,

• 6 is the acceleration due to gravity.

A simple heavy top is illustrated in Figure 4.4.

G
H

I

Ω

Figure 4.4: A simple heavy top with the fixed point in the origin of
the global reference frame.

Even though the spinning top is a rigid body, the presence of gravitational
forces means the equations cannot be formulated with the action of SO(3).
In [7] it is shown that the system may be formulated on the differentiable
manifold se(3)∗, the dual of the Lie algebra of SE(3). Elements of SO(3) will be
represented as pairs (6, D) with 6 ∈ SO(3) and D ∈ R3. Elements of both se(3)
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4. Numerical examples

and se(3)∗ will be represented as vectors in R3 ×R3. The left action of SE(3) on
se(3)∗ is given by

Λ
((6, D), (G, H)) = (6(G + D × 6E), 6E),

with infinitesimal generator

�∗ |(Ω,Γ) ((G, H)) = (G ×Ω + H × Γ, G × Γ).
The heavy top equations (4.7) may then be written

( ¤Ω, ¤Γ) = �∗ |(Ω,Γ) ((−�−1Ω,−<6")),
so that with reference to (2.5) we get

5 (H) = 5 (Ω, Γ) = (−�−1Ω,−<6").

The exponential map in se(3)
In [7] the exponential map exp: se(3) → SE(3) is given as

exp(G, H) =
(
exp Ĝ ,

exp Ĝ − �
Ĝ

H

)
.

The exp Ĝ mapping given on the right-hand side of the equation is the
exponential map in so(3), given in (4.6). The fraction in the second component
may not be computed directly, as the matrix Ĝ is singular.1 Its Taylor series is
given by

exp Ĝ − �
Ĝ

=
∞∑
==0

1
(= + 1)! Ĝ

= .

Using a similar procedure as in equations (4.3)–(4.5) one can show that

exp Ĝ − �
Ĝ

= � + 1 − cos 
2 Ĝ +  − sin 

3 Ĝ2 ,

where again  = ‖G‖2.
To derive an expression for dexp−1

(G,H), we present an extended discussion
of a result first shown in [33], later published in [4]. With the Lie bracket in
se(3) given in [7] as

[(G, H), (D, E)] = (G × D, G × E − D × H),
the ad(G,H) operator may be expressed as the 6 × 6 block matrix

ad(G,H) =

[
Ĝ 0
Ĥ Ĝ

]
.

1Note e.g. that Ĝ · G = 0.
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By the Caley-Hamilton theorem [36],

ad2:+1
(G,H) =

[
(−1):2: Ĝ 0

(−1):(2: Ĥ + 2(:−1)2:G)HĜ) (−1):2:Ĝ

]
.

Given a function 5 (I) that is real analytic at I = 0, i.e. 5 (I) = ∑∞
==0 5=I

= with
real coefficients 5= , we define

5+(I) = 1
2 ( 5 (8I) + 5 (−8I)) =

∞∑
==0
(−1)= 52=I2= ,

5−(I) = 1
2 ( 5 (8I) − 5 (−8I)) =

∞∑
==0
(−1)= 52=+1I2=+1.

It can then be shown that

5 (ad(G,H)) = 50� +
[

61()Ĝ 0
61()Ĥ + 6̃1()Ĝ 61()Ĝ

]
+

[
Ĝ 0
Ĥ Ĥ

] [
62()Ĝ 0

62()Ĥ + 6̃2()Ĝ 62()Ĝ

]
,

where

61() = 5−()


,

6̃1() = �


d

d 61(),

62() = 50 − 5+()


,

6̃2() = �


d

d 62()

with � = G)H. Writing this out component by component, one finds that
5 (ad(G,H))(D, E) = (�, �)where

� = 50D + 61()G × (G × D)

and

� = 50E + 61()(H × D + G × E) + 6̃1()G × D + 6̃2()G × (G × D)
+ 62()(H × (G × D) + G × (H × D) + G × (G × E)).
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In the special case of 5 (ad(G,H)) = dexp−1
(G,H), we get

50 = 1

61() = −1
2 ,

6̃1() = 0,

62() =
1 − 

2 cot 
2

2 ,

6̃2() =
�

(
2 csc2 

2 + 2 cot 
2 − 8

)
44 .

These expressions are implemented in the class se3LieAlgebra class of PyLie.

Numerical results

We repeat the numerical order analysis of the methods on the rigid body
equations. The parameters used were � = diag(2, 2, 1), ) = 10 and H0 =
[0.2, 0.3, 1.0, cos (0.2), sin (0.2), 0]) . The results shown in Figure 4.5 show that
the methods perform as expected. However, it is noteworthy that the step
errors need to be below a certain threshold before the global error of Lie-Euler
is reduced. This is not surprising: Recall that (2.6) only holds for small C, and
as we go too far, the solution is no longer valid. It is also intuitive that taking
very long steps may miss important regions in the vector field defined by the
ODE. Again, the global error of RKMK4 flattens out as the method reaches an
estimated accuracy similar to that of the reference solution.

According to [9], the heavy top equations have four conserved quantities,
of which we will inspect two: The projection of the angular momentum on
the body vertical unit vector Ω · Γ, and the norm ‖Γ‖2. Results are plotted in
Figures 4.6 and 4.7. Again, note that the Munthe-Kaas methods preserve the
invariants to machine precision, in contrast to the standard RK45 method from
SciPy.
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Figure 4.5: Order approximations of the PyLie implementations of
Explicit Euler (E1), Heun’s method (E2) and RKMK4 when applied to
the heavy top equations. The coloured lines are polynomials with a
single term of order ?. The reference solution used to compute the
global error was obtained with SciPy.

35



4. Numerical examples

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1
−Γ

) =
Γ =

×10−14 E1

−2.0

−1.5

−1.0

−0.5

0.0

×10−14 E2

0 500 1000
C=

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

1
−Γ

) =
Γ =

×10−14 RKMK4

0 500 1000
C=

0.000

0.025

0.050

0.075

0.100

0.125

0.150

RK45 (SciPy)
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as a function of C= .
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4.3 The Chained Spherical Pendulum
We consider a system of pendulums linked together in the following manner:
Pendulum 8 of mass <8 is connected to pendulum 8 − 1 with a rod of length ℓ8
for 8 = 2, 3, . . . , # . The first pendulum of mass <1 is connected to a fixed point
in the origin by a rod of length ℓ1. The system is illustrated in Figure 4.8.

G
H

I

<1

<2
<3

ℓ1

ℓ2

ℓ3

Figure 4.8: The system of chained spherical pendulums with # = 3.

The description of the system and its definition through a Lie group
action is based upon [4], which in turn builds upon [26]. The model is not
entirely realistic: For instance, the interaction between the movements of the
pendulums is not taken into account. It is also assumend the each pendulum
may rotate freely, ignoring any collisions that would occur. Nonetheless, it
serves as an instructive example for the application of Lie group integrators.
By increasing # and at the same time ensuring

∑#
8=1 ℓ8 = constant, it is also

concievable that the equations may model e.g. a beam and be of interest in
practical applications.

The pendulum is described in terms of the positions @8 ∈ (2 ⊂ R3 of
pendulum 8 = 1, 2, . . . , # , and their angular velocities $8 ∈ )@8(2. Note that

)@8(
2 = {E ∈ R3 : E)@8 = 0} ⊂ R3 ,

and so for any velocity ¤@8 ∈ )@8(2 there is some $8 ∈ R3 such that ¤@8 = $8 × @8
with $8 being the angular velocity of @8 . This justifies the assumption that $8 ∈
)@8(

2
2, and the dynamics of the system may be described by the coordinates

H = (@1 , $1 , @2 , $2 , . . . , @# , $# ) ∈ ()(2)# .
For simplicity, we will use the notation H = (@, $) with @ = (@1 , . . . , @# ) and
$ = ($1 , . . . , $# ).

2the alternative being that $8 is parallell to @8 , in which case $8 = ¤@8 = 0.
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4.3. The Chained Spherical Pendulum

To describe the dynamics with an infiniteismal generator, we begin with
the action of the Lie group SE(3) on its Lie algebra se(3). This is denoted
Ad: SE(3) × se(3) → se(3), and is given by

Ad
((6, D), (G, H)) = (6G, 6H + D̂ 6G).

Using the identification of elements of se(3) as vectors G ∈ R3 × R3, we may
define the action Λ : SE(3) × R6 → R6 by

Λ
((6, D), (G, H)) = (6G, 6H + D̂ 6G).

We see that if (G, H) ∈ )(2
|@ |, where

)(2
|@ | =

{(G, H) ∈ R3 × R3 : H)G = 0, |G | = |@ |} ⊂ R6 ,

we may consider Λ to be an action Λ : SE(3) × )(2
|@ | → )(2

|@ | . It is also possible
to show that for a point < ∈ )(2

|@ |, the orbit O(<) = )(2
|@ | [32]. Thus, with

|@ | = 1, Λ defines a transitive Lie group action on )(2. The infinitesimal
generator of this action is given by

�∗((G, H))
��
(@,$) = (Ĝ@, Ĝ$ + Ĥ@).

The necesary action to describe a pendulum chain with # > 1 is obtained
through the group action of the Lie group defined by the #-times cartesian
product of SE(3). That is, with · being the group product of SE(3) and elements
61 = (6(1)1 , . . . , 6(#)1 ), 62 = (6(1)2 , . . . , 6(#)2 ) ∈ (SE(3))# , the group product ◦ on
((�(3))# is given by

61 ◦ 62 = (6(1)1 · 6(1)2 , . . . , 6(#)1 · 6(#)2 ).
This yields the action Λ : (SE(3))# × ()(2)# → ()(2)# defined by

Λ((61 , D1 , . . . , 6# , D# ), (@1 , $1 , . . . , @# , $# ))
= (61@1 , 61$1 + D̂161@1 , . . . , 6# @# , 6#$# + D̂# 6# @# ).

The infinitesimal generator of this action is given by

�∗ |< (�) = (Ĝ1@1 , Ĝ1$1 + Ĥ1@1 , . . . , Ĝ# @# , Ĝ#$# + Ĥ# @# )
where < = (@1 , $1 , . . . , @# , $# ) ∈ ()(2)# and � = (G1 , H1 , . . . , G# , H# ) ∈
(se(3))# .

In [26], the Lagrangian of the chain of pendulums is stated as

ℒ(@, $) = )(@, $) −*(@)

=
1
2

#∑
8=1

#∑
9=1

"8 9$
)
8 @̂

)
8 @̂ 9$ 9 −

#∑
8=1

©«
#∑
9=8

< 9
ª®¬ 6ℓ84)3 @8 ,
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where

"8 9 =
©«

#∑
:=max (8 , 9)

<:
ª®¬ ℓ8ℓ 9 � ∈ R3×3

is the inertia tensor of the system. Note that @̂)8 @̂8 = �−@8@)8 , and so $)8 @̂
)
8 @̂8$8 =

$)8 $8 . This means that we may simplify the Lagrangian ℒ by defining '(@) to
be the 3#-by-3# symmetric block matrix defined by

'(@)8 9 =



(∑#
:=8 <:

)
ℓ 2
8 � if 8 = 9 ,(∑#

:=9 <:

)
ℓ8ℓ 9 @̂)8 @̂ 9 if 8 < 9 ,(

'(@)98
)) otherwise.

(4.8)

The kinetic energy of the system may then be written as

)(@, $) = 1
2

#∑
8=1

#∑
9=1

$)8 '(@)8 9$ 9 .

The dynamics of the system is then given by the ODE

¤@8 = $8 × @8 . 8 = 1, 2, . . . , # , (4.9)

'(@) ¤$ =


#∑
9=1
9≠8

"8 9$
)
9 $ 9 @̂8@ 9 − ©«

#∑
9=8

< 9
ª®¬ 6ℓ8 @̂843

 8=1,2,...,#

. (4.10)

By inspecting (4.8) it can be seen that for any @ ∈ ((2)# and $ ∈ )@1(
2 ×

. . . × )@#(2, ('(@)$)8 ∈ )@8(2. Thus, the linear map �@ : )@1(
2 × . . . × )@#(2 →

)@1(
2 × . . . × )@#(2 given by

�@($) = '(@)$
is well-defined. Further, since '(@) is positive-definite it follows that �@ is
invertible, and thus we have

¤$ = �−1
@

([61 · · · 6# ])
)
=


ℎ1(@, $)

...

ℎ# (@, $)


where 68 is given by the 8th component of the right hand side of (4.10). By
the above discussion we may write ℎ8 = 08(@, $) × @8 for 8 = 1, . . . , # with 08
being some map from ()(2)# to R3. Letting 08(@, $) = @8 × ℎ8(@, $) achieves
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4.3. The Chained Spherical Pendulum

the desired result, and so the appropriate function 5 : ℳ → (se(3))# with
respect to (2.5) is

5 (@, $) =



$1

@1 × ℎ1
...

$#

@# × ℎ#


.

For further details, see [4] which in addition to a more thorough derivation of
the dynamics provide an explicit formula for the system with # = 2.

Numerical results

We repeat the order analysis in a similar fashion as for the rigid body equations
and the heavy top equations. For these experiments we use a system with
# = 2 pendulums. The effect of # will be examined in a later trial. For
simplicity we set <8 = ℓ8 = 1 for 8 = 1, 2, . . . , # . We set 6 = 9.81.

A random vector H0 = (@1 , $1 , @2 , $2) was generated such that @)8 @8 = 1
and $)8 @8 = 0 for 8 = 1, 2. This initial value was reused throughout the order
calculations. Trials show that too large values for the step length provide
unreliable results, and so we use smaller values for the step size than we did
in the two previous experiments in order to approximate the order of the
methods. The results are shown in Figure 4.9. In this case, we see that all
methods need a step size ℎ < 10−1 in order to improve as we expect. Again,
we see that the estimated global error of RKMK4 stops improving as it reaches
the same level of accuracy as the reference solution.

We also investigate how well the numerical schemes conserve two invari-
ants of the system: Namely, @)8 @8 and $)8 @, which we expect to be 1 and 0,
respectively. Due to the necessity of using smaller step sizes, we calculate
numerical solutions in the timespan [0, 50]with a step length of 0.005, resulting
in 10 000 steps. As before, the SciPy solver is used with its default arguments,
using an embedded pair of RK methods to select an appropriate step length
at each iteration. The results are shown in Figures 4.10 and 4.11. The RKMK
methods conserve the invariants to machine precision, clearly outperforming
the SciPy-implementation of RK45 in this respect.

Finally, we inspect how the number of pendulums # affect the global error.
The reference solution is computed with the SciPy implementation of DOP853,
an explicit method of order eight [16]. To reduce fluctuations due to the use of
a random intial value, the global error is averaged over eight different trials
for each # . The results are shown in Figure 4.12. There does not seem to be
any obvious connection between the number of pendulums # and the global
error committed of the methods, unless the accuracy of the SciPy solution is
affected in a similar manner. This seems unlikely.
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The motion of a pendulum with # = 3 is illustrated in Figure 4.13. As
expected, the system exhibits chaotic behaviour as described in [41].
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Figure 4.9: Order approximations of the PyLie implementations of
Explicit Euler (E1), Heun’s method (E2) and RKMK4 when applied to
the chained spherical pendulum equations with # = 2. The coloured
lines are polynomials with a single term of order ?. The reference
solution used to compute the global error was obtained with SciPy.
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Figure 4.12: The global error of three differen numerical integrators
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the pendulum equations were solved for eight different random initial
values and the global error was averaged. At each # the step length
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Figure 4.13: The motion of a pendulum with # = 3 in the time span
C ∈ [0, 5]. The solution was obtained with the PyLie implementation
of RKMK4 using a step length of ℎ = 0.01.
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Chapter 5

Conclusion

The main work of this thesis has been the development and testing of the
Python package PyLie, a framework for solving differential equations evolving
on non-linear manifolds. To this end, the Runge-Kutta Munthe-Kaas methods
were motivated and introduced along with the basics of the underlying theory
of manifolds, Lie groups, and Lie manifolds.

At the core of the methods are the mathematical constructsℳ, � and
g and interactions between them, which must be represented in code in
some meaningful way. In addition, the elements of each construct must be
numerically represented in a suitable manner. To ensure consistency and
correctness, it is natural to want to check each such representation against
certain constraints depending on the mathematical object and the problem at
hand.

Object-oriented programming is especially suitable for the task of imple-
menting the methods. Representing e.g. a Lie algebra g with a corresponding
object LieAlgebra allows us to attach all maps relevant for g as methods of
LieAlgebra, and any programmatic object x may be verified to be a valid
representation of an element G ∈ g.

In addition, inheritance makes extending the software fast and simple.
As an example, consider the implementation of solving the chained spher-
ical pendulum equations after finishing the heavy top equations. As both
problems make use of the exp and dexp−1

D maps with se(3) as domain, the
implementations of these maps were easily reused in a loop without having to
define them a second time. This increases development speed and reduces
the risk for programming errors.

The implementations of the methods were seen to satisfy what the Runge-
Kutta Munthe-Kaas methods were designed to do: Namely, to conserve
invariants and to ensure that the numerical solution H= remains on the relevant
manifoldℳ. However, this comes at a cost. The computational complexity
of the methods is considerably higher when compared to the simpler Runge-
Kutta methods. The RKMK methods also requires the differential equation
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5. Conclusion

to be formulated in terms of the infinitesimal generator of the action of the
relevant Lie group, a task that need not be trivial. Whether or not this extra
computational and human effort is worth it will depend on the purpose of
solving the problem: If the qualitative behavior of the numerical solution
over a long time period is of great importance, the RKMK methods provide a
practical way of achieving it.

Further work
Runge-Kutta Munthe-Kaas methods and the design of Python packages are
both vast subjects, and this thesis has only scratched the surface of both. One
obvious extension of PyLie would be to extend it to work for a greater number
of problems, evolving on different manifolds and formulated using different
Lie groups. Another is to increase the number of code tests in order to create
even greater confidence in the correctness of the methods.

Another limitation is that all currently implemented methods are explicit.
Implicit methods would be an interesting next step, but would require great
care in how they are implemented. A possibly easier intermediary step would
be to look beyond Runge-Kutta-coefficients to more modern developments.
Examples include commutator-free methods and embedded pairs of coeffi-
cients reusing exponentials as explored in [7]. Implementing variable step-size
methods in order to more efficiently find numerical solutions of a suitable
accuracy is also highly relevant.
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Appendix A

Solving an equation on (2 with
PyLie

We will find a numerical approximation to the solution of the ODE

¤H(C) =


0 0.5H1 − sin C
−0.5H1 0 cos C

sin C − cos C 0



H1(C)
H2(C)
H3(C)

 B 5 (C , H) · H, (A.1)

H(0) =

sin 1.1

0
cos 1.1

 B H0 (A.2)

using PyLie. As 5 is skew-symmetric and ‖H0‖2 = 1, H(C) ∈ (2 for all C; see
(2.1). It is assumed that PyLie is already installed and is available to the Python
interpreter.

To begin, we import PyLie. We will also use NumPy [20] to implement the
ODE.

import pylie
import numpy as np

Next, we implement 5 (C , H). Recall that the matrix-vector product on the right
hand side of (A.1) is the Lie group action of SO(3) on (2, and should therefore
not be included in the formulation of the problem to be used by PyLie.

def f(t, y):

return np.array([

[0, 0.5 * y[0], -np.sin(t)],

[-0.5 * y[0], 0, np.cos(t)],

[np.sin(t), -np.cos(t), 0]
])
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A. Solving an equation on (2 with PyLie

Next, we define the necessary parameters for PyLie to solve the problem.

y0 = np.array([np.sin(1.1), 0, np.cos(1.1)])
t_start = 0
t_end = 5
h = 0.1
manifold = "hmnsphere"

method = "RKMK4"

With this in place, the equation is solved with a single line of code. The
solution is accessed as an attribute on the returned object.

solution = pylie.solve(f, y0, t_start, t_end, h, manifold, method)

y = solution.Y

t = solution.T

The complete code is shown in Listing 9. The conditional in line 15 ensures
the code will only run if the file is called directly, as opposed to being imported
into another Python file.
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1 import pylie
2 import numpy as np
3

4

5 def f(t, y):

6 return np.array(

7 [

8 [0, 0.5 * y[0], -np.sin(t)],

9 [-0.5 * y[0], 0, np.cos(t)],

10 [np.sin(t), -np.cos(t), 0],
11 ]

12 )

13

14

15 if __name__ == "__main__":

16 y0 = np.array([np.sin(1.1), 0, np.cos(1.1)])
17 t_start = 0
18 t_end = 5
19 h = 0.1
20 manifold = "hmnsphere"

21 method = "RKMK4"

22 solution = pylie.solve(

23 f, y0, t_start, t_end, h, manifold, method

24 )

25 y = solution.Y

26 t = solution.T

Listing 9: The complete code to solve (A.1) with initial value (A.2) using PyLie.
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