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Abstract

Accurate and reliable estimates for vaccination coverage in low- and middle-
income countries is key for planning and enacting public health policies, and
when deploying supplementary vaccination programs. Household survey data
containing the vaccination status of children is typically analysed with design-
based methods, however, these estimates tend to mask geographical inequalities
within larger regions. Surveys are usually powered to give reliable estimates for
the largest subnational administrative areas, resulting in large uncertainties for
estimates in smaller areas. In recent years, effort has been taken to develop
model-based approaches for analysing such data to reveal where the need for
funding and resources is greatest.

Here, we expand on the well known Besag-York-Mollié (BYM) discrete spatial
model, by allowing spatial smoothing between administrative areas on multiple
geographical scales. The models we consider are Bayesian hierarchical models
with binomial likelihood, which are implemented in the Stan programming lan-
guage. The new proposed models have a parameter controlling how the geo-
graphical variation is split between different spatial scales. We show that mul-
tiresolution modeling approaches can improve predictive accuracy compared to
the BYM model on a single administrative level, and the interpretability of the
model parameters offer valuable insight into the overall variability of vaccination
coverage.

A goal of future research is to understand variability in vaccination coverage
within countries, and this decomposition of variability can simplify comparison
between different regions and countries.
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Sammendrag

Nøyaktige og pålitelige estimater for vaksinasjonsdekning i lav- og middelsin-
ntektsland spiller en viktig rolle for planlegging og gjennomføring av folkehelse-
politikk, og for igangsettelse av supplementerende vaksinasjonsprogram. Data
fra husstandsundersøkelser som inkluderer informasjon om vaksinasjonsstatus for
barn blir typisk analysert med designbaserte metoder, men disse metodene skjuler
ofte ulikheter innad i større regioner. Husstandsundersøkelser er designet for å
kunne gi pålitelige estimater for de største subnasjonal administrative områdene
i et land, som gir store usikkerhetsintervall for mindre områder. Flere modell-
baserte metoder har de siste årene blitt brukt for å analysere slike datasett for å
finne ut hvor behovet for ressurser er størst.

I denne oppgaven bygger vi på den diskrete romlige Besag-York-Mollié (BYM)
modellen, ved å tillate romlig utglatting mellom administrative områder på flere
geografiske skalaer. Modellene vi studerer er Bayesianske hierarkiske modeller
med binomiske observasjoner, implementert i statistikkprogrammeringsspråket
Stan. De nye modellene har en parameter som kontrollerer hvordan den ge-
ografiske variasjonen blir delt på forskjellige romlige oppløsninger. Vi viser at
modellene med romlig utglatting på flere oppløsninger kan forbedre prediksjon-
snøyaktighet sammenlignet med finskalamodeller, og tolkbarheten til modell-
parametrene gir verdifullt innsyn i geografiske forskjeller i vaksinasjonsdekning.

Målet med videre forskning er å forstå variasjonen av vaksinasjonsdekning
innad i ulike land, og dekomponering av variasjonen fleroppløsningsmodellene gir
kan forenkle sammenligningen mellom regioner og land.
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1 | Introduction

The UN 2030 Agenda for Sustainable Development sets 17 goals with 169 associ-
ated targets (United Nations General Assembly, 2015). To inform policymakers
on how to best implement programs to improve public health, sustainable devel-
opment goal (SDG) indicators are regularly monitored in low- and middle-income
countries. One program that collects, analyses and disseminates survey data on
a wide range of SDG indicators is the Demographic and Health Surveys (DHS)
Program (NPC and ICF, 2019). Through over 400 surveys in more than 90
countries, the DHS program has collected representative data on a wide range
of demographic and health indicators, such as the vaccination rates. As part of
the 2030 agenda, UNICEF has laid out a goal of "leaving no one behind", that
all children should be vaccinated (Unicef, 2019). However, in low- and middle-
income countries, pockets of children regularly go unvaccinated, mainly due to
low availability of health care and lack of human resources.

An efficient and available measles-containing-vaccine first-dose (MCV1) vac-
cine has been available since 1974, but in 2017 there were still more than 17
million cases of measles globally, and over 80 thousand deaths (Local Burden of
Disease Vaccine Coverage Collaborators, 2021). There were big gains in vaccina-
tion coverage from 2000 to 2010, but the vaccination coverage has since regressed.

Traditionally, survey data is analysed using design-based methods, which pro-
duce estimates of vaccination coverage for larger geographical regions, usually on
the largest subnational administrative (admin1) level. However, even in countries
with with high vaccination coverages in admin1 regions, design-based estimates
tend to mask heterogeneity on finer geographical scales within admin1 regions,
such as differences between second-level (admin2) administrative units. Local
coldspots in vaccination coverage are often sources of larger outbreaks of dis-
ease and can sustain ongoing disease transmission. This is a major obstacle for
achieving herd immunity.

Conducting surveys such that design-based estimates are reliable on finer
spatial scales, for instance on admin2 level, is unfeasible due to cost and difficult
working conditions for the fieldworkers, so in recent years one has sought to

1



2 CHAPTER 1. INTRODUCTION

use spatial statistical models for small area estimation with survey data. Some
approaches to examine trends in vaccine coverage on fine spatial scales are Utazi
et al. (2021), Wang et al. (2018), Utazi et al. (2020), Dong and Wakefield (2020).
Typically, these are binomial spatial regression models, with a spatial smoothing
random effect.

We will focus on a discrete multiresolution spatial model-based approach for
modeling vaccination coverage. Vaccination programs are often administered on
admin1 level, where funding and management is allocated. Because of this, it is
reasonable to believe that which admin1 region a child lives in plays a key role
in their likelihood of being vaccinated. Usually, spatial modeling in small area
estimation is done on the finest spatial scale the data allows, before aggregating up
to larger regions. One of the goals of the multiresolution approach is to examine
whether such fine scale methods are able to detect effects that are determined by
admin1 borders. We also want to know if these admin1 effects are large enough
for us to be able to detect differences between modeling approaches.

We base our models on the intrinsic conditional autoregressive models, due to
Besag (1974). Maps of geographical regions are transformed into graphs, before a
joint probability distribution is defined over the nodes, paired with an observation
likelihood. The autoregressive models provide spatial smoothing, neighbouring
regions are able to borrow information from each other, such that even if the
data is sparse, reliable estimates of vaccination coverage can be found in smaller
geographical regions. The new approach explored here allows spatial smoothing
on multiple administrative scales, which allows a different correlation structure
than if only one spatial resolution is utilized.

Nigeria is one of the countries with largest geographical inequality in MCV1
coverage, and has in recent years experienced stagnant or declining vaccination
rates due to political instability. To analyse the MCV1 coverage in Nigeria on
admin1 and admin2 level, we use the 2018 DHS data from Nigeria, and compare
estimates from the multiresolution models, with a discrete fine scale spatial model
and with design-based estimates.

We will also score the models by treating design-based estimates as noisy
observations of the true vaccination coverages. This allows us to turn predictive
distributions of the true coverages from the models, into predictive distributions
for the design-based estimates, providing a method for model validation on real
data.

Through a simulation study we show that in the presence of a moderate
to strong spatial effect on admin1 level, multiresolution modeling approaches
outperform a fine scale model in predictive accuracy. However, for the 2018 DHS
data from Nigeria the difference between the models’ predictive accuracies are
minor.

This thesis is organized as follows. In Chapter 2 we present the survey data
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used as a motivating example for small area estimation. Then in Chapter 3 we
review methods for discrete spatial models and present the models we use to
analyze the survey data. An overview of design-based survey statistics, scoring
rules for predictive distributions and Bayesian inference based on Hamiltonian
Monte Carlo is also given. In Chapter 4 we conduct a simulation study where
the predictive accuracy of the different spatial models are compared. The models
are applied to analyzing the measles vaccination coverage in Nigeria in Chapter
5, and the results are compared to design-based direct estimates. Finally, we
discuss our findings in Chapter 6.





2 | DHS Survey in Nigeria 2018

To motivate the need for small area estimation we consider the vaccination cov-
erage of the MCV1 vaccine, for admin1 and admin2 regions, called states and
local government areas, respectively, in Nigeria. The 2018 Nigeria Demographic
and Health Surveys (2018 NDHS) survey (NPC and ICF, 2019) is a survey of
Nigerian households, providing information about a wide range of demographic
and health indicators, including the vaccination status of children. The data col-
lection took place between 14 August and 29 December 2018, and the information
is intended to inform policymakers and help design effective programs to improve
public health.

The 2018 NDHS used a sampling frame based on the 2006 Population and
Housing Census of the Federal Republic of Nigeria. Nigeria is divided into 36
states and one federally controlled area (all 37 are here referred to as states), and
further subdivided LGAs, of which there are 774 in total. During the census,
each LGA was divided into census enumeration areas (EAs), and it is among the
EAs that the primary sampling units (PSUs), referred to as clusters in the survey,
were selected for fieldworkers to survey. Figure 2.1 shows a map of Nigeria and
its subdivision into administrative areas, together with the location of the survey
clusters. Additionally, each enumeration area was classified as either urban or
rural.

The sample for the 2018 NDHS was a two-stage stratified sample frame. To
achieve higher accuracy for estimates based on survey data, survey units are
divided into subgroups known as strata. In the 2018 NDHS, the strata are ob-
tained by separating the EAs in each state by urban/rural status, creating 74
strata in total. Within each stratum, samples are selected following a two stage
process. For each stratum a given number of clusters were chosen from the EAs
at random with probability equal to their size, then 30 households were selected
randomly within each PSU. Both clusters and households were selected without
replacement. In total 1400 clusters were selected, but 11 were not surveyed due
to dangerous fieldwork conditions.

In the data set, each response corresponds to a child, and it contains informa-

5
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Figure 2.1: Map of Nigeria showing national, state (thick lines) and LGA (thin lines)
borders, as well as DHS cluster locations.
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tion such as which cluster the response belongs to, the MCV1 status when appli-
cable, and the survey weight (described in Section 3.5). Classical design-based
methods, also described in Section 3.5, use the responses directly in weighted
estimates. However, for the spatial models we consider, each response is assigned
to the LGA its cluster lies in. We then get the aggregated data yi and ni, the
number of surveyed vaccinated children and total number of surveyed children,
respectively, for each LGA i. Note that not all LGAs contain a survey cluster, in
which case yi = ni = 0.

To determine the vaccination status of children in the surveyed households,
all eligible women ages 15 to 49 were asked about vaccination status of their
children. We consider the MCV1 status for children between ages of 12 and 23
months that were still alive at the time of surveying. The vaccination status of
the children is determined either through their vaccination card, or by caregiver
recall. In cases with no available vaccination card or caregiver recall, the children
are considered unvaccinated. In total the 2018 NDHS contains data for 6036
children, from 637 of the 774 LGAs.

With each survey cluster there is metadata containing the strata to which the
cluster belongs, as well as a GPS coordinate of the centroid of the clusters. Due
to privacy concerns, the GPS position is scrambled to within 2 km for urban and
10 km for rural clusters, making sure that the scrambled coordinate lies in the
correct state and LGA. When processing the data, each cluster is assigned to the
LGA its GPS coordinate lies in. However, for some clusters the assigned LGA
does not correspond to the reported state. This is likely due to small differences
in the maps used. In these cases, the cluster is assigned to the closest LGA that
lies in the correct state, as reported in the metadata. Additionally, there are
six clusters with missing GPS information. To get a fair comparison between
estimates from survey and model based methods, those clusters are omitted from
the data.

Finally, Table A.1 in the 2018 NDHS final report (NPC and ICF, 2019) states
that in the census frame used in the DHS survey, there are no residents in rural
Lagos. However, some clusters are still categorised as rural in the data set.
Following a population growth model, these EAs have been reclassified since the
last census. We change these observations from rural to urban in our analysis.

In order to aggregate LGA level estimates to state level, we use under five
population weighted averages. The under five population counts are found using
rasters for 2018 with resolution 100 meters, available from WorldPop (Tatem,
2021). These are estimated population counts extrapolated from the last census,
and there is no automatic distinction between urban and rural population. The
urban and rural population can be estimated separately using a map of the EAs
from the census. However, these maps are not made public, and we do not try
to estimate the urban and rural population separately using population density
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or other methods.



3 | Theory and Methods

3.1 Gaussian Markov Random Fields

In many applications, such as analysis of spatial data, time series and image
processing, a natural modeling approach is to specify the relationship between
neighbouring regions. For instance, spatially aggregated data within adminis-
trative regions known as areal data, such as the MCV1 data from Nigeria, can
be modelled by defining the distribution of the value in each region conditional
on the neighbouring regions. Using this approach, we typically view maps as
graphs, with regions corresponding to nodes, then model the node values as a
multivariate normal random vector.

For a map of non-overlapping regions, let G = (V, E) denote the associated
graph with nodes V and edges E , in which all regions are represented by a labelled
node. If two regions share a border, the associated nodes are connected by an
edge, denoted i ∼ j for nodes i and j. Adjacent nodes, two distinct nodes that are
both endpoints of the same edge, are called neighbours, and the neighbourhood of
a node i is defined as the set of nodes adjacent to i, N(i) = {j : i ∼ j}. Figure 3.1
shows three graph representations of the administrative regions of Nigeria shown
in Figure 2.1. The leftmost and middle panel show the graph representation
of the states and the LGAs, respectively, while the rightmost panel shows the
representation of the LGAs, where only LGAs have to share a border and lie in
the same state to be considered neighbours.

A path from node i1 to im is a sequence of nodes i1, i2, . . . , im such that
(ik, ik+1) ∈ E for k = 1, . . . ,m − 1, and sets of nodes such that any two nodes
are connected by a path are called connected components. If the graph consists
of one connected component, it is said to be connected, and conversely, if there
are two or more connected components, it is said to be disconnected. Examples
of a connected and a disconnected graph are displayed in Figure 3.2.

We now consider Gaussian Markov random fields (GMRFs), with respect to
an undirected graph, such as the graphs of the administrative areas of Nigeria in

9
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Figure 3.1: Graph structure used when analysing DHS data from Nigeria.

(a) Connected graph (b) Disconnected graph (c) A neighbourhood

Figure 3.2: Examples of graph structures.
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Figure 3.1. A GMRF is a finite dimensional random vector, following a multivari-
ate normal distribution, with additional conditional independence assumptions.
We restrict ourselves to cases where the conditional distribution in a node only
depends on its neighbours, hence the name Markov. The Markov property is
closely tied to the inverse of the covariance matrix, called the precision matrix.
Rue and Held (2005) gives the following definition for a GMRF;

Definition 3.1.1 (GMRF). A random vector x = (x1, . . . , xn)
T ∈ Rn is a GMRF

wrt. to a labelled graph G = (V, E) with mean µ ∈ Rn and n×n precision matrix
Q > 0, if its density has the form

π(x) = (2π)
−n/2 |Q|1/2 exp

(
−1

2
(x− µ)

T
Q (x− µ)

)
, for x ∈ Rn,

and

Qij 6= 0⇐⇒ (i, j) ∈ E for all i 6= j.

The relationship between the graph G and the precision matrix Q can be
expressed as Qij = 0 ⇐⇒ xi ⊥ xj |x−ij , where x−ij denotes all the components
of x apart from the ith and jth. That is, the non-zero pattern of Q corresponds
with the edges of the graph. As an example, the conditional distribution of the
red node in Figure 3.2c only depends on the black nodes. Hence, the entries of the
precision matrix that would have corresponded to edges between the red and grey
nodes are all zero. The sparsity of the precision matrix makes GMRFs attractive
from a computational point of view, since Cholesky decomposition and evaluation
of the probability density is faster than for a multivariate normal random vector
with dense precision matrix. For instance, the Cholesky factorization for an
n×n dense precision matrix requires O(n3) flops, while sparse precision matrices
in spatial GMRFs only require O(n2/3) flops.

Specifying the conditional distribution of each node can lead to the joint dis-
tribution being improper, with rank deficient precision matrices. For instance,
the joint distribution might end up being invariant of the addition of a constant
in each node. Even though these structures are not by themselves proper dis-
tributions, they often play key roles as priors in spatial statistics, and are called
intrinsic GMRFs. Rue and Held (2005) states the formal definition.

Definition 3.1.2 (Intrinsic GMRF). A random vector x = (x1, . . . , xn)
T ∈ Rn

is an intrinsic GMRF (IGMRF) of rank n− k with parameters µ ∈ Rn and Q, if
Q is an n× n symmetric positive semidefinite matrix and its density is

π(x) = (2π)
−n/2

(|Q|∗)1/2 exp

(
−1

2
(x− µ)

T
Q (x− µ)

)
, for x ∈ Rn,
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where |Q|∗ is defined as the product of all non-zero eigenvalues of Q.
It is an IGMRF wrt. to a labelled graph G = (V, E) if

Qij 6= 0⇐⇒ (i, j) ∈ E for all i 6= j.

When simulating from IGMRFs additional constraints have to be imposed.
Usually, a weighted sum-to-zero constraint and an intercept are added to each
connected component. Such constraints are also strongly recommended when
using IGMRFs as components in larger models (Freni-Sterrantino et al., 2018),
to make the interpretation of each model component as clear as possible.

3.2 Intrinsic Conditional Autoregressive Models
and Scaling of Precision Matrices

A common class of IGMRFs are intrinsic conditional autoregressive (ICAR) mod-
els, due to Besag (1974). For applications such as disease mapping and image pro-
cessing, the goal is to borrow strength between neighbours in a graph structure.
This is especially useful when the data is sparse and we believe that neighbouring
nodes share similar characteristics.

The density of an ICAR model is

π(x|κ) ∝ exp

−κ
2

∑
i∼j

wij(xi − xj)2
 ,

where κ is a overall precision parameter, i ∼ j denotes that node i and j are
neighbours in the associated graph, and wij are symmetric weights. The weights
can be chosen in a number of ways, for instance the Euclidean distance between
nodes or set to all be unitary.

Perhaps the simplest of all ICAR models is the version with unitary weights,
often referred to simply as the Besag model. It has the conditional formulation

xi|x−i, κ ∼ N

 ∑
j∈N(i)

xj/ni, (κni)
−1

 , i = 1, . . . , n,

where ni denotes the number of neighbours of node i, and n is the total number
of nodes.

For a graph with k connected components the joint distribution, expressed as
an IGMRF is
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π(x) ∝ κ(n−k)/2 exp

−κ
2

∑
i∼j

(xi − xj)2
 , (3.1)

which can be reformulated in terms of the n× n structure matrix R, defined by

Rij =


ni, if i = j,

−1, if i ∼ j,
0, otherwise.

It follows that x is an IGMRF with mean zero and precision Q = κR. The
rank deficiency is resolved through a weighted sum-to-zero constraint.

It is a feature of all intrinsic CAR models that the marginal variances in the
nodes differ, and will depend on the graph structure itself. In order to have a
meaningful interpretation of the precision parameter κ, we need to scale the struc-
ture matrix. Following the recommendations of Freni-Sterrantino et al. (2018),
for graphs with one connected component we scale the precision matrix using the
geometric mean of the marginal variances obtained with κ = 1. Let R− be a
generalized inverse of the structure matrix corresponding to a connected graph.
Then the scaling factor becomes

S = exp

(
1

n

n∑
i=1

log
([
R−
]
ii

))
,

which gives the scaled precision matrix Qscaled = κSR. This ensures that the
marginal variances in the nodes is approximately equal to κ−1.

Similarly, when there are k connected components of sizes greater than one,
it is recommended to use a separate scaling factor for each component. Let
R = R1 + . . . + Rk denote the structure matrices of each of the k connected
components (if the nodes are labeled in order of connected component, R is a
block diagonal matrix). Then the scaled precision matrix becomes Qscaled =
κ (S1 R1 + . . .+ SkRk), where Si is the scaling factor of the ith connected com-
ponent.

Figure 3.3 shows the effect of different methods of scaling the marginal vari-
ances of the ICAR model, defined on the disconnected graph of Nigeria shown
in Figure 3.1c. The estimated marginal variances are found empirically using
500 realizations of the Besag model, before being grouped by connected compo-
nent. The boxplots clearly show that before scaling the marginal variances are
about 0.5 on average, and that using a common scaling factor for all connected
components just scales the overall marginal variances. The difference between
connected components are very large. For instance, connected component 9 has
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(b) All connected components scaled by the same factor
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(c) Connected components scaled separately

Figure 3.3: Boxplot of the marginal variances in each node of an Besag GMRF,
grouped by connected components along the x-axis, with different methods of scaling.
The graph used is the disconnected graph of LGAs in Nigeria, shown in Figure 3.1c,
with κ = 1.
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marginal variances about twice the average. By using separate scaling factors for
each components, shown in the bottom row, the average of the marginal variances
in each node grouped by connected component are about equal.

To resolve the issue of improper distributions we want to impose linear con-
straints on a random vector x. There are multiple ways of doing this, with
different computational properties. Let � denote the element wise product be-
tween two vectors, let e be a vector of length k, let w be a weight vector of
length n, and let B denote a k × n constraint matrix. The two main constraint
alternatives are hard constraints

B(w � u) = e,

and soft constraints

B(w � u) ∼ N (e, ε Ik) ,

for some small ε. Here we will use soft constraints, as they usually make samplers
perform better provided ε is not too small.

One alternative when using the Besag model as a part of larger model is to
combine it with a n dimensional normal iid. effect. This is called the Besag-
York-Mollié (BYM) model (Besag et al., 1991). We will use this model as a
part of larger hierarchical models, with the weighted parametrization presented
in Simpson et al. (2017)

The BYM model consists of a scaled ICAR component u of the form found
in Expression (3.1), and a iid. normal component v, both sharing the same
variance κ−1. Because of confounding between the spatially correlated effect and
the independent effect, it is often much easier to estimate the total variance than
the variance in each of the components separately. Therefore, it is useful to
parametrize the model using a weight 0 ≤ θ ≤ 1,

ψi =
√
θ ui +

√
1− θ vi, for 1 ≤ i ≤ n.

3.3 Model Formulation

We consider four different Bayesian hierarchical spatial models to make predic-
tions about vaccination coverage for LGAs. In this section we describe the obser-
vation model, the spatial smoothing and the prior distributions, while in Section
3.4 we describe how the estimates for LGA level vaccination coverage are aggre-
gated to estimate state level vaccination coverages, as well as linear constraints
put on the GMRFs used.

Let Yi and ni denote the surveyed number of vaccinated children and the
total number of surveyed children in LGA i, respectively. We assume that the
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number of vaccinated children surveyed in each region follow a binomial spatial
regression model given by

Yi|ni, pi ∼ Binomial (ni, pi) ,
logit (pi) = ηi = µ+ ψi,

for all LGAs i, where pi denotes the vaccination coverage in region i, µ is an
intercept, and ψ = (ψ1, . . . , ψn) denotes a spatial random effect, described later
in the section.

The spatial random effect ψ is the only component that differs for the four
different models. The first model we consider, referred to as the Admin2 model,
uses a BYM component with the graph structure of the LGAs, shown in Fig-
ure 3.1b. The second model, referred to as the Admin1 model, uses a BYM
component with the graph structure of the states, shown in Figure 3.1a.

We will also consider two multiresolution models based on the BYM model.
The third model, referred to as the Disconnected model, has one BYM component
on state level, and one on LGA level, where the LGAs are disconnected between
states, as shown in Figure 3.1c. That is, LGAs i1 ∼ i2 if and only if the two LGAs
share a border and they lie in the same state. Finally, the fourth model, referred
to as the Connected model, has the same form as the disconnected model, but
we use the full graph structure of the LGAs.

Following the idea of the weighted parametrization of the BYM model de-
scribed in Section 3.1, the total overall variance is distributed between the state
effect and LGA effect with a weight w0 for the multiresolution models. The weight
between the Besag and iid. effect on state and LGA level is denoted w1 and w2,
repectively. Furthermore, the effects on state and LGA level share a common
precision parameter κ. This means that for the two multiresolution models the
variance of the BYM state component is w0κ

−1, and (1 − w0)κ−1 for the BYM
LGA component.

Table 3.1 summarizes the four models. In the expressions for the linear pre-
dictors ηi, let st[i] denote which state the LGA i lies in, N1 is the number of
states, N2 is the number of LGAs. The Besag and iid. component on state level
are denoted by ui and vi, respectively, and similarly on LGA level we use φi and
εi. Note that φi uses the disconnected LGA graph, while φ∗i uses the connected
version of the graph.

The Admin1 model is in a sense a special case. Even though the model
is defined using LGA level data, all LGAs in the same state share the same
vaccination coverage. In practice, we aggregate the data over the states when
implementing the Admin1 model and it provides immediate estimates for the
state level coverage.
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Table 3.1: Model specification for the four different models considered. Each of the
Besag GMRFs (φ, φ∗ and u) and iid components (v and ε) share the precision param-
eter κ, and we let st[i] denote the state that contains LGA i and N2 be the number of
LGAs.

Model Linear predictor Regions

Admin2 ηi = µ+
√
w2 φ

∗
i +
√

1− w2 εi 1 ≤ i ≤ N2

Admin1 ηi = µ+
√
w1 ust[i] +

√
1− w1 vst[i] 1 ≤ i ≤ N2

Disconnected
ηi = µ+

√
w0w1 ust[i] +

√
w0(1− w1) vst[i]

+
√

(1− w0)w2 φi +
√

(1− w0)(1− w2) εi
1 ≤ i ≤ N2

Connected
ηi = µ+

√
w0w1 ust[i] +

√
w0(1− w1) vst[i]

+
√

(1− w0)w2 φ
∗
i +

√
(1− w0)(1− w2) εi

1 ≤ i ≤ N2

For the models in Table 3.1, the intercept µ is equipped with an improper
flat prior and the total precision parameter κ with a Gamma(1, 0.01) prior. The
prior expected value of κ is 100, resulting in a standard deviations of 0.1. With
zero mean, this results in a 95% CI of approximately [0.45, 0.55] on probability
scale. The weights w1 and w2 have uniform priors on the unit interval. The
weight between the variance on state level and LGA level, w0, has a Beta(2, 0.86)
prior. The first shape parameter is set to two such that π(w0) goes linearly to
zero as w0 goes to zero, and the second shape parameter such that π(w0) has a
peak at w0 = 1, with a median at 0.75. This is done in order to explain as much
variation as possible on state level. The priors for κ, w0, w1 and w2 are displayed
in Figure 3.4.

3.4 Aggregation and Linear Constraints

The Disconnected, Connected and Admin2 models in Table 3.1 do not immedi-
ately provide estimates of the proportion of vaccinated children in each state.
State level estimates using these models are obtained as population weighted av-
erages over all the LGAs within each state. Let qi be the estimated under five
population in LGA i described in Section 2. The state level vaccination coverages
are estimated by

pState j =

∑
i∈State j qi pi∑
i∈State j qi

, for 1 ≤ j ≤ N1,

ηState j = logit−1 (pState j) .
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Figure 3.4: The prior distribution for the parameters κ, w0, w1 and w2.
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A diagram giving an overview of the multiresolution models is shown in Figure
3.5. It shows the split of total variance between different geographical scales, and
between the structured Besag component and unstructured iid component on
each scale. The figure also shows the binomial observations for each LGA, and
how LGA level vaccination coverages are aggregated to state level coverages using
under five population estimates.

We now consider the constraints put on our Besag components u, φ and φ∗.
One of the goals of the Disconnected and Connected models is to model on state
level and LGA level separately. That is, we want

pState j = logit−1
(
µ+
√
w0w1 uj +

√
w0(1− w1) vj

)
.

Because of the non-linear logit link function, a sum-to-zero constraint will not
achieve this. If we simplify the notation of the linear predictors in Table 3.1, by
letting uj + vj denote the BYM component for state j, and φi + εi denote the
BYM component for LGA i, the desired constraint becomes

logit−1 (µ) =

∑N1

j=1 logit−1 (µ+ uj + vj)×
∑
i∈State j qi∑N2

i=1 qi
, (3.2)

logit−1 (µ+ uj + vj) =

∑
i∈State j logit−1 (µ+ uj + vj + φi + εi)× qi∑

i∈State j qi
, (3.3)

for 1 ≤ i ≤ N1.
This is the ideal case, which allows modeling the national, state and LGA

vaccination coverages by separate parameters. However, such a constraint will
make the posterior difficult to sample from for large graphs such as that of Nige-
ria. Instead, we opt to use the first order Taylor expansion with respect to the
components uj and φi of the Expressions (3.2) and (3.3), respectively, and we get

∑N1

j=1 ui ×
∑
i∈State j qi∑N2

i=1 qi
∼ N (0, ε1), (3.4)∑

i∈Statej φi × qi∑
i∈Statej qi

∼ N (0, ε2), for 1 ≤ j ≤ N1. (3.5)

The parameters ε1 and ε2 determine how strict these constraints are. A
stricter constraint will typically come at the cost of a parameter space that is
harder to sample from. As we will see later in Section 3.7, the curvature of the
log density in parameter space plays a key role in sampling efficiency. As ε1 and ε2
become very small we are effectively placing the density in some small subspace,
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Total variance κ−1

BYM state level BYM LGA level

Besag state
ust[i]

IID state
vst[i]

Besag LGA
φi

IID LGA
εi

Intercept
µ

logit(pi) = ηi = µ+ ust[i] + vst[i] + φi + εi

Num. of obs.
ni

Observations
Yi ∼ Binomial(ni, pi)
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qi

State aggregates
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i∈State j pi×qi∑

i∈State j qi

w0 1− w0

w1 1− w1 w2 1− w2

Figure 3.5: Diagram of the multiresolution models for an LGA i. The weight w0

splits the total variance between different geographical scales, and the weights w1 and
w2 between a Besag random effect and an unstructured random effect on each scale. The
blue boxes indicate the BYM component on state level, which is preferred by the total
variance split, while the gray boxes are known quantities. The dashed paths from the
population estimates to the Besag components indicate that the population estimates
are used in the linear constraints in the Besag model. The state LGA i lies in is denoted
st[i].
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making effective sampling difficult. Here ε1 = 0.1 and ε2 = 0.01 are chosen as
small as possible while still achieving fast sampling.

The Admin1 model uses the constraint (3.4), and the Admin2 model uses the
constraint ∑n2

i=1 φ
∗
i × qi∑n2

i=1 qi
∼ N (0, ε2).

Commonly, the linear predictors ηi will include various covariates, such as
urban/rural classification, settlement type, land surface temperature, travel time
to health facility, enhanced vegetation index and travel time to cities. See for
instance Utazi et al. (2021) and Utazi et al. (2020). When including geospatial
covariates in the linear predictors, there is the added complication of how the
covariates should be estimated on LGA level. For instance, if the covariates are
available in the DHS data, we have to estimate values for LGAs from cluster level
data, and if other sources are used we have to account for the scrambled GPS
position of the clusters. We choose not to include these extra predictors to avoid
these problems.

In the case of urban/rural classification we also have the complication from
the survey design. Urban or rural strata for the same state may be under- or
oversampled relative to each other, resulting in different survey weights. If there
is a small rural population within a state, then this stratum is likely oversampled,
leading to significant bias if the urban and rural samples are treated the same.
Finally, the effect of urban/rural status may change a lot between states and
LGAs. In a country of over 200 million people, living conditions are likely to vary
a lot. For this reason, the models are fitted to urban and rural data separately.

One of the reasons we are interested in multiresolution models is that they al-
low correlation between LGAs in a different way than the Admin2 model. Figure
3.6 shows the correlation between LGAs as a function of distance between their
centroids, from 1000 realizations from the Besag model on states, Besag model
on LGAs and the a sum of the Besag model on state level and LGA level. In
each case the total precision is one. Correlations between LGAs are put into bins
of 3.5 km according to the distances between LGAs, and the quantiles in each
bin is calculated. The Besag model on states allows much greater correlation for
LGAs that are less than 500 km apart than the same model on LGAs. Note that
negative correlation for long distances are due to the linear constraints.

3.5 Design-Based Survey Estimates

Analysis of survey data is typically done using design-based methods, which take
into account key aspects of the survey design (Lohr, 2010). Most importantly,
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Figure 3.6: Correlation of ηi as a function of distance between centroids of LGAs.

design-based methods differ from model-based methods in assuming that the
data is fixed from a finite population. For instance, the responses from a given
household will be deterministic in the cases of age and MCV1 status. Hence,
all uncertainty arises from the survey procedure itself; which households are sur-
veyed?

Data that arises from complex survey designs differ from simple random sam-
ples in three key ways, which has to be accounted for when doing analysis. Firstly,
the population is usually divided into subgroups known as strata, and the analyst
creating the survey design decides how many samples should be drawn from each
stratum. The sample size from each stratum is often about equal, even though
their population can be very different. This ensures reliable estimates, even in
areas with few people. The second complication is that within each stratum, a
number of randomly chosen primary sampling units (PSUs) will be chosen and a
fixed number of households will be sampled within each PSU. This will tend to
underestimate the variance, but will increase precision per survey cost. Finally,
the estimates should reflect that we sample without replacement from a finite
population.

Designing a sample frame is usually done with census data, and the population
is divided into small enumeration areas. A two-stage cluster sample, consists of
sampling in two stages. First, within each stratum, we sample a number of EAs
(the number is chosen by the analyst), which become the PSUs. Then, we select
survey respondents within each PSU.

Because the units are sampled with unequal probability, each survey response
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is given an inverse probability weight, corresponding to how many responses
they represent. The weights in the 2018 NDHS are calculated in two stages. Let
ah denote the number of survey PSUs in stratum h, and Mhi the number of
households in PSU i in stratum h as reported by the sampling frame. Then the
probability of choosing PSU i in stratum h is

P1hi =
ahMhi∑
iMhi

.

The selection probability on the second stage is calculated as

P2hi =
ghi
Lhi

,

where ghi is the number of households surveyed in PSU i in stratum h, and
Lhi is the number of households listed in the household listing conducted by the
fieldworker at the time of surveying. The overall selection probability is then
Phi = P1hiP2hi, and the weights are whi = 1/Phi for the ghi responses.

Let Yhij denote observation j in cluster i from stratum h, with weights whi.
Then the stratified sampling estimator is

Yh·· =

∑
i

∑
j whiYhij∑

i

∑
j whi

.

The variance of Yh·· can be estimated in multiple ways, for instance by linearisa-
tion or subsampling (Lumley, 2004).

To analyse the 2018 NDHS data, the survey package in R (Lumley, 2004) is
used. We use a quasibinomial model, described in Mercer et al. (2014), producing
the design-based direct estimates ηDE,h and standard error σDE,h on logit scale.
The direct estimates ηDE,h are assumed to be unbiased, and the uncertainties are
assumed to be normally distributed on logit scale.

3.6 Scoring Rules

In order to evaluate the predictive distributions obtained in Bayesian inference,
there are numerous choices of scoring rules. That is, a numerical score based on
the predictive distribution and the observation. A common scoring rule is the
mean square error (MSE) for all the predicted vaccination coverages. However,
this score does not penalize the uncertainty of the predictive distribution. Ideally,
we want a scoring rule that rewards the sharpness of predictive distributions (the
concentration of the forecasts) subject to calibration (consistency between the
observations and the forecasts) (Gneiting et al., 2007). That is, we want sharp
predictive distributions, given that we do not have over- or underdispresion of
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the data. For instance, if models are scored using MSE we only use a location
measure such as the mean of the posterior distribution, which means that there
is no penalty for unreasonably large or small uncertainty in the estimated value.
Therefore, we need different methods to score our models.

Numerous such scoring rules exist. Here we will use generalization of the
mean absolute error known as the continuous rank probability score (CRPS)
(Matheson and Winkler, 1976), and the Dawid-Sebastiani score (DSS) (Dawid
and Sebastiani, 1999), which uses only the first and second moment of the pre-
dictive distribution. These are two examples of proper scoring rules. Let Z be
a random variable and F be a cumulative distribution function (CDF). Then,
a proper scoring rule score S(Z,F ) has the property E{S(Z,F )} ≤ E{S(Z,G)}
for any CDF G if Z ∼ F (z) (Gneiting and Raftery, 2007). This makes proper
scoring rules a possible ranking criterion for different models, by scoring their
predictive distributions.

In the univariate case, with an observations y and a CDF F , we define the
CRPS and DSS as

CRPS(y, F ) =

∫
R

(F (z)− 1{z ≥ y})2 dz,

DSS(y, F ) = log σ2
F +

(y − µF )2

σ2
F

,

where µF and σ2
F are the mean and variance, respectively, of a random variable

following the distribution F .
For random vectors we define CRPS and DSS as the average values

CRPS(y,F ) =
1

n

n∑
i=1

CRPS(yi, Fi),

DSS(y,F ) =
1

n

n∑
i=1

DSS(yi, Fi),

where F denotes the vector of marginal distributions.
In a Bayesian framework, we typically do not have closed forms of the posterior

predictive distributions. Instead, estimates of the CRPS and DSS are found
using the posterior samples with numerical methods (Krüger et al., 2020). These
methods are implemented in the R package scoringRules.

When analysing real world data, the true vaccination coverages are unavail-
able for LGAs and states. Instead, we use leave-one-state-out cross-validation
to assess the prediction accuracy of the models on state level, and K-fold cross-
validation for cluster level predictions.
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Evaluation of the models’ predictive accuracy for state level vaccination cover-
ages is done by comparing the predictive distributions to the design-based direct
estimates. Let ηDE,i be the direct estimate of state i with standard error σDE,i
for either urban or rural data. The direct estimates are assumed to be unbi-
ased and normally distributed on logit scale. For each model we have a fitted
leave-one-state-out predictive distribution for ηState i, and by adding a random
variable εi ∼ N (0, σDE,i) to each of the posterior draws, we obtain a predictive
distribution for the direct estimates ηDE,i themselves. The direct estimates and
the corresponding predictive distributions are used to estimate MSE, CRPS and
DSS for each model.

Additionally, we evaluate the out-of-sample predictive accuracy for clusters
through K-fold cross-validation. For each cluster we calculate the MSE, CRPS
and DSS for the ratios p̂i = yi/ni, i.e. the ratio of vaccinated children to total sur-
veyed children in each cluster, with the predictive distribution of the vaccination
coverage in the LGA in which the cluster is located.

3.7 Inference with Hamiltonian Monte Carlo

3.7.1 The Metropolis-Hastings Algorithm

In Bayesian inference we often encounter probability distributions known only up
to a normalizing constant. For instance, applying Bayes theorem for some hier-
archical model with observation likelihood πobs.(y|θ), and prior density πprior(θ)
for the latent set of parameters, we get the posterior distribution of the latent
parameters given the observations,

π(θ|y) =
πobs.(y|θ)πprior(θ)

π(y)
,

where π(y) is the marginal distribution of the observations which acts as a nor-
malizing constant. Unfortunately, π(θ|y) is often analytically intractable, and we
only know the unnormalized distribution, denoted π̃(θ|y), often called the kernel
of the density function.

Our primary goal is to be able to estimate the expectation of functions of
θ ∼ π(θ). For Bayesian models, such as the ones presented in Section 3.3, Markov
chain Monte Carlo (MCMC) methods are flexible and widespread methods of ob-
taining draws from the desired distribution π(θ) (Givens and Hoeting, 2012), that
do not require the normalizing constant to be known. To estimate expectations
we can then use Monte Carlo integration using the MCMC draws.

One of the most general MCMC methods is the Metropolis-Hastings (MH)
algorithm. The MH algorithm proposes new candidate draws θ∗ from a proposal
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distribution q(θ∗|θ), where θ is the previous value, before accepting the new
candidate draw with probability

α = min {1, π̃(θ∗)q(θ|θ∗)/π̃(θ)q(θ∗|θ)} . (3.6)

Otherwise, the new draw is set equal to the previous draw θ. The accept/reject
step ensures detailed balance and reversibility with respect to the stationary
target distribution π(θ).

Designing a fast converging MH algorithm can be very difficult, and usually
involves finding a good parametrization, suitable proposal distributions and tun-
ing of the proposal distribution’s parameters, all specific to the modeling problem
at hand. Typically, the proposal distribution for new draws takes the form of a
random walk, for instance a multivariate Gaussian proposals centered at the cur-
rent iteration. This raises the question of how the step length, i.e. the covariance
matrix, should be chosen. If the step length is too short, the Markov chain will
explore the distribution too slowly, and if the step length is too long, the accep-
tance probability of the proposal transitions might be very low. Finding a good
proposal density is even harder if there are regions of the parameter space with
high curvature, e.g. all the density is in one direction.

Figure 3.7 shows 200 draws from the bivariate normal distribution with zero
mean, unit variances, and correlation 0.98 , using a MH normal random walk,
with standard deviation 0.2. The chain starts at the origin, and because almost
all the density is concentrated along the diagonal x = y, 42% of the new proposed
states are rejected. We also see that the Markov chain fails to explore the tails
of the distribution. An alternative alternative MCMC approach, illustrated in
the right panel, is the No-U-Turns (NUTS) sampler, described in detail later in
this section, which utilises the geometry of the posterior density when obtaining
proposals.

3.7.2 Hamiltonian Monte Carlo

To overcome the problems of poor mixing and exploration of probability densities,
Hamiltonian Monte Carlo (HMC) (Girolami and Calderhead, 2011) and the No-
U-Turns (NUTS) sampler (Homan and Gelman, 2014) are increasingly favored.
At a high level, HMC is a method of proposing new candidate samples informed
by the gradient of the target density, and the NUTS sampler is an extension of
HMC that greatly reduces the need for parameter tuning. To fit the models in our
analysis we use Stan (Stan Development Team, 2020), which is an implementation
of the NUTS sampler.

Let θ be the random vector with density π(θ), and let L(θ) = log π(θ). In
HMC, we first augment the parameter space with draws from a multivariate
normal random momentum vector r with equal length as θ, with the component
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Figure 3.7: Two hundred samples of a MH random walk with multivariate normal
proposal, compared to two hundred NUTS samples, superimposed on the true density.
The proposals rejected during the MH accept/reject stage are marked with a cross.
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ri corresponding to the parameter θi. In the simplest case the components ri are
independent, with unit variance. The unnormalized joint density of θ and r then
becomes exp (L(θ)− r · r/2).

This augmented parameter space can be be interpreted physically as a Hamil-
tonian system, where some imagined particle with position θ and momentum r
moves around in the augmented parameter space. The Hamiltonian is defined as
H(θ, r) = V (θ) + K(r), where V (θ) = −L(θ) and K(r) = r · r/2 is potential
and kinetic energy, respectively. We can then simulate the system’s evolution
over time following Hamiltonian dynamics,

dθ

dt
=
∂H

∂r
;

dr

dt
= −∂H

∂θ
,

which preserves the total energy. Since energy is preserved, the joint density is
constant along trajectories. By proposing new draws from the joint density of
θ and r along the trajectories the Metropolis acceptance probability is one. We
then discard the momentum parameter, and obtain new samples from the target
distribution π(θ).

In practice, the Hamiltonian systems arising from interesting models do not
have analytical solutions, so we have to use numerical integration to compute
paths in parameter space. To ensure that detailed balance is preserved, the
leapfrog estimator is used, which proceeds with the updates

rt+ε/2 = rt +
ε

2
∇θL(θt),

θt+ε = θt + ε rt+ε/2,

rt+ε = rt+ε/2 +
ε

2
∇θL(θt+ε),

for some small step size ε, for a total of L steps.
Because we sample r ∼ N (0, I), then transform this proposal to a proposal for

the joint position-momentum state, in general we have to consider the Jacobian
of the transformation when computing the MH ratio. This is necessary to keep
detailed balance intact. However, the leapfrog scheme is volume preserving, so the
absolute value of its Jacobian is one. The leapfrog scheme is also time reversible,
since you can do the steps in reverse. Together, these properties ensure that
detailed balance is kept intact.

A naive HMC approach would be to sample rt ∼ N (0, I), then do L leapfrog
steps, starting at (θt, rt), giving us the proposal (θ∗, r∗) = (θt+Lε,−rt+Lε). Due
to discretization error we accept this proposal with probability

α = min {1, exp (H(θt, rt)−H(θ∗, r∗))} . (3.7)
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3.7.3 The NUTS Sampler
This naive HMC approach raises the question of how to tune L and ε. An
intuitive method of determining the length of the trajectory, is to add iterations
until the trajectory doubles back on itself. That is, for the earliest and latest
states (θ−, r−) and (θ+, r+) in the trajectory, terminate whenever

r+ · (θ+ − θ−) < 0, (3.8)

which effectively means that the trajectory will not do a U-turn.
Unfortunately, when we do the leapfrog steps in reverse, there is no guar-

antee that the trajectory reaches the original state (θ−, r−) when starting from
(θ+, r+). The sampler might satisfy its stopping condition before the original po-
sition momentum state is reached. One such example is displayed in Figure 3.8,
which shows a leapfrog trajectory for a bivariate zero mean normal distribution,
with unit variance and correlation 0.95. Here, the states along the trajectory
satisfying (3.8) are marked as blue. However, integrating backwards in time from
the first blue state satisfying the stopping condition, results in a much shorter tra-
jectory, as shown in the rightmost panel. The stopping condition is met already
after four steps. This means that for a naive trajectory the proposal densities
are not symmetric, q

(
(θ+, r+)|(θ−, r−)

)
6= q

(
(θ−, r−)|(θ+, r+)

)
, and the MH

acceptance probability in Equation (3.6) is not determined by the Hamiltonians
in the final and first states.
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Figure 3.8: Non-reversible leapfrog trajectory using a naive u-turn stopping condition.

Instead, we build a set of candidate states C starting from (θt, rt). By repeat-
edly expanding C by doubling its size using leapfrog steps forward or backward,
we create a binary tree with leaves corresponding to position-momentum states.
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Figure 3.9: Example of a trajectory from NUTS with slice and stopping criterion,
superimposed on the true density. The arrows mark the momentum and difference in
position for a balanced sub-tree that has reached the stopping condition (3.9). The
crossed out states are outside the slice, and the color of the states marks in which
doubling they were added. All the states added in the fifth doubling must be omitted
from the candidate set to preserve detailed balance, and the crossed out states because
they are not in the slice.

An example of such a set C is displayed in Figure 3.9. The colours of each position-
momentum state show in which doubling the states are added. The figure also
shows a generalized form of the stopping condition (3.8) with arrows, and states
that have to be excluded to preserve detailed balance crossed out, both explained
further in this section.

Starting from a position θt, the sampling procedure of NUTS consists of four
steps.

1. Generate a random momentum vector rt ∼ N (0, I).

2. Generate a slice variable u ∼ Uniform[0, exp (−H(θt, rt))].

3. Generate a set of states B starting at (θt, rt), and choose a subset C ⊂
B of candidate states deterministically, in such a way that any position-
momentum state in C has the same probability of recreating C if used as
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the the starting state.

4. Choose a proposal position-momentum state from C, and accept it with
probability α given by Equation (3.7).

The central idea of NUTS is how the sets B and C are generated. We first
generate B, starting with (θt, rt), by repeatedly doubling the size of the set using
leapfrog steps either forward or backward in time. This means that B is really
a trajectory in position-momentum space, forming a binary tree illustrated in
Figure 3.10. For the jth doubling, we either make 2j leapfrog steps backwards
from the earliest state in the trajectory, or 2j leapfrog steps forwards in time
from the latest state in the trajectory, each with probability 1/2. As a stopping
condition, we check whether

r+ · (θ+ − θ−) < 0, or r− · (θ+ − θ−) < 0, (3.9)

holds true for the earliest and latest states (θ−, r−) and (θ+, r+) of any balanced
subtree, or if log(u)−H(θ′, r′) > ∆max, for any (θ′, r′) in B for some large ∆max.
When either of the stopping conditions are met, the set of candidate states C
are chosen from the entire leapfrog trajectory B, such that (θ′, r′) ∈ B satisfies
u ≤ exp

(
−H(θ′, r′)

)
and omitting the states from the last doubling.

3 3 3 3 1 0 2 2 4 4 4 4 4 4 4 4

Figure 3.10: Example of a trajectory B as a binary tree. The labels and colours show
in which doubling the leaf nodes are added. Balanced subtrees consists of all leaf nodes
that share a common ancestor (gray nodes). For instance, all the leaf nodes added in
the third doubling, or the four leftmost leaf nodes added in the fourth doubling. Note
that to recreate a specific binary tree from any leaf node, there is only one choice of
adding nodes either to the left or to the right in each doubling.

By omitting the the states from the last doubling we make sure that for any
state in C the probability of recreating the same trajectory B is 2−j , since at
each doubling we have to expand B in the correct direction. The condition that
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u ≤ exp
(
−H(θ′, r′)

)
is a sampling method called slice sampling (Neal, 2003),

which ensures that conditional on u all the states in C have equal probability
density.

Returning to the example of a trajectory B in Figure 3.9, in the fifth doubling,
there is a balanced subtree that satisfies the u-turn criterion (3.9) (the angle
between the arrows is less than 90◦), so the pink states are omitted from C.
Additionally, the states that are omitted from C due to the slice u are crossed
out.

We can now choose proposals states from C with any kernel that leaves the
uniform distribution invariant, while still preserving detailed balance. The tran-
sition kernel used in NUTS favors the candidate states most recently added to
the trajectory B, which makes the average number of leapfrog steps between the
original state and the proposed state larger on average.

Stan is largely based on the original NUTS sampler, with some changes to
improve performance (Betancourt, 2016). Firstly, slice sampling is no longer
utilized when constructing C. Instead, proposals are drawn from C following a
multinomial distribution with probabilities

P (θ′, r′) =
exp(−H(θ′, r′))∑

(θ′′,r′′)∈C exp(−H(θ′′, r′′))
,

for (θ′, r′) ∈ C. Additionally, a generalized version of the No-U-Turns criterion
(3.9) is used.

3.7.4 Adaptively Tuning the Step Length

We now have a way of choosing the number of steps L during sampling, and we
turn to choosing a suitable step length ε. During the warmup phase of Stan’s
sampling procedure, the step length is adaptively tuned to achieve a target MH
acceptance probability. For a tunable parameter x of any MCMC algorithm,
and some statistic Ht(x) of the Markov chain, there are multiple schemes to
dynamically tune x so that the average expectation T−1

∑T
t=1 E(Ht|x) goes to

zero. Our goal is to tune ε such that a target MH acceptance rate is achieved.
NUTS uses the dual averaging algorithm of Nesterov (Homan and Gelman, 2014),

xt+1 ← µ−
√
t

γ

1

t+ t0

t∑
i=1

Hi; x̄t+1 ← ηt xt+1 + (1− ηt)x̄t, (3.10)

with x̄1 = x1 and ηt = t−κ, and free variables µ, t0 ≥ 0.
Let Ht = δ −HNUTS

t for some target acceptance probability δ, and
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HNUTS
t =

1

|Bt|
∑

(θ,r)∈Bt

min {1, exp (H(θt, rt)−H(θ, r))} ,

where Bt is the trajectory from state (θt, rt). Then HNUTS
t is a function of the

step size ε, and we use Equation (3.10), setting x = log ε, to update the step size
after each iteration in the warmup phase. This ensures that ε will converge to a
value such that the average acceptance rate is approximately δ.

The NUTS sampler therefore both chooses sensible number of integration
steps L and leapfrog step length ε, given some target acceptance rate δ specified
by the user. In practice a high target acceptance rate will force the sampler to
use shorter step lengths, which might help in regions of parameter space with
high curvature, but increase computational cost.

3.7.5 Stan
The Stan probabilistic programming language is efficient, flexible, and requires
minimal tuning. However, model parametrization can greatly affect the sam-
pling efficiency. For the models introduced in Section 3.3, three weights, 0 ≤
w0, w1, w2 ≤ 1, are used to control the proportion of total variance placed on
different components of the linear predictor. If the prior of these parameters
are declared directly, there will be boundaries in parameter space where the log
density suddenly drops to minus infinity. If the leapfrog trajectory crosses one of
these boundaries, Stan reports a divergent transition, and if it happens during
warmup the integration step length is forced to be very small. To avoid this prob-
lem, the parameters are implemented on logit scale, before being transformed and
used as usual.

The default target acceptance ratio is 0.8, but this can increased if the step
length is too long and the stopping condition log(u) −H(θ′, r′) > ∆max is met,
resulting in a divergent transition. This occurs if the curvature varies greatly be-
tween different parts of the parameter space, and often require a reparametriza-
tion of the model. We also specify the number of chains and iterations during
sampling and warmup.





4 | Simulation Study with Mul-
tiresolution Data

In this section we conduct simulation experiments in order to compare the pre-
dictive performance of the models presented in Section 3.3 in the presence of
multiresolution variation.

4.1 Purpose

There are three main questions we want to answer.

(i) Do the multiresolution models offer improved predictive performance of the
state level vaccination coverages over the Admin2 model if there is a state
random effect?

(ii) If the true state vaccination coverages are not known exactly, only with
added noise, are we able to detect potential differences between the models’
predictive accuracies?

(iii) How uncertain are the parameter estimates, and are they interpretable?

In Section 3.6 we present a method of scoring models by viewing the direct
estimates as noisy observations of the true values. The second point examines how
noisy these observations can be, before potential differences in predictive accuracy
between the multiresolution approaches and the Admin2 model disappears.

4.2 Simulation Setup

All code is run using R version 4.03 (R Core Team, 2020), and the models are fitted
using rstan version 2.21.2 (Stan Development Team, 2020). For all simulations

35
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we use the graph structure the LGAs and states of Nigeria, as well as the total
number of survey respondents in the 2018 NDHS data for each LGA. The under
five population counts in Nigeria are used for aggregation from LGA to state
level and Besag linear constraints. To generate data that is representative of a
wide range of plausible real world scenarios, we choose suitable values of µ, κ,
w0, w1 and w2, found in Table 4.1, and generate data with the Connected model.
State vaccination coverages are calculated using a population weighted average
over the LGAs. Most importantly, we consider cases with different variation in
vaccination coverage over the country as a whole (total precision κ low and high),
and with different proportions of the state and LGA variances (weight w0 low,
medium and high). Four typical realizations of the vaccination coverages on logit
scale is shown in Figure 4.1.

Table 4.1: Combinations of parameters used to simulate data.

Parameter Levels Value Interpretation

µ Low / high {−0.5, 0.5} Vaccination level
κ Low / high {3, 0.4} Variability
w0 Low / medium / high {0.2, 0.5, 0.8} adm1 vs. adm2
w1 Low / medium / high {0.2, 0.5, 0.8} Struct. adm1
w2 Low / medium / high {0.2, 0.5, 0.8} Struct. adm2

To select parameter values we first consider how small the total precision
parameter κ can be. Because Nigeria has large geographical inequality in vacci-
nation coverage (Local Burden of Disease Vaccine Coverage Collaborators, 2021),
we want LGA coverages in simulated realizations to lie in the range 5% to 95%,
corresponding to roughly -3 to 3 on logit scale. Since κ is approximately the
marginal precision in each node, the smallest suitable κ is chosen as 0.4 so that
two standard deviations is 3.16. We also want to see if the multiresolution models
perform better than the Admin2 model if the spatial variation is much smaller,
so the high value for κ is 3, resulting in two standard deviations of roughly 1.

Using the design-based methods with the 2018 NDHS data, the vaccination
coverage of Nigeria as a whole is approximately 54%, so the intercept µ is set
to ±0.5. The weights w1 and w2 both have the same levels, 0.2, 0.5 and 0.8,
which corresponds to mostly noise driven vaccination coverage, noise and spatial
smoothing, and mostly spatial smoothing. Most importantly, the split between
variation between states and variation within states, w0, has the levels 0.2, 0.5
and 0.8. For w0 = 0 there is no state effect, and for w0 = 1 all spatial variation
happens on state level, while the vaccination coverage is constant within each
state. What we are most interested in is what happens to the predictive score
of the Admin2 model compared to the Connected and Disconnected models for
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w0 ∈ {0.5, 0.8}.

Figure 4.1: Four realizations of LGA probabilities, on logit scale, from the Connected
multiresolution model. For all realizations µ = −0.5, κ = 0.4 and w1 = 0.8.

The fitted models are scored using CRPS and DSS on the known state and
LGA vaccination coverages on logit scale. In order to reduce the computational
requirement needed to compare the three models, we first generate five realiza-
tions for each of the 108 combinations of parameters found in Table 4.1. We
then determine which parameters have an effect on how well the models perform,
as measured by MSE, CRPS and DSS, before holding these parameters fixed
and generating 50 realizations for each remaining parameter combination. For
instance, if the value of the intercept makes no difference for the relative model
performance, µ is held fixed for the 50 subsequent realizations. Using 50 realiza-
tions ensures reasonably accurate estimates of the CRPS and DSS scores of the
different models.

All models are fitted using Stan with four chains of 6000 iterations (2000 of
which are warmup iterations), resulting in effective sample sizes of at least 2000
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for each parameter. The maximum tree depth is set to 15, otherwise the default
values of the Stan parameters are used.

4.3 Importance of Allowing Multiresolution Vari-
ation

The initial five realizations reveal that the values of the parameters µ and w1 only
have a minor effect on the CRPS for the four models, compared to the parameters
κ, w0 and w2. Therefore, for the subsequent realizations µ = 0 and w1 = 0.8
are held fixed, and 50 data sets are generated using each of the 18 remaining
combinations of κ, w0 and w2 in Table 4.1.

To compare the Admin2 and Connected models with the Disconnected model,
we draw a crossplot of the CRPS estimates, both for LGA and state vaccination
coverage predictions, displayed in Figure 4.2. In each comparison the average
CRPS of the 50 realizations with the same simulation parameters are shown as
points. To show the variation, we also draw a convex hull, containing all the
crossplot points for each of the 150 combinations of w0 and κ. That is, if the
polygon is above the diagonal, the Disconnected model scores better for each of
the simulated 150 data sets.

The simulation results demonstrate that when a significant portion of the total
variance happen on state level, i.e. w0 ∈ {0.5, 0.8}, the Admin2 model performs
worse than both the multiresolution models. Since the data is generated using the
Connected model, we expect the Connected model to perform best on average,
as shown in the bottom two panes of Figure 4.2. However, the penalty for using
the Disconnected model is minor.

4.4 Model Comparison Using Noisy Observations

As described in Section 3.6, we wish to score models on real world data by
predicting design-based direct estimates. Can we detect potential differences
in predictive performance when only noisy observations are known? We now
use the data sets with w2 = 0.5, κ = 0.4 and w0 ∈ {0.5, 0.8} and add normally
distributed noise with standard deviation in {0, 0.2, . . . , 1} to both the true known
state vaccination coverages, and the predictive distributions of the models (both
on logit scale). This is done 50 times for each realization. Finally, the noisy
predictive distributions with the noisy true values are scored using CRPS.

The results of this check for sensitivity is displayed in Figure 4.3. The Discon-
nected model scores better than the Admin2 model for realizations with κ = 0.4
and w0 ∈ {0.5, 0.8}, if there is no noise. However, we see that as noise is added to
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Figure 4.2: Crossplot of average CRPS in simstudy using Disconnected multiresolu-
tion, Admin2 and connected multiresolution model. Using fixed µ = 0 and w1 = 0.8,
and 50 samples for each of the 18 combinations of the other parameters found in Table
4.1. For each combination of κ and w0, the convex hull of the CRPS from all the real-
izations is shown (150 in total), as well as the mean CRPS for each combination of κ,
w0 and w2.
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Figure 4.3: Crossplot of the CRPS score comparing the Disconnected and Admin2
models, when the true values are scrambled. The means are shown as points, while the
polygons are the convex hulls, each containing 50 points.

the true values, corresponding with greater uncertainty of the direct estimates,
the overall CRPS increases, and the difference between the models’ scores de-
creases. In practice, this means that scoring models using the direct estimates,
requires the models’ differences in predictive accuracy to be high enough com-
pared to direct estimates’ uncertainties.

4.5 Parameter Estimation

We now want to interpret how the Disconnected, Connected and Admin2 models
uses the model parameters κ, w0, w1 and w2, when fitted to data from the
Connected model. Importantly, we want to know if fitting the Connected model
recovers the true parameter values, if the Disconnected and Connected models
use the weights in the same way, and how the Admin2 model estimates total
precision parameter κ.

For each simulated data set, with a given set of parameters, the posterior
means and 2.5% and 97.5% quantiles of κ, w0, w1 and w2 are calculated for the
relevant fitted models. We then take the average of these statistics for each of
the 18 sets of simulation parameters and compare the average to the true known
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Figure 4.4: The average of the means and 95% quantiles of the total precision param-
eter κ, for each parameter combination of κ, w0 and w2 found in Table 4.1, with µ = 0
and w1 = 0.8 held fixed.

value. The average of the means are marked by points, and the segments go
from the average 2.5% quantiles to the average 97.5% quantiles. The parameter
combinations are grouped by the true parameter value, and then by model.

Figure 4.4 shows that the posterior means of the total precision from all three
models is very similar, and usually larger than the true value. This means that
the models tend to underestimate the uncertainty on logit scale. Additionally, the
CIs from the Admin2 model are smaller than for the Disconnected and Connected
models.

Even though the predictive scores of the Disconnected and Connected models
were very similar, the posterior distributions of w0 displayed in Figure 4.5 show
that the models use their components differently. By disconnecting the graph of
LGAs between states, the Disconnected model is forced to put more of the spatial
variation on state level. When the true w2 goes to one, meaning that there is
only ICAR on LGA level in the simulated data, the Disconnected model places
much more of the variation on state level. For all parameter combinations, the
Connected model recovers the true value fairly well, however as w2 grows the
Connected model also places more variation on state level, indicating that the
model is unable to distinguish between state and LGA level variation.

Figure 4.6 shows that the credible intervals for the weight w1, which splits
variance between Besag and iid. on state level, is typically [0.2, 0.95] for the Con-
nected and Disconnected model. Such wide credible intervals indicate that the
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Figure 4.5: The average of the means and 95% quantiles of the weight parameter w0,
for each parameter combination of κ, w0 and w2 found in Table 4.1, with µ = 0 and
w1 = 0.8 held fixed.

Disconnected and Connected models are unable to properly distinguish between
the iid. and ICAR component on state level, likely because the graph of states
in Nigeria only has 37 nodes.

In Figure 4.7 we compare the posterior values of w2 for the different mod-
els. The Disconnected model places much less weight on the ICAR component
on LGA level than the Connected model, but we also see that if there is little
variation on LGA level (w0 is large), the CIs are become very large. The Admin2
model is forced to use the LGA level ICAR component for spatial variation on
state level, meaning that it estimates a w2 close to one as the true w0 goes to
one. It is clear that there is no shared interpretation of the weight parameters
for all the models, rather the models use the components in different ways.

We calculate the empirical coverages for the 95% intervals with the fitted
Connected models. For the 50 simulated data set with each parameter of the 18
parameter combinations of κ, w0 and w2, we check whether the true simulation
parameter lies in the 95% posterior CI. The proportion of the data sets for which
this is true is reported in Table 4.2. The table reports the empirical coverages
for each value of each parameter. For κ each empirical coverage is based on 450
data sets, 300 for w0, 900 for w1 and 300 for w2. The empirical coverages for
the weights are all slightly larger than the nominal coverage, and for the total
precision slightly smaller.

If we assume that there is a 95% probability of a parameter being in the 95%
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Figure 4.6: The average of the means and 95% quantiles of the state weight parameter
w1, for each parameter combination of κ, w0 and w2 found in Table 4.1, with µ = 0 and
w1 = 0.8 held fixed.
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Figure 4.7: The average of the means and 95% quantiles of the LGA weight parameter
w2, for each parameter combination of κ, w0 and w2 found in Table 4.1, with µ = 0 and
w1 = 0.8 held fixed.
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Table 4.2: Empirical 95% coverages for the fitted Connected models.

Parameter Simulation value Empirical 95% coverage

κ
0.4 0.94
3 0.93

w0

0.2 0.96
0.5 0.97
0.8 0.96

w1 0.8 0.99

w2

0.2 0.97
0.5 0.98
0.8 0.96

CIs from the fitted models, the 95% empirical coverages is the mean of Bernoulli
trials, with a standard deviation of approximately 0.007. Values of 0.93 to 0.97
is therefore reasonable, but 0.98 and 0.99 indicate that the model does not gain
much information about the parameters from the data.



5 | Case Study: Vaccination
Coverage in Nigeria

5.1 Estimated Vaccination Coverage Maps

We apply the the four models described in Section 3.3 to the 2018 DHS data
of Nigeria, to produce estimates of LGA and state level vaccination coverage.
The model-based estimates are compared to design-based direct estimates. The
models are fitted to data from rural and urban strata separately to avoid compli-
cations in how to jointly model the observations. All the models are fitted using
Stan, with 4 chains of 6000 iterations (of which 2000 are warmup iterations), and
with default values for Stan parameters, leading to a minimum effective sample
size of 1500 for all model parameters.

The posterior state means for each fitted model are displayed as maps in
Figure 5.1 and 5.2 for urban and rural strata, respectively. The figures also show
the size of the centered 95% credible interval for the state vaccination coverages
on logit scale for each model. We also display the direct estimates, and the size
of the associated 95% confidence intervals. All models result in largely the same
spatial pattern for the vaccination coverage, with low coverage in the north-west,
and high coverage in the south along the coast. Notably, the vaccination coverage
is much lower in rural than urban areas.

Overall the model-based approaches result in smaller credible intervals than
the design-based method. For the estimates of the urban areas, states in the
south-east have very high uncertainty in the survey estimates. The model-based
approaches results in credible intervals for these states that are roughly the same
size as the other states. Among the four models, the Admin2 model offers the
greatest amount of spatial smoothing, and on average the smallest credible inter-
vals, while the three other models have very similar uncertainties.

The clearest example of how the different models borrow strength across state
borders can be seen in the rural estimates for Lagos along the coast, in Figure

45
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(a) Means

(b) 95% interval size logit scale

Figure 5.1: Maps of posterior means and size of 95% confidence interval and credible
intervals on logit scale for state level predictions of urban vaccination coverage.
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(a) Means

(b) 95% interval size logit scale

Figure 5.2: Maps of posterior means and size of 95% confidence interval and credible
intervals on logit scale for state level predictions of rural vaccination coverage.
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Figure 5.3: Crossplot of state estimates and the sizes of a 95% CI (both on logit scale),
using the Disconnected model along the x-axis, and the three other models and survey
estimates along the y-axis. The black line is the diagonal x = y, and the colored lines
are linear regressions for each of the alternative models.
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5.2. There are no rural clusters in Lagos, hence there is no direct estimate. The
Admin2 model has a credible interval of width 1.99 (on logit scale), which is
much narrower than for the Admin1, Disconnected and Connected models, with
credible intervals of 4.51, 4.57 and 3.57, respectively.

The estimates and size of the CIs for the four different models are compared
directly in Figure 5.3. Note that the rural Lagos data point is omitted from
the data, since there are no people living there and hence no survey estimate to
compare with. The upper two panels show that compared with the survey esti-
mates, all models have much greater smoothing between states. The vaccination
coverage estimated by the models tend toward the country mean compared to
the direct estimates, and the Admin2 model offers the greatest amount of spatial
smoothing. The lower two panels show that the estimated uncertainties of the
predictions are greatly reduced using a spatial models instead of direct estimates.
In addition to a greater amount of smoothing, the Admin2 model gives sharper
predictive distributions than the three other models.

We also display the vaccination coverage estimates for LGAs in Figures 5.4
and 5.5, for urban and rural estimates, respectively. For LGAs, there are too
few survey respondents per area to generate reliable direct estimates, and the
Admin1 model produces the same estimates for all LGAs within each state, so
neither are included in this comparison. For the Disconnected model, with no
direct sharing of information between neighbouring LGAs across state borders,
we expect to see sharp differences in estimated vaccination coverages along state
borders. We also see some of these sharp differences between LGAs across state
borders for the Connected model. Overall the Admin2 model appears to have
the largest amount of spatial smoothing. A feature of the ICAR model is that
the marginal variances in each node is proportional to its number of neighbours.
This can be seen in the size of the CIs of the Admin2 model along the border of
Nigeria, where the Admin2 model estimates greatest uncertainty.

In Figure 5.6 the posterior means and sizes of 95% CIs for LGAs from the
fitted Disconnected, Connected and Admin2 models are compared in a crossplot.
Notably, the 95% CIs from the fitted Admin2 model are typically slightly larger
than the CIs obtained using either of the multiresolution models, which is the
opposite of what happens when aggregating to state level. We also see that the
posterior means are very similar for all three models.

Table 5.1 compares the estimates of the total precision for the four fitted
models. The Admin2, Disconnected and Connected model all share similar total
precision values, both for the urban and rural observations. However, the Admin1
model estimates a far greater total precision.

For the Disconnected and Connected model, Table 5.1 also shows the posterior
mean and the 95% CI for the weight w0. Since the Disconnected model is unable
to share strength of information across state borders on LGA level, it is forced
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(a) Means

(b) 95% interval size logit scale

Figure 5.4: Maps of posterior means and size of 95% confidence interval and credible
intervals on logit scale for LGA level predictions of urban vaccination coverage.
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(a) Means

(b) 95% interval size logit scale

Figure 5.5: Maps of posterior means and size of 95% confidence interval and credible
intervals on logit scale for LGA level predictions of rural vaccination coverage.
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Figure 5.6: Crossplot of LGA level estimates of the vaccination coverage and the size
of the 95% CIs (both on logit scale), using the Disconnected model along the x-axis,
and the Connected and Admin2 models along the y-axis.
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Table 5.1: Posterior means and 95% CIs of the total precision κ and weight w0 for the
fitted models. The weight w0 is only a parameter in the Disconnected and Connected
model.

Residence Model Total precision κ Weight w0

Mean 2.5% 97.5% Mean 2.5% 97.5%

Urban

Admin2 1.41 0.88 2.21
Admin1 3.59 1.76 6.58
Disconnected 1.44 0.86 2.31 0.48 0.28 0.70
Connected 1.38 0.82 2.24 0.31 0.08 0.58

Rural

Admin2 0.98 0.70 1.33
Admin1 1.81 0.94 3.06
Disconnected 0.88 0.57 1.26 0.56 0.38 0.72
Connected 0.92 0.61 1.30 0.35 0.16 0.57

to explain more of the variation state level. This is consistent with the results in
the simulation study.

In Figure 5.7 we compare the aggregate value of the state vaccination cov-
erages ηState j with the component shared by all LGAs in a given state, i.e.
ηj = µ+

√
w0w1 uj +

√
w0(1− w1) vj , for the Disconnected and Connected mod-

els. If model interpretation is desirable, not just predictive accuracy, we want
the two values to agree. We see that for the Disconnected model, there is good
agreement between the values, but for the Connected model the state effect does
not really control the overall state vaccination coverages.

5.2 Prediction of Direct Estimates

As described in Section 3.6, we evaluate the different models using leave-one-
state-out cross-validation for each state. The predictive distributions from the
four models are scored using MSE, CRPS and DSS, and the average scores over
all the states and urban and rural areas, for each of the models, are shown in
Table 5.2. The CRPS and DSS for the different models is also compared in Figure
5.8.

For states where all models manage to predict well, with a low CRPS and
DSS, the Admin2 model performs slightly better than the three other models,
but the Admin2 model is worse for states that are harder to predict. Table 5.2
shows that on average, the Admin2 and Connected model performs slightly better
than the Admin1 and Disconnected model. Overall, the Connected model scores
best.
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Figure 5.7: Comparison between the aggregated probability estimates on logit scale,
and the state component alone, for the Connected model and the Disconnected model.

Table 5.2: Average MSE, CRPS and DSS for the predictive distributions of the survey
estimates on logit scale, using leave-one-state-out cross-validation. Lower score is better.

Model MSE CRPS DSS

Admin2 0.480 0.386 0.263
Admin1 0.526 0.397 0.263
Disconnected 0.519 0.392 0.246
Connected 0.479 0.379 0.169
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Figure 5.8: Crossplot of the CRPS for the four models using leave-one-state-out cross-
validation. All models are compare to the Disconnected model, and two strata where
there is a large difference between the Disconnected model and the Admin2 model are
marked. Lower score is better.
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Figure 5.9: The leave-one-state-out posterior densities for each of the four models,
for the indicated strata. The full black line denotes the direct estimate mean, and the
stippled line to the corresponding 95% confidence interval.
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In Figure 5.8 we have named two strata, Taraba rural and Sokoto rural, with
a large score discrepancy between the Admin2 model and Disconnected model.
The posterior distributions on logit scale for the four models are displayed in
Figure 5.9, which shows that the large differences occur simply when the location
of one of the posterior densities is off. In particular, it is not the case that the
models have vastly different variances.

As seen in the simulation study, in particular Figure 4.3, the multiresolution
models are only slightly better at predicting on state level when there is moderate
to strong state effects (w0 = .5 and w0 = .8), when the data is generated by
the Connected model. Furthermore, as more noise is added to the true state
vaccination coverages, the difference in score between the Disconnected and the
Admin2 model decreases. For the real world data the estimate of w0 is between
0.31 and 0.35 and the total precision is between 0.92 and 1.38 with the Connected
model. The typical standard error of the direct estimates is approximately 0.4.
In Figure 4.3 this corresponds to w0 = 0.5 and standard deviation of the noise of
0.4, where we see that the score difference between the Disconnected and Admin2
model is marginal. Since the estimated w0 for the Connected model fitted to the
MCV1 data is roughly 0.3, we expect only minor differences in score between the
Connected, Disconnected and Admin2 model that we observe.

5.3 Prediction on Cluster Level

We evaluate the cluster level prediction accuracy of the four models presented
in Section 3.3, through a 10-fold cross-validation. First, urban and rural data
is separated, then for each of the two groups the clusters are divided into 10
equal sized folds. This results in each fold containing approximately 10% of the
urban or the rural survey responses. For the clusters in each fold, the ratios of
vaccinated to total number of children, p̂i = yi/ni are calculated, and the data
in the nine remaining folds is used to fit the models. Finally, the ratios p̂i are
used with the predictive distributions for the LGAs in which the clusters lie, to
estimate the average MSE, CRPS and DSS for the omitted clusters. The results
are presented in Table 5.3. Additionally, we compare the cluster CRPS for the
different models using a crossplot in Figure 5.10.

Ideally, we would compute the scores on logit scale, but there are many clus-
ters with all vaccinated or all unvaccinated children, making this impossible.
This means that the cluster prediction scores (done on probability scale) are not
directly comparable to those for state predictions.

From the average scores shown in Table 5.3, we see that the Admin2 model
performs marginally better than the Connected and Disconnected model, al-
though the MSE is higher. As expected, the Admin1 model, which predicts the
same vaccination coverage for all LGAs in the same state, performs much worse
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Table 5.3: Average MSE, CRPS and DSS for cluster level predictions using 10-fold
cross-validation. Lower score is better.

Model MSE CRPS DSS

Admin2 0.0908 0.193 2.36
Admin1 0.0909 0.224 38.3
Disconnected 0.0907 0.195 2.86
Connected 0.0901 0.194 2.86
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Figure 5.10: Crossplot of the CRPS scores of the four models, using 10-fold cross-
validation on cluster level prediction. Lower score is better.
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than the three other models when predicting on cluster level. Clearly, there are
within state spatial patterns that the three other models are able to capture.



6 | Discussion

We have proposed two new multiresolution discrete spatial models for small area
estimation using household survey data, and shown through a simulation study
that they outperform the fine scale discrete spatial Admin2 model in the presence
of a large or moderate coarse scale variation. The new models also perform equally
well or slightly better than the Admin2 model for producing state and LGA
level estimates of MCV1 coverage, using data from the 2018 NDHS, with urban
and rural data treated separately. Multiresolution models therefore constitute
credible alternatives to the fine scale model.

Through the simulation study we showed that for some data sets, the mul-
tiresolution models outperform the fine scale model using CRPS as a scoring
criterion, when predicting vaccination coverage on coarse and fine geographical
scale. However, when fitting the multiresolution models, we are unable to gain
much information from the data about some of the model parameters. In partic-
ular, it is difficult to distinguish between the structured Besag random effect and
the unstructured iid random effect on coarse geographical scale, which is likely
because the graph representation of Nigerian states only has 37 nodes. We also
show that the score advantage of the multiresolution Disconnected model over
the fine scale Admin2 model decreases as noise is added to the true known state
vaccination coverages on logit scale. In practice this makes validation through
prediction of design-based direct estimates difficult if the standard error of the
direct estimates are too large.

The fitted Connected model was able to recover the true parameters used
to simulate the data, but the parameter interpretations are not shared by the
different models we consider. One of the goals of the multiresolution models is to
model on state and LGA level separately. We show that of the two mutliresolution
models, the Disconnected and Connected model, only the Disconnected model
offers this interpretability. For practitioners, who might want to compare results
between countries or set informative priors, this is an attractive feature, and may
make the Disconnected model preferable over the Connected model, even though
the Connected model tend to perform better in predictive accuracy.
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The Disconnected, Connected and Admin2 models all have the ability to high-
light geographical heterogeneity that is masked by design-based direct estimates,
because they produce estimates of vaccination rates at LGA level, which is the
finest geographical scale we consider here. Detecting coldspots in vaccination
coverage is of great importance, as they act as sources of outbreaks for diseases
such as measles. Analysing survey data with design-based methods is therefore
insufficient when combating transmittable diseases. However, when using LGA
level estimates produced by model-based methods to set public policies such as
vaccination campaigns, one should carefully consider the associated uncertainties.
When conducting cross-validation on cluster level data, the MSE on probability
scale of the models were roughly 0.09, corresponding to a RMSE of 0.3. On prob-
ability scale this is quite large, meaning that even with model-based approaches
the sparsity of the data causes considerable uncertainty.

The estimates of state level vaccination coverages from the different models
largely agreed with direct estimates, but with smaller uncertainties. Using di-
rect estimates to score the models reveal that the Connected model performs
marginally better than the three other models. The validation method also does
not reveal if the predictive distributions are well calibrated. For instance, we
could examine whether the direct estimates, which are treated as noisy observa-
tions of the true vaccination coverages, are over- or underdispersed.

In recent years, continuously indexed models spanning multiple countries have
been used to assess the success of vaccination efforts through fine scale pixel
maps. For instance, in Local Burden of Disease Vaccine Coverage Collaborators
(2021) they map the MCV1 coverage at a 5 × 5 − km2 resolution in 101 low-
and middle-income countries. Here, it appears that there exists sharp differences
across national borders. Analysing such data from many countries jointly may
therefore be a possible application of multiresolution models. The geographical
scale, spanning most of the globe, introduces complications due to the Earth’s
curvature for continuous models, which are not present for the models presented
in Section 3.3.

To properly examine the viability of the models presented here, it is necessary
to compare them with best practices modeling approaches. Commonly, contin-
uous spatial models are employed to analyse survey data, with the benefits of
avoiding having to define a meaningful neighborhood structure, being able to
easily compare results between countries, and using the exact cluster locations.
There are also other discrete spatial models, such as the Leroux model, that can
outperform the BYM model for disease mapping.

We have also not included a cluster effect or covariates in the model. With
no cluster effect one might expect overdispersion in binomial regression models
with clustered sample, because potential differences in vaccination rates between
clusters in the same LGAs are ignored. By using cluster random effects we
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introduce additional complications of how well we are able to distinguish between
random effects on state, LGA and cluster level. Most clusters have less than five
responses, and for the relevant data there are 1324 clusters distributed over 637
LGAs.

Using covariates in the models would likely increase the predictive accuracy
for surveyed households, but raises the question of how one should aggregate
over LGAs and states to obtain estimates of MCV1 coverages, when covariate
data is unknown for most households. There are covariates with continuous
estimates that can be used. For instance, urban and rural stratified data can be
analysed jointly. The survey weights are also omitted from the data when doing
model-based analysis. Ideally, we want to this information to improve predictive
accuracy.

We encounter a similar problem when aggregating from LGA level estimates
up to state level. The population counts make no distinction between urban
or rural population. Table A.1 in NPC and ICF (2019) clearly shows that the
ratio between urban and rural population varies a lot between states, and some
LGAs do not contain both urban and rural enumeration areas. It is reasonable to
believe the ratios between urban and rural under five population in LGAs varies
even more. Thus, there might be significant uncertainty in the aggregation to
state level MCV1 coverage, shared by all the models. The population counts
are also model-based estimates, which increases the uncertainty of the state level
estimates.





7 | Conclusion

The aim of this thesis was to develop multiresolution spatial models as a cred-
ible alternative to popular fine scale discrete spatial models. We have shown
through a simulation study that for data arising from hierarchical data gener-
ating processes, for instance if the vaccination coverage in small local regions
are determined by sums of random effects on different geographical resolutions,
multiresolution models may outperform simple fine scale models. However, the
results indicate that random effects on coarse geographical scale, such as between
states or between countries, have to be large compared to fine scale random effects
for the multiresolution models to perform better.

Two multiresolution models were applied the 2018 NDHS data for MCV1 cov-
erage, and the predictive accuracies were compared to a fine scale discrete spatial
model based on the BYM model. One of the multiresolution models performed
best when predicting state level vaccination coverage, but the differences in pre-
dictive score between the models considered are small. For prediction on cluster
level, the multiresolution models performed equally well as the fine scale model.
Since the models were scored by comparing the fitted models to design-based
direct estimates, it is difficult to get a large difference between the scores even if
there is a strong random effect on coarse geographical scale.

In future work the multiresolution models should be expanded upon by prop-
erly acknowledging the survey design, and how to use covariates when aggregating
predictions from fine to coarse spatial scales. Our analysis is limited by only com-
paring the proposed multiresolution models to one fine scale spatial model, and
the new multiresolution models should be compared to other spatial model, such
as continuously indexed spatial models.
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