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0.1 Abstract

A differential graded algebra (DG-algebra) can often be thought of as an algebraic gadget
containing highly detailed topological information. Two such cases are the algebra of
cochains, and the cohomology ring of a topological space. The latter is often easy to
calculate, but the former contains in general much more information about the space we are
interested in. In this thesis we explore the relationship between these two DG-algebras—
more precisely some situations where these two algebras contain the same homotopical
information. Such algebras are called formal DG-algebras.

In order to understand which type of homotopical information a DG-algebra can contain,
we construct obstructions to formality through higher cohomology operations—called
Massey products. We then generalize DG-algebras to A∞-algebras, and look at some
ways to use this generalized theory as a unified framework for both DG-algebras and
Massey products. This framework allows us to prove that a certain class of topological
spaces—namely those with Lusternik-Schnirelmann category 1—have formal cochain
algebras.
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0.2 Sammendrag

En differensialgradert algebra (DG-algebra) kan ofte sees på som en samling av høyt
detaljert topologisk informasjon. To slike tilfeller er algebraen av kokjeder, og kohomolo-
giringen til et topologisk rom. Den sistnevnte er ofte lett å regne ut, men den førstnevnte
innholder generelt mye mer informasjon om rommet vi er interessert i. I denne avhandlin-
gen utforsker vi forholdet mellom disse to algebraene—mer presist noen situasjoner hvor
disse to innholder den samme homotopiske informasjonen. Slike algebraer kalles formelle
DG-algebraer.

For å forstå hvilken type homotopisk informasjon en DG-algebra kan inneholde, kon-
struerer vi hindringer for formalitet gjennom høyere ordens kohomologioperasjoner—kalt
Massey produkter. Vi generaliserer så DG-algebraer til A∞-algebraer, og ser på noen
måter å bruke denne generaliserte teorien som et felles rammeverk for både DG-algebraer
og Massey produkter. Dette rammeverket tillater oss å vise at en viss klasse av topologiske
rom—nemlig de med Lusternik-Schnirelmann kategori 1—har formelle kokjede algebraer.
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0.4 For experienced readers

This thesis is not meant to be short and concise—as this is in our opinion not the best way
to deeply understand abstract mathematics, which after all is our main goal. For this reason
there will be some lengthy explanations and some lengthy calculations in order to properly
understand the material at hand. There will also be some intentionally vague sentences
and paragraphs, in order to build intuition and a more natural feeling for the theory.

The entire chapter 3—on transferring algebraic structures through homotopy equivalences—
are not much needed for the thesis, but they give good motivation for why the definition of
an A∞-algebra is the way it is. The two subsections, section 4.2.2 and section 4.2.3, on
using rooted trees as a visual understanding of the relations in DG-algebras, A∞-algebras
and their morphisms, are also not needed to understand the later results—but they too serve
as intuition for the relations, and how to use them. These can easily be omitted by readers
who have already seen these concepts.

If a reader wants to more quickly understand the meat of the thesis—or only go through the
most important result—we have added below a list of where to find the central definitions
and results. There is also a summary at the end (section 5.3), which quickly summarizes
what has been done throughout the thesis, as well as an index, where one can look for
specific things of interest.

1. Section 0.5 (The introduction)

2. Definition 1.4 (DG-algebra)

3. Example 1.7 (Cohomology algebra)

4. Definition 1.14 (Quasi-isomorphic DG-algebras)

5. Definition 1.15 (Formal DG-algebra)

6. Definition 2.4 (Massey products)

7. Definition 2.5 (Vanishing Massey products)

8. Theorem 2.10 (Formal =⇒ vanishing Massey products)

9. Definition 4.1 (A∞-algebra)

10. Definition 4.7 (A∞-quasi-isomorphism)

11. Theorem 4.11 (Kadeishvili’s theorem)

12. Theorem 4.16 (Trivial A∞-structure =⇒ formal)

13. Theorem 4.22 (Vanishing Massey products + + =⇒ formal)

14. Theorem 5.11 (catLS(X) ≤ 1 =⇒ X formal)

We will try to explain all the details as they come up, but we do not at all claim that
this thesis is self contained. We assume some familiarity with homological algebra and
algebraic topology, as well as some general mathematical maturity.

All images and diagrams are made by the author.
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0.5 Introduction

The field of algebraic topology is centered around using objects, techniques and theory from
abstract algebra, in order to study topological spaces. As both algebra and topology are
vast and deep fields, there are countless ways of using both theories in tandem to produce
interesting results and deep connections between the two fields. A highly successful
algebraic construction—now used throughout the whole field of mathematics, but originally
arising from trying to study topological spaces—is called cohomology.

Cohomology is a graded algebra—associated to any topological space—where the elements
are essentially those closed subspaces that are not the boundaries of other subspaces. This
allows us to study how many, and which kinds of holes a topological space has—which
is one of its central topological properties. There are many ways of calculating the
cohomology of a space, but by definition they arise as quotients of collections of cochains
in the topological space—which can by thought of as the closed subspaces. The collection
of all cochains form what we call the cochain algebra of the topological space, and it gives
a very rich insight into the space we are interested in. An unfortunate drawback is that this
cochain algebra is very difficult to calculate, much harder than the cohomology, hence we
most often use this instead.

As the cohomology is easier to understand, and easier to calculate, we arrive at the
following question: If two topological spaces have the same cohomology algebra, do
they also have the same cochain algebra? The answer to this turns out to be no. In
general, there are certain bits of information—for example Massey products—stored in
the cochain algebra, that the cohomology algebra does not have access to. This means
that two different topological spaces, with different cochain algebras, could have the same
cohomology algebra, but by using the existence of these Massey products—which are
certain higher order, higher arity, cohomology operations—allows us to distinguish them.

As a follow up to the failure of the previous question, we can ask: Given the cochain
algebra of a topological space, how can I know whether it is sufficiently simple, such that
the cohomology algebra has access to all the relevant information? Such “sufficiently
simple” algebras are called formal algebras, and they are the central theme of this thesis.
More precisely, an algebra is called formal if it contains the same homotopical information
as its cohomology algebra, which means we must find some way to relate these two. This
is done through quasi-isomorphisms.

The above informal question turns out to be very deep and interesting, so we take it as the
central question we want to answer in the whole thesis.

The central question: Given the cochain algebra A of a topological space X , how do
we know whether A is sufficiently simple, such that H(A)—the cohomology algebra of
A—has access to all the relevant information?

This is of course an imprecise and non-mathematical question, as “sufficiently simple”,
“access” and “information” are not yet well defined mathematical concepts. We are also
not at all specific when saying what a cochain is, and what kind of object a cochain algebra
can be. The reason we use these words here is to later recognize them when we look at
cochain complexes, and graded algebras in a common framework, called DG-algebras.

vi



Hence, at least for this introduction, a cochain algebra means roughly any DG-algebra we
can associate to a topological space X .

We will throughout the thesis define the parts, and refine the question more mathematically,
but in order to tell a cohesive story—and to have something to look ahead for—we also
state the precise formulation of the central question:

The central question: Given a DG-algebra A, how can we know if it is formal?

We see that we have a lot of work ahead of ourselves, so lets define the goals we want to
achieve.

Our first goal for this thesis is simply to learn about mathematics that we previously did not
know much about, as well as answering the above central question. This is done through
two attempts. The first one is using Massey products, which although they give obstructions
to formality, turn out to not be the only possible obstructions. We then try to generalize
DG-algbras and Massey products to a unified and stronger framework, called A∞-algebras,
which we successfully use to get one possible solution to the central question.

Theorem 1. Let A be a DG-algebra. Then A is formal if and only if its Merkulov model is
again a DG-algebra.

The second goal is to push the boundaries of mathematical knowledge, by whatever tiny
nudge we can. After developing the above-mentioned theory, we are able to provide a
new case where formality is guaranteed. This somewhat rectifies the failure of Massey
products to be the only obstructions to formality, by proving that they are in fact the only
obstructions in DG-algebras where the induced product on cohomology is trivial.

Theorem 2. Let A be a DG-algebra. If the induced product on H(A) is trivial, and all
Massey products in A vanish, then a is formal.

We then apply this new result to an example from topology, in order to prove a known
result—that spaces with Lusternik-Schnirelmann category 1 are formal—in a new way.
During this proof, we also introduce the concept of reduced formality for a topological
space. This essentially allows us to neglect the degree zero cohomology classes when
studying formality, as we prove reduced formality to be a stronger criteria than formality
itself. This result also seems to be original to the thesis.
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0.6 Overview of the thesis

Chapter 1 is spent on defining DG-algebras, seeing some examples and defining formality
for DG-algebras. The latter half of it is designated to introducing the general theory which
allows us to have a homotopy theory for DG-algebras, called model categories—as well
as proving that DG-algebras admit such a theory. Together these two parts should answer
what we meant by “sufficiently simple” and “has access to” in the introduction.

Chapter 2 is an interlude into the “information” part of the central question. We introduce
certain algebraic operations—called Massey products—that serves as “information” in
the DG-algebra. We then prove that this information is not accessible to the cohomology
algebra, and that all Massey products must vanish if the DG-algebra is formal.

Chapter 3 is another interlude, this time into transferring algebraic structures between
objects. This chapter is not an integral part of the thesis, but it is meant to give strong
intuition into how the algebraic objects we introduce in 4 behave. In this chapter we try to
deform a DG-algebra by a deformation retraction, to see if the result is still a DG-algebra.

Chapter 4 introduces a new algebraic object called A∞-algebras. These objects generalize
the DG-algebras we develop in chapter 1. This added generalization gives a better behaved
homotopy theory, as well as making the central question nice and easy to state and answer.
In the second part of the third chapter we prove a new—as far as the author is aware—result,
introducing a special case where if the Massey products we developed in chapter 2 all
vanish, we must have a formal DG-algebra.

Chapter 5 is then spent trying to find an interesting example to the new result we proved
at the end of chapter 3. We show that a certain class of topological spaces—those with
Lusternik-Schnirelmann category 1—satisfy the requirements of the theorem, and hence
that they must be formal spaces.

Lastly, we have two appendices.

Appendix A features two long proofs that were omitted during the thesis in order to not
break the flow of reading. The first proves that the deformed DG-algebra from Chapter 3
is not associative, but associative up to homotopy. The second proves that a certain
decomposition of a DG-algebra gives us a deformation retraction onto its cohomology
algebra.

Appendix B is added to showcase an alternative method to constructing the model structure
on the category of DG-algebras. This alternative construction uses monoids in monoidal
model categories.
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DG-algebras
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CHAPTER 1. DG-ALGEBRAS

1.1 Motivation

The theory of homology was a theory long in development. Luckily for us we have access
to good historical records—like [Mas99] and [Wei99]—which this overview is based on.

Homology theory arguably started with Riemann in [Rie57], where he defined “connected-
ness numbers”. Some years later these were generalized to higher dimensions by Betti in
[Bet70], which became the numbers we today call Betti numbers. There were some prob-
lems and mistakes in both the above papers, so a more rigorously defined and developed
notion of these were given by Poincaré in the famous paper “Analysis situs” ([Poi95]).

Due to some mistakes and new developments, Poincaré published a complement to “Anal-
ysis situs” ([Poi99]), where in addition the first use of a prototype of the singular chain
complex of a polyhedron was used.

The theory of these chains on topological spaces, and their Betti numbers were more firmly
joined together, when Noether claimed in an abstract for a lecture series ([Noe25]) that
these in fact form abelian groups - being the first case of the homology groups we use
today.

Inspired by these ideas, Mayer constructed in [May29a, May29b] the modern notion of a
chain complex, and its homology, beginning the journey of a purely algebraic description
of topological information. Some years later the theory of cohomology, and cup products
was developed by both Alexander and Kolmogoroff. They both had some mistakes and ad
hoc definitions, so a more refined and developed theory was given by Whitney in [Whi37].
In this paper, Whitney also introduced “the Leibniz axiom”. This implicitly defined the
notion of what we call a differential graded algebra (DG-algebra) in modern terminology,
namely as a cohomology ring satisfying this Leibniz axiom. This object is the focus of
most of this thesis.

We start the chapter by developing these DG-algebras for ourselves, as well as look at
very special kind of DG-algebra—referred in the introduction to as “sufficiently simple”.
Afterwards we develop the abstract concept of homotopy theory. We do this in order to
prove that DG-algebras admit such a homotopy theory, which might not be a surprising
fact given their above described connection to topology. The main result from this chapter
is a description of formality, using only a single span of quasi-isomorphisms, i.e.

Theorem A. A DG-algebraA is formal, if and only if there is a span of quasi-isomorphisms
H(A)← B → A, for some DG-algebra B.

1.2 The algebraic model

Our algebraic model consists of DG-algebras, which are both algebras, and cochain
complexes in a compatible way. We define them by first looking at their different structures.
For the rest of this thesis, we let k be an infinite field, unless otherwise stated.

Definition 1.1. (Algebra). An algebra over k, also called a k-algebra, is a vector space
A over k, together with a bilinear map m : A × A → A, usually called multiplication.

2



CHAPTER 1. DG-ALGEBRAS

More precisely, m is a map satisfying

• m(x+ y, z) = m(x, z) +m(y, z)

• m(x, y + z) = m(x, y) +m(x, z)

• m(ax, by) = (ab)m(x, y)

• m(m(x, y), z) = m(x,m(y, z))

for all x, y, z ∈ A, a, b ∈ k.

Notice in particular that we don’t require our map m to be commutative. The last condition
says that the product is associative, but we remark that not all authors require this in general.
By convenience, we often replace m(x, y) by just x · y or simply xy. We will switch a bit
between all these three where they make the most sense to use.

It can be noted that we can define algebras over rings in general—not just fields— but
we chose this definition as it will be sufficient for us throughout the thesis. It will also
generalize more smoothly to A∞-algebras in chapter 3.

Definition 1.2. (Graded algebra). We say an algebra A is a graded algebra if there is a
decomposition A =

⊕
n∈ZA

n, into vector spaces An, such that the product respects the
grading, i.e. m : An × Am −→ An+m.

To be able to tie these graded algebras in with the already well developed theory of homo-
logical algebra and algebraic topology, we need to have some way to build cohomology.
This is done through the notion of cochain complexes.

Definition 1.3. (Cochain complex). A cochain complex (A•, d•) is a sequence of Abelian
groups, or modules,

. . . , An−1, An, An+1, An+2 . . .

together with maps dn : An → An+1 such that dn+1 ◦ dn = 0 for all n. Such a structure is
usually visualized as a sequence of the following form

· · · −→ An−1
dn−1

−→ An
dn−→ An+1 dn+1

−→ An+2 −→ · · ·

The following definition is one of the main definitions of the thesis, so make sure to digest
it properly. It is a combination of the (graded) algebra structure and the cochain complex
structure, into one unified framework.

Definition 1.4. (DG-algebra). A differential graded algebra (A, d), often called just a
DG-algebra or a DGA, is a graded algebra A together with a degree +1 map d : A −→ A,
often called the differential, such that

• d ◦ d = 0, and

• d(a · b) = d(a) · b+ (−1)|a|a · d(b).

The condition that d ◦ d = 0 is what makes A into a cochain complex, and the second
condition is what makes these two structures work well together. The second condition
is called the graded Leibniz rule, or the Leibniz axiom. The criteria that d has degree +1

3



CHAPTER 1. DG-ALGEBRAS

means that if we take a homogeneous element a of degree n, i.e. an element in An, then
d(a) has degree n+ 1, i.e. it lies in An+1. We will use the following notation if the degree
of an element a is n, |a| = n. Similarly for morphisms, for example |d| = −2. By some
abuse of notation, we will denote a DG-algebra simply by A.

As these objects will be one of our main focus points throughout this thesis, it is important
to have control over some examples. In the introduction we used the word “cochain algebra”
to mean roughly any DG-algebra that we can associate to a topological space. So to tie the
theory to the introduction we focus mostly on the examples coming from topology. Most
of these are related to cohomology in some way. This is maybe not surprising given the
historical context earlier.

Example 1.5. (Singular mod p cohomology). Let T be a topological space. For any
prime number p 6= 2, the singular modp cohomology ring H∗(T,Z/pZ), is a DG-algebra.
Its graded multiplication is the induced operation in cohomology from the cup product of
n-cochains. The differential is a bit more involved, but comes from the exact sequence

Z/pZ −→ Z/p2 −→ Z/pZ.

This induces a long exact sequence

· · · → H i(T ;Z/pZ)→ H i(T ;Z/p2Z)→ H i(T ;Z/pZ)
β→ H i+1(T ;Z/pZ)→ · · · ,

where the connecting homomorphism β is called the Bockstein homomorphism. This
homomorphism serves as the differential in our DG-algebra H∗(T,Z/pZ).

Example 1.6. (The singular cochain algebra). Let X be a topological space and k a field.
An n-cochain on X is a group homomorphism Sn(X) −→ k, where Sn(X) is the group
of singular n-chains, i.e. the free group on the set of continuous map σ : ∆n −→ X , where
∆n is the standard n-simplex.

The group of singular n-cochains on X is then defined to be

Sn(X; k) = HomAb(Sn(X), k)

We define the coboundary operator to be the group homomorphism

δ : Sn(X;M) −→ Sn+1(X;M)

c 7−→ [σ 7→ c(∂n+1(σ))]

where ∂n+1 is the boundary operator on the groups of singular n-chains. This operator
makes the set {Si(X;M)} into a cochain complex.

The multiplication is the so-called cup product of cochains. For a good rigorous treatment
of this operation, see [Hat01, Section 3.2.].

Example 1.7. (The cohomology algebra of a DG-algebra). Since every DG-algebra
is a cochaincomplex, it naturally comes equipped with a way to form its cohomology,
by simply letting H(A) = Ker(d)/Im(d). The cohomology of any cochain complex is
naturally graded, and together with the induced product from the DG-algebra, it forms a
graded algebra.

4
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The product on the cohomology algebra is defined by [a][b] = [ab], and it is well defined
because any other two representatives a′ = a + d(t) and b′ = b + d(r) has a product
[a′b′] = [ab+ ad(r) + d(t)b+ d(t)d(r)]. The last three are coboundaries because d(ar) =
d(a)r + (−1)|a|ad(r) = (−1)|a|ad(r) since a is a cocycle. Hence ad(r) is the boundary
of (−1)|a|(ar). Similarily d(tb) is the boudary of tb and d(t)d(r) is the boundary of td(r).
Hence all representatives give the same class in cohomology, and the product is well
defined.

We can also trivially equip the cohomology algebra with the differential dH = 0, which
turns the cohomology algebra into a DG-algebra.

Note that the cohomology algebra of the singular cochain algebra of a topological space
X , is the singular cohomology ring of X .

Example 1.8. (Tensor algebra). Let V be a vector space over a field k with basis e1, · · · , en.
Define a graded vector space T (V ) by letting its graded components be give by

T k(V ) =
k⊕
i=1

V ⊗i.

We define the differential d : T k(V ) −→ T k−1(V ) component-wise by

d(ei1 ⊗ · · · ⊗ eik) =
∑

i1≤ij≤ik

(−1)ijei1 ⊗ · · · ⊗ êij ⊗ · · · ⊗ eik

where îj means that the j’th component is omitted. The product is given by tensor
concatenation, i.e.

(ei1 ⊗ · · · ⊗ eik) · (ej1 ⊗ · · · ⊗ ejr) = ei1 ⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejr

Notice that this example actually uses the opposite grading of what we used in the definition.
This is called having homological grading, instead of our cohomological grading. We
won’t use this example for anything in the thesis, so the different grading does not matter,
but, it is an important example for much of related theory, for example the deformation
theory of algebras.

Interlude on rational homotopy theory

The next example requires a bit to set up. It is called the piece-wise linear de Rham algebra,
and comes from the field of rational homotopy theory. Because this theory is central for
the development of DG-algebras, and formality, we give a bit of background information.

A famous, notoriously difficult, problem in algebraic topology, is to calculate the homotopy
groups of the spheres. The n’th homotopy group of a space X is essentially the set of
continuous maps from Sn—the n-dimensional sphere—to X , where we identify two such
maps if they are in some sense topologically similar. It turns out that higher dimensional
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spheres can twist around lower dimensional spheres non-trivially—producing many non-
trivial homotopy groups. Even worse is maybe the fact that they seem to satisfy no general
pattern at all.

As a way to get around this, Serre looked at what happens if one works over the rationals
instead of the integers, essentially removing the difficult torsion from the theory. In
[Ser53] he successfully calculated the torsion free part of all homotopy groups of all
spheres, starting a journey for mathematicians to develop a complete torsion free theory of
topological spaces. This theory is now called rational homotopy theory, and its development
was mainly spearheaded by Quillen and Sullivan. One of the great achievements in this
field came from developing purely algebraic models for the theory, meaning that one could
only study some algebraic objects, and get all information about the topological spaces.
More formally, we get that the rational homotopy type of a topological space is given by
the isomorphism class of its algebraic model. The first successful attempt at making such
an algebraic model was made in [Qui69] in 1969 by Quillen, using certain differential
graded Lie algebras (DGL-algebras). Some years later Sullivan—inspired by the de Rham
theory for manifolds—proposed in [Sul77] a simpler idea for a purely algebraic model for
rational homotopy theory, using certain DG-algebras.

In the following definition we use so-called simplicial DG-algebras. These are functors
∆ −→ DGAk, where ∆ is the simplex category. We haven’t really discussed morphisms
of DG-algebras yet—hence not defined the category DGAk—but the reader can use their
imagination to convince themselves that such a category should exist. The morphisms will
be covered in the next section, so it is also possible to peek at the definition, and then come
back to this example afterwards.

Definition 1.9. Let A∗ be the DG-algebra given by

An∗ = k(t0, . . . , tn, dt0, . . . , dtn)/(1−
n∑
i=0

ti,
n∑
i=0

dti)

where |ti| = 0. This is in fact a simplicial DG-algebra, where the face and degeneracy
maps are respectively given by

∂i : An∗ −→ An−1∗

tj 7−→


tj, j < i

0, j = i

tj−1, j > i

and

si : An∗ −→ An+1
∗

tj 7−→


tj, j < i

tj + tj+1, j = i

tj+1, j > i

6
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Definition 1.10. Let S be a simplicial set. We define a functor A : sSet −→ DGAQ by
sending S to HomsSet(S,A∗∗). The DG-algebra structure is defined object-wise.

Example 1.11. (Piece-wise linear de Rham algebra). We define the DG-algebra of
piece-wise linear de Rham forms on a topological space X to be the DG-algebra given by

APL(X) = A(Sing(X))

where Sing(X) is the set of continuous maps from ∆n—the standard n-simplex—to X .

Notice here that APL(X) is actually a commutative DG-algebra, often denoted CDG-
algebra. The DG-algebra of rational cochains on a topological space is not commutative
in general, which is one of the reasons this APL construction is introduced. However, the
rational singular cohomology algebra of a topological space is commutative, so APL(X)
being commutative allows rational homotopy theory to be simplified, as the category
CDGAQ of commutative rational DG-algebras is a bit nicer to work with than DGAQ.
This added niceness is not needed in our case as we are interested in a property that does
not depend on commutativity.

1.3 Formality

Hopefully the reader was able to imagine some definition of morphism between DG-
algebras in order to get the earlier example—using the category DGAk—to work. If not
then we include the definition now.

Definition 1.12. (DG-morphism). Let (A, dA) and (B, dB) be two DG-algebras. A map
f : A −→ B is called a morphism of DG-algebras, sometimes shortened to DG-morphism,
if it

• preserves the degree of homogeneous elements, i.e. if a ∈ An then f(a) ∈ Bn, and

• commutes with the differentials, i.e. f(dA(a)) = dB(f(a)).

This implies that we can think of a morphism of DG-algebras as a regular morphism of
algebras in each degree, which respects the differential.

The collection of DG-algebras over some field k, together with these morphisms form
a category, which we already know we will denote by DGAk. There are some special
types of morphisms in DGAk that will be important throughout the thesis. As usual we
say a morphism is an isomorphism if it has a two-sided inverse. Given this, the following
definition is especially important.

Definition 1.13. (Quasi-isomorphism). Let (A, dA) and (B, dB) be two DG-algebras. A
morphism q : A −→ B is called a quasi-isomorphism if the induced map q∗ : H(A) −→
H(B) on their cohomology algebras, is an isomorphism. We often write q : A

∼−→ B if q
is a quasi-isomorphism.

Definition 1.14. (Quasi-isomorphic DG-algebras). We say two DG-algebras (A, dA) and

7
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(B, dB) are quasi-isomorphic if they can be connected by a zig-zag of quasi-isomorphisms

A
∼←− • ∼−→ · · · ∼←− • ∼−→ B.

This is sometimes also referred to as A and B being weakly equivalent. The reason for this
alternative name will become clear when we discuss model categories in the next section.

With this we finally can state the definition of the informal description “sufficiently simple”
that we used in the introduction. This definition is the central definition of the thesis, and
is the property we will be focusing on for the rest of it.

Definition 1.15. (Formal DG-algebra). A DG-algebra (A, d) is called formal if it is
quasi-isomorphic to a DG-algebra (M, 0) with trivial differential.

This definition is often stated as A being quasi-isomorphic to its cohomology algebra,
treated as a DG-algebra in the way described in 1.7. This is equivalent, because if A is
formal then the zig-zag of quasi-isomorphisms M ←− · · · −→ A induces isomorphisms
H(M) ∼= · · · ∼= H(A), but as M had a trivial differential—its cohomology is equal to
itself. Hence we have M ∼= H(A), and we can extend the zig-zag of quasi-isomorphisms
to H(A) ∼= M ←− · · · −→ A, which is also a zig-zag of quasi-isomorphisms. This means
that A is quasi-isomorphic to its cohomology algebra H(A).

So what does it mean for a DG-algebra to be formal? And is there a justification for its
name? Formality for DG-algebras was first defined in [DGMS75] and was used as a tool
to describe the real homotopy theory of certain manifolds. In the paper the authors define
a certain DG-algebra for these manifolds—called their minimal models—and define the
manifold to be formal if its minimal model is formal as a DG-algebra. The notion of
being formal then means that we can “formally reconstruct” the minimal model from its
cohomology algebra. The former is often very hard to describe in full detail as it is very
rich in information, while the latter is often simple to calculate for many manifolds. Thus,
formality means that our DG-algebra is simple enough, and does not contain “too much
information”, meaning that having calculated the cohomology algebra automatically “gives
us” the minimal model—at least up to quasi-isomorphism. This is of course not precise at
all, but in our opinion it serves as some good intuition. When this is the case we say that
the real homotopy type of the manifold is a formal consequence of its cohomology.

So, the intuitive slogan for the definition of formality for manifolds, and more generally
for any DG-algebra, is a DG-algebra where all its homotopy-information is contained in
its cohomology algebra.

We can finally restate the central question of the thesis with an actual understanding of its
components.

The central question: Given a DG-algebra A, when do I know whether A is formal?

Rational homotopy theory uses a slightly different way—but sort of the rational analogue—
of defining a topological space being formal. In the real case described very briefly above,
we must require the topological space to be a manifold, but in the rational case we can be a
bit more general.

Definition 1.16. (Formal topological space). A topological space X is called formal if
APL(X) is a formal DG-algebra.

8
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By [FHT01, Corollary 10.10] we actually have a span of DG-quasi-isomorphisms

APL(X)←− B −→ C∗(X;Q)

for some DG-algebra B. This gives us two things:

1. They have the same cohomology, i.e. H(APL(X)) ∼= H∗(X;Q)

2. APL(X) is formal as a (not necessarily commutative) DG-algebra if and only if
C∗(X;Q) is formal.

We say that the APL construction gives us an algebraic model of rational homotopy
theory. This is justified by the fact that Sullivan showed in [Sul77] that—if we make some
restrictions—this APL functor is an equivalence of categories. Recall that a topological
space X is called 1-connected, or simply connected, if π1(X) = 0. It is also said to have
cohomology of finite type if Hn(X) is finite dimensional vector space. We can similarly
define a DG-algebra (A, d) to be connected if Ai = 0 for i < 0 and A0 ∼= k. We define
it to be 1-connected DG-algebra if it is connected and A1 = 0. Similarily, a rational
DG-algebra A is said to have cohomology of finite type if Hn(A) is finite dimensional.

The equivalence Sullivan showed is the following.

Theorem 1.17. There is an equivalence of categories between the homotopy category
of 1-connected rational spaces with finite type cohomology and 1-connected rational
DG-algebras with finite type cohomology.

This equivalence is given by the APL functor.

Remark 1.18. Since much of this theory is motivated by the study of topological spaces
or manifolds, most of the classical papers ([DGMS75], [Sul77], [BG76] etc) only use
positively, or non-negatively graded DG-algebras. These are the only ones that matter
when the motivation is purely topological. As we will see later the study of DG-algebras
has in more recent times been generalized to the study of A∞-algebras. These objects bring
much more information to the table, and are often applicable in more areas of mathematics,
as well as theoretical physics. Their homotopy theory is also better behaved as their theory
of quasi-isomorphisms is better behaved, but, one caveat is that one is often required to
work with Z-gradings instead. Therefore we develop all the DG-algebra theory above—as
well as onwards—to hold for unbounded grading. This will make the generalization easier
when introducing A∞-algebras in chapter 3.

One may also notice that many examples one could make, as well as most of the examples
from rational homotopy theory, are in fact commutative DG-algebras. Throughout the thesis
we are mostly interested in studying the quasi-isomorphisms between DG-algebras, and
the resulting notion of formality. The study of quasi-isomorphisms between commutative
DG-algebras is completely encompassed by the same theory for associative DG-algebras.
This is because a commutative DG-algebra is formal if and only if it is formal as an
associative DG-algebra ([Sal17]). From the preprint [CPRNW20], we actually have an
even stronger connection. We get that two commutative DG-algebras are quasi-isomorphic
if and only if they are quasi-isomorphic as associative DG-algebras. This means that our
focus on understanding formality for associative DG-algebras also allows us to understand
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it for the commutative DG-algebras. This is what we meant earlier when saying we are
interested in a property that does not depend on commutativity.

Let’s see some examples of formal DG-algebras.

Example 1.19. Let (A, d) be a DG-algebra such that H i(A) = 0 for all i 6= 0, then A is
formal. We can see this by constructing a new DG-algebra A′ defined by

A′i =


Ai, i > 0

Kerd0, i = 0

0, i < 0

Then we have quasi-isomorphisms A′ −→ A and A′ −→ H(A), meaning we have a
zig-zag A←− A′ −→ H(A) which means A is formal.

Example 1.20. Let (A, d) be a DG-algebra over a field k such that H(A) is the polynomial
algebra k[x] where |x| = n. Then A is formal. We can see his by choosing an element a in
An that represents x and then constructing a quasi-isomorphism k[x] −→ A by

(k[x], 0) −→ (A, d)

x 7−→ a

This morphism induces an isomorphism in cohomology, and is hence a quasi-isomorphism.
This shows A is formal, as it is quasi-isomorphic to a DG-algebra with trivial differential.

1.4 Model categories

We now turn our eye to the homotopy theory of DG-algebras. Homotopy theories are
described by structures called model categories. These are categories with additional
structures, called model structures. Having such a model structure on a category allows us
to define the notion of homotopy, which again allows us to define homotopy equivalences,
and the other homotopical constructions we are used to from the homotopy theory of
topological spaces. We first construct the theory abstractly, and afterwards prove that our
category of interest, DGAk, admits such a theory.

Definition 1.21. (Retraction). We say a map f : A −→ B is a retract, or a retraction of
a a map g : X −→ Y if there exists a commuting diagram

A

B

X

Y

A

B

f

k

j

g f

h

i

idA

idB

10
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such that the horizontal maps compose to the identity.

Definition 1.22. (Retraction closed). A class of morphisms R is called retraction closed
if every retraction of a morphism in R is again in R.

Note that if a retraction closed class contains all the identitiy morphism, then it must
contain all isomophims as well.

Definition 1.23. (Model structure). Let C be a category. A model structure on C is a
choice of three distinguished collections of maps, F , C and W , in C such that the axioms
below hold. The maps in the collections are called fibrations, cofibrations and weak
equivalences respectively, and maps in F ∩W are called acyclic fibrations and maps in
C ∩W are called acyclic cofibrations. The axioms are:

MC1: Any retraction of a map in one of the three classes is again in the same class, i.e. all
three classes are retraction closed.

MC2: The collection W of weak equivalences has the two out of three property, i.e. if two
out of f, g, g ◦ f is a weak equivalence, then the third is as well.

MC3: If we have a commutative square

A

B

X

Y

f

i p

g

h

where either i ∈ C and p ∈ F ∩W , or i ∈ C ∩W and p ∈ F , then there exists a lift h
making both subdiagrams commute.

MC4: Given any map f : X −→ Y in C we can factor it as f = p ◦ i, where p ∈ F and
i ∈ C ∩W and as f = p′ ◦ i′ where i′ ∈ C and p′ ∈ F ∩W .

We then define a model category to be a bicomplete category—a category where all small
limits and colimits exists—with a model structure.

The two parts in MC3 are often stated as fibrations having the right lifting property with
respect to acyclic cofibrations, and cofibrations having the left lifting property with respect
to acyclic fibrations.

The archetypal example of a model category is the category of topological spaces. This
category has two often used model structures, often called the Quillen (or Serre) model
structure and the Strøm model structure.

Example 1.24. (Quillen model structure on topological spaces). The underlying category
is the category of topological spaces with continuous maps. The fibrations consists of the
Serre fibrations, which are maps that have the so called homotopy lifting property with
respect to all CW complexes. This property is described by lifts h existing when we have a
CW complex X , and a diagram

11
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A

A× I

X

Y

f

i p

g

h

where I is the unit interval and i0 : A −→ A× I is the inclusion into the first component.

The cofibrations are defined by being induced by retracts of relative CW complexes, i.e.
maps g : X −→ Y where Y is made fromX by attaching cells. The weak equivalences are
weak homotopy equivalences, which are maps that induce isomorphisms on all homotopy
groups.

Example 1.25. (Strøm model structure on topological spaces). As with the previous
example, the category of interest is the category of topological spaces with continuous maps.
The fibrations are the Hurewicz fibrations, which satisfies the homotopy lifting property
with respect to all topological spaces, not just the CW complexes as the Serre fibrations. The
cofibrations are the closed Hurewicz cofibrations, which satisfy the homotopy extension
property. This property is described by a lift h existing when the diagram below commutes.

A

B

Y I

Y

f

i p

g

h

Here Y I is the path space of Y and p is the projection onto the start of a path. We call a
map i : A −→ B satisfying this property a Hurewicz cofibration, and we say it is a closed
Hurewicz cofibration if its image is closed in B. The weak equivalences are given by the
homotopy equivalences, i.e. the maps that are invertible up to homotopy.

Example 1.26. Another example is the category of positively graded cochain complexes
of modules over a ring, Ch(R − mod). Here the model structure consists of quasi-
isomorphisms as the weak equivalences, the fibrations are degreewise projections and the
cofibrations are degreewise injections with projective cokernel. The homotopy theory we
get in this setting is the theory of homological algebra.

We can expand use a similar definition for unbounded chain complexes, but then the
cofibrations need a bit more care. They can however easily be defined as the morphisms
that have the left lifting property with respect to the acyclic fibrations. This model category
also motivates how we will define the model structure on DG-algebras, as DG-algebras are
unbounded chain complexes. We can actually construct the model category of DG-algebras
directly from the model category of unbounded chain complexes of vector spaces, as done
in appendix A.

12
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1.4.1 Constructions in model categories

We said that model structures allows us to introduce the notion of homotopy into the
category. We will now see this construction, but first we introduce the definition of the
homotopy category. Rather surprisingly, and unintuitively, this seemingly has nothing to
do with homotopies at all—at least not yet.

Definition 1.27. (The homotopy category). Let C be a model category and W its
collection of weak equivalences. We define the homotopy category of C to be the category
HoC = C[W−1], i.e. the localization at the weak equivalences.

Remark 1.28. The readers familiar with homological algebra will hopefully see some
similarities to derived categories of rings. These are defined by localizing the category of
cochain complexes of modules at the quasi-isomorphisms, which we just saw formed the
weak equivalences in example 1.26.

Since a model category is bicomplete, it has both an initial object I and a terminal object
T . Recall that these are objects where there exists a unique map from and to any other
object in the category respectively.

Definition 1.29. (Fibrant object). Let X be an object in a model category C. We say X is
fibrant if the unique map X −→ T is a fibration.

Definition 1.30. (Cofibrant object). Let X be an object in a model category C. We say X
is cofibrant if the unique map I −→ X is a cofibration.

If X is both fibrant and cofibrant, we reffer to it as bifibrant.

Definition 1.31. (Cylinder object). Let X be an object in a model category C. The
cylinder object of X , usually denoted Cyl(X), is a factorization of the codiagonal map
∇ : X

∐
X −→ X into

X
∐

X
i0+i1−→ Cyl(X)

p−→ X,

where p is a weak equivalence.

If X
∐
X

i1+i2−→ Cyl(X) is a cofibration, we call Cyl(X) a good cylinder object, and if in
addition p is an acyclic fibration, we call Cyl(X) a very good cylinder object.

Definition 1.32. (Path object). Given an objectX in a model category C we define the path
object of X , denoted Path(X) to be factorization of the diagonal map ∆: X −→ X

∏
X

into
X

i−→ Path(X)
(p1,p2)−→ X

∏
X,

where i is a weak equivalence. Similarly to the cylinder object, if Path(X)
p−→ X

∏
X

is a fibration, we call Path(X) a good path object, and if in addition i is an acyclic
cobfiration, we call Path(X) a very good path object.

By the factorization axiom (MC4) every object has at least one very good cylinder object
and one very good path object. It can be useful to use these in some cases, but in other
cases we can actually be interested in cylinder and path objects that aren’t necessarily
good, or very good. For example, in the Serre model structure on topological spaces, the
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standard cylinder object Cyl(X) = X × I is only a good cylinder object when X is a CW
complex. It would sometimes be limiting to not use this standard cylinder when working
with homotopies of maps between spaces that are not CW complexes, hence the reason for
the weaker definition.

Speaking of homotopies, we now have objects that resemble what we use in the category of
topological spaces to define homotopies between maps. We should then be able to define
them in any model category C as well. When we define homotopies in topology, we define
them as maps from the cylinder I × X such that the restriction to the boundary of the
cylinder gives us the two maps we are constructing a homotopy between. This is also what
motivates how we define it in the general setting for model categories, but we need to be a
bit more careful. For the below definitions we assume that all objects and all morphisms
lie in som model category C.

Definition 1.33. (Left homotopy). Given two maps f, g : X −→ Y we define a left
homotopy h : f ∼L g from f to g to be a map h : Cyl(X) −→ Y such that the following
diagram commutes

X Cyl(X) X

Y

i1 i2

f gh

Definition 1.34. (Right homotopy). Given two maps f, g : X −→ Y we define a right
homotopy h : f ∼R g from f to g to be a map h : X −→ Path(Y ) such that the following
diagram commutes

Y Path(Y ) Y

X

f g
h

i1 i2

If the cylinder object used to define the left homotopy is a good cylinder object then we
call the homotopy a good left homotopy, and similarly if it is a very good cylinder object
we call the homotopy a very good left homotopy. The same goes for the path object used
to define the right homotopy, which gives us good right homotopies and very good right
homotopies.

The fact that homotopy is an equivalence relation on classes of continuous maps is one
of the most important, and fundamental properties, that homotopy has in the category of
topological spaces. Thus it should also be important in the general setting. Before we do
that, we note that we can upgrade any left homotopy h to a good left homotopy by factoring
the map X −→ Cyl(X) into X −→ Cyl(X)′

σ−→ Cyl(X) by MC4. Then h ◦σ will be a
good homotopy. If Y is fibrant, then we can upgrade it further to a very good left homotopy
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by using the other factorization on Cyl(X) −→ Y to get Cyl(X) −→ Cyl(X)′ −→ Y .
This factorization gives us a commutative diagram

Cyl(X)

Cyl(X)′

Y

T

h

h′

where T is the terminal object. The lift h′ comes from MC3 and gives us the very good
left homotopy that we wanted.

Lemma 1.35. Let X and Y be objects in a model category C. If X is cofibrant then left
homotopy defines an equivalence relation on Hom(X, Y ).

Proof. Using X itself as a cylinder object together with the map f : Cyl(X) = X −→ Y
as a left homotopy shows that any map f : X −→ Y is left homotopic to itself. It is
symmetric—as we can compose with the switching map X

∐
X −→ X

∐
X—that just

switches the components. This gives a homotopy “in the other direction”. Lastly, let
f1 ∼L f2 and f2 ∼L f3 be good homotopies with cylinder objects being Cyl(X) and
Cyl(X)′ respectively. Then the pushout of the diagram Cyl(X)′ ←− X −→ Cyl(X)
defines a new cylinder object and a homotopy f1 ∼ f3. Hence the relation is reflexive,
symmetric and transitive which is the definition of an equivalence relation.

Dually, we also get the exact same result for right homotopy, but we have to switch from
X being cofibrant to Y being fibrant. This is because from a model structure on a category
C we also get a model structure on its opposite category. Here the classes of fibrations and
cofibrations are switched, but the weak equivalences stay the same.

It might feel uneasing that we now have two different concepts of homotopy, which we
usually don’t have when working in topological spaces. There is a good reason for this,
because in both the Serre and the Strøm model structure on topological spaces, all objects
are fibrant. Hence, by the next lemma, the existence of right homotopies always implies
the existence of left homotopies in the category of topological spaces, which means we
don’t ever need to make the distinction between them.

Lemma 1.36. Let f, g : X −→ Y be two maps. IfX is cofibrant and f, g are left homotopic
then they are right homotopic. Dually, if Y is fibrant and f, g are right homotopic, then
they are left homotopic.

Proof. Choose a good cylinder objectX
∐
X

i1+i2−→ Cyl(X)
j−→ X and let h : Cyl(X) −→

Y be a left homotopy between f and g. Choose also a good path object Y
q−→ Path(Y )

(p1,p2)−→
Y
∏
Y . We then have a commutative diagram
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X

Cyl(X)

Path(Y )

Y
∐
Y

q ◦ f

i1

[p1, p2]

[f ◦ j, h]
h

which has a lift h by MC3. The composition h ◦ i2 : X −→ Path(X) gives a right
homotopy between f and g as desired. The dual statement is proved dually.

We can then finally define the notion of homotopy as follows.

Definition 1.37. (Homtopic maps). We say two maps f, g : X −→ Y are homotopic,
denoted f ∼ g, if they are both left homotopic and right homotopic.

This means we can finally define homotopy equivalences.

Definition 1.38. (Homotopy equivalence). We say a morphism f : X −→ Y is a
homotopy equivalence if there exists a morphism g : Y −→ Y such that f ◦ g ∼ idY and
g ◦ f ∼ idX . If there exists a homotopy equivalence between two objects, we call them
homotopy equivalent.

If we now restrict our attention to just the bifibrant objects in a model category, we see
that we have a well defined notion of homotopy. It is well defined in the sense that it is
an equivalence relation. A question we could ask is: when are two objects are homotopy
equivalent? and how does this notion of homotopy equivalence relate to weak equivalences?
We have a very nice correspondence in this setting, i.e. when restricting to the bifibrant
objects.

Theorem 1.39. (Generalized Whiteheads theorem). Two bifibrant objects X and Y , in a
model category C, are homotopy equivalent if and only if they are weakly equivalent.

We won’t cover the proof, but refer to [Hov07, Theorem 1.2.10.].

This means that localizing at the weak equivalences also turns homotopy equivalences of
bifibrant objects into isomorphisms. If we take the subcategory of bifibrant objects, which
we denote Ccf , we can form its quotient by the homotopy relation, Ccf −→ Ccf/ ∼. By
the generalized Whitehead theorem this map sends weak equivalences to isomorphisms,
and hence it has to factor through its homotopy category, Ho(Ccf ), by general theory
about localization. We also have an inclusion Ccf −→ C which induces a map on their
homotopy categories, Ho(Ccf ) −→ Ho(C). The final piece of the puzzle of having a
workable homotopy category, comes from the fact that those maps form an equivalence of
categories Ho(C) ∼= Ccf/ ∼, which means that we have a nice definition, and a nice way
to work with it.
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1.5 The homotopy theory of DG-algebras

When we looked at some examples of model categories, we mentioned that the model
structure on the category of DG-algebras would be similar to the model structure on
unbounded chain complexes of modules over a ring. The model structure on DGAk was
first constructed by Jardine in [Jar97], and is described by the weak equivalences being the
quasi-isomorphisms, the fibrations being the degreewise surjections and the cofibrations
being all maps that have the left lifting property with respect to acyclic fibrations.

Let’s prove that this is in fact a model structure on the category DGAk. Note that this
construction—and proof—holds more generally for k a commutative unital ring. The
greater part of the proof below is directly inspired by the original paper [Jar97], but we
have tried to fill in some details, and prove some parts that is left out by Jardine. We will
not prove that the second factorization in MC4 holds in DGAk, as it requires us to go into
the so-called “small objects argument”. For a proof of that result, see [Hov07, Theorem
2.1.14], and for a more in depth conceptual treatment, see [Gar09].

To help us with some of the proofs of the different axioms we let:

• S(x) be the free graded k-algebra on one generator x in degree n, together with the
differential defined by d(x) = 0.

• T (x) be the free graded k-algebra on two generators, x and dx, together with the
differential defined by d(x) = dx and d(dx) = 0. This is the free DG-algebra on
one generator.

• C(x) be the free cochain complex on one generator x in degree n, i.e. the complex

C(x)i =

{
0, i 6= n, i 6= n+ 1

k, i = n, i = n+ 1

where the differential is trivial, except for being the identity on k in degree n.

The coproduct of two DG-algebras, A and B, is defined by A ∗B = T (A⊗B)/I , where
T (A⊗B) is the tensor algebra

T (A⊗B) =
⊕
n∈N

(A⊗B)⊗n

and I is the ideal generated by

(a⊗ b1)⊗ (1⊗ b2)− a⊗ b1b2, (a1 ⊗ 1)⊗ (a2 ⊗ b)− a1a2 ⊗ b.

Note that we can identify T (x) with the tensor algebra on C(x), i.e.

T (x)
∼=−→ T (C(x)) =

⊕
i≥0

C(x)⊗i

Hence we have

H i(T (x)) =

{
k, i = 0

0, else
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Definition 1.40. Let A be a DG-algebra and C a cochain complex. We define the DG-
algebra A[C] to be the cochain complex

A[C] = A⊕ (A⊗ C ⊗ A)⊕ (A⊗ C ⊗ A⊗ C ⊗ A)⊕ · · ·

together with multiplication defined by

(a1⊗b1⊗· · ·⊗bk⊗ak+1)·(a′1⊗b′1⊗· · ·⊗b′l⊗a′l+1) = a1⊗· · ·⊗bk⊗ak+1a
′
1⊗· · ·⊗b′l⊗a′l+1

For the sake of intuition we can—not completely accurately—think about this DG-algebra
as a free algebra on C.

Any map from this DG-algebra f : A[C] −→ B is uniquely determined by its restriction
to its first component A, and the chain map on the first occurring C, i.e. the map jf defined
by by the composition

jf : C
inc−→ A⊗ C ⊗ A ⊆ A[C]

f−→ B

where inc(c) = 1⊗ c⊗ 1.

Hence we have an isomorphism A ∗k T (x) ∼= A[C(X)] from the coproduct to this “free
algebra” on C. This is because T (x) ∼= T (C(x)), and the map A[C(x)] −→ A∗k T (C(x))
is uniquely determined by sending A into A, and C(x) into C(x) as a component of
T (C(x)).

Lemma 1.41. The map k −→ T (x) is a cofibration.

Proof. We need to show that a lift h : T (X) −→ A exists for all commuting diagrams of
the form

k

T (x)

A

Bg

f

where f : A −→ B is an acyclic fibration.

The push-out of the diagram

k

T (x)

A

is the coproduct A ∗k T (x), which we know is isomorphic to A[C(x)]. Hence we have a
unique map B −→ A[C(x)] by the universal property of a push-out, i.e.
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k

T (x)

A

B

A[C(x)]

g

f

φ

We can then define the map h = pA ◦ φ ◦ g, where pA is the projection onto the first
component, which is uniquely determined by being the identity on A and jpA = 0.

Then the diagram

k

T (x)

A

B

A[C(x)]

g

f
h

φ

pA

commutes everywhere, which means we have our desired lift h.

Theorem 1.42. The category DGAk of DG-algebras over a field k, together with the three
classes of morphisms; W , C, F , as described above, form a model category.

Proof. We need to check the four axioms.

MC 1: This point consists of three sub-points. We first prove that F is retraction closed,
then W and finally C.

Assume f : A −→ B is a retract of g : X −→ Y where g ∈ F . This means we have a
diagram
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A

B

X

Y

A

B

f

k

j

g f

h

i

idA

idB

Let b be a homogeneous element in degree n. Want to show that there is a homogeneous
element a such that f(a) = b, as this would show that f is degree-wise surjective, i.e.
f ∈ F .

Let y = j(b). Since g ∈ F it is a degree-wise surjection and hence there exists an element
x ∈ X such that g(x) = y. Let i(x) = a. Then we have

f(a) = f(i(x)

= h(g(x))

= h(j(b))

= idB(b) = b.

which shows that the retract of a fibration is again a fibration.

For the second part we let g ∈ W and f still a retraction of g. We have the same retraction
diagram as above, which induces the following diagram in cohomology:

H(A)

H(B)

H(X)

H(Y )

H(A)

H(B)

f

k

j

g f

h

i

idH(A)

idH(B)

Recall that we want to show that f induced an isomorphism in cohomology. As g is
surjective, we can use the same argument as above—when we had f ∈ F—to get that f is
surjective. For injectivity we assume that f([a]) = f([a′]). Then j(f([a])) = j(f([a′])),
which means g(k([a])) = g(k([a′])). But g is an isomorphism, and hence we have
k([a]) = k([a′]), which finally gives us

[a] = idA([a]) = i(k([a])) = i(k([a′])) = idA([a′]) = [a′]
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This shows that f is both injective and surjective, i.e. an isomorphism—which means that
f ∈ W .

For the last part we let g ∈ C, and f still a retraction of g. Recall that we need to have a
lift of f with respect to all acyclic fibrations [p : U −→ V ] ∈ F ∩W , i.e. the existence of
the dotted morphism φ in the following diagram

A U

B V

s

f p

r

φ

We get this by producing a lift from g. As f is a retraction of g, we can extend the above
diagram to

A X A U

B Y B V

f

k

j

g f

h

i s

r

p

s

r

This diagram has the sub-diagram

X U

Y V

s ◦ i

g p

r ◦ h

ψ

where we know that the lift ψ, exists, as g ∈ C and p ∈ F ∩W . We can then define
ψ = ψ ◦ j, i.e. the dotted arrow in the following diagram
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A X A U

B Y B V

f

k

j

g f

h

i s

r

p

s

r

φ

Hence all retractions of morphisms in C satisfy the lifting property with respect to mor-
phisms in F ∩W , which means they are again in C.

MC 2: Isomorphisms of DG-algebras have the two out of three property, and since quasi-
isomorphisms are defined by inducing isomorphisms on the cohomology algebras, they
also satisfy the property.

MC 3: Notice that one half of this axiom holds by definition, as we defined cofibrations to
be the morphisms that satisfied the left lifting property with respect to acyclic fibrations.
For the other half we need to show that if we have a diagram

A

B

X

Y

i ph

where i is an acyclic cofibration, and p a fibration, then a lift h exists.

We can translate the problem to showing that every morphism i ∈ C ∩W has the right
lifting property w.r.t. all fibrations p ∈ F .

Assume we have proven MC4, then we can factorize i = f ◦ j such that j ∈ C ∩W and
f ∈ F . Since two of them are in W , the last one also is by MC2.

Hence we have a diagram

A

B

B

B

j

i f

idB

h

that has a lift h by the fact that i ∈ C ∩W and j ∈ F .

We use the commutativity of the previous diagram to get the new following diagram:
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A

B

A

B

A

B

i

idA

h

j i

f

idA

idA

idB

This shows that i is a retraction of j, which we know has the right lifting property w.r.t all
maps f ∈ F , hence i does as well by MC1.

MC 4: Let f : A −→ B be any map between two DG-algebras. We can form the
factorization

A
i−→ A ∗ (∗b∈BT (B))

p−→ B

where i is the inclusion and p is the map that sends the generator b ∈ T (B) to b ∈ B.
The map q is a fibration as it is degreewise surjection, and the map i is a filtered colimit
of maps A −→ T (b1) ∗ · · ·T (bn) ∗ A, which all are acyclic cofibrations by iterating the
construction of the isomorphism T (x) ∗ A ∼= A[C(x)] we saw earlier. Hence it is also
itself an acyclic cofibration.

The last factorization is as mentioned left out, due to us not covering the small objects
argument in this thesis. See [Jar97, Lemma 3] for a proof using this argument.

As we now know that DGAk is a model category, we know there exists a terminal and an
initial object. In DGAk the terminal object is 0—the complex consisting only of zeroes
with only trivial differentials and trivial multiplication—while the initial object is the
ground field k—treated as a DG-algebra by having only one copy of k in degree zero and
zeroes everywhere else. Since the unique map A −→ 0 is a degreewise surjection for any
DG-algebra A we know that all DG-algebras are fibrant objects in this model structure.

1.5.1 More formality

This new framework allows us to reconsider the definition of a formal DG-algebra. We take
the category DGAk, which we now know is a model category with W being the collection
of quasi-isomorphisms, and produce its homotopy category HoDGAk = DGAk[W

−1].
We can then define a DG-algebra to be formal as follows.

Definition 1.43. (Formal DG-algebra). A DG-algebra (A, d) is called formal if it is
isomorphic to its cohomology algebra H(A) in HoDGAk.

This is the precise reason we in the abstract referred to formal DG-algebras as being
the algebras that contain the same homotopical information as their cohomology algebra.
They are isomorphic in the homotopy category, hence contain the same information up to
homotopy, e.g. homotopical information.
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Unfortunately not all isomorphisms in HoDGAk come from a single quasi-isomorphism
in DGAk. Quasi-isomorphisms in DGAk are not invertible in general—not even invertible
up to homotopy. Thus a zig-zag of quasi-isomorphisms is the best we can hope for, which
means that this new definition is precisely the same as the old.

A feature of this new framework is that we actually don’t need an arbitrary zig-zag of
quasi-isomorphisms—we only need a single span. A span of morphisms is a diagram of
the following form:

A B

C

If we reverse the directions of the two arrows we get a diagram called a cospan. To prove
this we will need the following.

Definition 1.44. (Right proper model category). Let C be a model category. We say it
is right proper if the pullback of a weak equivalence along a fibration is again a weak
equivalence.

As a consequence of the fact that all objects inDGAk are fibrant, and the fact that pullbacks
of weak equivalences along fibrations between fibrant objects is again a weak equivalence,
we have that DGAk—with the model structure defined above—is a right proper model
category.

Theorem 1.45. Let A and B be quasi-isomorphic DG-algebras. Then there exists a
DG-algebra C and two quasi-isomorphisms q1, q2 such that A

q1←− C
q2−→ B

Proof. Since we know A and B are quasi-isomorphic, we have a zig-zag of quasi-
isomorphisms between them. Assume this sequence has length r. There are four possible
ways this zig-zag can look at its ends. On the left we can have either a quasi-isomorphism
A −→ A1, or A ←− A1. Similarly on the other end we can have either Ar −→ B or
Ar ←− B.

Notice that if we prove that we can turn a cospan Ai−1 −→ Ai ←− Ai+1 into a span
Ai−1 ←− Ci −→ Ai+1, then we have proved the theorem. This is due to composition of
quasi-isomorphisms again being quasi-isomorphisms, which means that at the ends we get
for example

A A1 A2 A3 · · ·

C1

q0 q1 q2

p0 p1

By composing p2 and q2, the length of the zig-zag is reduced to r−1. Hence we can iterate
this for all the cospans in the zig-zag, and the end result will be a simple nice span.

So, let’s assume we have a cospan Ai−1
qi−1−→ Ai

qi←− Ai+1. We could take its pull-
back, but we have no justification for saying that the maps in the pullback are again
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quasi-isomorphisms, but—as DGAk is right proper—we know that pullback of a weak
equivalence along a fibration is again a weak equivalence. By MC4 we know that the
quasi-isomorphisms qi−1 and qi can be factorized as qi−1 = i ◦ q and qi = j ◦ p, where
q, p are cofibrations and i, j are acyclic fibrations. By the two-out-of-three property of
weak equivalences, we also know that q, p are acyclic cofibrations. This means we have
the following diagram

C1 Ai C2

Ai−1 Ai+1

i j

qi−1 qi
q p

for some DG-algebras C1 and C2. Consider now the diagram

Ai−1 Ai−1

C1 0

idAi−1

q

As all objects are fibrant we know that Ai−1 −→ 0 is a fibration. By MC3 there exists a
lift, q′ : C1 −→ A making the sub-diagrams commute. In particular q′ ◦ q = idAi−1

. Since
q and idAi−1

are both quasi-isomorphisms, q′ has to be as well due to the two-out-of-three
property. Similarily a quasi-isomorphism p′ exists such that p′ ◦ p = idAi+1

.

The next step is to take the pullback of the cospan C1
i−→ Ai

j←− C2, i.e.

C3 C2

C1 Ai

i′

j′ j

i

As i and j are both acyclic fibrations, the maps i′ and j′ will be as well. This is because
being a fibration is stable under pullback, and being a quasi-isomorphism is stable when
we are pulling back along a fibration—which both maps are. Now we have a diagram
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C1 Ai C2

Ai−1 Ai+1

C3

j′ i′

i j

qi−1 qi
q pq′ p′

And the compositions q′ ◦ i′ and p′ ◦ j′ are both quasi-isomorphisms, as all four individually
are. Hence we have a span Ai−1 ←− C3 −→ Ai+1, which by the argument above means
we can reduce any zig-zag of quasi-isomorphisms A ←− · · · −→ B to a single span
A←− C −→ B, for some DG-algebra C.

This finally resolves Theorem A. from the motivation in the beginning of this chapter. We
have a formal DG-algebra if and only if there is a span of quasi-isomorphisms connecting
it to its cohomology.

We didn’t actually use the specific model structure on DGAk in this proof, so the same
argument holds for any right proper model categories where all objects are fibrant.

Notice that this also implies that DGAk satisfies the right Ore condition, i.e. that given
a cospan A a−→ C

q←− B, where q is a quasi-isomorphism, then there exists a span

A
q′←− C ′ −→ B where q′ is a quasi-isomorphism. This follows from the proof above as

we can factorize a into f ◦ c, where c is an acyclic cofibration and f a fibration. We can
take the pullback of D −→ C ←− B to get the diagram

C ′ B

C A

D

a′

q′

q

a

c
f

where now q′ is a quasi-isomorphism, as it is a pullback of a quasi-isomorphism along the
fibration f . As in the previous proof—because A is fibrant—we get a left inverse to the
acyclic cofibration c, which is again a quasi-isomorphism. This is the lift we get from the
following diagram
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A A

D 0

idA

c
h

Denote this lift by c′. We now have the final diagram

C ′ B

C A

D

a′

q′

q

a

c c′
f

where by the composition c′ ◦ q′—which is a quasi-isomorphism—we get our wanted span

A
c′◦q′← C ′ → B.

This Ore condition allows the homotopy category HoDGAk to be described even more
explicitly using spans as the morphisms. This means that a morphism A −→ B is given
by a span

A B

Cq

where q is a quasi-isomorphism. Composition of morphisms A −→ B and B −→ C is
then given as

A B

D2

C

D2

D3

q1 q2

q3

where q3 exists due to the Ore condition. As q3 ◦ q1 is again a quasi-isomorphism, we have
a new span

A C

D3q3 ◦ q1

We won’t need, or use, this fact during the thesis, but it is a nice interesting consequence of
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the results in the chapter. It is also nice to know that DGAk has a nice homotopy category,
as we have already described our main interest—formality—by being a consequence of
isomorphisms in this homotopy category.
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Massey products
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2.1 Motivation

In the introduction (0.5) we said that in some situations, there is some information in the
DG-algebra, not accessible to the cohomology algebra of that DG-algebra. On example of
such information is given by the Massey products—which will be the focus of this chapter.

These operations were first introduced to algebraic topology by William S. Massey in
[Mas58], and have since been used to solve some really interesting problems. One of the
reasons Massey products are interesting in topology is due to their ability to distinguish
seemingly similar spaces, where other methods fail. The three main invariants we use in
algebraic topology to distinguish spaces are homology, cohomology and homotopy. Why
do we need all three? It is because none of them are perfect. There are spaces that have the
same homology, but are not homeomorphic. Same goes for cohomology and homotopy.
We can use these three together to an even greater effect. What we mean is that when two
spaces have the same homology and are not homeomorphic, they usually have different
homotopy. But, as mentioned in the introduction, the homotopy groups can be extremely
difficult to calculate.

So, what do we do if the spaces have the same homology and the same homotopy? Or that
the spaces have the same homology, and the homotopy is really difficult to calculate? Then
the next invariant usually is the cohomology ring. The product structure on cohomology
allows us a much greater insight into the relationships between parts of the spaces. Usually
when we have same homology and same homotopy, we can differentiate them by having
different cohomology rings.

The next question is then, what do we do when all this fails? How can we know spaces
aren’t homeomorphic even though they have the same cohomology ring? There are many
solutions to this answer—and many invariants one could still try—but, Massey products
is one of the most developed ones. These operations then tell us when a DG-algebra
contains more information than its cohomology algebra, just as we should expect from the
introduction.

In this thesis we have removed the need to work with topologicals spaces, and work only
in the algebraic world, so we define the Massey products purely using DG-algebras.

The main result in this chapter is that for a formal DG-algebra, all Massey products must
in some sense be trivial.

Theorem B. Let A be a formal DG-algebra. Then A admits no non-vanishing Massey
products.

2.2 The inaccessible information

Massey products are often referred to as higher order cohomology operations. We will
explain a bit later what this means, but intuitively, it means that they are natural higher
arity maps on the cohomology algebra of a DG-algebra.

Definition 2.1. (The triple Massey product). Let (A, d) be a DG-algebra. Let x1, x2, x3 ∈
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H(A) be three cohomology classes such that x1x2 = 0 = x2x3, and let a1, a2, a3 be cycles
that represent these classes. Since their product is zero in cohomology, there exists classes
b1 and b2, such that d(b1) = (−1)|a1|a1a2 and d(b2) = (−1)|a2|a2a3. The cochain

x = (−1)|a1|a1b2 + (−1)|b1|b1a3

is then a cocycle and defines an element in H |x1|+|x2|+|x3|+1(A).

Since the choices of b1 and b2 are not unique, we define the triple Massey product of
x1, x2, x3, denoted 〈x1, x2, x3〉, to be the set of all such x we can make with different
choices for b1 and b2. The elements of the Massey product lie in degree |x1|+ |x2|+ |x3|+1,
where the +1 comes from the fact that b1 and b2 lie in degree one less than the products
a1a2 and a2a3 respectively.

Remark 2.2. Note that we showed earlier, in example 1.7, that the product on a DG-algebra
induces a well defined product on its cohomology algebra, which we have used in the
above definition of the triple Massey product.

Notice also that the different elements in the triple Massey product all determine the same
element in H(A)/(x1H(A) +H(A)x3), hence we could define the triple Massey product
to be a morphism from a subset of H(A)×H(A)×H(A) to H(A)/(x1H(A) +H(A)x3).
This subset would then have to be the set of elements x1, x2, x3 such that x1x2 = 0 = x2x3.
Since this method does not generalize well to the higher Massey products we want to
define, we do not use this definition.

As said, generalizing this construction is a bit tedious explicitly, so we instead find a
suitable workaround by using so-called defining systems.

Definition 2.3. (Defining system). Let x̄ = (−1)|x|x. A defining system for a set of
cohomology classes x1, . . . , xn in H(A) is a collection {ai,j} of cochains in A such that

• [ai−1,i] = xi

• d(ai,j) =
∑
i<k<j

ai,kak,j

for all pairs (i, j) 6= (0, n) where i ≤ j.

These defining systems allow us to quite easily define Massey products of any order.

Definition 2.4. (Massey n-product). The Massey n-product of n cohomology classes
x1, . . . , xn, denoted 〈x1, . . . , xn〉, is defined to be the set of all [a0,n], where

a0,n =
∑

0<k<n

a0,kak,n

such that {ai,j} is a defining system.

Let’s write this out in a bit more detail for some small n and see what we get.

n = 2 : Assume we have two cohomology classes x1 and x2 and a defining system {ai,j}.
The defining system will just be {a0,1, a1,2} such that [a0,1] = x1 and [a1,2] = x2. The
element in the Massey product—given by the defining system—is then [a0,2], where
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a0,2 = a0,1a1,2. This is just the cohomology class of the product in the DG-algebra up to a
sign. Hence Massey 2-products are already familiar.

n = 3 : Let now x1, x2, x3 be three cohomology classes and {ai,j} a defining system for
them. The system will consist of a0,1, a1,2, a2,3, a0,2 and a1,3 such that

• [a0,1] = x1

• [a1,2] = x2

• [a2,3] = x3

• d(a0,2) = a0,1a1,2

• d(a1,3) = a1,2a2,3.

This means that the element in the Massey product 〈x1, x2, x3〉 defined by the defining
system above is given by [a0,3], where

a0,3 = a0,1a1,3 + a0,2a2,3.

This we see is exactly the same as the triple Massey product we defined in the beginning,
before introducing the defining systems. Hence this way to generalize the definition is
actually a generalization.

n = 4 : Let x1, x2, x3, x4 be cohomology classes and {ai,j} be a defining system for them.
It consists of nine elements a0,1, a1,2, a2,3, a3,4, a0,2, a1,3, a2,4, a0,3, a1,4 such that

• [a0,1] = x1

• [a1,2] = x2

• [a2,3] = x3

• [a3,4] = x4

• d(a0,2) = a0,1a1,2

• d(a1,3) = a1,2a2,3

• d(a2,4) = a2,3a3,4

• d(a0,3) = a0,1a1,3 + a0,2a2,3

• d(a1,4) = a1,2a2,4 + a1,3a3,4.

This makes the element in 〈x1, x2, x3, x4〉 defined by the defining system {ai,j} equal to
[a0,4], where

a0,4 = a0,1a1,4 + a0,2a2,4 + a0,3a3,4.

For the rest of this thesis, when we talk about Massey products, we mean Massey n-
products for n ≥ 3, for precisely this reason that Massey 2-products are just given by
multiplication. When we say “all Massey products” we will mean all Massey n-products,
for all n ≥ 3.
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We wanted these Massey products to serve as information not accessible to the cohomology
algebra, and we will soon define what we mean by this and show that this is in fact the
case. In order to do this we will need the following important definition.

Definition 2.5. (Vanishing Massey product). Let 〈x1, · · · , xn〉 de a defined Massey
product in a DG-algebra A. We say it vanishes if it contains zero as an element, i.e.
0 ∈ 〈x1, . . . , xn〉.
Since the Massey n-product is a set, we cant in general hope for it being just the zero
class, so this definition of a vanishing Massey product is the closest thing we can have to a
“trivial” Massey product.

Definition 2.6. (Uniquely defined Massey product). We say that a Massey n-product,
〈x1, . . . , xn〉, is uniquely defined if it contains only a single class, i.e. 〈x1, . . . , xn〉 = {x}.
In the case of an uniquely defined Massey product, we can say it is trivial if this element is
the zero class. We will however still use the word “vanishing”, as it is more general, and
more suitable for our purposes.

Let’s see some examples of DG-algebras with some Massey products in order to get a
feeling for how they work.

Example 2.7. Let A be the DG-algebra k[x1, x2, x3, a, b], with product given by normal
multiplication, and where x1, x2, x3, a, b all have degree 1. Let further d(x1) = d(x2) =
d(x3) = 0, d(a) = x1 · x2 and d(y) = x2 · x3.

Since x1 · x2 and x2 · x3 are coboundaries, they are representatives for the zero class in
cohomology. We also have predefined, preferred cochains that hit them under d, namely a
and b.

This means that by construction we have a non-trivial element of the Massey 3-product
〈x1, x2, x3〉, given by [a · x1 + x3 · b].
Example 2.8. When talking about Massey products it is customary to mention the applica-
tion to proving that the Borromean rings are not homeomorphic to the triple unlink.

The borromean rings The triple unlink

These spaces both consist of three copies of S1, embedded in R3. The triple unlink is three
completely separated components, but the Borromean link can not be separated into its
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three components. The fact that this can’t happen is difficult to prove mathematically, and
it was not properly understood how it could be proven until Massey products came to the
rescue.

We won’t prove this fact here, as it requires more in depth look into the topological side of
these operations, but we can sketch the intuition. These two spaces both have the same
cohomology ring, due to the cup product in the cohomology ring of the complement of
the spaces measures the linking number of the rings. Since all of the three copies of S1 in
the Borromean link—and the triple unlink—are pairwise unlinked we have that the cup
product vanishes on cochains that represent these circles. This means that the cohomology
ring is the same, and that some Massey 3-product is defined for both spaces.

For the triple unlink, the Massey 3-product will be trivial, but for the Borrmoean link there
will be some non-trivial elements. For a proper proof see [Mas98]. 1

Example 2.9. There are also other types of non-trivial links, for example the following
one, consisting of four copies of S1:

S1 S2 S3 S4

Here we have that any subset of three circles are unlinked, so the Massey 3-product is not
enough to show that the whole link is not the unlink. We can however do this by using
Massey 4-products, as shown in [O’n79].

2.3 Relation to formality

In the introduction we intuitively defined formal DG-algebras to be the ones where their
cohomology algebras contain all the “relevant information”. We have now introduced
Massey products as a type of information that should contradict this, i.e. information that
is inaccessible to the cohomology algebra. Intuitively, being formal should then mean that
no non-vanishing Massey products can exist. We will see that this is in fact the case.

Recall that (by theorem 1.45) a DG-algebra A is called formal there is a span of quasi-

1Note that this paper was originally presented by Massey in 1968 at a conference at the University of
Illinois. The article referenced above has later been written in TEX by Elaine Jackson.
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isomorphism
H(A)←− C −→ A

for some DG-algebra C.

Theorem 2.10. Let (A, dA) be a formal DG-algebra. Then all Massey n-products vanish,
i.e. given cohomology classes x1, . . . , xn such that their Massey n-products is defined,
then we have 0 ∈ 〈x1, . . . , xn〉.
This result is remarked as being true—for positively graded minimal DG-algebras—in
[DGMS75, Theorem 4.1.]. It is proven using the same techniques and same assumptions in
[TO97, Theorem 1.6.5]. As we do not use the above assumptions, we weren’t certain that
the referenced proof could be fitted to our more general case. Thus we use a more lengthy,
but simpler approach, which also allows us to discuss elements from the introduction in a
mathematically rigorous way. Our strategy is to prove it using the naturality of Massey
products in combination with a DG-algebra with d = 0 having vanishing Massey products.
So lets prove these first.

Lemma 2.11. Let f : A −→ B be a morphism of DG-algebras, f ∗ be its induced mor-
phism in cohomology and 〈x1, . . . , xn〉 a defined Massey n-product in A. Then we have
f ∗(〈x1, . . . , xn〉) ⊆ 〈f ∗(x1), . . . , f ∗(xn)〉.
Proof. Let x ∈ 〈x1, . . . , xn〉. Then there exists a defining system {ai,j} ⊆ A for x, such
that [a0,n] = x, where

a0,n =
∑

0<k<n

a0,kak,n.

Notice that we have

f ∗(x) = [f(a0,n)] = [f(
∑

0<k<n

a0,kak,n)] = [
∑

0<k<n

f(a0,k)f(ak,n)]

hence proving that {f(ai,j)} is a defining system for f ∗(x) will prove the lemma.

We have that [f(ai−1,i)] = f ∗[ai−1,i] = f ∗(xi), which proves the first criterion. The last
part follows from the fact that a morphism of DG-algebras commutes with the differentials.
Explicitly we have

d(f(ai,j)) = f(d(ai,j))

=
∑
i<k<j

f(ai,k)f(ak,j)

=
∑
i<k<j

f(ai,k)f(ak,j)

where the second equality uses the fact that f(ai,j) = f(ai,j).

This is what justifies calling them cohomology operations. This name comes from algebraic
topology—where a cohomology operation is a map between cohomology groups that are
natural with respect to continuous maps between topological spaces. This means that they
form natural transformations between cohomology functors. For our algebraic setting we
have that maps between topological spaces induce maps between their algebraic model,

35



CHAPTER 2. MASSEY PRODUCTS

hence we still use the term cohomology operation to describe natural transformations
between cohomology functors in this algebraic setting as well. Notice that strictly speaking,
the Massey products are not cohomology operations, as they consist of a set, rather than a
single element. So calling them cohomology operations is in a broad sense. If however the
Massey products consists of a single element, i.e. they are uniquely defined, then they are
actual cohomology operations.

The Massey 3-product is called a cohomology operation of order 2, because it requires a
relation on cohomology operations of order 1 to be true. For the Massey 3-product, this
relation is the vanishing of the induced products, x1x2 = 0 = x2x3. This induced product
is a cohomology operation as it is natural with respect to maps between DG-algebras. The
Massey n-product is then a cohomology operation of order n− 1, as it places a restriction
on some cohomology operation of order n− 2 to be defined.

Theorem 2.12. If q : A −→ B is a quasi-isomorphism of DG-algebras and x1, . . . , xn
cohomology classes such that 〈x1, . . . , xn〉 is defined, then

q∗(〈x1, . . . , xn〉) = 〈q∗(x1), . . . , q∗(xn)〉.

This proof is inspired by the much more general proof of the more general statement in
[May69, Theorem 1.5]. There the same statement is proven to hold for more general types
of Massey products, called matric Massey products, as well as for more general types of
quasi-isomorphisms, which we will encounter later in the thesis (section 4.2.1).

Proof. From the naturality of Massey products we know that

q∗(〈x1, . . . , xn〉) ⊆ 〈q∗(x1), . . . , q∗(xn)〉
so it remains to show the reverse containment.

Let y ∈ 〈q∗(x1), . . . , q∗(xn)〉 and {bi,j} be a defining system for it. Recall that this means
in particular that we have some b0,n such that [b0,n] = y. We will construct a defining
system {ai,j} for some x ∈ 〈x1, . . . , xn〉 such that q(a0,n) is cohomologous to b0,n. We
construct this defining system {ai,j} using induction on j − i.
Let ai−1,i be any representative of xi. This means that both q(ai−1,i) and bi−1,i are repre-
sentatives for q∗(xi) , which gives us that their difference in cohomology is zero, i.e.

[q(ai−1,i)]− [bi−1,i] = 0.

This means that we have some ci−1,i ∈ B such that

dB(ci−1,i) = q(ai−1,i)− bi−1,i.

Now, assume that for any p with 1 < p ≤ n− 2 we have constructed ak,l and ck,l for any
k, l with 1 < l − k < p, such that

d(ak,l) =
l−1∑

m=k+1

akmaml (2.1)

d(ck,l) = q(ak,l)− bk,l
l−1∑

m=k+1

ck,mq(am,l) + bk,mcm,l. (2.2)
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Notice that these hold for our already constructed ai−1,i and ci−1,i. Notice also that as q
and d commute, we have

d(q(ak,l) =
l−1∑

m=k+1

q(akm)q(aml).

Let p = j − i. Then

d

(
j−1∑
k=i+1

cikq(akj) + bikckj

)
=

j−1∑
k=i+1

d(cikq(akj)) + d(bikckj)

=

j−1∑
k=i+1

d(ci,k)q(ak,j) + (−1)|cik|ci,kd(q(ak,j))

+ d(bi,k)ck,j + (−1)|bi,k|bi,kd(ck,j)

which by equation (2.1) and (2.2) is equal to

j−1∑
k=i+1

q(ai,kq(ak,j) + bi,kq(ak,j) +
k−1∑

m=i+1

ci,mq(am,k)q(ak,j) + bi,mcm,kq(ak,j)

+ (−1)|ci,k|ci,k

(
j−1∑

m=k+1

q(ak,m))q(am,j

)

+

j−1∑
m=i+1

bi,mbm,kck,j + (−1)|bi,k|(bi,kq(ak,j)− bi,kbk,j)

+ (−1)|bi,k|

(
j−1∑

m=k+1

bi,kck,mq(am,j) + bi,kbk,mcm,j

)
.

This gives us—by canceling the terms with opposite signs—finally

d

(
j−1∑
k=i+1

cikq(akj) + bikckj

)
=

j−1∑
k=i+1

bi,kbk,j +

j−1∑
k=i+1

q(aai,k)q(ak,j).

Since {bi,j} is a defining system, we know that
∑j−1

k=i+1 bi,kbk,j is a coboundary, which by
the above calculation means that also

∑j−1
k=i+1 q(ai,k)q(ak,j) is a coboundary. Since q and

d commute, we also get that
∑j−1

k=i+1 ai,kak,j is a coboundary. Hence we can choose some
a′i,j such that

d(a′i,j) =

j−1∑
k=i+1

ai,kak,j.

We use this to define an element

ei,j = q(a′i,j)− bi,j +

j−1∑
k=i+1

ci,kq(ak,j) + bi,kck,j

37



CHAPTER 2. MASSEY PRODUCTS

which is a cocycle. We can then choose another cocycle di,j such that q(di,j) is cohomolo-
gous to ei,j . This means that their difference is zero in cohomology, i.e.

[q(di,j)]− [ei,j] = 0

Hence there exists some ci,j such that

d(ci,j) = q(di,j)− ei,j.

If we let ai,j = ai,j − di,j then we have

d(ai,j) =

j−1∑
k=i+1

aikakj

d(ci,j) = q(ai,k)− bi,k
j−1∑
k=i+1

ci,kq(ak,j) + bi,kck,j.

By induction we now have the elements ai,j and ci,j for all i, j such that 1 < i − j < n.
The exact same long calculation as we just did—exchanging i, j by 0, n—shows that

d

(
n−1∑
k=1

c0kq(akn) + b0kckn

)
=

n−1∑
k=1

b0,kbk,n +
n−1∑
k=1

q(aa0,k)q(ak,n)

= b0,n − q(a0,n)

which means that b0,n and q(ao,n) are cohomologous, as they differ by a boundary.

To summarize, we have for any y in 〈q∗(x1), . . . , q∗(xn)〉 found a q∗(x) in q∗(〈x1, . . . , xn〉),
such that q∗(x) = y in cohomology, hence

〈q∗(x1), . . . , q∗(xn)〉 ⊆ q∗(〈x1, . . . , xn〉)

By putting the two containments together we get our wanted set-equivalence

〈q∗(x1), . . . , q∗(xn)〉 = q∗(〈x1, . . . , xn〉)

Corollary 2.13. If q : A −→ B is a quasi-isomorphism, then all Massey products in A
vanish if and only if all Massey products vanish in B.

This means that having vanishing Massey products is a “stable property” through quasi-
isomorphisms. The next thing we need for our result, is that a DG-algebra with trivial
differential, can’t have any non-vanishing Massey products.

Lemma 2.14. Any DG-algebra (A, d) with d = 0 has no non-vanishing Massey products.

Proof. Take a Massey n-product 〈x1, . . . , xn〉 in A. Since the differential in A is the zero
map we know that its cohomology is equal to it self, hence the cochains that represent xi
can be chosen to be xi itself. Lets look at the case n = 3 first for some intuition.
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Since [x1][x2] = 0 = [x2][x3] we know that x1x2 = 0, as the cochains represent themselves.
This means that when we chose a cochain u such that d(u) = x1x2 we can chose u = 0, and
similarily v = 0 for a cochain such that d(v) = x2x3. Hence ux1 + x3v = 0x1 + x30 = 0,
which means that 0 is an element in the Massey product 〈x1, x2, x3〉, i.e. it is trivial.

This is also the idea generally. Since the cohomology classes represent themselves we can
always find a defining system consisting mostly of zeroes. What we mean is the following.
Let 〈x1, . . . , xn〉 be defined. Any defining system {ai,j} used to define an element in it
must have

0 = d(ai,j) =
∑
i<j<k

ai,kak,j

for all (i, j) 6= (0, n), as d = 0. This means that for i, j such that (i, j) 6= (0, n) and
(i, j) 6= (i, i+ 1) we can choose ai,j = 0. As d is linear we get

d(0) = 0 =
∑
i<j<k

ai,kak,j.

Thus, if we let ai−1,i = xi, then {x1, x2, . . . , xn, 0, . . . , 0} is a defining system for
x1, . . . , xn. This defining system produces the zero element

a0,n =
∑

0<j<n

a0,kak,n = 0

because every summand must contain a copy of the zero class. This means that 0 ∈
〈x1, . . . , xn〉 for any n and any x1, . . . , xn ⊆ H(A), meaning that all Massey products of
all orders must be vanishing.

The above lemma is the precise mathematical formulation of the statement that the co-
homology algebra of a DG-algebra does not have “access to the information” that the
Massey products contain. The cohomology algebra of a DG-algebra is precisely one such
DG-algebra with trivial differential, hence there can be no non-vanishing Massey products.
This means that the cohomology algebra does not contain all the relevant information,
given that there is some non-trivial Massey products in the original DG-algebra.

Ok, lets put these lemmas together to form the proof of the fact that a formal DG-algebra
can have no non-vanishing Massey products.

Proof of theorem 2.8. Given a formal DG-algebra A there is by theorem 1.45 a span
of quasi-isomorphisms H(A) ←− C −→ A. By lemma 2.14 all Massey products in
H(A) must contain the zero class, as it is a DG-algebra with trivial differential. By
theorem 2.13 we know that H(A) only having vanishing Massey product implies that A
only has vanishing Massey products, as they are connected by quasi-isomorphisms.

This resolves Theorem B. from the motivation of the chapter. Having now proven that
formal DG-algebras admit no non-vanishing Massey products means that having any non-
trivial Massey product is a definite obstruction to being a formal DG-algebra, which is ex-
actly what we expected. It is information–inaccessible to the cohomology algebra—hence
the DG-algebra can’t be sufficiently simple. This also gives us a criteria for answering
negative to our central question:
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The central question: Given a DG-algebra A, when do we know that A is formal?
Criteria: All Massey products needs to be vanishing, if not, A can’t be formal.

Notethat any DG-algebra G with d = 0 must be formal, as the map G −→ H(G) sending
g to its cohomology class [g] induces an isomorphism in cohomology—namely the identity
map. This means that we can include the category of graded algebras into the category
DGAk by letting d = 0, project down to the homotopy category hoDGAk and look at its
essential image, i.e. all objects in hoDGAk that are isomorphic to an algebra in the image
of the functor

GrAlgk DGAk hoDGAk
I π

Taking the essential image

eIm(π ◦ I) = {A ∈ hoDGAk |A ∼= π(I(G)) for some G ∈ GrAlgk}

should give us precisely the homotopy category of the subcategory of formal DG-algebras.

This means we have a partial answer to the central question.

Partial answer: When A has a trivial differential.

It would not be very exciting if these were all the formal DG-algebras, and we know for a
fact that they are not, as we earlier saw examples of this. Thus our pursuit of a definite
answer continues.

A natural more general question after this is then: Are the Massey products the only
obstructions to having formality? Or more mathematically, if all Massey products in a
DG-algebra (A, d) vanish, is A formal? If this were the case we would have an answer to
our central question:

Potential answer: When A has no non-trivial Massey products.

This sadly turns out to not be the case. This should maybe be expected intuitively, as
information hidden from the cohomology algebra could in theory be anything. So having
the only such information being the Massey products would imply that no “weird things”
could happen, and in the field of topology, weird things happen more often than not. For
some examples of non-formal DG-algebras, with only vanishing Massey products, see
[CN20, Section 1.5] and [HS79, Example 8.13.].

The path onwards

We are now facing a cross-road. Our attempted method of checking formality didn’t
work as well as we wanted, so where do we go? Do we try something new? Some other
invariants, or techniques to detect formality? There is some interesting theory developed
around formality and Hochschild cohomology. One can calculate certain Hochschild
cohomology classes—for example the so-called Kaledin class, developed in [Kal07] and
[Lun10]—which only vanish when the DG-algebra is formal.

We will however walk another way, continuing more along the same route. By this we mean
that we will try to rectify the theory we have already developed by using generalizations.
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More specifically, we need access to even more homotopical information. We will take
a DG-algebra, and in some sense homotopically deform it, so that we get a weaker, but
richer structure—containing even more homotopical information.
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Chapter 3

Transferring algebraic structures
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3.1 Motivation

Imagine we have a system of two topological spaces, f : T −→ G. We are often interested
in knowing if a certain property on the space G can be transferred through f such that
we have the same property on T . If f is a nice enough morphism, an example could be a
topological invariant of G, for example its Euler characteristic. Transferring invariants is
an important, rich field of study in topology, but in this thesis we are more interested in
transferring other things than invariants—more specifically algebraic structures. If G has
an algebraic structure, we ask: can we transfer the same or some other similar structure
onto T through f?

Let’s assume for now that G is a group and that f is an isomorphism. This allows us to
also make T into a group by transferring the group structure through f . We get this by
defining the multiplication on T to be t1 · t2 = f−1(f(t1) · f(t2)). Let’s prove that this
does in fact give a group structure on T .

Since f is an isomorphism, we have a unique element that gets sent to the identity element
in G, which we define to be the identity element of T , i.e. 1T = f−1(1G). This is in fact
an identity element since

t · 1T = f−1(f(t) · f(1T ))

= f−1(f(t) · f(f−1(1G)))

= f−1(f(t) · 1G)

= f−1(f(t))

= t.

The same holds for 1T ·t = t. We define the inverse of an element to be t−1 = f−1((f(t)−1),
which we see is an inverse as

t · t−1 = f−1(f(t) · f(t−1))

= f−1(f(t) · f(f−1((f(t))−1)))

= f−1(f(t) · (f(t))−1)

= f−1(1G)

= 1T ,

The same again holds for t−1 · t = 1T . Our operation in T is associative because

t1 · (t2 · t3) = t1 · (f−1(f(t2) · f(t3)))

= f−1(f(t1) · f(f−1(f(t2) · f(t3))))

= f−1(f(t1) · (f(t2) · f(t3)))

= f−1((f(t1) · f(t2)) · f(t3))

= f−1(f(f−1(f(t1) · f(t2))) · f(t3))

= (f−1(f(t1) · f(t2)) · t3
= (t1 · t2) · t3
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where the equality between the third and the fourth line comes from the associativity of the
product in G. Hence we have; an associative binary operation on T , an identity element
and has all inverses—which makes T into a group.

3.2 Homotopy equivalence between spaces

A crucial part in the above proof is that f is an isomorphism, so what happens when this is
not the case? To get a similar type of operation, we must at least have some way to get
to T , but also back to G again, i.e. a system f : T � G : g. One of the simplest—non
isomorphism—examples of such a system is a homotopy equivalence. In this situation,
what happens to the same kind of transferred structure on T ? We do the same thing as
earlier and define our operation to be given by m2(t1, t2) = t1 · t2 = g(f(t1) · f(t2)). Why
we also denote it by m2 will be clearer later. This is a map T × T −→ T . One thing we
can check is whether this map is still associative. We have

t1 · (t2 · t3) = t1 · g(f(t2) · f(t3))

= g(f(t1) · fg(f(t2) · f(t3)))

and

(t1 · t2) · t3 = g(f(t1) · f(t2)) · t3
= g(fg(f(t1) · f(t2)) · f(t3))

which because g ◦ f 6= idT , are not equal in general. Luckily we have the next best
thing: they are homotopic! So, instead of actual associativity, we have associativity up
to homotopy. Such a homotopy between them is a map m3 : I × T 3 −→ T , often called
the associating homotopy—where I is the unit interval. This means that the interval
parameterizes a space of maps T 3 −→ T in such a way that on the edges of the interval
we have the two ways of combining three elements by our operation m2. Another way to
say this is that the composition of m3 with the boundary map ∂ is given by

m2(idT ×m2)−m2(m2 × idT )−m3(∂ × idT × idT + idT × ∂ × idT + idT × idT × ∂).

We can graphically visualize the parameterization by the following picture:

(t1 · t2) · t3 t1 · (t2 · t3)

Here the two ends are the different brackets we can put between the elements in order to
get the two different operations using m2. The line between them is the homotopy m3.

The line we just constructed, i.e. the space that parametrizes operations T 3 −→ T is called
the third Stasheff associahedra, which we denote by K3. A natural question to ask is if we
can continue this process, i.e. to see if we have spaces that parametrize maps T 4 −→ T
such that the different ways of combining four elements using m2 lie on its boundary. Let’s
investigate what this would mean. We have five ways of combining four elements by the
operation m2, namely t1 · (t2 · (t3 · t4)), t1 · ((t2 · t3) · t4), (t1 · t2) · (t3 · t4), (t1 · (t2 · t3)) · t4
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and ((t1 · t2) · t3) · t4. All of these are homotopic to each other through repeatedly using
the homotopy m3 to reposition the brackets. Notice that we have two ways of getting from
t1 · (t2 · (t3 · t4)) to ((t1 · t2) · t3) · t4. By using diagrams to describe the rebracketing we
can visualize them as follows.

(t1 · t2) · (t3 · t4)

((t1 · t2) · t3) · t4 t1 · (t2 · (t3 · t4))

t1 · (t2 · t3) · t4)(t1 · (t2 · t3)) · t4
Here the vertices are the five different combinations we can make from four elements using
m2, while the edges are the different ways to reorder the brackets in those products—using
m3. The two paths we have is the two paths along the edge we can use to get from the
leftmost vertex to the rightmost one. Can we say something about how these two ways
are similar? They are in general not equal, but they are homotopic. This means that we
can fill in the pentagon by a homotopy. We call this filled in pentagon the fourth Stasheff
associahedron, denoted K4. This means that we now have a space that parametrizes a
collection of maps T 4 −→ T in such a way that it respects the m3 on the boundary, i.e. a
map m4 : K4× T 4 −→ T .

If we look back we can also define K2 to be just a point, as it parametrizes the one
multiplication operation we chose at the beginning. Trivially we can define K1 to be
the empty set. We can also continue this process further than K4, and every time these
Stasheff associahedra get more complicated. We wont explain all the details of all paths
and combinations for n = 5, but the fifth Stasheff associahedra, K5, is the following
convex polyhedra:

Every vertex correspond to one way we can combine 5 elements, every edge to homotopies
between them, every surface corresponds to homotopies between paths of homotopies, and
lastly the inside to a homotopy between paths of the surfaces. These shapes get more and
more complicated, and grow in dimension, so visualizing Kn for n ≥ 6 is difficult. What
matters is that for every n we get a map mn : Kn× T n −→ T , that acts as a homotopy
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between different ways of combining mn−1.

Remark 3.1. So why should we care about these? It is in general nice to have objects
that parametrize certain operations on other objects. These objects are called operads, and
the particular set {Kn}n≥1 we just constructed to parametrize operations T n −→ T for
topological spaces, is called the Stasheff operad. A topological space with the action of the
Stasheff operad is called an A∞-space. An example of such a space is a loop space ΩX of
some topological space X . The loop space ΩX consists of based loops in X , and naturally,
we can equip such a space with a multiplication of two loops—simply by concatenation.
If we for example take the torus, and the blue point to be the basepoint, then the two red
loops can be composed to form a new loop on the torus.

The concatenation of loops is not associative, but is associative up to homotopy, and these
homotopies satisfy higher relations by “higher” homotopies, and so on ad infinitum. This
system of higher homotopies is what creates an A∞ structure. In this topological setting it
is actually shown that loop spaces are the only topological spaces with an A∞ structure.

3.3 Deformation retraction

Let’s try to apply the above topological motivation to our more algebraic situation. As
DG-algebras are in particular cochain complexes, we can ask weather being a DG-algebra
is a stable property under homotopy equivalences in Ch(V ectk), the category of cochain
complexes of vector spaces. What we mean by this is that given a DG-algebra A, and a
cochain complex V that is homotopy equivalent toA, can we induce a DG-algebra structure
onto V ? This will in some sense tell us weather the homotopy theory of DG-algebras is
well behaved. To make things even more simple, we use deformation retractions instead of
homotopy equivalences.

Definition 3.2. (Deformation retraction). Let (A, dA) and (B, dB) be cochain complexes,
and let p : A −→ B and i : B −→ A be morphisms between them. We call p a
deformation retraction if p ◦ i = idB and there exists a homotopy i ◦ p h∼ idA. If there
exists a deformation retraction A −→ B, then we say B is a deformation retract of A, or
that A deformation retracts onto B.

We sometimes denote such a system by (A,B, p, i, h), and more often with the following
diagram:
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A Vh
p

i

Note that a deformation retraction is in particular a homotopy equivalence. In fact, two
cochain complexes are homotopy equivalent if and only if they are both deformation retracts
of another cochain complex. Hence these deformation retracts are intimately linked with
the homotopy theory of cochain complexes. A DG-algebra is in particular a cochain
complex, so it is then perhaps natural to ask weather two homotopy equivalent complexes
are DG-algebras if and only if the other one is, or equivalently, is the deformation retract
of a DG-algebra again a DG-algebra? As stated earlier this is not the case.

In order to get correct signs when working with graded objects we will use the Koszul sign
rule a lot. This tells us how to get signs when applying tensor products of functions to
tensors, as well as composing tensor products of functions. These rules are as follows:

(f ⊗ g)(a⊗ b) = (−1)|a||g|f(a)⊗ g(b)

for applying functions to tensors, and

(f1 ⊗ g1) ◦ (f2 ⊗ g2) = (−1)|f2||g1|f1 ◦ f2 ⊗ g1 ◦ g2

for composition of functions. All the above, and all future tensors are over k.

Ok, let’s now consider the deformation retract

A Vh
p

i

If we try to do the same as we did for the topological case in the motivation, we get an
attempted multiplication m2 = p ◦ m ◦ (i ⊗ i). If we investigate the properties of this
product a bit, we notice that it is not associative by the exact same reason given earlier. As
before we get two different non-equivalent ways of combining the product with it self:

• m2(m2 ⊗ id)

• m2(id⊗m2)

We know they are not equal, so what is the next best thing we could hope for? It is of
course a homotopy between them. In the motivation we just claimed that there is such a
homotopy, but now we want to be very explicit, and very thorough by proving that this is
in fact the case. We do this because it will be important as an intuition for the A∞-algebras
we want to construct in the next section.

Notice that m2(m2 ⊗ id) and m2(id ⊗m2) are elements of Hom(A⊗3, A) and are both
maps of degree zero. Let’s draw them in a diagram
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An−1 ⊗ An−1 ⊗ An−1 An ⊗ An ⊗ An An+1 ⊗ An+1 ⊗ An+1

An−1 An An+1

m2(id⊗m2) m2(id⊗m2) m2(id⊗m2) m2(id⊗m2) m2(id⊗m2) m2(id⊗m2)

dn−1A⊗3 dnA⊗3

dn−1A
dnA

This space, Hom(A⊗3, A), can be made into a chain complex by defining a boundary
operator. If f is just some generic element in Hom(A⊗3, A) of degree |f |, we define such
an operator by

∂f = dAf − (−1)|f |fdA⊗3

where dA⊗3 = (dA, id, id) + (id, dA, id) + (id, id, dA).

A homotopy between m2(id⊗m2) and m2(m2 ⊗ id) would be a map h : A⊗3 −→ A of
degree −1, such that dn−1A ◦ hn + hn+1 ◦ dnA⊗3 = m2(id ⊗m2) −m2(m2 ⊗m2). In or
diagram it would be a diagonal map

An−1 ⊗ An−1 ⊗ An−1 An ⊗ An ⊗ An An+1 ⊗ An+1 ⊗ An+1

An−1 An An+1

hn

hn+1
m2(id⊗m2) m2(id⊗m2)

dn−1A⊗3 dnA⊗3

dn−1A
dnA

such that the sum of the outer parallelogram equals the difference of the vertical arrows.
But, notice that this is exactly just showing that ∂h = m2(id⊗m2)−m2(m2 ⊗ id)!

The explicit homotopy that we will use is the following tertiary operator m3 on V

m3 = p ◦ (m(hm⊗ id)−m(id⊗ hm)) ◦ (i⊗ i⊗ i),

where m denotes the product in A. Notice that we have |m3| = −1, and ∂m3 = dm3 +
m3dA⊗3 . Hence form3 to be the homotopy we want betweenm2(id⊗m2) andm2(m2⊗id)
we must show that ∂m3 = m2(id⊗m2)−m2(m2 ⊗ id).

Theorem 3.3. Let (A, V, i, p, h) be a deformation retraction, where A is a DG-algebra and
V is a chain complex. Let m2 be the induced transferred product on V . Then the operation
m3, as described above, is a homotopy between m2(id⊗m2) and m2(m2 ⊗ id).

This proof is quite long and terse, so we have moved it to Appendix A. It does however
give some nice intuition, and general feeling for how these homotopies work, so the reader
is advised to at least skim through it.

This result means that the topology we described earlier—with the Stasheff associahedra—
really dictates what is going on in the purely algebraic scenario. This is of course by design,
as Stasheff used these algebraic structures to describe what happens topologically, but it is
still important to understand how the two different stories are compatible. This really shows
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that m3 is the algebraic version of K3, i.e. the interval—or homotopy really—between the
two ways of combining the product m2 with it self. Because of this we often call m3 the
associating homotopy of m2.

Let’s test our understanding of this by looking a bit at what happens in the arity four case
as well. First let’s look at K4, with its corresponding ways to combine m2.

m2(m2 ⊗m2)

m2(1⊗m2(1⊗m2))m2(m2(m2 ⊗ 1)⊗ 1)

m2(1⊗m2(m2 ⊗ 1)⊗ 1) m2(m2(1⊗m2)⊗ 1)

We see that we have two paths from m2(m2(m2 ⊗ 1)⊗ 1) to m2(1⊗m2(1⊗m2)). We
can describe these path explicitly by using the homotopies between the vertices.

m2(m2 ⊗m2)

m2(1⊗m2(1⊗m2))m2(m2(m2 ⊗ 1)⊗ 1)

m2(1⊗m2(m2 ⊗ 1)) m2(m2(1⊗m2)⊗ 1)

m3(1⊗ 1⊗m2)m3(m2 ⊗ 1⊗ 1)

m2(m3 ⊗ 1) m2(1⊗m3)

m3(1⊗m2 ⊗ 1)

which makes the two paths equal to

m3(m2 ⊗ 1⊗ 1) +m3(1⊗ 1⊗m2)

and
m2(m3 ⊗m1) +m3(1⊗m2 ⊗ 1) +m2(1⊗m3)

Without now defining some quaternary operation m4 concretely—we will do this a bit
later—we know what its boundary, ∂m4, must look like. It must look like the boundary of
K4 as a topological space, i.e.

∂m4 = m2(1⊗m3)−m3(1⊗1⊗m2)−m3(m2⊗1⊗1)+m2(m3⊗m1)+m3(1⊗m2⊗1)
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which we see is the difference of the two paths just described above. Thus, m4 is a
homotopy between the two paths.

We will later look a little bit into what happens for higher arity maps, but things un-
fortunately get exponentially more complicated. We will then also use a very specific
deformation retraction from a DG-algebra onto its cohomology algebra H(A), and use that
to equip H(A) with m3 and other higher arity maps, which will sort of model the Massey
products we saw in chapter 2.
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Chapter 4

A∞-algebras
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4.1 Motivation

We have now had a lot of intuition-building, as well as motivation for why we need to
generalize our concept of DG-algebra. As we have seen in the last chapter—if we deform
a DG-algebra through a deformation retract—we don’t necessarily again get a DG-algebra.
This means that their homotopy theory is not as well behaved as we would like. The notion
of an A∞-algebra fixes this problem. Note that the following historical overview is due to
Keller, in [Kel01].

The notion of an A∞-algebra was introduced and developed by Stasheff in [Sta63a] and
[Sta63b], which consists of his work trying to study H-spaces. These A∞-algebras were
further sucessfully used by Adams ([Ada78]), May ([May72]) to study iterated loop
spaces. The notion of an H-spaces and loop spaces are exactly the motivation for our
topological introduction in chapter 3, as these are spaces with some operation, often
homotopy associative. This idea of transferring the structure through a deformation retract,
and studying only structure that is invariant under such deformations, seem to stem from
Boardman and Vogt ([BV73]).

The study of A∞-algebras again flourished in the 90’s, with the arrival of the homological
mirror symmetry conjecture by Kontsevich at the 1994 International Congress of Math-
ematicians ([Kon94]). This conjecture relies on an object know as the Fukaya-category,
which is in fact an A∞-category, the categorified version of an A∞-algebra.

From here on out there will be some details and proofs missing. This is due to the shear
complexity of the material, and the intricacy of the proofs. We will of course try our
best to develop the theory of these algebras—as well as explain the results we need—but,
as the focus is on formal DG-algebras, we will focus on getting some in depth feel for
A∞-algebras and their morphisms, instead of going through all the results in their full
detail.

The main results of this chapters will be the fact that a DG-algebra A is formal if and only
if it has a Merkulov model, which is itself a DG-algebra.

Theorem C. A DG-algebra A is formal if and only if its Merkulov model, H(A), has
mi = 0 for i ≥ 3.

This we use to prove our new result for this thesis.

Theorem D. Let A be a DG-algebra such that the induced product on cohomology is
trivial, and all Massey products vanish. Then A is formal.

4.2 The generalized algebraic model

We have motivated this structure for a while now, so it is finally time to see how chapter 3
generalizes algebraically.

Definition 4.1. (A∞-algebra). Let k be a field. An A∞-algebra over k is a Z-graded
vector space A =

⊕
i∈ZAi together with a family of k-linear maps mn : A⊗n −→ A of
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degree n− 2, such that the identities

0 =
∑

r+s+t=n

(−1)r+stmr+1+t(id
⊗r ⊗ms ⊗ id⊗t)

hold for all n, s ≥ 1.

These relations are called the Stasheff identities, or sometimes the coherence relations, in
A. Lets try to understand them a bit better for some small n’s.

n = 1 : The Stasheff identity simply becomes

0 = (−1)0+0m1 · (m1) = m2
1.

n = 2 : This sum is a bit more complicated, but still not too bad. We have

0 = (−1)1m2 · (id⊗m1) + (−1)0m1 · (m2) + (−1)1m2 · (m1 ⊗ id)

which reduces to m1 ·m2 = m2(m1 ⊗ id+ id⊗m1).

n = 3 : This sum is again going to be more complicated, but lets keep our tongues straight
and our heads cold and do this one as well.

0 = (−1)2m3(id⊗ id⊗m1)

+ (−1)2m3(id⊗m1 ⊗ id)

+ (−1)2m3(m1 ⊗ id⊗ id)

+ (−1)2m2(m2 ⊗ id)

+ (−1)1m2(id⊗m2)

+ (−1)0m1(m3)

which reduces to m2(id⊗m2)−m2(m2⊗ id) = m3(m1⊗ id⊗ id+ id⊗m1⊗ id+ id⊗
id⊗m1) +m1 ·m3. We wont show the calculations for n ≥ 4 here, as they get more and
more complex, and less recognizable. Some of them will however feature a bit later.

The first condition looks very familiar, and is easily recognized as the cochain condition,
d0 = 0. This justifies calling m1 a differential, as it makes the graded vector space into a
cochain complex. The second one is also relatively easy to spot, and tells us that m1 is a
derivation with respect to m2. If we apply this to an element v1 ⊗ v2 and remember to use
the Koszul grading rule we get

m1(m2)(v1 ⊗ v2) = m2(m1 ⊗ id)(v1 ⊗ v2) +m2(id⊗m1)(v1 ⊗ v2)
= (−1)|id||v1|m2(m1(v1)⊗ v2) + (−1)|m1||v1|m2(v1 ⊗m1(v2))

Since the identity morphism has degree 0, the first sign vanishes, and since m1 has degree
1 we are left with (−1)|v1| as our second sign, i.e.

m2(m1(v1)⊗ v2) + (−1)|v1|m2(v1 ⊗m1(v2))
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We just figured out that m1 acts as a differential, so for just a moment let it be denoted by
d. Since m2 takes two vectors and produces one vector, we can interpret this as a product.
If we write m2(v1 ⊗ v2) = v1 · v2 for this product, we now get a more familiar equation:

d(v1 · v2) = d(v1) · v2 + (−1)|v1|v1 · d(v2)

which we recognize as the graded Leibniz rule.

The third condition should be recognizable by the discussion on transferring DG-structures
through deformation retracts in chapter 3. We recognize the left hand side as the associator
of m2 and the right hand side as the boundary of m3 where now m1 is the differential.
Since the right hand side is not necessarily equal to zero, we see that the product is not
necessarily associative, as expected by the motivation in the beginning of the chapter.

If in fact m3 = 0, then we see that the associator is zero, and hence the product m2 is
associative. As we can see, m2 is also associative if m1 is zero, which will cause some
interesting phenomenons later. In this last case we have a associative product, but the
higher homotopies need not vanish.

Example 4.2. (DG-algebras). We look at the first two Stasheff identities, and notice that
these look an awful lot like the relations from our DG-algebras. The above discussion
on the relations has in fact showed that an A∞-algebra where m3 = 0 is a DG-algebra.
This also means that we can view every DG-algebra as an A∞-algebra, by letting the
multiplication m be the map m2, the differential d be the map m1 and letting mi = 0 for
all i ≥ 3. Hence, a DG-algebra is a kind of trivial, or easy version of an A∞-algebra.

Example 4.3. Maybe even more trivially, we can view any graded algebra (A,m) =⊕
i∈ZAi as an A∞-algebra, by letting mi = 0 for all i 6= 2, and m2 = m.

Similarly, any cochain complex of vector spaces (V, d)

· · · −→ Vi−1 −→ Vi −→ Vi+1 −→ · · ·
can be thought of as an A∞-algebra by letting m1 = d and mi = 0 for all i > 1.

A “non trivial” example made by Allocca and Lada in [AL10] is the following.

Example 4.4. Let V be the graded vector space given by V0 ⊕ V1, where V0 has a basis
{v1, v2} and V1 the basis {w}. The operations are defined by

• m1(v1) = w = m1(v2)

• mn(v1 ⊗ w⊗k ⊗ v1 ⊗ w⊗n−k−2) = (−1)k(−1)s(n)v1 for all 0 ≤ k ≤ n− 2

• mn(v1 ⊗ w⊗n−1) = (−1)s(n+1)w

• mn(v1 ⊗ w⊗n−2 ⊗ v2) = (−1)s(n+1)v1

• mn = 0 for all other combinations of elements

where s(n) = (n+1)(n+2)
2

. The proof of for the fact that this gives an A∞-structure on V can
be found in [AL10], and will not be covered here. We do however note that this example
is interesting, because it gives a sneak peak into how A∞-algebras are useful in theoretical
physics, as it is related to open-closed string field theory. More information can be found
in [AL10] and its references.
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Relation to the boundary operator

When we looked at transferring algebraic structures in 3, we defined a boundary operator
∂(−) = d(−) − (−1)|−|(−)dA⊗3 on the complex Hom(A⊗3, A). We can do this more
generally for all higher arity maps, meaning we get a complex Hom(A⊗n,A, where the
boundary operator is defined by

∂f = df − (−1)|f |dA⊗n

for an element f : A⊗n −→ A, where dA⊗n =
∑n

k=0(id
k ⊗ d⊗ id⊗n−k).

This allows us to look generally at ∂mn and its relation to the Stasheff identities—as we
did earlier when n = 3—as follows. Consider the extremal decompositions of the number
n into r + s+ t, i.e. the one where s = n and the ones where s = 1. The former gives us
the part of the Stasheff identity given by m1(ms) and the latter gives the sum

n−1∑
r=0

(−1)n−1mn(id⊗r ⊗m1 ⊗ id⊗n−r−1)

Inside the A∞-algebra A, the differential is given by m1, meaning that these two parts of
the Stasheff identity perfectly matches the boundary operator applied to mn. Hence we
can reformulate the Stasheff identities as

∂mn = −
∑

r+s+t=n

(−1)r+stmr+s+t(id
⊗r ⊗ms ⊗ id⊗t)

where r, s, t ≥ 1. This is for example used in [Val14] as the definition.

Notice that for n = 3 and n = 4 this perfectly matches the boundaries we calculated earlier
for K3 and K4. It will do so for higher n as well of course, as designed.

4.2.1 Morphisms of A∞-algebras

Since A∞-algebras look a lot like DG-algebras, our first guess at what a morphism of
A∞-algebras should be, is perhaps a map of graded vector spaces f : A −→ B that
commute with all of the internal multiplications, i.e. f ◦mA

i = mB
i ◦ f . This would make

sense from an algebraic perspective, but from a homotopy theoretic standpoint, this is too
strict, and hence we call these strict A∞-morphisms. They are too strict because they do
not take the homotopy information into account, so we need a more nuanced definition.

Definition 4.5. (A∞-morphism). A morphism of A∞-algebras, denoted f : A B, also
called A∞-morphism or sometimes∞-morphisms, is a family f = {fn} of linear maps
fn : A⊗n → B such that

∑
n=r+s+t

(−1)r+stfr+1+t(id
⊗r⊗mA

s ⊗ id⊗t) =
n∑
k=1

∑
n=i1+···ik

(−1)umB
k (fi1⊗fi2⊗· · ·⊗fik)
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where u =
k−1∑
t=1

t(ik−t − 1).

This definition looks quite impenetrable and scary, but is a much better definition for a
map of A∞-algebras, at least for our purposes. This will become more clear later, when
we connect this theory to the theory of formality.

If we start to write out some of the relations, we quickly see that the definition is very
natural in terms of the already present products in A and B.

n = 1 : The relation gives us
f1(m

A
1 ) = mB

1 (f1)

which just tells us that the lowest arity map respects the cochain complex structure defined
by m1. It more specifically tells us that f1 is a morphism of chain complexes.

n = 2 : This already gets a bit more complicated, but it is still the natural relation to have.
We get

−f2(mA
1 ⊗ id) + f1(m

A
2 )− f2(id⊗mA

2 ) = mB
1 (f2) +mB

2 (f1 ⊗ f1)

which we can reformulate to

f1(m
A
2 )−mB

2 (f1 ⊗ f1) = f2(m
A
1 ⊗ id+ id⊗mA

1 ) +mB
1 (f2)

which tells us that f1 almost commutes with the m2’s, but only up to a higher morphism
f2. Above we saw that a DG-algebra is an A∞-algebra with mi = 0 for i ≥ 3. If we let
f2 = 0 then this relation tells us that f1 is a morphism of DG-algebras. Hence we can kind
of start to think about A∞-morphisms as DG-morphisms up to homotopy.

n = 3 : Now the relations start to get complex and more confusing, but lets write it out
anyway. The left hand side is

mB
1 (f1) +mB

2 (f1 ⊗ f2)−mB
2 (f2 ⊗ f1) +mB

3 (f1 ⊗ f1 ⊗ f1)

and the right hand side becomes

f3(m
A
1 ⊗id⊗2)+f2(m

A
2 ⊗id)+f1(m

A
3 )+f3(id⊗mA

1 ⊗id)−f2(id⊗mA
2 )+f3(id

⊗2⊗mA
1 )

hence the relation can be rewritten to form

f1(m
A
3 )−mB

3 (f⊗31 ) = mB
1 (f3) + f2(id⊗mA

2 −mA
2 ⊗ id) +mB

2 (f1 ⊗ f2 − f2 ⊗ f1)
− f3(mA

1 ⊗ id⊗2 + id⊗mA
1 ⊗ id+ id⊗2 ⊗mA

1 )

This relation is hard to pull some intuition out from, but we see that one the left hand side
we have some familiar m3’s. We also have some familiar parts on the right hand side, if we
recall that f3 ∈ Hom(A⊗3, B)—which we earlier made into a chain complex—making
us able to recognize both components of ∂f3. We also notice that the remaining two
summands look like some form of associator. We can then write

f1(m
A
3 )−mB

3 (f⊗31 ) = ∂f3 + f2(id⊗mA
2 −mA

2 ⊗ id) +mB
2 (f1 ⊗ f2 − f2 ⊗ f1).
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As said, we cant draw much conclusive intuition from this, but it tells us roughly how to
compare the associating homotopies in A and B, using f1, f2 and the boundary of f3. Let’s
move away from these relations for now, as we will come back to them and analyze them
using more graphical ways in a bit.

To have a category of A∞-algebras we need to know how to compose morphisms. Compo-
sition of two A∞-morphisms, f : A B and g : B  C , is given by

(g ◦ f)n =
∑

i1+···+ir=n

gr ◦ (fi1 ⊗ · · · ⊗ fir)

where r > 0, i1, . . . , ir > 0. Important for us is the fact that (g ◦ f)1 = g1 ◦ f1. This means
that we have a category∞Algk consisting of A∞-algebras and A∞-morphisms. Note that
DGAk can be thought of as a non-full subcategory of∞Algk, as we have described ways
to interpret both DG-algebras, and DG-morphisms in the framework of A∞-algebras.

As we had for DG-algebras, we have some important special types of A∞-morphisms. The
ones we will need are the A∞-isomorphisms and the A∞-quasi-isomorphisms.

Definition 4.6. (A∞-isomorphism). Let f : A  B be an A∞-morphism. We call f a
A∞-isomorphism, or a isomorphism of A∞-algebras, if f1 is an isomorphism of chain
complexes.

Since any A∞-algebra (A,m) has a map m1 such that m2
1 = 0, we can also create its

cohomology algebra in the exact same way we did for DG-algebras. Then maybe as
expected, we can define A∞-quasi-isomorphisms as well.

Definition 4.7. (A∞-quasi-isomorphism). Let q : A  B be an A∞-morphism. We
call q a A∞-quasi-isomorphism, or a quasi-isomorphism of A∞-algebras, if q1 is a quasi-
isomorphism of chain complexes, i.e. it induces an isomorphism of their cohomology
algebras.

Since we have (g ◦ f)1 = g1 ◦ f1 for the composition of A∞-morphisms, we have that com-
position of A∞-isomorphisms and A∞-quasi-isomorphisms are again A∞-isomorphisms
and A∞-quasi-isomorphisms respectively.

Remark 4.8. When we discussed Massey products in chapter 2 we proved that Massey
products are natural, and that

q∗(〈x1, . . . , xn〉) = 〈q∗(x1), . . . , q∗(xn)〉
when q is a quasi-isomorphism of DG-algebras. The proof we had for this was inspired by
[May69, Theorem 1.5], and we remarked that this theorem was proven for a more general
type of quasi-isomorphism. This more general type is exactly the A∞-quasi-isomorphism.

This means that if we have an A∞-quasi-isomorphism q : A  B between two DG-
algebras—thought of as A∞-algebras in the way described earlier—and a defined Massey
product 〈x1, . . . , xn〉 in A, then we also have, in a certain non-precise sense:

q∗(〈x1, . . . , xn〉) = 〈q∗(x1), . . . , q∗(xn)〉.
Notice that this is more general than naturality for DG-quasi-isomorphisms, as for A∞-
quasi-isomorphisms we only have that the algebra multiplications is preserved up to
homotopy, which means some of the steps we took in our proof no longer hold.
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4.2.2 Visualization using rooted trees

There is another—more graphical—way of describing the Stasheff identities in a A∞-
algebra, and this is done by rooted trees. A rooted tree is a graph with a fixed node at the
bottom (which we call the root), and where every other two nodes are connected by no
more than one line. An example is the following graph.

The top vertices are called the leaves of the tree.

We can use these to represent our higher operations. For example—if the above graph is
read from top to bottom—it can be thought of as an operation that takes in two elements,
and produces just one. This is exactly what m2 does in an A∞-algebra, hence the reason
we can use them. The following graphs represents m1,m2,m3 and m4 respectively.

Adding more leaves to the central vertex gives all the other mi’s as well. We can let these
trees interact in certain ways in order to produce the Stasheff identities. Let’s start with
n = 1. This relation is given by m1m1 = 0, which we can describe with the following
rooted tree:

= 0

Here we have stacked them on top of each other in order to signify that they happen “after”
each other. We still read from top to bottom, which means that we first do m1, and then m1

again. Note that this rooted tree is the unique way of combining two operations, mi,mj ,
such that the combination is an operation that takes in one element and produces one
element.

For n = 2 we have more than one way of composing the trees, hence the relation must be
described by a sum of rooted trees instead. The second relation looks at ways to combine
two operations, mi,mj , in order to form an operation that takes in two elements and
produces just one element. There are three ways of doing this, represented by the following
three rooted trees:
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Note here that we have omitted the identity maps which should be present. If we add these
we get for example the following:

id

For simplicity we omit these identities, as they add a bit of confusion because of their
similarity to the m1 operation. So whenever one sees a leaf at a lower level than another,
add identities on top until they reach the same height.

In order to produce the second Stasheff identity we need to add these together in the correct
way. This correct way, as calculated earlier, is the following:

= 0− − +

We can figure out the correct signs by looking at the r, s, t decomposition of n. For this
particular example—when n = 2—we have three decompositions

• r = 0, s = 1, t = 1

• r = 1, s = 1, t = 0

• r = 0, s = 2, t = 0

These are the ingredients in the sign (−1)r+st which we had in the Stasheff identities. The
integer s denotes the operation ms, which we see at the top of the rooted tree. The integer
r denotes the position of this top operation, i.e. how far to the right it will be placed on the
leaves of the operation at the bottom. The bottom operation will be given by r + 1 + t, i.e.
mr+1+t. This means that we can read of the correct sign from the composed rooted tree of
the two operations. Let’s see an example. If we take the middle rooted tree of the ones
above, we can read off r, s, t as follows:
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r = 1 t = 0

s = 1

r + 1 + t = 2

which means that the correct associated sign is (−1)r+st = (−1)1+1·0 = (−1).

One algorithm to create the correct system of trees for some n—with the correct signs—is
the following.

1. Draw n copies of the rooted tree that represents mn.

2. Put one copy of the binary tree that represents m1 at just one of the leaves of the
above copies of mn, starting from the left and continuing to the right.

This is easier by a visualization, so let n = 4. Then by doing the above two steps we get
the following:

3. If n is odd, put positive signs, +, between them all, and if n is even put negative
signs, −.

4. Then draw n − 1 copies of the binary rooted tree that represent mn−1 below the
above trees.

5. Put a copy of m2 on the leaves in the same way as we did for m1 on mn.

6. Put alternating signs, beginning with + between the different trees.

In the n = 4 example we drew above, we would get

− − − −

−+ +
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7. We continue this process downward, and draw n− 2 copies of mn−2, and put a copy
of m3 at each leaf. The signs are again all negative or all positive, depending on
weather n is even or odd. The dependence is the same as for the first one.

The general process for drawing the i’th step is drawing n− i copies of the rooted tree that
represent mn−i. Then put a copy of the rooted tree that represents mi+1 on each of of the
leaves in succession from left to right, never more than one per copy. If i + 1 = n then
we have a single tree m1mn, which gets a positive sign. If n is odd and i is even, then put
negative signs in front of all of them. If n and i are both even, then put a positive sign in
front of all of them. Finally, if i is odd, put alternating signs, starting at positive, in front of
them. When we have done this process for all i, where 0 ≤ i ≤ n, then we have an upside
down triangle. When we sum up all the different layers the Stasheff identity tells us we get
0.

For our n = 4 example the final triangle would look like

− − − −

−+ +

− −

+ = 0

Rooted trees for DG-algebras

Since we know that a DG-algebra can be though of as an A∞-algebra where mn = 0 for
all n ≥ 3, we can explicitly write out all the relations we have in a DG-algebra using these
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trees. The n = 1 relation is again given by

= 0

just as we saw earlier for a general A∞-algebra. The relation for n = 2, is given by

+ =

which we can recognize as the Leibniz rule. We don’t have the (−1)|x| sign here, as it
first arises when using the Koszul grading rule when applying these operations to actual
elements. The third and final relation is given by

− = 0

which we recognize as the associativity condition. Here none of the higher arity trees
appear, due to the fact that mi = 0 for all i ≥ 3.

4.2.3 Visualization of morphisms using rooted trees

We can also describe the relations of the A∞-morphisms as systems of rooted trees. Let
us assume we have a morphism of A∞-algebras f : A B. The idea is to compare what
happens with applying the internal maps mA

n before applying the fi’s versus first applying
the fi’s and then the internal maps mB

n . Let’s start with the former.

From the equation used to define the morphisms, we see that the left hand side is very
similar to the Stasheff identities. In fact, it is exactly what we get if we replace the operation
mA
r+1+t by fr+1+t, i.e. ∑

n=r+s+t

(−1)r+stfr+1+t(id
⊗r ⊗mA

s ⊗ id⊗t).

To differentiate the fi’s from the mn’s we use a white dots in the central vertex to represent
fi, and the same black dots as before to represent the mn’s, for example:

f2 m2
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We then do exactly the same procedure as we did when constructing the trees for the
different compositions of the mn’s. For n = 1 we get

f1

m1

For n = 2 we get three different parts. We now stop labeling the different parts, and instead
read them out from the trees themselves. We get

To figure out the signs we can do exactly the same as for the Stasheff identities. Put the
trees in a upside-down triangle and alternate placing constant signs and alternating signs.
For n = 2 we get the following

− −

+

Because of the nice aesthetics, and because we skipped straight to n = 4 for the Stasheff
identities, we include the system we get for n = 3:
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++ +

+ −

+

The latter part of the relation, i.e. the right hand side, seems a bit more difficult at fist
glance. Let’s remind ourselves of what it is.

n∑
k=1

∑
i1+···ik=n

(−1)umB
k (fi1 ⊗ fi2 ⊗ · · · ⊗ fik)

We see that we need to decompose n in many more ways than for the left hand side. For
any 0 ≤ k ≤ n we need figure out all possible ways of decomposing n into k pieces, where
all of them are positive. This requires a little detour into some combinatorics.

Combinatorics

What we need is to know how to decompose a number into a sum of smaller numbers.
Given an integer n we must know how many ways to partition n things into k groups,
which is done by the binomial coefficient

(
n
k

)
. In our double sum we sum over all the

different size k partitions for all 1 ≤ k ≤ n, hence for some n we need to know
(
n
k

)
for all

1 ≤ k ≤ n. A nice visual way to get this is by Pascals triangle. We have added the first
six rows of it below.

n = 1: 1
n = 2: 1 1
n = 3: 1 2 1
n = 4: 1 3 3 1
n = 5: 1 4 6 4 1
n = 6: 1 5 10 10 5 1
n = 7: 1 6 15 20 15 6 1
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It is usually labeled by saying the top row is the zeroth row, but we start with 1 instead, as
it fits our purpose better.

The idea is to put some fi at every leaf of the mB
j ’s in such a way that the total amount of

inputs is n. For example, if n = 3 we have the following four ways of doing this:

f1 f1 f1 f1 f1 f2f2 f3

mB
3 mB

2 mB
2 mB

1

We can see that these four trees are of three different types. The one on the left has mB
3 at

the bottom, the two in the middle havemB
2 and the rightmost one hasmB

1 . This corresponds
precisely to the third row in Pascal’s triangle, i.e. 1, 2, 1. To be more graphical, as with the
other side of the equation, we put these in a diamond formation, i.e.

f1 f1 f1

f1 f1 f2f2

f3

mB
3

mB
2 mB

2

mB
1

To see better the connection with Pascals triangle we show the whole diamond for n = 4
as well, but now without the labels, as we can now easily read the trees themselves.
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Here we see that we have four different types, separated by which type of mB
n they have at

the bottom. These four type we have put in four rows, and the numbers of trees in each
row follow the fourth row in Pascals triangle, i.e. 1,3,3,1.

Unfortunately, the signs are a bit harder to figure out on the right hand side. This is due to
the complexity of the sign (−1)u appearing in the formula for the A∞-morphism relations.

Recall that it is given by u =
k−1∑
t=1

t(ik−t − 1). Calculating this is not very difficult, but

lets make it even simpler and more understandable. Given a length k decomposition of
n, i.e. i1 + · · · + ik = n we call (i1, i2, . . . , ik) its decomposition vector. The sign u is
then given by taking the decomposition vector and subtracting the constant 1, length k,
vector (1, 1, . . . , 1), and then taking the dot product with the length k decreasing vector
(k − 1, k − 2, . . . , 1, 0). Doing this is just a reformulation of the sum given above.

What we can say for sure is that the top and bottom tree will always have a positive
sign. Given a tree we can read out its associated decomposition of n by writing down the
different i’s that appear in fi on each leaf from left to right. For example on the tree

f1f2

mB
3

f2

the decomposition is 2 + 1 + 2 = 5, which we can write as a decomposition vector by
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(2, 1, 2). Now, take the vector (2, 1, 2) − (1, 1, 1) = (1, 0, 1) and take the dot product
with a vector (k, k − 1, . . . , 1, 0), in this example the vector (2, 1, 0), which gives us
(1, 0, 1) · (2, 1, 0) = 2 + 0 + 0 = 2. This constant we get out is our u, and hence the sign
of the above tree is (−1)u = (−1)2 = 1, i.e. a positive sign.

If we again look at the above diamond of four trees, we can easily calculate the signs of the
two middle trees. They have decomposition vectors (2, 1) and (1, 2) respectively, hence
we get

((2, 1)− (1, 1)) · (1, 0) = 1

and

((1, 2)− (1, 1)) · (1, 0) = 0

as our signs. The full diamond—for n = 3—with signs is then

f1

mB
3

f1 f1 f2f2

f3

mB
2 mB

2

mB
1

f1 f1

+

+

+−

We have now presented both sides of the equation for n = 3, so a full picture is in order.
This is the full n = 3 relation of an A∞-morphism.
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+

+

+−

++ +

+ −

+

=

In the end the relation is quite intuitive. Compare the two shapes layer wise, and we see
what we might expect, at least up to some signs. Note that these relations do not hold layer
by layer, as this would imply the morphism is a strict A∞-morphism.

We have also seen most of the parts of the full relation for n = 4, so lets see it in its
glorious entirety:
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Rooted trees for DG-morphisms

As we did for the relations describing a DG-algebra, we now present the full relations
describing a DG-morphism. Let A and B be two DG-algebras. We think of these as
A∞-algebras by letting mi = 0 for i ≥ 3. A map f : A −→ B can then be considered to
be a morphism of A∞-algebras, f ′ = {fi} by letting f1 = f and fi = 0 for all i ≥ 2. Then
we get that the relations describing a DG-morphism are the following:

=
dA

dBf

f

and

=

All other relations will include some copy of mi for i ≥ 3 or fj for j ≥ 2. Hence these
two relations are the only two ones we get for a DG-morphism. We also have some degree
preservation requirements, but these hold because f = f1 is a degree 0 map, meaning it
preserves homogeneous degrees of elements.

4.3 Kadeishvili’s theorem

One of the main reasons we introduce these A∞-algebras, instead of just working directly
with DG-algebras, is because of a theorem proved by Kadeishvili in [Kad80]. We have
seen that not all DG-algebras have a quasi-isomorphism to their cohomology algebra—as
not all DG-algebras are formal—but this theorem will allow us to sort of approximate the
existence of such a morphism. The caveat is that DG-algebras no longer suffice, and we
must venture into the world of A∞-algebras. The idea is to build an A∞-structure on the
cohomology algebra of a DG-algebra, such that instead of a DG-quasi-isomorphism we
have an A∞-quasi-isomorphism connecting them.

We then want to study these more complicated structures and morphisms in order to figure
out if they collapse to our more simple DG-algebra world in certain situations. If we can
do and understand this, it will give us a new tool to figure out if a DG-algebra is formal. So
far our tool for checking formality of a DG-algebra—namely the Massey products—have
been a sort of non-criteria. By this we means that we can use them to easily spot whether a
DG-algebra is non-formal, but we can not use them to check formality. This more general
theory will allow us to create a more “perfect” version of Massey products in order to
actually prove that a class of DG-algebras are formal.

Definition 4.9. (Minimal A∞-algebra). We say an A∞-algebra (A,m) is minimal if we
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have m1 = 0.

Theorem 4.10. (Kadeishvili’s theorem). Let (A, d) be a DG-algebra. Then there exists a
minimalA∞-algebra structure on its cohomology algebraH(A), and a quasi-isomorphism
of A∞-algebras H(A) A.

Before we look into the proof, we discuss the strategy and some implications it would have.
The theorem is important for us, as—as we have seen—not all DG-algebras have a quasi-
isomorphism to their cohomology, or even a zig-zag of quasi-isomorphisms. We have also
seen that taking the cohomology of a DG-algebra kills the homotopical information. We
saw this implicitly through the Massey products all being vanishing in a DG-algebra with
trivial differential. This theorem would allow us to kill off the homotopy information—by
taking cohomology—but still preserve the quasi-isomorphism type. We will see why this
is important for us in the next section, when we look at formality through the lens of
Kadeishvilis theorem.

For the strategy, we have already seen—at least the beginnings of—how to construct an
A∞-structure from a deformation retraction between a DG-algebra and a chain complex.
This is also the idea for this theorem. We construct a particular deformation retract, and
use the earlier discussed procedure to produce both the A∞-structure and the A∞-quasi-
isomorphism that we want. We remind the reader that we are working over a field k, so
the graded components of the objects are vector spaces, which makes it easy to construct
compliments and direct sums. The following construction is due to Lu, Palmieri, Wu
and Zhang in [LPWZ09] as a special case of the more general approach by Merkulov in
[Mer99].

The deformation retraction (A,H(A), i, p, h) we are going to use is the following. Decom-
pose A into Z ⊕H ⊕ L, where Z = Kerd, H ∼= H(A) and L ∼= B[+1]. Because of this
particular H , we use this in our deformation retraction, instead of H(A). The map i is the
inclusion of H into A, p the projection and h the map given by the matrix

hn =

0 0 (dn−1LB )−1

0 0 0
0 0 0

 ,
where dLB comes from the description of d as a matrix as follows:

dn =

dnBB dnBH dnBL
dnHB dnHH dnHL
dnLB dnLH dnLL

 : Bn ⊕Hn ⊕ Ln −→ Bn+1 ⊕Hn+1 ⊕ Ln+1

A more detailed construction—and the proof of this actually being a deformation retraction—
is moved to appendix A.

Note that this deformation retraction is not unique, as it requires making choices for the
subspaces Hn and Ln. Thus we can get many different such deformation retractions by
altering these choices. In the theorem we want to prove, namely that such a deformation
retraction gives us an A∞-structure on the cohomology algebra, we will get different, albeit
A∞-quasi-isomorphic A∞-structures when we alter the choices of the subspaces. Since
we are only interested in an A∞-structure on H(A) such that it is A∞-quasi-isomorphic
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to A, these choices of subspaces are not important—as we have our desired A∞-quasi-
isomorphism regardless. This is because we are not really interested in the structure itself,
merely its existence, and its relation to formality.

We now restate Kadeishvili’s theorem in this new situation we have created.

Theorem 4.11. (Kadeishvili’s theorem). Let (A,m, d) be a DG-algebra, H(A) its
cohomology algebra and (A,H(A), p, i, h) be the deformation retraction described above.
Then there is a minimal A∞-structure {mn} on H(A) and an A∞-quasi-isomorphism
I : H(A) A that extends i.

Proof. We let m1 = 0, I1 = i and hλ1 = −idA. Then for n ≥ 2 we recursively define

λn =
n−1∑
k=1

(−1)k+1m(hλk ⊗ hλn−k)

Then our A∞-structure and A∞-quasi-isomorphism is given by

mn = p ◦ λn
In = h ◦ λn

We call such a minimal A∞-structure on the cohomology algebra H(A)—coming from a
deformation retraction of the type above—a Merkulov model of A.

We will not prove that these do in fact satisfy the Stasheff identities, but we refer the reader
to [Kad80] for the original, and much more general proof. We do however write out what
happens for some low n.

For n = 2 we get

m2 = p ◦ λ2 = p(m(hλ1)⊗ hλ1) = p(m(−idA ⊗−idA) = pm

which is just the induced multiplication from A on H(A). Earlier when we looked at
transferring algebraic structures, we also used the map i to describe the induced operation,
but here we omit it, as we think of H i as a subspace of Ai. For n = 3 we get

m3 = p ◦ λ3
= p(m(hλ1 ⊗ hλ2)−m(hλ2 ⊗ hλ1))
= p(m((−idA)⊗ hm)−m(hm⊗ (−idA)))

= p(m(hm⊗ idA)−m(idA ⊗ hm))

which we should recognize as the same m3 we constructed from the general deformation
retraction we studied earlier in chapter 3, namely the associating homotopy between
m2(id⊗m2) and m2(m2 ⊗ id). Since m2 is just the induced product on H , we actually
know that it is associative, i.e. m2(id ⊗m2) −m2(m2 ⊗ id) = 0, as it is isomorphic to
H(A), which is an associative DG-algebra. If we look at the n = 3 equation defining an
A∞-algebra we have

m2(id⊗m2)−m2(m2⊗ id) = m1m3 +m3(m1⊗ id⊗ id+ id⊗m1⊗ id+ id⊗ id⊗m1),
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but, as we have m1 = 0, we are totally fine with having an associative product in this
scenario! This means that we have ∂m3 = 0, i.e. that it is a cocycle in Hom(A⊗3, A).
This, however, does not mean it zero itself.

We mentioned earlier that an alternative way of describing the Stasheff identities was given
by

∂mn = −
∑

r+s+t=n

(−1)r+stmr+s+t(id
⊗r ⊗ms ⊗ id⊗t)

where r, s, t ≥ 1 and ∂mn = m1mn − (−1)|mn|mn

(∑n−1
r=0 (id⊗r ⊗m1 ⊗ id⊗n−r−1)

)
.

Since all of the terms in ∂mn contain a copy of m1, we know that the entire sum will be
zero, i.e. ∂mn = 0, meaning that all the higher operations are cocycles in their respective
cochain complexes Hom(A⊗n, A). Hence the Stasheff identities for the A∞-structure we
get from Kadeishvili’s theorem are∑

r+s+t=n

(−1)r+stmr+s+t(id
⊗r ⊗ms ⊗ id⊗t) = 0

for r, s, t ≥ 1. We earlier formed an upside down triangle of trees representing these
Stasheff identities. If we remove the top and bottom row of this triangle we are left with
the relation just described. Notice that this new truncated upside down triangle contains(

n∑
i=1

i

)
− n− 1 =

(
n−1∑
i=1

i

)
− 1

trees, i.e. one less than the n− 1’st triangle number. This is not by coincidence equal to
the number of facets in K(n+ 1), the n+ 1’st Stasheff associahedron.

Remark 4.12. There are several generalizations of Kadeishvili’s theorem. Kadeishvili’s
original proof holds over general commutative rings, if one requires that the cohomology
algebra H(A) is a projective module over A. This result was extended in [Sag10] to hold
for any commutative ring, without any assumptions for H(A)—if one instead of a minimal
A∞-algebra uses so-called minimal derived A∞-algebra. The theorem was later shown to
hold if A is an A∞-algebra instead of just a DG-algebra. See [Mar06] for explicit formulas
and proofs. This means that the transfer of anA∞-algebra through a deformation retraction,
is again an A∞-algebra.

The results have also been generalized to the theory of∞-operads, where such a transfer is
possible for several other types of algebras, notably DG-Lie-algebras. Most of these results
are contained in [LV12]. Note that in these other settings the theorem is often referred to
as “the homotopy transfer theorem” or the “minimal models theorem”.

4.3.1 Connection to formality

Now that we have this more general approach to studying the relationship between a
DG-algebra and its cohomology algebra, we need to know how it relates back to our
original interests—namely formality. Recall that by theorem 1.45, A being a formal DG-
algebra means that we have a span of DG-quasi-isomorphisms between A and H(A), i.e.
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H(A)←−M −→ A. By Kadeishvili’s theorem we now have more than a DG-structure
on H(A), as we have in fact an A∞-structure {mn}, but we also have a direct A∞-quasi-
isomorphism q : H(A)  A. We know that if mn = 0 for n ≥ 3 then H(A) is in fact a
DG-algebra, so we can think of these possibly non-trivial mn’s as measuring how far away
A is from being formal. This is of course informal, but it will soon turn out to also be a
precise statement.

One of the other main reasons for passing to A∞-algebras is that their homotopy theory is
better behaved than for DG-algebras. We have in fact already seen this, as a deformation
retraction of a DG-algebra is not necessarily a DG-algebra, but by the generalizaton of
Kadeishvili’s theorem we mentioned, this property in fact holds for A∞-algebras. This
means that being an A∞-algebra is a “homotopy stable” property.

We have also seen that DG-quasi-isomorphisms are not the nicest ones, as they are not
homotopy invertible. This is because not all isomorphisms in the homotopy category
hoDGAk comes from a DG-quasi-isomorphism in DGAk. This resulted is us having to
use zig-zags and spans of DG-quasi-isomorphisms instead of just direct ones. This property
is luckily also fixed by passing to A∞-algebras, meaning that all A∞-quasi-isomorphisms
are A∞-homotopy equivalences.

Definition 4.13. (A∞-homotopy). Let (A,mA) and (B,mB) be A∞-algebras. Two
A∞-morphisms {fn}, {gn} between them are called homotopic if there exists a family
of graded homogeneous multilinear degree −1 maps hn : A⊗n −→ B, such that the
difference gn − fn is equal to∑
i1+···ir=n

mB
r+1+t(gi1⊗· · ·⊗git⊗hs⊗fit+1⊗· · ·⊗fir)+

∑
r+s+t=n

hr+1+t(id
⊗r⊗mA

s ⊗id⊗t)

where r, t ≥ 0, n, s ≥ 1 as usual.

Proposition 4.14. Let (A,mA) and (B,mB) be A∞-algebras and q : A  B an A∞-
quasi-isomorphism. Then there exists an A∞-quasi-isomorphism q′ : B  A that is a
A∞-homotopy inverse of f . This means that the class of A∞-quasi-isomorphisms is the
same as the class of A∞-homotopy equivalences.

We wont prove this result, as the proof uses some machinery that we will not cover in this
thesis. More precisely one at least needs the bar and cobar constructions for A∞-algebras.
The reader interested in the proof is referred to [LH03, Corollary 1.3.1.3].

The next step is to figure out how an A∞-quasi-isomorphism relates to a DG-quasi-
isomorphism. This is done through the following result.

Corollary 4.15. Two DG-algebras (A, dA) and (B, dB) is connected by a zig-zag of DG-
quasi-isomorphisms

A
∼←− • ∼−→ · · · ∼←− • ∼−→ B,

i.e. they are quasi-isomorphic, if and only if there is an A∞-quasi-isomorphism A B.

Proof. Assume we have a zig-zag of DG-quasi-isomorphisms between A and B. Recall
that by theorem 1.45 we can reduce the zig-zag to a single span of DG-quasi-isomorphisms
A

q←− C
p−→ B. We now interpret A, B and C as A∞-algebras, and q, p as morphisms of

A∞ algebras. This is the same standard procedure we have described before, i.e. letting
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mA
n = mB

n = mC
n = 0 for all n ≥ 3 and defining {qn} by q1 = q and qm = 0 for

m ≥ 2 and similarly for p. By abuse of notation we denote these A∞-morphisms again
by q and p. Notice that since q and p are DG-quasi-isomorphisms, then q and p are
A∞-quasi-isomorphisms as well. We then have a span

A C B

of A∞-quasi-isomorphisms. By proposition 4.14 we know these are invertible up to
homotopy, hence we have an A∞-quasi-isomorphism q′ : A C such that q ◦ q′ ∼ idA
and q′ ◦ q ∼ idC .

Since composition of two DG-quasi-isomorphisms is again a DG-quasi-isomorphism we
know that this is the case for composition of A∞-quasi-isomorphisms as well, as it only
depends on the arity 1 map. Thus q′ ◦ p is an A∞-quasi-isomorphism from A to B. Notice
that this can no longer have (q′ ◦ p)m = 0 for m ≥ 2 in general, as that would contradict
DG-quasi-isomorphism being homotopy invertible.

The other direction also holds, but to construct the zig-zag from a A∞-quasi-isomorphism
we again need the previously mentioned bar and cobar construction. To outline the idea,
we can produce a DG-algebra U(A) through the bar and cobar construction from an
A∞-algebra A. This can be though of as an “anti Merkulov model”. This DG-algebra
is universal, in the sense that any A∞-morphism from A to a DG-algebra B factorizes
uniquely through U(A). Moreover U(A) is A∞-quasi-isomorphic to A. It can then be
shown that if A is a DG-algebra, then the map U(A) −→ A is a DG-quasi-isomorphism.

In our case we have two DG-algebras A and B and a A∞-quasi-isomorphism q : A B.
We then get a zig-zag

A
qA←− U(A)

U(q)−→ U(B)
qB−→ B

where U(q) is a DG-quasi-isomorphism when q is an A∞-quasi-isomorphism. Hence we
have our wanted zig-zag of DG-quasi-isomorphisms.

This tells us that A∞-algebras are a generalization of DG-algebras, but not a too general
one. In particular, we get that the homotopy category of DG-algebras is equivalent to the
homotopy category of A∞-algebras, as inverting quasi-isomorphisms produces the same
isomorphism classes of objects by the above result, i.e.

HoDGAk ' Ho∞Algk

Note that we have not discussed—an will not discuss—the model category of A∞-algebras.

As we have previously described formal DG-algebras in terms of the homotopy cate-
gory HoDGAk, we can now characterize them by using A∞-algebras and A∞-quasi-
isomorphisms instead.

Corollary 4.16. Let (A, dA) be a DG-algebra and H(A) its cohomology algebra, treated
as a DG-algebra with trivial differential. Then A is formal if and only if there is an
A∞-quasi-isomorphism q : H(A) A.

Notice here that this is not the same statement as Kadeishvili’s theorem, as here H(A) is
purely a DG-algebra, and not endowed with an A∞-structure. We can however restate the
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corollary in more similar terms to Kadeishvili’s theorem, then saying that a DG-algebra is
formal if and only if its Merkulov model is again a DG-algebra, i.e. it has mi = 0 for all
i ≥ 3.

4.4 Uniform vanishing

If we take a DG-algebra A, we know that it has a Merkulov model H(A)  A. Earlier
we interpreted the map m3 as an associating homotopy, but now we have m1 = 0, as
H(A) is minimal, so this interpretation is no longer as good. This makes the induced
product m2 an associative product, so how do we now interpret m3? and mn in general? In
chapter 2 we introduced some higher arity maps, H(A)⊗n −→ H(A)—namely the Massey
products. It would be really nice if we could interpret mn as these already established
products. This interpretation turns out to be faulty—explained a bit later—but as we are
interested in formality, we need these to vanish anyway, so can we say something about
this interpretation in the case where all the Massey products are vanishing? or when all the
higher operations in the Merkulov model are trivial?

In [DGMS75] it is stated that formality is implied if the Massey products vanish “uni-
formly”. It is mentioned as a remark to [DGMS75, Theorem 4.1.], where they prove that a
DG-algebra admits a certain decomposition, if and only if it is formal. The authors say this
is stronger that the Massey products vanishing normally.

This notion of uniform vanishing is interesting, so we try to look into what this could mean
for the A∞-structure on H(A) of a DG-algebra A. We start by examining the connection
between the higher products on H(A) and Massey products.

Recall from Kadeishvili’s theorem (theorem 4.11) that the cohomology algebra of a DG-
algebra has a natural A∞-algebra structure which we call its Merkulov model if it is
induced by a certain deformation retraction.

Lemma 4.17. Let (A,m) be a DG-algebra and (H(A), {mn}) be a Merkulov model. Let
further x1, x2, x3 ∈ H(A) such that m2(x1⊗ x2) = 0 = m2(x2⊗ x3), then m3(x1⊗ x2⊗
x3) ∈ 〈x1, x2, x3〉, the Massey 3-product of x1, x2 and x3.

Proof. As m2(x1 ⊗ x2) = 0 we know that there exists some a0,2 such that d(a0,2) =
m(a0,1, a1,2) where ai−1,i is a cocycle representing xi. We choose this cocycle with some
care by letting a0,2 = h(m(a0,1, a1,2)). Almost in the same way, we choose for m2(x2, x3)
the cocycle a1,3 = h(m(a1,2, a2,3)) In this way we have

m3(x1 ⊗ x2 ⊗ x3) = p(m(hm(i, i), i)−m(i, hm(i, i))(x1, x2, x3)

= p(m(hm(a0,1, a1,2), a2,3)− (−1)|x1|+1m(a0,1, hm(a1,2, a2,3))

= p(m(a0,2, a2,3)−m(a0,1, a1,3))

which we see is exactly the cohomology class of a representative of the Massey 3-product
of x1, x2, x3. Note that we have used the Koszul grading rule to get the correct signs.

This looks promising. It looks like some type of similarity between DG-algebras with
Massey products and A∞-structure on the cohomology algebra. This also provides us with
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examples of A∞-algebras that are not just DG-algebras. We can for example consider
the DG-algebra k[x1, x2, x3, a, b] that we had in chapter 2. If we define m3(x1, x2, x3) =
[ax1 + x3b], and the other combinations to be trivial, then we have an A∞-algebra.

It was long thought to be a folklore truth that these higher order products in the A∞-
structure in fact gave representatives for the Massey products. This was then proven in
[LPWZ09], but later showed to have a gap in its argument in [BMFM20]. There are certain
ways to make the higher products give representatives for the Massey products, but one
requires stronger assumptions on the defining systems, which does not hold in general.
These stronger assumptions are also developed in [BMFM20].

Remark 4.18. The observant reader might suspect something weird going on here. We
earlier remarked that when we have two DG-algebras A,B and an A∞-quasi-isomorphism
q between them, then we have an informal equality between the Massey products, i.e

q∗(〈x1, . . . , xn〉) = 〈q∗(x1), . . . , q∗(xn)〉.

But now we have an A∞-quasi-isomorhism H(A)  A, and we have already proved
that H(A) only has vanishing Massey products. So does this mean that all DG-algebras
have only vanishing Massey products? No. When H(A) is not purely a DG-algebra, i.e.
there is some k ≥ 3 such that mk 6= 0, then we need to take some more information
into account in order to have such a correlation. We could do this by introducing Massey
products on A∞-algebras, which are more general than Massey products for DG-algebras.
These were introduced by Stasheff in [Sta70], and later used in [LW09] to prove that the
higher products on H(A) do in fact form representatives of the Massey products on an
A∞-algebra A.

As mentioned, we do not have a correspondence between the higher products and the
Massey products, but we can still try to connect these higher products to formality. We
actually have the following result—stating in a certain sense that if the higher products
on the Merkulov model are uniformely trivial—then the DG-algebra is formal. This also
provides us with the first general answer to our central question.

Theorem 4.19. Let (A, dA) be a DG-algebra and let (H(A),mn) be it’s Merkulov model.
If all the higher products are trivial, i.e. mi = 0 for i ≥ 3, then A is formal.

Proof. As H(A) is a Merkulov model, there is a quasi isomorphism of A∞-algebras
q : H(A) A. Since all the higher products vanish we know that H(A) is a DG-algebra.
This means that A is formal by theorem 4.16.

This resolves Theorem C. from the motivation of this chapter, as well as Theorem 1.
from the introduction (section 0.5). As mentioned above, we can also finally answer the
central question of the thesis.

The central question: Given a DG-algebra A, when do I know that A is formal?

Answer: When the induced A∞-structure {mi} on H(A) has mi = 0 for n ≥ 3, i.e. it has
a Merkulov model which is a DG-algebra.

The above result does not really rely on which A∞-structure we have on H(A). It can be
shown that the least integer k such that mk 6= 0 is an invariant of all A∞-structures on

79



CHAPTER 4. A∞-ALGEBRAS

H(A) that comes from a deformation retraction. This means that the above results holds
regardless of which such A∞-structure we might have. This result can also be proven using
Hochschild cohomology, see for example [BB20, Theorem 3.3.].

A corollary to Massey product detection

Even though we have answered the central question, it is important to explore what happens
in the near vicinity of the solution. We can for example wonder what happens if not all
of the higher products are trivial, but only some of them are. This situation is covered in
[BMFM20] by the following two results.

Theorem 4.20. (Theorem 2.1. in [BMFM20]). Let A be a DG-algebra and x ∈
〈x1, . . . , xn〉 with n ≥ 3. Then for any A∞ structure on H(A) we have

εmn(x1, . . . , xn) = x+ Γ

where Γ ∈∑n−1
j=1 Im(mj) and ε = (−1)

∑n−1
j=1 (n−j)|xj |.

Corollary 4.21. (Corollary 2.2. in [BMFM20]). Let A be a DG-algebra and H(A) its
Merkulov model. If we have mi = 0 for all 1 ≤ i ≤ n − 1, then for any cohomology
classes x1, . . . , xn ∈ H(A) the Massey product 〈x1, . . . , xn〉 = {x} consists of a single
class. Furthermore, εmn(x1, . . . , xn) = x where ε = (−1)

∑n−1
j=1 (n−j)|xj |.

The two results above give us a way to detect Massey products using A∞-algebras. We can
use this, in conjunction with the earlier “uniform vanishing” theory to look at formality in
a specific scenario.

Recall that we have earlier seen that formal DG-algebras can admit no non-vanishing
Massey products, and that the converse might not be true. This means that having vanishing
Massey n-products for all n is not sufficient to conclude that the DG-algebra is formal.
The following result however allows us to rectify this in a restricted setting.

As far as the author knows, this result is original to this thesis. One of the authors of
[BMFM20] have confirmed that the result was known to them, but was not published
due to the lack of interesting examples and applications. As we think we have found a
somewhat interesting example—covered in the next chapter—we feature this theorem as
the main attraction of the thesis.

Theorem 4.22. Let A be a DG-algebra and H(A) its Merkulov model. If the induced
product on H(A) is trivial and the Massey n-products vanish for all n ≥ 3, then A is
formal.

Proof. We assume all Massey products vanish, i.e. that 0 ∈ 〈x1, . . . , xn〉 for all n and all
choices of xi ∈ H(A). Let mi denote the higher products in H(A). We claim that mi = 0
for all i, and hence that A is formal by theorem 4.19.

We prove this claim by induction. Since m1 = 0 and m2 = 0 by assumption, we use
these as our base case. Notice that if the induction holds, then we get that all the Massey
products of all orders are defined, as well as them all being uniquely equal to the zero class.
As m2 = 0 we get the first step by realizing that all Massey 3-products must be defined.
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Assume now that mk = 0 for 1 ≤ k ≤ n− 1. By theorem 4.21 we know that 〈x1, . . . , xn〉
consists of a unique element for all choices of classes x1, . . . , xn. This element must by
assumption be the zero class, as we assumed all Massey products to be vanishing. This
class is recovered up to a sign by mn, which means mn(x1, . . . , xn) = 0 for all choices of
x1, . . . , xn. Hence mn = 0 and we are done.

This resolves Theorem D. from the motivation in this chapter, and Theorem 2. from the
introduction of the thesis.

It is tempting to think that having trivial product in cohomology makes every attempt
to build and produce a Massey product impossible. This feels true intuitively, but there
are examples of this not being the case. A specific example is the free loop space of an
even-dimensional sphere. Its cohomology algebra has trivial product, and it is shown in
[Bas15, Theorem 3.5] to have non-zero Massey products. Hence it can’t be formal.

In chapter 2 we also looked at the Borromean rings, which also has a trivial product in its
reduced cohomology algebra (we cover reduced cohomology in the next chapter), as the
product is a multiple of the linking number of the different circles. But, as we argued then,
there still exists non-trivial Massey products detecting the higher linking, meaning it can’t
be formal.
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5.1 Motivation

As we have just developed a new way to test formality, it would be nice to test it out on
some examples. Our gut feeling is that this criteria of having trivial induced product in
cohomology is pretty strong. If we are still hoping for results applicable to topological
spaces this is especially troubling. Say we have a path-connected topological space X—
then it has zeroth cohomology H0(X; k) ∼= k. If we were to have trivial induced product,
we would have a · [x] = 0 for any a ∈ k and x ∈ C(X), which is only true for [x] = 0. So
this requirement seems to collapse to requiring H i(X; k) = 0 for i > 0, which is really
limiting.

One solution to this is looking at reduced cohomology instead of “normal” unreduced
cohomology.

Definition 5.1. (Reduced cohomology). Let X be a topological space and C∗(X; k) its
cochain complex (treated here as an unbounded DG-algebra):

· · · −→ 0 −→ C0(X) −→ C1(X) −→ · · · −→ Cn(X) −→ · · ·

We define its augmented cochain DG-algebra, denoted C̃∗(X; k) by adding a copy of the
ground field k injectively farthest to the left, i.e.

· · · −→ 0 −→ k
ε−→ C0(X) −→ C1(X) −→ · · · −→ Cn(X) −→ · · ·

The cohomology algebra of the augmented cochain complex is called the reduced coho-
mology algebra of X and is denoted H̃∗(X; k).

If the space X is connected, then C0(X; k) ∼= k, meaning that H̃0(X; k) = 0. This is the
important part that will allow us to use the previous results on a topological example, as
we have completely removed the problem described above.

Remark 5.2. This rest of this chapter uses some theory that we will only cover on the
absolute surface. This is because the theory is outside the scope, and general vicinity, of
this thesis. Thus there are some results we only use, and not prove. References to the
results and their proofs are of course provided.

5.2 Lusternik-Schnirelmann category 1 spaces

When we do this reduction to reduced cohomology there is a certain class of topological
spaces that have exactly the property we desire—that the product in cohomology is trivial.
To get to this class we first need to look at a certain homotopy invariant of topological
spaces, namely the Lusternik-Schnirelmann category.

This invariant was originally developed in [LS34] as an invariant on manifolds to be a
lower bound for the number of critical points any real valued function on it could have. It
has since become a useful—but very difficult to calculate—invariant of topological spaces.

Definition 5.3. (Lusternik-Scnirelmann category). Let X be a CW complex. The
Lusternik-Schnirelmann category of X , denoted catLS(X) is the least integer n, such
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that there is a cover of X by n + 1 subsets
⋃n
i=1 Ui that are contractible in X . Being

contractible in X means that the inclusion into X is null-homotopic.

Example 5.4. Let X be a topological space. The suspension of X is defined to be the
topological space

ΣX = X × I/ ∼

where ∼ is the equivalence relation generated by (x, 1) ∼ (y, 1) and (x, 0) ∼ (y, 0) for all
x, y ∈ X . This can be though of as stretching X out into a cylinder, and then collapsing
the endpoints into single points. An often used visualization is the following, where we
think of X as suspended between the two points—hence the name.

X

ΣX

We see that the suspension is covered by two contractible cones, one above; one below.
Hence we get that the Lusternik-Schnirelmann category of any suspension is 1.

Example 5.5. Let X be a contractible topological space, then catLS(X) = 0. This holds
in the other direction as well, i.e. if catLS(X) = 0, then X is contractible.

Recall that the cup length of a topological space X is the largest integer n such that a
chain [x1] ∪ · · · ∪ [xn] of cohomology classes with deg|xi| ≥ 1 is non-zero. We have the
following fundamental relation between the cup length and the Lusternik-Schnirelmann
category of X . The proof is referred to [CLOT03].

Lemma 5.6. Let X be a topological space. Then the cup length of X is a lower bound for
its Lusternik-Schnirelmann category.

This means that a topological space X such that catLS(X) = 1 has our desired property
that the cup product in the reduced cohomology ring of X is trivial. This is because the
cup length has to be equal or lower than the Lusternik-Schnirelmann category, i.e. less
than or equal to 1. By Kadeishvili’s theorem (theorem 4.11) we get an A∞-structure {mi}
on H∗(X) where m1 = 0. As the operation m2 in the A∞-structure is induced by the
cup product we also have m2 = 0. Hence we know by 4.22 that the Massey products are

85



CHAPTER 5. LUSTERNIK-SCHNIRELMANN CATEGORY

the only obstructions to formality. But, due to the following result by Rudyak in [Rud99,
Lemma 4.6], there are actually none of these obstructions.

Theorem 5.7. Let X be a CW complex with catLS(X) ≤ 1 and let the Massey n-product
〈x1, . . . , xn〉 be defined with xi ∈ H̃∗(X). Then 0 ∈ 〈x1, . . . , xn〉.

Thus we can conclude with the following theorem.

Theorem 5.8. Let X be a topological space such that catLS(X) ≤ 1. Then C̃∗(X; k) is a
formal DG-algebra.

Proof. By having catLS(X) ≤ 1 we know that the cup length in H̃∗(X) is 0 or 1, meaning
that the cup product is trivial. By theorem 5.7 we know that all Massey products are
vanishing, which by theorem 4.22 means that C̃∗(X) is formal.

Earlier we defined what we mean by a topological space being formal, and unfortunately
for us, this requires the normal cochain algebra C∗(X) to be formal, not just the augmented
one. We want to use the results above to conclude that every topological space X with
catLS(X) ≤ 1 is a formal space, but we have to introduce some terminology and prove
some implications to be able to conclude with this.

In order to conclude with some formality statement for a space with Lusternik-Schnirelmann
category 1, we see that we need to define a new concept of formality that relies of the
reduced cohomology ring—rather than the unreduced one. There are other versions of
formality out there in the literature, for example s-formality ([FM05]). The notion of
s-formality truncates the need to have an induced isomorphism in cohomology at position
s and upwards, so this theory operates sort of at the other side of the cochain complex than
we do.

Definition 5.9. (Reduced formal space). Let X be a topological space. We say X is
reduced formal if its augmented cochain algebra C̃∗(X) is a formal DG-algebra.

We have in fact just shown in theorem 5.8 that any space X such that catLS(X) ≤ 1 is a
reduced formal space. The natural question to ask is then: What is the relationship between
formality and reduced formality? It turns out—luckily for us—that reduced formality is
stronger than formality, due to the following result. This result is also original to this thesis.

Theorem 5.10. Let X be connected, reduced formal CW complex. Then X is formal.

Proof. As X is connected we know that H0(X) ∼= k and H̃0(X) = 0. Since it is reduced
formal we also know that there is a span of DG-quasi-isomorphisms H̃∗(X)←− B −→
C̃∗(X) for some DG-algebra B. In diagram form this looks like
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k C0(X) C1(X) C2(X)

B−1 B0 B1 B2

0 0 H1(X) H2(X)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

ε d0 d1

d−1B d0B d1B

0

q−1 q0

p0

q1

p1

q2

p2

By changing the diagram above slightly at the left-most side, we get the following new
diagram:

0 C0(X) C1(X) C2(X)

0 B0 ⊕B−1 B1 B2

0 k H1(X) H2(X)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

d0 d1

d0B d1B

0

[q0, 0]

[0, p0]

q1

p1

q2

p2

We see that this in fact gives a span of quasi-isomorphisms H∗(X)←− B′ −→ C∗(X),
meaning that X is formal.

This means that in order to prove that some space is formal, it is enough to prove reduced
formality. We can then finally conclude with the following statement.

Corollary 5.11. Let X be a CW complex with catLS(X) = 1. Then X is formal.

This result is certainly already known by specialists, but this is seems to be a new method
of proving it. It is known because one can show that any space X with catLS(X) = 1
is a H-cospace, or sometimes called co-H-space ([Hes07]). Then one can show that a
H-cospace is a wedge of copies of S1 and SiQ for some amount of i’s, as is done in [Hen83,
Theorem 3.]. One can also show that formality is preserved under the wedge product
([Hes07]), and since spheres are formal, we know that any H-cospace, and thus any space
X with catLS(X) ≤ 1 is a formal space. The special case of suspended spaces being
formal, was also proven in [FHT01, Proposition 13.9.].

87



CHAPTER 5. LUSTERNIK-SCHNIRELMANN CATEGORY

5.3 Summary and last thoughts

So, what have we actually accomplished in this thesis? We have covered a lot of material,
but do we leave off with some new insight, or at least a deeper understanding? Did we give
a satisfactory answer to the central question?

We set out on a journey to uncover—and understand—a special relationship between a
DG-algebra and its cohomology. This special relationship, formality, told us exactly when
the DG-algebra, and its cohomology, contained the same homotopical information. Along
the way we discovered potential information in the DG-algebra, that its cohomology could
never get a hold of. This information was stored in the Massey products, and they gave
us obstructions to having formality. These Massey products were in general not the only
possible obstructions, hence we could not answer the central question by simply checking
all possible Massey products.

We were then facing a cross-road. Do we try something else? Or do we continue pursuing
along a similar path? We chose the latter, which led us to develop A∞-algebras. Using
this theory we were able to answer the central question: A DG-algebra is formal, if and
only if its Merkulov model is again a DG-algebra. This Merkulov model is explicitly
and inductively constructed, so we do in theory have an algorithm to confirm weather or
not a given DG-algebra is formal.

Using the theory we developed—in conjunction with some recent results from the literature—
we were able to look back at the failure of the Massey products to perfectly detect formality,
and discover a situation where they in fact do just that. This allowed us to consider a
certain class of topological spaces—the spaces with Lusternik-Schnirelmann category
1—and prove that they are all formal. This method of coming to that conclusion seems to
be a new method, so some new insights have in fact been made. We don’t think this thesis
developed any more deep insight into the theory, but we hope that we were able to tell a
relatively cohesive story—a story about a special relationship between a DG-algebra, and
its cohomology.

Still, there are some insights we would like to have seen, and some results that would
have been nice to uncover. The precise relationship between Massey products and the
higher products in the Merkulov model are seemingly still a mystery. They are certainly
related, and this relationship gets more illuminated and refined over time. It would be
interesting to look more deeply into Massey products for A∞-algebras, as they have a nicer
correspondence with the higher operations. Understanding why this relationship works,
and how to use it for checking formality would have been interesting to understand.

Also, our result, stating that Massey products are the only obstructions to formality—given
that the induced product is trivial—means that the vanishing Massey products neatly
join together to form a “trivial” A∞-structure on the cohomology algebra. It would also
be interesting to develop a theory for seeing when such an assembly can be made for
non-trivial Massey products. Are there certain cases when a given A∞-structure on the
cohomology algebra can be constructed out of representatives for the Massey products in
some interesting ways? We unfortunately don’t have the time to research these questions,
but they would have been interesting to pursue, given a couple more months on the project.
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Proof of homotopy

Theorem 1.1. Let (A, V, i, p, h) be a deformation retraction, where A is a DG-algebra
and V is a chain complex. Let m2 be the induced transferred product on V . Then the
operation m3, as described in 3.3, is a homotopy between m2(id⊗m2) and m2(m2⊗ id).

We have not come upon a fully written out detailed proof, so to have at least one existing
complete calculation in the world, we have maybe been overly thorough. It is not pretty,
and it is just tedious straight forward calculation, but in our opinion it is nice to have, as it
gives some insight into how these homotopies between operations work.

We denote dA by just d, and id by 1 in order to make it more distinguishable from d and
eventual copies of i ◦ d. We also skip writing ◦, and denote it instead just by concatenation,
so d ◦m3 = dm3. Since m3 consists of i, p, which are both of degree 0, and h, which has
degree −1, we have |m3| = −1. The boundary of m3 is then

∂m3 = dm3 +m3(d, 1, 1) +m3(1, d, 1) +m3(1, 1, d)

= dm3 + p((−1)|1||d|m(hm(id⊗ i)⊗ i)− (−1)|hm||d|m(id⊗ hm(i⊗ i)))
+ p((−1)|1||1|m(hm(i⊗ id)⊗ i)− (−1)|hm||1|m(i⊗ hm(id⊗ i)))
+ p((−1)|1||1|m(hm(i⊗ i)⊗ id)− (−1)|hm||1|m(i⊗ hm(i⊗ id)))

where the signs appear due to the Koszul grading rule. As the identity morphism has
degree 0 most of these vanish, except for (−1)|hm||d|. The composite map hm has degree
|h|+|m| = −1+0 = −1 and the differential d has degree 1 as we work with cohomological
grading. Since i is a morphism of chain complexes it commutes with the differentials,
hence we can put all the i’s to the right, to get

∂m3 = dm3 + p(m(hm(d⊗ 1)⊗ 1) +m(d⊗ hm)

+m(hm(1⊗ d)⊗ 1)−m(1⊗ hm(d⊗ 1))

+m(hm⊗ d)−m(1⊗ hm(1⊗ d))(i⊗ i⊗ i)

We haven’t touched the dm3 part yet, so lets see what this gives us. We get

dm3 = d(p(m(hm⊗ 1)−m(1⊗ hm))(i⊗ i⊗ i))
= p(dm(hm⊗ 1)− dm(1⊗ hm))(i⊗ i⊗ i)

Since A is a DG-algebra we can use the graded Leibniz rule to expand dm into m(d⊗ 1) +
m(1⊗ d). Doing so both places they appear above gives us

dm3 = p((m(d⊗ 1) +m(1⊗ d))(hm⊗ 1)

− (m(d⊗ 1) +m(1⊗ d))(1⊗ hm))(i⊗ i⊗ i)
= p((m(d⊗ 1) +m(1⊗ d))(hm⊗ 1)

−m(d⊗ 1)−m(1⊗ d)(1⊗ hm))(i⊗ i⊗ i)
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To contract this we again need to apply the Koszul grading rule. For the individual pieces
in the above equation we get

m(d⊗ 1)(hm⊗ 1) = (−1)|1||hm|m(dhm⊗ 1)

m(1⊗ d)(hm⊗ 1) = (−1)|d||hm|m(hm⊗ d)

m(d⊗ 1)(1⊗ hm) = (−1)|1||1|m(d⊗ hm)

m(1⊗ d)(1⊗ hm) = (−1)|d||1|m(1⊗ dhm),

where as before all signs are 1 except (−1)|d||hm| = −1. Hence we have

dm3 = p(m(dhm⊗ 1)−m(hm⊗ d)−m(d⊗ hm)−m(1⊗ dhm))(i⊗ i⊗ i)

We know that h is a homotopy between i ◦ p and idA, and for chain complexes this means
that dh+ hd = i ◦ p− idA. This gives us that we can replace dh by idA − i ◦ p− hd in
the equation above. Doing this gives us

dm3 = p(m((1− ip− hd)m⊗ 1)−m(hm⊗ d)−m(d⊗ hm)

−m(1⊗ (1− ip− hd)m))(i⊗ i⊗ i)
= p(m(m⊗ 1)−m(ipm⊗ 1)−m(hdm⊗ 1)

−m(hm⊗ d)−m(d⊗ hm)

−m(1⊗m) +m(1⊗ ipm) +m(1⊗ hdm))(i⊗ i⊗ i)

Notice that we have both m(m⊗ 1) and m(1⊗m) present, with the opposite signs. These
two are just repeated products in A, so their difference is 0, as we know A is a DG-algebra,
which in particular have an associative product.

After canceling the associator in A, and rearranging the terms a bit nicer, we can venture
further by again applying the graded Leibniz rule to the dm’s. This gives us

dm3 = p(m(1⊗ ipm)−m(ipm⊗ 1)

−m(h(m(d⊗ 1) +m(1⊗ d))⊗ 1)

−m(hm⊗ d)−m(d⊗ hm)

+m(1⊗ h(m(d⊗ 1) +m(1⊗ d))))(i⊗ i⊗ i)
= p(m(1⊗ ipm)−m(ipm⊗ 1)

−m(hm(d⊗ 1)⊗ 1)−m(hm(1⊗ d)⊗ 1)

+m(hm⊗ d) +m(d⊗ hm)

+m(1⊗ hm(d⊗ 1)) +m(1⊗ hm(1⊗ d)))(i⊗ i⊗ i)

Now we are finally ready to put everything together. Recall we wanted to find ∂m3 =
dm3 + m3dA⊗3 . The calculation has been so long that it is hard to remember what we
actually were doing. We have found both parts of this equation, so putting them together
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and moving all the p’s to the left, and the i’s to the right, we get

∂m3 = p(m(1⊗ ipm)−m(ipm⊗ 1)

−m(hm(d⊗ 1)⊗ 1)−m(hm(1⊗ d)⊗ 1)

−m(hm⊗ d)−m(d⊗ hm)

+m(1⊗ hm(d⊗ 1)) +m(1⊗ hm(1⊗ d)

+m(hm(d⊗ 1)⊗ 1) +m(d⊗ hm)

+m(hm(1⊗ d)⊗ 1)−m(1⊗ hm(d⊗ 1))

+m(hm⊗ d)−m(1⊗ hm(1⊗ d))(i⊗ i⊗ i)

We see that almost everything on the inside cancels nicely, and we are left with

∂m3 = p(m(1⊗ ipm)−m(ipm⊗ 1))(i⊗ i⊗ i)

Expanding this we get

∂m3 = pm(1⊗ ipm)(i⊗ i⊗ i)− pm(ipm⊗ 1)(i⊗ i⊗ i)

which we recognize as m2(1⊗m2)−m2(m2 ⊗ 1). This means we are finally left with
what we wanted to show

∂m3 = m2(1⊗m2)−m2(m2 ⊗ 1)

i.e. the associator of m2.

As m3 is a homotopy of the associator, we call it the associating homotopy.

Proof of deformation retraction

Let A = (
⊕

i∈ZA
i, d,m) be a DG-algebra. As usual we denote Zn = Kerdn, the n-

cochains, and Bn = Imdn−1, the n-coboundaries. Since A is in particular a cochain
complex we know that Bn ⊆ Zn is a subspace, i.e. all coboundaries are cocycles. This
means that we can find a subspace Hn of Zn such that Zn = Bn ⊕Hn. Notice that we
can identify Hn(A) ∼= Hn as we have a split exact sequence

0 −→ Bn −→ Zn dn−→ Hn(A) −→ 0.

As Zn is a subspace of An we can also find another subspace Ln such that

An = Zn ⊕ Ln = Bn ⊕Hn ⊕ Ln

We can identify Ln with Bn+1 because of the existence of the split exact sequence

0 −→ Zn −→ An
dn−→ Bn+1 −→ 0
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We can also view the cohomology algebra H(A) as a sub algebra through the identification
with H =

⊕
i∈ZH

n. Denote i : H −→ A the inclusion of H into A and p : A −→ H the
projection. Notice that we have p ◦ i = idH . The only remaining part—in order to have a
deformation retraction—is the homotopy h : A −→ A. We will chose this homotopy quite
carefully.

Let us first define some notation. Since An = Bn ⊕ Hn ⊕ Ln we can describe the
differential d by nine maps

dnBB : Bn −→ Bn+1

dnBH : Bn −→ Hn+1

dnBL : Bn −→ Ln+1

dnHB : Hn −→ Bn+1

dnHH : Hn −→ Hn+1

dnHL : Hn −→ Ln+1

dnLB : Ln −→ Bn+1

dnLH : Ln −→ Hn+1

dnLL : Ln −→ Ln+1,

each of them being just the differential projected and restricted to the proper part of the
decomposition ofA. Equivalently they are the parts of the matrix describing the differential,
i.e.

dn =

dnBB dnBH dnBL
dnHB dnHH dnHL
dnLB dnLH dnLL

 : Bn ⊕Hn ⊕ Ln −→ Bn+1 ⊕Hn+1 ⊕ Ln+1

Because Bn and Hn both consist of cocycles, we know that the differential vanishes on
those subspaces. Hence we have

dnBB = dnBH = dnBL = dnHB = dnHH = dnHL = 0.

We also have no (n+ 1)-coboundaries in Hn+1 and Ln+1 ∼= Bn+2, which means we have
dnLH = dnLL = 0 as well.

This means that the matrix for dn really looks like

dn =

 0 0 0
0 0 0
dnLB 0 0


We can now describe the degree n part of our proposed homotopy h as a map

hn : Bn ⊕Hn ⊕ Ln −→ Bn−1 ⊕Hn−1 ⊕ Ln−1

given by the matrix

hn =

0 0 (dn−1LB )−1

0 0 0
0 0 0
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Note that this inverse, (dn−1LB )−1, exists, as we earlier identified the subspace Ln by Ln ∼=
Bn+1.

In order for h to be a homotopy between idA and i ◦ p, we need to have

idAn − (i ◦ p)n = dn−1 ◦ hn + hn+1 ◦ dn,

or equivalently stated—that the sum of the maps in the parallelogram in the below diagram,
equals the vertical arrow.

Bn−1 ⊗Hn−1 ⊗ Ln−1 Bn ⊗Hn ⊗ Ln Bn+1 ⊗Hn+1 ⊗ Ln+1

Bn−1 ⊗Hn−1 ⊗ Ln−1 Bn ⊗Hn ⊗ Ln Bn+1 ⊗Hn+1 ⊗ Ln+1

hn

hn+1
idAn − (i ◦ p)n

dn−1 dn

dn−1 dn

In matrix notation the left hand side becomes1 0 0
0 1 0
0 0 1

−
0 0 0

0 1 0
0 0 0

 =

1 0 0
0 0 0
0 0 1


so we need to confirm that the right hand side is equal to that. We just multiply the matrices
we have for the maps, which gives us

dn−1 ◦ hn =

 0 0 0
0 0 0

dn−1LB 0 0

 ·
0 0 (dn−1LB )−1

0 0 0
0 0 0


=

0 0 0
0 0 0
0 0 dn−1LB (dn−1LB )−1


=

0 0 0
0 0 0
0 0 1


and

hn+1 ◦ dn =

0 0 (dnLB)−1

0 0 0
0 0 0

 ·
 0 0 0

0 0 0
dnLB 0 0


=

(dnLB)−1dnLB 0 0
0 0 0
0 0 0


=

1 0 0
0 0 0
0 0 0

 .
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Hence we have

hn+1 ◦ dn + dn−1 ◦ hn =

0 0 0
0 0 0
0 0 1

+

1 0 0
0 0 0
0 0 0


=

1 0 0
0 0 0
0 0 1


= idAn − (i ◦ p)n,

which shows that h is in fact a chain homotopy between idA and i ◦ p. This means that we
finally have our deformation retraction.

A H(A)h
p

i
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Monoids in monoidal categories
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Overview

There is a more general procedure we can use, in order to describe both DG-algebras and
their model structure in one joint framework. The theory is developed in [SS00] and uses
so called monoids in monoidal categories. We will not cover all the details in this appendix,
but we will go through the construction at least on a surface level. This is to get insight
into how the theory presented in this thesis might be abstracted to other types of objects.

Before we go into the theory, we give a brief overview of the process. Recall that DG-
algebras are cochain complexes of vector spaces, with an added algebra structure, i.e.
an associative product. This means that we can think of DG-algebras as a subcategory
of Ch(V ectk), the category of cochain complexes of vector spaces over a field k. This
category has two additional natural structures that we can add; a categorical product and
a model structure. These extra structures are particularly nice in Ch(V ectk), which will
allow us to transfer the model structure onto its subcategory of monoids. This subcategory
will turn out to be the category of DG-algebras, DGAk.

Cofibrantly generated symmetric monoidal model categories

The above chain of words is rather daunting, so lets build it up—step by step.

Definition 2.1. (Monoidal category). A monoidal category is a category C, equipped with a
functor ⊗ : C × C → C, called the monoidal product, a unit object 1 ∈ C and three natural
isomorphisms λA : 1⊗A→ A, ρA : A⊗1→ A and αA,B,C : (A⊗B)⊗C → A⊗(B⊗C)
called the left unitor, right unitor and associator respectively—such that the following
diagrams

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C))⊗D)

αA⊗B,C,D αA,B,C⊗D

αA,B,C ⊗ idD

αA,B⊗C,C

idA ⊗ αA,B,C

called the pentagon identity, and
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A⊗ (1⊗B) (A⊗ 1)⊗B

A⊗B

αA,1,B

idA ⊗ λB ρA ⊗ idB

called the triangle identity—both commute.

This definition can seem very abstract and difficult, but in reality it is quite simple. We are
using the symbol for the tensor product, ⊗, for the monoidal product because the tensor
product is usually the product we are using. So any intuition we have from using the tensor
product can usually be applied to monoidal categories. If the three natural isomorphisms
λ, ρ, α are identities, then C is called a strict monoidal category. These do rarely come up
in nature, but every monoidal category is in fact equivalent to a strict monoidal category.
Notice also K4 appearing as the pentagon identity.

Definition 2.2. (Symmetric monoidal category). Let C be a monoidal category. We say C is
a symmetric monoidal category if there is a natural isomorphism βX,Y : X⊗Y −→ Y ⊗X ,
called the braid isomorphism, such that βX,Y ◦ βY,X = idX⊗Y and the following diagrams

A⊗ 1 1⊗ A

A

βA,1

ρA λA

called the unit coherence, and

(A⊗B)⊗ C (B ⊗ A)⊗ C

A⊗ (B ⊗ C) B ⊗ (A⊗ C)

(B ⊗ C)⊗ A B ⊗ (C ⊗ A)

βA,B ⊗ idC

αA,B,C αB,A,C

βA,B⊗C

αB,C,A

idB ⊗ βA,C

called the associativity coherence, both commute.

A monoidal category can be thought of as a category with a multiplication, an a symmetric
monoidal category is then a monoidal category with a commutative product.

Definition 2.3. (Closed symmetric monoidal category). Let C be a symmetric monoidal
category. We say C is closed if the tensor functor − ⊗ A : C −→ C has a right adjoint
functor [A,−] : C −→ C, called the internal hom.
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The notion of closed category can be defined without the need for a symmetric monoidal
structure, but this definition is a bit more involved—and the above definition is the result
of combining the closed structure with the symmetric monoidal one.

We can think about this as being motivated by—or at least inspired by the category of
sets—where we have [X, Y ] = {f : X −→ Y }, and Hom(S, [X, Y ]) ∼= Hom(S×X, Y ).
So when we require that the internal hom functor [A,−] is a right adjoint to the monoidal
product functor −⊗A, we get a bijection Hom(X, [A,B]) −→ Hom(X ⊗A,B), that is
natural in all three variables. This isomorphism is called “currying”.

Definition 2.4. (Pushout product). Let C be a symmetric monoidal category and f : A −→
B, f ′ : A′ −→ B′ be morphisms in C. We can form the following pushout diagram

A⊗ A′

B ⊗ A′

A⊗B′

B ⊗ A′
∐
A⊗A′

A⊗B′

By the universal property of pushouts we get an induced map

B ⊗ A′
∐
A⊗A′

A⊗B′ −→ B ⊗B′

which we call the pushout product of f and f ′.

We have already covered the definition of a model category in the thesis, so recall that
it consists of three classes of maps W,C, F—called weak equivalences, cofibrations and
fibrations respectively—such that certain axioms MC1, MC2, MC3 and MC4 hold.

Definition 2.5. (Symmetric monoidal model category). A (closed) symmetric monoidal
model category is a category C with a model structure (W,C, F ), equipped with the
structure of a closed symmetric monoidal category (⊗, I), such that the pushout product of
two cofibrations is again a cofibration, the pushout product of a cofibration and an acyclic
cofibration is again an acyclic cofibration and that the map QI ⊗X p⊗idX−→ I ⊗X −→ X
between any cofibrant object X—and any cofibrant replacement QI of the tensor unit
I—is a weak equivalence.

We are almost at the end, but we need one more “niceness” condition on our category
C. We now have that the monoidal structure is nice, and respects the model structure,
but we also want the model structure itself to be “nice”. The rigorous definition of this
niceness condition is a bit tricky, but it essentially requires the cofibrations and the acyclic
cofibrations to be generated by a small set.

If we let P be some set of morphisms in C then let

• P − inj be the morphisms in C that satisfy the right lifting property with respect to
the morphisms in P . These are called the P -injectives.

• P−cof be the morphisms that satisfy the left lifting property with respect to P−inj.
These are called the P -cofibrations
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• P − reg ⊆ P − cof the maps in C that are transfinite conpositions of pushouts of
morphisms in P . These morphisms are called the regular P -cofibrations.

Definition 2.6. (Cofibrantly generated model category). Let C be a category with a model
structure (W,C, F ). We say C is cofibrantly generated if there are subsets P ⊆ C and
Q ⊆ C ∩W such that

• F = Q− inj

• C ∩W = P − inj

• C = P − cof

• C ∩W = Q− cof

• The domain of a morphism in P is a small relative of P − reg

• The domain of a morphism in Q is a small relative of Q− reg

We have not defined the last two points in the definition above. We wont cover these in
detail, as they are complicated and not necessary for the surface overview that we are
presenting. It essentially means that Hom(C,−)—for an object C, that is the domain of
a map in P or Q—commutes with colimits in P − reg or Q− reg respectively. For the
details see [SS00].

We then have the category we want, i.e. C a cofibrantly generated closed symmetric
monoidal model category. The next task is to find the correct subcategory.

The category of monoids

Definition 2.7. (Monoid in a monoidal category). A monoid in a monoidal category
(C,⊗, I) is an object M together with a map µ : M ⊗M −→ M , called multiplication,
and a map η : I −→M , called the unit, such that the associative law and left and right
unit laws hold, i.e. the following three diagrams commute

1⊗M M ⊗M

M

M ⊗ 1 M ⊗M

M

η ⊗ idM

λM µ

idM ⊗ η

ρM µ
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M ⊗ (M ⊗M) (M ⊗M)⊗M

M ⊗M M ⊗M

M

αM,M,M

idM ⊗ µ µ⊗ idM

µ µ

Here α is the associator in the monoidal category and λ, ρ are the unitors. We see that this
notion of monoid in a monoidal category produces the standard notion of a monoid from
algebra—if we let the monoidal category be Set together with the cartesian product.

The collection of monoids in a monoidal category C do in fact form a category themselves,
which we denote by MonC. The following theorem is [SS00, Theorem 4.1 (3)], and it
assures us that we get a model structure on the category of monoids.

Theorem 2.8. Let C be a cofibrantly generated symmetric monoidal model category. If R
is a commutative monoid in C, then the category of R-algebras is a cofibrantly generated
model category.

If we let R be the monoidal unit I in the theorem above, we have I-mod = MonC, meaning
we have a model structure on the category of monoids. This model structure is induced
from the one in C, meaning that a morphism in MonC is a fibration or a weak equivalence
if it is a fibration or a weak equivalence in C, and that the cofibrations in MonC are the
ones having the left lifting property with respect to the acyclic fibrations.

Model structure on DGAk

We have now laid out the general machinery, so what’s left is to apply it to our situation.
We start with Ch(V ectk), the category of cochain complexes of vector spaces over a field
k. It has a symmetric monoidal product given by the graded tensor product, i.e.

(A⊗B)n =
∑
i+j=n

Ai ⊗Bj,

which has differential given by dA⊗B = dA ⊗ idA + idB ⊗ dB.

As we have used throughout the thesis, we know that morphisms Hom(A,B) also form
cohain complexes, hence we have an internal hom. We have a model structure, given
by degreewise surjections being the fibrations, the weak equivalences being the quasi-
isomorphisms and the cofibrations being the maps that have the left lifting property with
respect to acyclic fibrations. In [Hov07, Theorem 2.3.11] it is proven that this model
structure makes Ch(V ectk) into a cofibrantly generated model category.
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Hence we have the following theorem to summarize the informal discussion.

Theorem 2.9. The category Ch(V ectk) is a cofibrantly generated symmetric monoidal
model category.

The last piece of the puzzle is showing that the monoids in Ch(V ectk) are in face the
DG-algebras.

A monoid in Ch(V ectk) is an object A, together with a map m : A⊗A −→ A, and a map
η : k −→ A, such that the left and right unit laws, and the associative law hold. This means
that we have a cochain complex of vector spaces together with an associative multiplication
map, m.

The fact that m is a morphism of cochain complexes means that we have a commutative
diagram

M ⊗M

M ⊗M

M

M

m

dM⊗M m

dM

And hence that

dM ◦m = m ◦ dM⊗M
= m(dM ⊗ idM) +m(idM ⊗ dM)

which gives

dM(m(a⊗ b) = m(dM(a)⊗ b) + (−1)|a|m(a⊗ dM(b))

when applied to elements and using the Koszul grading rule. If we write m(a⊗ b) = a · b
then we get the familiar graded Leibniz rule

dM(a · b) = dM(a) · b+ (−1)|a|a · dM(b).

Thus, a monoid in Ch(V ectk) is in fact a DG-algebra. We then get an induced model
structure on Mon(Ch(V ectk)) = DGAk, which we can identify with Jardine’s model
structure we constructed earlier in the thesis.
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