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i

Abstract. The goal of this thesis is to show how privacy preserving
computation can be achieved through homomorphic encryption. The
thesis explores the BGV cryptosystem and how it can be used to com-
pute arbitrary polynomials on data. We establish different ways of
encoding real world data into the plaintext space and how functions
in the data space can be emulated in the plaintext space. We explore
the SIMD structure of the plaintext space and show how we can im-
plement different linear algebra algorithms. A rigorous definition of
privacy preserving is given and we prove that our privacy preserving
model satisfies IND-CPA security. Lastly we show the potential of
homomorphic encryption by looking at some statistical and machine
learning techniques and discuss how we can implement them homo-
morphically. We give an overview of the limits of the current secure
implementations of the BGV cryptosystem.

Sammendrag. Målet med denne oppgaven er å vise hvordan person-
vernbevarende beregninger kan oppn̊as gjennom homomorf kryptering.
Oppgaven utforsker BGV-kryptosystemet og hvordan det kan brukes
til å beregne vilk̊arlige polynomer p̊a data. Vi etablerer forskjellige
måter å representere data i klartekstrommet p̊a og hvordan funksjoner
i datarommet kan emuleres i klartekstrommet. Vi utforsker SIMD-
strukturen til klartekstrommet og viser hvordan vi kan implementere
forskjellige lineær algebra-teknikker. En rigorøs definisjon av person-
vernbevarende blir gitt, og vi beviser at v̊ar personvernbevarende mod-
ell tilfredsstiller IND-CPA sikkerhet. Til slutt viser vi potensialet med
homomorf kryptering ved å se p̊a noen statistiske beregningsmetoder
og maskinlæringsmetoder, og diskuterer hvordan vi kan implementere
dem homomorft. Vi gir en oversikt over hvor grensene g̊ar for de
eksisterene sikre implementasjonene av BGV-kryptosystemet.





Contents

Abstract i

1 Introduction 1

2 Fully homomorphic encryption 5
2.1 Notation and algebraic background . . . . . . . . . . . 5

2.1.1 Size of polynomials . . . . . . . . . . . . . . . . 7
2.1.2 SIMD structure . . . . . . . . . . . . . . . . . . 9
2.1.3 Galois automorphisms . . . . . . . . . . . . . . 12

2.2 Constructing the cryptosystem . . . . . . . . . . . . . . 13
2.2.1 Homomorphic operations . . . . . . . . . . . . . 16
2.2.2 Key switching . . . . . . . . . . . . . . . . . . . 19
2.2.3 Modulus switching . . . . . . . . . . . . . . . . 22
2.2.4 The homomorphic cryptosystem . . . . . . . . . 25

2.3 Noise management . . . . . . . . . . . . . . . . . . . . 28
2.3.1 The probability distribution . . . . . . . . . . . 28
2.3.2 Noise bounds . . . . . . . . . . . . . . . . . . . 29

2.4 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . 32

3 Implementation 35
3.1 Generic properties . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Encodings . . . . . . . . . . . . . . . . . . . . . 36

iii



iv CONTENTS

3.1.2 Arithmetic . . . . . . . . . . . . . . . . . . . . . 42
3.1.3 Comparisons and conditionals . . . . . . . . . . 47

3.2 Specific properties . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Moving between the slots . . . . . . . . . . . . . 49
3.2.2 Other properties . . . . . . . . . . . . . . . . . 54

3.3 Overview of useful techniques . . . . . . . . . . . . . . 56
3.3.1 Linear Algebra . . . . . . . . . . . . . . . . . . 59

4 Security model 65
4.1 Security proof . . . . . . . . . . . . . . . . . . . . . . . 66

5 Privacy Preserving Computation 71
5.1 Computing complicated functions . . . . . . . . . . . . 71

5.1.1 Polynomial approximation . . . . . . . . . . . . 72
5.1.2 Table lookup . . . . . . . . . . . . . . . . . . . 72

5.2 Computation techniques . . . . . . . . . . . . . . . . . 74
5.2.1 Principal component analysis . . . . . . . . . . 75
5.2.2 Linear regression . . . . . . . . . . . . . . . . . 77
5.2.3 Logistic regression . . . . . . . . . . . . . . . . 80
5.2.4 Neural networks . . . . . . . . . . . . . . . . . . 81

6 Concluding remarks 89

References 91



Chapter 1

Introduction

In recent years, outsourcing of computation has become increasingly
in demand with the rise of cloud platforms. This outsourcing requires
sharing and storage of vast amounts of data, which raises some privacy
concerns. The data owners have no control over the data they send to
the cloud platforms, and the service providers can use the data for their
own benefit or sell them to third parties. These concerns, along with
other factors, have made the need for privacy preserving computation
pressing. There are many potential applications for privacy preserv-
ing computation. Due to reasons such as privacy or copyright issues,
there are data we do not want to share even if useful information can
be gained from sharing them with the cloud. We can outsource the
computation on the data to someone with better models with privacy
preserving computation. One method of privacy preserving computa-
tion from the field of cryptography is to do the computation after the
data is encrypted. This is known as homomorphic encryption.

The goal of this thesis is to show how we can compute on encrypted
data. The tool we will use is called homomorphic encryption, more
specifically fully homomorphic encryption. This method allows for
addition and multiplication on the encrypted data in a very specific

1



2 CHAPTER 1. INTRODUCTION

polynomial ring. In essence we can compute any polynomial function
on the data. This is in contrast to partial homomorphic encryption
which can only do either addition or multiplication on the encrypted
data, and which has been possible for a long time. Many famous
cryptosystems such as RSA are partially homomorphic. Fully homo-
morphic encryption was first proven to be possible in a seminal paper
in 2009 by Gentry [8]. There has been rapid development since then,
but there is still room for improvements. The current FHE schemes
are unfortunately still considered impractical and too inefficient for
real world applications.

There are many different aspects to consider in order to do homo-
morphic computation. The first step is to choose a particular homo-
morphic cryptosystem to work with, which is presented in Chapter 2.
To explain how the cryptosystem works, we include some algebraic
background in the chapter. After this we establish a basic encryption
scheme which we use as the blueprint for the homomorphic version.
We show how we can do the basic homomorphic operations, namely
addition and multiplication. To hide the messages we add some noise
to make them seem random. We will see how this noise grows with
homomorphic operations, and show some techniques we can use to
mitigate the noise growth.

The structure of the cryptosystem requires the data to be in a very
specific format. This is often not the case for real world data, and we
therefore require some sort of encoding of the data into this particular
format. In Chapter 3 we explore some options available for encod-
ing of data and discuss their benefits and drawbacks. In addition we
consider how we can implement basic techniques such as arithmetic
and comparisons. We show the algebraic structure of the cryptosys-
tem in more detail, and how it lets us encode multiple messages in a
hypercube structure. We also show how the algebraic structure of the
cryptosytem lets us implement linear algebra techniques in different
ways.
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One question we need to answer before we can do privacy preserv-
ing computation is what it means for our computation to be privacy
preserving. In Chapter 4 we take a cryptographic point of view. If we
want to compute on encrypted data, we need to establish a security
model to ensure that the computation is actually the right kind of
privacy preserving. We include the possibility for some purposeful in-
formation leak, in order to for example decrease computation time. We
show security in the semi-honest model, where the adversary follows
the protocol assigned to it, but want to violate privacy when possible.
We give a security proof of our proposed model in this chapter.

Lastly, in Chapter 5 we examine how we can use the tools we have
created, and how we can use them to do privacy preserving compu-
tation. We consider some specific computation models and illustrate
what is feasible to implement homomorphically and what is not. In
addition we look at different approaches to the same computation. It
is often straightforward to convert computation to the homomorphic
setting once we have established the security model, chosen parame-
ters and chosen how we represent data. We still have to choose exactly
what information leak the algorithm will allow.

The main focus of this thesis is to establish the foundations for
homomorphic encryption and how to use it in practice, which we do
in Chapter 2 and 3. After this, the hardest part is done. The security
model we establish in Chapter 4 and the concrete examples of com-
putation methods in Chapter 5 serves as illustrating examples of the
framework and purpose of privacy preserving computation. What we
show throughout this thesis is that efficient implementation is highly
application dependent. It is therefore impossible to give a general
method for implementation. As we have not done an explicit imple-
mentation of a computation technique here, we refrain from giving a
method for specific implementation.





Chapter 2

Fully homomorphic
encryption

Fully homomorphic encryption is the ability to do additions and multi-
plication on encrypted data. In order to do this we need cryptosystems
which are specifically designed for this purpose. The cryptosystem we
will use is based on a system by Brakerski et al. [2], which is a system
that uses a polynomial ring Rq = Zq/〈f(x)〉 for some special polyno-
mial f and an integer q. Its hardness to crack is based on the learning
with errors over rings (RLWE) problem, which is described in Section
2.2. We first need some algebraic background before we can construct
the cryptosystem.

2.1 Notation and algebraic background

We start by establishing some notation. We write R = Z[X]/〈f(X)〉,
where the polynomial f(X) will be defined later. Similarly we de-
fine Rq = Zq[X]/〈f(X)〉 for an integer q. For a ∈ R we write [a]q
to symbolise that all the coefficients of a are reduced mod q into

5
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(−q/2, q/2]. When q is odd this is the same as being reduced into the
range (−q/2, q/2). We write k ∈ [n] to denote k ∈ {0, 1, . . . , n − 1}.
In general we write vectors in bold and denote the ith element of v by
v[i], and sometimes as vi when it is obvious from context. We denote
the inner product of two vectors u,v as 〈u,v〉 =

∑
i u[i] · v[i]. For a

field F we define an mth root of unity to be an element ω that satisfies
ωm = 1. We call ω primitive if ωk 6= 1 for all k less than m. We
denote Z∗m the group of units in Zm. The number of elements in Z∗m
is φ(m), where φ(·) is Euler’s totient function.

Three important properties of the mth roots of unity are

• If k ≡ l mod m then ωk = ωl.

• If ω is primitive then every mth root of unity can be written as
ωj for some j ∈ [m].

• If ω is primitive then every primitve mth root of unity can be
written as ωj for some j ∈ [m] where gcd(j,m) = 1.

We use the first property to simplify notation a bit. We write Xk

with k ∈ Zm to denote X to the power of the representative of k+mZ
which lies in [m]. Similarly we write Xk with k ∈ Z∗m as the same as
above when gcd(k,m) = 1. We now define f(X) in the quotient of R
as the mth cyclotomic polynomial Φm(X).

Definition 2.1. Let ω = e2iπ/m ∈ C The mth cyclotomic polynomial
Φm(x) is the product of the primitive mth roots of unity. Symbolically
we write

Φm(x) :=
∏
j∈Z∗m

(X − ωj) ∈ C[X].

The mth roots of unity are roots of the polynomial Xm−1 ∈ Z[X].
The mth cyclotomic polynomial then divides Xm− 1. In fact we have
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that ∏
d|m

Φd(X) = Xm − 1

by the fact that the primitive dth roots of unity are only represented
in the dth cyclotomic polynomial.

Two well-known properties of the cyclotomic polynomials are that
Φm(X) ∈ Z[X] and that Φm(X) is irreducible over Q. The degree of
Φm(X) is φ(m).

2.1.1 Size of polynomials

In this section we will develop a notion for the size of polynomials.
This is a crucial property in the cryptosystem we will define in Sec-
tion 2.2. How we measure a polynomials size depends on the kind
of embedding we use. One naive way is to look at the vector formed
by the coefficients of the polynomial. This is known as the coefficient
embedding. One notion for size of the polynomial is then to take a
norm of that vector. Another important embedding is the canonical
embedding, which evaluates the polynomial at the primitive roots of
unity. If we assume we work in the mth cyclotomic quotient ring,
then all polynomials are represented by a polynomial of maximum de-
gree φ(m) − 1. For a given polynomial r(X) =

∑
rix

i we denote the
embeddings symbolically as

coeff : r(X) 7→ c(r) = (r0, . . . , rφ(m)−1)

canon : r(X) 7→ σ(r) = (r(ωt))t∈Z∗m

where ω is a primitive complex root of unity. The canonical embedding
has the added benefit that multiplication works component-wise. This
turns out to be very important when we look at size. We define two
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different notions of the size of a polynomial by

‖r‖ := ‖σ(r)‖∞ = max
t∈Z∗m
|r(ωt)|

‖r‖c := ‖c(r)‖∞ = max |ri|.

The size of the canonical embedding has the property of being sub-
multiplicative, namely

‖ab‖ ≤ ‖a‖ · ‖b‖

which is a convenient property. It makes the proofs involving the
norms of polynomials much cleaner. With the coefficient embedding
we only have the sub-multiplicative with a scaling factor. For example
in the ring Rq/(X

d + 1) we get that the norm of a product is bounded

by the product of the norms scaled by a factor of
√
d. This is weaker

than being sub-multiplicative.
The coefficient norm is useful, as it encapsulates when ciphertexts

decrypt correctly. If a ciphertext c encrypted under the key s has the
property ‖〈c, s〉‖c < q/2, then it decrypts correctly. We explain this
in detail in Section 2.2.

We can bound the canonical norm by the coefficient norm for any
given parameters (q,m). Thus even though the coefficient norm is
what must be kept low to avoid decryption errors, we can operate
with the canonical norm, which has better properties such as the sub-
multiplicative property. We get the bound from the following theorem.

Theorem 2.1. For all r ∈ R, we have

‖r‖c ≤ Em · ‖r‖

where Em is the infinity norm of the inverse of the Vandermonde ma-
trix of the mth primitive roots of unity. In other words

Em = ‖V −1m ‖∞ Vm = (ωij)i∈Z∗m,j∈[φ(m)]

where for a matrix A = (aij) we define ‖A‖∞ = max
∑

j |aij|.
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Proof. We notice first that Vm · coeff(r) = σ(r). From this we get that

‖c(r)‖∞ = ‖V −1m · σ(r)‖∞ ≤ ‖V −1m ‖∞‖r‖ = Em‖r‖

Similarly, we can get the bound ‖r‖ ≤ ‖Vm‖‖r‖c. Since the abso-
lute value of all entries in the Vandermonde matrix is 1, we get the
bound ‖r‖ ≤ φ(m)‖r‖c.

The bound Em is not very tight, but somewhat useful. It depends
only on the prime factors of m. If m = pe11 . . . pekk and r = p1 . . . pk
then Em = Er. A proof of this and computed values for Em was given
by Damg̊ard et al. in [6].

2.1.2 SIMD structure

The plaintext space we will be working in is Rp = Zp[X]/〈Φm(X)〉 for
some prime number p. It turns out that with the right parameters
this ring splits into a product of finite fields. We can utilise this to
put a message inside each of the finite fields and encrypting a vector
instead of a single message. We show how Rp splits in the following
theorem:

Theorem 2.2. Let Rp = Zp[X]/(Φm(X)) where p is prime and Φm

is a cyclotomic polynomial, where p - m. Then Rp ' Fpd × · · · × Fpd
where d is the smallest integer such that pd ≡ 1 mod m.

Proof. The polynomial Φm(X) ∈ Zp[X] divides Xm − 1 ∈ Zp[X],
which is a separable polynomial, i.e. the roots in the algebraic closure
are distinct. Thus Φm(X) has distinct roots in the algebraic closure.
Additionally, the roots of Φm(X) are primitve mth roots of unity, and
thus has multiplicative order m.

Let Φm = F1 . . . Fl where the Fi’s are monic, irreducible and dis-
tinct from each other. Then each Zp[x]/(Fi(X)) is a field, each of
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which is generated by a root of the polynomial Fi(X), which has mul-
tiplicative order m.

We now show that if E is a field such that [E : Zp] = d (in other
words E ' Fpd) and E is generated by an element ω of multiplicative
order m, then d is the multiplicative order of p modulo m.

We know that ω|E
∗| = ωp

d−1 = 1, so we have that m divides pd− 1.
Let u be the multiplicative order of p modulo m. Since pd ≡ 1 mod m,
we know that u|d. Let E′ = {z ∈ E|zpu = z}, which contains ω and
Zp. This is a subfield, and since it contains the generating element ω,
it equals E. Since E′ is the roots of the polynomial Xpu −X, we have
that |E| = |E′| ≤ pu. Thus d ≤ u, and because u|d, we have d = u.

Since the assumption that Zp[x]/(Fi(X)) is generated by an ele-
ment of order m holds for all i, we can conclude that they are all
isomorphic to Fpd . Thus Rp ' Fpd × · · · × Fpd as required.

Since Rp ' Fpd × · · · ×Fpd we can, given the right parameters, use
the algebraic structure to give us some useful properties. Rather than
encrypting a single message into Rp we can put a message into each
copy of Fpd . We call each copy of Fpd a plaintext slot.

Example 2.3. Let m = 215 − 1 and p = 2. Then φ(m) = 27000, and
we know that d = 15 is the smallest integer such that 2d ≡ 1 mod m.
Thus we would get φ(m)/d = 27000/15 = 1800 slots, where each slot
is F215 .

We should note that although we use a prime plaintext modulus
throughout this thesis, it is possible to generalise to high prime powers
P = pr for r > 1. The plaintext space RP is then isomorphic to a
product of ZP -algebras, instead of a product finite fields of order pd.
Thus we get larger plaintext slot spaces, which can give more options
for implementation. The isomorphism from RP to the product of ZP -
algebras can be found through a process known as Hensel lifting [13].
We will largely ignore this generalisation for simplicity of explanation.
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Addition or multiplication in Rp corresponds to an addition or mul-
tiplication in each slot. This structure with multiple slots where the
same operation is applied to all the slots is often referred to as Single
Instruction, Multiple Data (or SIMD for short). This is a useful prop-
erty for computation, as it allows us to do a bunch of computations
in parallel. The downside of this parallelisation is that we have to do
the same operation on all the slots. Fortunately, the algebraic struc-
ture gives us a way of moving between slots directly. We first have to
describe the structure a bit more in detail before we look at how we
move between slots.

From Theorem 2.2 we get the isomorphism

Rp → Zp[X]/(F1(X))× · · · × Zp[X]/(Fl(X))

f(x) 7→ ([f(X) mod F1(X)], . . . , [f(X) mod Fl(X)])

From this we have that Rp can be split into slots, each of which is
a finite field Fpd . The polynomial Φm(X) has φ(m) roots and each
of the polynomials Fi has d roots mod p. We focus on a single slot.
We arbitrarily choose the first slot and let E = Zp[X]/(F1(X)) ' Fpd .
We can view E differently by noticing that E ' Zp[ω] for a root ω of
F1(X). Now Φm(X) has φ(m) roots in E, the primitive roots of unity
ωj for j ∈ Z∗m. Each irreducible Fi(X) then has d roots in E. We can
use these roots for the movement between the slots. First we look at
how they are distributed.

We look at the subgroup H = 〈p〉 ≤ Z∗m. Notice that |Z∗m/H| = l
since φ(m) = dl and |H| = d. We choose representatives k1, . . . , kl ∈
Z∗m such that kiH are different cosets of H for all i. These are rep-
resentatives for elements in Z∗m/H, each of which represents a slot in
the plaintext. We can choose the ki such that Fi(X) has d roots in E
of the form ωk, where k ∈ kiH. Thus we get an isomorphism.

Zp[X]/(Fi(X))→ E

[f(X) mod Fi(X)] 7→ f(ωki)
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Combining this with the previous isomorphism we get

Rp → El

f(X) 7→ (f(ωk1), . . . , f(ωkl)).

Now that we have described how we can view the algebraic structure,
we look at a transformation which we later will use to move between
the slots.

2.1.3 Galois automorphisms

The Galois automorphisms are the tool we later will use to move be-
tween slots. They are ring automorphisms defined in the following
way:

θj : R −→ R

f(X) 7−→ f(Xj)

for j ∈ Z∗m. The reason we only look at j in Z∗m and not in Zm
is that we need j to be invertible. We will see why in the following
lemma.

Lemma 2.4. The operation θj is a well defined ring automorphism.

Proof. We first show it is well defined. We first note that Φm(X)
divides Φm(Xj). To see why, notice that if ω is a primitive mth root
of unity then ωj is a root of Φm(X), and therefore ω is a root of
Φm(Xj). Since Φm(X) is the minimal polynomial of ω, we have that
Φm(X) divides Φm(Xj). Therefore we have that

θj[f(X) + h(X)Φm(X)] = f(Xj) + h(Xj)Φm(Xj)

= f(Xj) + g(X)Φm(X)
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where g(X) = h(Xj)Φm(Xj)/Φm(X) ∈ R. To see that it is bijective,
note that

θj ◦ θk = θjk = θk ◦ θj
In particular, if we let k be the inverse of j in Z∗m, then we have an
inverse automorphism.

Using these automorphisms we can move between slots by apply-
ing the correct automorphisms θj : f(X) → f(Xj) for j ∈ Z∗m/H.
By choosing the representatives ki appropriately, we can do various
movements between slots. More precisely, we will choose the repre-
sentatives so that a Galois automorphism corresponds to a rotation
of the slots. More details on this and how more general movement is
implemented is described in Section 3.2.1.

2.2 Constructing the cryptosystem

Now that we have established the necessary algebraic background, we
can move on to defining the cryptosystem.

Definition 2.2. A discrete Gaussian distribution with standard devi-
ation r is the Gaussian distribution with standard distribution r where
the elements drawn are rounded to their nearest integer.

The one we will describe is a variant of the BGV cryptosystem,
so named after the discoverers Brakerski, Gentry and Vaikuntanathan
[2]. The cryptosystem relies on the following security assumption.

Definition 2.3. The PLWE problem (polynomial-learning with er-
rors) is to distinguish polynomially many samples from the distribu-
tion (ai, bi) and the same number of samples (a′i, b

′
i) where the ai’s,

a′i’s, b
′
i’s and s are all drawn uniformly from Rq, ei is drawn from a

discrete Gaussian distribution χ and bi = ai · s+ pei. The assumption
that this problem is hard is called the PLWE assumption.



14 CHAPTER 2. FULLY HOMOMORPHIC ENCRYPTION

This assumption holds even if s is drawn from discrete Gaussian
distribution χ and not from the uniform distribution. We call this
the PLWE problem because the problem is to distinguish polynomial
many samples. The assumption can be reduced to the shortest vector
problem (SVP) on ideal lattices over R. We refer to [19] for a proof.

We now construct our first (non-homomorphic) cryptosystem. We
will later construct a homomorphic variant based on the one below:

Basic Encryption Scheme

• E.Setup(m, p, 1λ): Set R = Z[X]/(Φm(X)) and choose a discrete
Gaussian distributions χ, χ′. The prime p will be the plain-
text modulus. Choose the integer q (the ciphertext modulus)
so that we get 2λ security for known attacks. Set params =
(q,m, p, χ, χ′).

• E.KeyGen(params): Draw s from χ. Draw e from χ. Draw a
uniformly from Rq. Set b = a · s+ pe. Output sk = s = (1, s) as
the secret key and pk = (a, b) as the public key.

• E.Enc(params, pk,m): draw r from χ, f from χ and g from χ′.
Let µ ∈ Rp be our message. Set the encryption to be c = (c0, c1)
where c0 = b · r + pg + µ and c1 = −a · r + pf .

• E.Dec(params, sk, c): output [[〈c, s〉]q]p.

The noise in this encryption scheme is the term 〈c, s〉. We often
refer to the parameters e, f, g as noise as well, as these are small added
noise terms that obfuscates the message. Keeping the size of the total
noise 〈c, s〉 low lets us decrypt correctly. We show this in the following
lemma.

Lemma 2.5. The decryption is correct provided that ‖p · (r · e + f ·
s+ g) + µ‖c < q

2
.
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Proof.

[[〈c, s〉]q]p = [[c0 + c1 · s]q]p
= [[(b · r + pg + µ) + (−a · r + pf) · s]q]p
= [[p · (r · e+ f · s+ g) + µ]q]p

= [p · (r · e+ f · s+ g) + µ]p

= µ

We prove that the encryptions are indistinguishable from uniformly
selected elements, or in other words that the cryptosystem is secure.
We rely on the following fact from [3].

Lemma 2.6. Let a, b, c, d be drawn from a discrete Gaussian distri-
bution with standard deviation r, and let D be drawn from a dis-
crete Gaussian distribution with standard deviation 2ω(logn)r. Then
ab+ cd+D is statistically indistinguishable from D.

We can now prove the security of our cryptosystem.

Theorem 2.7. Let e, f, r, s be drawn from a Gaussian distribution
χ, and g be drawn from a Gaussian distribution with larger standard
deviation χ′. Let a be drawn uniformly and b = a · s + pe. Let x =
a · r + pf and w = b · r + pg. Then under the PLWE assumption,
it is hard to distinguish between (a, b, x, w) and (a′, b′, x′, w′) where
a′, b′, x′, w′ are drawn uniformly from Rq.

Proof. We can see directly from the PLWE assumption that it is hard
to distinguish between (a, b) and (a′, b′). Next we look at (x,w):

w = b · r + pg

= (a · s+ pe) · r + pg

= x · s+ p(e · r − f · s+ g)
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If the standard deviation of χ′ is sufficiently large compared to χ, we
can by Lemma 2.6 say that e · r − f · s+ g ≈ g. We then have that

(a, b, x, w) ≈ (a, b, x, xs+ pg).

However (a, x) is by the PLWE assumption indistinguishable from
(a′, x′). Combining this with the fact that (x′, x′s + pg) is indistin-
guishable from (x′, w′) we get that (a, b, x, w) is indistinguishable from
(a′, b′, x′, w′).

Now that we have a secure and functional cryptosystem, we can
describe how to make it homomorphic.

2.2.1 Homomorphic operations

Addition of two ciphertexts encrypted by the same secret key is done
via coordinate-wise addition:

cadd = c + c′ = (c0 + c′0, c1 + c′1).

This decrypts correctly by the bilinearity of the inner product. Mul-
tiplication of two ciphertexts encrypted under the same secret key is
a little bit more complicated:

cmult = c · c′ = (c0c
′
0, c0c

′
1 + c′0c1, c1c

′
1)

:= (cmult,0, cmult,1, cmult,2)

The reason that we define it this way will become clear in a moment.
To better understand the multiplication of two ciphertexts, we give

some facts about tensor products of two vectors. The tensor product
of two 2-dimensional vectors c = [c0 c1]

T , c′ = [c′0 c
′
1]
T is

c⊗ c′ =

[
c0c
′
0 c0c

′
1

c1c
′
0 c1c

′
1

]
.
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Tensoring the secret key s = (1, s) with itself gives

s⊗ s =

[
1 s
s s2

]
which we notice is a symmetric matrix. The inner product on the
tensor product is defined by

〈c⊗ c′, s⊗ s′〉 := 〈c, s〉〈c′, s′〉.

The reason we include a discussion about tensor products is we can
view c⊗c′ as a ciphertext encrypted under s⊗s, and we can compute
the decryption via the inner product in the usual way. Thus we have
that

〈c⊗ c′, s⊗ s〉 = 〈c, s〉〈c′, s〉
= (c0 + c1s) · (c′0 + c′1s).

We know that the multiplication of the decrypted texts can be written
as

(c0 + c1s) · (c′0 + c′1s) = c0c
′
0 + (c0c

′
1 + c′0c1)s+ c1c

′
1s

2

= cmult,0 + cmult,1s+ cmult,2s
2

= 〈cmult, (1, s, s
2)〉.

The key insight is that we can make the multiplication of two cipher-
texts decryptable at the expense of adding a term to the ciphertext.
We also need the powers of the secret key s. In this case, since we
were evaluating a multivariate polynomial of degree 2, we needed 2
powers of s. In general, to evaluate a polynomial of degree D, we need
to compute D powers of s to decrypt the polynomial.

We can generalise our tensor product approach. We call c a fresh
ciphertext if it only has two terms. If we multiply r fresh ciphertexts
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c1, . . . , cr, we can use the tensor product representation to write

〈c1 ⊗ · · · ⊗ cr, s⊗ · · · ⊗ s〉 =
r∏
i=1

〈ci, s〉

If we write out this product, we see that the k’th term in cmult is
described by the following sum:

cmult,k =
∑

j1+···+jr=k

c1j1 . . . c
r
jr

where ck is the k’th ciphertext we are multiplying and jk ∈ {0, 1}. The
reason we use cmult instead of c⊗ c′ as the product of the ciphertexts
is that it is more compact. This effect is much more notable if we
have ciphertexts encrypted under longer keys, as the tensor product
of r fresh ciphertexts has 2r entries while the ciphertext product has
r+ 1 entries. The only reason we can use this compact version is that
c and c′ are encrypted under the same key s.

Example 2.8. If we want to multiply three ciphertexts, we get

c1c2c3 = (
∑

j1+j2+j3=0

c1j1c
2
j2
c3j3 , . . . ,

∑
j1+j2+j3=3

c1j1c
2
j2
c3j3)

= (c10c
2
0c

3
0, c

1
1c

2
0c

3
0 + c10c

2
1c

3
0 + c10c

2
0c

3
1,

c11c
2
1c

3
0 + c10c

2
1c

3
1 + c11c

2
0c

3
1, c

1
1c

2
1c

3
1)

= (cmult,0, cmult,1, cmult,2, cmult,3)

and we decrypt it by computing cmult,0 + cmult,1s+ cmult,2s
2 + cmult,3s

3.

Of course, the ciphertexts cannot just continue to grow, so we need
a method for reducing the new ciphertexts. We do this with the key
switching technique, which we introduce in the following section.
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2.2.2 Key switching

Multiplication of two ciphertexts produce a ciphertext with more terms.
This makes it unpractical to use, because we cannot expand the cipher-
texts indefinitely. To prevent the ciphertexts from growing in length,
we use a key switching method which reduces the ciphertext to the
original size, with only 2 terms. For our method to work, we need
more than one secret key to use. Let us illustrate with an example.
When we do multiplication of two fresh ciphertexts we get a message
encrypted under (1, s, s2). We would like to get the same message
encrypted under some new key (1, s′) with only two terms.

The technique we show here is for general length keys, but the
most common case is after we do a multiplication. We first construct
a weak version, which will add too much noise. We assume the keys
s1, s2 are of the form si = (1, s′i).

KeySwitch(s1 ∈ Rn1
q , s2 ∈ Rn2

q )

1. A← R
n1×(n2−1)
q

2. b = As′2 + e. B = (b + s1, A)

3. To get a new ciphertext c′ of the same message encrypted under
s2, set c′ = cTB

We can see that c′ decrypts correctly:

〈c′, s2〉 = 〈cTB, s2〉
= cTBs2 = cT (s1 + e)

= 〈c, s1〉+ 〈c, e〉.

We see here that we have obtained some additional noise 〈c, e〉,
which we would like to reduce. To do this, we refine our key switching
technique with two important subroutines:
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Definition 2.4. The bit decomposition BitDecomp(x, q) takes in a
vector x ∈ Rn

q and the modulus q and outputs the bit representation

of x. In other words, if x =
∑blog qc

j=0 2j · uj where uj ∈ Rn
2 then

BitDecomp(x, q) outputs (u0, . . . ,ublog qc) ∈ Rn·dlog qe. The function
Powersof2(x, q) takes in x ∈ Rn

q , q and outputs x multiplied by the

powers of 2: (x, 2 · x, . . . , 2blog qc · x) ∈ Rn·dlog qe

These routines have the following useful property

Lemma 2.9. For vectors c, s of equal length, we have

〈BitDecomp(c, q),Powersof2(s, q)〉 = 〈c, s〉 mod q

.

Proof.

〈BitDecomp(c, q),Powersof2(s, q)〉 =

blog qc∑
j=0

〈uj, 2j · s〉

= 〈
blog qc∑
j=0

2j · uj, s〉

= 〈c, s〉

We use these subroutines to hide the powers of 2 of the secret key in
the key switching matrix, instead of the key itself. This is done in two
steps: We construct a key switching matrix which is an encryption
of the powers of 2 of the first key under the second key. This key
switching matrix is public. After this we give a simple method for
how to switch the keys. The keys s1, s2 are assumed to be on the form
si = (1, s′i).

KeySwitchGenerator(s1 ∈ Rn1
q , s2 ∈ Rn2

q ):
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1. Let N = n1 · dlog qe, let A be uniformly drawn from RN×(n2−1),
let e be drawn from χN and set b = As′2 + pe

2. Let B = (b, A) + (Powersof2(s1), 0). Output τs1→s2 = B ∈
RN×n2 .

Here taus1→s2 is the information needed to change the keys. It does not
reveal anything about the keys, by a similar argument to the security
of the basic encryption scheme. What this key switching procedure
essentially does is to encrypt all powers of 2 times s2 under the key
s2. This information is then used as a key switching mechanisms.

To switch keys, compute c2 = BitDecomp(c1)T ·B.

Example 2.10. Say we have the ciphertext cmult = (cmult,0, cmult,1, cmult,2)
encrypted under s = (1, s, s2) and we want to reduce it to a ci-
phertext with two terms. Then we compute the key switching ma-
trix τs→s′ where s′ = (1, s′) is a new key. From there, we compute
c̃ = BitDecomp(cmult)

T · τs→s′ , which have two terms. This is the
encryption of the same message under the key (1, s′).

The added noise of this new key switching procedure is as men-
tioned smaller than with the first procedure. We prove how small in
the following lemma.

Lemma 2.11. Let all the parameters be as above. Then the noise of
the new ciphertext can be described by

〈c2, s2〉 = p〈BitDecomp(c1), e〉+ 〈c1, s1〉 mod q

Proof.

〈c2, s2〉 = BitDecomp(c1) ·Bs2

= BitDecomp(c1) · (pe + Powersof2(s1))

= p〈BitDecomp(c1), e〉+ 〈BitDecomp(c2),Powersof2(s1)〉
= p〈BitDecomp(c1), e〉+ 〈c1, s1〉
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From this we see that we gain an error term p〈BitDecomp(c1), e〉,
which is less than with our first key switching procedure. We name
this error term the key switch noise and if we denote it ‖e‖ we see that
it can be bounded by ‖e‖ ≤ p

∑
i ‖e[i]‖. This is small if we choose

small noise polynomials. Say we bound the e[i] by a constant β. Then
the noise is bounded by ‖e‖ ≤ pn1dlog qeβ.

2.2.3 Modulus switching

The BGV cryptosystem is build on essentially hiding the plaintexts
in some noise. When we multiply ciphertexts, this noise grows. If we
have a bound on the noise B of the ciphertexts, then the bound on the
noise of the multiplied ciphertexts is B2. If this noise becomes too big,
it will wrap around modulo q, and the decryption becomes incorrect.

In this section we look at a technique to limit noise growth called
modulus switching. This technique lets us convert a ciphertext c en-
crypted under a modulus Q to a ciphertext c encrypted under a mod-
ulus q. If c′ is the integer vector closest to (q/Q)c such that c′ ≡ c
mod p, then we have 〈c, s〉 mod Q = 〈c′, s〉 mod q, which we show
in Theorem 2.13.

We illustrate with an example. Say we want to compute c8 for
some ciphertext c with noise bound B and that we have a modulus
chain q0, . . . , q3 so that qi/qi+1 ≈ B. With regular multiplication and
no modulus switching, the noise of c8 would be B8. But with modulus
switching, we can scale down the noise each time we multiply, so that
by reducing modulus three times, we get that the noise of c8 is still
B. Even though we have a smaller modulus now, we still have more
room for noise growth after this operation. In practice, the modulus
switching adds some small noise in addition to scaling down the noise.
Thus the analysis above is only approximate. We start by defining a
scaling operation.
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Definition 2.5. Let c ∈ R and let Q > q > p. We define c′ ←
Scale(c,Q, q, p) to be the R-vector closest (with the coefficient norm)
to (q/Q) · c that satisfies c′ ≡ c mod p.

Lemma 2.12. The difference between the coefficients of c′ and (q/Q)c
is at most (p/2).

Proof. Let a = d(q/Q)cc. Then c′ = a + u for some u ∈ R. If u is
outside [−p/2, p/2], then we can add some multiple of p to c′ to get
something that is still congruent to c mod p, but is closer. Therefore
the coefficients of u lie in [−p/2, p/2]. Let v = (q/Q)c − a. The
coefficients of v lie in [−1/2, 1/2]. Now if p is odd, then u is uniquely
determined. If p is even, then let u have the same sign as v. We have
that

c′ − (q/Q)c = c′ − a− ((q/Q)c− a)

= u− v.

If p is odd, then the coefficients of u lie in (−p/2, p/2) and so the
coefficients of c′ − (q/Q)c lie in [−p/2, p/2]. If p is even, the sign of u
and v is the same, and so the coefficients of u − v lies in [−p/2, p/2].
Therefore we have that the difference between the coefficients of c′ and
(q/Q)c lies in [−p/2, p/2].

Now that we have some results to lean on, we show the following:

Theorem 2.13. Let Q > q > p be integers and let c be a ciphertext
and c′ ← Scale(c,Q, q, p) such that Q ≡ q ≡ 1 mod p. Let βi be a
bound on the size of the secret key term ‖s[i]‖. Then c′ decrypts to
the same message as c provided that the noise eQ of c satisfy

‖eQ‖ < Q/(2Em)− (p/2)φ(m)
∑
i

βi.
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Proof. Let eQ be the noise of c and set

eQ = [〈c, s〉]q = 〈c, s〉 − kQ
eq := 〈c′, s〉 − kq.

We will argue that eq is so small that eq = [〈c′, s〉]q. We have

‖eq‖ = ‖〈c′, s〉 − kq‖

= ‖ − kq +
q

Q
〈c, s〉+ 〈c′ − q

Q
c, s〉

≤ q

Q
‖[〈c, s〉]Q‖+

∑
i

‖c′[i]− q

Q
c[i]‖ · ‖s[i]‖

≤ q

Q
‖eQ‖+ (p/2)φ(m)

∑
i

βi.

We say the first term is the mod scaled noise and the second term the
mod added noise. If we put in the bound on the noise eQ we see that

‖eq‖ ≤
q

Q
‖eQ‖+ (p/2)

∑
i

βi

<
q

Q
(Q/(2Em)− (p/2)φ(m)

∑
i

βi) + (p/2)φ(m)
∑
i

βi

= q/2Em.

Since ‖eq‖c ≤ Em‖eq‖ < q/2, we have that the decryption is correct.
We can see that c′ decrypts to the same message by noticing that

[〈c′, s〉]q ≡ 〈c′, s〉 − kq
≡ 〈c, s〉 − kQ
≡ [〈c, s〉]q mod p
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We have now showed that we can scale down the noise of a cipher-
text, at the cost of adding some noise. If we bound the secret key
properly, this noise is small. We have then successfully reduced the
noise of the ciphertext.

2.2.4 The homomorphic cryptosystem

We now sketch a setup of the homomorphic encryption system. This
system uses the cryptosystem sketched in the beginning of Section 2.2
as subroutines. The homomorphic cryptosystem is leveled, meaning
that we have to specify the number of levels L (typically the multipli-
cation depth we want to achieve) when we set up the cryptosystem.
A more flexible system can be constructed by implementing a tech-
nique called bootstrapping. We sketch the idea behind bootstrapping
in Section 2.4. For now we construct our leveled homomorphic cryp-
tosystem. The key generation involves constructing the key switch
matrices as well as the secret keys and public keys. The homomor-
phic cryptosystem includes three extra algorithms. There is one for
addition, one for multiplication and one for refreshing ciphertexts and
correcting them to the same moduli or key. Without the refresh step
we cannot compute addition and multiplication, as we always assume
that two ciphertexts we want to add or multiply are encrypted under
the same key and modulus.

• HE.Setup(1λ, 1L) takes as input the security parameter and the
number of levels L. For j = L down to 0, run E.Setup(m, p, 1λ)
to obtain a ladder of moduli from qL down to q0. We choose
mj = mL, χj = χL so that we have the same ring dimension and
noise distribution for every level.

• HE.KeyGen({qj,m, χ)}): For j = L down to 0, do:

1. Run sj ← E.SecretKeyGen and (aj, bj)← E.PublicKeyGen
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2. Set s′j ← sj ⊗ sj. That is, s′j is a tensoring of sj with itself

3. Set s′′j ← BitDecomp(s′j, qj)

4. Run τs′′j+1→sj ← KeySwitchGen(s′′j+1, sj)

The secret key sk consists of the sj’s and the public key consists
of the (aj, bj)’s and the τs′′j+1→sj ’s.

• HE.Enc(params, pk, µ): Take the message µ in Rp. Run the
basic encryption with the top level keys E.Enc((aL, bL), µ).

• HE.Dec(params, sk, c): Suppose the ciphertext is encrypted un-
der sj. Run E.Dec(sj, c) (the index of the key can be known
without compromising security).

• HE.Refresh(c, τs′′j→sj−1
, qj, qj−1) Takes a ciphertext encrypted un-

der s′j, the auxillary information τs′′j→sj−1
to do the key switching

and the moduli qj, qj−1 to switch between. Do:

1. Expand: Set c1 ← Powersof2(c, qj), so c1 is a ciphertext
encrypted under s′′j.

2. Switch moduli: Set c2 ← Scale(c1, qj, qj−1, p), which is a
ciphertext under the key s′′j modulus qj−1.

3. Switch Keys: Output c3 ← KeySwitch(τs′′j→sj−1
, c2, qj−1),

which is a ciphertext under the key sj−1 modulus qj−1.

• HE.Add(pk, c1, c2): Takes two ciphertexts encrypted under the
under the same sj. If they are not, use HE.Refresh to make them
so. Set c3 ← c1 + c2 mod qj and use HE.Refresh if necessary to
reduce errors. Output c3.

• HE.Mult(pk, c1, c2): Takes two ciphertexts encrypted under the
same sj. If they are not, use HE.refresh to make them so. Set
c3 ← c1 · c2 mod qj and use HE.Refresh to make c4. Output
c4.
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This scheme follows the blueprint of Brakerski et al. [2] closely. There
have been many developments since their paper, and this is as such not
the most effective known implementation of their cryptosystem. We
could for example modify the routines so that we do not refresh after
addition, or so that modulus switching and key switching is not part
of the same routine. This version does provide the core concepts, and
more efficient implementations (such as [13]) include implementation
details that would get us too much of track.

We note that the key switching matrices are in general quite big,
so it places a restriction on how big parameters we can set. One
way we can get around this is by encryption the powers of two of
the secret key under the secret key itself, instead of encrypting under
a new key each time. This is illustrated in Figure 2.1. We could
remove a lot of space requirement from the key switching matrices
this way. The assumption that we can safely encrypt the secret key
under itself is known as the circular security assumption. Brakerski
and Vaikuntanathan described a variant of our scheme which do not
rely on this assumption, but their circular secure scheme is dependent
on essentially doing a nested encryption D times to use the same key
D times [3]. This is not that different from using D keys in our system,
so the system described does not solve the issue.

s1 s2 . . . sn

s

Figure 2.1: Assuming circular security we can work with one key in-
stead of n keys.
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2.3 Noise management

To show correctness of the scheme, we have to show how the noise
behaves.

We here go a bit in detail in how the different Gaussian distribution
we draw elements from are created and properties of them.

2.3.1 The probability distribution

We first consider the same polynomial ring, but with real coefficients
RR = R[X]/〈Φm(X)〉. Let us consider an element a(X) ∈ RR where

a(X) =
∑
i∈I

aiX
i

for some index set I, where each ai is a real-valued random variable
with 0 mean and variance σ2

i and all the ai are independent. Let ω
be a primitive mth root of unity and consider the complex random
variable a(ω). Denoting the variance σ2 we get

E[a(ω)] = E[
∑
i∈I

aiω
i] =

∑
i∈I

E[ai]ω
i = 0

σ2 = E[a(ω) · a(ω)] = E[
∑∑

i,j

aiajω
i−j]

=
∑
i

E[a2i ] =
∑
i

σ2
i

Now let us set this index to be I = [m]. We can model a(ω) as
being drawn from a complex normal distribution with variance σ2,
which is the same as a 2-D normal distribution with variance σ2/2.
We can do this because we assume that the complex roots ωi are
distributed evenly along the unit circle. This holds even if the index
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set is a subset of I, provided the roots are still evenly distributed.
This is expected to be the case if we randomly select indices with the
same probabilities. The probability that any term exceeds B is then

Pr[|a(ω)| > B] = exp(−B2/σ2)

If we set our bound as B = σ
√

log(φ(m)) we get that Pr[|a(ω)| >
B] = 1

φ(m)
. Since the coefficients of a are real, we know that a(ω) =

a(ω). Thus we get that |a(ω)| > B if and only if |a(ω̄)| > B, which
means we only need to account for half the probabilities. Thus if we
account for all the probabilities and by applying the union bound we
get that

Pr[‖a‖ > B] ≤ 1

φ(m)
· φ(m)

2
=

1

2

We can use this to bound various parts of our cryptosystem. The
bound B changes depending on the variance for any given application.
For our applications we often want to draw a polynomial where all
the coefficients are drawn from a discrete Gaussian distribution. We
can determines the standard deviation of this distribution by setting
σ =

√
mσ̂ for a tuneable parameter σ̂. From this we get the bound

B = σ̂
√
m log(φ(m)), which we will call Bgauss.

2.3.2 Noise bounds

The noise associated with key generation

We choose the secret key according to the following method. Let
I ⊆ [m] be a random subset such that each index is chosen with
probability

α =
φ(m)

2m
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and construct the secret by letting ai ∈ {±1} and setting

s =
∑
i∈I

aiX
i

Then the variance is σ2 = φ(m) and the bound on ‖s‖ is B =√
φ(m) log(φ(m))/2. We now have a maximum bound on the the

secret key Bsk such that Pr[‖s‖ > Bsk] ≤ 1/2, which we want as close
to 1/2 as possible. Then we can guarantee that ‖s‖ < Bsk if we sample
keys until we get a key within the bound. This looses essentially one
bit of security, but guarantees us that we have a key of small size
instead of it being a high probability.

We can bound the public key in a similar way. The public key is
essentially the same as an encryption of 0 (mod p) by the secret key
(1, s). We can bound the added error term e by the bound of the
probability distribution it is taken from χ, which we call Bgauss. Here
the variance can be chosen according to application.

The error is multiplied by the plaintext modulus p, and as such
the bound on the public key noise is Bpk = pBgauss. This is a bound
on the error term ‖pe‖.

The noise associated with encryption

For the encryption, we use the public key (a, b) and some parame-
ters f, g from Gaussian distributions. The noise of an encryption is
‖p(re+ fs+ g) +m‖. We can bound this noise by Benc = BpkBsmall +
pBgauss(Bsk + 1) + Bptxt. Here Bsmall is exactly the same as Bsk, as
they are generated in the same way, we just denote them differently
to emphasise the special role of the secret key.

The noise associated with key switching

The extra noise associated with key switching is bounded by p times
the sum of the coefficient of the error term e which is ”fresh” noise. If
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each term is bounded by Bgauss then the key switch noise is bounded
by p

∑
iBgauss.

The noise associated with modulus switching

We get two new noise terms, the scaled noise q/Q‖e‖ of the original
noise, and an added term which is bounded by ‖e′‖β if we set the
bound on the secret key ‖s‖ to be β. We also know ‖e′‖ is not too
big, since the coefficients of e′ are in [−p/2, p/2].

The noise associated with addition and multiplication

If we have a bound B of the noise on two ciphertexts, then the bound
the noise of their sum is 2B. If we have a bound B of the noise on
two ciphertexts, then the bound the noise of their product is B2.

The noise associated with Galois automorphisms

If we apply the Galois automorphism θj on the plaintext a where
j ∈ Z∗m we essentially permute the slots in the canonical embedding
and so we get that ‖θj(a)‖ = ‖a‖. If the ciphertext c has the secret
key s then the ciphertext θj(c) has secret key θj(s).

The noise associated with the HE.Refresh routine

If we have the ciphertext c with noise bound B we see that the ex-
panding step does not affect the noise. The expanded ciphertext c1

then has the same noise bound as c.

We look at how modulus switching is used in the HE.Refesh pro-
cedure. The noise of the new ciphertext c2 is at most (qj−1/qj)B +
2pφ(m)dlog qjeBgauss where the factor 4dlog qje is because this is the
number of entries the bit decomposed secret key s′′j .
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After that we have the key switching step. If the ciphertext c2 is
has noise B1 then the new ciphertext has noise B1+p ·dlog qje2 ·Bgauss,
where the factor dlog qje2 is because this is the number of entries in
the bit decomposition matrix of c2.

Adding all this together we see that if the noise of the original
ciphertext is B then the new noise is (qj−1/qj)B + εmod + εkey after
applying the refresh routine, where εmod = 2pφ(m)dlog qjeBgauss and
εkey = p · dlog qje2 ·Bgauss.

Now with this information we can say something on how we build
the modulus chain and by extension the bounds on the ciphertexts.
We set up our modulus ladder and noise bound such that the following
properties hold:

B ≥ 2(εmod + εkey) (2.1)

(qj/qj−1) ≥ 2B. (2.2)

Let us say we apply the refresh routine after a multiplication. The
bound on the noise after multiplication is B2. After a refresh we have
that (qj−1/qj)B

2 + εmod + εkey ≤ 1/2 · B + 1/2 · B = B. Thus with
equation 2.1 satisfied we get a new ciphertext after the multiplication
and the HE.Refresh routine with the same noise bound as the factor
ciphertexts had.

2.4 Bootstrapping

Bootstrapping is an important technique for getting fully homomor-
phic encryption. We will give an overview of the idea behind boot-
strapping. The bootstrapping procedure is essentially evaluating the
decryption circuit homomorphically. In other words, computing the
decryption without revealing any information to get a fresh ciphertext.

Say we have two key pairs (sk1, pk1) and (sk2, pk2) and a ciphertext
c which is the encryption of m under pk1. Let ¯sk1 be the encryption
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of the bits of sk1 under the public key pk2. Similarly, set c̄ to be
the encryption of the bits of c under pk2. Then if we compute c′ =
Eval(pk2, Dec, ¯sk1, c̄) we get a new ciphertext c′ which is an encryp-
tion of m under pk2. Amazingly, the noise in the first ciphertext c
disappears when we evaluate the decryption circuit. The evaluation
of the decryption circuit introduces some noise, so the ciphertext c′

has only the noise introduced from the evaluation. If this new noise is
smaller than the first noise, we have made progress.

There is nothing inherent in using two different key pairs in this
process. We could just as well use the same key pair twice, provided
that the encryption of the secret key under itself is safe to publish,
in other words that we have circular security. The circular security
assumption and bootstrapping is used in many applications of homo-
morphic encryption [22, 5].

We have the following way of turning a somewhat homomorphic
encryption scheme into a fully homomorphic encryption scheme: Let
(G,E,D) be a CPA-secure somewhat homomorphic cryptosystem that
has circular security. Suppose (G,E,D) can compute functions in a
family of functions F homomorphically and that for every two cipher-
texts c, c′ the map d → Dd(c) ↑ Dd(c

′) is in the family F , where ↑
is the logical NAND operation. Then we can turn (G,E,D) into a
fully homomorphic encryption system. The reason the NAND gate is
used is that it is functionally complete. This means that any boolean
function f : {0, 1}n → {0, 1} can be made using only NAND gates.
Equivalently we could use other sets of boolean operators which are
functionally complete, such as the set {NOT,AND}. These can be
constructed through addition, subtraction and multiplication. We can
thus use our leveled homomorphic encryption scheme given that there
exists parameters that let us evaluate these operations in addition to
compute the bootstrapping procedure.

If the crypto scheme we want to use has many levels and the size
of the parameters grows too big, then bootstrapping can be used as
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an optimisation. This means we have to do costly bootstrapping, but
the parameters can be set smaller to compensate. Brakerski et al [2]
did an analysis of when to use bootstrapping as an optimisation in the
scheme.

The cryptosystem we have constructed allows for encryption of
messages in the polynomial ring Rp. Data in the real world is seldom
taken from this polynomial ring though. In the next chapter we will
explore how we can convert data from other spaces into the polynomial
ring and how this changes the computation we want to do.



Chapter 3

Implementation

When doing homomorphic computation, there are a lot of restrictions
and choices to consider. All computation is more time consuming and
the encrypted objects take more space than the unencrypted coun-
terpart. We also have to limit multiplicative depth. Moreover, we
have to consider how we represent numbers, how we do arithmetic
and implementation of conditional statements. Furthermore, we have
to choose parameters that give us the fastest implementation, and this
is highly based on the computation we want to do. There is no gen-
eral way of choosing optimal parameters. In short: implementation is
complicated.

In this chapter we will discuss how we can represent numbers and
add some details concerning the cryptosystem. This is important when
doing computations in practice, as it decides how efficiently we can do
any computation. This chapter is divided into two parts: generic
properties and algebraic properties. The generic properties are prop-
erties which apply to most implementations, such as how we represent
numbers and do arithmetic on them. The algebraic properties are
specific ways of implementing our scheme, with focus on the plaintext
structure and basic operation such as linear algebra operations.

35
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3.1 Generic properties

The properties we will discuss in this section are more general than
for our specific cryptosystem. Often the plaintext space is not the
natural space to do specific computation in, because the numbers we
want to compute on belong to another space. This is where encodings
and the arithmetic on the encodings come in. Encodings are ways of
representing numbers that are not actually in the plaintext space. The
way we encode the numbers determine how we implement arithmetic
on the numbers.

3.1.1 Encodings

Since we often want to compute on data that do not necessarily lie in
our plaintext space, we have to find a way to represent the data in the
plaintext space. We do this by an encoding. If we have a data space S
(for example rational numbers, real numbers, etc.) and plaintext space
M we can find an encoding π : S → Mk that makes it possible to
compute on our data . If we want to compute the function f : Sn → S,
then the emulated function g : (Mk)n →Mk on the plaintext space is
heavily dependent on the encoding π. Therefore the efficiency of the
function g is also heavily dependent on π.

We stress that this encoding may not be perfect, for example if S
is an infinite set andM is finite, then π cannot be injective and more
than one element in S has to be encoded into the same element in
Mk for any finite k. Since we are working in very particular plaintext
spaces (often copies of finite fields), the evaluation of the emulated
function g often becomes much less efficient than evaluation of the
original function f . This holds even when working in the unencrypted
plaintext domain. Jäschke and Armknecht showed that the evaluation
of the perceptron is several orders of magnitude slower encoded in the
plaintext space F2 than computing in the rationals numbers [15]. The
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Data Space:

Plaintext Space:

Ciphetext Space:

Sn S

(Mk)n Mk

(Ck)n Ck

f

g

g∗

π

Enc

π−1

Dec

Figure 3.1: Illustration of how the emulated function g and encrypted
variant g∗ depends on the encoding π we use. In this chapter we will
focus on the content of the green rectangle. The figure is based on one
by Jäschke and Armknecht [15].

choice of encoding π is therefore crucial to efficiently implement more
advanced computation. We now look at some different encodings and
the benefits and drawbacks of each of them.

Word-wise encoding

One alternative is to encrypt word-wise. This is essentially encrypting
an integer directly into the the plaintext space. Thus we limit ourselves
to encryption of numbers less than the plaintext modulus p. This lim-
its our computation in a big way, since the product of two integers (or
more general polynomial functions of ciphertexts) cannot get bigger
than the plaintext modulus without introducing errors. Thus we need
a much bigger plaintext modulus than the integer we are working with
in order for this approach to work. One way of mitigating this issue is
to encode the integer as a polynomial instead of as an integer since the
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plaintext space is a polynomial space. For a given integer value z we
can first reduce it into the bit-representation z = sign(z)(zs . . . z1z0)2
and then encode it as follows:

Z→ Rp,

z 7→ µz = sign(z)(z0 + z1x+ · · ·+ zsx
s)

To turn µz back to z we simply evaluate the polynomial at x = 2.
This gives a lot more flexibility, because now each bit is essentially in
Zp, and so each bit can grow to be as big as p. The good thing about
word-wise encryption is that every arithmetic operation is baked into
the operations of the cryptosystem.

A drawback of this encoding is that we still have the limit on arith-
metic operations by the plaintext modulus, we cannot do a sum of p
numbers for example. The plaintext modulus in the BGV-scheme in-
fluences so much of the other parameters, from ciphertext modulus to
key switching noise, so having a high plaintext modulus reduces effi-
ciency. Another drawback is that multiplication increases the degree
of the encoded polynomials, and if the degree becomes higher than the
maximum degree (which is φ(m)), it will wrap around and introduce
errors. Multiplying two polynomials of degree s gives polynomial of
degree 2s. Thus we quickly introduce errors with this encoding.

Digit-wise encoding

Digit-wise encoding of a number z consists of simply encoding each
digit of the n-ary representation of z separately. The positive aspect
of this is that we can encode as many digits as we want into different
plaintexts without depending on the plaintext modulus or degree of
the quotient polynomial. The downside is that this is much less space
efficient, as encrypting many plaintexts uses much more space than
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encrypting a single plaintext. Another downside is that we have to
implement arithmetic for how the digits of the number interact when
adding or multiplying, which is less time efficient.

We still have to choose how many plaintext spaces we will use be-
fore we encode the numbers. This is since the numbers are encrypted,
we cannot know when the number becomes so large as to require more
digits. Thus we must choose a way of cutting of digits when we have
a too large number. The way we do this depends on the arithmetic
we want to use.

Packed encoding

The packed encoding is a way of combining the other encodings which
is somewhat specific to our cryptosytem. It utilises the structure of
Rp, more precisely it uses the fact that Rp can be thought of as a
product of finite fields: Rp ' Fpd × · · · × Fpd . We can encode the
digits of a number into the different slots. This combines the upside
of the word-wise encoding’s use of a single copy of the plaintext space
Rp and the flexibility of digit-wise encoding. It also utilises the SIMD
structure of Rp.

To use this encoding we need to implement arithmetical opera-
tions on the digits. This has an extra level of difficulty compared to
the digit-wise encoding, as doing computation on the digits within a
packed plaintext requires some extra effort. We describe how in detail
in Section 3.2.1. The upside is that we can do l additions or multi-
plications at ones with a single addition or multiplication, and thus
significantly reduce the number of operations.

Example 3.1. Let m = 215 − 1 and p = 2 so that we have 1800 slots.
Let us write F215 ' F[ωk] for slot k. Then if we want to represent 15-
bit integers we can put each bit j of integer k as ωjk ∈ F[ωk] and thus
represent 1800 integers using this packed encoding. An alternative
is to encrypt a single bit into each slot, so to represent the same
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Number

Word-wiseDigit-wisePacked

Fixed-point Floating-point Others

Figure 3.2: An overview of the decisions that go into an encoding.
There are more nuances, such as how there are different ways to rep-
resent non-integers and negative numbers. Different encodings give
different arithmetic.

represent 15-bit integers 15-bit integers we need 15 ciphertexts, where
ciphertext j contains bit j of all the integers. The reason we might
use more ciphertexts is that it can make the arithmetic faster, as we
will see in Section 3.1.2.

Both the digit-wise and packed encodings encrypts the digits of
the number we want to encrypt. Therefore we have to implement the
arithmetic of the digits and show how they interact with each when
we add and multiply numbers. There are different methods of repre-
senting the same number in terms of digits. We sketch some different
representation for numbers. These representations are essentially the
same as encodings, just that we look at how we encode integers into
a finite field instead of into the plaintext space. The choices involved
when choosing encodings is sketched in Figure 3.2.

Fixed point representation

The fixed point representation of an integer z is a way of representing
it in digits. We can split z into digits zi with a specific base r called the
radix so that z =

∑s
i=0 zir

i. It is often practical to let the radix be the
same as the plaintext modulus, i.e. r = p. The radix is an important
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decision, where the main difference is between setting r = 2 and r > 2.
In F2 the computation is much simpler than in other finite fields, so
we usually use r = p = 2. We then call the digits for bits.

To represent negative numbers with bits we can use the twos com-
plement encoding: z = zs+1(−2s+1)

∑s
i=0 zi2

i. For general digit encod-
ings we can use p’s complement, where for zs+1 ∈ {0, 1} and zi ∈ [p]
for i < s+ 1 we get z = −zs+1 · ps+1 +

∑s
i=0 zip

i.
If we want to represent rationals, we can scale the rational by a

scaling factor pe to make it an integer, do arithmetic with integers and
scale back after the computation. This causes a complication when
we multiply two numbers. Let a = a′ · pe and b = b′ · pe where a′, b′

are rationals. Then a · b = (a′ · pe) · (b′ · pe) = a′b′ · p2e and so when we
scale back with the factor pe we get the wrong answer. What we can
do instead is to cut the last e digits after every multiplication, to do
the scaling in the ciphertext domain directly. Then we get a number
on the correct form.

Floating point representation

The floating point representation is another way of representing a num-
ber using bits. In floating point representation the numbers are repre-
sented as some mantissa m times some signed exponent exp to get a
number ±m · 2± exp. The magnitude of the mantissa is usually nor-
malised to the range [0.5, 1] since we otherwise could shift the exponent
to get values in this range. This is not as easy with homomorphic en-
cryption, as we have no way of knowing what the magnitude of the
mantissa is. The reason they are called floating point, is that the point
”floats” depending on the exponent.

The floating point representation and floating point arithmetic cuts
of the least significant bits (LSB) after arithmetic operations. There
is no known way of representing this cutoff operation as a low degree
polynomial, so floating point arithmetic is not that practical. There
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are other cryptosystems where the floating point arithmetic is designed
into the system. Chen et al. [4] designed a cryptosystem based on ap-
proximate arithmetic, where the floating point representation is much
more natural than with the BGV cryptosystem.

There are many other representations one can use, but we limit
the scope to describe these representations. We will focus on the
arithmetic of the fixed point representation, and discuss how we can
compute it the most efficiently using the packed encoding.

3.1.2 Arithmetic

Before we show how we can do arithmetic, we mention the important
factors to keep in mind while looking at a computation. There are two
main properties we need to keep in mind when evaluating a circuit:
the time complexity of the evaluation and the depth of the circuits.
The depth of multiplications is much more important than the depth
of additions because it uses levels in our cryptosystem. Additions are
much faster than multiplications, so multiplication dominates in run
time as well. Thus our focus will in general be the number of and
depth of multiplications.

We restrict to working with the base p = 2 in this section, as this
significantly simplifies both the algorithms and their explanation. We
call the digits in these computation for bits. Jäschke and Armknecht
[16] proved that working in binary gives the most efficient arithmetic
of any finite field Fq. Their frame of reference was packing a single
message into the plaintext space. Thus they did not account for the
packed encoding, since it is somewhat (but not entirely) specific to the
BGV scheme which we are working with. For certain parameters and
certain computation it might in some cases therefore be more efficient
to use a different base. We restrict to binary in our discussion both
for simplicity, and because it is the most efficient method in general.
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Addition

Arithmetic with the digit-wise and packed encodings is as mentioned
more complicated than with the word-wise encoding. For example, if
we encrypt two numbers bit wise, addition of each bit is dependent
on the addition of the previous bit. We first illustrate how we can
add with the naive Ripple Carry Adder (RCA), which is similar to
the addition technique taught to children in grade school. After this
we show a more efficient implementation, which utilises the parallel
structure of the packed encoding. The RCA outputs the sum s =
sn+1 . . . s0 of two numbers a = an . . . a0, b = bn . . . b0 where the si gets
computed in the following way:

si =

{
ai + bi if i = 0

ai + bi + ci−1 if i 6= 0

where

ci =

{
ai · bi if i = 0

(ai · bi) + ((ai + bi) · ci−1) if i 6= 0.

Since each ci is dependent on the previous ci−1, this computation is
difficult to parallelise. It also has high multiplicative depth. Although
one can rearrange the carry operation to get one multiplication for each
bit by noticing that (ai·bi)+((ai+bi)·ci−1) = (ai+ci−1)·(bi+ci−1)+ci−1,
this still leaves n multiplications and multiplicative depth of n. We
can reduce this by implementing more efficient adders.

We can do better than this by using a dynamic programming ap-
proach. To do this we introduce generator carries gi and propagator
carries pi. These are defined for bits as gi = aibi and pi = ai + bi,
which we notice can be computed in parallel. We extend these car-
ries to generator intervals g[i,j] and propagator intervals p[i,j] which we
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define in the following way:

p[i,j] =

j∏
k=i

pk

g[i,j] = gi

j∏
k=i+1

pk

cj =

j∑
i=0

g[i,j].

The key decision in implementation is how we decide to implement
the computation of the carry bits cj. There are many different adder
designs, but the one we use here is the Kogge-Stone Adder (KSA).
The KSA utilises a so called carry operator that produces propagator
intervals and sums of generator intervals by computing

(G,P ) = (G′′ +G′P ′′, P ′P ′′)

for inputs (G′, P ′) and (G′′, P ′′). We arrange these carry operators in
a directed acyclic graph (DAG) so that we compute these operators
in a very parallel manner. An illustration for 8-bit inputs can be seen
in Figure 3.3.
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Level 0

Level 1

Level 2

Outputs

(G’,P’) (G”,P”)

(G,P)

G=G”+G’P”
P=P’P”

Figure 3.3: An illustration of the KSA for 8-bit inputs, which illus-
trates how we can compute the intervals. The illustration is based on
one from Basilakis and Javadi [1].

This has much lower multiplicative depth than the RCA. The
highest number of multiplications is in the (n + 1)-product g[0,n−1] =

a0b0 ·
∏n−1

k=1(ak + bk), which has depth dlog2(n+ 2)e. This adder illus-
trates why the packed encoding is so helpful. In the bit-wise encoding
the adder does roughly 2n log2(n) multiplications. In the packed ver-
sion, the number of multiplications is two per level, so the total number
of multiplications is 2dlog2 ne. Note that in order to be able to multi-
ply and add together in the packed encoding, we have to shift around
the bits. This is somewhat expensive in time complexity, but has the
benefit of not increasing the multiplicative depth. We discuss how we
can do these shifts in Section 3.2.1.
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a1 a2 a3 a4 a5 a6

b1 b2 b3 b4

c1 c2 c3

d1 d2

Figure 3.4: The three-for-two procedure used on six numbers a1, . . . , a6
to reduce them into two numbers d1, d2.

Adding more than two integers

We introduce the three-for-two procedure to add three numbers and
convert them to two numbers that sum to the same number. The
concept is that we add all three numbers together at the same time.
From this we get a number which represents the sum and one number
which represent the carry. If we have three numbers u, v, w, then
the we get two new numbers x, y where xi = ui + vi + wi and yi =
uivi + viwi +wiui. These two numbers satisfy u+ v+w = x+ 2y over
the integers. These new numbers can be computed using only two
multiplications and multiplicative depth one, as yi = (ui+wi)vi+wiui.

We can use this procedure to add k integers together by placing
the numbers in a graph like illustrated in Figure 3.4. We place the
k numbers at the lowest level and we use the three-for-two procedure
to go higher towards the top. This gives multiplicative depth d ≈
log3/2(k) and 2d total multiplications.
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Multiplication

Let a be an n′-bit number and b be an n-bit number and say n ≥ n′.
Then multiplication of a and b is done by multiplying each bit a with
b and then adding the result. For example, if we set n′ = 3 and we
multiply a, b we get

a0b : 0 0 a0bn . . . a0b2 a0b1 a0b0
2a1b : 0 a1bn a1bn−1 . . . a0b1 a1b0 0
22a2b : a2bn a2bn−1 a2bn−2 . . . a2b0 0 0

.

We then add up the integers using integer addition. If we want to
use negative integers, we have to compute what is known as a sign
extension. Essentially, it increases a k-bit number to a l-bit number
for l > k by letting all the bits that have index greater than k be
the same as the kth bit (the sign bit). To compute multiplication of
two numbers a, b which are n, n′ bits respectively in twos complement
encoding, we do the following: First we do sign extension on both
numbers to a n + n′ bit number. Then we multiply as normal, but
only keeping the last n+n′ bits of each partial product. We then add
the numbers as usual.

We note that there are other multiplication algorithms with lower
multiplicative depth, such as the Karatsuba algorithm, which was im-
plemented homomorphically by Fontaine et al. [20]. These algorithms
are more complicated, and we limit our scope to the simpler imple-
mentation to not get too far off track.

3.1.3 Comparisons and conditionals

When comparing unencrypted bit-wise encoded data we can check the
bits from most significant to least significant and halt when the bits
do not coincide. Comparisons between encrypted entries is harder
than between unencrypted entries since we cannot see the result of
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the comparisons. Therefore we have to compare all the bits when we
do the comparison, and not just the iterate down the most significant
bits until we find a difference.

Comparison of two integers can be done in a similar way as the
addition circuit. Given we have two integers a = (an−1, . . . , a0) and b =
(bn−1, . . . , b0) we want to compute x = max(a, b) and y = min(a, b), as
well as the indicator bits µ = (a > b) and ν = (a < b). We also want
to compute the equality circuit, testing whether (a = b). Similarly as
in addition we compute the indicator bits

ei = ai + bi + 1

gi = ai + aibi

e∗i =
∏
j≥i

ej

g∗i = gi
∏
j>i

ej

g̃i =
∑
j≥i

g∗j

The indicator ei determines if (ai = bi), while gi determines if ai > bi.
The indicator g̃i determines if an−1,...,i > bn−1,...,i for the truncated ver-
sions of a, b. Note that computing g̃i is somewhat similar to computing
the carries in the addition. We can similarly optimise the computation
of all the indicator bits to get an effective solution to our problems.
The equality circuit is the easiest to compute, as it can be computed
simply as eq(a, b) =

∏n−1
i=0 ei. This can be computed with log(n) mul-

tiplications and depth log(n) by employing shifts in the packed encod-
ing. The others require that we use nearly all the indicator bits. We
compute µ = g̃0 and ν = 1 + g̃0 + e∗0 and set xi = (ai + bi)g̃i + bi and
yi = xi + ai + bi. Of course we can modify these operations when we
do not need to compute both the maximum and the minimum to not
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be expressed in terms of each other. Similarly to addition, computing
the comparison bits requires log(n) multiplications and multiplicative
depth, and we need an extra multiplication to get the maximum or
minimum. The digit-wise and packed encodings are better suited for
comparisons. Here we require multiplicative depth of log(n), while
comparisons in the word wise encoding comparison requires multi-
plicative depth of O(t) [21].

We now have a method for encoding data into our plaintext space
and how we can do arithmetic. These are so called generic properties
that we have to consider for any cryptosystem. Next we describe how
we can use the specific properties of the BGV cryptosystem to make
computation faster.

3.2 Specific properties

In this section we will explore some specific properties of using the
BGV cryptosystem. In particular we highlight some specific properties
from the implementation of HElib[11, 13]. This is a homomorphic
encryption library for C++ which implements the BGV cryptosystem.
Remember that our plaintext space Rp ' Fpd×· · ·×Fpd so we can view
our plaintext as having multiple slots. In this section we explore the
structure in more detail. We also look at the structure of the ciphertext
space and include a discussion on how to choose parameters.

3.2.1 Moving between the slots

The space Rp corresponds to l slots and that we can use Galois au-
tomorphisms θj : f(X) 7→ f(Xj) to move between the slots for j ∈
Z∗m/〈p〉. We now describe how these movements work in more detail.
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One-dimensional rotations

Say that g ∈ Z∗m and that 1, g, . . . , gl−1 is a complete set of represen-
tatives of the cosets of H. We know that gn ∈ H. If we are lucky,
then gn = 1. Then the automorphism θg acts as a rotation to the left
of the plaintext slots:

f(x)←→ (f(η1), f(ηg), . . . , f(ηg
l−1

))

θg(f(x))←→ (f(ηg), f(η2), . . . , f(ηg
l

))

θg(f(x))←→ (f(ηg), f(η2), . . . , f(η1)).

The last line follows from gl = 1. We see that in this case the auto-
morphism θg acts as a rotation of the slots one step to the left. To
generalise this, we look at the automorphism θgj which rotates the
slots j places to the left and θg−j which rotates the slots j places to
the right.

If we are not so lucky, then gl ∈ H, but is not equal to one.
In this case gl = ps ∈ Z∗m for some s ∈ {1, . . . , d − 1}. This is
the same as applying the transformation f(X) 7→ f(Xp) a total of s
times. This transformation f(X) 7→ f(Xp) is known as the Frobenius
automorphism and we denote it σ. This is an important automorphism
which fixes all elements of Zp ⊆ Fpd .

Applying θg rotates most of the slots, except for the last slot, which
is ”perturbed” by a Frobenius-power of degree s. In other words:

θg(f(x))←→ (f(ηg), f(η2), . . . , σs(f(η1))).

We can still obtain a regular rotation of the slots from these transfor-
mation. We construct a masking element Me which is one in the first
e slots, and is zero on the last l − e slots.

Me ∈ Rp ←→ (1, . . . , 1, 0, . . . , 0) ∈ En
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Say a plaintext a ∈ Rp corresponds to the slot plaintext (α0, . . . , αl−1).
Then applying the automorphism θge and multiplying with Me gives
us

Me · θge(a)←→ (αe, . . . , αl−1, 0 . . . , 0)

Furthermore, we have

(1−Me) · θge−l(a)←→ (0, . . . , 0, α0, . . . , αe−1)

Combining these two gives us the desired rotation by adding them
together. In other words, we can rotate e slots by applying the trans-
formation

(Me · θge(a)) + (1−Me) · θge−l(a)

to an element in Rp. We can achieve the same transformation by first
applying the masking and then the automorphism

θge((1−Ml−e) · a) + θge−l(Ml−e · a)

The general hypercube

Up until now we have viewed the slots structured as essentially a
vector. In general, we can get a multidimensional array which we call
a hypercube structure. The shape of the hypercube is determined by
the structure of the quotient group Z∗m/H. The number of dimensions
r of the hypercube is determined by the factorisation of l = |Z∗m/H|.
The length of each dimension is determined by the relevant factor.
The term hypercube is used, but the length of each dimension can
in general be different (making it a hyperrectangle in a sense). The
reason we want to utilise the hypercube structure is that it gives us
more flexible movement between slots, and it lets us represent other
data structures such as a matrix.

If l = l1 . . . lr, then a complete set of representatives of the cosets of
H are of the form ge11 . . . gerr where ei ∈ [li]. Each such representative
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corresponds to a plaintext slot. If we keep all indices except ei fixed,
we are looking at a hypercolumn. If we keep only the index i fixed,
we say we have a slice of the hypercube. An advantage gained from
representing the plaintext in this hypercube structure is that we can
maneuver between different slots in more ways than if we represent
the plaintext as a vector. We should note that even though Z∗m/H
might give a high dimensional hypercube structure, there are ways to
consider it as a linear array and implement the linear rotations from
the hypercube rotations. We refer to [11] for details.

Example 3.2. Let m = 215 − 1 and p = 2. The prime factorisation of
m is 7 · 31 · 151. Therefore the structure of Z∗m ' Z∗7 × Z∗31 × Z∗151 '
Z6×Z30×Z150. It is possible to show that Z∗215−1/〈2〉 ' Z30×Z6×Z10.
This does not have the same structure as Z1800, so we cannot give the
slots the structure of a linear array as there are no single generators.
Thus the slots have the hypercube structure of dimensions 30×6×10.

Say we have l = l1 · · · · · lr with generating set g1, . . . , gr. Then
we move in dimension j by applying the automorphism associated to
gj, namely θgej when we want to move e steps in the left direction.
In the case where we get a regular rotation by applying θg, we say

that it is a good dimension. If g
lj
j 6= 1, but g

lj
j ∈ H, then we say

that we have a bad dimension. In this case, all the slots that are
”wrapped around” are perturbed by a Frobenius power. If we do not
even have this, we say we have a very bad dimension. In this case, the
wrapped around slots are perturbed by a Frobenuis power, and then
permuted in the slice corresponding to the dimension. We can choose
appropriate parameters so that we can avoid very bad dimensions, and
only use good and bad dimensions in the implementation. We can do
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so with the following algorithm

Algorithm 1: Choosing generators for hypercubes in HElib

H0 ← H
i← 1
while Hi−1 6= Z∗m do

let li be the maximal order of any element in Z∗m/Hi−1
choose gi ∈ Z∗m such that

(a) the order of gi mod Hi−1 is li, and
(b) glii ∈ H (and if possible, glii = 1)

let Hi be the subgroup generated by Hi−1 ∪ {gi}
i← i+ 1

return {gi}i∈[r]

Proposition 3.3. By using algorithm 3.2.1 we can find a generating
set g1, . . . , gr such that all dimensions are either good or bad, but not
very bad.

Proof. Notice first that g1, . . . , gr is indeed a generating set, regardless
of condition b). Since li is the maximal order in Z∗m/Hi−1, it is also
the exponent. From standard results about exponents and quotient
groups, we get that li|li−1| . . . |l1. Let i be the index of the generator
gi. If i = 1, there is nothing we can do. If i ≥ 2, we can find a new
generator g′i such that i becomes at least a bad dimension. Choose gi
such that it has order li. We know that glii ∈ Hi−1, which means that

glii = gsi−1h for some h ∈ Hi−2, s ∈ Z. We know that g
li−1

i ∈ Hi−2, so
we get

Hi−2 3 gli−1

i = g
li

li−1
li

i = g
s
li−1
li

i−1 h′

for some h′ ∈ Hi−2. This implies that g
s
li−1
li

i−1 ∈ Hi−2, which in turn

implies that li|s since li−1 is the order of gi−1. We now set g′i = gi ·g−s/lii−1

as the new generator. Since g
−s/li
i−1 ∈ Hi−1, we see that gi, g

′
i are in
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the same coset of Hi−1. They therefore have the same order, and in

addition (g′i)
li = glii · (g

−s/li
i−1 )li = gsi−1hg

−s
i−1 = h ∈ Hi−2. We can do

this process inductively until we get (g∗i )
li ∈ H0 = H. Thus we get a

generator with at least not a very bad dimension.

In the same way as with one-dimensional rotations, we can use
multiplicative maskings to get rotations even in bad dimensions. Thus
where the cost of a rotation in a good dimension is a single application
of a Galois automorphism, we need two Galois automorphisms, two
maskings and an addition in a bad dimension to make a rotation. This
is more than twice as time consuming, and may require using another
level in the modulus chain.

More complicated movement

Once we have the ability to rotate whole or parts of a plaintext we can
use these rotations to implement arbitrary permutation. The way a
given permutation should be constructed from rotations and shifts is
not immediately clear however, as there are many possibilities of how
to combine the rotations into a given permutation. The implemen-
tation of HElib [11] uses shift networks to construct any given given
permutation from additions, rotations and multiplicative maskings.

3.2.2 Other properties

We list some other properties of the specific implementation we have
here. We consider the structure of the ciphertexts and a method for
choosing specific parameters.

Ciphertexts

The ciphertexts c are in general in the space Rn
q , and most often in R2

q .
We will now look a little more into the structure of Rq. One way of
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representing an element r in Rq is through the coefficient embedding,
where we look at r as a vector of the coefficients. This has the draw-
back that multiplication is not done component wise, and therefore
multiplication of ciphertexts is inefficient. This is the representation
of ciphertexts when they get encrypted, and the representation we
need for decryption.

Another way of representing Rq involves the prime factorisation of

q. Say that q =
∏k

i=0 qi where the qi are relative prime. Then we need
that the primes qi are such that Φm(X) factors modulo qi into linear
terms of the form (X − ωji ) for j ∈ Z∗m and primitive mth root ωi.
Then we can form a representation for the element a ∈ Rq as

a(X)↔ (a(ωji ) mod qi)(i,j)∈[k]×Z∗m

This representation is called the DoubleCRT representation, as it
uses the Chinese Remained Theorem both on the polynomial Φm(X)
and the integer q. This representation has the benefit that both ad-
dition and multiplication is done component wise. The drawback is
that encryption and decryption is done naturally through the coeffi-
cient embedding, so we have to convert in order to decrypt.

One can convert from the coefficient representation to the Dou-
bleCRT representation by reducing the coefficients and evaluating the
polynomial at the powers of the primitive roots. One can convert back
by interpolating the polynomial based on the values a(ωji ) mod qi.
Both evaluating and interpolation can be done by applying the Fast
Fourier Transform (FFT). This is not very efficient and should be
avoided, even with FFTs [13].

Choosing parameters

Choosing secure parameters is a research field of its own. The way
secure parameters are set is by looking at the best known attacks and
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choosing parameters that are secure against them. Of course, this is
not a guaranteed safe way of choosing parameters, as there could be
unknown attacks that make the parameters less secure than assumed.
Since the RLWE-assumption (and related LWE-assumption) has the
potential of being a foundation for post-quantum cryptography, there
is a lot of research into attacks. An analysis of how to choose safe
parameters can be found in [9, Appendix C.3]. This gives us a way
of choosing φ(m) in terms of the number of levels L and the security
level k by

φ(m) >
(L(log(φ(m)) + 23)− 8.5)(k + 110)

7.2
.

The scheme must be practical in addition to being secure. We
would like to get a hypercube structure that has both suitable dimen-
sion sizes and good dimensions for a given implementation. There may
not be that many parameters which are above the security threshold,
gives the correct hypercube structure and results in relatively small
parameters. Therefore we may have to choose whether to settle for
parameters which give a slightly different hypercube structure, or to
have large and sub-optimal parameters.

3.3 Overview of useful techniques

In this section we consider some computation techniques which are
crucial when we want to compute with the packed encoding. We also
consider different ways of doing linear algebra over our plaintexts.
This is heavily dependent on the structure of the plaintext slots. In
particular, there is an important distinction between considering the
slots as a linear array or a more general hypercube.
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Linear array

When considering computation on encrypted data, there is an extra
property of the algorithms that becomes important. Normally, one
analyses the algorithm with respect to time complexity (and some-
times space complexity), but with homomorphic encryption one also
has to consider the depth of the calculation. If one multiplies the same
ciphertext many times with other ciphertext, the layers of the modulus
chain is used up quickly. We therefore have to keep track of the num-
ber of different computations, but also the depths the computation
require. In this section n will denote the number of slots.

Masking is a multiplication by a vector where all the entries are 0
and 1. This is as costly as a multiplication by a constant, since this
is what it essentially is. If we do a rotation followed by a masking so
that all entries that are wrapped around are turned to zero, we have
a shift. These are useful for a variety of purposes. Shifts are used in
implementing rotations where the dimension is bad, as explained in
Section 3.2.1.

TotalSum takes in a vector and produces a new vector where all the
entries are the sum of the entries in the original vector. This operation
uses at most 2blog nc rotations and additions.

RunningSum takes in a vector u and produces a new vector v such
that vk =

∑k
i=1 ui. This is implemented similarly to TotalSum, except

that we replace the rotations by shifts. This gives dlog ne additions,
rotations and maskings.

We can make a replication of a single value from a vector v by
Replicate(v, i). This gets us a vector u such that uj = vi for all j.
This is done by first turning all other entries to zero via masking, and
then doing the TotalSum of the vector. It uses 2blog nc rotations,
additions and uses a single masking.

We can implement a full replication procedure, which produces n
vectors w1, . . . , wn from a vector v such that wj = (vj, . . . , vj). The
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Additions Rotations Maskings Add. Depth Rot. Depth Mask. Depth
TotalSum 2blog nc 2blog nc - 2blog nc 2blog nc -
RunningSum dlog ne dlog ne dlog ne dlog ne dlog ne dlog ne
Replicate 2blog nc 2blog nc 1 2blog nc 2blog nc 1
Fullreplicate 3n 2n n 2dlog ne dlog ne dlog ne

Table 3.1: The cost of some useful techniques. Fullreplicate uses the
recursive method.

naive way is to use the replication method above n times, which uses
2nblog nc rotations, additions and n maskings. We can do this more
efficiently by a recursive method, to get 3n additions, 2n rotations
and n maskings. This has the drawback of having larger masking
depth than the naive method, with depth dlog ne. The algorithm is
given in [11]. There is a way of combining these two methods which
gives masking depth O(log log n). Describing this combination in de-
tail would get us too much off track, but see Halevi and Shoup [11]
for an elaboration.

A table for cost of the different techniques can be found in Figure
3.1. The cost of multiplications is not considered, as none of the
techniques uses multiplications.

Hypercube

The operation described above can be extended to the hypercube
setup. TotalSum works in the exact same way as in the linear ar-
ray case, except that it sums over the dimensions in the hypercube
and rotates in the dimensions of the hypercube. We can either do a
TotalSum in a single dimension, or over multiple or all dimensions.

RunningSum is more complicated to implement, since it involves
transferring data which are not inside a hypercolumn. This involves
the operation of doing a ”cyclic rotation” where we pretend that the
slots are in a linear array, and then perform a rotation. This is a
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bit more complicated operation, where we essentially do an addition
where the carries are computed on the different indices. Halevi and
Shoup [11] gives a thorough explanation.

Replication of a single value can be done by a masking which gives
zero in all other slots, and then TotalSum over the whole hypercube.
We can also replicate slices in the hypercube by making all other
entries than the slice zero and then doing TotalSum over a single
dimension. Full replications can also be implemented similarly to on
a linear array.

3.3.1 Linear Algebra

How we do linear algebra is heavily dependent on how we represent
structures such as the matrix. In this section we highlight the differ-
ences between the different representations, and show how richer hy-
percube structure gives more options for faster algorithms. We show
the methods for square matrices, but this can easily be extended by
partitioning the matrices into square blocks and multiply the matrices
block wise.

The linear algebra techniques we will describe requires the use of
multiplications. Compared to the other basic operations (addition,
rotations, maskings), multiplication dominates the computation time
and is much more important to the number of levels. We therefore con-
sider the number of multiplications and multiplication depth in exact
terms, while we only consider big O notation for the other operations.
This is to avoid tedium from computing the exact number of opera-
tions where it is not really that relevant, as they will be dominated by
multiplications anyway.
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Linear array

A natural way to represent a matrix is a collection of columns. Say we
have the matrix A = (A1, . . . , An) and that we want to multiply it by
a vector v. Then we can compute w = Av =

∑n
i=1Ai ·Replicate(v, i).

Since we want to replicate all entries of v, we can use full replicate
to get the replicated values, reducing computation time. Thus we
can compute matrix-vector multiplication with n multiplications and
O(n) maskings, additions and rotations. The depth is O(n) additions,
O(log n) maskings and rotations and a single multiplication. We can
also represent a matrix as a collection of rows. Then the computation
requires the same number of operations, but it requires some extra
nuances. We refer to [11] for a thorough explanation.

We can do better than this if we have the matrix in diagonal rep-
resentation. If we have the n× n matrix A = (ai,j) then the diagonal
representation places each diagonal di = (aj,j+i) where the index arith-
metic is modulo n. We can then compute w = Av as

∑n
i=1 di · (v ≪ i)

where (v ≪ i) is the rotation of v by i places to the left. We can see
that this is correct by seeing that

w[j] =
n∑
i=1

di[j] · (v ≪ i)[j] =
n∑
i=1

aj,j+iv[i+ j] =
n∑
i=1

aj,iv[i]

as intended. This method uses O(n) additions, rotations and n mul-
tiplications, and has depth one multiplication, one rotation and O(n)
additions. The drawback of this method is that matrices are more of-
ten represented in column or row representation, and it is expensive to
move from one of these representations to the diagonal representation.
If we can pre-process the matrix before encryption (negating the cost
of changing representation), then this method is the best.

Matrix multiplication can be done in a similar way, depending on
the representation. If we have the matrices X, Y in row order such
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that X = (X1, . . . , Xn), then we can compute XY by setting

(XY )i =
∑

Replicate(Xi, j) · Yi.

Again we use the full replication procedure on each row Xi to get the
replications of Xij. This method requires n2 multiplications, additions
and n full replications. This corresponds to n2 multiplications, O(n2)
additions, rotations and maskings. The depth of the method is O(n)
additions, O(log n) rotations and maskings and a single multiplication.

Hypercube

With more dimensions comes faster implementation. The drawback
is that it is harder to find appropriate parameters to construct the
hypercube.

With the number of dimensions being two, we can implement faster
algorithms. Say we want to multiply a matrix A with a vector v. We
let A be encrypted as a single ciphertext in this scenario, while we
have two choices on how to encrypt v. We can either replicate it so
we have a matrix where all the rows are the same vector (row order),
or where all the columns are the same vector (column order). If we
encode v in row order and call it V then we compute A�V , where we
use the notation � to emphasize that this is not matrix multiplication,
but entry wise multiplication (also known as the Hadamard product).
If we encode v in column order (the transpose of V , denoted V T )
then we compute AT � V T . We then take TotalSum over the other
axis then the one we replicated over. If we multiply a matrix and a
vector in row/column-order, we get a vector in the opposite order as
the output. Symbolically we get that if w = Av and TotalSum(A, i)
is the TotalSum over dimension i of A then the encrypted vector is

[w]i∈[n] = TotalSum(A� V, 1)

[wT ]i∈[n] = TotalSum(AT � V T , 2).
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Note that we can convert from the vector in row order to column order
and visa versa by multiplying by the identity matrix. We can illustrate
the multiplication with the following example[

1 2
3 4

]
�
[
a b
a b

]
=

[
a 2b
3a 4b

]
→
[
a+ 2b a+ 2b
3a+ 4b 3a+ 4b

]
The number of operations depends on if the vector is encrypted in
matrix form or not. If it is not, then we only need a single replication.
This is because replication in the hypercube replicates the slice, and
the slice in a matrix is a vector. It it is encrypted in matrix form,
we need one TotalSum and one multiplication. This translates to
O(log n) additions and rotations, and one multiplication. The depth
is O(log n) additions and rotations, and one multiplication. If we
include the replication, we also get O(1) maskings and masking depth
O(1). This is a clear improvement on the linear array arrangement,
both in time and depth, see Tables 3.2 and 3.3 for comparisons.

Matrix multiplication of two matrices A,B also becomes faster.
Instead of thinking of matrices in row- or column-order, we can think
of them in diagonal order. We denote the ith diagonal di(A) =
(a0,i, a1,i+1, . . . , an−1,i−1 so that di[j] = ai,i+j where the indexes are
modulo n. We can extract each diagonal by a single replication into
a matrix Di which is n replication of di. Now we can multiply each
diagonal Di by a rotation of the rows of B by i, denoted (B ≪1 i),
and sum the results. This gives the correct answer because if we set
C = A ·B, then

C[i, j] =
∑
k

Dk[i, j] · (B ≪1 k)[i, j] =
∑
k

ai,i+k · bi+k,j =
∑
k

ai,kbk,j

which is what we wanted. It should be noted that this diagonal repre-
sented matrix multiplication can not be applied consecutively without
some processing, as the output of the algorithm is a matrix in column
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Time Additon Rotation Masking Multiplication
1DMatVec O(n) O(n) O(n) n
1DMatVecDiag O(n) O(n) - n
1DMatMul O(n2) O(n2) O(n2) n2

2DMatVec O(log n) O(log n) O(1) 1
2DMatMul O(n log n) O(n log n) O(n) n
3DMatMul O(log n) O(log n) O(1) 1

Table 3.2: Table for time complexity of linear algebra techniques.

representation. This method uses O(n log n) additions and rotations,
O(n) maskings and n multiplications. It has depth of O(log n) addi-
tions, O(log n) rotations, and O(1) maskings and a single multiplica-
tion.

With the number of dimensions being three, we can implement
matrix multiplication in with a single multiplication. This is based
on the DNS algorithm as in [7]. For two matrices A,B, it computes
Cij =

∑n
j=1AikBkj. It replicates the rows of A so that A(i, j, k) = aik

and the columns of B so that B(i, j, k) = bkj. By a single multi-
plication and a Totalsum along the k-axis we then get C[i, j, 0] =∑

k A[i, j, k] · B[i, j, k] =
∑

k aikbkj. This then has O(log n) additions
and rotations, and a single multiplication. The depth is O(log n) ad-
ditions and rotations, and a single multiplication. If we count the
replication to initialise the matrices, we get O(1) maskings and mask-
ing depth additionally.

There are optimisations for publicly known linear transformations
on ciphertexts. The optimisations used in HElib are described in detail
by Halevi and Shoup [12].

Example 3.4. Let m = 215−1 and p = 2 so that we have the hypercube
structure isomorphic to Z30×Z6×Z10. With these parameters we can
do matrix multiplications in three dimensions if the dimensions of the
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Depth Additon Rotation Masking Multiplication
1DMatVec O(n) O(n) O(log n) 1
1DMatVecDiag O(n) O(1) - 1
1DMatMul O(n) O(log n) O(log n) 1
2DMatVec O(log n) O(log n) O(1) 1
2DMatMul O(log n) O(log n) O(1) 1
3DMatMul O(log n) O(log n) O(1) 1

Table 3.3: Table for depth complexity of linear algebra techniques.

matrices are less than 6× 10, since these are the smallest dimensions
of the hypercube. These are pretty small matrices compared to the
degree of the polynomial φ(m) = 27000.

We have now considered how we can encode data in our cryp-
tosystem and constructed tools we need in order to compute on the
encrypted data.



Chapter 4

Security model

In this section we will sketch a security model for computing on en-
crypted data. We choose to use a security model where only the data
is secret, while the functions and model parameters are not necessar-
ily kept secret. To get a model for secure computing, we first look at
regular computing on unencrypted data. A regular machine learning
model looks something like this:

We are interested in keeping privacy of data. One can also consider
privacy of the algorithm, where the parameters in the machine learning
algorithm are a corporate secret. However, we do not consider this case
in this thesis. A public machine learning algorithm has the advantage
of not complicating our security proofs.

When we are working with homomorphic encryption, the model is
complicated by the encryption and decryption process. This looks like
the following

In this model we include a bit of leakage, which can be information
about convergence or some other piece of data that does not reveal too
much information. Otherwise we would have to choose a fixed number
of iterations, which can be inefficient in some cases.

65
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Training data Training data

ML Eval

Test data

Result

Figure 4.1: A model for machine learning. The training data is used
by the machine learning algorithm to construct an evaluator which
can take test data in and predict accurate results. We are interested
in the steps inside the dashed box.

4.1 Security proof

We will now prove the security of this model. In the security proofs, we
illustrate with a single data-holder, but in practice there can be many.
Sending encrypted data to an honest server and then sending them to
the computer is the same as sending the data directly in this security
model. Thus the distinction between one and multiple data-holder is
not important in the honest, but curious model.

We start by assuming that the machine learning provider repre-
sents an honest, but curious adversary. Such an adversary does not
interfere with the communication or computation, as a malicious ad-
versary would.

We assume that we have an IND-CPA secure cryptosystem. Ho-
momorphic encryption can in general not be totally CCA2 secure,
because if the adversary queries the decryption of a and a + b then
it is easy for the adversary to get the decryption of b. Therefore se-
curity must assume that the adversary cannot query the decryption
oracle after the target message is chosen. It is possible to construct
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Training data

Training data

E

E

sML Leak

sEvalDEval

Figure 4.2: A homomorphic encryption-based machine learning model.
The secure machine learning algortihm takes the encrypted training
data and constructs a secure evaluator, which we decrypt. An alter-
native to this approach is to keep the evaluator encrypted when using
the training data afterwards. We include a leak of information in this
model, which can be used for example to accelerate computation.

CCA1-secure cryptosystem, as was done in [18]. We limit our analysis
to CPA-security for simplicity.

Theorem 4.1. Assume the homomorphic encryption protocol is IND-
CPA secure and that the adversary is honest, but curious. Then the
model is secure.

Proof. We say Alice has the data, Bob does the calculations and Carol
does the decryption. In game G0, everything works as in the sketch
provided in figure 4.3. The interesting case is when we identify Bob as
the adversary (as Alice has the data and Carol has the decryption key).
He has access to the ciphertexts, the evaluation of the ciphertexts and
some leakage which is provided by Carol, which is used in computation.

The leakage in the computation can be included in the queries Bob
asks of Carol, and as such is included in game G0. We show that Bob
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A

B

C

{cti}

{qj}

{aj}

Guess

G0

Figure 4.3: The game G0 is the setup we have in the real world. Here
cti denotes a ciphertext, qj denotes a query, and aj denotes the answer
to the query.

A

B

C

{cti}

{qj}

{aj}

f({di}, {aj})

Guess

G1

Figure 4.4: In game G1, we send a computation from Alice to Carol,
which encapsulates the result of the computation done by Bob and the
leakage provided by Carol to Bob. This does not affect the security of
the scheme. Here di denotes plaintext data.
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A

B

C

{ri}

{qj}

{aj}

f({di}, {aj})

Guess

G2

Figure 4.5: In the last game we send real-or-random ciphertexts to
Bob, denoted ri, giving no advantageous information to Bob.

does not gain any information by game hopping. In the game G1, we
send everything as before, but Alice also sends the computation to
Carol, so she can decrypt without Bob’s input. We sketch the process
in Figure 4.4.

For the last game, we send a real-or-random encryption to Bob, so
that he cannot distinguish between the encryptions of real data and
random noise. This is because of the assumption that the cryptosys-
tem is secure.

Since we send all the relevant computation of the data from Alice
to Carol directly, Carol can supply the decryption of the data, without
decrypting anything at all. This is the case even when Bob has only
access to the random noise. Thus we have constructed a simulation
which gets all the leakage.

Security with a malicious adversary can be done, but requires a
more complicated proof. This can be done by a zero-knowledge proof,
but this is out of scope of this thesis.

The guess of the adversary can be thought of as a function from
the data space X to a yes/no-space (essentially {0, 1}). We say the
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adversary has no advantage if

Pr[f(data) = 0|data
r←− X] =

1

2
.

The fact that no information is gained by the leakage can be formu-
lated as

Pr[f(data) = 0|data
r←− X ∧ g(data) = z] =

1

2
.

For this to hold, f cannot be correlated with g. This is highly de-
pendent on the data space X. We therefore cannot do any general
analysis on whether our specific leakage gives rise to new possible at-
tacks without specifying the data space. This task is left to those who
will implement specific algorithms and handle specific data sets.



Chapter 5

Privacy Preserving
Computation

In this section we will finally use the foundation we have built in
the previous sections. We will go through some different computation
techniques to highlight how different the approach to each problem can
be. We first look at another problem when computing with homomor-
phic encryption, namely how do we compute complicated functions?

5.1 Computing complicated functions

Homomorphic cryptosytems can compute polynomial functions. This
is often not enough for practical usage, as we often need more compli-
cated functions. When we refer to complicated functions, we actually
mean non-polynomial functions, such as the exponential function, nat-
ural logarithm, etc. This also includes division of numbers. In this
section we present two approaches to computing approximations of
non-polynomial functions using only polynomials.
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5.1.1 Polynomial approximation

Many techniques require polynomial approximations. We know that
any continuous function on a closed interval can be approximated by
a polynomial, and that the approximation can get arbitrarily close
to the function. For a high precision this may in practice require a
high degree polynomial, which is impractical when using homomorphic
encryption. There are different ways of approximating using polyno-
mials. One method is to use a truncated Taylor series. This is a local
approximation, which works best when the the data is in some limited
domain.

An example of a global approximation over an interval I is the
least square error method, which chooses the polynomial with least
mean square error (MSE). This chooses the polynomial g of degree d
or less that minimises

∫
I
(g(x) − f(x))2dx. Ghasemi et al. [14] gives

a detailed method for implementation of homomorphic polynomial
approximation.

Another approach to non-polynomial function computation is to
create lookup tables in advance. This means that we compute the
values for a given range of values for the function before we do our
encryption.

5.1.2 Table lookup

For a given function f we can construct a table Tf [X] of outputs for
a limited set of inputs, such that Tf [X] = f(X) on the limited set of
inputs. This method is faster and uses fewer levels than polynomial
approximation, but has limited precision. We can pre-compute all the
values in the table, which saves significant time. We have to do the
table look-ups homomorphically, so it still has some cost associated
with it, but not nearly as high as with a polynomial approximation.
This method is suitable for SIMD operations, so it matches well with
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the packed encoding.
We do this as follows: we have the parameters (p, s, ν), where p is

the number of bits, s is the scale and ν is a boolean which determines
whether the number is signed (ν = 1) or unsigned (ν = 0). The p-bit
string (xp−1 . . . x1x0) is interpreted as the rational number

Rp,s,ν(xp−1 . . . x1x0) = 2−s · (
p−2∑
i=0

2ixi + (−1)ν · 2p−1xp−1)

A given table has implicit parameters (p, s, ν) for the input of the
function and parameters (p′, s′, ν ′) for the output of the function. For
these parameters we get 2p entries in the table, each of which has a
p′-bit number. We construct the table as follows:

A given p-bit string xi has an assigned index i ∈ [2p]. The table
entry Tf [i] is given by the integer zi with binary expansion yi

Rp′,s′,ν′(yi) = df(Rp,s,ν(xi)cp′,s′

For values that are not representable in p bits, we give them the
maximum or minimum possible values. If the size of the integer is
bounded by the plaintext slot, we can store the value in each slot in a
plaintext, to accommodate more SIMD operations.

Once we have the function table, we only need to extract the cor-
rect value homomorphically for a given bit string. We do this by com-
puting subset products of the bits. Given encrypted bits σp−1, . . . , σ0
we compute

ρ0 = (1− σ0) · . . . · (1− σp−2) · (1− σp−1)
ρ1 = (1− σ0) · . . . · (1− σp−2) · σp−1
ρ2 = (1− σ0) · . . . · σp−2 · (1− σp−1)

...
...

ρ2p−1 = σ0 · . . . · σp−2 · σp−1
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Figure 5.1: Overview of choices in how to do a specific computation
homomorphically, and how the choices affects other choices. This is a
sketch to illustrate the complexity of homomorphic encryption, and is
not necessarily useful for specific implementation.

We can compute these subset products recursively, so we can get
dlog pe multiplication depth by using a tree like structure when we
multiply. We do have to compute 2p products, so the total number of
multiplications is O(2p). With the function table and the subset prod-
ucts ρr computed, the table evaluation is easy to compute:

∑
r Tf [r]·ρr

gives the desired evaluation of the function.

5.2 Computation techniques

In this section we will look at some different computation techniques,
and look at how we can do them homomorphically. We will show which
are feasible with which representation, and which are unfeasible all
together. We start with some easy ones and move to more complicated
ones.

We stress that for any given computation one want to do homo-
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morphically, there are many choices to make in how one does it. This
is illustrated in Figure 5.1. Therefore comparisons between different
methods is difficult, and there is seldom a single ”correct” way of doing
a given computation.

5.2.1 Principal component analysis

Principal component analysis (PCA) is a dimension reduction tech-
nique, where we are given a set of possibly correlated variables and we
want to reduce them to a set of independent variables. We do this by
looking at the covariance matrix of the variables and extracting the
dominant eigenvectors from it. We are given a data matrix X and
want to compute the eigenvalues and eigenvectors of its covariance
matrix

Σ =
1

N
XTX − µµµµµµT µµµT =

1

N

N−1∑
i=0

xTi .

We can extract the dominant eigenvalue and eigenvector by using
the power method. This is a method that computes v(k) = Σkv(0) for
some random vector v(0). The vector is stretched in the direction of the
dominant eigenvector each time we multiply by the covariance matrix.
We only compute the most dominant eigenvalue and eigenvector here.
We show how in Algorithm 2.

The power method is suitable for homomorphic encryption, as it
only uses additions and multiplications except at the very end. We
could decrypt before doing the division, leaking a bit of information.
Alternatively we could implement a look-up table for the functions
1/‖x‖ and compute u = v(T ) · 1/‖v(T )‖. This would depending on the
precision of the look-up table require a comparatively high amount of
multiplications.
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Algorithm 2: Power method for eigenvalues

Input:
- Σ Covariance matrix
- T Number of iterations
Output: Dominant eigenvalue λ and eigenvector u
Choose random vector v
for i = 1 to T do

v(i) = Σv(i−1)

return u = v(T )/‖v(T )‖ and λ = ‖v(T )‖/‖v(T−1)‖

A problem we face is with computing the covariance matrix Σ itself,
as it requires division by N . We can solve this by multiplying with
N2 and working with the scaled covariance matrix. The algorithm for
computing secure PCA is in Algorithm 3.

We get a normalised eigenvector by computing v(T )/‖v(T )‖ in the
clear and we get the eigenvalue by ‖v(T )‖/‖v(T−1)‖. The performance
is highly dependent on how we represent matrices in the plaintext
space. In total it uses T matrix vector multiplications, one outer
product and 2N additions and the depth is the same. The matrix vec-
tor multiplications will dominate here. We therefore would probably
like to use a two dimensional hypercube for this computation. Rathee
et al. [23] showed that for some specific data sets the two dimen-
sional hypercube gives significantly faster implementation than with
the linear array arrangement. The difference in performance is more
pronounced the more attributes the data has. This makes sense, as
the one as the two dimensional matrix vector multiplication requires
a single multiplication, while with the linear array the vector matrix
multiplication requires n multiplications for n data attributes.
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Algorithm 3: Secure PCA

Input:
- xTi the ith row of X
- xix

T
i the outer product

- T number of iterations
Output: first principal component u1 of X and its magnitude
λ1
NµµµT =

∑
xTi

N2µµµµµµT = (Nµµµ) ·NµµµT
N2Σ = N

∑
xix

T
i +N2µµµµµµT

for i = 1 to T do
v(i) = N2Σv(i−1)

return v(T ),v(T−1)

5.2.2 Linear regression

Linear regression is simple way of modeling the relationship between
variables. This is typically done by methods which are difficult to
implement homomorphically, such as singular value decomposition.
We leverage the homomorphic implementation of PCA to compute
linear regression in this section.

We get data on the form (X,y) = {xTi , yi}Ni=1. Our goal is to find
weights w such that y ≈ Xw. We find this by

w = arg min
w∗

1

N

N∑
i=1

‖yi − xTi w∗‖2.

There are many other techniques for solving linear regression, but
we need a technique suitable for homomorphic computation. For small
dimensions we can use the normal equation method, which computes
(XTX)−1XTy. The problem here is that we have to compute the
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inverse, where many methods are numerically unstable. Fortunately,
there is a division free algorithm for finding a scaled matrix inverse,
based on one by Guo and Higham [10]. This is a stable method if
we have a dominant eigenvalue. We can therefore use the information
gained from the secure PCA to use a division free matrix inversion
algorithm. We show it in Algorithm 4.

Algorithm 4: Division free scaled matrix inverse

Input:
- M matrix
- λ dominant eigenvalue
- T number of iterations
Output: λ2

T
M−1 the scaled inverse of M

Initialise A(0) = M,R(0) = I, α(0) = λ
for i = 0 to T do

B = 2α(i−1)I − A(i−1)

R(i) = B ·R(i−1)

A(i) = B · A(i−1)

α(i) = α(i−1)α(i−1)

return R(T )

The output of the algorithm is the inverse of M scaled by the
constant α(T ), so we get M−1 = R(T )/λ2

T
. This is an algorithm we

can evaluate homomorphically. We now present the algorithm for
secure linear regression.

We see that λ2
T

can grow really fast, so we need either a large
plaintext modulus or a high bit number of bits, namely log(λ) ·2T bits.
The division free matrix inverses takes 2T matrix multiplications and
additions, and the depth is T matrix multiplications. In addition we
have to do N outer products and a sum of N variables. We have one
final matrix vector multiplication in the end.

In both of these techniques, we multiply by a large constant (λ2
T
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Algorithm 5: Secure Linear Regression

Input:
- yix

T
i

- xix
T
i outer product of xi

- λ dominant eigenvalue
- T number of iterations
Output: λ2

T
w, λ2

T

XTy =
∑
yix

T
i

XTX =
∑

xix
T
i

Does the division free inverse algorithm on XTX,λ, T
λ2

T
w = λ2

T
(XTX)−1 ·XTy

return λ2
T
w, λ2

T

in secure linear regression and N2 in secure PCA), which will be un-
practical to represent in a bit wise encoding. If we want to represent
λ2

T
we would need log(λ) · 2T bits, which becomes really impractical

for larger T ’s. These computations are suitable for using word wise
encoding, since we know how many levels we need and we do not need
comparisons, which are less efficient in word wise encodings.

An alternative is to compute 1/λ2
T

homomorphically in order to
avoid the leak we get from publishing both λ2

T
and λ2

T
w. This re-

quires the implementation of a look-up table for the function 1/x in
the required precision neighbourhood.

In this method we have to leak information just before we are done,
but the process requires a fixed number of iterations. In the next
technique we can leak convergence rate instead of leaking something
at the end.
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5.2.3 Logistic regression

Logistic regression fits data to a logistic curve in order to predict
probabilities based on this curve. We are given data of the form (xi, yi)
where xi ∈ Rd, yi ∈ {±1} where yi ∈ {±1} is a variable that depends
on xi. Set zi = yi · (1,xi).

The goal is to find the optimal βββ ∈ Rd+1 that minimises the loss
function

J(βββ) =
1

n

n∑
i=1

log(1 + exp(−zTi βββ)).

Finding the optimal value can be done by gradient descent, which
moves toward a local extremum of the function by moving along the
gradient. For our loss function, the gradient can be computed as

∇J(βββ) = − 1

n

n∑
i=1

σ(−zTi βββ) · zi

where σ(x) = 1
1+exp(−x) is the logistic function, which acts component

wise on vectors. We see here that we have to deal with complicated
functions such as the logistic and the logarithmic functions. Let us
say that we use look-up tables.

The gradient descent algorithm then updates βββ by setting

βββt+1 = βββt +
α

n

n∑
i=1

σ(−zTi βββ
t) · zi

for some learning rate α. Gradient descent is known to converge some-
what slowly. There are many ways of tweaking the gradient descent
algorithm to make it converge faster, but we keep it simple and some-
what homomorphically implementable.

For each step we have one inner product, one logistic function
evaluation and one multiplication. The value 1/n needs only to be
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computed once. Inner products can be implemented efficiently in all
hypercube arrangements, with a multiplication and a TotalSum over
all the entries. The bottleneck in this computation will be computing
the logistic function. It will in general require O(2p) multiplications for
a precision p, which gives it a bit of trade-off. We can either choose
to do a set number of iterations or leak the difference between two
iterations of βββ and halt when the convergence is good enough.

Logistic regression has successfully been implemented homomor-
phically. Kim et al. [17] implemented logistic regression with the
approximate arithmetic cryptosystem of Cheon et al. [4]. They used
an accelerated gradient descent algorithm which converges faster, but
which has additional hyperparameters. Crawford et al. [5] used a
slightly more complicated method than the gradient descent method.
They settled for an implementation using bootstrapping, which mas-
sively slows down performance, but which was possible to implement
in reasonable time regardless. Their input data xi had only binary val-
ued attributes, and as such it was more suitable to this cryptosystem
than more general valued data would be.

We have looked at some successful implementations of privacy pre-
serving computing. Next we look at a harder technique to implement
homomorphically, namely neural networks.

5.2.4 Neural networks

Neural networks is a popular machine learning method for classifi-
cation of data. They comprise of connected nodes where each node
computes a nonlinear function based on the outputs of its input nodes.
The network is divided into a number of levels, and each level con-
tains a number of nodes. In this section we only consider so called
fully connected feed forward networks, for ease of explanation. This
means that each node in a level depends on all the nodes from the
previous level.
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Combining neural nets with homomorphic encryption can be done
in a number of ways. We can both train and classify using homo-
morphic encryption, or we can do only one of those things. Training
requires three computations: feed forward, the cost function and back-
propagation. If we only want to classify data, the feed forward step is
sufficient.

We first consider the feed forward mechanisms which is used to
classify the training data. In each node we compute a linear combi-
nation of the previous level and evaluate an activation function. The
linear combination of nodes in level l − 1 can be written as a weight
matrix W l. From one level to the next we write al = f(W lal−1) where
al is the vector of outputs in level l. The activation is a nonlinear
function, typically the logistic function (f(x) = 1

1+e−x ) or the ReLU
(f(x) = max(x, 0)). The logistic function is often used in the last
level in classification problems, as its output is in (0, 1) and is there-
fore suitable for describing a probability. We compute the derivative
of the activation function in the backpropagation step, so it is use-
ful that the derivative is easy to compute. For example, we have
σ′(x) = σ(x)(1− σ(x)) for the logistic function.

Secondly, we compute the cost function which measures the cor-
rectness of the prediction from the feed forward step. The cost function
varies depending on usage. A commonly used one is the quadratic cost
function Ck = ‖aLk−yk‖2/2, because the derivative of the cost function
is easy to compute homomorphically, which is useful in backpropaga-
tion. This is a commonly used cost function because it intuitively
captures the distance between the prediction and the result. Notice
that we denote the cost function Ck, which emphasizes that it com-
putes the cost related to the data and classification (xk,yk).

Thirdly we use backpropagation, which uses the gradient of the cost
function to tune the weights in the neural net. Backpropagation can
be done using stochastic gradient descent. This can be implemented
as a series of matrix multiplications. Gradient descent updates the
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weight matrices by setting

W l = W l − α ∂Ck
∂W l

for some learning rate α and for level l ∈ {1, . . . , L}. Stochastic gra-
dient descent computes the same, except that instead of computing
the cost for each single data point, it computes the cost with respect
to an average of a small sample B, called a mini-batch, to get more
efficient convergence. In this case we denote the cost CB instead of Ck
to indicate that it is the cost of a mini-batch.

The name backpropagation comes from the fact that the change in
the weights is propagated backwards through the levels. The deriva-
tives ∂CB

∂W l are computed in a backward sequence. Set zl = W lal−1. We

will compute ∂CB

∂W l in terms of the following:

∇CB = (aLB − yB)

(f l)′ :=
∂f l

∂zl
= diag(

∂f l

∂zl1
, . . . ,

∂f l

∂zln
)

∂zl

∂al−1
= (W l)T

where diag(x) refers to the diagonal matrix with xi on its diagonal.
The term (f l)′ is a diagonal matrix with the activation function on
the diagonal since the activation function is applied entry-wise. We
now define the error δδδl at level l recursively as

δδδl =

{
(f l)′ · (W l+1)T · δδδl+1 l < L

(f l)′ · ∇CB l = L.
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We can then express the changes by the error as

∂CB
∂wljk

= δδδlj · al−1k

∂CB
∂W l

= δδδl · (al−1)T .

A full round of feed forward, cost function and backpropagation for
all the data sets is known as an epoch. To get desirable accuracy we
can do a set number of epochs. This method gives us little flexibility.
If say the accuracy after 30 epochs is 95,7% and after 50 epochs it is
96%, it may not be worth it to compute the last 20 epochs. This is
where leakage in our security model from Chapter 4 comes in. While
we can do a fixed amount of epochs, we can also stop the computation
when it is at a fixed accuracy level, or the growth in accuracy is at a
small enough level. The drawback of this is that we have to know the
test accuracy or its growth, which is encrypted. What we can do is to
decrypt the test accuracy or growth, and conclude from that whether
to stop or not. In this method we would have to choose an accuracy
test, which should depend on what kind of data space we are using for
best effect.

Neural networks requires one activation function evaluation and
one matrix vector multiplication in each level in the feed forward step.
The cost function requires evaluation of the cost function. Backprop-
agation requires two matrix vector multiplications and an outer prod-
uct per level. The matrix vector multiplication between (f l)′ and
(W l+1)Tδδδl+1 can be computed as an entry-wise multiplication of two
vectors, as we can view (f l)′ as a vector instead of the diagonal of a
diagonal matrix. This is a cheaper operation, both in the one dimen-
sional and two dimensional hypercube structures.

One downside with neural nets is that the number of levels in the
in the leveled FHE scheme is roughly proportional to the number of
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levels in the neural network, since the number of network levels dic-
tates the number of multiplications in both the feed-forward and back-
propagation step. Thus the neural nets are much more demanding to
implement homomorphically then the earlier computation techniques.
We now look at some different approaches to computing neural nets
homomorphically.

Approaches to homomorphic neural networks

Ghasemi et al. [14] tried an approach to homomorphic neural nets.
The problem with their approach is that they required regular com-
munication with the client. After using up every modulus chain, they
would send the result back to the client to refresh the modulus chain
without bootstrapping. Since bootstrapping requires more computa-
tion time than the actual computation they wanted to do, this saved
a lot of time. The regular communication with a client is not only
a problem in of itself, but the decryption of the temporary computa-
tion leaks information we rather not leak. They used a polynomial
approximation to the activation functions instead of a look-up table.
The implementation was reasonably fast, but at the expense of high
communication rate and perhaps reduced security.

Halevi et al. [22] used the logistic activation function, with a look-
up table. The ReLU is preferred as activation function for general
neural nets in the machine learning community. It also have the bene-
fit of being suitable for a homomorphic implementation in two’s com-
plement representation. We can use the sign bit xn to compute the
max by multiplying the number x with 1 − xn. If the signed bit is 0
(i.e. a positive number or 0 itself) then we keep the number, or else
it becomes zero. Thus the ReLU activation is obtained with the cost
of one replication and one multiplication in this representation. The
derivative of the ReLU is zero when x is less than zero, one when x
is bigger than zero and undefined in x = 0. This can be expressed by
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(1− xn), defining the output at x = 0 to be one. Both the ReLU and
its derivative needs much less computation time then the look-up ta-
ble, and a lower multiplicative depth. We also do not have to sacrifice
any precision.

Another thing about the implementation of Halevi et al. is that
they considered the plaintext structure of a linear array. This means
the time complexity of the matrix multiplications is higher than if
they were to use a hypercube structure with higher dimension. In
their implementation they used a toy parameter m = 210 − 1 which
gives φ(m)/10 = 60 slots and a secure parameter m = 215 − 1 with
φ(m)/15 = 1800 slots. With the toy parameters there is no room for
advanced hypercube structure without making the dimensions unprac-
tically small. This may be a reason they chose to use a linear array
structure. With the secure parameters, one can arrange the data in
30× 60 slots in matrix form with the secure parameters. This reduces
the number of multiplications by a factor of 30.

Their best supported implementation processed a single neuron in
14 seconds, and it took 919 seconds for the secure parameters, which
is roughly 60 times as much. The secure parameters has 30 times as
many slots, so the amortised computation time of the secure parame-
ters can be estimated to be roughly twice that of the toy parameters.
This is just with the evaluation of a single neuron. A complete mini-
batch computation with 60 training examples took roughly 40 minutes
with the toy parameters. As the per-gate computation is quasi-linear
in the degree of our cyclotomic polynomial [2], we can scale up the
computation time of a complete mini-batch to secure parameters by
multiplying by 60. Thus a single mini-batch with secure parameters
would take roughly 40 hours. Even by accounting for the fact that
we could pack more input samples with the secure parameters, this is
still so slow as to be completely unpractical.

Back-propagation and computing the cost function can be expen-
sive. Thus if we train the network first, then classify, we would get a
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much more efficient solution. The application of this method is more
sparse than the general solution. In this scenario, we would need that
some data of the same type as we are encrypting can be read in plain-
text. This is difficult in practice, as you don’t want to do computation
on medical data at the expense of revealing half the data.

We have established some implementation of computation methods
one can achieve with homomorphic encryption. Some of these are
possible to implement securely with the current best cryptosystems
and specially designed algorithms. As we see in the literature, fully
implemented and secure deep learning with homomorphic encryption
is yet a practical reality. With more optimisation in the homomorphic
system and new discoveries, this could be practical in the future.





Chapter 6

Concluding remarks

In this thesis we have explored how we can achieve privacy preserv-
ing computation and how many aspects we have to consider to make
computation privacy preserving. We have constructed a cryptosystem,
discussed how we can encode real-world data, proved a security model
and investigated some examples of privacy preserving computation.

A fully fleshed out covering of the topic would have included an im-
plementation, a deeper discussion about bootstrapping, an improved
security model which allows malicious attackers and better multiplica-
tion algorithms. Some of these subjects are quite advanced and their
explorations could have been master theses of their own.

The future of homomorphic encryption is bright, and we have ex-
citing times ahead of us. The scheme of Cheon et al. [4] allows for
floating point arithmetic in the plaintexts natively, and is a possible
candidate for even better computation than with the BGV system,
which is best for integers. The floating point arithmetic makes the
scheme especially good for machine learning tasks over the reals. It
has the drawback of using approximate arithmetic, in essence trading
accuracy for efficiency.

Computing on encrypted data is more complicated than computing

89
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on regular data. By encryption the data increases in size and the oper-
ations become slower. Noise growth mitigation takes time and the data
might need to be represented in a specific way for encryption. Lastly,
many operations which are trivial to compute unencrypted are com-
plicated to compute homomorphically. The available operations and
their efficiency are dependent on the particular structure of the cryp-
tosystem. Therefore the current homomorphic encryption techniques
are still several orders of magnitude slower than their unencrypted
counterparts. Homomorphic encryption has vast potential, and that
potential drives the development of this tool for privacy preserving
computation further.
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