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Abstract. In this thesis, we will explore methods to compute isogenies between elliptic curves in
the ordinary and supersingular case. This is an attempt to understand the security foundations
of isogeny-based cryptography. We will explore topics in algebraic number theory, quaternion
algebra, lattices and some specific algorithms for dealing with such objects. Next, we will
explore how to compute a connecting isogeny given only the starting and ending curve in both
the ordinary case and the supersingular case. Finally we will look at two applications for this
theory in terms of the concrete isogeny-based cryptosystems SIDH and SQISign.

Sammendrag. I denne oppgaven utforsker vi metoder for å beregne isogenier mellom elliptiske
kurver i b̊ade det ordinære og supersingulære tilfellet. Dette er et forsøk p̊a å forst̊a sikkerhets-
grunnlaget til isogenibasert kryptografi. Gjennom oppgaven kommer vi til å utforske algebraisk
tallteori, kvaternionalgebra, gitre og noen spesifikke algoritmer for å jobbe med slike objekter.
Videre kommer vi til å forklare hvordan vi konstruerer en isogeni mellom en gitt start- og slut-
tkurve i det ordinære og supersingulære tilfellet. Til slutt skal vi se p̊a to anvendelser av teorien
mot de konkrete isogenibaserte kryptosystemene SIDH og SQISign.
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CHAPTER 1

Introduction

While physicists and engineers tackle the challenge of constructing quantum computers,
mathematicians and cryptographers work on building post-quantum cryptosystems able to resist
the potential computing power in these machines. The National Institute of Standards and
Technology (NIST) currently have a running project on establishing post-quantum cryptography
(NIST-PQC)[31] which is expected to provide a standards draft in the period 2022-2024. One
of the candidates rely on the hardness of finding isogenies between supersingular elliptic curves.
Unfortunately, on the 22th of July 2020, when Round 3 candidates where selected, the isogeny
based cryptosystem (SIKE) was removed from the list of primary candidates [27].

SIKE was characterised as being the only cryptosystem based on isogenies and with ex-
ceptionally small key sizes. It does however require longer running time (roughly an order
magnitude longer than its competitors) and its security assumption is much less studied.

NIST sees SIKE as a strong candidate for future standardization with con-
tinued improvements and accordingly selected SIKE to move into the third
round as an alternate candidate. There are applications which would benefit
from SIKE’s small key and ciphertext sizes and which may be able to accept
the performance impact. Further research in isogeny-based cryptography is
encouraged. [27]

Further research is exactly what motivated this thesis. Although we do not provide any
new results, this thesis will hopefully make the current advances in the field more available. We
will look into how one might go about constructing isogenies by understanding the mathematics
underlying them. Overall, we are interested in looking further into the following problem which,
roughly speaking, is the underlying security assumption of all isogeny-based cryptography.

Problem. Given two elliptic curves E,E′, find an isogeny φ : E → E′

We will begin by looking into the mathematical foundations required for studying the en-
domorphism ring of ordinary and supersingular elliptic curves in Chapter 2. There we will
introduce some concepts from algebraic number theory, the notion of lattices in a number field
and the complex numbers, what quaternions are and finally recall some facts about elliptic
curves.

Next, in Chapter 3, we will look at how isogenies between ordinary elliptic curves behave.
We will describe an algorithm by Galbraith at how one can construct isogenies between arbitrary

1



2 1. INTRODUCTION

ordinary elliptic curves and look at its running time. This section is meant as a way to see the
clear distinction between ordinary and supersingular elliptic curves.

In Chapter 4 we will look at supersingular elliptic curves and how one can always construct
an l-power isogeny connecting two such curves. This is perhaps the chapter of most interest to
the reader who would like to learn more about recent isogeny-based research. We will discuss
the so-called KLPT algorithm[22] in detail. An algorithm which has found applications in
recent signature schemes. We will also explore the difficulty of computing the endomorphism
ring and see how there even exists some problems with mapping a well understood abstract
endomorphism ring to actual endomorphisms on the elliptic curve.

Then, in Chapter 5 we will provide the reader with two applications in the supersingular
case. We will explore how one can break the SIDH[14] cryptosystem (the basis of SIKE) and
finally discuss how one can build a signature scheme, SQISign [15], based on secret knowledge
of the endomorphism ring using a modified KLPT algorithm.

Finally, in Chapter 6 we will discuss the differences between constructing isogenies within
ordinary curves and supersingular curves.

We conclude the thesis with Appendix A, describing how one can implement some of the
algorithms from Chapter 4 in SageMath.



CHAPTER 2

Mathematical Foundations

In this chapter we will describe the mathematical foundations required for reading this
thesis. We will look at algebraic number theory, lattices, quaternions and finally elliptic curves.
The contents of algebraic number theory and elliptic curves is considered well-known and only
provided to make the notation clear and provide results for later references. The sections on
lattices and quaternions are treated in more detail as their content will be important for us in
the upcoming chapters.

1. Algebraic Number Theory

In this section we will recall some facts from number theory focusing on imaginary quadratic
fields. Then we will introduce quadratic forms before we end this section with a useful algorithm.

1.1. Imaginary number fields. This section is mainly based on [9, Chapter 2] and [33].

A quadratic field K is simply a field of the form K = Q(
√
N) where N ∈ Z \ {0, 1} is

square-free. Whenever N < 0 we say the the number field is imaginary as it somehow contains
the traditional imaginary element i satisfying i2 = −1. For any quadratic field there is an
invariant called its discriminant, ∆K . It is defined as

∆K =

{
N if N ≡ 1 mod 4

4N otherwise

We note that we can always embed our quadratic number field K in C for the simple reason
that the square roots of N exists in C. Therefore the numbers a+ b

√
N ∈ Q are just elements

z ∈ C. That being said there are two solutions to the equation
√
N in C, thus there are

two ways of embedding K in C. Mapping from one to the other is what we refer to as the
nontrivial automorphism of K. Notice that elements of Q necessarily remain fixed under
this automorphism. Another useful map is conjugation, denoted a which simply is the map

a+ b
√
N = a− b

√
N .

Once we have a number field we can define its ring of integers, OK . It serves the same
purpose as Z does in Q. It can be described explicitly as

OK =

{
Z[
√
N ] if N 6≡ 1 mod 4

Z
[

1+
√
N

2

]
otherwise

3



4 2. MATHEMATICAL FOUNDATIONS

or once we know ∆K it can be written as OK = Z
[

∆K+
√

∆K

2

]
The ring of integers is sometimes referred to as an order, meaning that it is a Z-submodule

of K which is closed under multiplication. There can be many other orders in a number field,
but for quadratic number fields there is always a unique maximal order, which is the ring of
integers. A useful object related to orders are fractional ideals of an order. That is, a fractional
ideal of OK is simply a finitely generated OK-submodule of K.

Sometimes we are interested in how a number a behaves with respect to a prime p, one

such interesting measure is the Kronecker symbol denoted (a/p) or
(
a
p

)
. For a prime p 6= 2

it is just the Legendre symbol which is defined as 0 if p divides a, 1 if it is a quadratic residue
modulo p and −1 otherwise. When p = 2 we define the Kronecker symbol to be 0 if a is even,
1 if a ≡ ±3 mod 8 and -1 if a ≡ ±1 mod 8.

When dealing with OK we are often talking about prime ideals p laying above p, this is
just a prime ideal p ⊆ OK that satisfies p ∈ p. It can be shown that these prime ideals satisfy
p ∩ Z = (p), the ideal generated by p in Z. We are also interested in what pOK is. This will
clearly be an ideal, but how it decomposes into prime ideals is what is called the ramification
of p in OK or sometimes just p in K. We use the following results to define it.

Proposition 2.1. Let K be a quadratic field of discriminant ∆K , let the nontrivial automor-
phism of K be denoted as α 7→ α′, and p be a prime in Z. Then we have the following description
of pOK .

(1) if (∆K/p) = 0, then pOK = p2 for some prime ideal p ⊂ OK
(2) if (∆K/p) = 1, then pOK = pp′ for distinct prime ideals p, p′ ⊂ OK
(3) if (∆K/p) = −1, then pOK = p is a prime ideal in OK

Proof: See [9, Proposition 5.16]
Thus we say that p ramifies in K if p divides ∆K , that p splits completely in K if

(∆K/p) = 1 and that p is inert in K if (∆K/p) = −1.
Moreover, the ring of integers, OK is in fact a Dedekind domain [9, Theorem 5.5], which

amongst other things means that every nonzero prime ideal of OK is maximal. This allows us
to look at the quotient OK/p for a prime p of OK which is a field is a field of finite size by [9,
Corollary 5.4].

We define the norm on elements α ∈ K as Nr(α) = αα′ where α′ is the element obtained
from taking the nontrivial automorphism of α. This gives us that for a ∈ Q, Nr(a) = a2. For
ideals p, the norm is defined to be the size of OK/p, that is Nr(p) = |OK/p|.
Lemma 2.2. Let O be an order in an imaginary quadratic field, then

(1) Nr(pO) = Nr(p)
(2) Nr(ab) = Nr(a) Nr(b)
(3) aa = Nr(a)O

Proof: See [9, Lemma 7.14]
Thus for a prime p, with p laying above p we have OK/p ∼= Fq for q = p2 when p is inert,

and q = p if it is ramified or splits completely.



1. ALGEBRAIC NUMBER THEORY 5

Finally we would like to describe the class number. Whenever we have an order O, we can
talk about fractional O-ideals. If we take the set of such fractional ideals, modulo principal
fractional O-ideals we get what is known as the ideal class group of O, often denoted CL(O).
In other words, a and b are in the same class if there exists some α such that a = αb. There
are some details to be worked out when dealing with orders properly contained in OK instead
of the entire ring of integers, but this is left for later.

The class number, h(OK), is defined to be the number of elements of CL(O). It will
sometimes be denoted hK to say that it is the class number of the ring of integers of K, but we
will stick to h(OK). It is in general considered difficult to compute it, but in Cohen [8, Exercise
5.27 (b)] it is given a bound based on the discriminant.

h(OK) ≤ 1

π

√
|∆K | ln |∆K |

To show it one uses the fact that for imaginary quadratic fields of discriminant ∆K < −4 the
relation

∑
n≥1

(
∆K

n

)
/n = πh(OK)/

√
|∆K | [8, Proposition 5.3.12]. The sum can be shown to

be bounded by ln(|∆K |) giving the desired result.

1.2. Forms. In addition to number fields, we would also like the notion of forms. These
are just specific kinds of polynomials which will make our lives easier when dealing with super-
singular isogenies later on.

Definition 2.3. A quadratic form in two variables over a ring R is a polynomial

f(x, y) = ax2 + bxy + cy2 with a, b, c ∈ R

We say that it is primitive if the numbers a, b, c are relatively prime. The discriminant
of a quadratic form f is simply b2 − 4ac and is sometimes denoted disc(f). In our case the ring
R will be the integers Z and we look for certain primitive forms defined by their discriminant.

Example 2.4. A primitive quadratic form over Z of discriminant −4 is just the polynomial
x2 + y2.

1.3. Cornaccia’s algorithm. Finally we will end this section on Algebraic Number theory
with an important algorithm known as Cornaccia’s algorithm. The algorithm by Cornaccia,
described in [3], solves the equation x2 + dy2 = m whenever d and m are coprime. This will be
useful when we attempt to represent the integer m as the reduced norm in a number fields and
when we would like to find solutions to primitive quadratic forms of discriminant D.

Proposition 2.5. Algorithm 1 returns failure or the correct solution in time approximately
log10(m/2)

Proof. For the correctness we note that if rk ≤
√
m we have

r2
k + d

√
m− r2

k

d

2

= r2
k + d

m− r2
k

d
= m

so the solution is correct.
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Algorithm 1: Cornaccia(m, d)

Input: Integers m, d
Output: A tuple (x, y) satisfying x2 + dy2 = m

1 Find r0 such that r2
0 ≡ −d (mod m) ;

2 if r0 > m/2 then
3 r0 ← m− r0 ;

4 end

5 k ← 1 ;

6 r1 ← m mod r0 ;

7 while r2
k > m do

8 k ← k + 1 ;

9 rk ← rk−2 mod rk−1 ;

10 end

11 s←
√

m−r2k
d ;

12 if s is not integer then
13 Select another r0 and repeat. If second iteration fails, then return failure ;

14 end

15 return (rk, s)

Furthermore, for the running time, we notice that the algorithm we are performing is really
just the Euclidian algorithm starting at (r0,m), except that we end earlier. Since r0 < m/2 and
the running time of the Euclidian algorithm is bounded by the number of digits in base 10 we
have that the running time of this algorithm is bounded by dlog10(m/2)e plus the time required
to compute square roots modulo m and potentially running the algorithm twice if the first root
was unsuccessful. �

Thus in general, this algorithm is considered to be of low computational cost.

2. Lattices

Much of the theory related to elliptic curves is related to lattices. We begin by describing
them algebraically for vector fields along some useful results like how we can view them locally
instead of globally. Then we explain a method for representing them with a useful basis before
we finally look at lattices in the complex plane C.

Let R be a domain with field of fractions F and V be a finitely dimensional vector space
over F . For our purposes we will mostly have R = Z, F = Q and V be of dimension 2 or 4 over
Q.

Definition 2.6. An R-Lattice in V is a finitely generated R-submodule M of V .
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If in addition MF = V we say that the R-lattice is full. When R = Z we will simply call
it a lattice instead of saying Z-lattice. It is clear that lattices are fractional ideals of Z.

Remark. Some texts define a lattice to be a discrete subgroup of Rn. To make equivalent
definitions we would need to modify our definition to let the lattice M be a finitely generated
Z-submodule of V satisfying MR = V .

Figure 1. Lattice generated by 1.4 + 0.6i and 0.8 + 2.6i in Q(i)

Example 2.7. Let V be Q(i) = Q(
√
−1). Then the subset of V consisting of integer linear

combinations of 1.4 + 0.6i and 0.8 + 2.6i is a full lattice in V as illustrated by the black dots in
Figure 1. This follows since it, by definition, is of the form Zx1 + Zx2 and the generators are
linearly independent, thus spanning V when coefficients from Q are allowed.

Lemma 2.8. Let M ⊆ V be a full lattice and J be a finitely generated Z-submodule of B, then
the following statements hold:

(1) For all x ∈ B there exists a nonzero r ∈ Z such that rx ∈M
(2) There exists a nonzero r ∈ Z such that rJ ⊆M
(3) J is a full lattice if and only if there exists a nonzero r ∈ Z such that rM ⊆ J ⊆ r−1M

Proof. This proof is inspired by [39, Lemma 9.3.5]
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(1) Writing x in the basis emitted by M we have x = ax1 +bx2 +cx3 +dx4 with a, b, c, d ∈ Q.
Letting z be the least common denominator of a, b, c, d we have zx = a′x1 + b′x2 + c′x3 + d′x4

where each a′, b′, c′, d′ ∈ Z so, since ZM = B, we have zx ∈M .
(2) Let y1, . . . yn be the generators of J . For each generator we have an ri ∈ Z such that

riyi ∈M . Simply writing r =
∏
ri gives us an element of Z satisfying rJ ⊆M .

(3) By 2 we already have rJ ⊆ M , giving us J ⊆ r−1M . Using the exact same argument
we can find r′ ∈ Z such that r′M ⊆ J . Clearly r′M ⊆M so we get

rr′M ⊆ r′M ⊆ J ⊆ r−1M ⊆ (rr′)−1M

�

One rather powerful feature of lattices is the local-global principle. To understand them we
need to introduce localizations.

Definition 2.9. A Localization of Z away from a prime p is

Z(p) := {a/b ∈ Q | p - b}

We can extend this to lattices through tensoring, where we define

M(p) := M ⊗Z Z(p) ⊆ B

as the localization of M away from p where we identify B as M⊗ZQ. This is indeed an example
of a full Z(p)-lattice in B.

Lemma 2.10. Let M be an Z-lattice in V , then we have

M =
⋂
p

M(p)

Proof. We give a proof based on [39, Lemma 9.4.6]. Since M ⊆ M(p) for any p by definition
we have M ⊆

⋂
pM(p).

For the other direction, suppose α ∈ B such that α ∈
⋂
pM(p). Then the set S = {r ∈ Z |

rα ∈ M} is an ideal of Z. This is easily shown since if rα ∈ M then Zrα ∈ ZM ⊆ M as M
is a Z-module. Furthermore, given r, r′ ∈ S then (r − r′)α = rα − r′α ∈ M since M is closed
under addition. Now, since x ∈ M(p), we can clear its denominators by multiplying with some
rp ∈ Z \ (p). That is rpx ∈ M , so rp ∈ S. This applies to every prime ideal (p) which are all
maximal in Z, so in particular S is not properly contained in any maximal ideal giving us that
S = Z. Since 1 ∈ Z we have x ∈M . �

Corollary 2.11. Let M,N be lattices in B. Then the following are equivalent

(1) M ⊆ N
(2) M(p) ⊆ N(p) for all primes p ∈ Z

Proof. This follows immediately from Lemma 2.10. �
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Theorem 2.12 (Local Global dictionary of lattices). Let B be a finite-dimensional Q-vector
space and let M ⊆ B be a full lattice, then the map N 7→ (N(p))p is a bijection between full
lattices N and collections of lattices (N(p)) indexed by p where M(p) = N(p) for all but finitely
many primes p.

Proof. Inspired by [39, Theorem 9.4.9] Given the two lattices M,N we know that there exists
some r ∈ Z such that rM ⊆ N ⊆ 1

rM . Factoring r into primes we see that there are only
finitely many prime ideals of Z where r is contained. Everywhere else we get (rM)(p) = M(p)

and similarly (1
rM)(p) = M(p) so we have M(p) = N(p) for all but finitely many primes p.

Next suppose we have a collection of lattices (N(p))p (a priori not related to some lattice
N) that satisfy N(p) = M(p) for all but finitely many primes p, then we define N to be the
Z-submodule N =

⋂
pN(p) of V . To show that N is a full lattice we need to find r ∈ Z such

that rM ⊆ N ⊆ r−1M . At every p where M(p) 6= N(p) we have rpM(p) ⊆ N(p) ⊆ r−1
p M(p). Thus

the integer r =
∏
rp is a good candidate. Indeed, at the primes of inequality we still have

rM(p) = rpM(p) ⊆ N(p) ⊆ r−1
p M(p) = r−1M(p)

whilst at the primes of equality we already have M(p) = N(p) and in particular

rM(p) = M(p) = N(p) = M(p)r
−1M(p)

Thus by the above corollary rM ⊆ N ⊆ r−1M and N is a full lattice. We have just shown
that given a collection of lattices that equal M(p) at almost every prime p, then we have a
corresponding full lattice.

To show that the sets are bijective, let us start with a full lattice N , then the map N →
(N(p))p maps N to a collection of lattices with inverse map (N(p))p 7→

⋂
pN(p) = N as in the

above Lemma. Conversely, given the collection (N(p))p, the maps are inverses since(⋂
p

N(p)

)
(q)

=

(⋂
p

N ⊗Z Z(p)

)
⊗Z Z(q) =

⋂
p 6=q

N ⊗Z Q

⋂(N ⊗Z Z(q)) = (N(q))

�

Definition 2.13. The index of N in M , for lattices N,M , is written [M : N ] and is the
Z-submodule of Q generated by the set

{det(δ) | δ ∈ EndF (B) and δ(M) ⊆ N}

Since Z is a PID this submodule is generated by a single integer which we will sometimes
identify as the index. It will correspond to the index of abelian groups, namely #(M/N).

Lemma 2.14. If M and N are free as Z-modules, then [M : N ] is a free Z-module generated by
the determinant of any δ ∈ EndQ(V ) giving a change of basis from M to N

Proof: See [39, Lemma 9.6.4]
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Example 2.15. Let M the the lattice generated by 1, i, (1 + ij)/2 and (i+ j)/2 and N be the
lattice generated by 1, i, j, ij. We would like to compute the index of N inside M ([M : N ]).
We do this using the lemma above by finding a change of basis map. This follows easily when
we write the generators of M as vectors in V with basis 1, i, j, ij. We get the endomorphism

1 0 0 0
0 1 −1 −1
0 0 0 2
0 0 2 0

 : M → N

Which clearly has determinant −4 (swap the two last rows and look at the diagonal).

2.1. Bases. As lattices are finitely generated Z-submodules we can look further into how
to represent them. There are several bases which are useful, and the orthonormal one is perhaps
the most known. This section is mainly about introducing the Minkowski reduced basis which
we shall use later. The definitions are taken from [5].

Definition 2.16. Let M be a lattice of rank m. For i ∈ {1, . . . ,m} we define the ith successive
minimum as:

λi(M) = inf{r | dim(span(M ∩B(0, r])) ≥ i}

Where B(0, r] is the closed ball of radius r centered at 0. In other words, λi(M) is the
smallest radius such that a ball centered at the origin contains at least i linearly independent
elements of M . If i = 1 we have λi(M) equal to the norm of the shortest vectors of M .

Definition 2.17. An ordered basis (b1, . . . , bm) is a Minkowski reduced basis of M if it is
a basis of M and for every i ∈ {1, . . . ,m}, there exists no element b′i of norm less than bi such
that {b1, . . . , b′i} form a linear independent set.

What remains is to show how we can compute the Minkowski reduced basis. To do this we
also need to recall what a Gram matrix is.

Definition 2.18. The Gram matrix of a set of vectors b1, . . . bm is the matrix G with entries
Gij := 〈bi, bj〉 - that is the inner product of the vectors.

One can compute the Gram matrix in time O(log2 ||bm||) for fixed m [28, Section 3.2].

Theorem 2.19. Let 1 ≤ d ≤ 4. Given as input an ordered basis (b1, . . . , bd) of the lattice L,
Algorithm 2 outputs a minkowski reduced basis in

O (log(||bd||)[1 + log(||bd||)− log(λ1(L))])

bit operations

Proof: See [28, Theorem 6]
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λ1

λ2

Figure 2. Ith successive minima of lattice defiend by [(1, 0.4), (0.3, 1.3)].

2.2. Complex lattices. In this section we will describe complex lattices similarly to how
we defined R-lattices, define what homothetic means, describe the Wierstrass function and
finally find some invariants which will be used to describe these lattices. This section is based
on [36, Chapter VI].

Although it isn’t entirely compatibly with our definition we say that a complex lattice is
a full Z-lattice in C. That is a finitely generated Z-submodule Λ of C such that ΛR = C. We
will use the notation Λ ⊆ C to denote such lattices. There is no problem with this inconsistency
as we will not use the results from the previous section on lattices. Throughout this section we
will simply refer to complex lattices as lattices.

We can view the lattices Λ as an additive subgroup of C and thus look at the quotient C/Λ
where we identify z with z′ if z = z′+ω for some ω ∈ Λ. This looks like a torus giving us a nice
way of thinking of these spaces which we will later connect to ordinary elliptic curves.

Two lattices Λ1,Λ2 are said to be homothetic if there exists some 0 6= α ∈ C such that
Λ1 = αΛ2. Often we are only interested in lattices up to homothethy and this simply means
that two lattices are considered equivalent if they are homothetic.

For each lattice Λ we define its Wierstrass ℘-function as

℘(z) =
1

z2
+

∑
06=ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
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b1

b2

Figure 3. A Minkowski reduced basis {b1, b2} of lattice [(1, 0.4), (0.3, 1.3)]

Algorithm 2: Greedy(b1, . . . , bm)

Input: A basis [b1, . . . bm] and its Gram matrix
Output: A greedy-reduced basis (b1, . . . , bm)

1 if d = 1 then
2 return b1
3 end

4 repeat
5 Order (b1, . . . , bm) by increasing length and update Gram matrix ;

6 (b1, . . . , bm−1)←Greedy(b1, . . . , bm−1) ;

7 Compute vector c closest to bd ∈ {Zb1 + . . .+ Zbm−1} ;

8 bm ← bm − c and update Gram matrix.

9 until ||bm|| ≥ ||bm−1||;
10 return (b1, . . . , bm)

Furthermore we have the Eisenstein series of weight 2k

G2k(Λ) =
∑

06=ω∈Λ

ω−2k
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By performing the Laurent series expansion of ℘ we get the relation

℘′(z)2 = 4℘(z)3 − 60G4℘(z) + 140G6

Where the quantities 60G4 and 140G6 are denoted g2 or g2(Λ) and g3 or g3(Λ) respectively.
These values turn out to describe the lattice in a nice way since given a lattice Λ, we can create
its Wierstrass function, and subsequently find the values g2 and g3 from the above equation.
Furthermore, the Uniformization theorem [35, Chapter I, Corollary 4.3] states that given two
values A,B ∈ C there is a unique lattice Λ which satisfy g2(Λ) = A and g3(Λ) = B.

3. Quaternion Algebra

This section is based on John Voight’s Quaternion Algebras [39, Part I, II] where only the
most relevant things are extracted. I would highly recommend reading the book as it gives an
excellent introduction to the subject. Throughout this section we will define a quaternion alge-
bra, talk about conjugation or the standard involution of elements, define the trace and norm
in the language of quaternions, introduce quaternion orders and ideals, describe some invariants
for quaternion algebras and orders, quickly look at ideal classes, and introduce orthogonality.
Finally we will provide an algorithm for constructing specific kinds of ideals. The concepts intro-
duced and explained here will be particularly interesting when we later look into supersingular
elliptic curves in Chapter 4.

The rings we are using will always contain the multiplicative identity 1, so homomorphisms
necessarily preserve 1. If R is a ring we will write R× for the group of multiplicative of units
of R. When we say algebra over some field F we mean a ring B that has a homomorphism
f : F → B such that f(F ) ⊆ Z(B) where Z(B) is the center of B - the set of all elements of
β ∈ B such that βα = αβ for every α ∈ B. Instead of saying that B is an algebra over F we
often just say that B is an F -algebra.

A central algebra is one where f(F ) = Z(B). Furthermore the map f is injective as
f(1) = 1, so F can be identified with f(F ), giving rise to a F -vector space structure of B,
allowing us to talk about the dimension of B as a F -vector space. We will write dimF (B) for
this dimension.

Example 2.20. Let F = Q be the field of rational numbers, then B = M2(Q) is an Q-algebra
of dimension 4.

Let φ : B → B′ be a ring ring homomorphism of F -algebras B,B′. We can then define the
following maps. φ is an F -algebra homomorphism if φ|F = idF . An F -algebra endomor-
phism is an homomorphism where B = B′. An F -algebra isomorphism is an homomorphism
that is also invertible. And finaly, an F -algebra automorphism is an endomorphism that is
also invertible.

The write EndF (B) for the set of all F -algebra endomorphisms of B. This is in fact a ring
where we define the operations as the usual function compositions (φ + ψ)(α) = φ(α) + ψ(α)
and (φ ◦ ψ)(α) = φ(ψ(α)).

Recall that a division ring is a ring where every non-zero element has a two-sided inverse,
therefore we define a division algebra to be an algebra that is also a division ring.
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Definition 2.21. A quaternion algebra B is an F -algebra where there exists i, j ∈ B such
that 1, i, j, ij forms an F -basis for B which satisfy

i2 = a, j2 = b, and ij = −ji
with a, b ∈ F×

For simplicity, we sometimes write
(
a,b
F

)
or just (a, b | F ) for the quaternion algebra as

defined above.
The ring M2(F ) is a the quaternion algebra (1, 1 | F ) where we identify i with

[
1 0
0 −1

]
and

j with
[

0 1
1 0

]
. In fact, we can always view a quaternion algebra as a subalgebra of matrices:

Proposition 2.22. Let B = (a, b | F ) and F (
√
a) be the splitting field of x2 − a over F . Then

we have a map
λ : B →M2(F (

√
a))

i, j 7→
[√

a 0
0 −

√
a

]
,

[
0 b
1 0

]
t+ xi+ yj + zij 7→

[
t+ x

√
a b(y + z

√
a)

y − z
√
a t− x

√
a

]
that is an injective F -algebra homomorphism which is isomorphic onto its image.

Proof: See [39, Proposition 2.3.1]
Finally we state the two first results of the main theorem of quaternion algebras.

Theorem 2.23 (Main theorem of quaternion algebras). Let B = (a, b | F ) be a quaternion
algebra with char(F ) 6= 2. Then the following are equivalent

(1) B ∼= (1, 1 | F ) ∼= M2(F )
(2) B is not a division ring

Proof: See [39, Theorem 5.4.4]

3.1. Conjugation/Involution. Just like complex conjugation has several applications
when dealing with complex numbers, the conjugation of quaternion elements turns out the
be very useful for us. In this section we will describe the uniqueness of the standard involution
of quaternion algebras and how it can be used to defined trace and norm of quaternion elements.
Later we shall see that the dual map of an isogeny satisfies the properties of being a standard
involution which, by the uniqueness, forces it to be the standard involution.

We begin with the definition of an involution

Definition 2.24. A standard involution f : B → B of an F -algebra B is an F -linear map
that satisfies the following properties:

(1) f(1) = 1
(2) f(f(α)) = α for all α ∈ B
(3) f(αβ) = f(β)f(α) for all α, β ∈ B
(4) αf(α) ∈ F for all α ∈ B
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Remark. If we discard the last property we have the definition of an involution.

Example 2.25. In the complex case, C, we can simply take the conjugation map f(α) := α.
Simple verification shows that the properties always satisfied.

Proposition 2.26. Let B = (a, b|F ) be a quaternion algebra with generators 1, i, j, k. Then the
map

· : α = t+ xi+ yj + zk 7→ t− xi− yj − zk = α

is a standard involution on B

Proof. The properties are verified directly using elementary algebra. We start by checking
F -linearity by taking λ ∈ F and α = t+ xi+ yj + zk ∈ B

λα = λt+ λxi+ λyj + λzk = λt− λxi− λyj − λzk
= λ(t− zi− yj − zk) = λα

Similarly, with β = t′ + x′i+ y′j + z′k ∈ B
α+ β = t+ t′ − (x+ x′)i− (y + y′)j − (z + z′)k = α+ β

Next we see that 1 = 1. Then we look at the repeated conjugation

α = t− xi− yj − zk = t+ xi+ yj + zk = α

The third and fourth property requires a slightly more cumbersone computation:

αβ = (tt′ + axx′ + yy′b− abzz′) + (tx′ + xt′ − byz′ + bzy′)i

+ (ty′ + axz′ + yt′ − azx′)j + (tz′ + xy′ − yx′ + zt′)k

and similarly

βα = (tt′ + axx′ + byy′ − abzz′) + (−xt′ − tx′ − bzy′ + byz′)i

+ (−ty′ − axz′ − yt′ + azx′)j + (−tz′ − xy′ + yx′ − zt′)k

Which gives us that αβ = βα. Furthermore, if β = α, we do in particular have that t = t′,
x′ = −x, y′ = −y and z′ = −z, which gives us that αβ = t2 + ax2 + by2 − abz2, an element of
F since a, b, t, x, y, z ∈ F . �

Once we have a standard involution f , we can define the reduced trace and reduced norm
on B. A priori, the definitions might seem to depend on the particular choice of involution, but
as we will see shortly there is in fact no such choice.

The reduced trace trd : B → F of a standard involution f is the map

α 7→ α+ f(α)

Similarly we define the reduced norm nrd : B → F of a standard involution f is the map

α 7→ αf(α)

Lemma 2.27. If B is a nonzero F -algebra with standard involution f , then α ∈ B is a unit if
and only if nrdα 6= 0
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Proof, see[39, Part I, Exercise 3.5]

Remark. The reason for calling them reduced is their relation to the algebra trace and
norm where we have Tr(α) = 2 trd(α) and Nr(α) = nrd(α)2. Intuitively this makes sense as the
quaternion algebra is of dimension 4 giving us four automorphisms. The algebra norm would
then be the product of four elements while our definition is the product of two. This is however
not important for us, so we will not show this fact.

To show uniqueness we start off with a lemma

Lemma 2.28. Let K be an F -algebra of dimension 2 over F . Then K is commutative and has
a unique standard basis.

Proof. We follow [39, Lemma 3.4.2]. First let α ∈ K \ F be an arbitrary element. This exists
because K has dimension 2. We decompose K to K = F ⊕Fα. To show that K is commutative
we take any two elements (a, b), (c, d) ∈ F ⊕Fα and verify that we have (a, b)(c, d) = (ac, bd) =
(ca, db) = (c, d)(a, b) since F is a field.

Next we can always write α2 = tα− n for unique t, n ∈ F since 1, α forms a basis of K and
α2 ∈ K. Now Let · : K → K be any standard involution. Noticing that

α2 − (α+ α)α+ αα = 0

and keeping in mind that αα ∈ F we have our unique decomposition with t = trd(α) and
n = nrd(α). Thus in particular, the involution must satisfy t = α+ α so we have α = t− α.

Finally we need to show that this requirement, that α = t− α, is enough to determine the
involution on any element of K. Let β ∈ K, then β = a+ bα with unique a, b ∈ F . Giving us

β = a+ bα = a+ bα = a+ b(t− α)

Where we have only used the facts that F = F and that the involution is F -linear, and that
α = t− α. �

Corollary 2.29. If an F -algebra B has a standard involution, then this involution is unique.

Proof. Let α ∈ B \ F . Then α2 − trd(α)α+ nrd(α) = 0, so we have that the F -dimension of
F [α] is 2. Restricting the standard involution on B to F [α] gives us a unique involution by the
above lemma. This happens for every α ∈ B \F and for α ∈ F we have α = α, so the involution
must be unique. �

As a consequence, the standard involution we defined: t+xi+ yj+ zk 7→ t−xi− yj− zk is
the standard involution of a quaternion algebra with basis i, j, k. The definitions of the reduced
trace and reduced norm becomes well-defined and not dependent on the choice of involution.

3.2. Orders. In this and the following sections we will be more concrete by considering
quaternion algebras over Q instead of some arbitrary field. This allows us to simplify some
results and move faster through the theory. We will in particular use the fact that the ring Z is
PID (and thus noetherian). This is nevertheless no problem for us since we are only interested
in quaternions over Q and the Z-ideals and Z-orders that arise.
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Since we have already dedicated an entire section for lattices we will not repeat the infor-
mation here. Instead we note that lattices of a quaternion algebra B are simply Z-submodules
of B when we consider B as a vector space over Q.

Example 2.30. Let M be the lattice generated by 1, 2i, 3j and ij with i2 = −1 and j2 = −p for
some prime p. Then this is a full lattice in some quaternion algebra, but it is not closed under
multiplication. Take for example 2i · ij = −2j. This cannot be written as a linear combination
of the generators 1, 2i, 3j and ij. Therefore this is not an order.

As lattices are submodules they only require closure under addition. Sometimes we are
however interested in this multiplicative structure as well. Therefore we introduce the notion of
orders, which are lattices closed under multiplication.

Definition 2.31. An order O ⊆ B is a full lattice O that is also a subring of B.

Example 2.32. The lattice generated by the set 1, i, j, ij is an order.

Given a lattice I we can create its left order

OL(I) := {α ∈ B | αI ⊆ I}
and similarly its right order

OR(I) := {α ∈ B | Iα ⊆ I}
Since B is non-commutative, these orders need not be the same.

Lemma 2.33. OL(I) is an order

Proof. Inspired by [39, Lemma 10.2.7].
We need to show two things. That OL(I) is a full lattice and that it is a subring of B. To

show the subring property all we need is that α−β ∈ OL(I) and αβ ∈ OL(I) for all α, β ∈ OL(I).
This follows from easy inspections. We have (αβ)I = α(βI) ⊆ αI ⊆ I and

(α− β)I = {αγ − βγ | γ ∈ I} = {α′ − β′ | α′, β′ ∈ I} ⊆ I
Where the last equality follows from αγ, βγ ∈ I, so OL(I) is a subring of B.

To show that it is a full lattice we will use the properties of Lemma 2.8 quite a few times.
We need it to be finitely generated and satisfy QOL(I) = B. First, for every α ∈ B, αI is still
finitely generated. By the lemma we have a nonzero r ∈ Z satisfying r(αI) ⊆ I. Since r ∈ Z it
commutes with α and we have α(rI) ⊆ I giving us OL(I)Z = IZ and thus OL(I)Q = IQ = B.

Second, to show that it is finitely generated we use the fact that 1 ∈ B, so we must have
a nonzero r ∈ Z such that r = r · 1 ∈ I. Taking an arbitrary α ∈ OL(I) we already have that
αI ⊆ I, but since r ∈ I we get αr ⊆ I so we have OL(I)s ⊆ I giving us OL(I) ⊆ s−1I (a
nonzero integer has inverse in Q). Since s−1I is a finitely generated Z-module, and OL(I) is a
submodule of s−1I it is also finitely generated since Z is noetherian. �

We say that an element α ∈ B is integral if it satisfies a monic polynomial with coefficients
in Z. This could be defined in any of the following ways.
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Lemma 2.34. Let α ∈ B, then the following are equivalent.

(1) α is integral
(2) Z[α] is a finitely generated Z-module
(3) α is contained in a subring A that is finitely genereated as a Z-module

Proof: See [39, Lemma 10.3.2]

Corollary 2.35. If O is an order of B, and α ∈ O, then α is integral

Proof. Follows immediately from the above lemma as O is a finitely generated Z module of B
that is also a subring. �

Definition 2.36. A maximal order O is an order that is not properly contained in any other
order.

Lemma 2.37. An order O of B is maximal if and only if O(p) is a maximal Z(p) order for every
prime p

Proof: See [39, Lemma 10.4.3]

3.3. Ideals. In general we are not interested in ideals of B, but rather ideals of some order
O. This is just the classical notion of ideals from algebra. We must however separate left ideals
from right ideals as O (and B) is non-commutative.

Given two lattices I, J , we say that I is compatible with J if the right order of I is equal
to the left order of J . That is OR(I) = OL(J).

Furthermore, we say that I is right invertible if there exists some lattice I ′ such that
II ′ = OL(I). The lattice I ′ is called the right inverse. Similarly we say that I is invertible
if it has both a left and a right inverse. That is

II ′ = OL(I) = OR(I ′) and I ′I = OL(I ′) = OR(I)

If a lattice has an inverse then I−1 := {α ∈ B | IαI ⊆ I} is the unique inverse.
For an order O, we say that a Left fractional O-ideal is a lattice I ⊆ B such that

O ⊆ OL(I). Similarly a Right fractional O-ideal is a lattice such that O ⊆ OR(I).

Remark. Note that O already has a ring structure, so we are still able to talk about ideals
in the usual sense. We will for certain have O ⊆ OL(I) for any ordinary ideal I of O, so I is
also a fractional ideal.

Proposition 2.38. Let O be a maximal order, then every left or right fractional O-ideal is
invertible.

Proof. Let I be a left fraction ideal (the proof is the same for right fractional ideals). Notice
that I−1 is always defined and II−1 ⊆ OL(I). The last part is easily seen by taking α ∈ I and
β ∈ I−1, then αβI ⊆ I by the definition of I−1 so αβ ∈ OL(I).

We have O ⊆ II−1 as 1 ∈ I−1 and every α ∈ O satisfy αI ⊆ I since O ⊆ OL(I). Further-
more, since O is maximal we have O = II−1 = OL(I) = O, so I is invertible. �
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A lattice I is principal if there exists α ∈ B such that

I = OL(I)α = αOR(I)

and we say that I is generated by α.

Definition 2.39. A lattice I is integral if I2 ⊆ I

Lemma 2.40. OL(I) = OR(I) and OR(I) = OL(I)

Proof. [39, Lemma 16.6.7]
This follows from the definitions as α ∈ OL(I) if and only if αI ⊆ I if and only if αI = Iα ⊆ I

if and only if α ∈ OR(I). But since Orders are closed α ∈ OR(I) implies that α ∈ OR(I) �

Lemma 2.41. Let I be a lattice. Then the following are equivalent:

(1) I is integral
(2) For all α, β ∈ I, we have αβ ∈ I
(3) I ⊆ OL(I)
(4) I ⊆ OR(I)
(5) I ⊆ OL(I) ∩OR(I)

Proof. Taken from [39, Lemma 16.2.8].
(1) and (2) are equivalent by the definition of an integral lattice. To show that (1) and

(3) are equivalent we first notice that since II ⊆ I, then I ⊆ OL(I). Similarly, if I ⊆ OL(I),
then II ⊆ I. The same argument goes for the equivalence of (1) and (4). Then (3) and (4) are
equivalent to (5). �

Remark. Notice that by (3) I is a left OL(I)-ideal in the usual sense. It is necessarily
closed under left multiplication by OL(I) and already have the additive structure from being a
lattice. Furthermore, since every element of O is integral, then our slightly different notion of
integrality of lattices coincides with the standard notion.

Just like we defined the reduced norm of elements we define the reduced norm of lattices.

Definition 2.42. The reduced norm nrd(I) of I is the Z-submodule of Q generated by the
set {nrd(α) | α ∈ I}

Lemma 2.43. The reduced norm nrd(I) is a fractional ideal of Q - that is, it is finitely generated
as an Z-module

Proof: See [39, Lemma 16.3.2]
In other words, we can write nrd(I) = aJ for a ∈ Q and J ⊂ Z an ideal. Since Z is a PID

this is in turn generated by a single element J = (b) for some b ∈ Z, thus we can always write
nrd(I) = a(b) = (c) for some c ∈ Q. As a consequence we will rarely talk about the fractional
ideal nrd(I) ⊆ Q, but rather the element nrd(I) ∈ Q.
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Similarly, when I is integral, the reduced norm of its elements, nrd(α), lie in Z, so the
reduced norm of I is actually just generated by the greatest common divisor of its elements.
That is

nrd(I) = gcd({nrd(α) | α ∈ I})
If I is principal, generated by α, we have nrd(I) = nrd(α)Z. If α ∈ B we have nrd(αI) =

nrd(α) nrd(I) by the multiplicative structure of nrd. That is

nrd(αI) = {nrd(αγ) | γ ∈ I} = nrd(α){nrd(γ) | γ ∈ I} = nrd(α) nrd(I)

Proposition 2.44. Let O be a maximal order and I an left O-ideal, then II = nrd(I)O.

Proof: See [39, Section 16.6.14] adding that O ⊆ OL(I) implies O = OL(I) when O is
maximal.

We finish this section with the main theorem of quaternion ideals.

Theorem 2.45 (Main theorem of quaternion ideals). Let B be a quaternion algebra over Q and
I ⊆ B be a lattice. Then the following are equivalent

(1) I is locally principal (I(p) = I ⊗Z Z(p) is principal for all primes p)
(2) I is invertible
(3) I is right invertible
(4) I is left invertible
(5) nrd(I)2 = [OR(I) : I] and
(6) nrd(I)2 = [OL(I) : I]

Proof: See [39, Theorem 16.7.7]

3.4. Ramification. One way to classify quaternion algebras is based on their ramification
which we will use for describing the endomorphism ring of some elliptic curves later on.

We define the set of places to be the set of primes and ∞. These correspond to embeddings
of Q into Qp (the p-adic numbers) for the primes and R for ∞.

Definition 2.46. A quaternion algebra B is ramified at a place v if Bv := B ⊗Q Qv is a
division ring. Otherwise B is split (unramified).

We write the set of ramified places as Ram(B) and by convention we represent our places
with the primes and ∞.

Definition 2.47. The discriminant of a quaternion algebra B is the integer

disc(B) :=
∏

p∈Ram′(B)

p ∈ Z

Where Ram′(B) is the set of ramified places except ∞ if that is inside the set.

Note, in general one defines the discriminant to be an ideal, but this corresponds to a
generating integer in Z as every ideal is principal

Example 2.48. Let B be the quaternion algebra ramified at p and ∞, then disc(B) = p.
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The usefulness of ramification comes from the following proposition where we see that it is
enough to look at the local fields Qv instead of over Q when checking if two quaternion algebras
are isomorphic.

Proposition 2.49. Let B,B′ be quaternion algebras over Q, then the following are equivalent

(1) B ∼= B′

(2) RamB = RamB′

(3) Bv ∼= B′v for all places v and —item Bv ∼= B′v for all but one place v

Proof: See [39, Proposition 14.3.1]

3.5. Discriminants. Similar to how we defined the discriminant of a quaternion algebra,
we can look at the discriminant of lattices. Here the discriminant is a measure of volume and
we will see why we used a similar name for the discriminant of a quaternion algebra shortly.

Suppose I is a lattice in B generated by {α1, . . . , αn}, then we say that the discriminant
of I is

disc(I) = |det(trd(αiαj))|i,j
Clearly for orders O, since they are integral, every αi ∈ O has reduced trace in Z, so the
discriminant of O is in Z.

Lemma 2.50. Let I, J ∈ B be lattices. Then

disc(I) = [J : I]2 disc(J)

Proof: See [39, Lemma 15.2.15]

Definition 2.51. Let I be a lattice, then the reduced discriminant, discrd(I) is defined to
be the square root of disc(I), that is

disc(I) = discrd(I)2

Theorem 2.52. An order O ⊆ B is maximal if and only if discrd(O) = disc(B)

Proof: See [39, Theorem 15.5.5]
Thus, thinking of the reduced discriminant as a measure of volume we see that a smaller

order has smaller discriminant, and the maximal orders have the largest possible discriminant,
equal to the entire quaternion algebra.

3.6. Ideal Classes. Unlike number fields where there simply was one ideal class group,
when dealing with non-commutative rings one can deal with either left ideals, right ideals or
two sided ideals. We make a choice of dealing with right ideal classes and follow the book by
John Voight [39].

Definition 2.53. Let I, J be lattices. We say that I, J are in the same right class and write
I ∼R J if there exists some α ∈ B× such that αI = J .

Proposition 2.54. The relation ∼R is an equivalence relation
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Proof. Reflexivity: I ∼R I since 1 ∈ B× and 1I = I. Symmetry: if I ∼R J with αI = J for
α ∈ B× we have I = α−1J so J ∼R I. Transitivity: if αI = J and βJ = K we have αβI = K
and αβ ∈ B×. �

We denote the right equivalence class of the lattice I as [I]R. If I is invertible then αI is
still invertible, so every element of the class is invertible. We then say that [I]R is an invertible
class.

Definition 2.55. The right class set of the order O is

CLSR(O) := {[I]R | I is an invertible right fractional O-ideal}

For simpler notation we write just CLS(O) instead of CLSR(O). The element [O]R is always
in CLS(O) and

We say that two orders, O and O′, are of the same type if there exists some α ∈ B× such
that O′ = α−1Oα

Lemma 2.56. The orders O,O′ are of the same type if and only if they are isomorphic as
Z-algebras.

Proof: See [39, Lemma 17.4.2]

Definition 2.57. Two orders O,O′ are connected if there exists a locally principal fractional
O,O′-ideal J ⊂ B called a connecting ideal

Lemma 2.58. If O,O′ are maximal orders, then OO′ is a O,O′-connecting ideal.

Proof: See [39, Lemma 17.4.7]

Proposition 2.59. Let O,O′ be maximal orders. Then there is a unique integral O,O′-connecting
ideal I of minimal reduced norm. Furthermore we have

nrd(I) = [O : O ∩O′]

Proof: See [39, Exercise 17.4]
We say that B is definite if it is ramified at ∞. The notation discrd(O) is the reduced

discriminant of O, which equals the discriminant of B for maximal orders. We use the notation
N(I) := nrd(I)2 for the algebra norm instead of the reduced norm we introduced.

Proposition 2.60. Let B be a definite quaternion algebra over Q and let O ⊆ B be an order.
Then O× = O1 is a finite group, and every right ideal class in CLS(O) is represented by an
integral right O-ideal with

N(I) ≤ 8

π2
discrd(O)

And the right class set CLS(O) is finite.

Proof: See [39, Proposition 17.5.6]
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3.7. Bilinear forms and orthogonality. In this section we will introduce bilinear forms
and define orthogonal complements in the quaternion algebra B.

Let B = (a, b | Q) be a quaternion algebra, then the reduced norm map

nrd : B → Q nrd(t+ xi+ yj + zij) = t2 − ax2 − by2 + abz2)

can be thought of as a quadratic form - that is a homogenous polynomial of degree 2 in
Q[t, x, y, z], where the accompanying bilinear map is

T : B ×B → Q (α, β) 7→ nrd(α+ β)− nrd(α)− nrd(β)

We say that two elements α, β ∈ B are orthogonal if T (α, β) = 0, where T is the map
above. A subspace V of B is the orthogonal complement of another subspace W of B,
denoted V = W⊥ if

V = {α ∈ B | T (α, β) = 0 for every β ∈W}

Proposition 2.61. Let B = (a, b | Q) and 1, i, j, ij be the standard basis (i2 = a and j2 = b),
then Q(i)⊥ = Q(i)j in B.

Proof. We show this in the usual way by showing containment. First let α ∈ Q(i)⊥, then we
have T (α, t′ + x′i) = 0 for any t′, x′ ∈ Q. We want to show that α ∈ Q(i)j, so we write it as
α = t+ xi+ yj + zij and simply compute the bilinear map

T (α, t′ + x′i) = 2tt′ + 2xx′a = 0 ⇐⇒ tt′ = −xx′a

Since that equation should hold for every x′, t′ it must in particular hold for t′ = 1 and when
x′ = 1 and x′ = 2. That is it must satisfy t = −ax and t = −2x. Thus the only possibility is
t = x = 0, so α = yj + zij ∈ Q(i)j.

Second, let α ∈ Q(i)j, then α = (y + zi)j = yj + zij. If β ∈ Q(i) we have β = t + xi,
computing

T (α, β) = (t2 − ax2 − by2 − abz2)− (−by2 − abz2)− (t2 − ax2) = 0

shows us that α ∈ Q(i)⊥ �

3.8. Creating prime ideals. We will end the section on quaternions with an algorithm
that allows us to turn an ideal into a prime ideal. This is a result of [22], expanded by other
authors. When we deal with supersingular curves in Chapter 4 we will make use of this algorithm.

Whenever we have a maximal order O and some left O-ideal I, we want to find another left
O-ideal J of prime norm. To accomplish this, we use Lemma 4.11, and simply find an element
of I of reduced norm p/N for some prime p.

Proposition 2.62. Algorithm 3 returns a prime ideal and runs in expected time bounded by
log4(p)

Proof idea. If we assume that nrd(α)/N behave like a random number when α is sampled as
in the algorithm, what we need to ensure is that there are sufficiently many numbers in [−m,m]4

such that a prime can be found in reasonable time. First we notice that since nrd(I) = N and
α ∈ I, then we must have N | nrd(α), so nrd(α)/N ∈ Z.
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Algorithm 3: MakeIdealPrime(I)

Input: A left O-ideal I represented by Minkowski reduced basis (α1, α2, α3, α4)
Output: An isomorphic left O-ideal J of prime norm, isomorphic to I

1 N ← nrd(I) ;

2 repeat
3 α←

∑
i xiαi for xi ∈ [−m,m]4

4 until nrd(α)/N is prime;

5 return I(α/N)

A rather tight bound for the generators αi can be shown to be

p2 ≤ 16 nrd(α1) nrd(α2) nrd(α3) nrd(α4)/N4 < 4p2

This is accomplished by viewing the ideal as a lattice and mapping it to the Hamiltonian
quaternion algebra (−1,−1 | R) which works nicely since B is ramified at∞. Next using results
from [6], [11] and [17, Section 16] we can get the above bounds. It will however be a massive
detour to only provide a slightly more detailed description on the bounds.

Using the above bounds, the values of nrd(αi)/N are roughly
√
p. We can think of the

possible values of nrd(α)/N as an arithmetic progression with difference nrd(αi)/N . In [22,
Section 3.1] it is claimed that it is expected to be enough prime candidates when m is roughly
log(p). Thus giving a running time bounded by log4(p) and output ideal of prime norm roughly
log2(p)

√
p.

The exception is when I is not an arbitrary ideal, for then the values nrd(αi)/N might not
be distributed evenly. In particular nrd(α1)/N might be a lot smaller than

√
p, while nrd(α4)/N

might be a lot bigger than
√
p. Galbraith, Petit and Silva solves this in [18] by then simply

using linear combinations of α1 and α2, leaving out the large α3 and α4 parts. �

4. Elliptic Curves

In this section we will recall some well known facts about elliptic curves. We will define
them, show how the group operation works, define K-rationality, and look a bit further into
isogenies. This section is considered well-known and included only to provide clear notation and
state results to be used for further references later.

In general an elliptic curve is a smooth projective curve of genus 1 with a distinguished
point O (usually the point at infinity) that give it a group variety structure. This allows for
points to be added together, having the identity element O. In general such curves can be
described with a homogeneous polynomial in three variables with coefficients in K, the closure
of whatever field we are working over (In our case K will be C or Fpn for some n). It can be
shown that if charK 6∈ {2, 3}, then the defining polynomial can be dehomogenized and written
as

y2 = x3 + ax+ b
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for a, b ∈ K. This is called the Weierstrass equation of an elliptic curve. The smoothness
requirement is satisfied whenever the discriminant

∆ := −16(4a3 + 27b2)

is nonzero. We will denote this E : y2 = x3 + ax+ b to say that E is the elliptic curve defined
by the given polynomial. The point at infinity is obtained from the embedding in the projective
plane P2(K), where our polynomial is homogenized to ZY 2 −X3 − aZ2X − bZ3, giving us the
point O := [0 : 1 : 0]. We will in general use the notation [X : Y : Z] for projective coordinates
and (x, y) for affine coordinates. If this is unfamiliar concepts to the reader, feel free to always
think of the elliptic curve points as (x, y), solutions to y2 = x3 + ax + b, with the additional
point (0, 1). See Figure 4 for an illustration

x

y

(a) Over R

x

y

(b) Over F439

Figure 4. The elliptic curve E : y2 = x3 + x over two fields

The group structure is what makes these objects interesting in cryptography. With the
designated identity element O we can obtain an abelian group where we write P + Q for the
operation on two points. Geometrically we can define this operation by looking at intersection
points. Letting P,Q be two arbitrary points on E, then we can construct a line through P and
Q (it will be the tangent line at P if Q = P ), which by Bezout’s theorem must intersect E at
a third (not necessarily distinct) point R′ = [X : Y : Z]. If R′ 6= O we flip the y coordinate to
obtain R = [X : −Y : Z], otherwise R = R′ = O (technically we take the third intersection point
of the line through R′ and O). Then we simply define P + Q := R, see Figure 5. To simplify
notation we will write [2]P for P + P and extend this to [m] for multiplication by m (brackets
are there to make this operation distinct from scalar multiplication of the coordinates).
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P

Q

(a) P and Q

P

Q

R′

R

(b) Intersection point R′ and R := P +Q

Figure 5. Illustration of group operation on y2 = x3 + 1

Sometimes we are interested in curves defined over some non-closed field, this is especially
true in cryptography. We say that E is defined over K, and write E/K, if the coefficients
a, b are in K (not the algebraic closure of K). Sometimes it might be necessary to take a small
extension field of K to obtain the coefficients. Similarly we are sometimes only interested in the
K-rational points on E, namely the points (x, y) ∈ E with x, y ∈ K and the point O, which
we will denote E(K).

Another important subset of points is the l-torsion group, E[l], which is simply defined as
the points of order dividing l

E[l] := {P ∈ E | [l]P = O}

Sometimes we are even just interested in the K-rational l-torsion points, namely E(K)[l], that
is the subset of E[l] whose points are defined over K.

As with any other useful algebraic object we can define maps between elliptic curves, this
is what will be our primary interest in this thesis. We say that an isogeny φ : E → E′ is a
map of elliptic curves if φ is a morphism of varieties that preserves O, that is φ(OE) = φ(OE′).
The second condition turns φ into a group homomorphism of the underlying group structure,
while the first condition preserves the variety structure. It is common to exclude the constant
isogeny φ : E → O, and in this case all isogenies are surjective - a result that follows from
being a morphism of projective curves. We denote the set of isogenies between E and E′ as
Hom(E,E′).

We say that two elliptic curves E,E′ are isogenous if there exists an isogeny φ : E → E′.
Similarly we say that E,E′ are isomorphic, and write E ∼= E′, if there exists two isogenies
φ : E → E′ and ψ : E′ → E such that φ ◦ ψ = idE′ and ψ ◦ φ = idE . Whenever we
have an isogeny φ : E → E we call it an endomorphism and under isogeny composition
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the set of all endomorphisms, End(E), form a ring. That is (φ + ψ)(P ) = φ(P ) + ψ(P ) and
(φ ◦ ψ)(P ) = φ(ψ(P )).

A useful invariant for elliptic curves is the j-invariant which is defined in terms of the
coefficients a, b as

j(E) = 1728
4a3

16(4a3 + 27b2)

In fact we have that j(E) = j(E′) if and only if E ∼= E′.

4.1. Isogenies. To be more explicit about the isogenies we need the notion of function
fields. In general this can be done for the projective case, but it is more enlightening to think
of it in the affine case where we view E as the zeros of f(x, y) = y2−x3− ax− b (and the point
O). In this case the coordinate ring of E, K[E] is defined as the integral domain K[x, y]/(f).
If we take a nonzero polynomial in the coordinate ring we know that it will not vanish on every
point of E. This is then extended to the function field of E, K(E), by taking the field of
fractions of K[E]. In this case every isogeny φ : E → E′ (as long as we exclude the constant
isogeny) can be extended to provide an injection of function fields

φ∗ : K(E′)→ K(E)

where we simply take φ∗(f) = f ◦ φ. This allows us to create the most abstract definition
for the degree of an isogeny. We say that the degree of φ is the degree of the field extension
K(E)/φ∗K(E′).

This extension can be split into an purely inseparable extension L ⊇ φ∗K(E′) and a sep-
arable extension K(E) ⊇ L, where we denote the respective degrees as degi(φ) and degs(φ).
Note however that we are usually interested in separable isogenies. In those cases the degree
corresponds to the number of points in the kernel which can be thought of as the number of
points that gets mapped to the same point under the isogeny.

Example 2.63. Let E1 : y2 = x3 + x and E2 : y2 = x3 + 13 be elliptic curves over F23. Then
the isogeny φ : E1 → E2, given by rational maps (of FF 23(E1))

φ(x, y) =

(
x3 + 10x2 + 7x+ 10

x2 + 10x+ 2
, y

x3 − 8x2 − 8x+ 9

x3 − 8x2 + 6x+ 10

)
is an separable isogeny of degree 3. This can be illustrated by looking at how many points of
E1 are mapped to the same point of E2. What we can see is that the points (1,−5), (13,−5)
and (16, 8) of E1 are all mapped to the point (17, 21) = (17,−2) on E2 through this isogeny,
thus justifying the degree. This is illustrated in Figure 6.

Suppose K is the field Fq := Fpn for some n, and let E/Fq be an elliptic curve. Then the
q-th power Frobenius map

π : (x, y) 7→ (xq, yq)

is a purely inseparable endomorphism of degree q. This will be an endomorphism of E as it acts
like the identity on E(Fq). Note however that although it has a positive degree it has trivial
kernel as it acts like the identity.
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x

y

x

y

Figure 6. Illustration of the isogeny φ : E1 → E2 with E1 : y2 = x3 + x and
E2 : y2 = x3 + 13, both defined over F23

The Frobenius map gives us a nice way to compute the number of points on an elliptic
curve.

Theorem 2.64. Let E be an elliptic curve defined over Fq. Let a = q + 1−#E(Fq), then

π2 − [a] ◦ π + [1] = [0] ≡ O
where π is the qth power Frobenius, furthermore a is the unique integer that satisfies this equa-
tion.

Proof: See Washington [40, Theorem 4.10 Section 4.2]

Remark. The integer a in the above equation is in fact the trace of π. This is more easily
seen when viewing π in the abstract imaginary quadratic field or quaternion algebra. To see
this in the case of elliptic curve endomorphisms we need to view it as an action on the m-torsion
subgroups for various integers m. Then we can represent it as a 2 by 2 matrix which we can
take the trace of. Therefore we often see it denoted by t and called the Frobenius trace

Theorem 2.65 (Hasse). Let E be an elliptic curve over Fq. Then the order of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√
q

Proof: See Washington [40, Theorem 4.2 Section 4.2]
Which again allows us to verify whether two elliptic curves are isogenous or not.

Theorem 2.66 (Tate). Let E/Fq and E′/Fq be two elliptic curves. Then E and E′ are Fq-
isogenous if and only if #E(Fq) = #E′(Fq).

Proof: See Tate [38, Theorem C4.1].
Separable isogenies on the other hand are much easier to deal with and they are the main

interest for us. They are uniquely defined (up to isomorphism) by their kernel, ker(φ), and
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similarly the number of points in the kernel will equal the degree of the isogeny. Furthermore
we have a useful result on kernel containment as depicted in Figure 7.

Corollary 2.67. Let φ : E1 → E2 and ψ : E1 → E3 be non-constant isogenies and assume that
φ is separable. If kerφ ⊂ kerψ then there is a unique isogeny λ : E2 → E3 satisfying ψ = λ ◦ φ

Proof: See Silverman [36, Corollary III 4.11]

E1 E2

E3

φ

ψ

λ

Figure 7. Kernel containment as in Corollary 2.67

With every isogeny φ : E → E′, there exists a unique dual isogeny φ̂ : E′ → that satisfy

φ̂ ◦φ = [deg(m)]. See Silverman [36, Theorem III 6.1(a)]. This dual isogeny satisfy many useful
properties.

Theorem 2.68. Let φ : E → E′ be an isogeny, then the following holds true

(1) Let m = deg(φ), then φ̂ ◦ φ = [m] on E and φ ◦ φ̂ = [m] on E′

(2) Let ψ : E′ → E′′ be another isogeny, then

ψ̂ ◦ φ = φ̂ ◦ ψ̂
(3) Let ψ : E → E′ be another isogeny, then

ψ̂ + φ = ψ̂ + φ̂

(4) For all m ∈ Z we have [̂m] = [m] and deg([m]) = m2

(5) deg(φ̂) = deg(φ)

(6)
̂̂
φ = φ

Proof: See Silverman [36, Theorem III 6.2] Notice how the dual corresponds nicely with the
conjugate/standard involution defined in the section on quaternions. This is a property we will
explore more in Chapter 4.

4.2. Endomorphism ring and classifictaion of elliptic curves. We briefly discuss the
endomorphism ring before ending this section on elliptic curves.

Corollary 2.69. Let E be an elliptic curve. Then the endomorphism ring is either Z, an order
in an imaginary quadratic field, or an order in a quaternion algebra.

Proof: see Silverman [36, Corollary III.9.4].
Notice that since multiplication by m is always an endomorphism, so the identification

Z ⊆ End(E) is clear. Furthermore, if we are working over a finite field we always have the



30 2. MATHEMATICAL FOUNDATIONS

Frobenius endomorphism which is not a multiplication, so Z ( End(E) and we have that the
endomorphism ring is either an order in an imaginary quadratic field or a quaternion algebra.
Similarly if K has characteristics 0, then End(E) cannot be an order in a quaternion algebra.

We say that E is supersingular if End(E) is an order in a quaternion algebra and ordinary
otherwise.

Theorem 2.70. Let E/Fq be a supersingular elliptic curve, then B = End(E)⊗Q is a quaternion
algebra over Q ramified at p = charFq and ∞. Furthermore, End(E) is a maximal order in B.

Proof: See Voight [39, Theorem 42.1.9]
An interesting fact about supersingular elliptic curves is that the j invariant is defined

over Fp2 implying that every supersingular elliptic curve defined over E/Fp has an isomorphic
elliptic curve defined over Fp2 [36, Theorem V 3.1]. This tells us that there are only finitely
many supersingular elliptic curves up to isomorphism, and in fact this number only depends on
the characteristics of K.

Theorem 2.71. Let K be a field of characteristics p > 3, then the number of supersingular
elliptic curves defined over K up to isomorphism is

[ p
12

]
+


0 if p ≡ 1 (mod 12)

1 if p ≡ 5 (mod 12)

1 if p ≡ 7 (mod 12)

2 if p ≡ 11 (mod 12)

Proof: See Silverman [36, Theorem V 4.1(c)]
Finally we mention the automorphism group of an elliptic curve. By automorphism we

mean an endomorphism which is also an isomorphism. Suppose that the characteristics of K
is neither 2 nor 3. Then the automorphism group of E has order 4 if j(E) = 1728, order 6 if
j(E) = 0, and order 2 if j(E) 6∈ {0, 1728}. See silverman [36, Theorem III 10.1]. In particular
for most j-invariants, there can be no automorphism of order greater than 2. That is, if φ is an
automorphism then φ = id or φ2 = id.



CHAPTER 3

Ordinary Elliptic Curves and Isogenies

This chapter is about constructing isogenies between ordinary elliptic curves. We will begin
by building up the motivation for an algorithm by Galbraith. Then, in the first section, we
will discuss the endomorphism ring further by looking at what the possibilities are for ordinary
elliptic curves. We will describe an algorithm for determining the endomorphism ring of such
curves, and provide an algorithm for going from an elliptic curve with an arbitrary endomorphism
ring to one that has a more useful endomorphism ring.

In the second section we will discuss why this is more useful by first examining how ordinary
elliptic curves over Fp can be lifted to elliptic curves over C. This allows us to relate the notion
of isogenies with holomorphic maps between lattice quotients C/Λ, which again lets us relate
them to ideals of orders in number fields. Since orders are well studied this gives us plenty of
results which we can use to determine the size of the graph and tell us which isogenies we should
look at.

In the third section we will put everything together to a complete algorithm for computing
isogenies between arbitrary ordinary elliptic curves. This section will conclude this chapter
with a short discussion on the running time of the algorithm. Overall, our goal is to solve the
following problem.

Problem. Given two ordinary elliptic curves E1, E2, defined over some finite field Fq, find
an isogeny φ : E1 → E2, also defined over Fq.

A natural place to start is to think of this more graph-theoretically. We let elliptic curves
be nodes and isogenies be edges. If we allow for edges of arbitrary degrees we would have edges
between every node, therefore we instead limit our graphs to isogenies of some fixed degree l,
as depicted in Figure 8.

E

E1E2

E3

E4 E5

E6

Figure 8. Graph of elliptic curves connected to E through 5-isogenies

31
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This is a quite useful representation, however we are interested in computing explicit isoge-
nies between specific nodes of the graph. Firstly the question of how to compute the isogenies
and the connected elliptic curves arise. One could compute the l-torsion, find the l+1 subgroups,
compute their corresponding isogenies and then find the elliptic curve of the codomain.

An alternative approach would be to use the modular polynomial, Φl(X,Y ) ∈ Z[X,Y ].
It is a polynomial of degree l+ 1 which allows us to retrieve the j-invariants connected to some
curve with a single l-isogeny rather easily.

Remark. The actual description of the modular polynomial would takes us on a path far
away from what we are really interested in. More details on the polynomial can be found in
MIT Lecture Notes on Elliptic Curves [37, Lecture 20] and Silverman’s Advanced Topics in the
Arithmetic of Elliptic Curves [35, Section II.6] where it is denoted Fn instead of ΦN .

Using the following theorem we see that the roots of Φl(j1, Y ) (with respect to Y ) are exactly
the j-invariants corresponding to curves that are connected to j1 in the l-isogeny graph.

Theorem 3.1. Let l > 1 be an integer and let Fq be a field of characteristic p, such that p - l.
For any j1, j2 ∈ Fq, we have Φl(j1, j2) = 0 if and only if j1 and j2 are j-invariants of elliptic
curves over Fq that are connected by a cyclic isogeny of degree l defined over Fq.

Proof: For Characteristics 0, see [37, Chapter 21], while for prime characteristic, see [20].
We can then construct a similar graph where the nodes are the different j-invariants, and

edges are l-isogenies as depicted in Figure 9.

j1

j2

j3

j4

Figure 9. Graph of j-invariants

This helps us quite a lot along the way and we could begin a standard graph-search algorithm
starting at j(E1) and search until we found j(E2) by changing the degree l every once in a while.
Then, when a path was found, we could compose it with an isomorphism to get the actual
isogeny φ : E1 → E2. Such an approach would work, however we can be much more efficient by
exploiting the structure of the endomorphism rings even further.

1. Computing the endomorphism ring

In this section we will look further into the endomorphism ring. We will first describe
what sorts of endomorphisms rings we can find, then an algorithm for computing the actual
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endomorphism ring. Finally we will use this knowledge to build an algorithm to move our
known endomorphism ring to another type which we will later show to be more useful.

Recall that for ordinary elliptic curves, by Corollary 2.69, the endomorphism ring is either
Z or an order in an imaginary quadratic field. Furthermore, over finite fields, we have that
the Frobenius map π : E → E is an endomorphism, so Z 6⊆ Z[π] ⊆ End(E). giving us that
Z 6= End(E). Let us write K for this imaginary quadratic field. In fact, this π allows us to
describe K entirely by Theorem 2.65.

Furthermore by Theorem 2.64 we know that π has the characteristical polynomial π2− tπ+
q = 0 with t = q + 1−#E(Fq). Thus it is an element of degree 2 in K \Q. This gives us that

K = Q(
√
t2 − 4q)

a standard result in algebraic number theory which can be seen in Pierre Samuel [33, Section 2.5].

Example 3.2. Let E : y2 = x3 + 2x+ 3 be an elliptic curve defined over F101. The trace of the
Frobenius, t = 6, so the endomorphism ring of E is an order in

K = Q(
√
t2 − 4q) = Q(4

√
−23) = Q(

√
−23)

This gives us that the maximal order OK is equal to Z[
√
−23+1

2 ]. The discriminant of K is simply

∆K = −23. Since the roots of π are 3± 2
√
−23, we get that Z[π] = Z[3 + 2

√
−23] = Z[2

√
−23].

Notice that we cannot remove 2 here since 2−1 6∈ Z.

This would not be very useful if these number fields were different for various elliptic curves.
However from Tate’s theorem 2.66, we get that two isogenous curves have the same number of
points, so their Frobenius trace t are the same and their endomorphism rings are orders of the

same imaginary quadratic field Q(
√
t2 − 4q). This motivates us to dive deeper into algebraic

number theory and study their endomorphism rings further.
Let OK be the ring of integers of K, we then have that O := End(E) lies somewhere between

Z[π] and OK . That is

Z[π] ⊆ O ⊆ OK
Kohel [21] has studied these endomorphism rings quite extensively, so we have a couple of

useful results which we can use to navigate the graph of isogenous elliptic curves.

Proposition 3.3. Let E be an ordinary elliptic curve over Fq = Fpn and φ : E → E′ an isogeny
of prime degree l such that l 6= p, then l | [End(E) : End(E′)] or l | [End(E′) : End(E)]

Proof: See Kohel [21, Proposition 21].
The above proposition gives us some information about the isogenies connecting the endo-

morphism rings. Let O1 and O2 be the endomorphism rings of E1 and E2. Then if l | [O1 : O2],
we know that the isogeny φ : E1 → E2 must be composed of an isogeny of degree l, so l | deg(φ).

We use this to classify the different endomorphism rings which can occur. We know that
whenever we have an order, O, in OK it is just a subring and it is of the form O = Z + cOK
(See Theorem 3.16). So we are left with a finite number of orders of the form O = Z + cOk
where c divides [OK : Z[π]].
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Example 3.4. Extending Example 3.2, we have

Z
[
2
√
−23

]
⊆ O ⊆ Z

[√
−23 + 1

2

]
Notice that Z[2

√
−23] = Z+ 4OK , so the number c = 4 is the conductor of Z[π], thus the order

O can be any of Z + 4OK , Z + 2OK or OK .

The way we classify the endomorphism rings is using the notion of a volcano where we say
that an isogeny φ : E → E′ of degree l is

Ascending: If End(E′) : End(E)] = l (that is the End(E′) contains End(E)).
Descending: If [End(E) : End(E′)] = l (End(E′) is contained in End(E)).
Horizontal: If End(E) ∼= End(E′)

As illustrated in Figure 10.

E

Ea

Eb

Er

Ascending

Horizontal

Descending

Figure 10. Illustration of isogenies from E where End(Eb) ( End(E) (
End(Ea) and End(E) ∼= End(Er)

We call the very top of this volcano (the place where no more ascending isogenies exists)
for the surface, while the very bottom (where no descending isogenies exists) the floor. We call
the different orders for the levels of the volcano. That is, if φ : E → E′ is a horizontal isogeny,
then E and E′ are on the same level. Naturally we have that if End(E) ∼= Z[π] then it is on
the floor of the l-volcano and if End(E) = OK it is on the surface. It may however newer reach
those end-orders using only l-isogenies, so the surface or floor of an l-volcano may be different
from OK and Z[π] given some starting curve E.

We can describe the edges of this volcano even further using another one of Kohel’s propo-
sitions.
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Proposition 3.5. Let E be an ordinary elliptic curve over Fq and O be its endomorphism ring.
Let c = [OK : O], t = Tr(π), and l be a prime. Then every l-isogeny φ : E → E′ arises from the
following cases.

(1) If l - c then there are exactly
(

1 +
(
t2−4q
l

))
1 horizontal elliptic curves from E.

(2) If l | c then there are no horizontal l-isogenies starting at E.
(3) If l | c there is exactly one ascending l-isogeny starting at E
(4) If l | [O : Z[π], then there are l + 1 isogenies of degree l going to different elliptic

curves where the horizontal and ascending isogenies are as above and the remaining
are descending.

(5) If l - [O : Z[π]] then there is no descending l-isogeny.

Proof: See Kohel [21, Proposition 23].
From this proposition, we see that we can actually make a volcano-looking structure from

the isogeny graph we created before as depicted in Figure 11.

Figure 11. Isogeny Volcano of degree 2 isogenies with a of total 4 levels

This volcano along with Proposition 3.5 gives us a lot of information about how to reduce the
search among the isogeny graph. Firstly we notice that it is only when End(E1) ∼= End(E2) that

1Where
(
a
l

)
is the Legendre symbol
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we would want to go through horizontal isogenies to find a match. Thus the first step should be
to move End(E1) and End(E2) to the same level 2. If we could compute the actual endomorphism
ring of E1 and E2, this would be trivial, then we could simply compute c1 = [OK : O1] and
c2 = [OK , : O2], factor them, and look at each prime to determine if one needs to go up, down
or stay at the same level with respect to that prime. Kohel has constructed an algorithm for
determining how far it is to the bottom of am l-isogeny graph, and thus telling us to what degree
l divides c. The algorithm requires being able to compute OK and Z[π] which only requires
computing #E(Fq) which can be done in O(log(q)8) steps by Schoof’s Algorithm [34, Section
5] explained in [36, Section XI.3].

1.1. Find the floor. What one notices is that if l divides [OK : Z[π]], then l - [O : Z[π]] if
and only if there is a single l-isogeny over Fq starting from E. That is the modular polynomial
Φl(j(E), Y ) has exactly one root. Similarly we have a nice result related to the dual isogeny.

Proposition 3.6. Let φ be a horizontal (resp ascending, descending), then φ̂ is horizontal (resp
descending, ascending)

Proof. This proposition is immediate once we recall that φ : E → E′ has dual φ̂ : E′ → E. �

Which implies that if we start with a descending isogeny φ and select the next isogeny
as something different from its dual, we must continue a descending path. To ensure that we
choose a non-backtracking isogeny ψ after having chosen φ : E → E′ can simply quotient out
the j-invariant of E from the modular polynomial of E′, that is

Φl(j(E
′), Y )/(Y − j(E))

Now, let us assume that lm | c but lm+1 - c for some integer m. Kohel’s algorithm is then
Algorithm 4 taking the value lm and E as input and returning the level, n, at which E is.

The algorithm is depicted by Figure 12 where the orange nodes are those that are visited and
the green node corresponds to the terminal node. This algorithm terminates correctly because
if one starts on the floor, it returns 0 immediately. If one is in the middle of the volcano, then
there are at most m steps to the floor, and taking two paths gives you either a path upward
or downward the volcano which must terminate after at most m steps. If you move upward
and hit the surface you simply start moving around with horizontal isogenies and possibly going
downward again after some steps. If you start on the surface there are exactly m steps to the
bottom, but you need not have selected any descending isogenies, so you may essentially just
move around the surface, therefore the last if-statement ensures that the algorithm terminates
even in this case.

Now, moving horizontally is only possible when l - c so it makes sense to move E1 and E2

to the surface of the volcano (making [OK : O] = 1), before trying to connect them. Doing so
would allow us to not only use primes not dividing [OK : Z[π]] but also those that do divide that

2We shall shortly see that it is beneficial to move both curves to the surface instead of the same level, but

the approach is more or less the same.
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Algorithm 4: Kohel’s Find the floor

Input: l,m,E, such that lm | [OK : End(E)]
Output: Largest n such that ln | [End(E) : Z[π]]

1 n← 0 ;

2 j1 ← j(E) ;

3 if Φl(j1, Y ) has exactly one root then
4 return 0 ; // E is already on the floor

5 end

6 j1, j2 ← Φl(j1, Y ) ; // Any two distinct roots of the polynomial

7 while Φl(j1, Y ) and Φl(j2, Y ) has more than one root do
8 j1 ← Φl(j1, Y )/(Y − j1) ; // Any root

9 j2 ← Φl(j2, Y )/(Y − j2); // Any root

10 n← n+ 1;

11 if n = m then
12 return m ; // E is on the surface

13 end

14 end

15 return n

index 3. We can go to the surface by modifying Algorithm 4 slightly. At each step, starting at
E1 one computes all the j-invariants using Φl(j(E1), Y ). Then one computes the level of each
j-invariant, and keeps the one corresponding to the curve above E1. This process is repeated
until we have the j-invariant of an elliptic curve at the surface, it must necessarily be repeated
for each l | [OK : Z[π].

Example 3.7. Continuing Example 3.2 we have that c = 4, so it is only necessary to look at the
degree 2 isogenies, and the floor should be reached within 2 steps. We know that the j invariant
of E is 74. Computing Φ2(74, Y ) gives us only one root, 98 (over F101), so we are already on
the floor. Going one step up, solving Φ2(98, Y ) gives us 74, 22, 30 as the three roots, satisfying
Kohel’s proposition. We know 74 is below, so we need to expand 22 and 30. Φ2(22, Y ) has only
one root, 98, so it is below 98. Thus 30 is above 98 and it must necessarily be on the surface,
since it is two levels above 74.

Now that we have found the j-invariants at the surface, we are ready to attempt to connect
them. In order to do so we need more information about how the graph expands, and we use
the ideal class group to explain this.

3just verifying that we are not choosing an elliptic curve below the surface when walking.
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1

Start

2

4

3

Figure 12. Kohel’s algorithm: Find the floor, starting at ”Start” and travers-
ing nodes in order described

30

98

22 74

Figure 13. Example, going to the surface of E : y2 = x3 + 2x + 3 over F101,
with j(E) = 74

2. Traversing theory: Ideal classes and lattices

In this section we will look further into how we should traverse the surface graph of the
volcano described earlier. We begin by introducin Deuring’s lifting theorem to move our elliptic
curves to the complex case. Then we will show the connection between isogenies and maps
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between complex lattices. Finally we will connect this information to the theory of ideals and
orders which will allow us to get some restrictions as to which isogenies we should look at.

2.1. Lifting to C. Using the Deuring lifting theorem we can move our endomorphism ring
of E1/Fq to some E/C which allows us to characterize the behaviour of endomorphisms more
clearly.

Theorem 3.8 (Deuring). Let E0/Fq be an elliptic curve in characteristics p, with an endomor-
phism α0 that is non trivial. Then there exists some elliptic curve E defined over some number
field K, an endomorphism α of E and a non-degenerate reduction of A at place p above p such
that E0 is isomorphic to Ē and α0 corresponds to ᾱ under the isomorphism.

Proof: See [24, Theorem 14, Chapter 13].
Now let us explore what this theorem is really saying in regards to E/K. Firstly, we notice

that the coefficients describing the elliptic curve E all lie in the ring of integers, OK , of K. From
algebraic number theory we know that OK/p ∼= Fq where q = Nr(p), so to get the elliptic curve
over Fq it makes sense to look the map x 7→ x̃ := x (mod p) for some prime ideal p of norm q
above p.

This is exactly what the theorem is doing. Writing E : y2 = x3 + ax + b and then taking
the reduction modulo p yielding a 7→ ã, b 7→ b̃ making Ẽ defined over Fq. The theorem then

states that Ẽ is isomorphic to E0 in such a way that the endomorphisms α0 of E0 lifts to some
endomorphism α of E that then reduces to another isomorphic endomorphism α̃ of Ẽ, see Figure
14.

E/K

E0/Fq Ẽ/Fq

reducelift

Figure 14. Deuring’s lifting theorem

Now since the number field K has characteristics 0, we can use what is known as the
Lefschets principle, which says that whenever we do algebraic geometry over some algebraically
closed field of characteristics 0, it is the same as doing algebraic geometry over C, see [36, Section
VI.6].

2.2. Connection to lattices. Now that we know that we can lift our elliptic curves to
something equivalent to an elliptic curve defined over C, we can study the behaviour of elliptic
curves there in order to figure out what happens when composing isogenies together. We will
begin by describing the connection between complex elliptic curves and lattices in C.

Proposition 3.9. Let E/C be the elliptic curve E : y2 = 4x3 − g2x − g3 where g2 and g3 are
the quantities associated to the lattice Λ ⊂ C. Then the map

φ : C/Λ→ E(C) z 7→ [℘(z), ℘′(z), 1]
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is a complex analytic isomorphism

Proof: See Silverman [36, Proposition 3.6].
In other words, whenever we have a lattice Λ ⊂ C, there is an elliptic curve E/C such that

C/Λ ∼= E(C).

Corollary 3.10. Let E/C be an elliptic curve, then there exists a lattice Λ ⊂ C, unique up to
homothety, and a complex analytic isomorphism

φ : C/Λ→ E(C) z 7→ [℘(z), ℘′(z), 1]

Proof: See Silverman [36, Corollary 5.1.1]
That is, not only is there a complex elliptic curve for every lattice, but every complex

elliptic curve is isomorphic to a unique lattice up to homothety. Furthermore, as the next
theorem shows, there is a deeper connection between maps of elliptic curves and lattices. For
any α ∈ C satisfying αΛ1 ⊆ Λ2 we can construct the holomorphic map φα : C/Λ1 → C/Λ2 as
φa(z) = αz.

Theorem 3.11. Using the map φa as above we get the following results

(1) The following map is a bijection:

{α ∈ C | αΛ1 ⊆ Λ2} →


Holomorphic maps

φ : C/Λ1 → C/Λ2

such that φ(0) = 0


α 7→ φα

(2) Let E1, E2 be elliptic curves corresponding to lattices Λ1 and Λ2, then the following
inclusion is a bijection:

{Isogenies φ : E1 → E2} →


Holomorphic maps

φ : C/Λ1 → C/Λ2

such that φ(0) = 0


Proof: See Silverman [36, Theorem VI.4.1].
This allows us to think of maps between complex elliptic curves as maps between lattices.

To make things even more clear we have the following corollary.

Corollary 3.12. Let E1/C and E2/C be two elliptic curves corresponding to lattices Λ1 and
Λ2. Then E1 and E2 are isomorphic if and only if Λ1 and Λ2 are homothetic.

Proof. E1 and E2 are isomorphic if and only if there are isogenies φ : E1 → E2 and ψ : E2 → E1

such that φ◦ψ : E2 → E1 = idE2 and ψ◦φ = idE1 . From the theorem above φ and ψ corresponds
to α1, α2 such that α1Λ1 ⊆ Λ2 and α2Λ2 ⊆ Λ1. Now let us prove the two directions.
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=⇒ Assuming E1 and E2 are isomorphic, then α1α2 = 1 since they correspond to the
identity map. Looking at the equations we get

α1Λ1 ⊆Λ2

=⇒ α2Λ1 ⊆ α2Λ2 ⊆ Λ1

⇐⇒ Λ1 ⊆ α2Λ2 ⊆ Λ1

So α2Λ2 = Λ1, similarly α1Λ1 = Λ2, which is exactly the definition of Λ1,Λ2 being homothetic.
⇐= : Assuming Λ1 and Λ2 are homothetic, there exists an α ∈ C∗ such that αΛ1 = Λ2.

Setting α1 = α and α2 = α−1 gives us the corresponding maps φα1
: C/Λ1 → C/Λ2 and

φα2
: C/Λ2 → C/Λ1 which corresponds to isogenies φ : E1 → E2 and ψ : E2 → E1 under

the bijection of the above theorem. Furthermore, since the composition φ ◦ ψ corresponds to
φα1α2 = φ1 it is the identity, and similarly for ψ ◦ φ = φ1, so we must have E1

∼= E2. �

Therefore we see that the endomorphism ring of E can be represented as a set of scalars in
C:

End(E) ∼= {α ∈ C | αΛ ⊆ Λ} ⊆ C

2.3. Lattices, ideals and orders. Now that we can think of elliptic curves as lattices,
we shall show that there are finitely many elliptic curves with the same endomorphism ring and
that they can be reached using rather few small-prime isogenies composed together. The results
in this section comes from [36, Chapter VI], [35, Chapter II], and [24, Chapter 8].

For simplicity we define the set that we are looking at, namely isomorphism classes of elliptic
curves. That is those elliptic curves that are isomorphic are treated as the same.

Definition 3.13. Let O be an order in an imaginary quadratic field K, then we say that
ELL(O) is the set of isomorphism classes of elliptic curves over C with endomorphism
ring isomorphic to O. That is

ELL(O) =
{elliptic curves E/C with End(E) ∼= O}

isomorphism over C

Which by Theorem 3.11 can be rewritten as

ELL(O) =
{Lattices Λ with End(EΛ) ∼= O}

homothety

Noting that any number field K can be embedded in C we shall look at lattices in K and
follow Lang’s Elliptic Functions [24, Chapter 8] to describe the generalized class group. To
simplify the notation we assume that K = Q(τ) is an imaginary quadratic number field, which
is what is useful for our purposes.

Lattices in this chapter will be what we previously defined as full lattices of K. They
correspond to free additive subgroups of K of dimension 2 over Z. Similarly orders will be
subrings of OK with dimension 2 over Z. The order of a lattice is equivalent to the left order
of a lattice is just the set {α ∈ K | αΛ ⊆ Λ} which corresponds to being a proper subset of OK
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and an order, just like how the left orders of a lattice in the quaternions corresponds to being
an order.

Since a lattice has degree 2 we can write it as Λ = [w0, w1] for w0, w1 ∈ K. Furthermore as
we are mainly interested in lattices up to homothety, so we can write it as [1, w] := [1, w1/w0].

Definition 3.14. Given an order O ⊆ K, we say that a lattice Λ is a proper O-lattice if

O = {α ∈ K | αΛ ⊆ Λ}

From the above discussion we see that Λ is a proper O lattice if and only if it corresponds
to an elliptic curve with endomorphism ring O. Similarly we define the O-ideals to be the
ideals a ⊆ O which is also a lattice. This allows us to talk about lattices and ideals of orders
interchangeably. That is if we look at an isomorphism class of elliptic curves [E] over C, they
correspond to a class of homothetic lattices [Λ] ⊆ C. Taking the left order of Λ necessarily gives
us the order O isomorphic to the endomorphism ring of E for any representative Λ ∈ [Λ]. Thus
Λ is a proper O-lattice. Since any α ∈ O satisfy αΛ ⊆ Λ (as its left order is O), and α is already
an additive group it is a left O-ideal. Since OK is commutative it is necessarily a right O ideal
as well, so we Λ is an O-ideal.

Corollary 3.15. Let O be an order in K. Every proper O-lattice is O-invertible and conversely
any lattice which is O-invertible is a proper O-lattice. Furthermore the set of proper O-lattices
is a multiplicative group.

Proof: Lang [24, Corollary, Chapter 8, p 91]
The corollary above tells us that whenever we have a lattice Λ that has an inverse Λ−1 in

O, ie Λ−1Λ = O, then Λ corresponds to an elliptic curve with endomorphism ring O.

Theorem 3.16. Let O be an order in K, and OK := [1, z]. Then there exists a unique positive
integer c such that

O = [1, cz] = Z + cOK
Proof: See Lang [24, Theorem 3, Chapter 8].
The integer c in the above theorem is called the conductor of O. If we have an O-ideal a,

we say that a is prime to c if a + cO = O or equivalently a + cOK = O. Let IK(c) be the set
of all OK-ideals that are prime to c and similarly IO(c) be the set of all O-ideals prime to c.
These sets coincide by the following theorem.

Theorem 3.17. There is a multiplicative bijection between IK(c) and IO(C) given by

a 7→ a ∩ O
and

a 7→ aOK
Furthermore, any ideal of O prime to c is a proper O-ideal

Proof: See Lang [24, Theorem 4, Chapter 8].
Meaning that we can just as easily look at IK as IO.
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Definition 3.18. Let O be an order in K, the group of proper O-ideal classes, CL(O) is the
quotient

CL(O) := IO/PO

where IO are the proper O ideals and PO are the principal O ideals (those on the form aO).

Notice that for O = OK this is the ideal class group, justifying the notation.
Since IO are the proper O-lattices, they correspond to elliptic curves with endomorphism

rings equal isomorphic to O. Two lattices Λ1,Λ2 are homothetic if αΛ1 = Λ2 implying that
they differ by exactly a principal ideal αO. This gives us that

ELL(O) ∼= CL(O)

When O = OK , this class group is well understood, and we see immediately that the
class number h tells us how many isogenous elliptic curves there are. To understand what
happens when O ( OK we will therefore look a bit further into the generalized class group for
a (potentially) smaller O.

Theorem 3.19. Let Λ be a proper O-lattice and m a positive integer. Then there exists an
element α ∈ K such that αΛ ⊆ O and

αΛ +mO = O

In other words, in the equivalence class of Λ, there is a lattice prime to m.

See Lang [24, Theorem 5, Chapter 8].
We define the sets IO(c) and PO(c) as for IO and PO, except that we also require that the

proper ideals are prime to c. Thus from the theorem above, we have that

CL(O) ∼= IO(c)/PO(c)

Next we want to relate this to OK . As above, we let OK = [1, z] and define Pz(c) as the set
of OK-ideals that are principal and of the form a = OKα where α ≡ a (mod cOK), where c is
the conductor of O and a is just some integer relatively prime to c.

Lemma 3.20. Let a ∈ Pz(c) as above, then

a ∩ O = Oα

Proof: See Lang [24, Lemma 1, Chapter 8].

Theorem 3.21. Consider the homomorphism IK(c) → IO(c) defined as a 7→ a ∩ O, then the
inerse image of PO(c) is Pz(O)

Proof: See Lang [24, Theorem 6, Chapter 8].
From the above lemma and theorem we get that we can rewrite the class group as

CL(O) ∼= Ik(c)/Pz(c)

Which allows us to compute the order of CL(O) based on h(OK), the class number of K.
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Theorem 3.22. Let O be the order of conductor c in an imaginary quadratic field K of dis-
criminant ∆K , then we have

hO =
h(OK)c

[O∗K : O∗]
∏
p|c

(
1−

(
∆K

p

)
1

p

)

Where O∗K and O∗ are the groups of units in OK and O respectively, and
(

∆K

p

)
is the Legendre

symbol for p odd and whenever p = 2 it equals 0 if 2 | ∆K , 1 if ∆K mod 8 = 1 or 2 if ∆K

mod 8 = 5.
Furthermore, h(O) is always an integer multiple of h(OK)

See Lang [9, Theorem 7.24].
This theorem is interesting because it tells us that we have nothing to gain from searching

among elliptic curves at a level below OK as opposed to looking at OK . This comes from the

fact that c ≥ [O∗K : O∗] by definition, and that
∏
p|c

(
1−

(
∆K

p

)
1
p

)
≥ 0 (0 if and only if every

p | c is prime in K).
Furthermore, it is well known that the class number h(OK) is finite, meaning that h(O) is

also finite by the above theorem.
Finally, Eric Bach proved some bounds for the representatives within the class group of a

quadratic order in [2].

Proposition 3.23. Let OK be the ring of integers in a quadratic number field K of absolute
discriminant ∆K . Then the class group CL(OK) is generated by prime ideals of norm less than
6 ln2 |∆K |.

Proof: See Eric Bach [2, Application of Lemma 7.2]
Now suppose we have two elliptic curves E1, E2 whose endomorphism rings are isomorphic to

OK , such that they are connected by some isogeny. Then we know that this isogeny corresponds
to an representative in some class of CL(OK). Since the class is generated by small prime ideals,
we only need to compute the isogenies corresponding to p where p is a prime OK-ideal of norm
less than 6 ln2 |∆K |. Then we will eventually end up in the right class of CL(OK) and find our
isogeny.

3. Galbraith’s algorithm

We now have enough information to describe the algorithm by Galbraith. This section will
conclude the chapter on ordinary elliptic curves by providing an algorithm for connecting two
arbitrary elliptic curves using all the theory we have discussed so far. The algorithm is split into
three steps, where the last one is simply a computational step. Recall that the input consists of
two elliptic curves E1, E2, and the output is supposed to be an isogeny φ : E1 → E2

Step 1 Find j1, j2 such that ji is at the surface of Ei for i ∈ {1, 2} using the modified version
of Kohel’s find the floor.
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Step 2 Traverse the isogeny graphs of j1 and j2 using random prime degree isogenies until a
collision between the graphs is found.

Step 3 Compose the isogeny φ = λ ◦ φ3 ◦ φ2 ◦ φ1 : E1 → E2, where φ1 : E1 → E′1 and
φ3 : E′2 → E2 are the isogenies obtained from the first step, φ2 : E′1 → E′2 is the isogeny
from the second step, and λ is just an automorphism used to ensure that we end up
with the correct end curve instead of just a curve isomorphic to E2.

Step 1 follow from the discussion after Algorithm 4, step 3 is obvious, so let us discuss the
second step further.

3.1. Traversing the isogeny graph - step 2. In this step one starts out with the j-
invariants of two elliptic curves whose endomorphism rings are isomorphic to the maximal order
of a imaginary quadratic number field K := Q(

√
D).

Since a class of the class group of OK corresponds to an isogeny and thus a new elliptic curve
up to isomorphism we shall use the structure of CL(OK) to decide how to traverse this graph.

Firstly we recall CL(OK) is generated by prime ideals of norm less than 6 ln |∆K |2. This means
that any fractional ideal a is a product of prime fractional ideals p1, . . . , pl where the norm of
pi < 6 ln |∆K |2. Given the first condition, that

(
∆K

l

)
6= −1 we know that lOK is ramified or

splits, that is lOK = l1l2 or lOK = l1
2.

Secondly, by Kohel, Proposition 3.5, there are 1 +
(

∆K

l

)
horizontal isogenies from E, so we

should limit our primes to those where
(

∆K

l

)
6= −1.

Thus we make a set of useful primes:

L := {primes l |
(

∆K

l

)
6= −1 and l < 6 ln |∆K |2}

Then we start by creating two graphs Γ0 = {j1},Γ1 = {j2}, and iterate which one we
are expanding, starting at Γ0. We select a random prime l ∈ L, compute the connected j-
invariants of every j′ ∈ Γ0 by finding the roots of Φl(j

′, Y ), and add them to Γ0 with proper
edges corresponding to the isogenies. Then do the same form Γ1 and then alternate between
expanding Γ0 and Γ1 picking a new random prime l ∈ L every time. This process stops as soon
as Γ0 ∩ Γ1 6= ∅, at which point we have a path from j1 to j2.

Example 3.24. Continuing Example 3.2, we have an elliptic curve E with surface curve of j
invariant 30. We want to connect this to another elliptic curve, say E2 : y2 = x3 + 4x + 62.
j(E2) = 28 and it is on the surface. The set of primes that we are trying is

L =

{
l |
(
−23

l

)
6= −1 and l < 6 ln 232

}
= {2, 3, 13, 23, 29, 31, 41, 47}

Let us sample some random primes, for simplicity we remove 2 so we don’t have to verify that
the image curve is on the surface. If we were to compute the 2-isogenies, we would only include
the j-invariants of curves on the surface.

Initially we have Γ1 = {30} and Γ2 = {28} with no nodes connecting them.
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We pick a prime l ∈ L, say l = 23, and compute the roots of Φ23(30, Y ) giving us only one
root (since

(−23
3

)
= 0 and 3 - 4 = [OK : Z[π]): 30. Since 30 is already in Γ1, nothing happens.

Next we pick another prime, say 13 and compute the roots of Φ13(28, Y ), this gives us two
roots: 65 and 30. Now we are done.

30

28

65

Figure 15. Graph of step 2

Note that the class number of ∆k = −23 is 3, so there are only three nodes on the surface.

3.2. Running time. In this section we shall compute the running time of the algorithm.
We will threat each step individually and the compose the results together in the end.

Computing Φl. Firstly we note that our analysis depends on the class number. We have the
equation

h(OK) ≤ 1

π

√
|∆K | ln |∆K |

Giving us a worst case bound of h(OK) ≈ √p ln p. We let c be the conductor of Z[π] and assume
that it can be computed efficiently.

We are going to compute the modular polynomial Φl(X,Y ) for most of the primes l that

are less than our bound 6(ln |∆K |2) < 6(ln 4p)2.

Theorem 3.25 (Prime Number theorem). Let π(n) be the number of primes less than or equal
to n, then we have

π(n) ∼=
n

lnn

Using the prime number theorem we have roughly (ln p)2

(ln (ln p)2) = (ln p)2

(ln ln p) primes in L.

Whenever we have a prime, we need to compute the polynomial Φl(X,Y ), which takes O(l3)
operations and O(l2) storage to compute (By Elkies [13, Section 3]).

Thus computing Φl(X,Y ) for l ∈ L is bounded by O(ln p2∗3) = O(ln p6) with space O(ln p4).

Multiplying this with the number of elements in L gives us a total complexity of O( (ln p)8

(ln ln p) ) using

O( (ln p)6

(ln ln p) ) space.
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We also need to compute Φl(X,Y ) for each prime dividing c, giving us a total complexity
of O(c3) with time O(c2)

The final step of the computation of Φ requires finding its roots. Since Φl is a degree l
polynomial finding the roots modulo p can be performed in probabilistic time O(l2 ln p).

Step 1, going to the surface. For every prime l that divides the conductor c := [OK : Z[π],
assume a is the largest integer such that la | c. Then the process of going to the surface of the
l-volcano requires computing the roots of up to la−1 j-values before we are certain that we are
at the surface. This can be simplified to be O(c). Since every l is bounded by c we have total
running time of complexity O(c3 ln p) field operations. The length of the chain from E1 to the
surface will be O(ln c).

Step 2, connecting the surface nodes. Both trees are expected to be of size O(
√
h(Ok)) (by

the birthday problem)

Lemma 3.26. Step 2 is expected to terminate after O(lnh(OK)) iterations.

Proof: See Galbraith [16, Lemma 2].
Thus, by lemma above, we need roughly lnh(OK) iterations. At each iteration we find the

roots Φl(j, Y ) for every j already in the tree, this takes time O(l2 ln p) = O((ln p)5. The trees

are bounded by
√
h(OK) (heuristically), giving us a running time of

O
(

lnh(OK)
√
h(OK)(ln p5 + lnh)

)
using space roughly

√
h(OK) for the tree and lnh(OK) for the chain of isogenies connecting j1

and j2.
Step 3, composing the chains. First finding the chain connecting the j-invariants, takes

time O(
√
h) (where h := h(OK)) and provides a chain of length roughly lnh, combining them

with the chain of Step 1 yields a chain of length lnh + ln c. For every l-isogeny in the chain
we compute the isogeny using Elkies’ and Vélu’s methods requiring time O(c3) for the primes
l | c and O(ln p6) for the remaining primes l ∈ L. Giving us a running total running time

O
(√

h+ lnh(ln p6 + (ln c)c3)
)

and requires storage space roughly O
(
lnh(ln p4 + ln cc2)

)
.

Conclusion. In total we get an expected running time that is

O

((
ln p8

ln ln p
+ c3 + c3(ln p) + lnh

√
h((ln p)5 + (lnh)

)
+
√
h+ lnh(ln p)6 + (ln c)c3

)
And requires expected space

O

(
(ln p)6

ln ln p
+ c2 + ln c+

√
h+ lnh(ln p)4 + (ln c)c2

)
So in the worst case c ≈ p1/2 and h could be p1/2 ln p, we get that the expected running

time would be O
(
p3/2(ln p)

)
requiring space O (p(ln p)).



48 3. ORDINARY ELLIPTIC CURVES AND ISOGENIES

If, on the other hand, the conductor is ln p-smooth, the terms featuring c becomes polynomial
so the algorithm will have expected running time of

O
(
p1/4(ln p)13/2

)
Also, in the case when the class number h(OK) is small the algorithm becomes polynomial.



CHAPTER 4

Supersingular Elliptic Curves and Isogenies

In this chapter we will look at supersingular elliptic curves and how computing their en-
domorphism rings allows us to find isogenies connecting them. We begin by describing two
methods of computing the endomorphism ring given an elliptic curve. This is perhaps the most
striking difference between the ordinary and the supersingular case. As we will see, there is no
simple method of doing this.

In the second section we will introduce some more theory. Like we did in the chapter on
ordinary curves we will now connect the isogenies of supersingular curves to lattices, but in this
setting they are lattices of quaternion algebras which correspond to ideals of maximal orders.
We end this section with an algorithm for computing the corresponding ideal given an isogeny
of elliptic curves.

In the third section we will describe a way of computing a connecting ideal between two
elliptic curves once the endomorphism ring is known for both curves. This is the Kohel-Lauter-
Petit-Tignol (KLPT) algorithm [22]. We will introduce a special kind of maximal order which
is very useful for sampling elements of the order before we give a high level overview of the
algorithm. Next we will describe two slightly intricate steps in more detail before we wrap up
the algorithm, remove the condition initially set regarding the special maximal orders, and then
finally end the section with a run time analysis.

In the last section we will describe a way of going from the connecting ideal I to an actual,
usable, isogeny. As we will see, this is not necessarily as straight forward as it was in the case
of ordinary elliptic curves.

We recall that for a supersingular elliptic curve E, its endomorphism ring End(E) is isomor-
phic to a maximal order in a quaternion algebra over Q ramified at exactly p and ∞. Overall
we are interested in solving the following problem.

Problem. Given two supersingular elliptic curves E0, E1 defined over Fq that are connected
by some isogeny, find an isogeny φ : E0 → E1.

Remark. Actually we might be interested in putting some restrictions on the isogeny.
For the security assumption of SIDH [14] we are looking for isogenies of a given degree le,
while for the CGL-hash function [4] we are looking for isogenies of prime power degree. Other
applications simply require the degree to be l-power-smooth, meaning that φ can be decomposed
into isogenies of degree leii for small primes li. Nevertheless, the we will describe how to compute

49
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an l-power isogeny, and discuss how to use this for the SIDH case later in Chapter 5 when we
describe some applications.

To make things more concrete, we will explore an example with the starting curve E0 : y2 =
x3 + x over Fq with q = 4392 and use it throughout the chapter.

Proposition 4.1. If p ≡ 3 mod 4 then the elliptic curve E : y2 = x3 + x is supersingular over
Fp.

Proof: See [40, Proposition 4.37]

1. Computing the endomorphism ring

In this section we would like to show how one can compute the endomorphism ring of a su-
persingular elliptic curve. Unlike the ordinary case where there is a clear algorithm for doing so,
there does not appear to exist a deterministic and efficient algorithm for the supersingular case.
As we will see, there are some elliptic curves whose endomorphism ring is known. This allows
us to use the knowledge of an isogeny from any of these curves to construct the endomorphism
ring of its co-domain curve, something which we will discuss in the first subsection. Then we
will look at the ideas behind a generic algorithm for computing the endomorphism ring of an
arbitrary supersingular curve.

We let E/Fp2 be the supersingular elliptic curve we are working over, and assume that
B = (a, b | Q) is the quaternion algebra isomorphic to End(E)⊗Q ramified at p and ∞. Since
End(E) is a maximal order in B it is in particular generated by 4 elements. Our goal is thus to
come up with 4 isogenies φi : E → E that are linearly independent, generating End(E). Notice
that multiplication by one, [1], is always an endomorphism so we may choose φ1 := [1]. This
leaves us with the problem of finding three endomorphisms.

Pizer[30, Proposition 5.1 and 5.2] showed us that the quaternion algebra End(E) ⊗ Q is
isomorphic to (a, b | Q) where a, b only depend on the characteristics p of the field we are working
over . He further gave examples of a known maximal order in the various quaternion algebras.
See Table 1.

Characteristics Quaternion algebra Maximal order

2 (−1,−1 | Q) 1+i+j+k
2 , i, j, ij

3 mod 4 (−1,−p | Q) 1+j
2 , i+ij2 , j, ij

5 mod 8 (−2,−p | Q) 1+j+ij
2 , 1+2j+ij

4 , j, ij

1 mod 8 (−q,−p | Q) 1+j
2 , i+ij2 , 1

q(j+aij) , ij

Table 1. Possible quaternion algebras for elliptic curves defined over Fpn ,
where gcd(p, q) = 1 and a is some integer satisfying q | (a2p+ 1)

In other words, there is an injective map ι−1
E : End(E) → (a, b | Q) taking us from the

language of isogenies to the language of quaternions. The isogeny corresponding to j is exactly
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what one would expect, namely the p-th power Frobenius π, which can be represented on any
curve. This follows easily since j2 = −p, and we have that π2 = [−p]. The isogeny corresponding
to i depends on whether i2 = −1,−2 or −q and what curve we are looking at. For example,
when i2 = −1 we have i4 = 1, thus i is an automorphism with inverse i3. Furthermore i2 is an
automorphism with inverse i2. 1 is always an automorphism, and when j(E) 6∈ {0, 1728} (and
p 6= 2), there are only 2 automorphisms so there cannot be an endomorphism corresponding to
i.

Example 4.2. We will focus on elliptic curves defined over Fp2 = F4392 . Here we have that q ≡ 3
(mod 4), so the endomorphism ring of our elliptic curves are maximal orders in the quaternion
algebra (−1,−p | Q). We will look at the isogenies corresponding to i when we describe the
endomorphism ring of a certain elliptic curve.

Next we would like to sketch some approaches to actually compute the endomorphism ring
of a given elliptic curve E.

1.1. Using a known endomorphism ring. If we assume that we already know the
endomorphism ring of some starting curve E0 and we have knowledge of an isogeny φ : E0 →
E, then we can compute the endomorphism ring of E. We begin by explicitly showing the
endomorphism ring of some known supersingular curves.

Proposition 4.3. Let E0 : y2 = x3 + x be an elliptic curve defined over Fq with characteristic
p ≡ 3 (mod 4). Then ιE0

: (−1,−p | Q) → End(E0) ⊗ Q is an isomorphism of quaternion
algebras which maps the endomorphism ring of E0 to the maximal order as in Table 1 - that is

ι−1
E0

(End(E0)) =

〈
1 + j

2
,
i+ ij

2
, j, ij

〉
Furthermore, the map sends the Frobenius π : [x : y : z] 7→ [xp : yp : zp] ∈ End(E0) to j and

φi : [x : y : z] 7→ [−x, y
√
−1, z] to i.

Proof, see [1, Proposition 3.1]

Remark. Some authors prefer to work over the maximal order generated 1, ι, (1 + ι ◦ π)/2
and (ι + π)/2 instead of the one used above. These orders are in fact equivalent which can
be shown by writing out the generator matrices for the two maximal orders (using the basis
1, i, j, ij), and showing that the basis change matrix has determinant -1.

1 0 1/2 0
0 1 0 1/2
0 0 0 1/2
0 0 1/2 0




1/2 −1/2 0 −1
−1/2 1/2 −1 0

0 1 0 2
1 0 2 0

 =


1/2 0 0 0
0 1/2 0 0

1/2 0 1 0
0 1/2 0 1


Ken McMurdy [1] has shown similar results for the remaining characteristics, but this case

is sufficient for our purposes.
Next we would like to turn the isogeny φ and our knowledge of End(E0) into knowledge of

End(E). What we do is we compute the quaternion ideal I ⊆ B corresponding to the isogeny φ.
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This will be a left O0-ideal and right O-ideal where O0 = ι−1
E0

(End(E0)) and ιE(O) = End(E).
Since I is a right O-ideal it will satisfy IO ⊆ I and we have

O ⊆ OR(I) = {α ∈ B | Iα ⊆ I}

Since O is an order corresponding to an endomorphism ring it is maximal and thus O = OR(I).
Intuitively this can be seen when thinking of elements of B as isogenies, then the only isogenies
we can post-compose with our ideal are those who correspond to endomorphisms. Therefore we
can simply compute OR(I) to retrieve the endomorphism ring of E.

This gives us an abstract description of our endomorphism ring as an order in a quater-
nion algebra. To evaluate the endomorphisms we need to use our explicit isogeny to map the
endomorphisms back to our original curve, evaluate them there, and map them back again.

Remark. The reason for computing the endomorphism ring is that we want a simpler
way of computing isogenies between curves. Therefore this method is useless when attempting
to construct isogenies between random curves. It should however be noted the importance of
this method when dealing with trapdoors and potential backdoors embedded in cryptosystems.
Systems like the CGL Hash function [4] are vulnerable to attacks if the starting curve, E, is
chosen in a manner which allows someone to know an isogeny from E0 to E [29, Section 3.3]. On
the other hand, signatures like SQI-Sign [15] rely on being able to compute the endomorphism
through a secret isogeny from E0 to E.

Example 4.4. We perform this computation more explicitly. Assume that we start with the
elliptic curve E0 with endomorphism ring

End(E0) =

〈
[1] + π

[2]
,
ι+ ι ◦ π

[2]
, π, ι ◦ π

〉
and we have the isogeny φ of degree 5 with kernel generated by (125, 82), mapping E0 to
E : y2 = x3 + 163x+ 400 with j(E) = 288. We can embed the endomorphism ring through ι−1

E0

as the maximal order O0 = 〈 1+j
2 , i+ij2 , j, ij〉. Furthermore, using an algorithm we will describe

later we get the kernel ideal Iφ:

Iφ =

〈
1 + 9j

2
,
i+ 9ij

2
, 5j, 5ij

〉
This computation can be found in Example 4.15. Then the explicit description of the right order
allows us to compute OR(Iφ):

OR(Iφ) =

〈
1 + j

2
,
i+ 29ij

10
, j, 5ij

〉
Thus we have an abstract definition of End(E). Furthermore, notice that i is not in this
endomorphism ring, which is exactly what one would expect since the j invariant is neither 0
nor 1728, so we cannot have automorphisms other than −1 and 1.
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The main issue with our computations of the endomorphism ring is due to the fact that
although π corresponds nicely with j, we don’t have a representation of the endomorphism
corresponding to i.

However, knowing φ : E0 → E and End(E0) allows us to pull the points of E back to

E0 through φ̂, then perform the endomorphism computations there, and then push the point
forward to E through φ. We only need to take care of the added degree of our map, dividing
out points as needed.

Waterhouse [41, Section 3.1], proposes a composition for evaluating elements of the quater-
nion algebra B on points of the elliptic curve by mapping them to a curve with a known
embedding in B. Let α ∈ O = ι−1

E (End(E)) ⊆ B, and φ : E0 → E where we can evaluate ιE0

on any α′ ∈ O0. Now we can turn α into an endomorphism through the map

ιE(α) :=
φ ◦ ιE0

(α) ◦ φ̂
[deg φ]

When dividing P by the degree of φ we simply mean taking any element Q satisfying [deg φ]Q =
P

Remark. The method proposed by Waterhouse is only valid for endomorphisms α ∈ O∩O0,
but since we are only interested in evaluating α ∈ I for the connecting ideal I, this requirement
is satisfied. This will become clear when we discuss these ideals further later.

1.2. Using suborders. Eisenträger, Hallgreen, Leonardi, Morrison and Park [12] gives a
new algorithm for computing the endomorphism ring O of a supersingular elliptic curve over
Fp2 in time O

(
(log p)2p1/2

)
. Explaining the entire algorithm is beyond the scope of this thesis

but we shall give an overview.
As Kohel did in 1996 [21], the algorithm is based on finding a suborder of O and then

using this information to construct O. The suborder is found in a specific way, giving rise to a
particular family of orders which behave nicely. The suborder is what is known as a Bass order
and it is contained in rather few maximal orders, enabling a brute-force search of the possible
maximal orders until the correct endomorphism ring is found.

Finding the cycles that generate the Bass order is based on the work of finding elliptic curves
that are l-isogenous to their p-th power Frobenius (note that we are not using the natural choice
of the q-th power Frobenius). That is, we want to find an elliptic curve with j invariant jk such
that it is connected to an elliptic curve of j invariant jpk by a single l-isogeny. The reason for
going through the Frobenius is that every isogeny can be decomposed into a separable and purely
inseparable isogeny. Including every endomorphism will thus involve the inseparable Frobenius
isogeny π. The interesting part is that if j and j′ are adjacent, that is φ : j → j′ and deg φ = l,
then jp and j′p are adjacent as well (for the simple reason that π ◦ φ = φ ◦ π).

Eisenträger et al. constructs cycles through composing l-isogenies φi : Ei−1 → Ei together
starting at E0 with j(E0) = j0 until finding a curve whose j-invariant jk has adjacent Frobenius
curve jpk . Then this path is reversed, going from jpk to jpk−1 and all the way back to jp0 . When

the initial value jp0 is found, the path is stored as P . If jp0 = j0, then this is a cycle. Otherwise
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another path P ′ : j0 → jp0 is found and the composition P̂ ′ ◦ P : j0 → j0 is a cycle. See Figure
16.

After finding two such cycles, they are highly likely to be linearly independent ([12, Theorem
3.7]). Furthermore, under the generalized Riemann hypothesis, there is a positive constant C

such that there are more than C
√
p

log log p j-invariants whose Frobenius jp is adjacent to j in the

l-isogeny graph ([12, Theorem 3.9]). Since there are only roughly p/12 supersingular curves in
the graph this justifies the high probability of finding a curve with adjacent jp node.

j′pl · · · j′p1 jp0 jp1 · · · jpk

j′l · · · j′1 j0 j1 · · · jk

ψ̂l ψ̂2 ψ̂1

P̂ ′

φ̂1 φ̂2 φ̂k

π

ψl ψ2 ψ1

P

φ1 φ2 φk

π

Figure 16. Computing j0 to jp0 cycles

2. Traversing theory: Ideals and orders

In this section we will make the connection between isogenies between supersingular curves
and ideals of quaternion orders. This is the supersingular analogue of lattices in C which now
becomes lattices in maximal orders O of quaternion algebras. We begin by describing the
endomorphism ring slightly before we make the actual connection in the first subsection. There
we will explain how to go between ideals and isogenis, how the dual isogeny corresponds to the
standard involution and some ways of constructing connecting ideals between maximal orders.
Finally we will look at an algorithm for computing the ideal corresponding to an isogeny once
the isogeny is explicit.

Overall, the results of this section allows us to use the language of quaternions to construct
ideals corresponding to nice isogenies in the next section.

Proposition 4.5. Let E0, E1 be isogenous supersingular elliptic curves defined over Fq and
l 6= char(Fq) a prime. Then there exists an isogeny of degree le connecting E0 to E1 where e is
some positive integer.

Proof: see Mestre [25, Section 2.4].

Proposition 4.6. Let E be a supersingular elliptic curve defined over Fp, then j(E) ∈ Fp2 .

In other words, if we want to sketch the graph of supersingular elliptic curves connected by
some l isogeny then every node can be represented in Fp2 .

Example 4.7. To construct an example, let us use p = 439 which is congruent to 3 (mod 4).
Then we have that E0 : y2 = x3 + x is supersingular with j-invariant 411 (1728 mod 439) and
there are a total of bp/12c+ 1 = 37 supersingular elliptic curves up to isomorphism. In Figure
17 we have depicted the 7-isogeny graph starting at E0, expanding the j-invariants of one child
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at each level. Since the j-invariant is defined over Fp2 we require ω to be able to represent some
of them. That is, Fp2 = 〈1, ω〉.

We notice a few things right away. First, there are only 4 nodes connected to E0. This is be-
cause curves of j-invariant 1728 have the extra automorphism ι, mapping (x, y) 7→ (−x, y

√
−1),

thus every isogeny φ : E0 → E of degree 7 also has an isomorphic (but not equal) isogeny φ ◦ ι.
This is not the case for E(157) and E(126), where there simply exists fewer non-isomorphic
elliptic curves since some distinct 7-isogenies have isomorphic codomain.

Furthermore we notice that the j-invariant 411 is repeated on level 5 when choosing a
”random” path. In fact, if we where to expand every node we would find 411 repeated after
performing 5 7-isogenies at the earliest.

411

157 126
53ω
+274

53ω
+280

408ω
+352

125ω
+117

311ω
+31

167ω
+135

129ω
+370

224
408ω
+352

375 435
53ω
+280

53ω
+274

53ω
+280

411
125ω
+117

311ω
+31

311
31ω
+113

167ω
+135

31ω
+113

129ω
+370

128ω
+86

137

311
31ω
+113

167ω
+135

386ω
+433

Figure 17. Graph of supersingular j-invariants, starting at 411 with degree 7
isogenies

2.1. Ideals and quaternion relation. In this section we will look further into the connec-
tion between ideals in maximal orders of quaternions and isogenies between supersingular curves.
We will describe how the dual isogeny corresponds to the standard involution on quaternions
and two useful propositions.
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We already know that End(E) is a maximal order in the quaternion algebra B = End(E)⊗Q
which is is ramified at p and ∞. We follow Voight [39, Chapter 42] when describing some useful
results.

Suppose φ : E → E′ is a separable isogeny with finite kernel H. Furthermore let O =
End(E) and O′ = End(E′) be the maximal orders corresponding to the endomorphism rings of
E,E′ in B. Then we can define the left O-ideal corresponding to H as follows:

I(H) := {α ∈ O | α(P ) = 0 for all P ∈ H}
We will prove that it is in fact an O,O′ connecting ideal shortly.

Just like we can go from isogenies to ideals, we can go from ideals to isogenies. Let I be a
left O-ideal, then we define the kernel group

E[I] := ∩α∈IE[α] = {P ∈ E | α(P ) = 0 for all α ∈ I}
which will correspond to the isogeny φI : E → E/E[I].

Remark. The above construction only holds when nrd(I) is coprime to p. This is hidden
in the fact that our first intersection of E[α]-values is not defined as the points of E which are
mapped to 0 through α, but rather the group scheme kernel of α. These definitions coincide when
dealing with separable isogenies, but for inseparable isogenies there is another story. Kernels
of these isogenies are empty when viewed as group variety isogenies, while they are non-empty
when viewed as group scheme isogenies. To get to the second definition of kernel points on E
we simply split the ideal I into I = P aI ′ where P is the unique ideal of reduced norm p (this
exists since B is ramified at p so pO = P 2). Then we can use the above definition on I ′, and
map P a to πa.

We are nevertheless only interested in expressing separable isogenies so this is not something
we need to worry to much about.

We first show that the two definitions are compatible. That is if we start with a left O-ideal
I, then I(ker(φI)) = I(E[I]) = I.

Proposition 4.8. The following statements hold:

(1) deg φI = nrd(I)
(2) I(E[I]) = I

Proof: See [39, Proposition 42.2.16]

Corollary 4.9. For every isogeny φ : E → E′, there exists a left O-ideal I and an isomorphism
ρ : EI → E′ such that φ = ρφI . Moreover, for every maximal order O′ ⊆ B there exists a
supersingular elliptic curve E′ such that O′ ∼= End(E′)

Proof: See [39, Corollary 42.2.21]
Thus we have the correspondence between ideals and isogenies. An interesting result is an

application Proposition 2.60 where we saw that given a left O-ideal I, there exists an equivalent
left O-ideal J satisfying

nrd(J) ≤
√

8

π2
discrd(O) =

√
8p

π2
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This is however not that useful to us as it only tells us that elliptic curves can be connected by
an isogeny of degree smaller than

√
p. The isogenies may be of degree pe11 . . . penn which is not

what we are interested in for now. Nevertheless, the proposition does not tell us anything about
how to obtain such an ideal.

Next we would like to show that the dual isogeny corresponds to the standard involution
on B. That is whenever we take the conjugate in the abstract world of quaternion algebras we
are really taking the dual in the concrete world of elliptic curve isogenies. Since there is unique
standard involution on B, verifying that

·̂ : End(E)→ End(E)

φ 7→ φ̂

satisfies the requirements for a standard involution would imply that extending it to B =
End(E)⊗Q would correspond to the conjugate on B.

The requirements are easily satisfied by our discussion on the dual isogeny. [̂1] = [1],
̂̂
φ = φ,

φ̂ ◦ ψ = ψ̂ ◦ φ̂ and φ ◦ φ̂ = [deg φ] ∈ End(E). Furthermore it is Z-linear as φ̂+ ψ = φ̂ + ψ̂ and

[̂m] = [m], so ̂[m] ◦ φ = φ̂[m] = [m]φ̂. Extending this to End(E) ⊗ Q gives us the standard
involution on B.

Suppose now that φ : E → E′ is a separable isogeny. Then the ideal I = I(ker(φ)) is a left

O ideal. Furthermore we have the isogeny φ̂ : E′ → E which necessarily corresponds to I. Now,
I is a left O′-ideal and since conjugation on ideals simply exchange their left and right orders
(OR(I) = OL(I)) we see that OR(I) = O′, so I is an O,O′ connecting ideal.

In particular, what we see is that any element α ∈ I is in fact in both the endomorphism
ring of E and E′. This inspires the following result which gives us a way of finding a connecting
ideal of two endomorphism rings. Later, during the last section of the KLPT algorithm, we will
describe yet another method of computing a O,O′-connecting ideal.

Lemma 4.10. If O,O′ are maximal orders, then OO′ is a O,O′-connecting ideal.

Proof: See [39, Lemma 17.4.7]
Thus finding a connecting ideal given endomorphism rings is easy. What remains is to turn

this into a useful ideal. That is one which corresponds to an isogeny that we want. To do this
we use an important, but simple, lemma.

Lemma 4.11. Let O be a maximal order and I be a left O-ideal of reduced norm N and α ∈ I
an element of I. Then I αN is a left O-ideal of norm nrd(α)/N .

Proof. First, let us show that J := I αN is an O-ideal. All we need is that J is a lattice
contained in O. Since I is an ideal and thus a fractional left O-ideal or rather a lattice contained
in O we know that J is still a lattice. What remains is to show that it is contained in O. Since
α ∈ I we have

Iα ⊆ II = nrd(I)O = NO

Yielding the desired result that J ⊆ O.
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Second, to show that it has the required norm, we simply compute it directly:

nrd

(
I
α

N

)
= nrd(I)

nrd(α)

N2
=

nrd(α)

N
=

nrd(α)

N

�

In particular, assuming I has norm N , if I contains an element of norm NM we can turn
I into an isomorphic ideal of norm M .

Finally, we will conclude this subsection with two results that will be useful later.

Proposition 4.12. Let O be a maximal order and I a left O-ideal such that nrd(I) = N is
prime, then I = ON +Oα with gcd(N2,nrd(α)) = N .

Proof. By Proposition 2.39 the left fractional O-ideal I is invertible. Then by the main theorem
of quaternion ideals it is locally principle, that is I(p) := I ⊗Z Z(p) is principal. Since I has

reduced norm N we have II = ON , so in particular we have ON ⊆ I. Thus, locally we still
have (ON)(p) ⊆ I(p). However, since N is prime, at any p 6= N we have

ON(p) = O(p) ⊆ I(p) ⊆ O(p)

where the last inclusion comes from the fact that I is a left O-ideal. In other words, locally at
any p 6= N , we have I(p) = O(p). Locally at N we have I(N) = O(N)α for some α ∈ B. But since
I = ∩pI(p), we have

nrd(I) =
⋂
p

nrd(I(p))

when we view the reduced norm as aZ (as opposed to just a). Then, for any p 6= N , we have
nrd(I(p)) = nrd(O(p)) = Z, thus must have nrd(I(N)) = nrd(O(N)α) = nrd(α) = NZ. So in our
standard notation we have nrd(α) = N when viewed locally away from N .

What remains to show is that I = ON +Oα. By the Local-global dictionary for lattices we
see that it is enough to view the lattices locally. At any p 6= N , since (ON)(p) = O(p), we have

I(p) = O(p) = (ON +Oα)(p)

Then at N we have I(N) = O(N)α, while

(ON +Oα)(N) = ON(N) +O(N)α = ON(N) + I(N) = I(N)

since we already have that ON(N) ⊆ I(N).
Furthermore since nrd(I) = {gcd(nrd(β)) | β ∈ I} = N , we must necessarily have gcd(nrd(N),nrd(α)) =

N as we already know that N | nrd(α) but N2 - nrd(α) for then its reduced norm would be at
least N2 locally away from N .

�

Proposition 4.13. Let O1 be a maximal order, O2 be any order, I be an O1, O2 ideal, and J
is an O2, O1 ideal. Then IJ is left O1 ideal.
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Proof. First we see that OL(I) ⊆ OL(IJ) since for any α ∈ OL(I) we have αI ⊆ I, so in
particular αIJ ⊆ IJ so α ∈ OL(IJ).

Second, since O1 is maximal we have O1 ⊆ OL(I) ⊆ OL(IJ) where OL(IJ) is also an order,
so we must have equality. O1 = OL(IJ) �

2.2. Isogeny to Ideal. As promised in a Example 4.4, we shall show how to create the
ideal corresponding to an isogeny given that we know the endomorphism ring of the starting
curve. We use an algorithm taken from [18, section 4.4.2] where we simplify the algorithm
slightly.

Recall that we would like to construct an ideal of reduced norm N corresponding to an
isogeny of degree N . We make use of the fact that any ideal of reduced norm N can be written
as I = ON + Oα for some α ∈ O since nrd(I) = gcd(nrd(N),nrd(α)). Thus we only need
to ensure that N divide nrd(α). To accomplish this, we sample random α-values by sampling
random elements of Z and creating linear combinations of the basis elements of O. To verify
that it kills off the kernel of φ we then check that α(P ) = 0 for a kernel generator P of φ.

Algorithm 5: FindIdealGenerator(I, O)

Input: The kernel generator P , b1, . . . , b4 a basis of O, and the isogeny degree N
Output: α ∈ O, the element satisfying Iφ = ON +Oα

1 Qi ← ιE0
(bi)(P ) for i ∈ {1, 2, 3, 4};

2 repeat
3 ai ←$ {1, . . . , p− 1} ;

4 α← [a1]b1 + [a2]b2 + [a3]b3 + [a4]b4 ;

5 until N | nrd(α) and [a2]Q1 + [a2]Q2 + [a3]Q3 + [a4]Q4 = O;

6 return α

Lemma 4.14. Assuming N < log(p), Algorithm 5 runs in expected time Õ(log4(p))1

Proof: See [18, Lemma 6]

Example 4.15. Let E0 : y2 = x3 + x/F4392 and φ : E0 → E be an isogeny with kernel
generating point P = (125, 82). We begin the algorithm by computing the image points of P

under ιE0(b1) = [1]+π
[2] , ιE0(b2) = ι+ι◦π

[2] , ιE0(b3) = π and ιE0(b4) = ι ◦ π and get that they are

Q1 = (125, 82), Q2 = (295, 416ω + 254), Q3 = (125, 82) and Q4 = (314, 273ω + 249). Next
we sample random values for ai until we find a match. The combination a1 = 414, a2 = 24,
a3 = 326, a4 = 191 gives us

α = a1b1 + a2b2 + a3b3 + a4b4 = 207 + 12i+ 533j + 203ij

which satisfies nrd(α) = 142848815 which clearly is divisible by 5, furthermore ιE0
(α)(P ) = O.

1Õ is the so-called soft-O notation where Õ(f(x)) = O(f(x) loga(f(x))) for some a
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Computing the actual generators of Iφ = O[5] + Oα can be done by performing basis
reduction on the set

⋃
i∈{1,2,3,4}{5bi} ∪ {bi ◦ α} This gives us that

Iφ =

〈
1 + 9 ◦ j

2
,
i+ 9ij

2
, 5j, 5ij

〉
Which has reduced norm 5, a fact which can be seen after taking the reduced norm of each

generator and then their greatest common divisor.

3. KLPT Algorithm

With our knowledge of the endomorphism rings, let us now see how we can use this infor-
mation to compute a connecting ideal of some prime power norm. This section will describe an
algorithm by Kohel, Lauter, Petit and Tignol[22] which can turn maximal orders into an ideal.
They show that if one has representatives for two maximal orders O1, O2, then one can find an
ideal I whose left order is O1 and right order O2 with reduced norm le for a given prime l. The
algorithm may also be modified to produce an ideal of smooth prime norm (ie nrd(I) =

∏
leii ),

which is done in [18, 15], but we will stick to the most basic notion in this section.
We begin this section by describing another kind of maximal order that we will use through-

out this section for easier computations. Then we will show how we can use the structure of
these orders to obtain elements of given reduced norm. Once we have dealt with this back-
ground quite thoroughly we will give an overview of the algorithm and explain the steps in more
detail in the following subsections. We will end this section by wrapping up the algorithm, and
explaining why the initial restriction to these special maximal orders is of no issue. Finally we
will conclude with a short run time analysis of the KLPT algorithm.

The KLPT algorithm works by first creating the connecting ideal, J , of O1 and O2, then
finding an element α ∈ J that satisfy nrd(α) = le/N where N = nrd(J). This allows us to use
Lemma 4.11 to make the ideal I := Jα/N of reduced norm le. Finding α is where the KLPT
algorithm comes into play, where it finds special elements of O1 using the structure of a nice
suborder of O1 to compute α ∈ J of the desired norm.

To efficiently find special elements of O1, the algorithm requires that O1 is a special p-
extremal order. This allows us to find elements of O1 rather easily using a special norm form
that we will introduce shortly. Later we shall, as in [22], show it is not really required that O1

nor O2 are special p-extremal, but rather that we can find one such order O∗. Then one can
simply perform the algorithm twice, going from O1 to O∗ and then O∗ to O2. We will explain
this in the end of this section. Therefore we do not need to worry to much about this fact except
to note that these orders exist.

For simplicity, throughout this section we will assume that p ≡ 3 (mod 4). This gives us a
nice representation of a maximal order for our starting curve y2 = x3 +x, and it simplifies some
explanations. Note however that this is not a requirement of the algorithm.

Now, let us explain what a special p-extremal order is. Let S be the set of all maximal
orders in B = (−1,−p | Q) that corresponds to elliptic curves over Fp2 . They all contain the
Frobenius endomorphism π ∈ O which satisfies π2 = −p, so we call them p-extremal orders.
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Being a special p-extremal order is related to a subring structure inside O. We define the value
d(O) as the discriminant of the smallest quadratic subring R that can be embedded in O, that
is

d(O) = min{|disc(R)| | Z 6= R ( O}
Being special p-extremal simply means being amongst the orders O that have the smallest value
d(O) achievable in the set S.

Definition 4.16. A maximal order O is special p-extremal order if it satisfies d(O) ≤ d(O′)
for any O′ ∈ S

Example 4.17. For our purposes the quadratic ring which we want to embed is Z[
√
−1]. This

is the case since the maximal order O0 = 〈(1 + j)/2, (i + ij)/2, j, ij〉 = 〈b1, b2, b3, b4〉 contains
this ring of integers as 1 = 2b1− b3 and i = 2b2− b4. Furthermore, Z[i] has the smallest possible
absolute discriminant 4. We clearly have Z 6= Z[

√
−1] ( O0.

Lemma 4.18. Let O be a maximal order in B containing a subring Z〈i, j〉 with i2 = −q and
j2 = −p for q coprime to p. Set R = O ∩Q(i) and let D be its discriminant.

If R is the ring of integers of Q(i), then R⊥ = Rj and R+Rj is a suborder of index |D| in
O.

Furthermore, we have

nrd(x1 + y1ω + (x2 + y2ω)j) = f(x1, y1) + pf(x2, y2)

where f(x, y) is a principal quadratic form of discriminant D and ω is a nontrivial generator of
R.

Example 4.19. Before we make a proof, let us show this with an example. Z[
√
−1] = O0∩Q(i),

having discriminant −4. It is the ring of integers of Q(i) since −1 ≡ 3 mod 4. Using the basis
b1, b2, b3, b4 of O0, any such element aj+bij ∈ Rj can be written as a(2b4−b2)+b(2b3−b1) ∈ Rj,
so we have Rj = Z[

√
−1]j = Zj + Zij ⊆ O0. The principal quadratic form is f(x, y) = x2 + y2,

having discriminant −4 with ω = i, and the reduced norm for equation becomes obvious:

nrd(x1 + y1i+ (x2 + y2i)j) = x2
1 + y2

1 + px2
2 + py2

2

Notice however that we cannot evaluate every element of O0 in this manner, simply because
we cannot represent every α ∈ O0 in this way (for example the element b4). Furthermore, by
Example 2.15 we see that Z + Zi+ Zj + Zij has index 4 in O0.

Proof. To show the lemma we will first show that R⊥ = Rj, then we will show that R + Rj
forms a suborder of O, then we will show the norm form nrd(β1 + β2j) = f(β1) + pf(β2), and
finally we will show that [O : R+Rj] = |D|.

R⊥ = Rj: By Proposition 2.61 we have that Q(i)⊥ = Q(i)j in B.

Thus, by taking the orthogonal complement of R inside O we get that R⊥ := {α ∈ O |
〈α, β〉 = 0 ∀β ∈ R} is a subset of Q(i)j.

It is a Z-submodule of Q(i)j since for any β, γ ∈ R⊥, α ∈ R and a ∈ Z, we have

〈α, aβ + γ〉 = a2〈α, β〉+ 〈α, γ〉 = 0 + 0 = 0



62 4. SUPERSINGULAR ELLIPTIC CURVES AND ISOGENIES

It is finitely generated since Z is noetherian and O is finitely generated. Since Q(i)j =
Frac(Z[i]j) = Frac(Rj), we can find an element α ∈ Rj that clears the denominators of the
generators so R⊥ is a Rj fractional ideal. We can factor this ideal and write it as aj where a is
a fractional R ideal.

Next we show that Rj is in fact contained in R⊥. Let α ∈ Rj, then α = aj + bij, then for
any β = c + di ∈ R we have 〈c + di, aj + bij〉 = 0, so Rj ⊆ R⊥. Then since R⊥ = aj we must
have R ⊆ a.

What we would like to show is that a = R and thus R⊥ = Rj, to do this we use the
ramification of R together with the integrality of the order and look at the localization at p. By
assumption p is ramified in B, implying that pOp = P 2 where P is the maximal ideal of Bp.
Thus intersecting with the image of Q(i) in Bp gives us that pR = P ′2 or pR = P ′ for some
prime ideal P ′. However by Proposition 2.1 p is not ramified in R as it is coprime with q and
the discriminant of R is either −q or −4q. Thus pR remains prime. To conclude, since aj is
a subset of O it is in particular integral, so nrd(aj) ∈ Z. But since nrd(j) = p and p is inert,
nrd(a) must also be integral. An integral fractional ideal of R, containing R, must equal R as
R is the ring of integers, so a = R and we have R⊥ = aj = Rj.

R+Rj is a suborder of O: Next we would like to show that R + Rj is a suborder. It

is clearly a sublattice of O as both R and Rj are sublattices. What remains is to show that
it is closed under multiplication. Taking an the product we see that (R + Rj)(R + Rj) =
RR+RRj+RjR+RjRj. Clearly RR ⊆ R and RjRj ⊆ Rj as they are both orders themselves,
but RjR is not necessarily in R + Rj. If we can show that jR = Rj, then RjR = RRj ⊆ Rj,
so RjR ⊆ R+Rj and we have that R+Rj is closed under multiplication. To show this we let
β ∈ R be an arbitrary element, clearly β ∈ R as well. Writing it out as β = t+ xi, we see that
that jβ = βj as jβ = tj + xji and βj = tj − xij = tj + xji. Similarly βj = jβ. Thus jR ⊆ Rj
and Rj ⊆ jR so jR = Rj.

nrd(x1 + y1ω + (x2 + y2ω)j) = f(x, y) + pf(x, y): Let ω = D+
√
D

2 , then ω is a nontrivial

generator of R. Let β1, β2 ∈ R be two elements, each of the form xi + yiω for xi, yi ∈ Z. Then
since R and Rj are orthogonal, 〈β1, β2j〉 = 0 so we get

nrd(β1 + β2j) = nrd(β1) + nrd(β2j)

but nrd(β2j) = p nrd(β2) and nrd(βi) = x2
i + qy2

i . So it is a principal form of discriminant −4q
and we can rewrite our expression as

nrd(x1 + y1ω + (x2 + y2ω)j) = f(x, y) + pf(x, y)

where f is the principal form f(x, y) = x2 + qy2.

[O : R+Rj] = |D|: To conclude our lemma we need for R + Rj to be of index |D| in

O. But we already know that it is an order and that O is maximal, thus disc(O) is p2 and
we have disc(R + Rj) = [O : R + Rj]2 disc(O). Therefore, the discriminant of R + Rj is
A2p2, so [O : R + Rj] is necessarily |A| for some A, we only need to show that A = D. We
already know that R+Rj is generated by the set {1, ω, j, ωj}, furthermore we use the fact that
trd(αβ) = nrd(α + β) − nrd(α) − nrd(β), allowing us to simplify a lot when comparing the
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elements 1, ω ∈ R with j, ωj ∈ Rj as they are perpendicular, giving us results like trd(ωj) = 0.
We compute the discriminant of R+Rj directly:

disc(R+Rj) = det(trd(αiαj))i,j

= det


trd(11) trd(1ω) trd(1j) trd(1ωj)
trd(ω1) trd(ωω) trd(ωj) trd(ωωj)
trd(j1) trd(jω) trd(jj) trd(jωj)

trd(ωj1) trd(ωjω) trd(ωjj) trd(ωjωj)



= det


trd(11) trd(1ω) 0 0
trd(ω1) trd(ωω) 0 0

0 0 trd(jj) trd(jωj)
0 0 trd(ωjj) trd(ωjωj)


= det

[
trd(11) trd(1ω)
trd(ω1) trd(ωω)

]
det

[
trd(jj) trd(jωj)

trd(ωjj) trd(ωjωj)

]
= det

[
2 D

D D2−D
2

]
det

[
−2p −Dp
−Dp −D2p+Dp

2

]
= p2D2

Which gives us disc(R+Rj) = p2D2, and the index [O : R+Rj] is |D|. �

If we have a special p-extremal order, we fix Z[i] ⊆ R such that i2 = −q, j2 = −p and the
discriminant of R is −d(O). Since R is the quadratic ring of minimal discriminant it will be the
ring of integers of Q(i). Furthermore, for our setting, when i2 = −1 we have R = Z[i].

3.1. Representing integers by special orders. The usefulness of these special p-extremal
orders is exactly the Lemma above. The special norm form and the integer ring structure of R
allows us to construct elements of a given integer norm quite easily. This section will provide
an algorithm for finding such numbers before we move on with the KLPT algorithm in the
subsequent sections.

The first algorithm which we will look into lets us find an element of O which has a given
integer norm M . It requires that O is special p-extremal and makes use of the suborder R+Rj
which in our case has discriminant D = −4. Furthermore the principal quadratic form of
discriminant −4, f(x, y), has the simple form f(x, y) = x2 + y2.

Remark. As before we simplify the algorithm by assuming that i2 = −1, in the original
paper this assumption is not made and the results are still valid with slight modifications.

The paper makes the rather abstract choice of having a monotone function Φ(x). It is
defined by the requirement that the interval [x, x + Φ(x)] has sufficiently many primes. The
word sufficient is rather non-explicit, however for the algorithm to terminate we are expected
to test 2h(R) primes, so sufficient needs to be greater than this number (where h(R) is the
class number of R). Furthermore, to be able to represent M we require that M ≥ pΦ(M). In
other words we are not able to represent any integer element with this algorithm, but if we want
an element of the form abc where we can choose c ourselves, we can just increase it until the
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inequality is satisfied. This is indeed what the KLPT algorithm does so Algorithrm 6 is suitable
for our purposes.

Algorithm 6: RepresentInteger(M)

Input: An integer M
Output: An element α+ βj ∈ O of norm M

1 m← b
√

Φ(M)
4 c ;

2 repeat
3 (x2, y2)←r [−m,m]2 ;

4 r ←M − pf(x2, y2) ;

5 r← Cornaccia(r,−4) ; // Computes prime above r

6 until r is prime, r splits in R and r is principal ;

7 β ← x2 + y2ω ;

8 α← x1 + y1ω = r ; // Generator of r

9 return α+ βj

Proposition 4.20. Algorithm 6 outputs the correct norm and runs in expected time 2h(R) log(M).

Proof. For correctness, we notice that if we set m =
√

Φ(M)/4 we have f(x, y) < Φ(M). This
comes from the fact that f(x, y) = x2 + y2, so

f(x, y) ≤ Φ(M)/4 + φ(M)/4 < M/2 +M/2 = M

Similarly we see that nrd(βj) = pf(x, y) < pΦ(M) ≤M using the assumption on M . It is clear
that the output is of desired norm since nrd(α) = M − pf(x2, y2), so nrd(α+ βj) = M .

The numbers we are testing for primality are of the form M − pa where a ∈ [0,Φ(M)] ⊂ Z.
We assume that the primes have density 1/ log(M) within this set. Furthermore we assume that
such primes are equally likely to be split and non-split in R. Whenever a prime splits in R we
assume that it is equally likely to be in any of the h(R) ideal classes of R. The last thing we
require is that one can sample random x, y and compute r = M−p nrd(x, y) instead of sampling
r at random from the set while still maintaining the same properties.

If this holds true we are expected to test a total of 2h(R) log(M) different β := (x2 + y2ω)
values before successfully terminating. That is, after log(M) tries one is expected to find a
prime, every second prime will be split, and every h(R) split-prime will be in the trivial ideal
class - those that are principal. �

Example 4.21. We attempt to represent the integer M = 5 ∗ 75 = 84035 with p = 439 with our
standard maximal order O0. Using m = 7 we get the result (x2, y2) = (7, 3). Which gives us
the prime r = M − p(x2

2 + y2
2) = 58573. Next we look at the ideal generated by r inside Q(i),

and see that it splits into (−242 + 3i)(−242− 3i) = (58573). Therefore r splits in R.
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Next, we represent r with (242, 3) (That is 2422 + 32 = 58573). Viewing this as an ideal
(242+3i) in Q(i), we see that it is principal, ie generated by 242+3i. Finally we simply return the
element 242+3ω+(7+3ω)j which in our case is the quaternion element 242+3i+7j+3ij ∈ O0.
Notice how this is indeed in O0 since it can be written as 484b1+6b2−245b3 where b1 = (1+j)/2,
b2 = (i+ ij)/2, b3 = j and b4 = k is a basis of O0.

3.2. Algorithm overview. Going back to the KLPT algorithm we recall that we have a
O1, O2-connecting ideal I of reduced prime norm N . We wish to compute an equivalent ideal J
of reduced norm le for a given prime l and some integer e (chosen by the algorithm). Assuming
O1 is special p-extremal, we can use Algorithm 6 to find elements of O1 of a given norm. We
find one such element γ of reduced norm Nle1 where we select e1 to be the smallest possible
that still satisfies Nle1 ≥ pΦ(Nle1).

Example 4.22. In Example 4.21 we found an element of reduced norm 5∗75 with p = 439. With
our initial attempts at finding en element with a smaller e (smaller than 5), we failed as there
where not enough primes r of the form M − pf(x, y). Thus we have our γ = 242 + 3i+ 7j+ 3ij.

We are really interested in having an element α ∈ I with a norm of similar form (Nle).
This would allow us to use Lemma 4.11 to create the equivalent ideal J := Iα/N of reduced
norm le. To solve this problem, the KLPT algorithm makes use of the fact that any left O-ideal
of norm N is of the form Oβ + ON , in particular our ideal I is of this form. Finding β does
not help us that much as it is only in O, but looking at elements in the quotient ring O/NO
lets us find a µ ∈ O such that γµ ≡ β (mod NO), thus necessarily γµ ∈ I. To find this µ, the
KLPT algorithm first finds a quotient element [µ] ∈ O/NO that satisfies (Oγ/NO)[µ] = I/NO.
This element is not a priori of the suitable norm le2 , but since we can choose the representative
ourselves when lifting it to O we have just enough choice to find one that we want. Having
lifted [µ] to µ with nrd(µ) = le2 we can compute γµ which has reduced norm Nle1+e2 , satisfying
γµ ∈ I.

We summarize the algorithm in the following steps:

Step 1 Ensure that I = Oβ +ON has prime norm N (Algorithm 3)
Step 2 Sample γ ∈ O of reduced norm Nle1 giving us the proper ideal Oγ (Algorithm 6)
Step 3 Find [µ] ∈ O/NO such that γµ ≡ β (mod NO)
Step 4 Lift to µ ∈ O such that nrd(µ) = le2 for some e2

Step 5 Return Iγµ/N , an ideal of reduced norm le1+e2 (Lemma 4.11)

Remark. For the algorithm to work, we require that N (the reduced norm of I) is rel-
atively prime to p, D and l. Furthermore, l needs to be a quadratic non-residue modulo N .
The connecting ideal I that we start with might not satisfy these requirements, but running
Algorithm 3 we can turn I into one of prime norm. Since p and l are prime, the norm of I is
unlikely to be the same. Furthermore D = −4 and I is unlikely to be of norm 2. Therefore we
can assume that these requirements are satisfied without much trouble.

Step 1, 2, and 5 are already discussed. The interesting parts are step 3 and 4 which is what
we will discuss next.
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3.3. Finding [µ0]. Our first task is to find [µ0] ∈ O1/NO where [µ0] is simply the notation
of an element of that quotient. We want to find [µ0] such that (Oγ/NO)[µ0] = I/NO and [µ0]
is a unit in Rj/NO. By Proposition 4.12 we have I = O1α+O1N , thus in the quotient we have
I/NO1 = O1α/NO1. We are then left with solving O1γµ0 ≡ O1α (mod NO1). Furthermore,
we need to have µ0 ∈ Rj = Zj + Zij, which is not always possible but as we will see it usually
is. If it turns out that it is not, we simply choose another γ in the earlier step.

Our proofs are inspired by Dimtrij Ray’s Master’s thesis [10, Chapter 3].

Proposition 4.23. Let O be a special p-extremal order with distinguished subring R = Z[i], such
that R+Rj forms a suborder of O and gcd(p,N) = 1, then we have the following isomorphisms

O/NO ∼= (R+Rj)/N(R+Rj) ∼= M2(Z/NZ)

Proof. Since O is a ring, then O/NO is also a ring. Furthermore, since 1 ∈ O we can create
a homomorphism f : Z/NZ → O/NO by sending 1 to its residue class. Therefore O/NO is
a Z/NZ algebra. To show that it is a quaternion algebra we need for i, j ∈ O/NO such that
i2 = a, j2 = b and ij = −ji for a, b ∈ (Z/NZ)× = Z/NZ \ {0}. However since R = Z + Zi we
already have the elements 1, i, j and ij inside our order O. In the quotient we send i2 = −1 to
−1 ∈ (Z/NZ)× and since p and N are relatively prime we also have j2 = −p that can be sent
to −p ∈ (Z/NZ)×. The non-commutative structure ij = −ji follow from O.

Using the Main Theorem of quaternion algebras 2.23 we have that O/NO ∼= M2(Z/NZ) if
and only if O/NO is not a division ring. However, using Algorithm 6, we can always find an
element α ∈ O such that nrd(α) = Na for some (large) integer a. So we have a nonzero element
in O/NO with a nrd([α]) = 0, thus it cannot be inverted so in particular O/NO is not division
and thus it is isomorphic to M2(Z/NZ).

To show the first isomorphism we note that since O/NO is a quaternion algebra over Z/NZ
it is trivially isomorphic to

(R+Rj)/N(R+Rj) = Z/NZ + Z/NZi+ Z/NZj + Z/NZij

�

Example 4.24. We can make the ismorphism φ(R+Rj)/N(R+Rj)→M2(Z/NZ) explicit in
our case when N = 5 and p ≡ −1 (mod 5) by sending the generators

[1] 7→
[

1 0
0 1

]
, [i] 7→

[
2 0
0 3

]
, [j] 7→

[
0 1
1 0

]
and [ij] 7→

[
0 2
3 0

]
Since Oγ and I are (proper) left O-ideals we have that Oγ/NO and I/NO are proper ideals.

They are both nonzero since NO ( Oγ and NO ( I. Using the explicit isomorphism φ defined
in the example above, we can solve the equation (Oγ/NO)[µ0] = I/NO for [µ0] by mapping
the principal ideals Oγ/NO and I/NO to matrices C,D ∈ M2(Z/NZ) and then solving the
equation CX = D for X. Then mapping the solution back using φ−1(X).

Example 4.25. Continuing with our γ = 242 + 3i + 7j + 3ij, we construct the ideal Oγ
which then is generated by { 1+74071j+120620ij

2 , i+47450j+74071ij
2 , 84035j, 84035ij}. Then we have

I = Oα+ON , where α = 207+12i+533j+203ij. Writing these with respect to the generators
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of O gives us that Oγ = {b1 + 37035b3 + 60310b4, b2 + 23725b3 + 37035b4} and α = 414b1 +
24b2 + 326b3 + 191b4 where bi are the generators of O.

We first map these to the quotient modulo 5O which gives us that

Oγ/5O = 〈b1, b2〉 = 〈6b1, 6b2〉 = 〈3 + 3j, 3i+ 3ij〉
and

α/5O = 4b1 + 4b2 + 1b3 + 1b4 = 2 + 2i+ 3j + 3ij

Choosing our representatives carefully as to be within R+Rj = Z + Zi+ Zj + Zij
Next we map these generators to M2(Z/5Z) using the φ map from the above example.

φ(Oγ/5O) =

〈[
3 3
3 3

]
,

[
1 1
4 4

]〉
=

〈[
2 2
4 4

]〉
φ(α/5O) =

[
1 4
2 3

]
Finally we need to find [µ0] such that Oγ/5O[µ0] = α/5O. To do this we simply solve for

φ([µ0]) and find the solution
[

0 1
4 0

]
. This can be mapped back to 3ij in O/5O.

Now that we have found a [µ0] we are almost done. We only need to make sure that we can
find a [µ0] which a unit in Rj/(NO∩Rj). To show this we make use of some linear algebra and
group theory. The following results are only necessary to prove the existence of [µ0] and gives
little insights into how we can actually find it. The reader may therefore safely move ahead until
the next subsection if he can believe in the existence of such a [µ0].

Henryk Minc describes in his lecture notes [26, Theorem 1 & 2] that the ring M2(Z/NZ) is
a principal left-ideal ring. Furthermore, during the proof of Theorem 2 he shows that the rank
of the generating matrices of nonzero proper left ideals is 1.

Lemma 4.26. The ring M2(Z/NZ) has N + 1 nontrivial proper left ideals

Proof. Since the proper left ideal generators of M2(Z/NZ) have rank 1, if A′ =
[

0 0
a b

]
is a

generator of the ideal, then A =
[
a b
0 0

]
=
[

0 1
1 0

]
A′ is also a generator. Therefore we can assume

that the ideal is generated by A =
[
a b
0 0

]
where at least one of a, b is nonzero. Thus a total of

N2 − 1 generator matrices exist.
Furthermore, let B =

[
b1 b2
b3 b4

]
∈ M2(Z/NZ) be an arbitrary matrix. Then BA =

[
ab1 bb1
ab3 bb3

]
.

In particular any nonzero scalar multiple of A generates the same left ideal. That is
[
a b
0 0

]
and[

λa λb
0 0

]
generate the same ideal if λ ∈ (Z/NZ)×. There are N − 1 such scalars, so we end up

with (N2 − 1)/(N − 1) = N + 1 possible left ideals. �

Corollary 4.27. The ring O/NO has N + 1 nontrivial left ideals

Remark. Notice how an ideal of O/NO corresponds to a generator [α] ∈ O/NO which can
be lifted to Oα+ON which then corresponds to an isogeny of degree N . We already know that
there are N + 1 isogenies of degree N , so this corollary should come as no surprise.

Next we will describe an action on the left O/NO ideals, which will allow us to determine
if there is a solution to the equation

(Oγ)µ0 = Oα (mod NO)
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with respect to µ0.

Lemma 4.28. Let R be the distinguished subring of O and L be the set of all nontrivial proper
left O/NO ideals. Then the map

ρ : L × (R/NR)× → L
(I, β)→ Iβ

defines a group action with kernel (Z/NZ)×. Furthermore

(1) If N is split in R, the group action has an orbit of size N − 1 and two fixed points
(2) If N is inert in R, the group action has only orbit.

Proof. ρ is a group action: Let I ∈ L be a left ideal generated by the element α, and β ∈
(R/NR)× be any element. Then

ρ(I, β) = Iβ = (Oα)β = (Oαβ) (mod NO)

Which is also a nontrivial proper left O/NO ideal unless αβ = 0, but since β 6= 0 and N is
prime this cannot happen. So the map is clearly well defined. To show that it is a group action
we need to ensure that ρ(I, 1) = I and that ρ(ρ(I, β), γ) = ρ(I, βγ). The first property follows
immediately. The second can similarly be seen quite easily:

ρ(ρ(I, β), γ) = ρ((Iβ), γ) = (Iβ)γ) = I(βγ) = ρ(I, βγ)

ker(ρ) = (Z/NZ)×: Clearly (Z/NZ)× is in the kernel since Ia = aI = I as I is a left

O/NO-ideal and Z/NZ is in the center of the quaternion algebra O/NO. What remains to
show is that no element of the form b1 + b2i with bi ∈ Z/NZ and b2 6= 0 is in the kernel.
Suppose I is generated by α = a1 + a2i+ a3j + a4ij and b2i for b2 ∈ (Z/NZ)×

αb2i = −a2b2 + a1b2i+ a4b2j − a3b2ij = b2(−a2 + a1i+ a4j − a3ij)

Since b2 ∈ (Z/NZ)× it is invertible, so the ideal generated by αb2i is also generated by −a2 +
a1i+ a4j− a3ij. Writing them as matrices with the basis 1, i, j, ij we look for a solution matrix
C to the equation

C


−a2 0 0 0

0 a1 0 0
0 0 a4 0
0 0 0 −a3

 =


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4


Solving the equations we see that the solution matrix is

C =


−a−1

2 a1 0 0 0
0 a−1

1 a2 0 0
0 0 a−1

4 a3 0
0 0 0 −a−1

3 a4


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Thus in particular, if only one of a1 and a2 is zero or only one of a3 and a4 is zero, then the ideal
generated by αb2i is not the same as the ideal generated by α, so b2i 6∈ ker(ρ). Furthermore if
we assume I is one of those ideals that satisfy Ib2i = J 6= I, then we have

I(b1 + b2i) = Ib1 + Ib2i = I + J 6= I

In particular, there exists ideals, I, where for any β = b1 + b2i with b2 6= 0 ρ(I, β) 6= I. Thus
the kernel must be (Z/NZ)×

N is split in R: Assuming that N splits we can write it as N = (a1 + a2i)(a1 − a2i) for

a1, a2 ∈ Z \ {0}. Thus both a1 and a2 are invertible modulo NZ and (R/NR)× acts trivially
on the left ideals (a1 + a2i) and (a1 − a2i) by the above discussion. Thus these are fixed points
of ρ. Let α ∈ (R/NR) be an element that is not a multiple of a1 + a2i nor a1 − a2i, then
gcd(nrd(α), N) = 1, so we can find its inverse: α/nrd(α). Thus α is a unit in R/NR, and we
have |(R/NR)×| = N2−1−2(N−1) = (N−1)2. Since there are ideals where the only stabilizer
is (Z/NZ)× by the orbit stabilizer theorem their orbit is

[(R/NR)× : (Z/NZ)×] =
|(R/NR)×|
|(Z/NZ)×|

=
(N − 1)2

N − 1
= N − 1

Furthermore since the size of L is N + 1 and we already have two fixed points, we conclude that
there are exactly two fixed points and one orbit of size N − 1.

N is inert in R: Since N is inert, we have |(R/NR)×| = N2 − 1 as every nonzero element
is a unit. Again, using the orbit stabilizer theorem and the fact that there exists an ideal whose
only stabilizer is (Z/NZ)× we have

[(R/NR)× : (Z/NZ)×] =
|(R/NR)×|
|(Z/NZ)×|

=
N2 − 1

N − 1
= N + 1

Again by the size of L we conclude that this is the only orbit. �

Using this group action we can show the solvability of our earlier equation.

Proposition 4.29. Let α ∈ I, γ ∈ O. Then the equation

(Oγ)µ0 = Oα (mod NO)

is always solvable for µ0 ∈ Rj whenever N is inert, and solvable with probability (N2 − 2N +
3)/(N + 1)2 assuming that α and γ are chosen at random.

Proof. Since j is a unit, the lemma above also holds for the action of (R/NR)×[j] where [j] is
a representative of j in O/NO.

N is inert: By the lemma above both ideals Oγ/NO and Oα/NO lie in the same orbit. In
particular, there exists some µ0 ∈ (Rj/NRj)× such that ρ(Oγ/NO, µ0) = Oα/NO

N is split: Again, by the lemma above, if Oγ/NO and Oα/NO are in the orbit of size

N − 1 there exists a solution, so among the (N + 1)2 possible ideal-combinations that we can
get from Oγ/NO and Oα/NO, (N − 1)2/(N + 1)2 have a solution. j can either swap the fixed
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points or keep them in place. Nevertheless there are only 2 out of (N + 1)2 ideal-combinations.
Thus giving us the total probability of(

N − 1

N + 1

)2

+
2

(N + 1)2
=
N2 − 2N + 3

(N + 1)2

�

In other words we are highly likely to be able to find a µ0 such that µ0 ∈ Rj which solves
the equation (Oγ/NO)[µ0] = I/NO. If we are not able to find this µ0 we backtrack and sample
another γ instead.

3.4. Lifting [µ0] to its R + Rj representative µ. Recall that we want to lift [µ0] ∈
(R/NR)∗[j] to some µ ∈ O satisfying nrd(µ) = le1 for some positive e1 given a prime l. As
before, we make use of the norm form on our special p-extremal order O

nrd(x1 + y1ω + (z1 + w1ω)j) = f(x1, y1) + pf(z1, y1)

We first lift [µ0] to a representative µ0 ∈ R+Rj (noting that µ0 will be entirely in Rj).

Example 4.30. With our [µ0] = ij ∈ Rj/NRj this is trivially lifted to µ0 = ij ∈ R+Rj.

The canonical lift of [µ0] is unlikely to be of the correct norm. To remedy this we make use
of the freedom we are given with respect to the requirements of [µ0]. We can replace it with
an element of the form µ = λµ0 + Nµ1 for λ ∈ {1, . . . , N − 1} and µ1 ∈ R + Rj. The only
requirement of [µ0] is that (Oγ/NO)[µ0] = I/NO, which is also satisfied for our new element:

(Oγ/NO)[λµ0 +Nµ1] = (Oγ/NO)[λµ0] = λ(Oγ/NO)[µ] = λI/NO = I/NO

Writing µ0 = (z0 +w0ω)j and µ1 = x1 + y1 + (z1 +w1ω)j and then µ = λµ0 +Nµ1 we get
the simplified norm equation

(1) nrd(µ) = f(Nx1, Ny1) + pf(λz0 +Nz1, λw0 +Nw1) = le1

We first lift [µ0] to its canonical representative µ0 and look at (1) modulo N . This gives us

λ2pf(z0, w0) = le1 mod N

Since l is a quadratic residue mod N we choose the parity of the exponent e1 depending on
whether pf(z0, w0) is a quadratic residue or not. Next we solve the square root equation λ2 ≡
le0/pf(z0, w0) (mod N) and choose representative of λ within the range 1, . . . , N − 1.

Example 4.31. Continuing our example we have µ0 = (z0 +w0i)j = (0 + 3i)j and p = 439 ≡ 4
(mod 5) giving us

pf(z0, w0) = 439 ∗ (32) ≡ 1 (mod 5)

Since 1 is a quadratic residue modulo 5, we have that e1 needs to be even. 1−1 ≡ 1 (mod 5)
so λ2 ≡ 7e1 (mod 5). The smallest possible e1 is 2, however if we choose this value we need to
repeat with a larger one. Therefore we cheat and choose 8 right away, giving us λ2 ≡ 78 ≡ 1
(mod 5). Solving for λ gives us the possibilities 1, 4. We select an arbitrary value, for example
λ = 1.
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Rewriting equation (1), using the equation nrd(α+ β)− nrd(α)− nrd(β) = 〈α, β〉 we get

〈λµ0, Nµ1〉 = le1 − pf(z0, w0) mod N

We can simplify the inner product as follows:

〈λµ0, Nµ1〉 = nrd(λµ0 +Nµ1)− nrd(λµ0)− nrd(Nµ1)

= nrd(λ(z0 + w0ω)j) +N(z1 + w1ω)j)

− λ2 nrd((z0 + w0ω)j)−N2 nrd((z1 + w1ω)j)

= pλN(2z0z1 + z0w1(ω + ω) + z1w0(ω + ω + 2w0w1ωω)

= pλN(2z0z1 + trd(ω)(z0w1 + z1w0) + 2 nrd(ω)w0w1)

Where the second line follows from the fact Nµ1 is the only part of the sum that contains
components from the first two dimensions. They will therefore necessarily subtract to zero when
subtracting nrd(Nµ1). The simplification follows from expanding the reduced norm equations,
replacing nrd(α) with αα, recalling that ωj = jω = −jω, and that z0, z1, w0, w1, λ,N and p
commute with ω and j. Thus giving us the equation

pλ (2z0z1 + trd(ω)(z0w1 + z1w0) + 2 nrd(ω)w0w1) =
le1 − pf(z0, w0)

N
mod N

Since N is coprime to w0, z0, |D| and p, this equation has exactly N solutions (z1, w1). We
choose a random one among them that satisfy

|λz0 +Nz1| < N2 and |λw0 +Nw1| < N2

Example 4.32. We continue our example and note that since our ω = i we get that trd(ω) =
i + i = i − i = 0 and nrd(ω) = i(−i) = −i2 = 1. Furthermore we still have pf(z0, w0) = 3951
and p ≡ 4 (mod 5) and our chosen λ = 1. Thus the expression becomes 4(2∗0∗z1 +2∗3∗w1) =
78−3951

5 = 1152170 ≡ 0 (mod 5) which can be simplified to

w0 ≡ 0 (mod 5)

That is we have the 5 solutions (0, 0), (1, 0), (2, 0), (3, 0) and (4, 0) for (z1, w1). We would like for
z1 to satisfy |λz0 +Nz1| = |5 ∗ z1| < 52 = 25. This gives us the options z1 ∈ {0, 1, 2, 3, 4}. The
second requirement is immediately satisfied as w0 = 0. Thus every solution for z1, w1 satisfy
the requirements. We pick an arbitrary tuple, (z1, w1) = (0, 0).

The final part of finding µ is to solve the equation when not working modulo N . That is
we need to solve

f(x1, y1) =
le1 − pf(λz0 +Nz1, λw0 +Nw1)

N2

This can be solved with Cornaccia’s algorithm, Algorithm 1, since we know f has discriminant
D. If the fraction is negative, we simply need to increase our e1 chosen earlier and repeat the
steps. Conraccia’s algorithm will either be able to solve this equation or determine that no
solution exist. If no such solution exist we chose a new value for (z1, w1).
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Example 4.33. Continuing our example we have

f(x1, y1) =
74 − 439f(3 ∗ 4 + 5 ∗ 1, 3 ∗ 4 + 5 ∗ 1)

5 ∗ 5
= 230434

Using Cornaccia’s algorithm we get that f(455, 153) satisfy this expression. Thus we have found
our element µ0 = 3ij and µ1 = 455 + 153i, giving us the lift

µ = λµ0 +Nµ1 = 2275 + 765i+ 3ij

For the running time of this algorithm, we assume that the values

le1 − pf(λz0 +Nz1, λw0 +Nw1)

N2

behave like random numbers close to N4|D|p, thus we expect to choose log(N4|D|p)h(D) values
before finding a solution.

The authors expect the value e1 to be of size logl(N
4|D|p) ≈ 3 logl(p), and note that it should

be selected as the minimal value satisfying the parity requirement, incrementing it if needed. We
notice that this approximation fits well with our running example since log7(54 ∗ 4 ∗ 439) ≈ 7.1
while we required to choose e1 = 7 to find a solution.

3.5. Wrapping up the algorithm. Now we have found γ, µ ∈ O with the properties
nrd(γ) = Nle0 and nrd(µ) = le1 , thus our element β := γµ ∈ I has reduced norm nrd(β) =
Nle = Nle0+e1 . Multiplying with I gives us the equivalent left ideal J := Iβ/N of prime power
norm le.

Example 4.34. Continuing our example we have γ = 247+90i+3j+5ij and µ = 2275+765i+3ij
giving us that

β = γµ = 544304 + 201174i+ 18211j + 2196ij

Computing its reduced norm we see that nrd(β) = 5 ∗ 713, which is what we would expect since
e0 = 5 and e1 = 8. Finally scaling the ideal

I = 〈1/2 + 9/2j, 1/2i+ 9/2ij, 5j, 5ij〉

with β/N gives us the ideal J = 〈α1, α2, α3, α4〉 of reduced norm 713 with

α1 =
14499193− 1775514i+ 976105j + 361674ij

2

α2 =
1775514 + 14499193i− 361674j + 976105ij

10
α3 = 7994629− 964044i+ 544304j + 201174ij

α4 = 964044 + 7994629i− 201174j + 544304ij

We can also verify that the right order of J is the same as the right order of I which is what we
would expect (OR(I) = OR(J)).

Under the assumption that O is a special p-extremal order we conclude the KLPT algorithm
with the following theorem.
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Theorem 4.35. Let O be a special p-extremal maximal order in quaternion algebra B, and let l
be a small prime. Then there exists a probabilistic algorithm which takes as input a left O-ideal
I and outputs an isomorphic left ideal O-ideal J satisfying nrd(J) = le for some positive integer
e. Furthermore the exponent e is of size

e ≈ logl(NpΦ(p)|D|) + logl(N
4|D|p)− logl(N

2)

Proof: See [22, Theorem 7]
We can simplify the equation for the exponent approximation by assuming that logl(N) ≈

1
2 logl(p) and that Φ(p) ≈ log(p)n a factor completely negligible in this case, thus giving us

e ≈ 7
2 logl(p)

Example 4.36. Our example produce an isogeny with e = 13, while the theorem gives us the
approximation log7(439) ∗ 7/2 ≈ 11 which is not that far away.

3.6. Removing the need for special p-extremal orders. Going back to our initial
claim that we don’t need for O1 to be a special p-extremal maximal order, we will now prove
that we can use the algorithm even if this is not the case. Actually, all we need is to run the
algorithm twice to get our desired result.

E1 E2

O1 O2

O′

φ

∼= ∼=

I

IJ

J

Figure 18. Computing the ideal connecting O1 to O2

That is, we find the connecting ideals I and J satisfying OL(I) = O1, OR(I) = O′, OL(J) =
O′ and OR(J) = O2. Clearly these are compatible, and their product IJ satisfy OL(IJ) = O1

and OR(IJ) = O2. This is easily seen since O1I ⊆ I, so O1 ⊆ OL(IJ), similarly O2 ⊆ OR(J) ⊆
OR(IJ). Since O1 and O2 are maximal and OL and OR are orders, these inclusions must be
equalities.

The only remaining thing to show is that one can in fact find this I : O1 → O′ when O′ is
the special p-extremal order. The KLPT algorithm will a priori only construct it in the other
direction.

Lemma 4.37. Let O1, O2 be maximal orders of a quaternion algebra B. Then the Eichler order
O1 ∩O2 satisfy [O1 : O1 ∩O2] = M = [O2 : O1 ∩O2] and the set

I(O1, O2) := {α ∈ B | αO2α ⊆MO1}
is a left O1-ideal and a right O2-ideal of reduced norm M . Conversely if I is a left O1 ideal with
right order O2 such that I 6⊆ nO1 for any n > 1, then I = I(O1, O2).
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Proof: See [22, Lemma 8].
Using the lemma above we can easily find a connecting ideal between maximal orders. This

along with the Theorem below allows us to construct the ideal I in the opposite direction.

Theorem 4.38. Let O1 and O2 be maximal orders in a quaternion algebra B, and let l be prime.
If there exists an algorithm which takes as input a left O1 ideal and computes an equivalent left
O1 ideal of l-power norm, there exists an algorithm which takes as input a left O2 ideal and
computes an equivalent left O2 ideal of l-power norm.

Proof. Let A be an algorithm that turns a left O1 ideal I into an element γ ∈ I such that
Iγ/nrd(I) has l power norm.

Given left O2 ideal J , set I = I(O1, O2). Note that I is an O1, O2 ideal, so by Proposition
4.13 IJ is a left O1 ideal. Using our algorithm we get the elements γ1 ← A(I) and γ2 ← A(IJ).
such that I1 = Iγ1/ nrd(I) for γ1 ∈ I and I2 = IJγ2/ nrd(IJ) with γ2 ∈ IJ . These elements
satisfy reduced norms nrd(γ1) = nrd(I)le1 and nrd(γ2) = nrd(IJ)le2 . Thus the element γ :=
γ1γ2/ nrd(I) has reduced norm nrd(J)le1+e2 .

What remains to show is that the element γ1γ2 is in fact in J . First we make use of the
fact that II = nrd(I)O2. Writing γ2 as αβ with α ∈ I and β ∈ J we therefore get that
γ′ := γ1α/nrd(I) ∈ O2. Second, since O2 = OL(J), we have γ := γ′β ∈ J .

Therefore, the element γ, can be used to produce the ideal

J ′ := J
γ

nrd(J)

which is equivalent to J , and of reduced norm le1+e2 �

Thus to be able to find the ideal I : O1 → O′, one instead performs the algorithm on the
two ideals J := I(O′, O1) and JI and use the outputs to find our ideal J ′ of reduced l-power
norm.

3.7. Run time analysis. For the run time analysis we make the same estimations that
are done in [22]. That is, we assume that N ≈ √p, that Φ(p) ≈ log(p)n for some integer n and
that the discriminant D is so small that it does not contribute to the running time. As we saw
in the example, when p ≡ 3 (mod 4), D = −4, and is thus a small constant. However, unlike
[22], we give a concrete estimate for the running time based on their assumptions.

We quickly recall the five steps:

Step 1 Turn I into an ideal of prime norm N
Step 2 Sample γ ∈ O of reduced norm Nle0 giving us the proper ideal Oγ ()
Step 3 Find [µ] ∈ O/NO such that γµ ≡ β (mod NO)
Step 4 Lift to µ ∈ O such that nrd(µ) = le1 for some e1

Step 5 Return Iγµ/N , an ideal of reduced norm le0+e1 (Lemma 4.11)

Step 1 uses Algorithm 3 which runs in time bounded by log4(p), where p is the ramification
prime of B = (−1,−p | Q).
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Step 2 uses Algorithm 6 which runs in time 2h(R) log(M) where M is Nle0 . We have already
estimated e0 to be roughly logl(NpΦ(p)|D|), soNle0 is roughlyN2pΦ(p)|D| which is O(p2) under
our heuristics. We also know that the class number h(R) is bounded by its discriminant, that is

h(R) ≤ 1

π

√
|D| ln(|D|)

so in particular we have

O(2h(R) log(M)) = O(log(p2)) = O(log(p))

Step 3 only consists of a relatively few number of steps which involves solving linear algebra
over M2(Z/NZ), implicitly depending on the factor N . For our run-time analysis we will omit
this step.

Step 4 only consists of a few number of steps, but it involves calling Cornaccia’s algorithm
by trying to represent numbers close to le1 where le1 is expected to be N4p|D|, which under our
estimations become O(p2p) = O(p3), thus giving us a running time bounded by O(log10(p3/2)) =
O(log10(p)).

Step 5 is also just a straight forward computation.
Thus the algorithm runs in time O(log(p)) making this suitable for virtually any prime

p. In other words, finding an l-power isogeny (represented as a connecting ideal) given the
endomorphism rings of elliptic curves is considered easy.

Remark. In practice this is no problem since the security assumption relies on computing
the endomorphism rings, which we have shown to be a difficult task.

4. Computing isogenies from ideals

In this section we will look at how we can turn the ideals we have just created into isogenies.
We begin with a short introduction to the problem before we describe a way to compute the
isogenies if our ideal is of prime norm l, then we describe how we can turn an ideal of prime
power norm le into e ideals of norm l, and finally we will put this together to create a complete
algorithm.

At this point we have an ideal I of reduced norm le that connects O1 to O2, the orders in B
corresponding to the endomorphism rings of the elliptic curves E1 and E2. We will describe an
approach for computing those isogenies using algorithms based on Eisenträger, Hallgren, Lauter,
Morrison and Petit’s [11, Section 6].

We begin with the simplest observation of how to compute an isogeny. Assuming I is an
ideal of End(E), we have

E[I] := ∩α∈I ker(ιE(α)) = ker(ιE(γ1)) ∩ ker(ιE(γ2)) ∩ ker(ιE(γ3)) ∩ ker(ιE(γ4))

Where γ1, . . . , γ4 is a Z-basis of I. Since we assume nrd(I) and p are coprime, the isogeny will be
separable and thus correspond to its kernel. After computing E[I] we can thus use the explicit
kernel to compute the isogeny using Vélu’s formulas.

That being said, the kernel has size le. For the algorithm to be usable we require it to be
polynomial in log(p) (or better). However, as explained in the previous section, e is expected
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to be roughly logl(p), so le is roughly p - not polynomial in log(p). To remedy this we use the
classical approach of splitting le into e ideals of size l which gives us a solution of size el instead
of le. This has some issues which we will discuss shortly, but first let us simply show how to
compute the ideal corresponding to I given that we can represent E[nrd(I)].

4.1. Computing the isoegnies of l-normed ideals. We begin with the algorithm for
turning an ideal I of reduced prime norm l into an isogeny of degree l. We assume we can
represent E[l], and that we have explicit ways of computing the action of α ∈ I on points of
E[l]. We shall stick to our usual notation ιE for the map between (−1,−p | Q) and End(E)⊗Q,
but we stress that it is not necessary to have this map as long as we can evaluate ιE(α) on every
P ∈ E[l].

Algorithm 7: IdealToIsogeny(I, E)

Input: An ideal I of reduced norm l and elliptic curve E. Assuming I is given as
explicit Z-basis β1, β2, β3, β4 with βi ∈ OL(I)

Output: An isogeny φI : E → E′ corresponding to I
1 Compute the basis {P1, P2} of E[l] ;

2 Compute the map ιE that can be evaluated on βi ;

3 for s in {1, . . . , 4} do
4 Compute Qst := ιE(βs)(Pt) for s ∈ {1, 2, 3, 4} and t ∈ {1, 2} ;

5 Initialize L to empty list ;

6 for (x, y) ∈ {(0, 1), (1, 0), (1, 1), (1, 2), . . . , (0, l − 1)} do
7 append (x, y) to L if [x]Qs1 + [y]Qs2 = 0 ;

8 end

9 if Size of L is exactly 1 then
10 Extract x, y from L[0] ;

11 Compute ψ : E → E/〈xP1 + yP2〉 ;

12 return ψ

13 end

14 end

15 return ⊥

Proposition 4.39. Algorithm 7 is correct and runs in time roughly nrd(I) + T where T is the
time required to find and evaluate ιE on the generators of I.

Proof. Correctness: First, assuming that an isogeny is returned, we show that it is the correct
one. Since l is prime, [x]P1 +[y]P2 is an element of order l, and the isogeny ψ has degree l. Thus
ψ can correspond to I or some other ideal of norm l. Since [x]ιE(βs)(P1) + [y]ιE(βs)(P2) = 0 we
have ιE(βs)([x]P1 + [y]P2) = 0, so [x]P1 + [y]P2 ∈ ker(ιE(βs)). Furthermore, since the size of L
is 1, we have 〈[x]P1 + [y]P2〉 = ker(ιE(βs)) ∩ E[l]. If any other generator βi has a different E[l]
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kernel subgroup (and not the entire E[l] torsion), then ker(ιEβ1) ∩ ker(ιEβs) ∩ E[l] = ∅ which
cannot happen because we already know that ∅ 6= E[I] ⊆ E[l].

Second, assuming I is an ideal of prime norm l, we want to show that it returns an isogeny
(not ⊥). Since it corresponds to an isogeny of prime degree l the kernel E[I] must correspond
to a subgroup S of E[l] of size l. Therefore the generators βi has kernels ker(ιEβi) ∩ E[l] ∈
{S,E[l]}. At least one of them must equal S, otherwise E[I] would contain E[l] and thus I
would correspond to an isogeny of degree at least l2. If ker(ιEβi) ∩E[l] = E[l], then the size of
L would be l+ 1 so the isogeny will not return. If ker(ιEβi)∩E[l] = S, then S = 〈[x]P1 + [y]P2〉
for exactly one of the pairs (x, y), so the size of L is 1 and ψ is returned.

Running time: The first step is a classical operation of finding elements of a subgroup of

given order which is considered easy. A simple approach is to simply sample random elements
of E(Fq), multiply them with |E(Fq)|/l and then check if they have order l by multiplying with
[l] (if l is not prime we must also verify the prime powers dividing l). Assuming l is prime, E[l]
contains l2 elements, sampling two at random will give two independent elements except with
probability 1/l, so it is likely to succeed after very few attempts.

The second step is considered difficult for a random supersingular curve. Therefore we shall
simply denote the cost of computing this map and the evaluation ιE(βi) as T .

Step 4 through 8 are simple evaluations and elliptic curve arithmetic, where step 7 is repeated
l + 1 times.

Step 11 can be performed using Vélus formulas which runs in time linear to the size of the
kernel which is l.

Thus the algorithm runs in time l plus some factor T depending on how ιE is evaluated. �

Remark. This algorithm can be modified to return an le isogeny if we during line 6 select
(x, y) from the set (0, 1) ∪ S where

S = {(1, y) | gcd(y, l) = 1 and y ∈ {0, . . . , le − 1}

Thus we sample le − le−1 elements corresponding to all the le subgroups of E[le].

Example 4.40. Let us perform the reverse of our isogeny to ideal computation from Example
4.15, where we ended up with the ideal

Iφ =

〈
1 + 9 ◦ j

2
,
i+ 9ij

2
, 5j, 5ij

〉
Which corresponded to the isogeny φ : E0 → E of degree 5 with kernel point [125 : 82 : 1] going
from j(E0) = 1728 to j(E) = 288. Now we would like to use the above algorithm to verify that
it works. Since we already know the endomorphism of O0 by explicitly that ιE0

sends the map
i to [x : y : z] 7→ [−x : y

√
−1 : z] and j to the Frobenius π, we can perform the algorithm easily.

First we compute a basis of E[5] with ω the nontrivial generator of Fq

P1 = [27 : 430ω + 233 : 1] P2 = [320ω + 129 : 356ω + 120 : 1]
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We start with the first generator of Iφ and compute its image of the generators. The explicit
endomorphism corresponding to β1 is ([1] + [9] ◦ π)/[2] which gives us the points

Q11 = [27 : 430ω + 233 : 1] Q12 = [314 : 273ω + 249 : 1]

Then we see which tuples (x, y) give us [x]Q11 + [y]Q21 = 0, and see that it is exactly (1, 3).
Since the size of L is 1 we compute the isogeny

ψ : E0 → E0/〈P1 + 3P2〉 = E0/〈[125 : 357 : 1]〉 = E

We see immediately that the kernel point P1 + 3P2 correspond to our initial isogeny as it has
the same coordinates except −y instead of y.

4.2. Getting to the l-normed ideals. As our ideal I connecting E to E′ is of reduced
norm le, with e ≈ 7/2 logl(p), Algorithm 7 runs in time polynomial in le ≈ p7/2, which would be
quite intensive for large values of p. Furthermore E[le] will possibly be in some large extension
field of E when e is this large. Thus, instead of computing the large degree isogeny directly we
make the classical approach of splitting I into e l-normed ideals corresponding to the l isogenies
connecting E and E′.

Let us explain this more clearly. Initially we have I connecting E to E′, thus implicitly we
have an isogeny φ : E → E′ of degree le. This can be decomposed into e isogenies of degree l

φ = ψe ◦ · · · ◦ ψ1

This allows us to create the partially composed isogenies φk := ψk ◦ · · · ◦ ψ1 as illustrated in
Figure 19.

E

E1 E2 · · · E′

φ1

φ2 φe

ψ2 ψ3 ψe

Figure 19. Illustration of isogeny decomposition

Just like the kernels of φk form a filtration (ker(φi) ⊆ ker(φi+1)) we can make a similar
filtration for the ideal I:

I = Ie ⊆ Ie−1 ⊆ · · · ⊆ I2 ⊆ I1 ⊆ I0 = End(E)

we will show how this is done shortly, but for now we will just assume that it can be done
and that each ideal Ik has reduced norm lk. Then at each intermediate step we would like to
construct the ideal Jk being equivalent to the ψk isogenies in Figure 19.

From Figure 20 it might seem clear that our ideal J should be of the form J = I−1
k Ik+1.

The following proposition gives us the desired result as we assume that Ik+1 ⊆ Ik.
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E

EIK := E/E[IK ] E/E[Ik+1] =: EIk+1

Ik

Ik+1

Jk

Figure 20. Illustration of ideal decomposition

Proposition 4.41. Let I ′ ⊆ I be two left End(E)-ideals with reduced norms coprime to p. Then

there exists a separable isogeny ψ : EI → EI′ such that φI = ψ ◦ φI′ and a left End(EI)-ideal J̃

satisfying EI [J̃ ] = ker(ψ) such that J := ι(J̃) = I−1I ′ where ι : End(EI)→ End(E)⊗Q is the
injective map defined earlier.

Proof. Proof based on [11, Proposition 10, 11 and 12]
By Corollary 2.67 and the fact that E[I] ⊆ E[I ′] we have that there exists a unique isogeny

ψ : EI → EI′ such that φI′ = ψ ◦ φI . Furthermore, since φI′ is separable, so is ψ.
Let J̃ be the left End(EI)-ideal corresponding to ψ. What remains to be shown is that

ι(J̃) = I−1I ′. Let x ∈ I−1I ′. Since I−1 = 1
deg φI

I we have x = 1
deg φI

α̂β for α′ ∈ I and β′ ∈ I ′.
Using the push-forwards φ∗I and φ∗I′ and their isomoprhism result we can find α ∈ Hom(EI , E)
and β ∈ Hom(EI′ , E) satisfying α = α′φI and β = β′φI′ .

x =
1

deg φI
α̂′β′ =

1

deg φI
φ̂I α̂βφI′

=
1

deg φI
φ̂I α̂βψφI

= ι(α̂βψ) = ι(ψ∗(α̂β))

Furthermore, since α̂β ∈ Hom(I ′, I), using the bijective map g : Hom(EI′ , EI)→ I−1I ′ we
see that

g(α̂β) =
1

deg φI
φ̂I α̂βφI′ = x

giving us
x = (ι ◦ ψ∗ ◦ g−1)(x)

or rather that g = ι ◦ ψ∗. Which tells us that I−1I is equal to ι(J̃) which we simply call J . �

Now we can make the ideal decomposition diagram equivalent of the earlier isogeny decom-
position:

What remains to be shown is that we can decompose the ideal I into the filtration described
earlier. This is the main theorem of [11, Section 6], which creates this filtration and collects the
previous results about decomposing the ideal I into a sequence of l normed ideals Jk.

Theorem 4.42. Let I be a left End(E)-ideal that satisfies nrd(I) = le with l 6= p a prime and
I 6⊂ End(E)lk for any integer k > 0. Then there exists a filtration

I = Ie ( Ie−1 ( · · · ( I1 ( I0 = End(E)
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E

EI1 EI2 · · · EIe =: E′

I1
I2 Ie

J2 J3 Je

Figure 21. Illustration of complete isogeny ideal decomposition

and a chain of isogenies

E = E0
ψ1−−→ E1

ψ2−−→ · · · ψe−1−−−→ Ee−1
ψe−→ Ee = E′

Such that if we set φk : E → E/E[IK ] we get φk+1 = ψkφk and for k = 0, . . . , e − 1 the map
ψk+1 : Ek → Ek+1 has degree l and kernel ideal isomorphic to Jk+1 := I−1

k Ik+1.

Proof. Proof based on [11, Theorem 11].
We first show that Ik := I+End(E)lk has reduced norm lk whenever I is not contained in any

End(E)lm. Since I has reduced norm lk and is not contained in any End(E)lm then E[I] is cyclic,
ie generated by a single point P . Suppose that E[I] is non-cyclic. Then E[I] ∼= ⊕ni=1Z/kiZ by the
structure theorem of abelian groups, such that ki | ki+1. Since E[I] is non-cyclic n > 1 and hence
we have two linearly independent elements of order k1, so E[k1] ⊆ E[I]. Thus End(E)k1 ⊆ I
and we have in particular that k1 | lk so there exists an m such that I ⊆ End(E)lm.

So if we assume that no m exists such that I ⊆ End(E)lm, then E[I] is cyclic and in
particular generated by a single point P . We want to show that Ik := I + End(E)lk is of norm
lk. Since P has order le and E[Ik] is generated by E[I]∩E[End(E)lk] = E[I]∩E[lk] we get that
E[Ik] = 〈[le/lk]P 〉 is a group of order lk. Thus the isogeny corresponding to E[Ik] has degree lk

and thus the ideal Ik must be of reduced norm lk.
Clearly Ik ( Ik−1 by the description of the kernel ideal, so our filtration is also immediate.
From Proposition 4.41 we get that Jk := I−1

k−1Ik is a valid candidate for the horizontal
isogenies. It will certainly satisfy Figure 21. What remains to show is that Jk has reduced norm
l. But this follows from simple computations:

nrd(Jk) = nrd(I−1
k−1Ik) = nrd

(
1

nrd(Ik−1)
Ik−1Ik

)
=

(
1

lk−1

)2

lk−1lk = l

�

4.3. The complete ideal to isogeny algorithm. Putting the previous two sections
together we can make an algorithm for computing the isogeny corresponding to the ideal I.

This is the slightly modified version of [11, Algorithm 9].

Theorem 4.43. Excluding the time needed to find basis of B, computing the maximal order of
E and furthermore assuming that l is of size polynomial in log p and that Algorithm 7 runs in
time polynomial in nrd(Jk). Then Algorithm 8 runs in time polynomial in log p.

Proof: See [11, Theorem 10]
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Algorithm 8: IdealToIsogenyChain(I, E,E′)

Input: An ideal I of reduced norm le connecting E to E′

Output: An chain of l-isogenies composing to φI
1 Compute the basis 〈1, i, j, ij〉 for B ;

2 Compute the maximal order of E in B - giving us the basis 〈β1, β2, β3, β4〉 of O ⊂ B ;

3 for 0 ≤ k ≤ e do
4 Compute Ik := I +Olk and its right order OR(Ik) ;

5 Compute a Z-basis of the OR(Ik)-ideal Jk+1 := I−1
k Ik+1 ;

6 end

7 Set E0 := E;

8 for 0 ≤ k ≤ e− 1 do
9 φk+1 ← IdealToIsogeny(Jk, Ek) ;

10 Ek+1 = Image(φk)

11 end

12 return (φ1, . . . , φe)

In other words, if we are able to compute the endomorphism ring of an elliptic curve,
then we can construct the connecting ideal I using the KLPT algorithm and then compute the
corresponding chain of isogenies φe · · ·φ1 that provide an representable isogeny.

Example 4.44. We continue our example. At this point we have an ideal I of reduced norm
713, we would like to compute the isogeny corresponding to this ideal. Unfortunately for us,
72 - |E(Fp2)| so wee need to look at an extension field to find our 7-torsion points. It turns out
that |E(Fp6)| = 26 ∗ 52 ∗ 72 ∗ 112 ∗ 132 ∗ 21132 which is exactly what we need.

Our ideal I has generators

β1 = 1/10 + 180794141123/5j + 64278645487/2ij

β2 = 1/10i+ 74134226523/2j + 180794141123/5ij

β3 = 69206436005j

β4 = 69206436005ij

When performing the algorithm we get the Jk ideals generated by βi as depicted in Figure 22.
Finally we would like to turn this sequence of ideals into isogenies like we did in the previous

section. This can be easily accomplished using the first algorithm if we know how to evaluate
the generators of Jk on the 7-torsion of the various elliptic curves. However we are only able to
compute the endomorphism ring of the starting curve E0. This allows us to construct J1, which
corresponds to the isogeny φ with kernel

(77ω5 + 4ω4 + 106ω3 + 417ω2 + 6ω + 414, 185ω5 + 431ω4 + 437ω3 + 160ω2 + 435ω + 122)
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Corresponding to an isogeny going from E0 to E1 : y2 = x3 +Ax+B with

A = 132ω5 + 303ω4 + 135ω3 + 271ω2 + 23ω + 59

B = 243ω5 + 29ω4 + 39ω3 + 10ω2 + 192ω + 141

The next step would either require computing the map ιE1
or finding a larger extension field

where we can find the 72 torsion. If we have the generators P,Q ∈ E1[7] we can use the earlier

composition by Washington to evaluate βi on P through
φ◦ιE0

(βi)φ̂

[7] (P ). Noticing that if we start

dividing P and Q with 7 we get points of order 72 which will survive the φ ◦ φ̂ composition.
Unfortunately our example requires very large extension fields to find the 72 torsion, and even
longer to find the entire 713 torsion required to complete the entire isogeny composition. Our
attempts at finding a more suitable field for such computations did not hold through, so we
unfortunately end this section without a complete example.

This illustrates how the difficulty of computing the endomorphism ring underlies the hard-
ness assumption on the isogeny problem of supersingular elliptic curves. Given explicit maps
ιE it would have been easy to construct an isogeny of a prime degree l. Similarly if the entire
le-torsion was Fpn -rational for some small n it would be possible to compute it. Otherwise there
is no clear way to retrieve the isogeny from its ideal.
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Ideal J1

β1
1+11j+4ij

2

β2
1i+10j+11ij

2

β3
14j
2

β4
14ij

2

Ideal J2

β1
7+77j+518ij

14

β2
1i+66j+165ij

14

β3
98j+98ij

14

β4
686ij

14

Ideal J3

β1
49+539j+8428ij

98

β2
1i+458j+14277ij

98

β3
686j+19894ij

98

β4
33614ij

98

Ideal J4

β1
343+3773j+1000188ij

686

β2
1i+1830j+1062485ij

686

β3
4802j+374556ij

686

β4
1647086ij

686

Ideal J5

β1
2401+26411j+64649326ij

4802

β2
1i+16236j+3833239ij

4802

β3
33614j+60269902ij

4802

β4
80707214ij

4802

Ideal J6

β1
16807+184877j+3277297772ij

33614

β2
1i+16236j+3554950655ij

33614

β3
235298j+3811592302ij

33614

β4
3954653486ij

33614

Ideal J7

β1
117649+1294139j+161353956414ij

235298

β2
1i+1192726j+22612912165ij

235298

β3
1647086j+82046294918ij

235298

β4
193778020814ij

235298

Ideal J8

β1
823543+9058973j+3842369986294ij

1647086

β2
1i+9428156j+4889738865477ij

1647086

β3
11529602j+574324064426ij

1647086

β4
9495123019886ij

1647086

Ideal J9

β1
5764801+63412811j+359225895600068ij

11529602

β2
1i+9428156j+422675151740461ij

11529602

β3
80707214j+203417851868588ij

11529602

β4
465261027974414ij

11529602

Ideal J10

β1
40353607+443889677j+12285062856663170ij

80707214

β2
1i+412964226j+7953418802725197ij

80707214

β3
564950498j+17708060942184606ij

80707214

β4
22797790370746286ij

80707214

Ideal J11

β1
282475249+3107227739j+1043502635567986202ij

564950498

β2
1i+3237716716j+848820805748275665ij

564950498

β3
3954653486j+921879089571412252ij

564950498

β4
1117091728166568014ij

564950498

Ideal J12

β1
1977326743+21750594173j+38583086837639807806ij

3954653486

β2
1i+7192370202j+4004883351652823945ij

3954653486

β3
27682574402j+14272795724165861862ij

3954653486

β4
54737494680161832686ij

3954653486

Ideal J13

β1
13841287201+152254159211j+270081607863478654642ij

27682574402

β2
1i+117922667810j+2524283326855598742263ij

27682574402

β3
193778020814j+99909570069161033034ij

27682574402

β4
2682137239327929801614ij

27682574402

Figure 22. Table of Jk ideals with their generators Jk = 〈β1, . . . , β4〉





CHAPTER 5

Applications

Now that we have discussed how to construct isogenies between arbitrary elliptic curves, this
chapter will explain two applications. We will look into the supersingular cryptosystem SIDH
[14] and see how knowing the endomorphism ring allows us to break the system completely.
Next we will look into how the KLPT algorithm can be turned into a post-quantum signature
scheme as is done in SQISign [15].

We will sketch the cryptosystems by going into just enough details to get a feel for how
our knowledge of isogeny construction can be applied. This chapter is by no means meant to
introduce the cryptosystems nor be precise with their inner workings.

1. SIDH

In this section we will describe the Supseringular Isogeny Diffie-Hellman key exchange
(SIDH) [14] proposed by De Feo, Jao, and Plût in 2011. We will show how it can be bro-
ken if one is able to compute the endomorphism ring of either EA or EB .

1.1. Description of the cryptosystem. We choose the prime p = leAA leBB f − 1, and have
our two participants Alice and Bob. The protocol is initialized by creating the starting curve
E : y2 = x3+x over Fp2 and finding kernel generators 〈PA, QA〉 = E[leAA ] and 〈PB , QB〉 = E[leBB ].
The protocol is depicted in Figure 23. Alice constructs a secret isogeny φA by choosing random
integers nA and mA which gives rise to its kernel 〈[nA]PA + [mA]QA〉. Bob does the same
by sampling nB and mB , creating 〈[nB ]PB + [mB ]QB〉 and constructing its isogeny φB . Next
Alice transfers EA := Image(φA), P ′B := φA(PB) and Q′B := φA(QB) to Bob. Similarly Bob
replies with EB := Image(φB), P ′A := φB(PA) and Q′A := φB(QA). Now they are both able
to compute their shared secret target curve EAB as EB/〈[nA]P ′A + [mA]P ′B〉 or equivalently
EA/〈[nB ]P ′B + [mB ]Q′B〉. Simply computing the j-invariant of EAB gives Alice and Bob a
shared secret that can be used for other cryptographic purposes.

The hardness assumption of SIDH is essentially the following problem.

Problem. As in the setting above, given E, EA, leAA , PA, QA, PB , QB , φA(PB), φA(QB),
φB(PA) and φB(QA). Find an isogeny φ : E → EA of degree leAA .

That is, if one can solve this problem, then one can write the kernel generator of φ with
respect to PA, QA and create the isogeny ψA which gives rise to the secret curve EAB . Finding
EAB breaks the system as it allows an adversary to obtain the shared secret.

85
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EA

E EAB

EB

ψBφA

φB ψA

Figure 23. SIDH Cryptosystem

This problem seems reasonable, but let us explain the necessity for φ to have degree leAA ,
and not just be any isogeny connecting E to EA. This is based on [19, Section 4.1].

We first recall that the honest participant Alice creates her isogeny φA from the generator
point GA := [nA]PA + [ma]QA. To construct the secret key EAB , she takes the public curve EB
and the kernel points φB(PA), φB(PB) and creates the new equivalent kernel generator point
φB(GA) := [nA]φB(PA) + [mA]φB(QA). This gives rise to an isogeny ψA : EB → EAB .

For the adversary, attempting to recover the secret EAB he can approach the problem like
Alice by attempting to create her secret φA : E → EA. Let us assume that he is able to construct
an isogeny φ : E → EA of lA-power norm. Then he is only able to map the equivalent isogeny to
EB if the kernel generator G′ is in 〈PA, QA〉. Otherwise the image points φB(PA) and φB(QA)
does not provide enough information to recreate the isogeny at the curve EB .

Furthermore, we argue that it is unlikely that another isogeny φ : E → EA of lA-power
norm has a generator point inside E[leAA ] = 〈PA, QA〉. There are only leAA + 1 subgroups of order
dividing leAA (thus laying in 〈PA, QA〉). let S be the set of all elliptic curves obtained from taking
the image curve of the isogenies corresponding to these subgroups. Since there are roughly p/12

supersingular curves in total, the probability that a random curve is in this set is roughly 1/lEBB .
Thus if one has found an isogeny of lA-power degree it will most likely be larger than leAA .

1.2. Breaking the security assumption. We follow the paper by Galbraith, Petit, Shani
and Ti [19, Section 4] on how to break the security of the SIDH cryptosystem. In order to break
the system they assume that the adversary is in possession of the endomorphism ring of the
starting curve EA (or equivalently EB). With the knowledge of End(E) and End(EA) they
provide an algorithm which is highly likely to produce the correct isogeny connecting E and EA.

It is tempting to just apply the previously described KLPT algorithm to provide us with
an isogeny of degree leA for some e. However this algorithm produces an isogeny φ with deg φ ≈
l
7/2 logla (p)

A = p7/2 while the SIDH cryptosystem produces φ with deg(φ) ≈ p1/2.
By our previous discussion on supersingular elliptic curves we know that I is an End(E),End(EA)-

ideal corresponding to an isogeny φ : End(E) → End(EA). Computing a Minkowski reduced
basis is possible, and easy, since the ideal has dimension 4 (or smaller). Once the Minkowski
reduced basis is found, one can easily compute the smallest non-zero element α of I. Assuming
this has nrd(α) = nrd(I)leAA we can compute I ′ by scaling I as in step 7 which gives us I ′ with
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Algorithm 9: Computing the smallest degree isogeny of given degree [19, Algorithm
2]

Input: lA, eA, E, EA, End(E), End(EA) where φ : E → EA exists with deg(φ) = leAA
Output: An isogeny φ : E → EA of degree leAA or Failure

1 Compute I := End(E) ∩ End(EA) ;

2 Compute a Minkowski reduced basis of I ;

3 Let α be the non-zero element of I of minimal norm ;

4 if nrd(α) 6= nrd(I)leAA then
5 return Failure

6 end

7 Compute I ′ := Iα/nrd(I) ;

8 Compute isogeny φA corresponding to I ′ ;

9 return φA

nrd(I ′) = leAA . Since we know the endomorphism rings of End(E) we can compute the ideal
corresponding to φA by splitting I ′ into eA ideals of reduced norm lA and compute the chain
of isogenies one by one. Therefore Algorithm 9 runs in polynomial time and succeeds assuming
that α is this correct element.

Remark. The issue of computing the isogeny from the ideal as described in Example 4.44
is not a problem for us in this case as we already know that we can represent the entire E[leAA ]
torsion subgroup by the way the cryptosystem is constructed.

The existence of α. Firstly let us remark that there exists an α ∈ I of reduced norm
nrd(I)leAA by the construction of the SIDH cryptosystem. This follows since we know there
exists an End(E),End(EA)-ideal J of reduced norm leAA which is equivalent to I. Furthermore,
since J ⊆ End(E) and J ⊆ End(EA) we have

J ′ := J ∩ I = J ∩ End(E) ∩ End(EA) 6= ∅

This intersection is still an End(E),End(EA)-ideal and its reduced norm is necessarily nrd(I) nrd(J) =
nrd(I)leAA . Thus taking any α ∈ I ∩ J of smallest reduced norm would be sufficient.

To show that α is the smallest element of I, Galbraith et al. argues that two random curves
are unlikely to be connected by isogenies of degrees significantly smaller than

√
p. Using analytic

number theory they show that there are at most

15

2π2
D2

supersingular elliptic curves connected to E with an isogeny of degree at mostD. settingD =
√
p

we get at most 15
2π2 p ≈ 0.75p. Since there are roughly p/12 ≈ 0.08p supersingular curves we

indeed barely have the possibility to reach every curve when D =
√
p. Therefore, if the degree

is significantly smaller than
√
p, it is unlikely that the specific curve EA is among this set.
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However, for the parameters of the cryptosystem, one could choose p = 2eA3eB − 1 with
2eA ≈ 3eB . Thus creating the entire 2eA isogeny this estimate would not hold as

√
p ≈ 2eA ≈ 3eB .

Instead one can perform a small number of degree 2 isogenies from E (the article suggest 10),
and then perform the algorithm on each candidate. If we choose to perform 10 isogenies of degree
2, one would need to test 210 = 1024 elliptic curves. Then one would have at most 15

2π2 2(eA−10)2

target curves and p/12 ≈ 2eA3eB/12 curves in total. Assuming that EA is a random curve, the
likelihood that it is among this set would be bounded by

2(eA−10)215 ∗ 12

2π22eA3eB
≈ 9

22eA−20

2eA3eB
≈ 9

22eA2−20

2eA2eA
≈ 9

220
< 2−16

Giving us a really large success probability.

2. SQISign

In 2020, De Feo, Kohel, Leroux, Petit and Wesolowski proposed a post-quantum signature
scheme named SQISign [15]. It generalizes the KLPT algorithm to create a connecting ideal
of smooth norm (that is nrd(I) =

∏
j p

ej
j where pj are small primes) and uses this to prove

knowledge of the endomorphism ring of some elliptic curve. Since it is considered difficult
to compute the endomorphism ring of random supersingular elliptic curves (as we have seen)
this then gives rise to a signature scheme. The interesting part of the scheme is that it, like
other isogeny-based systems, provide really short keys which is unheard of in the post-quantum
signature world. For NIST Level 1 security1, the secret key is 16 bytes, the public key is 64
bytes and the signature is 204 bytes for one concrete instantiation of the protocol [15, Section
8.7].

The signature scheme requires a function, ΦDc(E, s) that maps integers s ∈ [1, f(Dc)] to a
non-backtracking isogeny of degree Dc from E, and a hash function H : {0, 1}∗ → [1, f(Dc)]

which is cryptographically secure. The function f(Dc) is the map
∏
j l
ej
j 7→

∏
j l
ej−1
j (lj + 1)

where the left product is the prime factorization of Dc and lj 6= li whenever i 6= j.

Setup: Pick prime p and supersingular elliptic curve E0 with known endomorphism ring O0.
Select odd smooth number Dc and let D = 2e be a power of 2 where e is greater than
the diameter of the 2-isogeny graph of supersingular elliptic curves.

Keygen: Pick random isogeny τ : E0 → EA. The public key is EA and the secret key is τ .
Sign: Pick a random (secret) isogeny ψ : E0 → E1, let s = H(j(E1),m) be the hash of the

j-invariant of the curve E1 along with the message we wish to sign. Then map this
hash value to an isogeny φ = ΦDc(E, s) : E1 → E2. Using knowledge of τ , construct

an isogeny σ : EA → E2 of degree D, such that φ̂ ◦σ is cyclic. The signature is (E1, σ)
Verify: Create φ = ΦDc(E,H(E1,m)) : E1 → E2. Verify that σ is an isogeny from EA to E2

of degree D and that φ̂ ◦ σ is cyclic. If so, then the signature is valid.

This is illustrated in Figure 24

1security equivalent to a 128-bit block cipher
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E0 EA

E1 E2

ψ

τ

σ

φ

Figure 24. SQISign protocol

The signer knows the endomorphism ring of EA through the isogeny τ as well as the endo-
morphism ring of E2 through φ◦ψ. He is able to construct τ of degree D in a manner similar to
the KLPT algorithm which we will describe next. Furthermore since τ and ψ are kept secret to
the verifier, computing End(E2) and End(EA) is considered difficult so he is unable to compute

σ like the signer. Finally the choice of sampling σ such that φ̂◦σ is cyclic ensure that the signer
does not reveal τ , thus providing the zero-knowledge property. We do not have the required
background material to go through the proof of this, but the SQISign article [15] explains this
well.

2.1. Modified KLPT Algorithm. We will describe the modified KLPT algorithm with
the notation taken from [15], rather than using our own. Next we will describe it line by line to
ensure we understand what is going on. This approach allows us to read the paper more easily
later on.

In this scenario we already know the isogeny τ and we have computed its ideal Iτ . Our
prime l is 2, and we denote the maximal orders of E0, EA, E2 by O0, O and O2 respectively. We
call the algorithm with a connecting O,O2-ideal I for example the intersection of O and O2.
We depict the various ideals in Figure 25.

Algorithm 10: SigningKLPT(I, Iτ )

Input: I, a left O-ideal, Iτ a O0, O-connecting ideal of norm Nτ
Output: J ∼ I of norm le with fixed e

1 Compute K =EquivalentRandomEichlerIdeal(I,Nτ ) ;

2 Compute K ′ = [Iτ ]∗K and set L =EquivalentPrimeIdeal(K’) where L = χK′(δ) for

δ ∈ K ′ with N = nrd(L). Then we set e0 = e0(N) and e1 = e− e0 ;

3 Compute γ =RepresentIntegerO0
(Nle0) ;

4 Compute (C0 : D0) = IdealModConstraint(L, γ) ;

5 Compute (C1 : D1) = EichlerModConstraint(Z + Iτ , γ, δ) ;

6 Compute C =CRTN,Nτ (C0, C1) and D =CRTN,Nτ (D0, D1). If lep(C2 +D2) is not a

quadratic residue, repeat from step 3 ;

7 Compute µ =StrongApproximation(l(NNτ , C,D)) of norm le1 ;

8 Set β = γµ ;

9 return J := [Iτ ]∗χL(β)
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We first note that the function χI(α) simply returns Iα/nrd(I), that is it constructs the
equivalent ideal of a different norm.

In step 1 we create a random element K which is equivalent to I and has norm relatively
prime to Nτ . It is selected this way to ensure that we can pull it back to O0 without trouble.
Furthermore, choosing a random K affects the distribution of L later on, which in turn underlies
the entire security of this scheme. By sampling K at random, ensures that L is uniformly
distributed, which in turn allows us to reveal σ corresponding to J without revealing the isogeny
τ .

The method works by finding an element ω ∈ O such that Nτ is inert in Z[ω], this allows
us to use a result similar to Lemma 4.28 to ensure that the ideals in O/NτO are in the same
orbit. Thus sampling a random element of P1(Z/NτZ) gives us the possibility to map the ideal
I to a random equivalent ideal. To ensure that the output ideal has norm relatively prime to
Nτ we sample random elements γ until one is found which satisfies gcd(nrd(γ)/nrd(I), Nτ ) = 1.
We lift the random value of P1(Z/NτZ) to µ and return χI(µγ), which will be a random ideal
equivalent to I with norm relatively prime to Nτ .

In step 2 we use the notion [Iτ ]∗ which is equivalent of the pull-back of Iτ acting on whatever
ideal comes next. This is really a notion from the isogeny-maps, but it is extended to ideals by
mapping them to isogenies, performing the pull-back (or push-forward) there and then mapping
back to ideals afterwards. For isogenies, the pullback is just the push-forward of the dual isogeny.
When the norm of I and J are relatively prime we can create the maps explicitly as

[I]∗J = IJ + nrd(J)O

where I is a left O-ideal and I, J are compatible. In other words, K ′ is an O0, O2-connecting
ideal. We set L to be an ideal equivalent to K ′ but of prime norm. This is just Algorithm 3, so
we know how to do this, with the added functionality that it also returns δ for use later. The
definition of e0 as e0(N) is just to indicate that we select the integer e0 depending on the value
of N , more details of this is given in [15, Section 6.4].

In step 3 we do the same as in KLPT where we simply find a suitable element γ ∈ O0 which
has reduced norm Nle0 .

In step 4 we do the same as in KLPT where we find values (C0 : D0) which we previously
described as elements in Rj that would solve L ≡ O0γµ (mod NO) for µ = (C0 +D0ω)j ∈ L.

In step 5, we do the same as in step 4, except with the added constraint that µ ∈ O0 ∩ O2

- the Eichler order of O0 and O2. More concretely it searches for µ = (C1 + ωD1)j such that
γµδ ∈ Z + Iτ .

In step 6 we use the Chinese Remainder Theorem (CRT) to find a solution to the congruence
C ≡ C1 (mod N) and C ≡ C2 (mod Nτ ) and similar for D. Ensuring that lep(C2 + D2) is a
quadratic residue allows one to use the strong approximation theorem in the next step.

In step 7 we use the so called StrongApproximation algorithm, which is the equivalent of our
method for lifting [µ] = (C+ωD)j to µ of a suitable norm. Notice however that there is a slight
distinction from the algorithm we described. In our case the integer N was prime which is the
one we used for modular arithmetic. Furthermore we were allowed to choose e ourselves when
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lifting to an element of norm le. This method performs the arithmetic modulo NNτ for distinct
primes N and Nτ , furthermore the requirements of e is fixed to be e1. This has a probability of
failing, forcing us to go back to step 3 and choose another γ.

In step 8 we simply compute our β as in the KLPT algorithm, scale the ideal L by β, giving
us an ideal of reduced norm le, then we use the push-forward to move this ideal which originally
is an O0, O2-connecting ideal to an O,O2-connecting ideal.

O0 O

O2

Iτ

K′

L

K I

Figure 25. An illustration of where the various ideals are located with respect
to the maximal orders

Or in shorter, less precise terminology, we take the combined ideal I, turn it into an equiv-
alent ideal K : O → O2, then pull it back to the ideal K ′ : O1 → O2. There we create a random
but equivalent ideal L : O1 → O2. This ideal is then turned to an equivalent ideal of reduced
norm D which is pushed forward to J : O → O2, converted to an isogeny and returned as the
signature of the message. With the exception of J , this is depicted in Figure 25.





CHAPTER 6

Concluding Remarks

In this thesis we have explored the world of isogenies between supersingular curves and
between ordinary elliptic curves. Although the methods for creating the connecting isogeny
have been rather different we have shown ways of doing this for both cases. Despite this, the
overall process is quite similar. In this chapter we will recall the differences between the two
methods and explain why we prefer the supersingular elliptic curves.

1. Differences in isogeny computation

In general, the isogenies are computing in the following way

(1) Compute the endomorphism rings
(2) Connecting the elliptic curves
(3) Map the result back to an actual isogeny

Next we will explore the differences between the ordinary and supersingular case a bit
further.

1.1. Endomorphism rings. In the ordinary case, the endomorphisms rings are orders in
an imaginary quadratic number field. There are only a finitely number of possible endomorphism
rings and they are all of the form Z + cOK , where c divides the conductor f = [OK : Z[π]].
Kohel’s ”Find the floor” algorithm allows us to find the exact endomorphism ring by simply
factoring the value f and figuring out at which level one is with respect to each prime. Thus
there is a rather simple way of computing the exact abstract endomorphism ring of any elliptic
curve. Notice the the conductor f is in the worst case of size O(

√
p), but allegedly much smaller

in practice. In fact, for the large f conductors, Galbraith [16] suggests to simply discard this
step and try to connect the elliptic curves directly (without moving their endomorphisms to the
surface of the volcano). In total, this step takes time O(f3 log(p))

In the supersingular case on the other hand, the endomorphism rings are maximal orders
in a quaternion algebra. For some curves (like y2 = x3 + x) we know what the maximal order
is, but for most curves we do not. Furthermore we have no way to compute it efficiently. The
perhaps most promising and recent development is using suborders, as described in [12] which
runs in time O((log p)2√p) which can easily be defeated by choosing the prime p large enough.

1.2. Connecting the elliptic curves. In the ordinary case, the trick is to move our curve
to the surface. There one uses probabilistic arguments to determine when one is expected to

93
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find a connecting isogeny by sampling random elements from a rather small set of candidates. A
rather simple and generic approach of using a breadth-first search from both ends eventually give
a collision resulting in a connecting isogeny. This step takes time O(log(h)

√
h(log(p)5 +log(h))),

where h is the class number of End(E) ⊗ Q. This depends heavily on which curve is selected.
It can be as high as O(p1/3 log(p)) which would make this run in time roughly O(p1/4).

For the supersingular curves we have a more concrete approach where the only non-deterministic
approach is equivalent of searching for primes. Thereafter the entire process is about solving
equations which in the end provide an ideal of the proper norm. Unlike the ordinary case, this
approach is rather explicit giving us a clear ideal in the end with the form we want. Furthermore,
as we saw in the run time analysis, this method runs in time roughly O(log(p)).

Thus it is in fact much faster to connect the elliptic curves in the supersingular case than
in the ordinary case.

1.3. Computing the isogeny. Once we have connected the two elliptic curves we need
to get a connecting isogeny. For the ordinary case, this is easy as we throughout the algorithm
keep working with isogenies (or ratherthe actual j-invariants). The theory of lattices in the
complex plane is only used to argue for termination and isogeny candidates. Thus this final
step simply involves computing the dual of some isogenies so the resulting isogeny goes in the
correct direction.

For the supersingular case the story is quite different. Here we are working with the more
abstract object of ideals in quaternion orders directly. We use the structure of certain orders
to find specific elements and the output is an ideal of a given norm. This then needs to be
translated back to an isogeny between elliptic curves. To do so, we are required to evaluate
elements of the endomorphism on actual points of the elliptic curve. Since the endomorphisms
are given as elements of an abstract Q-algebra this is not a trivial task. Essentially we are
required to know the endomorphism ring explicitly or at least have a way of evaluating it.
However, assuming we can evaluate abstract endomorphism rings easily, this process can be
achieved in time polynomial in log p (assuming that the isogeny is (log p)-power smooth).

1.4. Remarks. From the above discussion it might seem counter-intuitive to use supseringu-
lar elliptic curves. Choosing an ordinary elliptic curve with a really large conductor would
provide a presumably better security than supersingular curves of the same size. However, we
are interested in post-quantum security, where the commutative endomorphism ring structure
of ordinary curves turn out to be broken easily on a quantum computer. Using Kuperberg’s
hidden shift algorithm [23], Childs Jao and Soukharev [7] provide a quantum algorithm that
constructs isogenies between ordinary elliptic curves in subexponential time. Unfortunately we
did not have time to explore such quantum algorithms in this thesis.

One interesting fact about the supersingular case is that as soon as one has knowledge of
the endomorphism ring, everything runs fast. Thus one can build schemes relying on proof of
knowledge, just like we saw in the case of SQISign application.
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APPENDIX A

Performing computations using SageMath

In this appendix we will describe the various computations we performed using Sage-
Math[32]. There is already implemented a lot of functionality related to elliptic curves. However
the documentation is slim and all the required functionality is not implemented yet. Therefore,
by explaining how we created the algorithms, we hope that we have simplified the task for
others.

We begin with the simplest case of creating isogenies from an elliptic curve. Then we
show how we can evaluate endomorphisms on elliptic curve points when the maps are viewed
abstractly as elements of (−1,−p | Q). Then we show how we can create an ideal based on the
kernel point of an isogeny and knowing how to evaluate the endomorphisms. Next we give a
method to represent integers in orders when they are special p-extremal, and show some tricks
related to performing linear algebra in Sage. Finally we show how to turn an ideal into an
isogeny through first creating the chain of ideals and then an algorithm for computing the ideal,
given that we know the embedding of the endomorphism ring into the quaternion algebra.

In the code snippets we present, we will sometimes leave out repetitive code. Therefore
if you read a line of code using something that appears to be undefined, take a look at the
previous code and see if it is defined there. Furthermore for the readers of the digital version
of this thesis, we have provided links for the documentation throughout this appendix. The
analogue reader may search for the same titles in an appropriate search engine to obtain the
same documentation.

1. Isogeny graphs

We begin with the easiest task, which is more or less implemented by default, namely
computing separable isogenies. To perform this task we used the methods described in the
documentation for Elliptic curves over finite fields and Isogenies. The methods we are using
are already implemented, so the challenge was only related to finding the proper combination
yielding the desired result. In essence our goal is to compute isogenous elliptic curves when
restricting ourselves to isogenies of a given prime degree, and using a rather small finite field.
We choose the prime p = 439 and starting curve E : y2 = x3 + x.

1 p = 439

2 field = GF(p*p) # Creates a galois field of p*p elements

3 E = EllipticCurve(field , [1 ,0]) #Creates elliptic curve E with A = 1 and B = 0

4 l = 5 # The degree for our isogenies

99

https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/ell_finite_field.html
https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/ell_curve_isogeny.html
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5 isogenies = E.isogenies_prime_degree(l)

6 for isogeny in isogenies:

7 print("Elliptic curve:", isogeny.codomain ())

8 print("Isogeny:", isogeny)

9 print("J invariant:", isogeny.codomain ().j_invariant ())

The above code can easily be extended to a breadth first search to expand all elliptic curves by
appending the codomain to the list for further expansion. This is in particular how we create
the image in Figure 17.

2. Evaluating the endomorphism generators on points

We assume that we are working with a curve of known endomorphism ring generated by
(1 +π)/2, (ι+ ι◦π)/2, π and ι◦π, where ι : (x, y) 7→ (−x,

√
−1y) and π : (x, y) 7→ (xp, yp). Our

approach for evaluating them on the elliptic curve E consists of performing each of the ι and π
maps separately on the coordinates of the points, then mapping the points to the elliptic curve.

We create the methods Ec1, EcI, EcJ and EcK corresponding to the generators 1, i, j, ij of the
quatenion algebra. These methods will be useful later on for more general quaternion element
evaluations. Notice that we cannot simply return the tuple (−P [0],

√
−1P [1], P [2]) as this would

not have been an elliptic curve point so we cannot add it together with another point later.
Furthermore, since the quaternion elements are fractions we are often in the need to divide

the points by some integer. To accomplish this we have written a helper method, point_divide(

P,n), which takes as input a point and the integer to divide it by. It uses the built in method of
elliptic curve points to evaluate if it is divisible by a certain number. Then P.division_points(n)

returns a list of points, Q, of E which satisfy [n]Q = P .

Remark. The method division points provide points of different orders. For other applica-
tions it might be necessary to choose a particular division point, instead of simply the first like
we do here.

Finally we create the methods gi which corresponds to the generators of the maximal order.

1 p = 439

2 field = GF (439**2)

3 sqrt = field(-1).sqrt() # creates the square root of -1

4

5 E = EllipticCurve(field , [1 ,0])

6

7 def point_divide(P, n):

8 if P.is_divisible_by(n):

9 return P.division_points(n)[0]

10 else:

11 # Handle exception where point is not divisible by n

12

13 def Ec1(P):

14 return P
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15 def EcI(P):

16 return E(-1 *P[0], sqrt* P[1])

17 def EcJ(P):

18 return E(P[0]^p, P[1]^p, P[2]^p)

19 def EcK(P):

20 return E(-1 *P[0]^p, sqrt* P[1]^p, P[2]^p)

21

22 ## First generator: (1 + j)/2

23 def g1(P):

24 return point_divide(EcI(P) + EcJ(P), 2)

25

26 ## Second generator: (i + ij)/2

27 def g2(P):

28 return point_divide(EcI(P) + EcK(P), 2)

29

30 ## Third generator: j

31 def g3(P):

32 return EcJ(P)

33

34 ## Fourth generator: ij

35 def g4(P):

36 return EcK(P)

3. Isogeny to ideal

In this section we introduce the quaternions in order to implement Algorithm 5 to turn an
isogeny and known endomorphism ring into an ideal in a quaternion algebra. The documentation
for Sage can be found in Quaternion Algebra and Quaternion Algebra Element.

We would like to construct the ideal corresponding to an isogeny, and we assume that the
endomorphism ring of the elliptic curve is known. That is, we use the maps as defined in the
previous section for evaluating endomorphisms on elliptic curve points. Furthermore we let E
be the curve as defined before and n be the degree of our isogeny. We assume that the point
(125, 82) generates the kernel of the isogeny.

To make this algorithm work we need to introduce the QuaternionAlgebra class, which we
instantiate in line 3. Furthermore we make use of the default basis, and fortunate for us the
function Q.maximal_order() returns exactly the maximal order we are interested in.

1 import random

2

3 Q.<i,j,k> = QuaternionAlgebra(QQ, -1, -p) #Initialize a quaternion algebra

ramified at -1 and -p with variables i, j and k := ij

4 O0 = Q.maximal_order ()

5 b1 = O0.basis()[0]

6 b2 = O0.basis()[1]

7 b3 = O0.basis()[2]

https://doc.sagemath.org/html/en/reference/quat_algebras/sage/algebras/quatalg/quaternion_algebra.html
https://doc.sagemath.org/html/en/reference/quat_algebras/sage/algebras/quatalg/quaternion_algebra_element.html
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8 b4 = O0.basis()[3]

9

10 isogeny_ker_gen = E((125 , 82, 1)) #Specify kernel generator of an isogeny

11

12 # Compute the elliptic curve point associated to the linear

13 # combination of a,b,c,d of the image of the kernel point

14 def alphaComputer(a,b,c,d, gen1 , gen2 , gen3 , gen4):

15 return a*gen1 + b*gen2 + c*gen3 + d * gen4

16

17 def simpleIsogenyToIdeal(kernel_point):

18 gen1 = g1(kernel_point)

19 gen2 = g2(kernel_point)

20 gen3 = g3(kernel_point)

21 gen4 = g4(kernel_point)

22 while True:

23 a = randint(1,p)

24 b = randint(1,p)

25 c = randint(1,p)

26 d = randint(1,p)

27 alpha = a * b1 + b * b2 + c*b3 + d*b4

28 if( gcd(alpha.reduced_norm (), 5) == 5):

29 if( alphaComputer(a,b,c,d,gen1 ,gen2 ,gen3 ,gen4) == 0):

30 return (a,b,c,d)

31

32 (a,b,c,d) = simpleIsogenyToIdeal(isogeny_ker_gen)

33 alpha = a * b1 + b * b2 + c*b3 + d*b4

34

35 # Want I = On + O alpha

36 On_generators = [b1 * n, b2 * n, b3*n, b4*n]

37 Oalpha_generators = [b1 * alpha , b2 * alpha , b3 * alpha , b4 * alpha]

38 I = O0.left_ideal(ideal_On + ideal_Oalpha)

To perform the norm computation we simply create an element of the quaternion algebra
by making a linear combination of the basis elements of O0. We get those elements by calling
O0.basis() which returns them as a list, next we compute the value alpha as a linear combination
of these elements. Elements of the quaternion algebra have the associated method reduced_norm()

as shown on line 28, which computes the reduced norm of that element. Next on line 29 we
compare the linear combination of the image points of the kernel element to the element 0. Sage
is smart enough to understand that we really mean the element O, when writing 0, so this works
great.

To compute the ideal I = On + Oα we make two lists of the generators of On and Oα
respectively. Then we combine those generators to create a left O0-ideal using the built in
function left_ideal() which works on any order, and takes as input a list of generators. In
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the end we should get an ideal of reduced norm n, which we can verify by calling ideal.norm().
Furthermore we can verify that its left order is O0 by calling ideal.left_order().

3.1. Computing the forward endomorphism ring. Using the above code we can suc-
cessfully transform an isogeny to its ideal. This ideal has the wonderful method which gives
its right order: I.right_order(). Thus computing φ : E0 → E from the known starting curve
E0 : y2 = x3 + x, then finding its kernel generator, and then performing the above code gives
us the connecting ideal I and right order corresponding the the endomorphism ring of E quite
easily.

4. KLPT Algorithm

In this section we will look at the main subalgorithm of the KLPT algorithm, namely how
to represent an integer using the quadratic form. The remaining computations of the KLPT
algorithm involves the explicit isomorphism to the matrix ring M2(Z/NZ) and some elementary
methods which we will only discuss briefly in the following subsection.

4.1. Represent integer in order. This section is about performing Algorithm 6. The
Sage documentation can be found in Number Fields and Binary Quadratic Forms with Integer
Coefficients.

1 Fx.<x>=QQ[] # Initialize variable x

2 NF.<i2 > = NumberField(x^2 +1) # Q(sqrt(i))

3

4 def representInteger(M, m):

5 f = BinaryQF ([1,0,1])

6 while True:

7 x_2 = randint(0,m)

8 y_2 = randint(0,m)

9 r = M - p*f(x_2 , y_2)

10 if not is_prime(r):

11 continue # r is not prime

12 Ir = NF.ideal(r) # Ideal above r

13 if len(Ir.factor ()) < 2:

14 continue # r does not split

15 t = f.solve_integer(r) # Equivalent to Cornaccia ’s algorithm

16 It = NF.ideal(t[0] + t[1] * NF.gen()) # Ideal generated by t

17 if len(It.factor ()) == 1:

18 break # It is principal ideal

19 return (t[0], t[1], x_2 , y_2)

We instantiate the number field Q(
√
−1) with the variable i2 since i is taken by the pre-

viously declared quaternion algebra Q. Next we need to use binary quadratic forms which is
available as the class BinaryQf([a,b,c]) which creates the form f(x, y) = ax2 +bxy+cy2. Instead
of implementing Cornaccia’s algorithm as in Algorithm 1, we use the built-in solve_integer(r)

method of the BinaryQF class which returns a tuple (x, y) such that f(x, y) = r.

https://doc.sagemath.org/html/en/reference/number_fields/sage/rings/number_field/number_field.html
https://doc.sagemath.org/html/en/reference/quadratic_forms/sage/quadratic_forms/binary_qf.html
https://doc.sagemath.org/html/en/reference/quadratic_forms/sage/quadratic_forms/binary_qf.html
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Notice how we create the ideals corresponding generated by given elements by calling NF.

ideal(r) much like we created the ideals in the quaternion algebra. Here we also have the method
factor which will factor the ideal and return generators of it. If the length of this list is 1 then
the ideal is principal, otherwise it is split.

4.2. Linear algebra. The core of the KLPT algorithm depends on the explicit embedding
in M2(Z/NZ) and selecting certain outputs. We therefore did not spend time writing a generic
algorithm for this part of the process. Instead we will describe some useful functions when
performing the calculations in Sage. More documentation on this can be found in Linear Algebra

First of all we can perform matrix computations in M2(Z/NZ). We do this by initializing
the number field with ZN = Integers(N). Next we can create the matrices by calling matrix. For
example we can construct the identity like this M1 = matrix(ZN, [[1, 0], [0,1]]). This is quite
useful when performing matrix multiplication. It also allows us to call the method A.solve_right

(B) if we want to find the matrix X that satisfy AX = B.
The remainder of the algorithm is by working with basis elements in the quotient, and

solving some modular calculations. Performing inversions can be done with inverse_mod(a,N)

which returns a−1 mod N . There is also a method for solving modular expressions solve_mod(),
but we did not explore this method as our numbers where already so small that they could be
easily computed by hand.

5. Ideal to isogeny

Going from an ideal to an isogeny is a two step process. First we create the chain of ideals,
each of prime norm l. Then we compute the isogeny corresponding to each prime normed ideal.

5.1. Compute ideal chain. To turn an ideal of l power norm we use part of Algorithm
8. Here we simply assume that we have the quaternion algebra Q available from earlier.

1 O0 = Q.maximal_order ()

2 OI = Q.ideal(O0.basis())

3

4 def idealToIdealChain(I, l, e):

5 Ik = []

6 for a in range(e + 1):

7 Ik.append(O0.left_ideal(I.basis () + OI.scale (7**a).basis ()))

8 Jk = []

9 for a in range(e):

10 Jk.append(Ik[a]. conjugate ().scale (1/Ik[a].norm()) * Ik[a + 1])

11 return Jk

The method is takes as input an ideal I to be converted to a chain of ideals Jk, and the integers
l, e satisfying nrd(I) = le. The method is quite straight forward, essentially just providing what
the algorithm is supposed to do. It ends by returning a list of Jk ideals corresponding to the
chain of ideals, each will have reduced norm l.

https://doc.sagemath.org/html/en/tutorial/tour_linalg.html
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First we notice that when we append to Ik we use OI.scale() instead of O0.scale where OI

is a quaternion ideal while O0 is a quaternion order. The reason for this is that scale is only
available for ideals, so this is just a simplification of our code. We could just as easily have taken
the basis elements of O0 and multiplied them with 7**a.

Second when we append to Jk we make take the product of two ideals which is already
defined in the package for quaternion algebra. Here the inverse of Ik[a] is computed as Ik[a].

conjugate().scale(1/Ik[a].norm()) which is just Ia/nrd(Ia), exactly what we want.

5.2. Compute isogeny from ideal. This is an implementation of Algorithm 7 where we
assume that we know the map ι−1

E0
of the basis elements of O0 given by the explicit methods Ec1

EcI EcJ and EcK as defined earlier. Furthermore we make use of the point_divide method from
earlier.

1 def findLTorsion(E,l):

2 while True:

3 R = E.random_point ()

4 if gcd(R.order(), l) == l:

5 # l divides order => we can divide l

6 R = (R.order() // l) * R

7 if R.order() == l:

8 return R

9

10 def isLinearlyDependent(P, Q, n):

11 for i in range(n):

12 if P == n*Q:

13 return True

14 return False

15

16 def findLTorsionGenerators(E, l):

17 P = findLTorsion(E,l)

18 Q = findLTorsion(E,l)

19

20 while isLinearlyDependent(P, Q, l):

21 Q = findLTorsion(E,l)

22 return (P,Q)

23

24 def endomorphismEvaluator(endomorphism , P):

25 knownEmbeddings = [Ec1 , EcI , EcJ , EcK]

26 (d,x,y,z,w) = endomorphism.denominator_and_integer_coefficient_tuple ()

27 numerator = x*knownEmbeddings [0](P) + y * knownEmbeddings [1](P) + z*

knownEmbeddings [2](P) + w*knownEmbeddings [3](P)

28 if d != 1:

29 return point_divide(numerator , d)

30 return numerator

31
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32 def idealToIsogeny(ideal , EC):

33 l = int(ideal.norm()[0]) # Integer ie numerator

34 (R,S) = findLTorsionGenerators(E,l)

35 for basisElement in ideal.basis ():

36 R1 = endomorphismEvaluator(basisElement , R)

37 S1 = endomorphismEvaluator(basisElement , S)

38 Q = []

39 if S2 == 0:

40 Q.append(S)

41 for b in range(l):

42 if R1 + b*S1 == 0:

43 Q.append(R + b*S)

44 if len(Q) == 1:

45 return EC.isogeny(Q[0])

The first three methods are naive methods for computing some l-torsion point generators.
The first method takes an elliptic curve and an integer l. It samples random elements and
divides out l if their order allows it. If it finds an element of order l it is simply returned. The
second method is a brute-force attempt at verifying whether two points are linearly independent
or not. The third method creates two generators for the l-torsion by calling the previous two
helper-methods.

Next we have the endomorphismEvaluator method which takes in an endomorphism and a point
P in the elliptic curve. It has hard-coded the methods of evaluating the endomorphism genera-
tors on points of the curve as described earlier. Next it calls endomorphism.denominator_and_integer_coefficient_tuple

() which returns an 5 − tuple containing the integers d, x, y, z, w satisfying endomorphism =
x+yi+zj+wij

d . Then we compute the numerator as of this fraction as one would guess and finally
divide out if d 6= 1.

Finally we have the idealToIsogeny method which takes the ideal and an elliptic curve to
be mapped to an isogeny. It first creates the l-torsion generators. Notice that we need to
turn the ideal norm into an integer, otherwise Sage will be unhappy with the code for our
findLTorsionGenerators. Next we simply iterate the basis of the ideal. For each basis we see
where they map the l-torsion generators and return if they are mapped to a non-trivial subgroup
of E[l] as described in the algorithm.

Remark. It is possible to tweak this code to work with an arbitrary curve E having a
known isogeny φ from E0 to E. To do this we would extend endomorphismEvaluator to include an
isogeny phi. It would then begin by computing point_divide on P with the degree of phi, next it
would compute P = phi.dual()(P) and perform the rest of the method. Before returning it would
map the point, Q, back to E by calling phi(Q)
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