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Abstract. This thesis aims to explore and expand on the ideas
in [FH13]. To this end, we first give a brief exposition on some of
the needed preliminaries, including tensors, bundles, connections, and
the Chern-Weil homomorphism. Going forward, we follow the afore-
mentioned paper and introduce the language of presheaves, simplicial
sets, and simplicial sheaves, before finding a classifying space for all
smooth principal bundles with connection in the category of simpli-
cial presheaves and, using some abstract homotopy theory, show that
the conjugation-invariant polynomials on the Lie algebra induce all
the natural differential forms one can construct from a connection.
Lastly, we depart from the paper and explore what happens in the
case of holomorphic principal bundles, and find a classifying space for
all holomorphic principal bundles with holomorphic connection.

Sammendrag Denne avhandlingen forsøker å utforske og å videreføre
ideene fra [FH13]. For å oppn̊a dette, tar vi først for oss noen av
forkunnskapene som trengs, inkludert tensorer, bunter, koblinger, og
Chern-Weil-homomorfien. Etter det, s̊a følger vi utredningen fra ar-
tikkelen, og introduserer spr̊aket brukt for å beskrive preknipper, sim-
plisielle mengder, og simplisielle knipper, for s̊a å finne et klassifiser-
ingsrom for alle glatte hovedbunter med kobling i kategorien av sim-
plisielle preknipper og, ved bruk av abstrakt homotopiteori, viser at
de konjugat-invariante polynomene p̊a Lie-algebraen induserer alle de
naturlige differensialformene en kan konstruere fra en kobling. Til
slutt viker vi fra artikkelen for å utforske hva som skjer n̊ar hovedbun-
tene er holomorfe, og finner et klassifiseringsrom for alle holomorfe
hovedbunter med holomorf kobling.
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Preface

This thesis is the accumulation of my master studies in mathematics
at NTNU. It was written during the academic year of 2020-2021, from
September through May. My supervisor was Gereon Quick.

The main goal of this thesis was to explore some of the interplay
between geometry and homotopy theory, and “bridge the gap” be-
tween what (I think) every master student in topology or geometry
should know and a small portion of modern research in mathematics.
The topic, chosen by my supervisor, was to study the paper titled
Chern-Weil Forms and Abstract Homotopy Theory, written by Freed
and Hopkins in 2013 (see [FH13]), and then investigate further what
would happen if we worked with holomorphic principal bundles instead
of smooth principal bundles.

As the prerequisites for understanding the paper are not too many1,
I set out to write a thesis which my fellow classmates from other disci-
plines of mathematics could read too, and hopefully make more people
as fond of algebraic topology as I am. A physical copy of this thesis
can be found and read at “Deltakontoret” by anyone interested, and so
I have written it for someone who only knows general topology, basic
category theory, as well as basic group and ring theory. Thus, younger
students of mathematics and eager physics students can probably read
it too.

How to read this thesis

Depending on your background, I have different suggestions as to
how to work though the thesis. No matter your knowledge, I suggest
you read the Introduction, and all the chapter summaries first—they
are given at the very start of each chapter—before starting at the
appropriate chapter.

The expert, who knows what simplicial sheaves are, can jump
straight ahead to chapter 3.

1If one ignores abstract homotopy theory.
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iv PREFACE

Most master students of topology or geometry (including myself
a year ago) should probably start with chapter 2, and only look at
chapter 1 whenever a word or any notation is unclear. I, for example,
did not know what connections on bundles were before starting this
thesis, and so I would advice anyone in a similar position to read
only section 1.4 and section 1.5 from chapter 1, either before reading
chapter 2 or whenever necessary.

For other students (of mathematics or physics), I suggest judg-
ing for yourself where to start, based on the Table of Contents and
how much you understood from the chapter summaries. Good general
starting points are chapter 2, section 1.4, and chapter 1.
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Introduction

In this section, we give a short introduction to the topic at hand.
After this, an overview of each chapter is given. Lastly, notation and
conventions used in the thesis are explained. The reader unfamiliar
with the precise meaning of all the mathematical jargon used in this
introduction should not be afraid or discouraged, for most of it is
defined later on.

Classifications, invariants and generalized manifolds

A general goal in mathematics is to classify interesting objects.
This entails obtaining a classification list, which enumerates all the
objects in a non-redundant way, meaning for two essentially equal
objects, we only list one of them. The precise meaning of “essentially
equal” depends on how coarse or fine one wants the classification to
be. But in the pursuit of such a list, one often quickly encounter the
notion of an invariant. Let us see how, with a least interesting, but
simple example.

Consider the task of classifying all finite non-empty sets, where
the relations are bijections between sets. One might immediately no-
tice that two finite non-empty sets X and Y are essentially the same
whenever they have the same number of elements, or have the same
cardinality as it is called. And so we have our first invariant, namely
the cardinality. Any finite set is in bijection with some set {1, 2, . . . , n}
for some natural number n ∈ N. Thus we know what all finite non-
empty sets “look like”, with the help of our invariant, and we can say
that we have classified them.

Another, possibly more exiting, type of object one would want
to classify is the triangles. Call two triangles equal whenever there
is a distance preserving bijection between them, or isometry as it is
called. For two triangles X and Y , an isometry X −→ Y maps any
two points of X to two points of Y in such a way that the distance
between the two points in Y is equal to the distance of the two points
in X. Examples of isometries are rotations around points in the plane,

1



2 INTRODUCTION

reflections across lines in the plane, and translations in the plane. As
we might notice, these three types of isometries would preserve not
only the distances, but the area as well. And in general, as areas come
from lengths, it might not be too surprising that all types of isometries
preserve the area of the triangles (although area preserving maps are
not always isometries). Thus we come to the conclusion that the area
of a triangle is an invariant of triangles with respect to the isometries.

But what is an invariant in general, for other types of objects?
Historically speaking, the concept of an invariant underwent several
changes and generalizations. In [FH13], they mention that in the 19th

century, invariant theory was essentially the study of certain poly-
nomials on representation spaces of groups. Given a group G and a
linear representation G −→ GL(V ), one seeks polynomials V −→ R
on the representation space V that are unchanged under the induced
action on V from the group G. These polynomials were dubbed in-
variant polynomials. But during the late 19th century, Felix Klein,
while working in Erlangen, came up with a new geometric perspective
on invariants. Today, his work is known as the Erlangen program, and
it approximately states that geometric invariants are not the invari-
ant polynomials, but can be regarded as certain “numerical” values
associated to geometric objects, like in the example above with areas
of a triangles. In [Kle93], Klein states a view of geometry in which
a geometry was associated to a group of transformations, and that
this group should provide invariants. See for example Chapter 42 in
[Gra05] for historic remarks on the Erlangen program.

The concept of an invariant evolved further until one arrived at
a very general meaning. In broad terms, an invariant is a property
of a mathematical object which remains unchanged after a certain
type of transformation. The particular type of object and the type
of transformation is decided beforehand, like when we decided that
the transformations to consider were only the isometries. However,
as the reader familiar with abstract nonsense probably realizes, this
definition begs for a reformulation using the language of category the-
ory. Those tools allows us to give a modern and precise definition
of an invariant, in the spirit of Klein’s program. If we let the collec-
tion of all mathematical objects we are interested in be all the objects
of some category, and let the transformations we consider be all the
morphisms in our category, then an invariant is a functor mapping
out of this category, or a closely related one. Of course this definition
encapsulates all the different definitions throughout history, including
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invariant polynomials and Klein’s geometric formulation. The problem
we investigate in this thesis asks for invariants of principal G-bundles
with G-connection, where G is some Lie group.

In the 1970s, Chern and Weil showed that certain invariant polyno-
mials on the Lie algebra g of a Lie group G determine differential forms
in such a way that two isomorphic principal G-bundles with connec-
tions give the same differential form if the isomorphism preserves the
connection. The map associating each invariant polynomial to its in-
variant differential form is called the Chern-Weil homomorphism. We
see that the principal G-bundles with connection and the connection
preserving bundle isomorphisms form a category, and that the invari-
ants are the differential forms. One could wonder if there are other
invariants than those arising from these polynomials. The main result
(Theorem 7.20) in [FH13] says that these differential forms are the
only natural differential forms one can construct from a G-connection.
This result uses an idea common in algebraic topology, namely that
of a classifying space.

The classical example is the classifying space BG of a Lie group2

G. The space BG is given together with a closely related space, EG,
and a map EG −→ BG such that EG is a principal G-bundle over
BG, called the universal bundle. Without getting into details, we
should mention that BG is called the classifying space because for
any principal G-bundle π : E −→ B, there exists a continuous map
ϕ : B −→ BG such that the diagram

E EG

B BG

π

ϕ

is a pullback diagram. We call ϕ the classifying map. In less abstract
terms, any twisting in the total space E is described in the twisting in
EG via the classifying map ϕ. For example if G = R, the classifying
space BG = {∗} is just a point, with cover EG = R. If G = Z2, the
classifying space is BZ2 = P∞ the infinite dimensional real projective
space, with cover EZ2 = S∞ the infinite dimensional sphere. One can
wonder how BG is constructed and if it even exist for all G. But this
is ensured by Brown’s representability theorem.

2We can actually consider general topological groups G, but that would be too
much of a digression for this introduction.
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Let us for a brief moment consider the category of principal G-
bundles with bundle isomorphisms as morphisms. Note that the co-
homology functor H• is a functor mapping out of our category. Hence
any cohomological invariant on principal G-bundles, considered as a
natural functor of fibre bundles to a cohomology class of the base
space, can be found in the cohomology ring H•(BG). Another way of
saying this is that each characteristic class correspond to an element
of H•(BG), and so all cohomological invariants of principal G-bundles
are elements of the cohomology ring. This is why the classifying spaces
BG are useful to us.

If we instead now consider the category of principal G-bundles with
a connection, and let the morphisms be bundle isomorphisms that in
addition preserve the connection, we seek a classifying space B∇G with
total space E∇G and a universal connection ∇univ such that for any
principal G-bundle E −→ B with connection ∇, the diagram

E E∇G

B B∇G

π

ψ

ϕ

is a pullback diagram, and in addition that the pullback ψ∗∇univ of
the universal connection is the connection ∇ on π : E −→ B.

Just as we saw that BZ2 was a infinitely dimensional manifold P∞,
all earlier attempt at construction a universal principal G-bundle with
universal connection has resulted in infinite dimensional manifolds, see
for example [NR63] or [Sch80]. The drawback is that the classifying
maps are not unique. What is new in [FH13] is that they sidestep
this problem and get unique classifying maps. The uniqueness actu-
ally makes the computation of H•(B∇G) feasible in practice. And
to bypass the problem with infinite dimensions, they move out of the
category of smooth manifolds, and take the reader on a journey that
leads to generalized manifolds. Generalized manifolds are just simpli-
cial sheaves on manifolds, and every manifold is, naturally, a simplicial
sheaf. In the end, using results from abstract homotopy theory, they
show that the computation of all the invariants only uses concepts
from differential geometry and invariant theory. Thus, ultimately, the
calculation never needs the ideas of simplicial sheaves.

The general goal of this thesis is to explore the interplay between
geometry and abstract homotopy theory, and present it in such a way
that master’s students in mathematics (and possibly physics) can un-
derstand the main takeaways. More specifically, a primary goal we
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have is explaining, in more detail, the arguments used in [FH13] to
show how one can calculate all the invariants of principal G-bundles
with connection. A secondary goal is to see what happens in the com-
plex world of complex manifolds. It is not obvious beforehand that
Freed and Hopkins’ techniques transfer over, since not all holomorphic
bundles have a holomorphic connection. But still, using their ideas,
we construct an analogous universal bundle E∇,CG −→ B∇,CG with
a universal connection ∇univ, endowed with similar properties to that
of E∇G −→ B∇G from the differential world. Just as in the above-
mentioned paper, we take the reader on a voyage, starting geometri-
cally with manifolds, going through the abstract world of simplicial
sheaves, and ending with the geometry again. A more detailed layout
is given now.

Overview of the Thesis

This thesis is divided into two parts, named The Differential Case
and The Holomorphic Case respectively. At the end, there is one
appendix. As the name suggests, the first part concerns itself with
differential constructions, such as smooth manifolds, smooth bundles,
differential forms, smooth connections, etc. In this part, we work with
the field R of the real numbers. This part contains the first three
chapters of the thesis, containing only known theory. The second
part goes further, and considers what happens when we require all
our constructions to be holomorphic as well, like complex manifolds,
holomorphic bundles, holomorphic connections, etc. Here, the field we
work with is the field C of complex numbers. This part has the fourth
and final chapter, with some original findings. The appendix supplies
some of the theory of manifolds and Lie groups.

Chapter 1. The first chapter can be considered supplementary,
as it covers much of the needed preliminaries. The goal of this chapter
is threefold: We want to (1) introduce the setting and language, (2)
motivate the topic to the uninitiated, and (3) aid in the understanding
of the topic. This chapter covers tensors, manifolds, smooth principal
bundles, differential forms, connections on principal bundles and the
Chern-Weil homomorphism.

Chapter 2. In the second chapter, we follow §3, §4, and §5 of
[FH13]. Inspired by the way Freed and Hopkins introduces and proves
their main result, we here lay out the context thoroughly to formulate
the theorem. This journey goes through presheaves and sheaves on
manifolds, groupoids, simplicial sets, simplicial presheaves, and weak
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equivalences, sprinkled with examples throughout. In particular, we
walk all the steps to construct the universal bundle the classifying
space B∇G.

Chapter 3. In the last chapter of part I, we summarize the con-
struction of the universal bundle, and present, in greater detail than
[FH13], the proof that the universal bundle E∇G −→ B∇G with uni-
versal connection ∇univ is a universal bundle. We briefly mention the
relevant results needed from abstract homotopy theory before defining
the de Rham complex of a simplicial presheaf. The main theorems of
the paper are found here.

Chapter 4. The very last chapter of this thesis contains most of
the original work. In this chapter, we first explain what is meant by
“holomorphic” in different contexts, e.g. holomorphic functions, holo-
morphic forms, and holomorphic bundles. We then look at two ways
of defining holomorphic connections on principal bundles, before con-
structing the universal holomorphic bundle with universal connection.
Lastly, we summarize all the original findings in theorem 4.4.3.

Notation, conventions and assumptions

By abstract nonsense, we mean category theory. By natural, we
mean functorial in some sense. And the word canonical means what
is usually means. When defining a term, we often emphasize it, like
with the three previous concepts.

No diagram commutes unless specified. All categories will be as-
sumed to be locally small. For any category C , the set of morphisms
X −→ Y will be denoted by C (X, Y ), or sometimes HomC (X, Y ).
Specific categories will usually be denoted by two to four bold letters.
In particular, Set is the category of sets with functions of sets as mor-
phisms, Man is the category of smooth finite dimensional manifolds
with smooth maps as morphisms, and VectR is the category of finite
dimensional real vector spaces, with linear maps as morphisms.

Unless otherwise stated, all manifolds will be assumed smooth and
finite dimensional. The symbol G is used to denote a Lie group unless
otherwise stated, and its Lie algebra is denoted g = TeG.

If we have a map, say f , out of some manifold M (and into what-
ever), we often write fp for the value f(p) at p, unless the domain
is not too interesting (e.g. the reals R). This is to hide one layer of
nested functions.

Throughout this thesis, there are generalizations, generalizations
of the generalizations, and so on. An example is a manifold, which also
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is a sheaf on manifolds, and a simplicial sheaf on manifolds. Because of
the tautological nature of these constructions, we have problem with
notation and terminology. For example, for a smooth map of mani-
folds, we can consider the pullback. But there is a completely parallel
notion of this for presheaves on manifolds, and simplicial presheaves
on manifolds as well. And these parallel notions turn out to give back
the original notion when working with the manifolds considered as a
sheaves on manifolds, or simplicial sheaves on manifolds. Hence, we
need to make a choice in what to call the new notions. A new name
clears any doubt in what the word refers to, but the same name makes
more sense when the concepts coincide. We choose to give correspond-
ing notions the same names, and fully embrace this. The same goes
for notation. Thus the reader should always make sure it is clear what
is meant by these schizophrenic notions.





Part I

The Differential Case





CHAPTER 1

Preliminary Preliminaries

This thesis is about how to classify principal G-bundles with con-
nections. To understand what a principal G-bundle is, and what a
connection on it means, we, in this chapter, recall the definitions and
give a exposition on these subjects. As mentioned earlier, the goal of
this chapter is to introduce the language used, aid in understanding
of the topic, and motivate the topic to the uninitiated.

We start with a brief exposition of tensors, which allows us to
make multilinear maps into linear ones. As a consequence, we can
turn alternating maps into linear ones as well, which will become a
very useful tool.

With the algebraic prerequisites out of the way, we recall what
smooth manifolds and Lie groups are, and mention what their tangent
spaces look like. This allows us to define vector bundles and princi-
pal G-bundles, and the maps between them. In each case, we have
two important examples, namely the trivial bundle and the pullback
bundle, which we explore in detail.

Moving on, we use the insights gained about tensors and vector
bundles, and define differential forms over a manifold, which are just
families of certain alternating maps on the tangent spaces of the man-
ifold. They encode vital information about the smooth structure of
the manifold, and this is captured by the de Rham complex and the de
Rham cohomology groups of the manifold, which we briefly mention.
We also look at a slight generalization of differential forms, namely
vector valued differential forms.

Armed with all these weapons, we study connections on bundles.
The main reason we discuss them in depth is because we need to gain
insight into how to define holomorphic G-connections in part II.

Finally, when we know what principal G-bundles with connections
are, we look at how invariants of these objects have been studied in
the past. This includes a brief exposition on what the set Ik(G) of
invariant polynomials on the Lie algebra g is, as well as the Chern-Weil
homomorphism.

11
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1.1. Tensors

Later on, we work with operations on vector spaces that are not
linear, like the Lie bracket, which is bilinear. And, in general, these
multilinear maps are harder to understand than linear maps. So in
this section, we introduce a tool used to convert multilinear maps into
linear ones, namely the tensor product, and study some properties and
identities of it. Almost all of the material here can be found in [Tu17]
and [Lee13].

1.1.1. Multilinear algebra

In kindergarten, one learns that linear algebra is the study of linear
maps between linear spaces. Multilinear algebra is a slight generaliza-
tion of the concepts within that branch, and is the study of multilinear
maps on vector spaces.

In this section, one might find the profusion of of indices off-
putting, but there is no easy way around them, so please bear with
it.

Suppose V1, . . . , Vk,W are finite dimensional real vector spaces. A
map α : V1 × · · ·Vk −→ W is called R-multilinear, or just multilinear,
if it is linear as a function of each variable separately when the others
are held fixed. If k = 1, this is the same as a linear map. If k = 2,
we sometimes say α is bilinear. We write L(V1, . . . , Vk;W ) for the
collection of all these multilinear maps, which is a vector space1.

Some examples of multilinear maps are the dot product, the cross
product, the determinant, and, as mentioned in the introduction for
this section, the Lie bracket.

An important special case of multilinear maps is when the target
space W is the underlying field R. Suppose α ∈ L(V1, . . . , Vk;R),
β ∈ L(W1, . . . ,Wl;R). Define a function

α⊗ β : V1 × · · · × Vk ×W1 × . . .×Wl −→ R
by

α⊗ β(v1, . . . , vk, w1, . . . , wl) = α(v1, . . . , vk)β(w1, . . . , wl)

where multiplication of real numbers is written juxtaposition. As
α and β are linear in each coordinate, so is α ⊗ β, hence α ⊗ β ∈
L(V1, . . . , Vk,W1, . . . ,Wl;R). We call this new map the tensor prod-
uct of α and β. Since multiplication in R is associative, the tensor
product α⊗ β ⊗ γ of three multilinear maps α, β, γ is independent of

1under point-wise addition and scalar multiplication.
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bracket placement. Thus, we can form the tensor product of arbitrary
many multilinear maps. In particular, if ωi is an element of the dual
space V ∨i = HomR(Vi,R), then ω1 ⊗ · · · ⊗ ωk ∈ L(V1, . . . , Vk;R) is the
multilinear map given by

ω1 ⊗ · · · ⊗ ωk(v1 . . . , vk) = ω1(v1) · · ·ωk(vk).

These types of multilinear forms actually form a basis on the set
L(V1, . . . , Vk;R) of multilinear maps with values in R.

It is a shame we need to restrict ourselves to R as the target space,
but as we can see, it is completely necessary when forming tensor
products, as we do not know how to multiply elements of (generally
different) vector spaces. The construction of abstract tensors remedy
this.

1.1.2. Abstract tensors and tensor products

Let V,W,Z be real vector spaces. A map ϕ : V ×W −→ Z is called
R-balanced if it is Z-bilinear, and has the tensor property, meaning

(1) ϕ(v, w1 + w2) = ϕ(v, w1) + ϕ(v, w2);
(2) ϕ(v1 + v2, w) = ϕ(v1, w) + ϕ(v2, w); and
(3) ϕ(rv, w) = ϕ(v, rw).

A tensor product is a vector space V ⊗R W together with an R-
balanced map

⊗ : V ×W −→ V ⊗R W,

which is universal in the following sense: for any R-bilinear map ϕ : V×
W −→ Z, there is a unique linear map h : V ⊗R W −→ Z such
that ϕ = h ◦ ⊗. This property can be illustrated by the following
commutative diagram:

V ×W V ⊗R W

Z
bilinear ϕ

⊗

∃! linear h

We write v ⊗ w = ⊗(v, w), and call such an element an elementary
tensor. Note that not all elements are elementary tensors, as ⊗ is not
necessarily surjective.

We can see from the diagram that any multilinear map ϕ has a
corresponding unique linear map h, where the domain is changed from
V ×W to V ⊗R W . But we do not know, a priori, that there are any
tensor products at all. But if they do, we see from the definition that
HomR(V ⊗W,Z) ∼= L(V,W ;Z). And luckily:



14 1. PRELIMINARY PRELIMINARIES

Theorem 1.1.1. Tensor products exist and are unique up to isomor-
phism.

We do not prove this, but briefly mention a suitable candidate for
the tensor product. Proofs exist in virtually any textbook covering
modules.

Construction 1.1.2. Consider the vector space Free(V ×W ), whose
basis is the set of all ordered pairs (v, w) ∈ V × W , meaning any
element is uniquely determined by a finite linear combination∑

i

ri(vi, wi).

In this vector space, we have the subspace S spanned by all elements
of the form:

(v, w1 + w2)− (v, w1) + (v, w2),

(v1 + v2, w)− (v1, w) + (v2, w),

(rv, w)− r(v, w),

(v, rw)− r(v, w).

(Note that these four relations are almost identical to the three prop-
erties of an R-balanced map.) The quotient module Free(V ×W )/S
satisfies the required properties of V ⊗R W

The tensor product satisfies some nice properties.

Proposition 1.1.3 (Properties of the tensor product). Let V,W and
Z be vector spaces. Then we have the following canonical isomor-
phisms.

(1) V ⊗W ∼= W ⊗ V ;
(2) V ⊗ R ∼= V ;
(3) V ∨ ⊗W = HomR(V,W ); and
(4) V ∨ ⊗W∨ ∼= (V ⊗W )∨.

In addition, −⊗− : VectR×VectR : −→ VectR is a bifunctor.

Proof. One can either construct the maps explicitly, or use theo-
rem 1.1.1. �

We can iterate these tensor products, and it is not too hard to
show that the process is associative, i.e.

(V1 ⊗ V2)⊗ V3
∼= V1 ⊗ (V2 ⊗ V3).

Thus it makes sense to talk about the tensor product V1⊗· · ·⊗Vk of k
vector spaces. As HomR(V ⊗W,Z) ∼= L(V,W ;Z) (by theorem 1.1.1), a
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consequence of proposition 1.1.3 is that we have the following universal
property:

V1 × · · · × Vk V1 ⊗ · · · ⊗ Vk

Z
multilinear ϕ

⊗

∃! linear h

This means that we have the bijection

HomR(V1 ⊗ · · · ⊗ Vk, Z) ∼= L(V1, . . . , Vk;Z).

In particular, as V ∨1 ⊗· · ·⊗V ∨k ∼= (V1⊗· · ·⊗Vk)∨, we see that elements
of

V ∨ ⊗ · · · ⊗ V ∨︸ ︷︷ ︸
k times

are the same thing as multilinear maps

α : V × · · · × V︸ ︷︷ ︸
k times

−→ R.

As these special types of multilinear maps are extremely useful, they
have earned themselves a name: (covariant) k-tensors on V , or just
tensors, and we write T k(V ∨) for the set of all such maps. This seems
like abuse of language, as tensors are elements of tensor product spaces,
but lest we forget that these multilinear maps correspond to elements
of V ∨ ⊗ · · · ⊗ V ∨ in a one-to-one fashion. Henceforth, we use the
notation T k(V ∨) to denote either the abstract tensor product space
V ∨⊗· · ·⊗V ∨, or the space L(V, . . . , V ;R). Thus, elements of T k(V ∨)
are either finite sums of elementary tensors v1⊗· · ·⊗vk, or multilinear
maps α : V k −→ R.

This construction is actually functorial, and so we have a functor

T k : VectR −→ VectR,

which maps a vector space V to the k-fold tensor product V ⊗· · ·⊗V =
V ⊗k. For morphisms, we just map f : V1 −→ V2 to

f ⊗ · · · ⊗ f : V1 ⊗ · · · ⊗ V1 −→ V2 ⊗ · · · ⊗ V2.

Lastly, to get rid of the dependence of the integer k, we sum over all
k = 0, 1, . . . , and we are left with a functor

T : VectR −→ VectR,

sending V to the infinete direct sum

T (V ) =
∞⊕
k=0

T k(V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·
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called the tensor algebra. We now study T k(V ∨) in more detail.

1.1.3. Symmetric and alternating tensors

In general, it is hard to say what happens when the arguments
of a multilinear map are permuted. For example, the dot product,
which is a map Rn×Rn −→ R, is invariant under transposition of the
arguments:

v1 · v2 = v2 · v1.

On the other hand, the cross product, which is a map R3×R3 −→ R3,
will change sign when the arguments are permuted:

v1 × v2 = −v2 × v1.

In this subsection, we describe the language created to capture these
effects. Then we will see that that they, similarly to the abstract tensor
product, give rise to universal properties.

Let α : V ×· · ·×V −→ Z be a multilinear map, and i, j = 1, . . . , k
be distinct integers. We call α symmetric if the value is unchanged
whenever any two arguments are interchanged, i.e.

α(v1, . . . , vi, . . . , vj, . . . , vk) = α(v1, . . . , vj, . . . , vi, . . . , vk).

On the other hand, we say α is alternating, or skew-symmetric, if the
sign is changed whenever any two arguments are interchanged, i.e.

α(v1, . . . , vi, . . . , vj, . . . , vk) = −α(v1, . . . , vj, . . . , vi, . . . , vk).

The collection of all symmetric multilinear maps is denoted Symk(V, Z),
and Altk(V, Z) is the set of all alternating multilinear maps. These
are both vector subspaces of L(V, · · · , V ;Z).

Just as we, for any module Z, can make multilinear maps V ×· · ·×
V −→ Z into linear maps V ⊗· · ·⊗V −→ Z, we have correspondences

V × · · · × V
∧k V V × · · · × V ΣkV

Z Z
alternating α

∧

∃! linear h
symmetric α

�

∃! linear h

of alternating maps. To find these spaces
∧k V and Symk V , we will

focus our attention on Symk(V,R) and Altk(V,R).
There are two functors

Sym: VectR −→ VectR, Alt : VectR −→ VectR,
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called the symmetrization functor and the alternation functor, respec-
tively. Given a vector space V ,

Sym(V ) = ΣV, Alt(V ) =
∧

V,

called the symmetric algebra and the exterior algebra, respectively.
Both these vector spaces are some quotients of T (V ). If we define the
subspaces

IΣ(V ) = span{v1 ⊗ v2 − v2 ⊗ v1 | v1, v2 ∈ T (V )},
I∧(V ) = span{v ⊗ v | v ∈ T (V )},

then ΣV and
∧
V are defined as follows:

ΣV = T (V )/IΣ(V ),
∧

V = T (V )/I∧(V )

From these quotients, it is clear what Sym and Alt does to morphisms.
Given an elementary tensor v1 ⊗ · · · ⊗ vk ∈ T (V ), we denote the

image under the projections as

v1 � · · · � vk ∈ ΣV, v1 ∧ · · · ∧ vk ∈
∧

V,

and we call these elements decomposable. The operation � is called
the symmetric product, and ∧ is called the wedge product. The k-th
symmetric power of V , ΣkV , and the k-th exterior power of V ,

∧k V
are the images of T k(V ) under their respective projections. Thus,
there are canonical isomorphisms

ΣkV ∼=
T k(V )

T k(V ) ∩ IΣ(V )
,
∧k

V =
T k(V )

T k(V ) ∩ I∧(V )
.

By the first isomorphism theorem, the direct sums of these quotients
must be isomorphic to the quotients of the direct sums. Hence the
symmetric and the exerior algebras are graded, and we have

ΣV =
∞⊕
k=0

ΣkV,
∧

V =
∞⊕
k=0

∧k
V.

Now that we have this grading, we can define the Koszul complex.

Definition 1.1.4. The Koszul complex is the differential graded al-
gebra

Kos• V =
∧•

V ⊗ Σ•2V,

where, for v ∈
∧1 V = V and ṽ ∈ Σ1V = V , we have the differential

dv = ṽ, dṽ = 0.
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Here Σ•2V denotes Σ•V , but graded by twice the degree. Explicitly,
the Koszul complex starts of as

R
∧1 V

∧2 V ⊗ Σ1V
∧3 V

∧4 V ⊗ Sym2 · · ·

For our purposes, we do not need to know much more about the
symmetric algebra, so from now on we focus on the exterior algebra.

1.1.4. Properties of the wedge product

Just as the map ⊗ : V k −→ V ⊗k sending (v1, . . . , vk) to v1⊗· · ·⊗vk
has a certain universal property (see theorem 1.1.1), the induced map

∧ : V k −→
∧k

V, (v1, . . . , vk) 7−→ v1 ∧ · · · ∧ vk,

has a universal property too.

Theorem 1.1.5. For any real vector space Z and any alternating map
ϕ : V k −→ Z, there is a unique linear map h :

∧k V −→ Z such that
the diagram

V × · · · × V
∧k V
Z

alternating α

∧

∃! linear h

commutes.

Proof. This follows from theorem 1.1.1. �

We now look at how to express the basis of
∧k V .

As
∧
V is the quotient of T (V ) by elements v⊗ v, we immediately

get that

0 = (u+ v) ∧ (u+ v) = u ∧ u+ u ∧ v + v ∧ u+ v ∧ v = u ∧ v + v ∧ u,
hence u ∧ v = −v ∧ u. We also, for u ∈

∧k V and v ∈
∧l V , have that

u ∧ v = (−1)klv ∧ u.
This follows from the fact that u ∧ v = −v ∧ u. A corollary of this is
that transposition of two vectors in a decomposable chain introduces
a minus sign, i.e.

v1 ∧ · · · ∧ vj ∧ · · · ∧ vi ∧ · · · ∧ vk = −v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vk.
And in general, as a permutation σ is the composition of transposi-
tions, we get that

vσ(1) ∧ · · · ∧ vσ(k) = (signσ)v1 ∧ · · · ∧ vk.
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This result, combined with theorem 1.1.5, means that for a basis
{e1, . . . , en} of V , the wedge product of them all is not equal to 0. And
thus, for 1 ≤ i1 < · · · < ik ≤ n, we have

ei1 ∧ · · · ∧ eik 6= 0.

It can further be shown that the set

{ei1 ∧ · · · ∧ eik | 1 ≤ i1 < · · · < ik ≤ n},

forms a basis of
∧k V . The reader good at combinatorics will easily

see that the dimension of
∧k V is

(
dimV
k

)
.

Another consequence of theorem 1.1.5 is that we have a canonical
isomorphism

Altk(V ) ∼=
(∧k

V

)∨
.

To see this, note that L(V, . . . , V ;R) is canonically isomorphic to
T k(V )∨ by proposition proposition 1.1.3. The above isomorphism is
the one induced from the isomorphism L(V, . . . , V ;R) ∼= T k(V )∨.

Just based on dimensions, we see that there is an isormophism∧k
(V ∨) ∼=

(∧k
V

)∨
.

Using the technology of non-degenerate pairings, it can also be shown
that the isomorphism is canonical, but we skip this digression. Still,
we have the following:

Proposition 1.1.6. For any finite dimensional vector space V , there
are canonical isomorphisms∧k

(V ∨) ∼=
(∧k

V

)∨
∼= Altk(V ).

This result will be useful when working with differential forms.

1.2. Bundles

Now that we (hopefully) know all the linear and multilinear algebra
necessary for this thesis, we recall what smooth manifolds are, before
defining smooth fibre bundles, smooth vector bundles, and smooth
principal bundles.

Again, all of the material can be found in [Tu17] and [Lee13].
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1.2.1. Smooth manifolds

We recall some basic definitions of manifolds and tangent spaces.
See appendix A.1 for a more in-depth exposition.

A topological manifold M is just a “nice enough”2 topological space
that is also locally Euclidean, meaning that at each point p ∈M there
is an open neighborhood U ⊆ M of p that is homeomorphic to an
open set V ⊆ Rn of the Euclidean space Rn. An atlas A on M is just
a collection of charts

(Uα, ϕα : Uα ⊆M −→ Vα ⊆ Rn), ϕα homeomorphism,

such that
⋃
α Uα = M . We call the atlas smooth if all the transition

maps
ϕα ◦ (ϕβ)−1 : ϕβ(Uα ∩ Uβ) −→ ϕα(Uα ∩ Uβ)

are smooth maps on Rn in the usual vector calculus sense, i.e. infin-
itely differentiable. The union A ∪ A′ of two smooth atlases is not
necessarily a smooth atlas, but when it is, we call the two atlases
smoothly equivalent. As the name suggests, this relation is an equiva-
lence relation. Thus we define a smooth structure A on M to be such
an equivalence class, i.e. a collection A = {A,A′, . . . } of smoothly
equivalent atlases.

A smooth manifold is just a topological manifold with a smooth
structure A . Note that the union A∪A′ ∪ · · · of all atlases belonging
to a smooth structure A is, by definition, a smooth atlas, which we
call the maximal smooth atlas. The maximal atlas is denoted by Amax,
i.e.

Amax =
⋃
A∈A

A = {(U, f : U −→ V )},

where U is open in M , V is open in Rn, and f is a homeomorphism.
From now on, all manifolds will be assumed smooth, unless otherwise
stated. When we talk about charts of some manifold, we will always
assume it comes from Amax.

There is a one-to-one correspondence between smooth structures
on M and maximal smooth atlases.

One can construct new manifolds from old ones. We have the
following:

Meta-theorem 1.2.1. Many canonical construction in topology gives
rise to a construction of smooth manifolds.

In the spirit of this meta-theorem, we list two examples.

2Hausdorff and second countable, to be specific.
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Example 1.2.2. Let M , M1 and M2 be smooth manifolds.

(1) The product space M1×M2 can be made into a smooth man-
ifold, and the dimension is equal to the sum of the dimensions
of M and N .

(2) For an open set U of M , the subspace U can be made into a
smooth manifold, and the dimension is equal that of M .

We say that a map F : M1 −→M2 between manifolds M1 and M2

is smooth if for every chart (U1, ϕ) of M1 and every chart (U2, ψ) of
M2, the dashed arrow

U1 U2

ϕ
(
U1 ∩ f−1(U2)

)
V2

F

ψ

ψ◦F◦ϕ−1

ϕ−1

is a smooth map between Euclidean spaces. The collection of all
smooth maps F : M −→ N is denoted C∞(M,N), which is a ring3.
One can see that the composition of smooth maps F : M1 −→M2 and
G : M2 −→ M3 is again smooth by considering the following commu-
tative diagram:

U V W

ϕ(U) θ(V ) ψ(W )

F G

θ ψϕ−1 θ−1

A diffeomorphism is a bijective smooth map f : M1 −→M2 whose
inverse f−1 : M2 −→ M1 is also smooth. Thus, (almost) by defini-
tion, the homeomorphisms of the maximal atlas Amax are all diffeo-
morphisms. Note that the identity map idM : M −→ M is not only
smooth, but also a diffeomorphism. In total, this means we have a
category Man of finite dimensional smooth manifolds, with smooth
maps as morphisms.

As all manifolds are sets, we can talk about pointed manifolds
(M, p), which are just manifolds with a distinct chosen point p ∈ M ;
and pointed maps of manifolds f : (M1, p) −→ (M2, q), which are just
smooth maps f : M1 −→ M2 such that f(p) = q. These objects and
morphisms constitute a category, denoted Man∗.

4

We now move over to tangent spaces. There is a functor

T∗ : Man∗ −→ VectR,

3under point-wise addition and multiplication.
4The ∗ in the subscript signifies that the objects are pointed.
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assigning any pointed manifold (M, p) its tangent space TpM , which
is a real vector space. More specifically, TpM ⊆ HomR

(
C∞(M,R),R

)
is the set of point-derivations at p on M , i.e. the collection of linear
maps v : C∞(M,R) −→ R satisfying the Leibniz rule:

v(fg) = f(p)vg + g(p)vf.

For a smooth map F : (M1, p) −→ (M2, q), the functor T∗ assigns F
to the linear map F∗,p : TpM1 −→ TF (p)M2, called the differential of F
at p. For any v ∈ TpM1, the differential of F at p of v is the map

F∗,p(v) = v(− ◦ F ) : C∞(M2,R) −→ R, (f : M2 → R) 7−→ v(f ◦ F ).

It is not immediately clear from the definition that this is a derivation
at q, but quick calculation (see remark A.1.18) shows that

F∗,p(v)(fg) = f(q)F∗,p(v)g + g(q)F∗,p(v)f.

When p is clear from context, we often omit it from the notation, and
just write F∗ instead of F∗,p.

The fact that T∗ is a functor means, in particular, that (idM)∗,p =
idTpM and that for

M1 M2 M3,
F G

we have (G ◦ F )∗ = G∗ ◦ F∗, which is called the product rule. Also,
diffeomorphisms are sent to isomorphisms:

(F∗,p)
−1 = (F−1)∗,F (p).

The typical example of a tangent vector at p, or point-derivation
at p, is the partial derivatives. For M = Rn, and f ∈ C∞(Rn,R), the
partial derivatives are the usual suspects

∂

∂xi

∣∣∣∣
p

f =
∂f

∂xi

∣∣∣∣
p

= lim
h→0

f(p1, . . . , pi + h, . . . , pn)− f(x1, . . . , xn)

h
,

where x1, . . . , xn are the standard coordinates on Rn and we write
p = (p1, . . . , pn). For the partial derivatives on general manifolds, look
at example A.1.14. These partial derivatives always form a basis for
our tangent spaces. Thus we see that the dimension of any tangent
space TpM is the same as the dimension of the underlying smooth
manifold M .
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Knowing what tangent spaces of M are, we can study the tangent
bundle TM , which is just the smooth manifold5

TM =
⊔
p∈M

TpM = {(p, v) | p ∈M, v ∈ TpM}.

The dimension of TM is the sum dimM +dimTpM = 2×dimM . We
have a functor T : Man −→ Man, assigning the tangent bundle to
each manifold. For any smooth function F : M1 −→ M2, the functor
T assigns F to the map

F∗ : TM1 −→ TM2, (p, v) 7−→ T∗(F ) = F∗,p(v),

called the global differential. It is smooth by the canonical induced
smooth structures on the tangent bundles, and because F is smooth.
The functoriality (G ◦ F )∗ = G∗ ◦ F∗, come from the product rule for
the differential at each point. Similarily, (idM)∗ = idTM .

1.2.2. Fibre bundles

In the following subsection, we recall what a smooth fibre budle is.
We never need them in their full generality, but as we need smooth
vector bundles, smooth principal bundles, holomorphic vector bun-
dles, and holomorphic principal bundles, all of which are examples of
smooth fibre bundles, we thought it might be worth knowing about
the general structure and idea governing them all. We first need to
know about local trivializations, which resemble the notion of an atlas.

Let π be a smooth surjection

π : E −→M,

between two smooth manifolds, let F be some smooth manifold, and
let U = {Uα} be some cover of M . If, for every set π−1(Uα) ⊆ E,
there is a diffeomorphism ϕα : π−1(Uα) −→ Uα × F , such that the
diagram

π−1(Uα) Uα × F

Uα

ϕα

π�Uα
projUα

5It is not immedeately clear how this is a topololgical space, much less a smooth
manifold. But the maximal atlas on M determine the open sets on TM , and we
can assign M a canonical smooth structure from the maximal atlas.
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commutes, we call the collection {(Uα, ϕα)} a local trivialization (of π,
subordinate to U ) with fiber F , or just local trivialization for brevity.
For each point p ∈M , define

Ep = π−1(p).

We say that the maps ϕα are fiber preserving, as the restriction ϕα �Ep
over a point p ∈ M is just a map Ep −→ {p} × F ≈ F , and so each
manifold Ep is diffeomorphic to F .

Definition 1.2.3. A fibre bundle is a collection of data (E,M, π, F ),
where

(1) M,E, F are smooth manifolds and π : E −→ M is a smooth
surjection; and

(2) π : E −→M has a local trivialization with fiber F .

We call E the total space and B the base space. We call the space
Ep = π−1(p) the fiber over p, as it is diffeomorphic to the fiber F
(by the fiber preserving diffeomorphisms). Often, π : E −→ B, or
E −→ B, or even just E is used to denote the whole fibre bundle.

Given two fibre budles

π1 : E1 −→M1, π2 : E2 −→M2,

with the same fiber F , and a commutative diagram

E1 E2

M1 M2

ϕ

π1 π2

ϕ

we say that (ϕ, ϕ) is a bundle map if the diagram commutes. This is
the same as requiring the fiber (E1)p over p to be mapped to the fibre
(E2)ϕ(p) over ϕ(p) for each p ∈ M1. We often say that ϕ is a bundle
map covering ϕ, or even, by abuse of language, that ϕ : E1 −→ E2 (as
opposed to (ϕ, ϕ)) is a bundle map.

If the base spaces are equal, say to some manifold M , and ϕ = idM ,
we say (ϕ, idM) is a bundle map over M . This map carries the fiber
(E1)p over p to the fiber (E2)p over the same basepoint. If the bundle
map ϕ over M is bijective, and ϕ−1 is also a bundle map over M , then
ϕ is called a bundle isomorphism over M , and the bundles are said to
be isomorphic. This can be illustrated by the following commutative
diagram:
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E1 E2

M

ϕ

π1

ϕ−1

π2

We could list lots of explicit examples of bundles in this section,
but as we shall see, both smooth vector bundles and smooth principal
bundles give rise to a plethora of such examples in and of them selves,
so we drop mentioning them here. But we need to look at a few key
examples:

Example 1.2.4 (The trivial bundle). Let M be an arbitrary smooth
manifold, and define E = M × F . Then

projM : M × F −→M, (p, f) 7−→ p,

is a smooth surjection. As the set {M} covers M , and idM×F is a
diffeomorphism proj−1

M (M) −→ M × F , the set {(M, idM×F )} is a
local trivialization with fiber F . As this is the most trivial example of
a fibre bundle, we call it the trivial bundle over M .

Inspired by the last example, we call a fibre bundle E −→M trivial
if it is isomorphic, as a fibre bundle, to the trivial bundle M × F .
Note that, locally, fibre bundles are always trivial, as they admit local
trivializations.

Example 1.2.5 (Pullback bundle). If F : M1 −→ M2 is a smooth
map, and

π : E −→M2

is a fibre bundle, we can define a new bundle over M1, which is de-
pendent on F and E, hence denoted F ∗E. As a set, the total space
is

F ∗E = {(m, e) ∈M1 × E | F (n) = π(e)} ⊆M1 × E.

We endow this with the subspace topology of the product topology of
M1 × E. The projection maps

π′ : F ∗ −→M1, F ′ : F ∗E −→ E,

(m, e) 7−→ m, (m, e) 7−→ e,

fit into the commutative diagram
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F ∗E E

M1 M2

F ′

π′ π

F

We call π′ : F ∗E −→M1 for the pullback bundle.

The next proposition will help explain the smooth structure of the
pullback bundle, as bundles are locally trivial.

Proposition 1.2.6. The pullback bundle of a trivial bundle is trivial.
Meaning, for F : M1 −→M2 then F ∗(M2 × F ) can be given a smooth
structure such that it is isomorphic to M1 × F .

Proof. As F ∗(M2×F ) = {(m1, (m2, e)) ∈M1×(M2×F ) | F (m1) =
π(m2, e) = m2}, the map

σ : F ∗(M2 × F ) −→M1 × F,
(
m1, (F (m2), e)

)
7−→ (m1, e),

is a fibre preserving homeomorphism. It gives the pullback bundle its
smooth structure, and hence the bundle is trivial. �

Theorem 1.2.7. The pullback of a fibre bundle can be given a smooth
structure.

Proof. As every fibre bundle is locally trivial, i.e. they look like
U ×F −→ U , the pullback F ∗E is, by proposition 1.2.6, locally trivial
and looks like F−1(U) × F −→ F−1(U). And so we have described
the local trivializations, making F ∗E into a fibre bundle. �

The pullback bundle has a certain nice property we will exploit
later. In layman’s terms, the total space is the “largest” total space
over M1, in the sense that any bundle map covering F : M1 −→ M2,
must factor through F ∗E.

Proposition 1.2.8 (Universal property of the pullback bundle). The
pullback of a fibre bundle is a pullback in the category-theoretic sense,
meaning that if we have some total space E ′ over M1, with projection
map f : E ′ −→M1, and a bundle map g : E ′ −→ E covering F

E ′ E

M1 M2

f

g

π

F

then g factors uniquely through F ∗E, i.e. we have the following com-
mutative diagram:
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E ′ F ∗E E

M1 M2

f

g

∃!

π

F

Proof. We need to show existence and uniqueness of the dashed ar-
row from E ′ to F ∗E. Call the map ψ. We first show that ψ is unique.

For all p ∈ E ′, commutativity of the diagram forces ψ(p) = (f(p), g(p)) ∈
M1 ×E. So, if any such ψ exists, it must of this form, i.e. it must be
unique.

Because g covers F , the fiber over f(p) is mapped to the fiber over
F
(
f(p)

)
. And so, for any p ∈ E ′,

F
(
f(p)

)
= π

(
g(p)

)
,

so
(
f(p), g(p)

)
∈ F ∗E. So the map ψ indeed exits. �

Before concluding this section, we introduce some needed termi-
nology.

Definition 1.2.9. Let π : E −→ M be a fibre bundle. A smooth
section of E is a map

s : M −→ E

such that π ◦ s = idM . That is, s(p) ∈ Ep. The set of all sections is
often denoted Γ(E).

1.2.3. Vector bundles

Definition 1.2.10. An n-dimensional smooth vector bundle π : V −→
M is a fibre bundle (V,M, π,Rn) with the follow extra condition:

• Each fibre preserving map ϕα : π−1(Uα) −→ Uα×Rn restricts
to an isomorphism ϕα �Vp of vector spaces Vp = π−1({p}) −→
{p} × Rn ∼= Rn.

Example 1.2.11 (The trivial bundle). If we replace a general fibre F
from the trivial bundle in example 1.2.4 with Rn, we get the trivial
vector bundle M × Rn −→ M . It is a vector bundle because the only
trivialization is the identity map idM×Rn , and this gives rise, not only
to an isomorphism, but an equality Vp = {p} × Rn.

Example 1.2.12 (The tangent bundle). For any manifold M , the tan-
gent bundle

TM =
⊔
p∈M

TpM,
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is a vector bundle with Vp = TpM . The set of sections of the tangent
bundle is often written X(M), i.e.

Γ(TM) = X(M).

Example 1.2.13 (The pullback bundle). The pullback bundle of a
vector bundle is, as a set, equal to the pullback bundle from exam-
ple 1.2.5. But it can be turned into a vector bundle in a natural way,
meaning the bundle map of total spaces is linear on fibers, and we
have a similar universal property for vector bundles.

The notion of a map between vector bundles is similar to that of
fibre bundles, as vector bundles are fibre bundles. A vector bundle
map between two n-dimensional vector bundles is just a fibre bundle
map that, when restricted to fibres, gives a linear map of vector spaces.
More concretely, for vector bundles V1 −→M1, V2 −→M2, the bundle
map ϕ : V1 −→ V2, which fits the commutative diagram

V1 V2

M1 M2

ϕ

ϕ

gives linear maps ϕp = ϕ �(V1)p : (V1)p −→ (V2)ϕ(p).
A vector bundle isomorphism ϕ is a fibre bundle isomorphism such

that both ϕ and ϕ−1 are vector bundle maps.

Meta-theorem 1.2.14. Any canonical construction in linear algebra
gives rise to a geometric version for smooth vector bundles.

Honouring this meta-theorem, we collect a list of useful construc-
tions.

Example 1.2.15. Let E,E1 and E2 be smooth vector bundles over a
smooth manifold M . Let p ∈M be any point in M .

(1) The direct sum E1 ⊕ E2 is the smooth vector bundle over M
whose fiber (E1 ⊕ E2)p over p is canonically isomorphic to
(E1)p ⊕ (E2)p.

(2) The dual bundle (E∨) is the smooth vector bundle over M
whose fibre (E∨)p over p is canonically isomorphic to the dual
space (Ep)

∨ = HomR(Ep,R).
(3) The tensor product E1⊗E2 is the smooth vector bundle over

M whose fiber (E1⊗E2)p over p is canonically isomorphic to
(E1)p ⊗ (E2)p.
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(4) The Hom-bundle Hom(E1, E2) is the smooth vector bundle
over M whose fibre Hom(E1, E2)p over p is canonically iso-
morphic to HomR

(
(E1)p, (E2)p

)
.

(5) The k-th exterior power
∧k E and the k-th symmetric power

ΣkE are the smooth vector bundles over M whose fibers over
p are canonically isomorphic to

∧k Ep and ΣkEp.
(6) Let ϕ : E1 −→ E2 be a vector bundle morphism. Then there

exists smooth vector bundles ker(ϕ) and coker(ϕ) overM such
that the fibers are isomorphic to ker(ϕp : (E1)p −→ (E2)p)
and coker(ϕp : (E1)p −→ (E2)p), respectively. In particular,
we can create short exact sequences of vector bundles.

Mix and match the examples for an even greater list of examples.
There are some redundancies in the list above. For example, the

dual bundle (E∨) is equal to the Hom-bundle Hom(E,M×R). Also, as

Hom
(
(E1)p, (E2)p

)
is canonically isomorphic to

(
(E1)p

)∨ ⊗ (E2)p (see
proposition 1.1.3), we have a canonical isomorphism Hom(E1, E2) ∼=
(E1)∨ ⊗ E2 of vector bundles. But the Hom-bundle is useful in itself
because the sections Γ

(
Hom(E1, E2)

)
of the Hom-bundle are in a one-

to-one correspondence with vector bundle maps E1 −→ E2 over M .
This is because any smooth section p 7−→ Hom(E1, E2)p yields a map
ϕp ∈ HomR

(
(E1)p, (E2)p

)
which varies smoothly with p ∈ M , which

is precisely what a vector bundle map ϕ : E1 −→ E2 is. Conversely,
any vector bundle map ϕ : E1 −→ E2 determines linear maps on the
fibres that vary smoothly with p, and thus yields a smooth section
M −→ Hom(E1, E2).

For any smooth vector bundle V −→M , the collection Γ(V ) of all
smooth sections is both a real vector space and a C∞(M,R)-module.
Let s : M −→ V be a smooth section, meaning s(p) ∈ Vp. For any
scalar a ∈ R and any smooth f : M −→ R, the scalar products

as : M −→ V, f · s : M −→ V,

are defined point-wise, i.e.

(as)(p) = as(p), (f · s)(p) = f(p)s(p),

where multiplication in the reals is written juxtaposition.
For part II, we need to know what smooth complex vector bundles

are. They are the exact same beasts as smooth (real) vector bundles,
but with complex vector spaces as fibers, and the fibre preserving maps
restrict to C-linear maps.
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1.2.4. Principal bundles

First we recall some terminology of group actions and G-spaces.
See appendix A.2.2 for a more in-depth exposition this.

Let G be a group. A right G-set is a set M with a right action

M ×G −→M,

(p, g) 7−→ p · g,

Here, right action means that p · e = p and (p · g1) · g2 = p · (g1g2).
Any point (p, g) ∈M ×G gives rise to two maps:

(−) · g : M −→M, p · (−) : G −→M,

p 7−→ p · g, g 7−→ p · g

We call a right action free if all the maps (−) · g, exept (−) · e, are
fixed point-free, meaning p ·g = p implies g = e. We call a right action
transitive if all the maps p · (−) are surjective, meaning for any pair
p, q ∈M there is some g ∈ G such that p · g = q. Note that together,
free and transitive is quite strong. In fact, such an action has the
property that there is a unique g sending p to q. We call such actions
regular.

Recall that a Lie group is a group G that is a smooth manifold.
The constant map ∗ 7−→ e, the inversion map g 7−→ g−1 and the
multiplication map (g, h) 7−→ gh are also all smooth by definition.
(See definition A.2.1). A right G-space is a G-set M that is a smooth
manifold, where G is a Lie group, and the right action is a smooth
map M ×G −→M .

A right G-equivariance is a map ϕ : M1 −→ M2 of right G-spaces
that preserve the action, meaning ϕ(p · g) = ϕ(p) · g. We also call ϕ
equivariant.

Armed with this terminology, we can define principal bundles.

Definition 1.2.16. Let G be a Lie group. A principal G-bundle
π : E −→ M is a fibre bundle (E,M, π,G) with the following extra
conditions:

• E is a G-space, and for each point p ∈M the action restricted
to each space Ep = π−1(p) is regular; and
• each fibre preserving map ϕα : π−1(Uα) −→ Uα × G restricts

to a G-equivariant map ϕα �Ep , i.e. for all g ∈ G, and for all
x ∈ π−1(Uα), we have

ϕα(x · g) = ϕα(x) · g,
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where the action ϕα(x) · g is just group multiplication on the
right coordinate in Uα ×G.

Let Ep be a fibre of a principal G-bundle E −→ M . Since the
action is free and transitive on Ep, we have that for each pair p, q ∈M
there is a unique element g ∈ G such that p · g = q. In other words,
every pair p · g determines a point in y, and vice versa. And so the
base space M is equal to the orbit space {p · G}p∈M = E/G. This
characterization is sometimes useful.

Example 1.2.17 (The trivial bundle). The most trivial example of a
principal G-bundle is again the trivial bundle from example 1.2.4, i.e.

M ×G −→M,

where the smooth right action is just group multiplication on the right
coordinate, which is smooth. The action is free and transitive on fibers,
because binary operations satisfy those criterion.

One should note the following:

Proposition 1.2.18. Let π : E −→M be a principal bundle. Then it
is trivial if and only if there is a smooth global section M −→ E.

Proof. If we have a global section s : M −→ E, we can construct the
bundle map

ϕ : M ×G −→ E, (p, g) 7−→ s(p) · g,
covering the identity. This is in fact a diffeomorphism.

If E is trivial, we have some diffeomorphism M × G −→ E. The
composition of the trivial section p 7−→ (p, e) with ϕ determines a
smooth global section M −→ E. �

Example 1.2.19 (The pullback bundle). The pullback bundle of a
principal G-bundle is again, as a set, equal to the pullback bundle
from example 1.2.5. But it too can be turned into a principal G-
bundle in a natural way, meaning the bundle map of total spaces is
equivariant on fibers, and we have a similar universal property for
principal G-bundles.

Again, maps between principal bundles are defined using fibre bun-
dle maps. A principal bundle map between two principal bundles is
just a fibre bundle map that is equivariant. More concretely, for princi-
pal G-bundles E1 −→M1, E2 −→M2, the bundle map ϕ : E1 −→ E2

is G-equivariant and fits in the following commutative diagram:



32 1. PRELIMINARY PRELIMINARIES

E1 E2

M1 M2

ϕ

A principal bundle isomorphism ϕ is a fibre bundle isomorphism
such that both ϕ and ϕ−1 are principal bundle maps. When ϕ : E −→
E, we sometimes call ϕ a gauge transformation.

1.3. Differential forms on manifolds

We will now use the tools from algebraic topology developed in
section 1.1, and apply them to the smooth bundles from section 1.2.

The material covered here is a blend of theory from [Tu17] and
[Lee13].

1.3.1. Ordinary differential forms

Let M be a n-dimensional manifold. We construct a vector bundle
over M . The fibre over any point p ∈ M is the vector space of alter-
nating k-tensors on the tangent space of M at p. To put it differently,
the vector bundle is the k-th exterior product of the dual bundle of
the tangent bundle. In symbols, the fiber at p is the space

∧k T ∗pM .
The total space is the disjoint union∧k

T ∗M =
∧k

(TM)∨ =
⊔
p∈M

∧k
T ∗pM,

of these fibers. The smooth structure is perhaps not immediately clear,
but it is ensured by meta theorem 1.2.14: just as TM is a smooth
vector bundle, T ∗M is a smooth vector bundle, and thus

∧k T ∗M has
a smooth structure. The smooth surjection is the map

π :
∧k

T ∗M −→M, (p, ω) 7−→ p,

and this completes the construction.
Note that, by proposition 1.1.6. we could just as easily constructed

a smooth vector bundle

Altk TM =
⊔
p∈M

Altk(TpM),

over M , which would be isomorphic to
∧k T ∗M . In practice, we use

whichever is most practical.
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Definition 1.3.1. A differential k-form, or k-form for short, is a
section of the smooth vector bundle

∧k TM , i.e. a smooth map

ω : M −→
∧k

T ∗M,

such that π ◦ ω = idM , or equivalently, that ωp ∈
∧k T ∗pM . The

collection of all differential k-forms is denoted by Ωk(M), i.e.

Ωk(M) = Γ

(∧k
T ∗M

)
.

As the bundles
∧k T ∗M and Altk TM are isomorphic, we can view

any k-form ω as a smooth map on M such that the multilinear map

ωp : TpM × · · · × TpM −→ R,

is alternating. In this sense, we say k-forms take values in R. Note
that Ωk(M) is both a vector space over R and a module over the
ring C∞(M,R) where the algebraic structures are defined point-wise,
as mentioned at the end of section 1.2.3. The wedge product ω ∧ ω′
of two differential forms ω ∈ Ωk(M) and ω ∈ Ωl(M) is also defined
point-wise, meaning

(ω ∧ ω′)p = ωp ∧ ω′p.
This new wedge product inherits all the properties of the wedge prod-
uct from section 1.1.4. For example, for any ω ∈ Ωk(M),

ω ∧ ω = 0.

We collect all the useful results in a proposition.

Proposition 1.3.2. Let ω ∈ Ωk(M) and ω ∈ Ωl(M). Then the fol-
lowing hold:

(1) ω ∧ ω′ = (−1)klω′ ∧ ω.
(2) ωσ(1) ∧ · · · ∧ ωσ(n) = sign(σ)ω1 ∧ · · · ∧ ωn.

Proof. As these properties hold point-wise, and the wedge product
is defined point-wise, there is nothing more to show. �

If F : M1 −→M2 is a smooth map of manifolds, and ω is a differen-
tial form on the target manifold M2, the pullback F ∗ω is a differential
form on the domain manifold M1. Point-wise, (F ∗ω)p is the map
TpM × · · · × TpM −→ R defined as

(F ∗ω)p(X1, . . . , Xk) = ωF (p)

(
F∗,p(X1), . . . , F∗,p(Xk)

)
.
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Since this map is R-linear, and the differential at p satisfies the product
rule, we have a functor

Ωk : Manop −→ VectR .

This functor also preserves the wedge product, meaning

F ∗(ω1 ∧ ω2) = (F ∗ω1) ∧ (F ∗ω2).

All that to say, the construction of differential forms is natural. We
now explore what they look like.

Locally, the k-forms have a particular look. In any chart of an n-
dimensional smooth manifold M , we essentially work with Euclidean
space Rn, and so it easier to get an understanding of what is going on.
For k = 0, the differential 0-forms are just maps fp : TpM

0 −→ R, i.e.
for each p ∈M we have a real number in R. So Ω0(M) = C∞(M,R).
The case k = 1 is a little bit more technical, but vastly important.
As mentioned in section 1.2.1, the partial derivatives ∂

∂xi
form a basis

of TpM . We denote the dual basis of T ∗pM = (TpM)∨ by dxi. As we

saw in section 1.1.4, they form a basis of
∧1 T ∗pM . And so at a point

p ∈M , any 1-form ω is a linear combination

ωp =
n∑
i=1

ωi(p)dxi.

As ω is smooth, we must have smooth functions ω1, . . . , ωn : M −→ R
such the equation holds at any point. So any 1-form locally looks like
such a sum. In general, by the nature of manifolds, we do not know
how to express ω globally, but the local expressions is all we need. For
higher k, a basis of T ∗pM is the set

{dxi1 ∧ · · · ∧ dik | 1 ≤ i1 < · · · < ik ≤ n}.

We can use the same observations as above to conclude that, locally,
a k-form ω looks like

ωp =
∑
I

ωIdxi1 ∧ · · · ∧ dik ,

where the sum is taken over all multi-indices I = (i1, . . . , ik) such that
1 ≤ i1 < · · · < ik ≤ n.

There is a natural way to get a 1-form from a 0-form f . At a point
p ∈M , and for X ∈ TpM , define the 1-form df as

dfp(X) = Xf.
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This is called the differential of f , and is always a 1-form when f is
smooth. Using the observations above, we can see that

dfp =
n∑
i=1

∂f

∂xi
dxi.

One should note that not all 1-forms are differentials of 0-forms.
It turns out that a necessary condition for ω to be equal to df is that

∂ωj
∂xi
− ∂ωi
∂xj

= 0,

in every coordinate chart. And so we recognize that the expression on
the left hand side is an important one, and we should give it a meaning
of its own. For any 1-form ω, define dω as the 2-form which locally is
expressed as

dω =
∑
i<j

(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi ∧ dxj.

It immediately follows that ω = df if and only dω = 0 in each chart.
It turns out that this definition lifts to a well defined global con-

struction, independent of chart. And so we extend d to get a differen-
tial of higher k-forms as well.

Definition 1.3.3. Let M be a smooth n-dimensional manifold, and
let ω be a k-form on M , which locally can be expressed as

ωp =
∑

ωIdxi1 ∧ · · · ∧ dxik .

Define d : Ωk(M) −→ Ωk+1(M) as the map which locally sends ω to

dω =
∑ ∂ωI

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dik .

Strictly speaking, we do not know that the local expression of dω
is independent of chart, but it is. It is also equal to the expressions we
had of df and dω for k = 0 and k = 1. Furthermore, the construction of
d is compatible with pullbacks, i.e. for a smooth map F : M1 −→M2,
we have

F ∗dω = dF ∗ω.

Recall that for k = 0, we observed that dω = 0 if and only if
ω = df . Thus d(df) is always equal to 0. And in general, we have

d ◦ d = 0,

as a map Ωk−1(M) −→ Ωk(M) −→ Ωk+1(M). This means we get a
complex
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Ω0(M) Ω1(M) · · · Ωk(M) · · ·d d d d

This is called the de Rham complex of M . We measure how far this
sequence is from being exact by the de Rham cohomology groups, which
are defined as

Hk
dR(M) =

ker(d : Ωk(M) −→ Ωk+1(M))

im(d : Ωk−1(M) −→ Ωk(M)
.

This is all we need to know about differential forms with values in
R, and move over to the more general case.

1.3.2. Vector-valued differential forms

In this section, we will use the general isomorphisms collected in
section 1.1 to get two perspectives on vector valued differential forms
which are of equal importance.

Let M be a smooth manifold, and p ∈ M any point in M . As
we have seen in section 1.3.1, the universal property of the exterior
power gives a one-to-one correspondence between alternating k-linear
maps on the tangent space TpM and linear maps

∧k TpM −→ R. In
symbols,

Altk(TpM) ∼=
∧k

T ∗pM.

It is under this isomorphism we view differential k-forms as smooth
sections of the smooth vector bundle

∧k T ∗M , and section 1.3.1 was
all about these forms. In this section however, we generalize these
sections which are smooth maps on M that, for each p ∈ M , are
alternating maps

TpM × · · · × TpM −→ R,
to smooth maps on M that, for all p ∈M , are alternating maps

TpM × · · · × TpM −→ V,

for an arbitrary finite dimensional vector space V . By theorem 1.1.5,
the diagram

TpM
k

∧k TpM
V

ω

∧

∃! ω̃

commutes, and the correspondence between ω and ω̃ is one-to-one, i.e.

Altk(T, V ) ∼= HomR(
∧k

T, V ).
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As V ∨ ⊗W ∼= HomR(V,W ) (see proposition 1.1.3), we have the fol-
lowing isomorphisms:

HomR(
∧k

TpM,V ) ∼=
(∧k

TpM

)∨
⊗ V ∼=

(∧k
T ∗pM

)
⊗ V.

Thus, Altk(TpM,V ) ∼=
(∧k T ∗pM)⊗ V , and we see that an element of(∧k TpM)⊗ V can be thought of as an alternating map

ω : TpM × · · · × TpM −→ V.

And so we have the following definition.

Definition 1.3.4. Let M be a smooth manifold, V be a finite di-
mensional vector space, and use V to denote the trivial vector bundle
M × V −→ M from example 1.2.11. A V -valued k-form on M is
a smooth section of the tensor product bundle

∧k T ∗M ⊗ V . The
collection of all these sections is denoted by

Ωk(M ;V ) = Γ

((∧k
T ∗M

)
⊗ V

)
.

We would like to extend the definition of wedge product to vector
valued forms as well, but since the product is ultimately taken in
R, we have a problem, as there is no natural product on V . But,
as V ⊗ V has a natural product, we could create a wedge product
Ωk(M ;V ) × Ωl(M ;V ) −→ Ωk+l(M ;V ⊗ V ). As the tensor product
can be taken between two arbitrary vector spaces V,W , we generalize
in this manner. The wedge product ω ∧ ω′ of V valued k-form ω ∈
Ωk(M ;V ) and W -valued l-form ω′ ∈ Ωl(M ;W ) is the V ⊗W -valued
(k + l)-form which point-wise looks like

ω ∧ ω′(v1, . . . , vk+l) =
∑

σ∈Sk+l

sign(σ)ω(vσ(1), . . . )⊗ ω′(vσ(k+1), . . . ).

We have seen that Ωk(M) is functorial in M , and as Ωk(M ;R) =
Ωk(M), we see that Ωk(M,R) is functorial in M as well. But it turns
out we can make Ωk(M,V ) functorial in both arguments M and V .
In M , it is contravariant, while it is covariant in V . For a linear map
P : V −→ W , we have the map

P : Ωk(M ;V ) −→ Ω(M ;W )

which is just pointwise composition. Meaning, given p ∈ M , any
alternating map ωp : TpM × · · · × TpM −→ V is sent to Pωp = P ◦
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ωp : TpM × · · · × TpM −→ W , where

(Pωp)(v1, . . . , vk) = P
(
ωp(v1, . . . , vk)

)
∈ W.

As we defined Ωk(M ;P ) via composition, it clearly preserves compo-
sition. Thus, we have a functor

Ωk(−,−) : Manop×VectR −→ VectR

All the observations we made about ordinary differential forms
hold for vector valued differential forms as well. The pullback of a
V -valued differential form is a V -valued differential form. We can
take the exterior derivative of a vector valued form, and in turn get a
V -valued de Rham complex

Ω0(M ;V ) Ω1(M ;V ) · · · Ωk(M ;V ) · · ·d d d d

The new exterior differential d : Ωk(M ;V ) −→ Ωk+1(M ;V ) commutes
with pullbacks, i.e. for a smooth map F : M1 −→M2, we have

F ∗dω = dF ∗ω.

1.4. Connections on bundles

A connection, in its simplest form, is a geometric object which
connects tangent vectors at different points in the manifold. In this
section, we will see how the notion changes when we talk about fibre
bundles, vector bundles, and finally principal bundles.

The relevant material can be found in [Tu17] and [Dup03].

1.4.1. Connections on fibre bundles

Given a fibre bundle π : E −→ M , we form the derivative of the
projection map π∗ : TE −→ TM . Since this is linear on fibers, we
can form kernels, and we we arrive at the canonically defined smooth
vector bundle

V E = kerπ∗ ⊆ TE,

called the vertical bundle. Any fibre of V E is called a vertical space,
and vectors in these spaces are vertical vectors. We use the adjective
“vertical” because the vertical vectors are tangent to the the fibres of
the base space M . Meaning, any vertical space V Ex over x ∈ E is the
tangent space TxEπ(x) of the fibre Eπ(x). But π∗ is seldom injective,
so at any point x ∈ E, we would have a non-trivial complementary
vector space HEx such that TxE is the direct sum of V Ex and HEx.
A horizontal space is a choice of such a subspace of TxE so that TxE =
V Ex ⊕HEx.
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A crucial difference between the vectical spaces and the horizon-
tal spaces is that, while the vertical ones are uniquely defined, the
horizontal spaces are not. At each point, there are infinitely many
choices when forming the direct sum. Moreover, while the (disjoint)
union of all the vertical spaces gives the vertical bundle V E, we are
not guaranteed that the (disjoint) union of horizontal spaces over all
of M gives a bundle HE such that TE = V E ⊕HE, even if HE is a
smooth vector bundle. But whenever there exists a bundle HE such
that TE = V E ⊕ HE, we call HE a horizontal distribution. Infor-
mally, we can observe that as x ∈ E varies the spaces V Ex and HEx
vary as well. But since V Ex = TxEπ(x), any movement of x within the
fibre Eπ(x) only change V Ex, and not HEx. Conversely, movement of
x in E along the base space M is reflected in the HEx component,
and not V Ex. Thus, if one wants to understand how E is globally,
a starting point would be to understand the horizontal distribution
HE, as this tracks “twists” of E. A connection is a smooth bundle
morphism v : TE −→ TE such that v2 = v, and v �V E= V E.

As one might notice

Proposition 1.4.1. A horizontal distribution gives rise to a connec-
tion, and a connection determines a horizontal distribution.

Proof. First, assume that we have a horizontal distribution of TE,
i.e. TE = V E ⊕ HE. Then the projection map v : TE −→ V E can
be considered as a map v : TE −→ TE as any element X ∈ TE can
be written as X = v(X) + h(X), where v(X) ∈ V E and h(X) ∈ HE.
It is clear that this is a bundle map.

Conversely, if we have a bundle map v : TE −→ TE such that
it restricts to the identity map on the vertical bundle V E, then the
kernel

ker(v) ⊆ TE,

is a bundle consisting of precisely the elements X ∈ TE without any
vertical component (as v(X) = 0 for X ∈ ker(v)). This identifies
a decomposition TE = V E ⊕ ker(v), and so ker(v) is a horizontal
distribution. �

Thus, finding a distribution HE is the same as finding a connection
v, and we can understand the twisting of E by finding a connection
v. In the language of abstract nonsense, a horisontal distribution is
equivalent to a splitting v of the following short exact sequence:

0 V E TE HE 0

v
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We will now see what happens when our fibres have more structure.

1.4.2. Connections on vector bundles

Consider a smooth vector field Y on a manifold and let Xp ∈ TpM
be a tangent vector at p ∈ M . If one wants to take the derivative of
Y in the direction Xp, one would need to know the values of Y in a
neighborhood of p and compare them, as the derivative would depend
on the difference Yq − Yp. But as Yq and Yp lie in totally different
vector spaces, there is no clear meaning of the minus sign. A linear
connection tries to resolve this.

Let π : E −→M be a smooth vector bundle. Then a connection on
E (regarded only as a fibre bundle) is a choice of horizontal distribution
HE such that TE = V E ⊕HE. This means HEx depends smoothly
on x ∈ E. If, in addition, HEx depends linearly on x, we get a linear
connection. To be precise, let Sλ : E −→ E denote the smooth map
which is scalar multiplication by λ. We call the distribution HE a
linear horizontal distribution if at any point x ∈ E, and for any scalar
λ ∈ R, the image of the horizontal space at x under the differential of
Sλ at x is equal to the horizontal space at λx. In symbols:

(Sλ)∗,x(HEx) = HEλx.

As we mentioned introductory-wise, connections try to solve the
conundrum of taking the difference between vectors of different vec-
tor spaces of a vector bundle. So start with a section s ∈ Γ(E).
This has differential s∗ : TM −→ TE, mapping any tangent vector
Xp at p to the tangent vector s∗Xp at s(p). This is a bundle map
in HomR(TM, TE), and so taking the global differential of a section
gives a map Γ(E) −→ Γ

(
HomR(TM, TE)

)
. Since HomR(TM,E) =

(TM)∨⊗E (see example 1.2.15), and (TM)∨ = T ∗M , we have a map

d : Γ(E) −→ Γ(T ∗M ⊗ TE)

So we have a canonical way of assigning smooth sections of Γ(E) to
smooth sections of Γ(T ∗M⊗TE). But we want the target to be Γ(E).
And this is where the connection v : TE −→ V E comes in.

As we noted in section 1.4.1, the vertical space V Ex at x ∈ E
is equal to the tangent space TxEπ(x). But now, Eπ(x) is a vector
space as well, so the tangent space TxEπ(x) of the vector space Eπ(x)

is canonically isomorphic to the vector space Eπ(x) itself. This means
that given a tangent vector Xp ∈ TpM , the map s∗ maps Xp to a
tangent vector in Ts(p)E, and the connection v can kill the horizontal
component, leaving us with something in V Es(p) = Ts(p)Eπ(s(p)) =
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Ts(p)Ep ∼= Ep. All this is to say that we can assign any smooth section
s ∈ Γ(E) to a linear map

TpM −→ Ts(p)E −→ V Es(p) = Ts(p)Ep ∼= Ep,

that varies smoothly with p ∈ M , giving a vector bundle map in
HomR(TM,E). And as Γ

(
HomR(TM,E)

)
= Γ(T ∗M ⊗E), we are left

with a map

∇ : Γ(E) −→ Γ(T ∗M ⊗ E)

If we specify that the distribution HE is in addition a linear hori-
zontal distribution, meaning (Sλ)∗(HE) = HE, then it can be shown
that∇ becomes a R-linear map which satisfies the Leibniz rule, namely
that

∇(fs) = df ⊗ s+ f∇s,
where d : C∞(M,R) = Ω0(M) −→ Ω1(M) is the exterior derivative
from definition 1.3.3. This result follows from a long and tedious
computation (see [Lee09], p. 521), but no new ideas are needed. Thus
we are lead to the following definition: a linear connection on a smooth
vector bundle π : E −→M is a map

∇ : Γ(E) −→ Γ(T ∗M ⊗ E),

that is linear and satisfies the Leibniz rule.
Just as distributions on fibre bundles are equivalent to connections,

linear distributions are equivalent to linear connections:

Proposition 1.4.2. A linear horizontal distribution gives rise to a
linear connection, and a linear connection determines a horizontal dis-
tribution.

Proof. We have seen in this subsection that a linear distribution
gives a linear connection. So we are done if we can show that a linear
connection ∇ gives some linear horizontal distribution HE. The idea
is very similar to the fibre bundle case, where the kernel ker(v) of a
connection v is a horizontal distribution. The only problem here is that
ker(∇) is not a subset of TE, and even if it was, we would not know
if this distribution was linear. The solution is to canonically inject
the kernel of ∇ into TE in such a way that this new vector bundle
is orthogonal to the vertical bundle V E. Since the construction is
canonical, we get the linearity (Sλ)∗(HE) = HE for free.

Let s : M −→ E be a smooth section such that s(p) = x ∈ E. Then
∇s is a smooth section of Γ(T ∗M ⊗ E) = Γ

(
HomR(TM,E)

)
, i.e. a

vector bundle map∇s : TM −→ E overM . But this determines a map
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∇s : Γ(TM) −→ Γ(E) by sending any smooth vector field X : M −→
TM to the section

∇s ◦X : M −→ E.

At each p ∈M , we have a vector (∇s◦X)p ∈ Ep. But as Ep ∼= Ts(p)Ep,
and each fiber embedds into the total space i : Ep ↪→ E, the derivative
at s(p) gives a map

i∗ : Ts(p)Ep −→ Ts(p)E,

and we can consider (∇s ◦X)p as an element of Ts(p)E. If we subtract
away any vertical component, we are left with a completely horizontal
vector. And as the horizontal component comes from M , subtracting
with s∗Xp ∈ TpE gives the result. That is to say

HEx = {i∗(∇s ◦X)π(x) − s∗Xπ(x) | s ∈ Γ(E), X ∈ Γ(TM)},
has the property HEx⊕ V Ex = TxE. It is straight forward to use the
Leibniz rule to check that (Sλ)∗,x(HEx) = HEλx, which completes the
proof. �

It can be shown that any finite linear combination of connections is
a connection, provided the coefficients add up to 1. So, using partition
of unity, we get that every smooth vector bundle has a connection.

1.4.3. Connections on principal bundles

The perhaps most apparent difference between vector bundles and
principal bundles is that principal bundles need not have vector spaces
as fibers, but general Lie groups. Therefore, they do not have vector
fields, but sections Xp ∈ Ep. So, it is not intuitively clear what it
means to take a derivative in any “direction”. Still, we can generalize
connections from the fibre bundle case if we impose some conditions
on these new connections.

Let π : E −→ M be a principal G-bundle, i.e. a right G-space
E over M such that the action becomes transitive and free when re-
stricted to the fibres Ep for p ∈ M , and so that all the fibre preserv-
ing maps are G-equivariant over the fibres. If we have a distribution
HE ⊆ TE, then we call it principal if the right action permutes the
horizontal spaces. To be precise, let Rg : E −→ E denote the smooth
action which is right multiplication with g. We call the distribution
HE a principal horizontal distribution if at any point x ∈ E, and
for any element g ∈ G, the image of the horizontal space at g under
the differential of Rg at x is equal to the horizontal space at xg. In
symbols:

(Rg)∗,x(HEx) = HExg.
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Recall that there is an injection g −→ Γ(TE), sending X ∈ g to
its fundamental vector field X] : E −→ TE, such that, for each x ∈ E,
we have X]

x ∈ TxE. Remember that each x ∈ E gives a map,

fx : G −→ E, g −→ xg,

determined by the action on E. The derivative (fx)∗,e at the identity
e ∈ G is then a map g −→ TxE. This dictates the vector X]

x =
(vx)∗X ∈ TxE. Collecting all these vectors, we see that X] is in fact
a smooth section of TM . But what is more, the fundamental vector
fields are actually vertical. Straightforward calculation gives

π∗,x(X
]
x) = π∗,x

(
(vx)∗,eX

)
= (π ◦ vx)∗,eX,

and since π ◦ fx : G −→ M is constant equal to π(x), the derivative
(π ◦ fx)∗,e = 0. So X] ∈ ker(π∗), meaning X] is vertical. Thus, for
principal G-bundles, we have a map

(fx)∗,e : g −→ V Ex ⊆ TxE.

This can be seen to be an isomorphism. Hence the vertical tangent
vectors at a point are precisely the fundamental vectors. The isomor-
phism (fx)∗,e actually determines a g-valued 1-form ∇ on E if we have
a horizontal distribution. At x ∈ E, it is defined as the composition

∇x =
(
(fx)∗,e

)−1 ◦ v : TxE −→ VxE −→ g,

and we immediately see that ∇ : M −→
(∧1 T ∗E

)
⊗ g is a g-valued

1-form on the total space E. If we furthermore specify that the dis-
tribution HE is in addition a principal horizontal distribution, then
it can be shown that, for all g ∈ G, the pullback

R∗g∇ = Adg−1∇.

We call this property of a g-valued 1-form for G-equivariance. To see
that ∇ is G-equivariant, we first use the fact that the vertical tangent
vectors are the fundamental ones. This implies that the projection v
sends any fundamental vector X]

x to itself, as it is vertical. So

∇x(X
]
x) =

(
(fx)∗,e

)−1(
v(X]

x)
)

=
(
(fx)∗,e

)−1
(X]

x) = X.

This allows us to easily check the G-equivariance at vertical and hor-
izontal tangent vectors separately. For a vertical vector Yx ∈ VxE, it
is equal to some fundamental vector X]

x, and so

(R∗g∇)x(Yx) = ∇xg

(
(Rg)∗,xX

]
x

)
.
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We have (Rg)∗ ◦ (fx)∗ = (fxg)∗ ◦ Adg−1 by the chain rule. So, on the
fundamental vector fields, R∗gX

]
x = (Adg−1 X)]. Hence

(R∗g∇)x(Yx) = ∇xg

(
(Adg−1 X)]

)
= Adg−1 X = Adg−1∇x(X

]
x).

So we see ∇ is G-equivariant on vertical vectors. On a horizontal
vector Yx ∈ HxE, we instantly get

(R∗g∇)x(Yx) = ∇xg

(
(Rg)∗,xYx

)
= 0 = Adg−1 ∇x(Yx),

by right-invariance on the horizontal distribution.
The upshot is that G-equivariance holds on any vector Yx ∈ TxE

whenever TE = V E ⊕ HE. So a principal horizontal distribution
induces a G-equivariant splitting ∇. Thus we are lead to the following
definition: a G-connection on a principal G-bundle π : E −→ M is
g-valued 1-form ∇ ∈ Ω1(E; g) such that

R∗g∇ = Adg−1∇.

and it splits, i.e. ∇x ◦ (fx)∗ = idg, where fx : G −→ E is the map
fx(g) = x · g.

For the third time, we have the following:

Proposition 1.4.3. A principal connection gives rise to a principal
horizontal distribution, and a principal horizontal distribution gives
rise to a principal connection.

Proof. We have seen in this subsection that a principal horizontal
distribution induces a principal connection. What is left to show is
that a G-connection ∇ gives a horizontal distribution HE such that

(Rg)∗,x(HEx) = HExg.

The idea again is to let HEx = ker(∇). If Xx ∈ HxE, then we obtain

∇xg

(
(Rg)∗,xX

)
= (R∗g∇)x(X) = Adg−1

(
∇x(X)

)
= 0,

hence (Rg)∗,xXx ∈ Hxg, and we are done. �

We now look at a most important example of a connection.

Example 1.4.4 (The Maurer-Cartan form). Let E = M × G be the
trivial G-bundle from example 1.2.17. We will now define the Maurer-
Cartan form, ∇MC ∈ Ω1(M×G; g), which will serve as the most trivial
example. Recall that for g ∈ G, the left translation map Lg−1 : G −→
G is a diffeomorphism of G. So we have a map

Lg−1 ◦ projG : M ×G −→ G −→ G, (p, g) 7−→ e
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Thus, (Lg−1 ◦ projG) ◦ f(p,g) sends h to h again, i.e.

(Lg−1 ◦ projG) ◦ f(p,g) = idG .

With this in mind, define∇MC to be the differential of Lg−1◦projG,
i.e. for any point (p, g) ∈ E ×G, we have

(∇MC)(p,g) = (Lg−1 ◦ projG)∗,(p,g) : T(p,g)(M ×G) −→ g.

It is a splitting of 0 −→ g
vx−→ TxE

π∗,x−−→ Tπ(x)M −→ 0 because (Lg−1 ◦
projG) ◦ f(p,g) = idG. To see that it satisfies the equivariance property,
note that (∇MC)(p,g) = proj∗G(Lg−1)∗. Thus

(R∗h∇MC)(p,h) = (R∗h)(proj∗G(Lg−1)∗) = proj∗G(Rh)
∗(Lg−1)∗.

Simple calculation shows R∗h(Lg−1)∗ = Adh−1 ◦(Lg−1)∗, and so by ap-
plying proj∗G to both sides, we are done.

We should note that the pullback of a connection determines a
connection. It follows from the fact that the pullback is natural, as
discussed in section 1.3.2. This implies that all principal bundles have
a connection. The last fact follows from the local triviality of principal
bundles and partition of unity. A principal bundle locally looks like
U × G −→ U , and we can assign each of these their Maurer-Cartan
form ∇MC . Thus a partition of unity gives us a globally defined 1-
form, which is a connection.

1.5. The Chern-Weil homomorphism

We now know what a principal G-bundle with a connection is.
When trying to classify them, Chern and Weil found lots of invariants,
one for each invariant polynomial. In this section, we explore these
invariants, and the Chern-Weil homomorphism.

The theory is taken from [Dup03].

1.5.1. Invariant polynomials

Recall, from section 1.1.3, that ΣkV is (canonically isomorphic to)
the quotient of V ⊗ · · ·⊗V (k times) by all elements v1⊗ v2− v2⊗ v1,
and that we write v1� · · ·� vk for the projected images of elementary
tensors v1 ⊗ · · · ⊗ vk. The space Σk(V ∨) is isomorphic to the space
Symk(V,R) of symmetric multilinear maps

α : V × · · · × V −→ R.

We now let V = g be the Lie algebra of the Lie group G. Then the
adjoint representation Ad of G on the Lie algebra g induces an action
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of G on Σk(g∨). So, for a given symmetric map α : g× · · · × g −→ R,
and a point g ∈ G, we define gα to be the map

gα(X1, . . . , Xn) = α(Adg−1(X1), . . . ,Adg−1(Xn)).

We call α ∈ Σk(g∨) an invariant polynomial (even though it is a k-
linear map6) if for all g ∈ G, we have gα = α, and the ring of all
invariant polynomials of Σk(g∨) is denoted Ik(G). Just as we have a
grading Σ•(g∨) =

⊕∞
k=0 Σk(g∨), we define the subring

I•(G) =
∞⊕
k=0

Ik(G) = Σ•(g∨)G ⊆ Σ•(g∨).

We now combine the terminology from this subsection to the vector
valued forms of section 1.3.2.

1.5.2. The curvature form

Let M be any manifold, and V and W be finite dimensional vector
spaces. Recall, from section 1.3.2, that we have a wedge product

Ωk(M ;V )× Ωl(M ;W ) −→ Ωk+l(M ;V ⊗W ).

If V = W = g, the wedge product of two g-valued forms is a g ⊗ g-
valued form. Since the Lie bracket is a linear map g ⊗ g −→ g, and
Ω2k(M ; g⊗ g) is functorial in the last argument, we have a canonical
way of mapping g⊗ g-forms to g-forms. Specifically, for two g valued
forms ω ∈ Ωk(M ; g) and ω′ ∈ Ωl(M ; g), we define [ω, ω′] ∈ Ωk+l(M ; g)
to be the g-valued (k + l)-form defined point-wise as the composition

[ω, ω′]p = [−,−] ◦ (ωp ∧ ω′p) : TpM × · · · × TpM −→ g⊗ g −→ g.

Definition 1.5.1. Let ∇ ∈ Ω1(E; g) be a connection on a principal
bundle E −→ M . The curvature form F∇ ∈ Ω2(E) of ∇ is the g-
valued 2-form defined by the structural equation of ∇:

d∇ = −1

2
[∇,∇] + F∇,

where d : Ω1(E; g) −→ Ω2(E; g) is the exterior derivative from sec-
tion 1.3.2.

6The reason we use the word “polynomial” is because Σk(V ∨) is isomorphic,
as a vector space, to the space R[x1, . . . , xdimV ]k of all homogeneous polynomials
of degree k. Hence we can think of α as a polynomial. It can also be shown
that the rings Σ•(V ∨) and R[x1, . . . , xdimV ] are isomorphic. The correspondence
takes use of something called polynomial functions, and the process of turning a
polynomial function to a multilinear one is often called polarization.
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If we now wedge the curvature form F∇ with itself k times, we have

F k
∇ = F∇ ∧ · · · ∧ F∇ ∈ Ω2k(E; g⊗ · · · ⊗ g).

As any invariant polynomial P ∈ Ik(G) ⊆ Σk(g∨) defines a map P : g⊗
· · · ⊗ g −→ R, and as Ω2k(E; g ⊗ · · · ⊗ g) is functorial in the last
argument, we get a 2k-form P (F k

∇) ∈ Ω2k(E), defined point-wise as
the composition

P (F k
∇)p = P ◦ (F k

∇)p : TpM × · · · × TpM −→ g⊗ · · · ⊗ g −→ R.
One could wonder if there are any forms on the base space M such
that they map to P (F k

∇) under the pullback π∗ : Ω2k(M) −→ Ω2k(E).
We do not show it here, and we never explicitly need the construction,
but it turns out there exists a unique 2k-form on M which pulls back
to P (F k

∇) ∈ Ω2k(E) by π∗ (see [Dup03], p. 76). This new form gets a
name.

Definition 1.5.2. Let π : E −→ M be a principal G-bundle, and
let P ∈ Ik(G) be an invariant polynomial. The unique 2k-form on
M which pulls back to P (F k

∇) ∈ Ω2k(E) is called the characteristic
form corresponding to P , and is, by abuse of notation, also denoted
P (F k

∇) ∈ Ω2k(M).

We would not care about the characteristic form, let alone give it
such a pompous name, if it had no nice properties. And indeed it has
several, but we need only one of them, namely

Proposition 1.5.3. Let (ϕ, ϕ) be a bundle map between two principal
G-bundles π1 : E1 −→M1, and π2 : E2 −→M2, i.e. the diagram

E1 E2

M1 M2

ϕ

π1 π2

ϕ

commutes, and let P ∈ Ik(G) be an invariant polynomial. Then for
any connection ∇ ∈ Ω1(E2; g) on E2, the pullback ϕ∗∇ ∈ Ω1(E1; g) is
a connection on E1 and we have

P (F k
ϕ∗∇) = ϕ∗

(
P (F k

∇)
)
.

Proof. In section 1.4.3, we saw that the pullback of a connection is
a connection. Hence ϕ∗∇ ∈ Ω1(E1; g) is a connection on E1. Since
F∇ = d∇+ 1

2
[∇,∇], we get

ϕ∗F∇ = ϕ∗(d∇) + ϕ∗
(

1

2
[∇,∇]

)
= dϕ∗∇+

1

2
ϕ∗
(
[∇,∇]

)
,



48 1. PRELIMINARY PRELIMINARIES

using the fact that d commutes with pullbacks to get ϕ∗(d∇) = dϕ∗∇.
It is straightforward to check that ϕ∗

(
[∇,∇]

)
= [ϕ∗∇, ϕ∗∇], and hence

Fϕ∗∇ satisfies the structural equation, making it the curvature form.
Thus, in the total spaces, we have that ϕ∗

(
P (F k

∇)
)

= P (F k
ϕ∗∇) ∈

Ω2k(E1). As π∗1 : Ω2k(M1) −→ Ω2k(E1) is injective, we are done. �

The proposition above is saying that given a principal bundle with
a connection, the pullback of the characteristic form corresponding to
any invariant polynomial defines a characteristic form corresponding to
the particular invariant polynomial in a canonical way. In particular,
when the bundle map is an isomorphism, we get that gauge equivalent
connections have the same characteristic form.

Definition 1.5.4. Let π : E −→ M be a principal G-bundle with
connection ∇ ∈ Ω1(E; g). For any invariant polynomial P ∈ Ik(G),
define w(E;P ) to be the cohomology class of the characteristic form
corresponding to P , meaning w(E;P ) = [P (F k

∇)] ∈ H2k
dR(M). This

defines a mapping

w(E;−) : Ik(G) −→ H2k
dR(M),

called the Chern-Weil homomorphism.

We call each w(−;P ) an invariant because of proposition 1.5.3.
But we need to know what other invariants for these objects are. A
characteristic class is a rule c such that for each principal G-bundle
π : E −→M , we assign

(E, π,M,G) 7−→ c(E) ∈ H•dR(M),

and for each principal G-bundle map

E1 E2

M1 M2

ϕ

ϕ

we have c(E2) = ϕ∗
(
c(E1)

)
. We can formalize the definition, and call

a characteristic class a natural transformation from a certain functor
into the cohomology functor H•, but it introduces unnecessary com-
plications, hence we do not.

It follows immediately that for each invariant polynomial P , the
rule w(−;P ) is a charateristic class. Moreover, these characteristic
classes also take the connection into account. When a characteristic
class does this, we sometimes call it an invariant associated to connec-
tions.
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The main result of [FH13] is that there are no more invariants
associated to connections than the characteristic classes w(−, P ). We
discuss this in section 3.3.2.





CHAPTER 2

From Manifolds to Simplicial Sheaves

In this chapter, we start exploring the ideas explained in [FH13].
In particular, we show how any the category of manifolds embeds into
the category of presheaves. We then go on to construct a universal
space of differential forms equipped with a universal differential form.
This construction has the nice property that each differential form ω
on a manifold determines a unique map from the manifold into this
universal space with the property that the pullback of the universal
form is ω. There maps are called the classifying maps, and will be
useful in chapter 3.

Moving on, we mention what sheaves and stalks are, and mention
the sheafification process of turning any presheaf into a sheaf.

Crucial to the construction of the universal bundle is the concept
of a groupoid. We mention how a set determines a groupoid and how
an action determines a groupoid. We look at how the category of
principal G-bundles with connection is a groupoid. We then define
simplicial sets, and see how a groupoid naturally determines a simpli-
cial set. Thus a set determines a simplicial set, an action determines
a simplicial set, and the category of principal G-bundles with a con-
nection determines a simplicial set.

To introduce the notion of a weak equivalence of simplicial sheaves,
we need to know what a weak equivalence of simplicial set is. This is
defined using the geometric realization functor, hence we introduce it.
With all of this in mind, we finally define simplicial presheaves and
simplicial sheaves, and give some examples. Specifically, we mention
how a sheaf induces a simplicial sheaf, using our example of how to
turn a set into a simplicial set. We also show how an action on a sheaf
naturally determines a simplicial sheaf, analogue to how an action on
a set determines a simplicial set. Finally, we mention what differential
forms on simplicial presheaves are (something glossed over in [FH13]),
and define weak equivalences of simplicial manifolds.

51
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2.1. Presheaves on manifolds

Recall that a presheaf on C is a contravariant functor from some
category C to the category of sets Set. With this terminology in mind,
we define a presheaf on manifolds to be a contravariant functor from
Man to Set, or in other words:

Definition 2.1.1. A presheaf on manifolds, or often just presheaf for
brevity, is a functor

Manop −→ Set .

2.1.1. Examples

Any such presheaf on manifolds should be thought of as a geomet-
ric object—a generalization of manifolds. To warrant this claim, we
explain why a manifold can be viewed as a presheaf. The prototypical
example is

Example 2.1.2 (The associated presheaf). Let X be any smooth finite
dimensional manifold. The associated presheaf of X, noted as FX , is
the functor

FX : Manop −→ Set, M 7−→Man(M,X).

The functor FX is just the contravariant Hom-functor, HomMan(−, X).
The idea behind FX is analogous to what one does in simplicial homol-
ogy. In that setting, one tries to understand X by looking at the sets
Singn(X) = Top(∆n, X) of continuous maps from the “test spaces”
∆n, called the standard n-simplices1, into X. The difference is that
now the test spaces we consider are not the standard n-simplices ∆n,
but finite dimensional smooth manifolds M , and the maps are not
only continuous, but also smooth. Succinctly, Top(∆n, X) is replaced
with Man(M,X).

Another example that is important for this thesis is

Example 2.1.3 (The universal space of differential forms). Recall,
from section 1.3.1, that Ωk is a functor Manop −→ VectR, assign-
ing to each manifold M the space of differential k-forms Ωk(M) =

Γ(M,
∧k T ∗M), and sending each smooth map f : M1 −→ M2 to its

pullback f ∗ : Ωk(M2) −→ Ωk(M1). It is a simple matter to consider
the spaces Ωk(M) as sets, and thus we have a presheaf

Ωk : Manop −→ Set,

1We will return to them again in section 2.3, and in particular example 2.3.9.
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on manifolds. More generally, we can fix a finite dimensional vector
space V , and let Ωk(M ;V ) be the set of V -valued differential k-forms,
i.e.

Ωk(M ;V ) = Γ

((∧k
T ∗M

)
⊗ V

)
,

as described in section 1.3.2. This defines a presheaf of manifolds as
well. We sometimes write Ωk ⊗ V for the functor Ωk(−;V ), reflecting
the equation above. In particular, if we let V = g be the Lie algebra
of some Lie group G, we have the presheaf

Ωk ⊗ g : Manop −→ Set,

on manifolds.

2.1.2. Maps of presheaves

If we want to be serious about presheaves on manifolds, we should
seek a notion of maps between them, which would allow us to talk
about their geometry. This will yield a category Pre of presheaves.
For the reader familiar with abstract nonsense, this is (of course) just
the presheaf category.

Let F ,G : Manop −→ Set be two presheaves on manifolds. Then
a natural transformation η from F to G, written either as η : F =⇒ G
or η : F −→ G depending on perspective, is an operation associating
with each manifold M a morphism ηM : F(M) −→ G(M) in such a
way that for any smooth map f : M1 −→M2, the diagram

F(M1) F(M2)

G(M1) G(M2)

ηM

F(f)

ηN

G(f)

commutes. The map ηM is called the component of η at M . The col-
lection of all natural transformations F −→ G is denoted Pre(F ,G).
This choice of definition has an enjoyable property:

Lemma 2.1.4 (Yoneda). For any presheaf F , evaluation on X deter-
mines a bijection Pre(FX ,F) ∼= F(X) of sets.

Idea of proof. We need to show that every natural transformation
determines an element in F(X), and that every element in F(X) is
determined by such a transformation. Note that idX is a point in
FX(X). So for a natural transformation η : FX =⇒ F , evaluation at
this point gives an element ηX(idX) ∈ F(X). This identification is a
one-to-one correspondence, and the inverse identifies x ∈ F(X) with
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the natural transformation ξx which associates to each manifold M the
morphism ξxM : FX(M) −→ F sending g to F(g)(x). See for example
[MM94] for a proper proof. �

Because of this lemma, every element of F(X) is associated to a
map FX −→ F . And since we view FX as a generalized version of X,
we sometimes write an element of F(X) as a map

X −→ F .

This notation seems to suggest that for smooth manifolds X and Y ,
the maps FX −→ FY of associated presheaves are the same as smooth
maps X −→ Y . But is this right? The following corollary answers
this in the in the affirmative.

Corollary 2.1.5 (Yoneda embedding). The set of maps FX −→ FY
is in one-to-one correspondence with the set of smooth maps X −→ Y ,
i.e.

Pre(FX ,FY ) ∼= FY (X) = Man(X, Y ).

We can interpret this corollary as saying the maps FX −→ FY
are smooth, as each such map actually corresponds to a smooth map
X −→ Y . It seems the associated presheaves actually remember the
smooth structure of their underlying smooth manifolds. And so we
could wonder if FX inherits other smooth properties of the under-
lying manifold. For example, one could ponder if it makes sense to
define differential forms on FX . This is the subject of the following
subsection.

2.1.3. The universal space of differential forms

The Yoneda lemma, lemma 2.1.4, is saying that for F = Ω•, we
have

Pre(FX ,Ω•) ∼= Ω•(X).

And so we see that each differential form on X corresponds to a natu-
ral transformation FX =⇒ Ω•. Thus, if we define the set of differential
forms on the associated presheaf FX to be set of natural transforma-
tions from FX to Ω•, i.e. Ω•(FX) = Pre(FX ,Ω•), we automatically
get that Ω•(FX) ∼= Ω•(X). But this is too narrow of a definition, be-
cause we want to consider differential forms on all types of presheaves
F . This is what is done in

Definition 2.1.6. Let F : Manop −→ Set be any presheaf. De-
fine the collection of differential forms on F as the set Ω•(F) =
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Pre(F ,Ω•). In other words, we consider the functor

Ω• : Preop −→ Set, F 7−→ Pre(F ,Ω•).
For a map ϕ : F1 −→ F2 of presheaves, we call the map

ϕ∗ = Ω•(ϕ) : Ω•(F2) −→ Ω•(F1)

the pullback of ϕ. This sends any differential form ω ∈ Ω•(F2) to the
composition

ϕ∗ω = ω ◦ ϕ : F1 −→ F2 −→ Ω•,

and thus ϕ∗ω ∈ Ω•(F1).

Note that in the above definition we abuse both notation and termi-
nology. The symbol Ω• means both the “old” functor Manop −→ Set
from example 2.1.3, and the “newer” functor Ω• : Pre −→ Set (from
definition 2.1.6 of course). The word “pullback” similarly means the
value of Ω• when applied to a morphism, no matter which of the cat-
egories Manop or Preop it comes from. It is important to distinguish
these differences, but luckily it is always clear from context.

Also note that a consequence of lemma 2.1.4 is that the collec-
tion of all differential forms on the associated presheaf FX is actually,
tautologically, the same as the collection of differential forms on X,
since

Ω•(FX) = Pre(FX ,Ω•) ∼= Ω•(X).

This tautological property is hinting at something more, and we ex-
plore it now, in

Construction 2.1.7 (The classifying maps). Let X be a smooth
manifold and M a test manifolds, and let ω ∈ Ωk(X). Define a map

ϕM : Man(M,X) −→ Ωk(M), f 7−→ ϕ(f) = f ∗ω ∈ Ωk(M),

sending any smooth map f : M −→ X from the test manifold M ,
to its pullback f ∗ω of the form ω by f . This, as the subscript might
suggest, gives rise to a natural transformation ϕ : Man(−, X) =⇒ Ωk,
or, more to the point, a map

ϕ : FX −→ Ωk.

Observe that the pullback of this map ϕ between presheaves is a map

ϕ∗ : Pre(Ωk,Ωk) −→ Pre(FX ,Ωk) ∼= Ωk(X).

Since ϕ∗(idΩk) = idΩk ◦ ϕ = ϕ, the general Yoneda isomorphism tells
us that ϕ can be regarded as the element ϕX(idX) = id∗X ω = ω ∈
Ωk(X).
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If we take a step back, we see that we have actually showed that
there is a (canonically defined) map ϕ : FX −→ Ωk with the prop-
erty that all differential forms ω ∈ Ωk(X) pulls back to one universal
differential form, namely idΩk ∈ Ωk(Ωk). There are no other maps
FX −→ Ωk with this property. (This is shown easily by assuming we
have two such maps that have equal pullbacks.) Meaning ϕ is unique.
Thus we call the unique maps ϕ the classifying maps.

All that to say, we have now constructed a universal space of dif-
ferential forms Ω•, and a universal de Rham complex, the latter being
the complex

Ω0 Ω1 Ω2 · · · Ωk · · ·d d d d d

which on a test manifold M is the de Rham complex on M , from
section 1.3.1. We again stress that the classifying maps from any
manifold X into this universal objects are unique, and that there exists
some unique form such that any differential form on X is pulled back
from the unique one.

Before moving on, we expand on some of the ideas of presheaves
on manifolds, glossed over in [FH13]. We have a natural extension of
differential forms on manifolds, as seen in definition 2.1.6. The same
is true for the vector valued differential forms, which we discussed in
section 1.3.2. For some finite dimensional vector space V , the set of
V -valued differential forms on a presheaf F is the set Pre(F ,Ω•⊗ V )
of natural transformations from F to Ω• ⊗ V . In particular, a G-
connection ∇ ∈ Ω1(E; g) on a principal G-bundle E −→ X induces a
g-valued differential 1-form on FE, i.e. we have some unique natural
transformation ∇ : FE −→ Ω1 ⊗ g.

2.2. Sheaves on manifolds and their stalks

Let F : Manop −→ Set be a presheaf, and {Ui}i∈I be any cover
of an arbitrary test manifold M . For any two indices i, j ∈ I, the
inclusions

Ui ∩ Uj Ui

Uj M

induces maps
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F(Ui ∩ Uj) F(Ui)

F(Uj) F(M)

This allows us to define three maps:

F(M) −→
∏
i

F(Ui),
∏
i

F(Ui)⇒
∏
i,j

F(Ui ∩ Uj).

The first map sends an element to the product of all the values
of the induced maps F(M) −→ F(Ui). The first of the remaining
two maps sends an element coming from coordinate k ∈ I to the
product of the values induced from the inclusion functions F(Ui) −→
F(Ui ∩ Uk), while the other map, analogously, coordinate-wise comes
from the inclusion functions F(Uj) −→ F(Uk ∩ Uj).

2.2.1. Sheaves

Definition 2.2.1. A presheaf F : Manop −→ Set is a sheaf if, given
any test manifold M in Man and any open cover {Ui}i∈I of M

F(M)
∏

iF(Ui)
∏

i,j F(Ui ∩ Uj),

is an equalizer diagram.

Recall that an element in F(X) is sometimes written as a map
X −→ F because of the Yoneda lemma. The diagram in defini-
tion 2.2.1 being an equalizer amounts to two things:

(1) If s, t : M −→ F are such that the diagram

Ui M

M F

s

t

commutes for each i ∈ I, then s = t.
(2) If, for each i ∈ I, there is a map si : Ui −→ F such that

Ui ∩ Uj Ui

Uj F

si

sj

commutes, then there is some s : M −→ F such that each si
factors through s.
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With words, the first property is saying that maps which agree lo-
cally, must agree globally, while the second property is saying that
given a collection of local sections which agree on overlaps must glue
to a global section. These properties are called locality and gluing,
respectively.

Proposition 2.2.2. Let F be a presheaf. Then the following are equiv-
alent:

(1) The presheaf F is a sheaf.
(2) For each manifold M and each open cover of M , the presheaf

satisfies the locality and gluing property.

Using this proposition, we identify some sheaves.

Example 2.2.3 (The associated presheaf). Let X be a smooth man-
ifold, and FX be the associated presheaf from example 2.1.2. The
Gluing Lemma for Smooth Maps ([p. 35 in Lee]) in topology says
that given manifolds M and X, an open cover {Ui}i∈I of M , and
smooth maps si : Ui −→ X such that

Ui ∩ Uj Ui

Uj X

si

sj

commutes, there exists a unique smooth map s : M −→ X such that
all the maps si factor through it. Replacing X with FX shows that
the associated presheaf has the locality and gluing property, and by
proposition 2.2.2 it must be a sheaf.

Example 2.2.4 (The universal space of differential forms). Let M be
a smooth manifold with open cover {Ui}i∈I . Although Ωk satisfies
locality by definition, the gluing property is not straight forward to
check. But note that we have inclusions⊔

p∈Ui∩Uj

∧k (
T ∗p (Ui ∩ Uj)

)
⊆

⊔
p∈Ui∩Uj

∧k
(T ∗pM) ⊆

⊔
p∈X

∧k
(T ∗pM),

so
∧k T ∗(Ui ∩ Uj) ⊆ ∧ T ∗X. This means a k-form ω : Ui ∩ Uj −→∧k T ∗(Ui ∩ Uj) can be considered as a map ω : Ui ∩ Uj −→

∧k T ∗M ,
and we see that the gluing property is satisfied.

2.2.2. Sheafification and stalks

There is a functor from the category of presheaves Pre to the
category of sheaves Sh, (where the morphisms defined identically to
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those in Pre) denoted by

a : Pre −→ Sh .

Although we do not prove it, this functor has the universal property
that if F is a presheaf, and F ′ is any sheaf, and there is a map F −→
F ′, then there is a unique sheaf map aF −→ F ′ making the diagram

F aF

F ′
∃!

commute. We call a the associated sheafification functor. A good
general reference is [MM94], see Chapter III, Section 3 for a complete
description of the sheaf aF .

By proposition 2.2.2, it is clear that a sheaf is a tool for systemati-
cally tracking locally defined data attached to the open sets of a space.
It is therefore reasonable to attempt to isolate the behavior of a sheaf
at an arbitrary single fixed point of the space. This could be done by
looking at smaller and smaller neighborhoods of the point, essentially
taking a direct limit. But since all manifolds are locally diffeomorphic
to an open ball centered at the origin, we could instead just calculate
the direct limit of such balls.

To be more precise: let F be a presheaf, and define Bm(r) ⊆ Rm

to be the open ball of radius r about the origin in Rm. If r′ ≤ r,
then we have a natural inclusion Bm(r′) ↪→ Bm(r), and so we get a
map f : F

(
Bm(r)

)
−→ F

(
Bm(r′)

)
. If we form the disjoint union of

all these sets, and say that for x ∈ F
(
Bm(r)

)
, x′ ∈ F

(
Bm(r′)

)
, we

have x ∼ x′ if and only if f(x) = x′, then the quotient set⊔
r∈R>0

F
(
Bm(r)

)
/ ∼,

of all equivalence classes is the direct limit colimr→0F
(
Bm(r)

)
.

Definition 2.2.5. Let F : Manop −→ Set be a presheaf. For m ∈
N0, the m-dimensional stalk of F is the direct limit

colim
r→0

F
(
Bm(r)

)
.

2.3. Simplicial sets

Let G be a Lie group. If we want to have any shot at finding a clas-
sifying space B∇G of the universal principal G-bundle E∇G −→ B∇G,
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we at least need to know what mathematical structure C (or “cate-
gory”) sufficiently well describes the collection of G-connections over
a smooth manifold M . Why? Because if we pick a structure C that is
too general, the gauge equivalent connections over M will correspond
to different, non-equivalent instances (or “objects”) of C . Similarly, if
the structure is not general enough, then we are not guaranteed that
gauge equivalent connections give equivalent instances. Any of these
wrong choices will not yield unique classifying maps X −→ B∇G. One
possibility that history has shown works is the structure C = Grpd,
the category of groupoids. We explicitly construct the needed groupoid
in example 2.3.4.

For what is accomplished in [FH13], the structure of groupoids is
sufficient to describe the collection of G-connections over a smooth
manifold M . But a more general solution which applies more broadly
is that of simplicial sets. Without getting too ahead of ourselves, we
can motivate this change, from the category Grpd to the category
Set∆ of simplicial sets, by mentioning that the latter category is more
“geometric”. In fact, Set∆ sits between the category Grpd and the
category Top in such a way that the functor

Grpd −→ Top,

which assigns a classifying space to each groupoid, factors through
Set∆. Moreover, equivalent groupoids are sent to equivalent spaces,
and this relation is also preserved under the factorization. By this, we
mean that there is a commutative diagram of functors

Set∆

Grpd Top

such that equivalent groupoids map to equivalent simplicial sets, and
such that equivalent simplicial sets are mapped to equivalent spaces.
We see there that indeed Set∆ is between Grpd and Top.

Note that we have not specified what is meant by “equivalent”
in the paragraphs above. By this word we actually mean “weakly
equivalent” and will explain the weak equivalences in section 2.3.5.
First we explain what groupoids are.

2.3.1. Groupoids

Definition 2.3.1. A groupoid is a category G where all morphisms
are isomorphisms, that is, all arrows are invertible. We often write
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G = {G0,G1} where G0 is the set of objects, and G1 is the set of all
morphisms. A groupoid is called discrete if for any two objects x, y,
the cardinality of the set of morphisms G(x, y) from x to y is either
0 or 1. We call two groupoids equivalent if they are equivalent as
categories.

If we define Grpd(G,G ′) to be the collection of functors f : G −→
G ′ of groupoids, we automatically get the category of all groupoids.
We call it Grpd.

The reason we call them groupoids is because there exists a fully
faithful functor

Grp −→ Grpd,

from the category Grp of groups, and so groupoids are a generaliza-
tion of groups. The functor sends any group G to the groupoid often
denoted BG, consisting of just one object, say p, where the set of maps
is

HomBG(p, p) = G.

The composition map in this (only) Hom-set of the category BG is
just the group operation in G, and the identity morphism idp is the
identity element e ∈ G.

We now look at a very useful example, namely

Example 2.3.2 (Sets as discrete groupoids). Let S be any set. If we
consider all the elements of S as the objects of some category, call
it S, and the only arrows in this category S are the identity arrows
on these objects, then S is a groupoid. Note that we essentially have
S = S0 = S1; the objects and morphisms are the same. It is in fact a
discrete groupoid, as there are no arrows between two different objects
of S. It is common, as we have done, to denote this groupoid by the
same symbol as the set.

Example 2.3.3 (Groupoid of a group action). Let G be a group, and
S be a G-set, i.e. let G act on S. Define the groupoid G = {G0,G1},
where G0 = S, and G1 = G × S. It is perhaps not immediately clear
how any element (g, s) ∈ G× S corresponds to an arrow between two
elements in S, nor which two. But since G acts on S, (g, s) uniquely
determines the two elements s and g · s. So the element (g, s) is the
arrow s −→ g · s.

As mentioned in the introduction to this section, Grpd is a suit-
able choice of mathematical structure to describe the collection of
G-connections on a smooth manifold M . Let us see why.
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Example 2.3.4 (The groupoid of principal bundles with connection).
Let G be a Lie group and M be any smooth manifold. Use the sym-
bol GBund∇(M) for the category where the objects are principal
G-bundles over M with a connection2. The morphisms are princi-
pal bundle isomorphisms such that the connections are gauge equiv-
alent. This means that for principal G-bundles π1 : E1 −→ M and
π2 : E2 −→ M over M with G-connections ∇1 and ∇2 respectively,
the morphisms between them are the G-equivariant diffeomorphisms
ϕ : E1 −→ E2 with G-equivariant inverse ϕ−1 such that the diagram

E1 E2

M

ϕ

π1 π2

commutes, and ϕ∗∇2 = ∇1. As all the morphisms of this category are
isomorphisms, GBund∇(M) is a groupoid.

Later, we will encounter discrete groupoids, so the following lemma
will be a handy way to determine if they are equivalent or not.

Lemma 2.3.5. Let f : G −→ G ′ be a functor between two discrete
groupoids. If f is essentially surjective, then G and G ′ are equivalent
as categories. That is, f is essentially surjective and fully faithful.

Proof. Observe that by surjectivity, the cardinality of G ′(f(x), f(y)),
which is 0, or 1, must match that of G(x, y), so the sets are isomorphic
to eachother. �

As we mentioned, the functor from Grpd to Top, factorizes nicely
through the category Set∆ of simplicial sets. In the following subsec-
tion, we try to motivate and understand simplicial sets.

2.3.2. Motivating simplicial sets

Recall that an n-simplex is a “generalized tetrahedra”3, that is, it
can be thought of as the span of n + 1 vectors v0, v1, v2, . . . , vn where
the collection {vi − v0}ni=1 is linearly independent in Euclidean space.
Each point vi is a vertex, and the span of a subset of the collection is
a face of the simplex, and is also a simplex.

2Hence the subscript ∇ in GBund∇(M)
3The terminology is due to Henri Poincare in the first supplement [Poi99] of

the famous Analysis Situs. See [Poi10] for a translated version with the term.
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The standard example is the standard n-simplex

∆n = {(x0, x1, x2 . . . , xn) ∈ Rn+1 | xi ≥ 0,
n∑
i=0

xi = 1}.

The vertices of ∆n are the standard basis vectors e0 = (1, 0, 0, . . . , 0), e1 =
(0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1) of Rn. Thus ∆0 is the point 1
in R, ∆1 is the line between (1, 0) and (0, 1) in R2, ∆2 is the filled
equilateral triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) in R3,
and so on.

A (geometric) simplicial complex X is a collection of simplices with
two conditions: (1) that every face of X is in X and (2) the intersection
of any two simplices of X is a face of each of them. Simply put, X
consists of simplices of various dimensions glued along shared faces. A
map f : X → Y of complexes is called a simplicial map if the image of
any vertex in X is a vertex in Y , and the image of a simplex (with not
necessarily unique vertices). If we introduce the notation [vi1 , . . . , vik ]
to mean a subset {vi1 , . . . , vik} ⊆ {vi}i of the simplices of X such that
they actually form a simplex, we see that a map f : X −→ Y is a
simplicial map if for any simplex [vi1 , . . . , vik ] of X, we have a simplex
[f(vi1), . . . , f(vik)] of Y (with not necessarily unique vertices).

Again, ∆n is not only a simplex, but also simplicial complex, as it
is the collection of one simplex. But a more interesting example would
be, say, the triangle ∆2 with a tail (i.e. a straight line, looking like
∆1), glued to one of the vertices of ∆2. And this is the general prin-
ciple. Simplicial complexes are built by attaching, or gluing, different
dimensional simplices, as we will see in a bit.

Notice that any complex X contains copious amounts of informa-
tion. To describe X, one needs to know how each simplex is embedded
in some Euclidean space, how they all intersect, and more. But the
only information actually needed to understand X is the collection of
all vertices {vi}i of X, and to know when a subset {vi1 , . . . , vik} ⊆ {vi}i
of the vertices form a simplex [vi1 , . . . , vik ]. Hence we should seek a
new way to define a simplicial complex, which is more abstract, but
also simpler. If we denote the collection of all the vertices by X0, the
collection of all the 1-simplices by X1, and so on, we have described
the skeleta X0.X1, X2, . . . of X. And so, the new definition could be:
A (abstract) simplicial complex X is a collection, consisting of a set
X0 = {vi} (which need not be vectors) of vertices and an operation
associating with each natural number k a set Xk, consisting of subsets
of X0 with cardinality k+1, such that any subset with cardinality j+1
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of an element of Xk is an element of Xj, where j ≤ n. This all seems
very abstract, but notice that for a fixed k, the set Xk corresponds to
the collection of all k-simplices. For any simplex in Xk, the last re-
quirement in the definition says that any subset of the vertices in this
simplex is a new simplex in X. This definition loses the information
of the embedding into Euclidean space, but retains the combinatorics,
which is the essential part.

Note that the assignment [vi1 , . . . , vik ] adds simplices redundantly.
Permuting the order of the verticies vi1 , . . . , vik gives a new name for
the same span. For this reason, we introduce ordered simplicial com-
plexes, which are the same beasts as simplicial complexes, but with
the restriction that the symbol [vi1 , . . . , vik ] is a simplex if and only if
vij < vil whenever j < l.

The standard n-simplex ∆n, which is a simplicial complex, also can
be considered an ordered simplicial complex, as it has a natural order.
The order on N0 induces an order of the vertices of ∆n, and thus we
know when ei < ej. To distinguish between the unordered and the

ordered standard n-simplex, we denote the latter by ∆̂n. If we relabel

the verticies e0, . . . , en of ∆n to 0, . . . , n, we can think of ∆̂n as the

vertex [0, . . . , n], since ∆̂n = [e0, . . . , en]. The relabeling is actually a
useful shift of perspective. Because now it is easy to see that any n-
simplex [vi1 , . . . , vin ] in an arbitrary (not necessarily ordered) complex

X is the image of of [0, . . . , n] = ∆̂n under a order preserving simplicial
map. Since [0, . . . , n] is a totally ordered set of n elements, we shorten
the notation to just [n]. Meaning [n] = {0, . . . , n}, regarded as a

totally ordered set of cardinality n+ 1. And thus ∆̂n is equal to [n] if
we forget everything about ∆n except its combinatorics.

The upshot is that any complex is made up of images of the stan-

dard ordered simplices ∆̂n under order preserving maps. But we do
not know how the faces are glued together from this point of view.

This issue is resolved later. Since we have noted that ∆̂n can de-
scribe all simplicial complexes, we should probably give the colleciton

of them a name. Let ∆̂ be the category consisting of the finite to-
tally ordered sets [n] = {0, 1, . . . , n} as objects, and whose maps are
strictly ordered functions [m] −→ [n]. Thus we think of the ob-

jects of ∆̂ as the ordered standard simplices ∆̂n. The condition of
strictly order preserving maps, as opposed to just order preserving

maps, is imposed for a reason. If we imagine the objects [n] of ∆̂
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to be the standard ordered n-simplices ∆n, then strictly order pre-
serving maps [m] −→ [n], which only exists for m ≤ n (because of
the pigeonhole principle) correspond to different embeddings of ∆m

to faces of ∆n. There are exactly as many such embeddings as there
are maps [m] −→ [n]. So Hom∆̂([m], [n]) correspond to the set of
all inclusions of m-dimensional faces into ∆n. But since each embed-
ding ∆m −→ ∆n can be considered as just the composite of certain
embeddings ∆m −→ ∆m+1 −→ · · · −→ ∆n, we need only the infor-
mation of the embeddings ∆n−1 −→ ∆n. For n = 0, there are only
two maps ∆0 −→ ∆1, corresponding to sending the vertex 1 to the
verticies (1, 0) or (0, 1). Similarily, the line ∆1 can be mapped to three
different faces of the triangle ∆2. If we continue in this faishion, we
create a generating set (under composition) of all possible embeddings
∆m −→ ∆n. This is algebraically reflected by the fact that there are
two strict order preserving maps [0] −→ [1], three maps [1] −→ [2],
and so on, which generate all strict order preserving maps [m] −→ [n].

In total, we have justified the fact that we can illustrate ∆̂ as the
diagram

[0] [1] [2] · · ·

The category ∆̂ gives us back (i.e. is a generalization of) our almost
rudimentary definition of abstract simplicial complexes, because for

any functor F : ∆̂ −→ Set, we could set Xk = F ([n]).
When talking about the standard n-simplices ∆n, one usually men-

tions the face maps din : ∆n−1 −→ ∆n which are the generating maps
described above. But, equally important, are the degeneracy maps
sjn : ∆n+1 −→ ∆n which, loosely speaking, maps ∆n to the (n + 1)-
simplex with the j-th vertex duplicated. For example, there is only
one map ∆1 −→ ∆0, namely the one sending the whole line seg-
ment of ∆1 to the point ∆0. The collection of all face and degeneracy
maps generate any map (not necessarily strictly) order preserving map
[m] −→ [n]. This forms a category, and we will now explore it.

2.3.3. Simplicial sets and examples

As we saw in the subsection above, we can abstract the concept of
a n-simplex quite a bit. We now define them in full generality. Let
∆ be the category where objects are finite non-empty totally ordered
sets, and morphisms are order preserving maps between these sets.
Thus the objects look like the totally ordered sets [n] = {0, 1, . . . , n}
for n ∈ N0. We call ∆ the simplex category. This category mimics ∆̂.
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As we see, the objects are the same, but it has more morphisms. The

category ∆̂ has only strictly order preserving maps, but ∆ has any

order preserving map as a morphism. And while ∆̂ can be illustrated
as

[0] [1] [2] · · ·
the category ∆ needs more arrows, and can be illustrated as

[0] [1] [2] · · ·

As all embeddings and face collapsing maps ∆n −→ ∆m are gen-
erated (under composition) by the face maps din : ∆n−1 −→ ∆n and
degeneracy maps sjn : ∆n+1 −→ ∆n we see that we can think of the

objects of ∆ not only as ∆̂n, but ∆n with all its redundant faces. The
solid arrows, going up, correspond to the face maps, while the dashed
arrows correspond to the degeneracy maps. With this understanding
of the simplex category, we can now define simplicial sets.

Definition 2.3.6. A simplicial set is a functor F : ∆op −→ Set. The
collection of all these contravariant functors, together with natural
transformations between them, form the presheaf category Set∆. If
F• is a simplicial set, we define the sequence of sets F0, F1, F2, . . . by
Fn = F ([n]) (whence • as the subscript). For ϕ : [m] −→ [n], we
sometimes denote the image under F as F (ϕ) = ϕ∗.

Since maps [m] −→ [n] can be generated by the face and degen-
eracy maps, the only arrows we usually write down between the sets
F0, F1, F2, . . . are those coming from these maps. Thus any simplicial
set can illustrated by the following diagram:

F0 F1 F2 · · ·

We call the solid arrows the face maps, and the dashed arrows are
called degeneracy maps. This notation is quite handy, and often we
denote a simplicial set F• : ∆ −→ Set by just the diagram alone.

We now move on to some examples.

Example 2.3.7 (Groupoids as simplicial sets). Let G be a groupoid.
Recall, from definition 2.3.1, that we often write G = {G0,G1}, where
G0 is the collection of all objects of G, while G1 is all the morphisms of
G. We will define a simplicial set F (G)• associated to the groupoid G.
The idea is to let F (G)0 = G0, and F (G)1 = G1. In other words, the
0-simplices are the objects of the gropoid, and the 1-simplices are the
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arrows. For n > 1, define F (G)n to be the collection of compositions
of n arrows. The first face and degeneracy maps are

F (G)0 F (G)1, F (G)0 F (G)1

id(−)

target

source

where id(−) assigns the identity arrow to any object in G0, and the
source and target maps maps any morphism to its domain and codomain
respectively. The maps between the higher simplices are similarly de-
fined. The degeneracy maps F (G)n −→ F (G)n+1 correspond to adding
the identity arrow to some series of compositions, making it one ar-
row longer. The face maps FGn+1 −→ FGn just consider a series of
compositions of length n+ 1 as a series of composition of length n by
considering two arrows f and g as one arrow (f ◦ g).

Example 2.3.8 (Discrete simplicial sets). Let S be any set. As de-
scribed in example 2.3.2, we can make S into a groupoid, also denoted
S, with S0 = S1 = S. By the previous example, example 2.3.7, the
groupoid S determines a simplicial set F (S)• = S•. By construction,
Sn = S for all n. Since this is the case, we usually omit • and write
S for the simplicial set. We often call the simplicial set a discrete
simplicial set, or a constant simplicial set.

Another example, which is one that remembers more of the topol-
ogy of the underlying space than the discrete simplicial, is

Example 2.3.9 (Spaces as simplicial sets). Let X be a topologi-
cal space. We wish to define a simplicial set Sing•(X). For any
n ∈ N0, define Singn(X) = Top(∆n, X), the collection of all con-
tinuous maps from the standard n-simplex into X. This defines a
functor Sing•(X) : ∆op −→ Set, and hence we have a simplicial set.
The reader familiar with singular homology will know that Sing•(X)
contains the information of the topology of X in all dimensions. This
is in contrast to the discrete simplicial set, which only contains the
0-dimensional information of X.

Example 2.3.10 (Simplicial set from a group action). Let G be a
group, and S be a G-set. Recall, from example 2.3.3, that the group
action determines a groupoid {S,G × S}. By example 2.3.7, this
groupoid determines a simplicial set. Explicitly, the the composition
of arrows is just the product of group elements. And so we represent
the simplicial set as

S G× S G×G× S · · ·
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Example 2.3.11 (The simplicial set of connections). Let G be a Lie
group and M be any smooth manifold. Recall, from example 2.3.4,
that the groupoid of G-connections over M was the category denoted
GBund∇(M). This naturally determines a simplicial set by exam-
ple 2.3.7. We denote this simplicial set as

B∇G(M) : ∆op −→ Set .

Example 2.3.12. Let X be a smooth manifold and U = {Ui}i∈I
be an open cover of X. Then we can define the groupoid F (U ) =
{F (U )0, F (U )1}, where

F (U )0 =
⊔
i0∈I

Ui0 , F (U )1 =
⊔

i0,i1∈I

Ui0 ∩ Ui1

As example 2.3.7 dictates, this defines a simplicial set, which looks
like the following:⊔

i0∈I

Ui0
⊔

i0,i1∈I

Ui0 ∩ Ui1
⊔

i0,i1,i2∈I

Ui0 ∩ Ui1 ∩ Ui2 · · ·

We denote this simplicial set by F (U )•.

This last example is important. It turns out that there is a map

f : F (U )• −→ X,

where the domain X is regarded as the discrete simplicial set coming
from the smooth manifold X. For each number n ∈ N0, the induced
map fn : F (U )n −→ X is just inclusion. As this is a surjection of
groupoids, we get an equivalence of groupoids by lemma 2.3.5.

2.3.4. Realization of simplicial sets

In the above subsection, we have studied objects that a priori are
purely combinatorial. Now we wish to turn these combinatorical con-
structions to topological things. The standard process is called geo-
metric realization. In broad terms, it glues a collection of simplices
into a simplicial complex. The specific gluing depends on the infor-
mation encoded in the face and degeneracy maps.

But before we get ahead of ourselves, we create a functor

∆: ∆ −→ Top

from the simplex category ∆ to the category of topological spaces.
The functor assigns each object I in ∆ to the space ∆|I|, that is,
assigns the finite ordered set I ∼= [n] of cardinality n+ 1 the standard
n-simplex ∆n. For a order preserving morphism ϕ : I −→ I ′ in the
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simplex category ∆, we define the image of ϕ under the functor ∆ to
be the corresponding embedding or collapsing map ϕ∗ : ∆|I| −→ ∆|I

′|

of standard n-simplices.

Definition 2.3.13. Geometric realization is a functor |−| : Set∆ −→
Top from the category of simplicial sets to the category of topolog-
ical spaces. Let F : ∆op −→ Set be a simplicial set. The geometric
realization |F | is the quotient space⊔

I

∆(I)× F (I)/ ∼,

where for (x, y) ∈ ∆|I| × F (I), and (x′, y′) ∈ ∆|I
′| × F (I ′), we say

(x, y) ∼ (x′, y′) whenever there exist a order preserving morphism
ϕ : I −→ I ′ such that

(ϕ∗x, y) = (x′, φ∗y′).

Here ϕ∗ = ∆(ϕ), and ϕ∗ = F (I). The topology of |F | is the final
topology, where all F (I) have the discrete topology.

This definition is perhaps unnecessarily abstract. When we think
of the category ∆ as the collection of all standard n-simplices ∆n, any
simplicial set F• is just a collection Fn of n-simplices with certain face
and degeneracy maps. In this perspective of the simplex category, the
functor ∆ just assigns ∆n to ∆n. And so the disjoint union from the
above definition just becomes a union of n-simplices ∆n×Fn for all n.
And the quotient, which is the geometric realization of F• just glues
the various n-simplices of distinct n together. Thus we are left with a
simplicial complex.

For example, the geometric realization of the discrete simplicial set
associated to a set S, from example 2.3.8, is canonically isomorphic to
S equipped with the discrete topology. The geometric realization of
Sing•(X), from example 2.3.9, is homotopy equivalent to the space X.
We postpone the description of the geometric realization of B∇G(M),
from example 2.3.11, until later. But what we should take away from
these examples is that the geometric realization of simplicial set which
is in some way related to a topological space is a space almost equal
to the space. We now make sense of this “almost equal”.

2.3.5. Weak equivalences

As promised, we have a commutative diagram
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Set∆

Grpd Top

|−|example 2.3.7

of functors. We also promised that weakly equivalent objects are sent
to weakly equivalent objects. The purpose of this section is to come
to grips with this terminology.

Definition 2.3.14. As we have three categories, Grpd, Set∆, and
Top, we need to know what a weak equivalence is in each category.

(1) Two groupoids G1 and G2 are weakly equivalent if there is a
map f : G1 −→ G2 making them equivalent as groupoids, that
is, G1 and G2 are equivalent as categories.

(2) Two topological spaces X1 and X2 are weakly equivalent if
there is a continuous map f : X1 −→ X2 which is a weak
homotopy equivalence, that is, all the induced maps

f∗ : πn(X1, x1) −→ πn(X2, x2)

of homotopy groups are isomorphisms (for n = 0, this is an
isomorphism of sets, while for n ≥ 1, it is an isomorphism of
groups).

(3) Two simplicial sets F• and F ′• are weakly equivalent if the
induced map |F•| −→ |F ′•| of geometric realizations is a weak
homotopy equivalence.

We can immediately notice that we weak equivalence is preserved
under geometric realization. But to prove that Grpd −→ Top pre-
serves weak equivalence is harder, so we refer the curious reader to
[Seg68] (the relevant result is Proposition 2.1).

2.4. Simplicial sheaves on manifolds

In this section, we combine the ideas from section 2.1, section 2.2,
and section 2.3. This fusion of structures gives rise to simplicial
presheaves (and simplicial sheaves) on manifolds. It is in this world we
can construct the universal principal G-bundle E∇G −→ B∇G with
universal connection ∇univ.

Definition 2.4.1. A simplicial presheaf on manifolds, or sometimes
simplicial presheaf for brevity, is a functor

F• : Manop −→ Set∆ .
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A map F• −→ F ′• of simplicial presheaves is a natural transformation
of functors. Thus we have a category sPre of simplicial presheaves.

We call a simplicial presheaf F• a simplicial sheaf if for each totally
ordered finite set I in the simplex category ∆ the presheaf of sets

F•(I) : Manop −→ Set,

is a sheaf.

Just as we sometimes view simplicial sets F• : ∆op −→ Set as se-
quences F0, F1, F2, . . . by thinking the objects of the simplex category
∆ as the standard simplices, we can view any simplicial presheaf F•
as a sequence F0,F1,F2, . . . of “ordinary” presheaves.

2.4.1. Some examples of simplicial presheaves

We have already seen several examples of simplicial presheaves
and simplicial sheaves, even without knowing so. We look at some
examples.

Example 2.4.2 (Discrete simplicial sheaves). Let F : Manop −→ Set
be a sheaf on manifolds. This means the value F(M) of each test
manifold M is a set. By example 2.3.8, we can make this set into a
groupoid, which can in turn be turned into the discrete simplicial set
F(M)• : ∆op −→ Set with constant value F(M)n = F(M) for all n.
Thus we get an induced simplicial sheaf Manop −→ Set∆ with value
equal to the discrete simplicial set F(M) for any test manifold M . We
often denote this induced simplicial sheaf by F .

Example 2.4.3 (Representable simplicial sheaves). Just as we can
embed manifolds into the category of presheaves using the associated
presheaves FX from example 2.1.2, we can embed simplicial manifolds
into the category of simplicial presheaves. A simplicial manifold X•
is a simplicial set

X0 X1 X2 · · ·

where each Xn is a smooth manifold and all the face and degeneracy
maps are smooth. We define FX• to be the simplicial sheaf whose
value on a test manifold M in Man is the simplicial set

Man(M,X0) Man(M,X1) Man(M,X2) · · ·

The face and degeneracy maps are induced from the functor Man(M,−).
A special case is the constant simplicial manifold
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X X X · · ·

where all the maps are identity arrows. We denote this by FX , which
is no mistake. A worry might be that this is easily confused with the
associated presheaf FX . But it turns out that the set of natural trans-
formations between two constant simplicial manifolds FX and FY is in
bijection with the set of all natural transformations between the asso-
ciated presheaves FX and FY . We study this further in section 3.3.1.

Example 2.4.4. Let X be a smooth manifold and U = {Ui}i∈I be an
open cover of X. The simplicial manifold F (U )•⊔

i0∈I

Ui0
⊔

i0,i1∈I

Ui0 ∩ Ui1
⊔

i0,i1,i2∈I

Ui0 ∩ Ui1 ∩ Ui2 · · ·

from example 2.3.12 describes a representable simplicial sheaf, which
we denote as (FU )•.

Similarly to how F (U )• is related to the discrete discrete simplicial
setX, the representable simplicial sheaf (FU )• is related to the discrete
simplicial sheaf FX . We will investigate this closer in the next section
when our language is more developed. But first we look at one last
example, which requires a definition first.

Definition 2.4.5. Let F : Manop −→ Set be a sheaf and G a Lie
group. A G-action on F is a map

a : FG ×F −→ F ,

of sheaves (where the product × is “manfiold”-wise) such that for any
test manifold M , the set F(M) is a FG(M)-set. This means that the
coordinate aM of a at M is an action

aM : FG(M)×F(M) −→ F(M)

from the group FG(M) = Man(M,G) on the set F(M).

Such an action determines a simplicial sheaf, which we look at in

Example 2.4.6. Recall, from example 2.3.10, that for any Lie group
G, we can turn a G-set S into a groupoid {S,G×S}, which determined
its simplicial set. We now construct the simplicial analog. Let F be a
sheaf and a : FG ×F −→ F be an action. Then the diagram

F FG ×F FG ×FG ×F · · ·
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is a simplicial sheaf. The two first face maps are the projection map
FG × F −→ F and action map a, and all higher maps are repeated
group operations.

2.4.2. Differential forms on simplicial presheaves

Just as we, in section 2.1.3, expanded on the idea of differential
forms on manifolds, to include differential forms on presheaves on man-
ifolds, we again fill out some details glossed over in [FH13] and define
differential forms on simplicial presheaves.

Recall, from definition 2.1.6, that we defined the set Ω•(F) of dif-
ferential forms on a presheaf F on manifolds as the set of natural
transformations F −→ Ω•. Completely analogously, for a simplicial
presheaf F• on manifolds, we define the set Ω•(F•) of differential forms
on F• as the collection of all natural transformations F• −→ Ω•, where
the target simplicial sheaf Ω• is the discrete simplicial sheaf coming
from the sheaf Ω• of differential forms (from example 2.1.3). And yet
again, the pullback of a map between simplicial sheaves is defined,
analogously, as the precomposition.

It should be noted that we now have a total of three functors:
Ω• : Manop −→ Set, assigning manifolds their differential forms;
Ω• : Pre −→ Set, assigning presheaves their differential forms; and
Ω• : sPre −→ Set, assigning simplicial sheaves their differential forms.
For a morphism f in one of the domain categories of Ω•, we call
f ∗ = Ω•(f) the pullback. It should always be clear from context
which functor is being used.

We can also form vector valued differential forms on simplicial
presheaves. For a finite dimensional vector space V , we just define
the set of V -valued differential forms on F• as the set Ω•(F•;V ) =
sPre(F•,Ω• ⊗ V ). Pullback are defined analogously.

2.4.3. Weak equivalences again

Recall, from section 2.2.2, that Bm(r) ⊆ Rm is the m-dimensional
ball of radius r centered at the origin, and that the stalk of a presheaf
F of sets on manifolds simply is defined as the direct limit

colim
r→0

F
(
Bm(r)

)
.

Let F• be a simplicial presheaf. Analogous to the usual definition of
stalk, we define the m-dimensional stalk of the simplicial presheaf F•
to be the simplicial set

colim
r→0

F•
(
Bm(r)

)
: ∆op −→ Set .
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Definition 2.4.7. A map F• −→ F ′• of simplicial presheaves is a
weak equivalence if for each m, the induced map

colim
r→0

F•
(
Bm(r)

)
on m-dimensional stalks is a weak equivalence of simplicial sets.

Before ending the chapter, we look at a weak equivalence.

Proposition 2.4.8. The inclusion map (FU )• −→ FX is a weak
equivalence of simplicial sheaves.



CHAPTER 3

Classification of Principal Bundles with
Connection

This chapter combines the material covered in chapter 1 and chap-
ter 2. First, we reconstruct the simplicial sheaves B∇G and E∇G in
full detail, before showing that E∇G is weakly equivalent to the dis-
crete simplicial sheaf Ω1⊗g (induced from the sheaf Ω1⊗g). As there
is no obvious choice of projection map E∇G −→ B∇G in our category,
we construct an action on the sheaf Ω1 ⊗ g, and show that the sim-
plicial sheaf Btriv

∇ G induced from this action is weakly equivalent to
B∇G.

With these weak equivalences in mind, we can sensibly talk about
E∇G −→ B∇G as a “bundle”. We then show, in detail, that B∇G
is a classifying space for principal G-bundles with connection. A con-
sequence of the unique classifying maps from chapter 2 gives unique
classifying maps into the classifying space B∇G.

As alluded to, we actually need to move out of the category of
simplicial sheaves and into its homotopy category for our construc-
tions to make sense, as the former category does not account for weak
equivalences (while the latter category does). In this new category,
we, using a result from abstract homotopy theory, show that the de
Rham complex of a simplicial sheaf is easily computable as a certain
equalizer of a diagram. Using this result, it is possible to explicitly
calculate the de Rham complex of both B∇G and E∇G. Because all of
our constructions are tautological, we, with the help of the Chern-Weil
homomorphism from chapter 1, find that the invariant polynomials in
Ik(G) determine all the invariants defined from connections on prin-
cipal G-bundles.

3.1. The universal bundle with connection

In this section, we summarize the construction of the classifying
space B∇G, and construct the universal bundle E∇G −→ B∇G in its
entirety, and construct the universal connection ∇univ.

75
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3.1.1. Constructing the universal bundle

Before constructing the universal connection ∇univ, we need to
know what the simplicial sheaves E∇G and B∇G look like. This sub-
section is devoted to constructing them. As they stem from groupoids,
we will sometimes write E∇G and B∇G for the groupoids they origi-
nate from as well.

Construction 3.1.1 (B∇G). Let G be a Lie group with Lie algebra
g, and let M be any test manifold in Man. We define the category
GBund∇(M) as the collection of principal G-bundles over M with
a connection. Thus an element is a quintuple (E, π,M,G,∇), where
π : E −→ M is a principal G-bundle over M , and ∇ ∈ Ω1(E; g) is
a G-connection on the bundle. As both M and G are fixed, we can
indicate any object by (E, π,∇) for notation’s sake. Morphisms in
this category are certain principal bundle isomorphisms. Given two
objects (E1, π1,∇1) and (E2, π2,∇2), a principal bundle isomorphism

E1 E2

M

ϕ

π1 π2

covering the identity is a morphism in GBund∇(M) if the pullback
ϕ∗∇2 of the connection ∇2 is equal to the connection ∇1.

By definition, as all arrows in GBund∇(M) are invertible, this
category is a groupoid. Like explained in example 2.3.7 and exam-
ple 2.3.11, we can turn this groupoid into a simplicial set

B∇G(M) : ∆op −→ Set .

The 0-simplices B∇G(M)0 = GBund∇(M)0, or vertices, are the prin-
cipal bundles (E, π,∇) themselves. The 1-simplices B∇G(M)1 =
GBund∇(M)1 are the principal bundle isomorphisms ϕ in the cat-
egory. For n > 1, the n-simplices in B∇G(M)n are just series of
compositions ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 with n morphisms from the
category:

E1 E2 · · · En En+1

M

π1

ϕ1

π2

ϕ2 ϕn−1

πn

ϕn

πn+1

The first degeneracy map B∇G(M)0 99K B∇G(M)1 assigns the iden-
tity arrow to each object. The two face mapsB∇G(M)1 −→ B∇G(M)0

assign any bundle isomorphism to its source and target, regarded as
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objects in the category. For n > 1, the face maps maps an n-simplex
ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 to itself, regarded as a (n − 1)-simplex by
placement of a bracket

· · · ◦ ϕi+1 ◦ ϕi ◦ · · · = · · · ◦ (ϕi+1 ◦ ϕi) ◦ · · ·
The degeneracy maps maps ϕn ◦ϕn−1 ◦ · · · ◦ϕ2 ◦ϕ1 to itself, regarded
as a (n+ 1)-simplex by adding idEi to the composition series

· · · ◦ ϕi+1 ◦ ϕi ◦ · · · = · · · ◦ ϕi+1 ◦ idEi ◦ϕi ◦ · · ·
Hence have described the simplicial set

B∇G(M)0 B∇G(M)1 · · ·

and denote this simplicial set as B∇G(M).
As this construction was done for any test manifold M , we actually

get a simplicial presheaf

B∇G : Manop −→ Set∆,

assigning M the simplicial set B∇G(M). For a morphism f : M1 −→
M2, the induced map f0 : B∇G(M2)0 −→ B∇G(M1)0 on vertices sends
any object (E, π,∇) to its “pullback” object (f ∗E, π′, f ∗∇). On 1-
simplices, the induced map f1 : B∇G(M2)1 −→ B∇G(M1) maps any
bundle map ϕ : E1 −→ E2 to the induced map between pullbacks
f ∗E1 −→ f ∗E2. As the higher simplices are described using the 1-
simplices, we know how B∇G(f) looks like. And since the pullback is
associative, the functor B∇G is well-defined1.

From the construction, it is not immediately clear that B∇G is a
simplicial sheaf. But since both connections and connection preserv-
ing isomorphisms can be glued together along open sets, the simplicial
presheaf B∇G is a simplicial sheaf. Indeed, because connections and
bundles are defined locally, if we are given two open sets Ui and Uj
in an open cover {Ui} of a test manifold M , and principal G-bundles
with connections over them such that the connections agree on the
intersection Ui ∩ Uj, then they can be glued to uniquely together on
Ui ∪ Uj. Thus B∇G(M)0 is a sheaf. By the same reasons as before,
connection preserving isomorphisms on Ui and Uj which agree on the

1This is actually not true. The pullback is not strictly associative in Set, and
this is a problem. The pullback of E −→M3 by a composition M1 −→M2 −→M3

is canonically isomorphic to the pullback of the pullback of E, but not equal. This
issue is resolvable using higher category theory, but we will not look into it in this
thesis.
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intersection Ui ∩ Uj can be glued together to define a connection pre-
serving isomorphism on Ui ∪ Uj. So B∇G(M)1 is a sheaf as well. As
B∇G(M) is built entirely from B∇G(M)0 and B∇G(M)1, we know
B∇G(M) is a sheaf.

Construction 3.1.2 (E∇G). Let G be a Lie group with Lie algebra
g, and let M be any test manifold in Man. We define the category
GBundtriv

∇ (M) as the collection of trivial principal G-bundles over M
with a connection. Thus an object is a sextuplet (E, π,M,G,∇, s),
where (E, π,M,G,∇) is in GBund∇(M) and s : M −→ E is a global
section (which, by proposition 1.2.18, determines the trivial structure
of E). Similarly to the case above, we often write just (E, π,∇, s) to
shorten notation as M and G are fixed. For ϕ to be a morphism in this
category, it must be a morphism in GBund∇(M), and in addition it
must preserve trivialization. This means we have a diagram

E1 E2

M
π1

ϕ

π2

s1 s2

such that the inner triangle commutes, i.e. ϕ ◦ s1 = s2. (The outer
triangle commutes by assumption.)

By the same argument as in construction 3.1.1, this category is a
groupoid. And again, completely analogous to the above construction,
the groupoid determines a simplicial set E∇G(M) where E∇G(M)0 is
the collection of objects (E, π,∇, s), the 1-simplices E∇G(M)1 are the
morphisms which respect the trivialization, and so on. And since M
was an arbitrary test manifold, we get a simplicial presheaf

E∇G : Manop −→ Set∆ .

Again, it may perhaps not be clear that E∇G is a simplicial sheaf.
But as connections, connection preserving isomorphisms, and trivi-
alizations of trivial bundles can be glued together along open sets,
the simplicial presheaf E∇G is a simplicial sheaf. The argument is
identical to the case with B∇G.

One might notice that any the set of morphisms in E∇G(M) from
E1 to E2 can have maximum have cardinality 1. Indeed, if we have
a morphism such that ϕ ◦ s1 = s2, then we know that for each p ∈
M , we have ϕ

(
s1(p)

)
= s2(p) ∈ (E2)p. In other words, we know

where one element in (E1)p, namely s1(p), is mapped to under ϕ. The
isomorphism ϕ preserves fibers and is G-equivariant by assumption,
and since the action on E2 is free and transitive, we know where the
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rest of the elements in (E1)p are mapped to in (E2)p. As we can do this
for every p ∈ M , we see that any ϕ is predetermined by the sections
s1 and s2.

Thus E∇G, considered as a groupoid, is discrete. So we should
expect E∇G to be weakly equivalent to some discrete simplicial sheaf.

3.1.2. Two important weak equivalences

Recall, from example 2.1.3, that we have a presheaf

Ω1 ⊗ g : Manop −→ Set .

on manifolds of sets. On any test manifold, it produces the set Ω1 ⊗
g(M) = Ω1(M ; g) of g-valued differential 1-forms. We saw, in exam-
ple 2.2.4, that it indeed is a sheaf. This can be turned into the constant
simplicial sheaf Ω1 ⊗ g, as described in example 2.3.8. For each test
manifold M , we have the constant simplicial set

Ω1 ⊗ g(M) Ω1 ⊗ g(M) · · ·

where all the face and degeneracy maps are identity arrows. As this
comes from the gropoid {Ω1⊗g(M),Ω1⊗g(M)}, we sometimes denote
this gropoid by Ω1 ⊗ g(M) as well.

Proposition 3.1.3. The discrete simplicial sheaf Ω1 ⊗ g is weakly
equivalent to the simplicial sheaf E∇G.

Proof. To show this, we first need to define a natural transformation

ψ : E∇G −→ Ω1 ⊗ g,

or, equivalently, for each M , a map ψM : E∇G(M) −→ Ω1 ⊗ g(M) of
simplicial sets. Since both of these objects are completely determined
by their groupoid structures (also denoted) E∇G(M) and Ω1⊗ g(M),
we only need to show that ψM is an equivalence of groupoids, meaning
we have maps

E∇G(M) Ω1(M ; g),
ψM

θM

which determine an equivalence of categories, We first define ψM .
For an object (E, π,∇, s) in E∇G(M)0, define

ψM
(
E, π,∇, s

)
= s∗∇.

This makes sense, as G-connections are certain elements in Ω1(E; g),
so the pullback s∗∇ is an element in Ω1(M ; g). For an arrow ϕ : E1 −→
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E2 between objects (E1, π1,∇1, s1), and (E2, π2,∇2, s2) in E∇G1, de-
fine

ψM(ϕ) = s∗1∇1.

It may seem arbitrary to pick the pullback of the first connection ∇1.
But because ϕ ◦ s1 = s2 and ϕ∗∇2 = ∇1, we see that

s∗1∇1 = s∗1(ϕ∗∇2) = (ϕ ◦ s1)∗∇2 = s∗2∇2.

So ψ(ϕ) = s∗1∇1 = s∗2∇2, thus there is not really a choice to be made.
To define θM : Ω1(M ; g) −→ E∇G(M), we need to find some trivial

bundle over M . The natural choice is the trivial bundle M×G −→M .
But we still need to forge some connection on it which is determined by
a 1-form in Ω1(M ; g). We will use the fact that we have the following
bijection between sets:

{connections on M ×G −→M} Ω1(M ; g)

To see this, note that the trivial inclusion map i : M −→ M × G
sending any point p ∈ M to (p, e) determines a map i∗ : Ω1(M ×
G; g) −→ Ω1(M ; g). The restriction of i∗ to the set of connections on
the trivial bundle M × G is the bijection we want. Observe that for
(p, g) ∈M ×G, the smooth map ω̃ defined by

ω̃(p,g) = Adg−1 ◦ωp◦(projM)∗,(p,g) : T(p,g)(M×G) −→ TpM −→ g −→ g,

is a 1-form on M × G. If ∇MC is the Maurer-Cartan form, from
example 1.4.4, then for (p, g) ∈M ×G, we define ∇ω as

∇ω = ∇MC + ω̃,

which can easily be checked to be a connection, and it is also the
corresponding connection coming from ω. (See p. 47 of [Dup03] for a
complete proof.) This determines the bijection from above. Hence we
define

θM(ω) = (M ×G, projM ,∇ω, i).

To see that these maps determines equivalences of categories, we need
calculate ψM ◦ θM and θM ◦ ψM . As i∗∇ω = ω, we get for free that
ψM ◦ θM(ω) = ω. For the latter composition, we actually do not get
the same bundle back. But we only need a connection preserving and
section preserving isomorphism of bundles. As we start with a trivial
bundle and end with a trivial bundle, all that is left to show is that
for (E, π,∇, s), there is some G-eqivariant diffeomorphism ϕ : E −→
M ×G such that the inner and outer triangles of the diagram
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M ×G E

M

ϕ

projM
π

si

commute, and ϕ∗∇ = ∇ω. We will explicitly construct ϕ.
As we can see from the inner triangle, any such ϕ must preserve

sections, and so ϕ(p, e) = s(p). Because ϕ needs to be equivariant, we
must have

ϕ(p, g) = ϕ(p, e · g) = ϕ(p, e) · g = s(p) · g.
And so we define ϕ(p, g) = s(p) · g. Note that ϕ is (equal to) the
composition M ×G −→ E ×G −→ E, where the first map is s× idG
and the second is the action on the total space. So we get smoothness
and equivariance for free. As π ◦ s = idM , the map ϕ is a bundle map
as well. By the equivariance, the map ϕ is an isomorphism because
the action is free and transitive on each fibre. What is left is to show
that ϕ preserves connection, i.e. that ϕ∗∇ = ∇ω. By definition

(ϕ∗∇)(p,g)(X) = ∇ϕ(p,g)

(
ϕ∗,(p,g)(X)

)
,

so we need to find the derivative ϕ∗,(p,g). By the factorization of ϕ, we
see that

ϕ(−, g) = Rg ◦ s : M −→ E, ϕ(p,−) = fs(p) ◦ idG : G −→ E.

where Rg is right multiplication by g and fs(p)(g) = s(p) · g. We
denote the derivative of fx by (fx)∗ = vx. Since we can decompose
X ∈ T(p,g)(M × G) into X = X1 + X2 ∈ TpM ⊕ TgG, it follows that
ϕ∗,(p,g)(X) = ϕ(−, g)∗,pX1 + ϕ(p,−)∗,gX2. And so we see that

∇ϕ(p,g)

(
ϕ∗,(p,g)(X)

)
= ∇s(p)·g

(
(Rg ◦ s)∗,pX1

)
+∇s(p)·g

(
(fs(p))∗,gX2

)
.

Recall that since ∇ is a connection, we have that ∇s(p)·p ◦ vs(p)·g =
idg. But in the above expression, the subscript of fs(p) is lacking a
factor of ·g. Hence we introduce the map Lh : G −→ G which is left
multiplication by h, and it follows immediately that fs(p) = fs(p)·g ◦
Lg−1 . Thus it is not too hard to see that

∇ϕ(p,g)

(
ϕ∗,(p,g)(X)

)
= (R∗g∇)s(p)(s∗,pX1) +∇s(p)·g

(
(fs(p)·g ◦Lg−1)∗,gX2

)
,

where we have used the chain rule to get (Rg ◦ s)∗,p = (Rg)∗,s(p) ◦ s∗,p.
Since ∇ is a connection, we get that R∗g∇ = Adg−1 ◦∇, and it follows
that

∇ϕ(p,g)

(
ϕ∗,(p,g)(X)

)
= Adg−1 ◦(s∗∇)p(X1) + idg ◦(Lg−1)∗,g(X2).
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Since X1 = (projM)∗(X) and X2 = (projG)∗(X), we in total have that

(ϕ∗∇)(p,g)(X) = ω̃(p,g)(X) + (∇MC)(p,g)(X) = (∇ω)(p,g)(X).

And so ϕ∗∇ = ∇ω, and ϕ is a connection preserving morphism. Thus
the object (M × G, projM ,∇s∗∇, i) is isomorphic to (E, π,∇, s) in
E∇G(M), and so the groupoids E∇G(M) and Ω1 ⊗ g(M) are equiva-
lent. It follows that E∇G and Ω1 ⊗ g are weakly equivalent. �

We have now found one weak equivalence. But the subsection title
promises two, and so we continue the search.

Let us take a step back. We want to make E∇G into a total space
over B∇G. But the objects in E∇G are trivial principal G-bundles,
while the objects in B∇G can be non-trivial principal G-bundles, so
there is perhaps no “obvious” projection map E∇G −→ B∇G. Thus
one might wonder if there is some base space Btriv

∇ G of trivial bundles,
say, with no trivialization chosen, such that the projection map could
“forget” the choice of trivialization. If the objects of B∇G(M) indeed
would be principal G-bundles (E, π,∇), such that E is trivializable,
but no global section is chosen, then it turns out, according to [FH13],
that this construction does not yield a simplicial sheaf, but a sim-
plicial presheaf only, because “‘trivializable’” is not a local property.
Luckily, we can replace this presheaf with a simplicial sheaf which is
more trivial as well. Note that if E −→ M is a principal G-bundle
with two global sections s, s′ : M −→ E, then, on each fibre Ep, we
have s(p) · gp = s′(p) for some unique gp ∈ G because the action is
free and transitive on Ep. Thus, there is some unique smooth map
g : M −→ G such that s · g = s′ globally. And so we can think of
Man(M,G) = FG(M) as acting on the vertices of E∇G(M). Using
the weak equivalence from proposition 3.1.3, we thus have an induced
action on the set Ω1(M ; g). This action can be described explicitly, as
is done in

Proposition 3.1.4. Let G be a Lie group with Lie algebra g and M
a test manifold. For g ∈Man(M,G), let g · i : M −→ M × G be the
map p 7−→

(
p, s(p)

)
. Then the map

aM : FG(M)× Ω1(M ; g) −→ Ω1(M ; g),

sending (g, ω) to the pullback (g · i)∗∇ω induces a G-action

a : FG × (Ω1 ⊗ g) −→ Ω1 ⊗ g,

on the sheaf Ω1 ⊗ g. Here ∇ω ∈ Ω1(M ×G; g) is the connection from
the proof of proposition 3.1.3.
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Proof. Note that the map aM is (equal to) the composition

Man(M,G)× Ω1(M ; g) Ω1(M ; g)
ψM◦a′M◦(idMan(M,G)×θM )

where we have used θM and ψM from the proof of proposition 3.1.3,
and a′M is the map(

g, (M ×G, projM ,∇ω, i)
)
7−→ (M ×G, projM ,∇ω, g · i).

We need to prove that this composition determines a natural trans-
formation, and that it makes Ω1(M ; g) a Man(M,G)-set. Let us see
why it is a natural transformation first.

As θM and ψM come from natural transformations θ and ψ, we only
need to show that the middle map a′M determines a natural transfor-
mation. But as there is maximally one morphism between objects in
E∇G(M), the commutativity from the natural tranformation diagram
is trivial to check. And so a is a natural transformation.

What is left is to show that aM makes Ω1(M ; g) a Man(M,G)-set.
But as the action is induced from a′M , and this is an action, we are
done. �

Now that we see that we have an action on the sheaf Ω1 ⊗ g, we
can produce the simplicial sheaf

Ω1 ⊗ g FG × (Ω1 ⊗ g) FG ×FG × (Ω1 ⊗ g) · · ·

just as in example 2.4.6. Explicitly, the two first face maps are the
projection map FG × F −→ F and action map a. This simplicicial
sheaf is denoted Btriv

∇ G.
The reason we constructed Btriv

∇ G was to determine the projection
map E∇G −→ B∇G. And so we better be sure that Btriv

∇ G is weakly
equivalent to B∇G.

Proposition 3.1.5. The discrete simplicial sheaf Btriv
∇ G is weakly

equivalent to the simplicial sheaf B∇G.

Proof. To show this, we first need to define a natural transformation

Ψ: Btriv
∇ G −→ B∇G,

or, equivalently, for each M , a map ΨM : Btriv
∇ G(M) −→ B∇G(M) of

simplicial sets. Since both of these objects are completely determined
by their groupoid structures {Ω1(M ; g),Man(M,G)×Ω1(M ; g)} and
B∇G(M), we only need to show that ΨM is an equivalence of groupoids,
meaning we have maps
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Btriv
∇ G(M) B∇G(M)

ΨM

ΘM

which determine an equivalence of categories, We first define ΨM .
For an object ω in Ω1(M ; g), define

ΨM(ω) = (M ×G, projM ,∇ω),

which is an object in B∇G(M)0. As a 1-simplex in Man(M,G) ×
Ω1(M ; g) is just an element (g, ω), which we think of as the arrow
ω −→ (g · i)∗∇ω, we need to determine how this induces an arrow
ϕ : M × G −→ M × G in B∇G(M)1, i.e. a bundle map such that
ϕ∗∇ω = ∇(g·i)∗∇ω . Hence we start by determining what (g · i)∗∇ω

looks like.
For any point p ∈M and any tangent vector X ∈ TpM ,(

(g · i)∗∇ω

)
p
(X) = (∇ω)(g·i)(p)

(
(g · i)∗,p(X)

)
= (∇ω)(p,gp)(X + g∗,p(X)).

As ∇ω = ∇MC + ω̃, we see that(
(g · i)∗∇ω

)
p
(X) = (∇MC)(p,gp)(X + g∗X) + ω̃(p,gp)(X + g∗X).

With this in mind, we proceed by finding an isomorphism ϕ. Note
that for g : M −→ G, we get an isomorphism

ϕg : M ×G −→M ×G, (p, h) 7−→ (p, gph)

This isomorphism is (equal to) the composition

M ×G ∆×idG−−−−→M ×M ×G idM ×g×idG−−−−−−−→M ×G×G −→M ×G,
where ∆(p) = (p, p) is the diagonal map, and the last map is the action
on the total space M×G. Just as in the proof of proposition 3.1.3, we
determine the pullback ϕ∗g∇ω) by finding the derivative of ϕg, using
the factorization of ϕg. In the end, when calculating the derivatives,
we see that ϕ∗∇ω = ∇(g·i)∗∇ω , and so we are done. �

3.2. The classification theorem

We can summarize the previous section by saying we have weak
equivalences

E∇G Ω1 ⊗ g Btriv
∇ G B∇G

ψ

θ

Ψ

Θ

From proposition 3.1.4, we know that the Lie groupG (or, actually FG)
acts freely and transitively on Ω1 ⊗ g with quotient Btriv

∇ G. Thus, up
to weak equivalence, we have a “principal G-bundle” E∇G −→ B∇G.
We want to equip this universal bundle with a universal connection
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∇univ ∈ Ω1(E∇G; g), i.e. a natural transformation ∇univ : E∇G −→
Ω1 ⊗ g. The element that makes the construction universal is

∇univ = ψ,

which is the weak equivalence from above. We have the following
theorem.

Theorem 3.2.1. Let π : E −→ M be a principal G-bundle with a
connection ∇ ∈ Ω1(E; g), and denote the induced discrete simplicial
sheaves (as explained in example 2.4.2) by FE and FM respectively.
Then there is a unique classifying map

FE E∇G

FX B∇G

f

f̄

such that f ∗(∇univ) = ∇.

Proof. As an appetizer, observe that all the objects FE,FM , E∇G,
and B∇G stem from their defining groupoids, it suffices to work within
that setting. For the rest of this proof, let M be any test manifold.

For the main course, we want to define fM . This map should
send any g : M −→ E in FE(M) = Man(M,E) to some object
(E ′, π′,∇′, s′) in E∇G(M). We construct this trivialiazable principal
bundle and its connection ∇′ as follows: take the pullback of E by π

(i.e. itself). This determines a bundle Ẽ = π∗E with projection map

π̃ : Ẽ −→ E and connection ∇̃ = π∗∇. By the universal property of

pullbacks (proposition 1.2.8), there is a map s̃ : E −→ Ẽ. And since s̃
commutes with everything, π̃◦ s̃ = idE, thus it is a global section. The

object (Ẽ, π̃, ∇̃, s̃) is in E∇G(E), but not E∇G(M), so we take another

pullback. The pullback of Ẽ by our chosen map g yields some bundle

π′ : E ′ = ϕ∗(Ẽ) −→ M . Again, we have a connection ∇′ = g∗∇̃ on
the bundle E ′. And as the pullback of a trivial total space is trivial,

we have an induced trivialization s = g∗s̃ : M −→ g∗Ẽ. The situation
can be illustrated by the following diagram:

g∗Ẽ Ẽ E

M E X

π′ π̃ π

g

g∗s̃

π

s̃
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The left-most bundle is our desired bundle, and we hence define

fM(g) = (E ′, π′,∇′, s) = (g∗Ẽ, π′, g∗∇̃, g∗s̃).

We now check that f ∗∇univ = ∇.
By construction 2.1.7, the connection ∇, which is a 1-form, de-

termines a unique classifying map ϕ : FE −→ Ω1 ⊗ g such that the
component ϕM at M sends any map g : M −→ E to the pullback
g∗∇. By definition, ϕ is an element in Ω1(FE; g), and it turns out ϕ
is the image of ∇univ under f ∗. To see this, note that the pullback of
f is the map

f ∗ : Ω1(E∇G; g) −→ Ω1(FE; g), ω 7−→ ω ◦ f.

For anyM , the component (f ∗ω)M is a map Man(M,E) −→ Ω1(M ; g).
And in particular, for ω = ∇univ, we see that

(f ∗∇univ)M : Man(M ;E) −→ Ω1(M ; g), g 7−→ s∗∇′,

where s = g∗s and ∇′ = g∗∇̃. As f just sends a map to the pullback
of some pullback, we can walk the diagram above in reverse (taking
pullbacks of every map), and we see that

s∗∇′ = g∗ ◦ s̃∗ ◦ π̃∗︸ ︷︷ ︸
=id∗E

∇ = g∗∇.

As the classifying map is the unique map with this pullback property,
we have show f ∗∇univ = ϕ, and it follows that the pullback of ∇univ is
∇. As the classifying maps is unique, f is unique.

For dessert, we define the bottom map f . The constrution of f
and the bundle map criterion (i.e. commutativity) forces f to be a
particular map. The component fM at M must send g : M −→ X in
Man(M,X) to some object (E ′′, π′′,∇′′) in B∇G(M). We know that
whatever this bundle is, commutativity forces

fM(π ◦ g) = (g∗Ẽ, π′, g∗∇̃).

And hence we are forced at defining fM to be the map

fM(g) = (E ′′, π′′,∇′′) = (g∗E, π′′, g∗∇),

where π′′ is the projection of the pullback bundle g∗E.
In total, we have defined a map f covering f , and showed that it

is the only possible bundle map such that f ∗∇univ = ∇. Hence we are
done. �
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We have seen that many constructions used in this theorem have
been tautological. Proceeding, we now want to calculate the cohomol-
ogy of these spaces. But to do so, we need some advanced magic called
abstract homotopy theory.

3.3. The de Rham complexes of the universal bundle

In this section, we first go from the category sPre of simplicial
presheaves on manifolds to its homotopy category, summarizing the
important results needed from that setting, before mentioning the
main results of [FH13]. This section contains no proofs, as it is not
the main focus of this thesis.

3.3.1. Abstract homotopy theory

We saw, in section 2.4.2, that we already know how to define the
de Rham complex of simplicial presheaves. But in this category, it be-
comes increasingly difficult to actually compute most de Rham com-
plexes. Another problem is that the category of simplicial presheaves
does not care much about weak equivalences. Hence we move to new
category, where our weak equivalences are cared for, and computa-
tions become feasible in practice. The idea, originally due to Quillen,
is to add an inverse to every weak equivalence. Hence whenever we
have a weak equivalence in our old category, we get an isomorphism in
the new category. A good and more in-depth introduction is given in
[FH13]. That paper is offered as a tribute to Quillen, and his mono-
graphs [Qui67] and [Qui69] are the original sources for many of the
ideas.2

Glossing over many details, the main takeaway is that we have a
category ho sPre and a functor L : sPre −→ ho sPre such that for
any two simplicial presheaves F•,F ′•,

{weak equivalences F• −→ F ′•} 7−→ {isomorphisms L(F•) −→ L(F ′•)}.

In addition, ho sPre is the “smallest” such category. Meaning the
functor L has the universal property that any other “homotopy cat-
egory”3 C and any functor K mapping weak equivalences to isomor-
phisms, can be lifted uniquely, in the sense that we have the following
commutative diagram:

2This thesis, inspired by [FH13], does not study the model category of under-
lying structures at play, to hopefully give a more clear exposition.

3Again, concealing the technicalities.
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sPre ho sPre

C

L

K
∃!

Since the new category does not add additional objects, we denote
the image LF• under L of a simplicial presheaf F• by F• as well.
As we have added new morphisms, it would be interesting to know
how the Hom-sets sPre(F•,F ′•) and ho sPre(F•,F ′•) of two simplicial
presheaves F•,F ′• are related.

Proposition 3.3.1. Let P in Pre be any presheaf, regarded as a con-
stant simplicial presheaf in sPre (by example 2.4.2). Then for any
simplicial presheaf F• in sPre, we have bijections

ho sPre(F•,P) ∼= ho sPre(F•, aP) ∼= sPre(F•,P),

where a is the sheafifcation functor from section 2.2.2. This means,
in particular, that if P is a sheaf F ′, then we have a bijection

sPre(F•,F ′) ∼= ho sPre(F•,F ′).

It should be noted that the set sPre(F•,F ′) is equal to the equal-
izer of

Pre(F0,F ′) Pre(F1,F ′)
where the two maps are induced (under the Hom-functor Pre(−,F ′))
from the first face maps F0 ⇔ F1.

We can also see that if we look at two constant simplicial presheaves
P and P ′ coming from ordinary presheaves P ,P ′ in Pre, then propo-
sition 3.3.1 is saying

sPre(aP , aP ′) ∼= ho sPre(P ,P ′).
With all of these bijections, we move on to the main results of

[FH13].

3.3.2. The main results

Now that we know how to pass from sPre to ho sPre, we start by
introducing the relevant definitions. We have seen, in section 2.4.2,
that the differential forms on a “generalized object” is just the set of
natural transformations from that object and into Ω•. In our newest
category, the definition is completely analogous.

Let F• be a simplicial presheaf. The set Ω•(F•) of differential forms
on F• is the collection ho sPre(F•,Ω•) of all natural transformations
F• −→ Ω• from F• to the constant simplicial sheaf Ω• built from
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the sheaf Ω• of differential forms. Just as the sheaves Ωk formed the
universal de Rham complex

Ω0 Ω1 · · · Ωk · · ·d d d d

seen in construction 2.1.7, we form the de Rham complex of a simplicial
sheaf F• as

ho sPre(F•,Ω0)
d−→ ho sPre(F•,Ω1)

d−→ · · · d−→ ho sPre(F•,Ωk)
d−→ · · ·

In this new de Rham complex, the arrows d are induced (under the
Hom-functors ho sPre(F•,−)) from the differentials d : Ωk −→ Ωk+1.
Recall that Pre(Fn,Ωk) = Ωk(Fn) by definition. Hence, by (the first
remark under) proposition 3.3.1, since Ωk is a constant simplicial sheaf,
we see that at each term ho sPre(F•,Ωk) in the de Rham sequence
can be computed as the equalizer of

Ωk(F0) Ωk(F1)

where the two maps are the pullbacks of the first face maps of F•.
Observe that since we are in the homotopy category of sPre, the

de Rham complex of a simplicial sheaf is invariant under weak equiva-
lence. This was the whole point of passing to the homotopy category.
Another useful observation, which is perhaps not immediately clear,
but still a tautology, is

Proposition 3.3.2. Let G be a Lie group, and suppose we are given
a G-action on a sheaf F . Then the de Rham complex of the simplicial
sheaf

F FG ×F FG ×FG ×F · · ·

from example 2.4.6 is the equalizer of

Ω•(F) Ω•(FG ×F).

This is a direct consequence of our definition. And so we see that
the de Rham complex of Btriv

∇ G is equal to the equalizer of the ac-
tion of G on Ω1 ⊗ g. And since we are working in the homotopy
category, the simplicial sheaves B∇G and Btriv

∇ G have isomorphic de
Rham complexes. Thus computing the de Rham complex of B∇G is
just an exercise in finding a certain equalizer. And it turns out that
this equalizer is the set of basic4 differential forms on Ω1 ⊗ g. And
the complex of these basic forms is isomorphic to the complex I•2G of

4We do not discuss what this means.
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Ad-invariant polynomials on g, graded by twice the degree. Explicitly,
it is the complex

I0(G) −→ 0 −→ I1(G) −→ 0 −→ · · · −→ 0 −→ Ik(G) −→ 0 −→ · · ·
where Ik(G) is the ring of invariant polynomials of degree k, discussed
in section 1.5.1. In other words, we have the following:

Theorem 3.3.3. The de Rham complex of B∇G is (I•2 (G), d = 0).

This gives a new perspective on the old Chern-Weil homomorphism

w(E;−) : Ik(G) −→ H2k
dR(M),

which, if we recall, sends P injectively to the (cohomology class of the)
characteristic form P (F k

∇) corresponding to P , see definition 1.5.4.
Now, E = E∇G and M = B∇G. A trivial consequence of theo-
rem 3.3.3 is that H2k

dR(B∇G) = I2k
2 (G) = Ik(G), and hence we have

the map

w(E∇G;−) : Ik(G) −→ H2k
dR(B∇G) = Ik(G).

Thus, given an invariant polynomial P of degree k on g, the process
of applying it to the k-fold wedge product

F k
∇ = F∇ ∧ · · · ∧ F∇

of the curvature form F∇ = d∇+ 1
2
[∇,∇] of the universal connection

∇ = ∇univ ∈ Ω1(E∇G; g) gives a 2k-form P (F k
∇), and this construction

is local and natural.
Furthermore, this determines the amount of invariants attached

to connections on principal bundles. To understand this statement,
we look at a bundle E −→ X. This induces the “bundle” FE −→
FX . All the cohomology classes w(E∇G;P ) associated to E∇G induce
characteristic classes w(−;P ). And so, by theorem 3.2.1, they pull
back to elements in H2k

dR(FX) = ho sPre(FX ,Ω2k) via the map f . By
proposition 3.3.2, the set ho sPre(FX ,Ω2k) is equal to the equalizer of

Pre(FX ,Ω2k) Pre(FX ,Ω2k).
id

id

The equalizer is in turn equal to Pre(FX ,Ω2k), and we in total have
that

ho sPre(FX ,Ω2k) = Pre(FX ,Ω2k) = Ω2k(X).

This implies that f
∗(
w(E∇G;P )

)
= w(E;P ). Thus any characteris-

tic class c defined from connections must have c(E) = f
∗(
c(E∇G)

)
.

But since the connection preserving map f is unique, this determines
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the invariant c. The upshot is, as mentioned, that there is a cor-
respondence between invariants c and cohomology classes H•(B∇G).
Conversely, note that because the Chern-Weil homomorphism is in-
jective, it is an isomorphism, and thus all the invariant polynomial P
defines all the invariants c = w(−;P ) possible.

Before ending this chapter, we mention the second of the main
theorems of [FH13]. Recall, from definition 1.1.4, that the Koszul
complex of a vector space V is the differential graded algebra

Kos• V =
∧•

V ⊗ Σ•2V.

It can be shown that the de Rham complex of the constant simplicial
sheaf Ω1⊗ g is isomorphic to the Koszul complex of g∨. Which means
we have the following:

Theorem 3.3.4. The de Rham complex of E∇G is (Kos• g∨, d)

We now move on to the holomorphic case.





Part II

The Holomorphic Case





CHAPTER 4

Classifying Holomorphic Bundles

For the final chapter, we repeat the story from part I, just with
holomorphic constructions. Thus, we need to know what “holomor-
phic” even means, and not only for maps of one complex variable. For
example for complex manifolds, we need to know what is meant by a
neighborhood being holomorphic to an open set of Cn. We also need
to know what complex and holomorphic differential forms are. This is
what the first section is dedicated to.

Moving on, we explore what complex manifolds and complex Lie
groups are. This allows us to define holomorphic vector bundles and
holomorphic principal G-bundles. Finally, with all of the terminology
in place, we explore what a definition of a holomorphic G-connections
should be. When searching through the literature, there are several
ways of going about it (see for example [Ati57] and [Bis10]). Inspired
by our efforts in section 1.4, we give a slightly different definition than
what is done in [Ati57]. This allows us to construct many of the same
objects, like the Maurer-Cartan form, just in a holomorphic perspec-
tive. And more crucially, we can identify the holomorphic universal
bundle E∇,CG −→ B∇,CG with its universal connection. The novelty
in this thesis is summarized in theorem 4.4.3.

4.1. Preliminaries

In this section. we recall what holomorphic and biholomorphic
functions of several complex variables are. We then transfer our knowl-
edge of tensors from section 1.1 to the complex world, and see what
changes in this world. Lastly, we describe the local nature of complex
manifolds.

All of the material can be found in Chapter 1 of [Huy05].

4.1.1. Local theory of complex functions

Locally, neighborhoods of smooth manifolds are diffeomorphic to
open sets of real Euclidean space Rn. We need to know what complex
manifolds look like locally, and how they relate to open sets in Cn.

95
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The purpose of this subsection is to develop our language to describe
this.

Recall that a function f : U ⊆ C −→ C of one complex variable
variable is holomorphic if for any point z0 in U , there exists a ball
B(ε; z0) ⊆ U of radius ε > 0 centered at z0 such that f �B(ε;z0) can be

written as a convergent power series, i.e. for all z ∈ B(ε; z0)

f(z) =
∞∑
n=0

an(z − z0)n.

There are several equivalent definitions of holomorphicity. If we
denote the real and imaginary parts of z ∈ C by x and y, respectively,
then f can be regarded as a complex function f(x, y). Hence, f can
be written as the sum f(x, y) = u(x, y) + iv(x, y), where u and v are
functions of real numbers, equaling the real and imaginary parts of f ,
respectively. One can show that f is holomorphic if and only if u and
v are continuously differentiable and

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

We call these the Cauchy-Riemann equations.
Recall that the complex conjugate of z ∈ C is z = x+ iy = x− iy.

Hence, if we introduce the the differenital operators

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

we see that ∂
∂z

(z) = 1 = ∂
∂z

(z), and ∂
∂z

(z) = 0 = ∂
∂z

(z). But further-
more, we can calculate

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2

([
∂u

∂x
− ∂v

∂y

]
+ i

[
∂v

∂x
+
∂u

∂y

])
.

And thus, using the Cauchy-Riemann equations, we have the following
theorem.

Theorem 4.1.1. A complex function f is holomorphic if and only if

∂f

∂z
= 0.

Inspired by this theorem, we an now define holomorphicity for
complex functions of several variables.

Let f : U ⊆ Cn −→ C be a complex function of several variables.
If we, for all coordinates k, write zk = xk + iyk, and introduce the
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analogous notation

∂

∂zk
=

1

2

(
∂

∂xk
− i ∂

∂yk

)
,

∂

∂zk
=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
,

we can call f holomorphic if for all k = 1, . . . , n we have

∂f

∂zk
= 0.

This is often written as ∂f = 0, and the notation will soon1 make
more sense.

Lastly, for a function f : U ⊆ Cm −→ Cn, write f = (f1, . . . , fn).
We call such a function f holomorphic if all f1, . . . , fn are holomorphic
functions U ⊆ Cm −→ C. We call f biholomorphic if it is holomorphic
and bijective, and the inverse map f−1 is holomorphic as well. This is
the correct replacement for diffeomorphic.

We will not show it here (and the curious reader is referred to
Proposition 1.1.13 in [Huy05]), but it turns out a bijective holomorphic
map between open sets U, V ⊆ Cn are biholomorphic. This will be
useful to know when we deal with complex manifolds.

4.1.2. Complex Structures

In section 1.1, we saw how to form tensor products over the real
numbers R, and studied some vector spaces related to these tensor
products, e.g. the exterior powers. The construction can actually be
done over any field, and hence we can form similar spaces. But there
are some fundamental differences, as we will see.

For this subsection, let V be a finitie-dimensional real vector space.
Recall that an orientation on a finite dimensional vector space

is an equivalence class on the set of all ordered bases of the vector
space. A linear map I : V −→ V such that I2 = − idV is called
an almost complex structure on V . The most trivial example of an
almost complex structure is when V = Cn, considered as the vector
space R2n over R. Then the R-linear map v 7−→ iv is an almost
complex structure on Cn. And in general, if V is real vector space
of an underlying complex vector space, then we can define a similar
complex structure. Also note that the converse holds as well: If I is
an almost complex structure on V , then V admits, in a natural way,
the structure of a complex vector space. The C-module structure on
V is defined by (a + ib)v = av + bI(v). Since I2 = − idV and I is
linear, we get that i(iv) = −v. Thus, when looking at vector spaces,

1In definition 4.1.5.
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the notions “almost complex” and “complex” are the same thing. In
particular, every almost complex structure is on an even-dimensional
vector space, and the vector space has a canonical orientation.

For a real vector space V , the complex vector space V ⊗R C is
denoted VC. And so we see that V can be embedded into VC via the
map v 7−→ v ⊗ 1. This is also the part left invariant under complex
conjugation (on VC), which is defined by (v ⊗ λ) = v ⊗ λ.

Assume that we have an almost complex structure I on V . Then
we have a C-linear extension of I on VC, defined by v⊗λ 7−→ I(v)⊗λ.
We denote this new map VC −→ VC by I as well. A natural question
is which eigenvalues I has. If we assume I(v) = λv, we get that
(λ2+1)v = 0, hence the only eigenvalues of I are +i and−i. We denote
the eigenspaces of these eigenvalues by V 1,0 and V 0,1, respectively.
That is,

V 1,0 = {v ∈ C | I(v) = i · v}, V 0,1 = {v ∈ C | I(v) = −i · v}.

By basic linear algebra, we see that

VC = V 1,0 ⊕ V 0,1.

Furthermore, complex conjugation on VC induces an R-linear isomor-
phism V 1,0 ∼= V 0,1.

Again, by elementary linear algebra, it is not too hard to see that
the induced linear map on the dual space V ∨ has the same eigenvalues
+i,−i, and that we get a similar decomposition of V ∨ into

(V ∨)1,0 = {f ∈ HomR(V,C) | f
(
I(v)

)
= i · f(v)} = (V 1,0)∨,

(V ∨)0,1 = {f ∈ HomR(V,C) | f
(
I(v)

)
= −i · f(v)} = (V 0,1)∨.

Recall, from section 1.1.3, that given a real vector space V one can
form the exterior algebra

∧
V , which decomposes as∧
V =

∞⊕
k=0

∧k
V.

Similarly, we define the exterior algebra
∧
VC of the complex vector

space VC as the algebra which decomposes as∧
VC =

∞⊕
k=0

∧k
VC.

Furthermore, we can see that
∧
VC =

(∧
V
)
⊗R C, and so

∧
V is the

subspace of
∧
VC which is left invariant under complex conjugation.
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Note that if V has an almost complex structure I, then its dimen-
sion d is even, say d = 2n. And VC decomposes into V 1,0⊕ V 0,1. Both
of these can be regarded as complex vector spaces of dimension n. We
define ∧p,q

V =
∧p

V 1,0 ⊗C
∧q

V 0,1,

where V 1,0 and V 0,1 are considered complex vector spaces, and the
exterior products are taken as complex vector spaces. We note that
we have the following results.

Proposition 4.1.2. For a real vector space V endowed with an almost
complex structure I one has:

(1)
∧p,q V is (canonically) a subspace of

∧p+q VC;

(2)
∧k VC =

⊕
p+q=k

∧p,q V ; and

(3)
∧p,q V ∼=

∧q,p V .

Proof. See Proposition 1.2.8 in [Huy05]. �

With these relations of vector spaces, we define the projections

Πk :
∗∧
VC −→

k∧
VC, Πp,q :

∗∧
VC −→

p,q∧
V.

Now we are ready to study complex differential forms.

4.1.3. Local tangent spaces of complex manifolds

A smooth manifold M can be studied through its tangent bundle
TM , the collection of all tangent spaces TpM for p ∈ M . But it can

also be studied by means of
∧k T ∗M , as we saw in section 1.3.1. In

this section, we let M = U ⊆ Cn be some open subset, considered
both as a neighborhood of Cn, and a smooth manifold of dimension
2n. Thus, for x ∈ U , there is a real tangent space TxU of tangent
vectors at x. If z1 = x1 + iy1, z2 = x2 + iy2, . . . , zn = xn + iyn are the
standard coordinates on Cn, there is a canonical basis of TxU , namely

∂

∂x1

, . . . ,
∂

∂xn
,
∂

∂y1

, . . . ,
∂

∂yn
.

The dual basis of (TxU)∨ is denoted by dx1, . . . , dxn, dy1, . . . , dyn.
Each of these tangent spaces has a natural almost complex struc-

ture, defined by

Ix : TxU −→ TxU,
∂

∂xk
7−→ ∂

∂yk
,

∂

∂yk
7−→ − ∂

∂xk
.

Just as we can complexify a real vector space, we can turn TxU
into a complex vector space as well. If we use C to denote the smooth
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trivial vector bundle U × C (which is equal to U × R2), we see that
we can complexify the whole tangent bundle TU . This new tangent
bundle, denoted TCU , is bundle tensor product

TCU = TU ⊗ C,
and we call it the complexified tangent bundle. Using the observations
from the previous subsection, we note that the complexified tangent
bundle TCU globally decomposes into a direct sum of complex vector
bundles

TCU = T 1,0U ⊕ T 0,1U.

We call the (1, 0)-part T 1,0U the holomorphic tangent bundle over U .
The complexified cotangent bundle T ∗CU = T ∗U ⊗ C has a similar
decomposition, and its (1, 0)-part is called the holomorphic cotangent
bundle over U .

Let f : U −→ V be a holomorphic map between subsets U ⊆
Cm, V ⊆ Cn. The differential f∗,x : TxU −→ Tf(x)V extends to a C-
linear map f∗,x : TxU ⊗ C −→ TxV ⊗ C, and this extension respects
the decomposition. Thus we have the following definition.

Definition 4.1.3. Let U ⊆ Cn be an open set. Then we have the
complex vector bundles∧k

T ∗CU,
∧p,q

T ∗U =

(∧p
(T ∗U)1,0

)
⊗
(∧q

(T ∗U)0,1

)
,

over U . The space of sections of these bundles are denoted Ωk
C(U) and

Ωp,q(U), respectively. We call these sections for complex differential
forms.

A natural consequence of proposition 4.1.2 is

Corollary 4.1.4. For an open set U ⊆ Cn, there are natural decom-
positions∧k

T ∗CU =
⊕
p+q=k

∧p,q
T ∗U, Ωk(U ;C) =

⊕
p+q=k

Ωp,q(U).

As before, we have a natural projection map

Πp,q : Ωk
C(U)→ Ωp,q(U).

Definition 4.1.5. Let d : Ωk
C(U) −→ Ωk

C(U) be the C-linear exten-
sion of the usual exterior derivative d : Ωk(U) −→ Ωk(U) from defini-
tion 1.3.3. Then we define

∂ : Ωp,q(U) −→ Ωp+1,q(U), ∂ : Ωp,q(U) −→ Ωp,q+1(U),



4.1. PRELIMINARIES 101

where ∂ = Πp+1,q◦d and ∂ = Πp,q+1◦d. (This makes sense as Ωp,q(U) ⊆
Ωp+q

C (U).)

Just as we, for f ∈ C∞(M,R), in the smooth case had that df =
∂f
∂x1
dx1 + · · ·+ ∂f

∂xn
dxn, we similarly, for f = C∞(U,C), get that

df =
∂f

∂x1

dx1 + · · ·+ ∂f

∂xn
dxn +

∂f

∂y1

dy1 + · · ·+ ∂f

∂yn
dyn

=
n∑
k=1

∂f

∂xk
dxk +

n∑
k=1

∂f

∂yk
dyk =

n∑
k=1

∂f

∂zk
dzk +

n∑
k=1

∂f

∂zk
dzk.

And so we see the meaning of the notation ∂f = 0 of a holomorphic
function f : Cn −→ C from section 4.1.1. Moreover, the complex
extension of d respects the decomposition, i.e.

d(Ωp+q(U)) = Ωp+1,q(U)⊕ Ωp,q+1(U) ⊆ Ωp+q+1(U).

Thus, it is not hard to see that

(1) d = ∂ + ∂̄;
(2) ∂2 = 0 = ∂̄2; and
(3) ∂∂̄ = −∂̄∂.

The operators ∂ and ∂ also satisfy the Leibniz rule. This means that
we have a a web

...
...

...

· · · Ωp−1,q−1(U) Ωp,q−1(U) Ωp+1,q−1(U) · · ·

· · · Ωp−1,q(U) Ωp,q(U) Ωp+1,q(U) · · ·

· · · Ωp−1,q+1(U) Ωp,q+1(U) Ωp+1,q+1(U) · · ·

...
...

...

∂ ∂ ∂

∂ ∂

∂

∂

∂

∂

∂

∂ ∂

∂

∂

∂

∂

∂

∂ ∂

∂

∂

∂

∂

∂

of complexes. And in particular, the complex Ω•,0 has only holomor-
phic sections. For example, the holomorphic cotangent bundle Ω1,0(U)
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has complex 1-forms df such that

df =
n∑
k=1

∂f

∂zk
dzk +

n∑
k=1

∂f

∂zk
dzk︸ ︷︷ ︸

=0

=
n∑
k=1

∂f

∂zk
dzk.

Thus, since ∂f = 0, all the sections are holomorphic. And in general,
for any Ωp,0(U), we force the ∂-component of any complex differential
form to be 0, which is how we defined holomorphicity in the first place.
So we define any section in Ωp,0(U) as a holomorphic p-form on U .

4.2. Holomorphic bundles

In this section, we see how to transport all the theory from sec-
tion 1.2 to the holomorphic world. This includes complex manifolds,
complex Lie groups, holomorphic local trivializations, holomorphic
vector bundles, and holomorphic principal bundles.

The definitions and results can be found in [Huy05] and [Ati57].

4.2.1. Complex manifolds

Recall, from section 1.2.1, that an atlas A on a topological manifold
X is just a collection of charts (Uα, ϕα) that cover X. Just as an atlas
is called smooth if all the transition maps are smooth maps on Rn, we
call an atlas holomorphic if all the transition maps are holomorphic
maps on Cn. A union A∪A′ of two holomorphic atlases is not always
holomorphic, but when it is, we call the two atlases holomorphicly
equivalent. This relation is an equivalence relation of atlases. Thus,
we call such an equivalence class A = {A,A′, . . . } of holomorphicly
equivalent atlases a holomorphic structure.

A complex manifold X of dimension n is a smooth manifold of
(real) dimension 2n with a holomorphic structure. We can, completely
analogous to the differential case, define a maximal holomorphic atlas
Amax on a complex manifold X. This atlas is just the union of all
the holomorphic atlases in the holomorphic structure, and hence, by
definition, it is a holomorphic atlas on X. When we talk about a
holomorphic chart, we always assume it is chosen from this maximal
atlas.

We call a map F : X1 −→ X2 between complex manifolds X1 and
X2 holomorphic if for every holomorphic chart on X1 and X2, the
induced map between open sets of complex vector spaces is holomor-
phic. Since bijective holomorphic maps between open sets are biholo-
morphic, we say F : X1 −→ X2 is biholomorphic if it is a holomorphic
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homeomorphism. Thus, all the homeomorphisms in Amax are biholo-
morphic. The identity map idX : X −→ X is also biholomorphic. And
as the composition of holomorphic maps is holomorphic, we have a
category ManC of finite dimensional smooth manifolds.

4.2.2. Holomorphic vector bundles

Recall that a smooth fibre bundle is a quadruple (E,X, π, F ) where
E,X, F are smooth manifolds and π : E −→ X is a smooth surjection
which has a local trivialization with fiber F . If we require the mani-
folds E,X, F to be complex, and the map π holomorphic, we call the
fibre bundle a holomorphic fibre bundle if, in addition, all the fiber
preserving diffeomorphisms ϕ : π−1(Uα) −→ Uα × F of the local trivi-
alization are homeomorphic as well.

Definition 4.2.1. An n-dimensional holomorphic vector bundle, de-
noted π : V −→ M , is a holomorphic fibre bundle (E,X, π,Cn) with
the follow extra condition:

• Each fibre preserving map ϕα : π−1(Uα) −→ Uα×Rn restricts
to an isomorphism ϕα �Vp of vector spaces Vp = π−1({p}) −→
{p} × Cn ∼= Cn.

As any complex manifold is a smooth manifold, any holomorphic
vector bundle is in particular also a smooth vector bundle. But holo-
morphic vector bundles should not be confused with complex vector
bundles, as complex vector bundles are just smooth vector bundles
whose fibres are complex vector spaces with C-linear transition maps.

Most of the examples we have of smooth vector bundles have holo-
morphic analogues. This includes the trivial bundle, the tangent bun-
dle and the pullback bundle. The notion of a map is also completely
parallel. This means that a holomorphic vector bundle map is a smooth
fibre bundle map that is holomorphic, and the restriction to fibres gives
a C-linear map. An isomorphism is a biholomorphic map covering the
identity.

Just as we had meta theorem 1.2.14 for smooth vector bundles, we
have

Meta-theorem 4.2.2. Any canonical construction in linear algebra
gives rise to a geometric version for holomorphic vector bundles.

We do not bother listing examples, as it would be almost an exact
copy of the list in example 1.2.15.
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4.2.3. Holomorphic principal bundles

Before defining holomorphic principal G-bundles, we need to know
what complex Lie groups are. But as one might expect, they are
analogously defined to real Lie groups. A complex Lie group is a
group that is also a complex manifold, and the equipped maps ∗ 7−→
e, g 7−→ g−1, and (g, h) 7−→ gh are holomorphic.

Definition 4.2.3. LetG be a complex Lie group. A holomorphic prin-
cipal G-bundle π : E −→M is a holomorphic fibre bundle (E,M, π,G)
with the following extra conditions:

• E is a G-space such that the right action is holomorphic,
and for each point p ∈ M the action restricted to each space
Ep = π−1(p) is regular; and
• each fibre preserving map φα : π−1(Uα) −→ Uα × G restricts

to a G-equivariant and holomorphic map φα �Ep , i.e. for all
g ∈ G, and for all x ∈ π−1(Uα), we have

φα(x · g) = φα(x) · g,
where the action φα(x) · g is just group multiplication on the
right coordinate in Uα ×G.

We do not construct any examples here, but quickly mention that
the trivial bundle and the pullback bundle also come in holomorphic
versions.

A holomorphic principal bundle map is just a fibre bundle map
which is holomorphic and such that the map of total spaces is equi-
variant. A holomorphic principal bundle isomorphism is a biholomor-
phic equivariant map covering the identity such that the inverse is also
G-equivariant.

4.3. Holomorphic connections on holomorphic bundles

Now that we know what holomorphic bundles are, we need a notion
of holomorphic principal connection. It is not immediately clear how
one defines this, so we use look at the simpler case of holomorphic
linear connections first.

4.3.1. Connections on holomorphic vector bundles

As holomorphic vector bundles are smooth vector bundles, we do
not necessarily need to define holomorphic connections on holomorphic
vector bundles, as we have a perfect notion of linear connections on
smooth vector bundles. Or, we could even define holomorphic linear
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connections as the linear connections ∇ : Γ(E) −→ Γ(T ∗M ⊗ E) that
satisfy the Leibniz rule

∇(fs) = df ⊗ s+ f∇(s),

(from section 1.4.2) and are also compatible with the holomorphic
structure. And these are interesting in their own right. But, as
Serre showed in his seminal paper, colloquially referred to as GAGA2

([Ser56]), purely holomorphic constructions carry over to the algebraic
setting. Hence we might expect a more applicable notion if we restrict
to the purely holomorphic setting as well. As explained in [Huy05] (p.
179), this choice lets us get a purely algebraic definition, which now
follows.

Definition 4.3.1. Let E → X be a holomorphic vector bundle on
a complex manifold X. A holomorphic linear connection on E is a
C-linear map (of sheaves) ∇ : Γ(E)→ Γ(ΩX ⊗ E) with

∇(fs) = ∂f ⊗ s+ f∇s,

for any local holomorphic function f on X and any local holomorphic
section s of E.

We see this mimics the linear connections on smooth vector bun-
dles, as d = ∂ + ∂, and thus for a holomorphic function, we have
df = ∂f .

Every smooth vector bundle admits a smooth linear connection.
But not every holomorphic vector bundle admits a holomorphic con-
nection. The degree of failure is measured by the Atiyah class, which
is an element

A(E) ∈ H1
(
X; Ω1,0 ⊗ End(E)

)
,

in the Čeck cohomology of the tensor product bundle Ω1,0 ⊗ End(E).
Explicitly, it is given by the Čeck cocycle

A(E) = {Uij, ϕ−1
j ◦ (ϕ−1

ij dϕij) ◦ ϕj}.

Proposition 4.2.19 in [Huy05] states that a holomorphic vector bun-
dle has a holomorphic connection if and only if the Atiyah class is
trivial. We have a similar result for holomorphic connections on holo-
morphic principal bundles.

2Short for Géométrie algébrique et géométrie analytique, which translates to
Algebraic geometry and analytic geometry.
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4.3.2. Connections on holomorphic principal bundles

From section 1.4, we know that connections come from horizontal
distributions. Meaning a connection is equivalent to a splitting of the
short exact sequence

0 V E TE HE 0

of vector bundles. And from the previous subsection, we saw that
we should define holomorphic connections as operators not only com-
patible with the holomorphic structure, but holomorphic operators in
their own right. However, when settling for a definition of a holomor-
phic G-connection on a holomorphic principal G-bundle, it is usually
done in a complicated manner. For example, in [Ati57], a holomorphic
G-connection is defined as a splitting of the short exact3 sequence

0 Ad(E) At(E) TX 0
π∗

now know as the Atiyah sequence. The middle bundle At(E) is called
the Atiyah bundle, and is just a fancy way of writing TE/G. The
action on TE comes from the differential of the action on E, hence we
can sensibly talk about the quotient TE/G. As the projection map
TE/G −→ E/G is G-equivariant, and E/G = X, the Atiyah bundle
is a bundle over X. The adjoint bundle Ad(E) over X is, as the name
implies, just the quotient bundle E × g/G, where the action on E × g
is by G and defined, for any g ∈ G as

(x,X) · g =
(
xg,Adg(X)

)
.

In other words, Ad(E) = E ×Ad g. Theorem 2 in [Ati57] states that
a holomorphic principal bundle has a holomorphic bundle if and only
if the Atiyah class (which is defined as a certain element A(E) ∈
H1(X; Ω1,0⊗End(E)) analogously to the vector bundle case) vanishes.

As we see, these two sequences barely resemble one another. In
particular, a splitting of the Atiyah sequence does not immediately
yield a g-valued differential form on E. And hence, we can not use
our constructions from part I. But we can sidestep this problem if
we look at how the Atiyah sequence is constructed. The sequence is
actually the quotient of the following short exact sequence (over E
and not X):

0 V E TE π∗TX 0
π∗

The quotient ensures that any splitting is G-equivariant, and changes
the base space from E to X. But we, as seen in section 1.4.3, can

3It is exact by Theorem 1 in [Ati57].
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force the equivariance by other means than quotients, using the right
multiplication map Rg : E −→ E. And so we define a holomorphic
G-connection as a splitting of

0 VxE TxE (π∗TX)x 0
π∗

such that it is holomorphic and equivariant in x. Concretely this means
that we have a map ∇x : TxE −→ VxE that varies holomorphically
with x, and such that the pullback R∗g∇ = Adg−1 ◦∇. As VxE is
isomorphic to g, we see that such a connection ∇ really is a g-valued
differential 1-form on E.

These types of connections are also preserved by pullback. Mean-
ing for two holomorphic principal G-bundles E1 and E2, with a holo-
morphic bundle map ϕ : E1 −→ E2, then a connection∇ on E2 induces
a connection ϕ∗∇ on E1. In addition, for exactly the same reasons as
in the smooth case, we can construct the holomorphic Maurer-Cartan
form on any trivial holomorphic G-bundle X × G. A fundamental
difference from the smooth case is that not all holomorphic principal
G-bundles have holomorphic connections. This is because we do not
have (an appropriate analogue of) partition of unity.

4.4. Generalized complex manifolds

In the last section of this thesis, we use all of the theory developed
throughout this thesis, and construct the universal holomorphic bun-
dle with universal connection. We end with an original result, namely
theorem 4.4.3.

4.4.1. The universal holomorphic bundle

This subsection summarizes how to get from complex manifolds to
simplicial presheaves on complex manifolds, and serves the same role as
chapter 2 did to part I. We also explicitly construct the holomorphic
parallels of B∇G and E∇G. Most of the analogue definitions and
examples, like complex differential forms on presheaves, are omitted
here, but used later. The reason we exclude them is to simplify the
text, as all unmentioned definitions are of lesser importance and also
almost exact copies of the corresponding ones from part I.

A presheaf on complex manifolds is a functor

F : Manop
C −→ Set .

Still, the standard example is the associated presheaf FX of a complex
manifold X, which of course is the Hom-functor ManC(−, X). Maps
of presheaves on complex manifolds are natural transformations, so
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we get a category PreC of presheaves on complex manifolds, and the
Yoneda embedding ensures that it makes sense to talk about holo-
morphic maps of presheaves. Sheaves are, yet again, just presheaves
that satisfy the equalizer definition. We have the same sheafification
functor a : PreC −→ Sh.

A simplicial presheaf on complex manifolds is a functor

F• : Manop
C −→ Set∆,

and maps of simplicial presheaves are natural transformations. This
determines the category sPreC. Weak equivalences of simplicial presheaves
on complex manifolds are defined as the maps which induce weak
equivalences of simplicial sets on all the stalks.

We now construct the complex analogues of B∇G and E∇G.

Construction 4.4.1 (B∇,CG). Just as B∇G(M) is the simplicial
set determined from the groupoid GBund∇(M), we have a category
GBund∇,C(X) of holomorphic principal G-bundles with connection.
The arrows are holomorphic principal G-bundles which preserve con-
nection. This groupoid determines a simplicial set

B∇,CG(M)0 B∇,CG(M)1 · · ·

which we denote by B∇,CG(M). The construction is functorial, and
we thus have a simplicial sheaf

B∇G : Manop −→ Set∆ .

One might worry that since we have no partition of unity in the
holomorphic case, not every holomorphic principal G-bundle has a
connection, and perhaps there might exist some values of B∇,CG such
that B∇,CG(M) = ∅. But as we always can construct the trivial
bundle M×G over M , and this can be equipped with the holomorphic
Maurer-Cartan connection, we should not have any worries.

Construction 4.4.2 (E∇,CG). Again, the construction is completely
paralell to that of the smooth world. The category GBundtriv

∇,C(M)
of holomorphic and trivial principal G-bundles is a groupoid. The
morphisms in this category are morphisms in GBund∇,C(M) that
also preserve trivializations. This groupoid determines the simplicial
set

E∇,CG(M)0 E∇,CG(M)1 · · ·

and we of course denote it by E∇,CG(M). Thus we have the simplicial
sheaf E∇,CG.
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4.4.2. The classification theorem

Now that we have constructed the holomorphic universal bundle,
we need to find a universal connection. Just as in the differential case,
it will be the weak equivalence ∇univ = ψ, which, component wise,
looks like

ψM : E∇.CG(M) −→ Ω1,0 ⊗ g(M), (E, π,∇, s) 7−→ s∗∇,
from proposition 3.1.3. Here we see our first subtle difference compared
to the differential case. We have to pick the constant simplicial sheaf
coming from the holomorphic cotangent bundle Ω1,0 instead of the
complexified tangent bundle Ω1

C because if not, then the pullback s∗∇
could be a connection which is only compatible with the holomorphic
structure, and not a holomorphic connection. Still, to prove that ψ is
a weak equivalence would result in an almost word-for-word copy of
the proof of proposition 3.1.3, so we omit it.

Just as we had a well defined smooth action on Ω1 ⊗ g, we have a
holomorphic action on the sheaf Ω1,0⊗g, defined completely analogous.
We do not prove this fact, but a corollary is that B∇,CG is weakly
equivalent to the simplicial sheaf induced from this action. The latter
sheaf is denoted Btriv

∇,CG. And so we see that Ω1,0⊗g/G is Btriv
∇,CG. Thus,

in the homotopy category ho sPreC it makes sense to talk about the
universal bundle E∇,CG −→ B∇,CG.

And we have the following:

Theorem 4.4.3. Let π : E −→ M be a holomorphic principal G-
bundle with a holomorphic G-connection ∇ ∈ Ω1(E; g), and denote the
induced discrete simplicial sheaves by FE and FM respectively. Then
there is a unique classifying map

FE E∇G

FX B∇G

f

f̄

such that f ∗(∇univ) = ∇.

To conclude, we should note that the holomorphic version of theo-
rem 3.2.1 is slightly weaker than its differential sibling. This is because
we assumed that the holomorphic bundle was equipped with a holo-
morphic connection. We cannot find the classification maps if this is
not the case (because if we could, then all holomorphic bundles would
have a connection). As mentioned, this is not always the case, as
the Atiyah class is not necessarily 0. But for a great deal of complex
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manifolds, it actually vanishes. For example, as mentioned in [Ati57],
all Stein manifolds have trivial Atiyah class. As a fact check, we can
also notice that the Atiyah class A(E∇,CG) of the classifying space
E∇,CG is 0 because End(E∇,CG) is trivial, which follows from the fact
that it is a discrete groupoid. So it makes sense that E∇,CG has a
holomorphic connection.

To proceed from here, we should probably study the relationship
between Atiyah’s definition of a holomorphic connection, and the one
used in this thesis, as it is not immediately apparent if they always
are equivalent (although we do not rule out the possibility). Sadly, we
did not find enough time to do this, but it is certainly worth doing if
one wants to explore the subject further.



APPENDIX A

Manifolds and Tangent Spaces

A.1. Smooth manifolds

Unless otherwise stated, Rn will always be assumed equipped with
the standard topology, i.e. U ∈ TRn is open if U =

⋃
Br(x).

The prototypical examples of manifolds are the surfaces, like the
sphere and the torus, and curves, like the unit interval and the circle,
in R3. The generalized notion of this kind of space is a manifold.

All the material can be found in [Lee13] and [Tu17], we do not
prove every proposition. We follow the notation used by Lee. This
means in particular that the differential of a map f is denoted df
instead of f∗, which differs from what is used in the main matter of
this thesis.

A.1.1. Topological manifolds and atlases

Definition A.1.1. An n-dimensional topological manifold (or n-manifold)
is a topological space (M,T ) with the following properties:

(1) (M,T ) is a Hausdorff space,
(2) There exist a second-countable basis for (M,T ), and
(3) M is locally Euclidean of dimension n, i.e. for any point p ∈M

there exists a neighborhood U ∈ T of p, an open set V ⊆ Rn

and a homeomorphism ϕ : U −→ V = ϕ(U) .

Definition A.1.2. Let (M,T ) be an n-dimensional manifold. The
pair (U,ϕ), where U ∈ T and ϕ : U −→ V is called a chart. For a
point p in the manifold, the tuple ϕ(p) = (ϕ1(p), . . . , ϕn(p)) is called
the coordinates of p. An atlas for the manifold is a collection A =
{(Ui, ϕi)}i∈Λ of charts such that⋃

i∈Λ

Uα = M.

If (Ui, ϕi) and (Uj, ϕj) are two charts in the atlas, we call the
composite map ϕij = ϕi◦ϕ−1

j : ϕj(Ui∩Uj) −→ ϕ(Ui∩Uj) the transition
map from ϕj to ϕi.

111
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A.1.2. Smooth manifolds and maps

Definition A.1.3. Given two charts (Ui, ϕi) and (Uj, ϕj) in an atlas
A, we call them smoothly compatible if either

(1) U ∩ V = ∅; or
(2) the transition map is a smooth, i.e. ϕij ∈ C∞(Rn,Rn).

The atlas A is called smooth if all maps are smoothly compatible.

Given two smooth atlases A and A′ of a manifold M , then the
union A ∪ A′ is an atlas of M . If this is smooth, we say that the
atlases are smoothly equivalent.

Proposition A.1.4. Given a manifold M , the notion of smoothly
equivalent atlases is an equivalence relation on the set of smooth at-
lases.

Definition A.1.5. A smooth structure on M is an equivalnece class
A of smooth atlases on M

Definition A.1.6. An n-dimensional smooth manifold (M,T ,A ) is
a collection of data, where

(1) (M,T ) is a topological manifold of dimension n,
(2) A is an smooth structure on the manifold.

We usually omit mentioning T and A when these specifications are
not important, saying onlyM , and not the tuple (M,T ,A ), is smooth.

There are, in general, many smooth structures to give to any man-
ifold. For example, Rn has been equipped with the standard smooth
structure used in standard analysis courses.

If we have some map f between smooth manifolds M and N , we
would like to have a description of smoothness for the map as well,
taking into account the smooth structures of each manifold. We can
lend our description of smoothness in Euclidean space to the abstract
manifold using the charts.

Definition A.1.7. Let M and N be smooth manifolds, and f : M −→
N a continuous map. We say f is smooth at m ∈ M if there exits
charts ϕ : U1 −→ V1 and ψ : U2 −→ V2 on M and N respectively,
where x ∈ U1 and f(x) ∈ U2, such that the dashed arrow

U1 U2

ϕ
(
f−1(U2)

)
V2

f

ψ

ψ◦f◦ϕ−1

ϕ−1
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is a smooth map between Euclidean spaces. The collection of all
smooth maps f : M −→ N is denoted C∞(M,N).

If, for all m ∈ M , we have that f is smooth at x, we say f is
smooth. If f is smooth, bijective and has a smooth inverse, then we
call f a diffeomorphism, and we say that the smooth manifolds M and
N are diffeomorphic.

As soon as we have chosen a smooth structure A on M , we know
which maps on M are smooth. More specifically, we know when a
chart map U ⊆M −→ V ⊆ Rn is a diffeomorphism. We can therefore
define a new atlas Amax, called the maximal atlas associated to A ,
which is the atlas

Amax = {f : U −→ V | U ∈ TM , V ∈ TRn , f ∈ C∞(U, V )}.

This is an atlas because diffeomorphisms are homeomorphisms (see
Proposition 2.4 in [Lee13]), and it is smooth because all the maps are
smooth. From now on, a chart will mean a chart in the maximal atlas.

Smooth manifolds and smooth maps indeed form a category, usu-
ally denoted Man:

We also have the following:

Proposition A.1.8. The constant map and the inclusion map is smooth.

A.1.3. Partition of unity

Definition A.1.9. Let M be a topological space, and U = {Uα}α∈Λ

an open cover of M . Then a partition of unity subordinate to M is an
indexed family {ψα}α∈Λ of continuous functions ψ : M −→ R with the
following properties:

(1) For each α ∈ Λ, and each p ∈M , we have 0 ≤ ψα(p) ≤ 1;
(2) For each α ∈ Λ, we have supp(ψα) ⊆ Uα;
(3) The family of supports {supp(ψα)}α is locally finite, meaning

that every point has a neighborhood that intersects supp(ψα)
for only finitely many values of α; and (the reason we call
itunity)

(4) At each point p ∈M , we have
∑

α∈Λ ψα(p) = 1.

If M is additionally a smooth manifold, a smooth partition of unity is
a partition of unity where each ψα is smooth.

Remark A.1.10. The sum
∑

α∈Λ ψα(p) actually only has finitely many
non-zero terms because of condition (3), so there is no issue of conver-
gence.
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We need partition of unity later when we create characteristic
classes. Also partition of unity does not hold for C.

Theorem A.1.11. Suppose M is a smooth manifold, and U = {Uα}α∈Λ

is any open cover of M . Then there exists a smooth partition of unity
subordinate to U .

A.1.4. Tangent vectors

In this subsection, we construct a functor T∗ : Man∗ −→ Vect,
which sends a pointed smooth pointed manifold (M, p) to the tangent
space T∗(M, p) = TpM at p ∈M , which is a subset of

HomR
(
C∞(M,R),R

)
.

Definition A.1.12. Let M be a smooth manifold, and p ∈ M . A
linear map v : C∞(M,R) −→ R is called a point-derivation at p if it
satisfies the product rule, i.e., for any f, g ∈ C∞(M,R), we have

v(fg) = v(f)g(p) + f(p)v(g).

The set of all point-derivations at p, denoted TpM , is called the tangent
space to M at p, and an element is called a tangent vector at p.

Remark A.1.13. We usually omit the parenthesis surrounding the
argument of a derivation at a point, just as we do for regular derivation
in R. We also tend to write the scalars on the left, since TpM will
become a vector space over R. E.g. v(f)g(p) + f(p)v(g) becomes
f(p)vg + g(p)vf .

Example A.1.14 (The partial derivative). If we let M = Rn, and
let f : Rn −→ R be smooth, then the standard coordinates x1, . . . , xn
gives rise to the following derivatives:

∂

∂xi

∣∣∣∣
p

f =
∂f

∂xi

∣∣∣∣
p

= lim
h−→0

f(p1, . . . , pi + h, . . . , pn)− f(x1, . . . , xn)

h
,

namely the partial derivatives at p = (p1, . . . , pn). As they satisfy the
product rule, we can consider ∂/∂xi as elements of TpRn.

Now let M be an arbitrary smooth n-dimensional manifold, and
let f ∈ C∞(M,R). We define xi : Rn −→ R to be the projection onto
the i-th coordinate. Let p be a point in a coordinate chart (U,ϕ), and
define x′i to be the i-th coordinate of ϕ, i.e. x′i = xi ◦ ϕ. If we define

∂

∂x′i

∣∣∣∣
p

f =
∂

∂xi

∣∣∣∣
p

f ◦ ϕ−1,
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where the latter derivation is just ordinary partial derivation on Rn, we
get an induced “partial” point-derivation at p on M , i.e. ∂

∂x′i

∣∣
p
∈ TpM .

These new partial derivatives are are dependent on the choice of chart
(U,ϕ). But in a new chart (U ′, ψ) containing p, we can move back to
the former chart by the transition function ϕ−1 ◦ ψ : U ′ −→ U , which
is smooth since M is a manifold.

M ⊇ U

Rn ⊇ V R

M ⊇ U ′

f

ϕ

f

ψ

The terminology suggests that TpM is a vector space.

Proposition A.1.15. If M is a smooth manifold, and p ∈ M is any
point, then TpM is a vector space with the pointwise operations from
Hom

(
C∞(M,R),R

)
.

Example A.1.16 (The partial derivative). As we saw in example A.1.14,
we have partial derivatives

∂

∂xi

∣∣∣∣
p

∈ TpRn,
∂

∂x′i

∣∣∣∣
p

∈ TpM

namely the partial derivatives at p = (p1, . . . , pn). These are linearly
independent as well, because for any linear combination

∑n
i=0 ai

∂
∂xi

summing to 0, one can set f to be the projection xj : Rn −→ R to the
j-th coordinate, and so we get

0 =
n∑
i=1

ai
∂xj
∂xi

∣∣∣∣
p

=
n∑
i=1

aiδ
j
i = aj,

where ∂xj/∂xi = δji is the Kronecker delta symbol. So the j-th coef-
ficient is 0, for any j = 1, . . . , n. Finally, we can use Taylor’s theorem
to see that any point-derivation at p is a linear combination of the
partial derivatives.

If F : M −→ N is a smooth map, and p ∈ M , then F (p) would
be some point in N . We could then ask if there is some relationship
between TpM and TF (p)N dependent on F . It turns out there is an
induced function TpM −→ TF(p)M . This must, in particular, send

a derivation v on C∞(M,R) to a derivation on C∞(N,R), the latter
depending on v. This can naturally be done as follows:
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Definition A.1.17. If M and N are smooth manifolds, p ∈ M a
point, and F : M −→ N is a smooth map, we can define a map

dFp : TpM −→ TF (p)N,

v 7−→ v(− ◦ F ).

This is called the differential of F at p. More concretely, for some
f : N −→ R, and v ∈ TpM , we have [dFp(v)](f) = v(f ◦ F ). (This
makes sense as f ◦ F is a smooth map M −→ R.)

Remark A.1.18. It is not immediately clear that dFp(v) is a derivation
at F (p). But quick calculation shows

[dFp(v)](fg) = v
(
(fg ◦ F

)
= v
(
(f ◦ F )(g ◦ F )

)
= f ◦ F (p)v(g ◦ F ) + g ◦ F (p)v(f ◦ F )

= f
(
F (p)

)
[dFp(v)](g) + g

(
F (p)

)
[dFp(v)](f),

so satisfy the product rule, hence dFp(v) ∈ TF (p)N .

Proposition A.1.19. Let everything in the sequence M
F−→ N

G−→ P
be smooth.

(1) The map dFp : TpM −→ TF (p)N is linear.
(2) We have d(G ◦ F )p = dGF (p) ◦ dFp : TpM −→ TF (p)M −→

TG◦F (p)P .
(3) The differential of the identity is the identity, i.e.

d(idM)p = idTpM : TpM −→ TpM.

(4) If F is a diffeomorphism, then dFp : TpM −→ TpN an iso-
morphism, and (dFp)

−1 = d(F−1)F (p).

Corollary A.1.20. We have a functor

T∗ : Man∗ −→ Vect,

(M, p) 7−→ TpM,

(F : M −→ N) 7−→ (dFp : TpM −→ TF (p)M).

Lemma A.1.21. Let M be a smooth manifold, p ∈ M , and v ∈ TpM .
If f, g : M −→ R are smooth functions such that f �U= g �U for some
neighborhood U of p, then vf = vg.

Proof. Assume f �U= g �U , and let h = f − g. Then, h is smooth,
and h(U) = 0. In particular h(p) = 0. We want to show that vh = 0,
because, by linearity of v, we would have vh = vf − vg and so we
would have vf = vg. The proof goes by existence of technical tools.
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Without going into details, there exists a smooth function on M1,
say ψU : M −→ R, such that for every point x outside of U , the value
ψU(x) is constant and equal to 1, and ψU(p) = 0. Because the product
ψh is equal to h, we have

v(h) = v(ψUh) = ψU(p)︸ ︷︷ ︸
=0

v(h) + h(p)︸︷︷︸
=0

ψU(p) = 0,

and this completes the proof. �

Proposition A.1.22. The derivative of the inclusion map i : U −→
M is an isomorphism, i.e.

TpU ∼= TpM

Proof. We show that, for any p ∈ U ⊆M , the map dip : Tp −→ TpM
is injective and surjective, using lemma A.1.21 and some technical
tools.

For the injectivity, we verify that the kernel is trivial, which is
equivalent to injectivity. Assume that v is in the kernel of dip, i.e.
dip(v) = 0. We want to check that v = 0, meaning that for every
f ∈ C∞(U,R), we have v(f) = 0. Let C ⊆ U be a closed neighborhood
of p. Without going into details, it can be shown that for each such

f : U −→ R, there exits a smooth function2 on M , say f̃ , such that

f �C= f̃ �C . Thus, by lemma A.1.21, we have

vf = v(f̃ �U) = v(f ◦ i),

and, as dip(v) = v(− ◦ i), we get that v(f̃ ◦ i) = [dip(v)](f̃), which is
equal to 0, as we assumed that v ∈ ker(dip). Thus vf = 0 for any f ,
and so v = 0.

For the surjectivity, let w ∈ TpM be any tangent vector. We want
to find a v ∈ TpU mapping to w. As in the previous step, given a closed

C ⊆ U , we can extend any f ∈ C∞(U,R) to a smooth map f̃ agreeing

with f on C. If we define vf = wf̃ , we get, for any g ∈ C∞(M), that

[dip(v)](g) = v(g ◦ i) = w(g̃ ◦ i) = w(g ◦ i) = wg,

where the the last two equalities follow from (lemma A.1.21 and) the

fact that g̃ ◦ i �C= g ◦ i �C= g �C . And so, to any w ∈ TpM there is
some v ∈ TpU mapping to w.

�

1Called a smooth bump function.
2By the extension lemma for smooth functions
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Corollary A.1.23. The dimension of M and TpM agree.

Proof. As charts have diffeormorphisms between neighborhoods of
M and Rn, the tangent spaces of these neighborhoods are isomorphic
(by proposition A.1.19). And as these “local” tangent spaces are iso-
morphic to “global” ones, we have that TpM has the same dimension
as M . �

Corollary A.1.24. For any chart
(
U, (x1 . . . , xn)

)
, the partial deriva-

tives ∂
∂x1
, . . . , ∂

∂xn
form a basis of TpM .

A.1.5. Tangent bundles

In this subsection, we expand on the idea of T∗ : Man∗ −→ Vect
and obtain a functor T : Man −→Man, sending a manifold M to its
tangent bundle TM .

Definition A.1.25. Let M be a smooth manifold. Then the tangent
bundle of M , denoted TM , is the disjoint union of all the tangent
spaces of M . More concretely,

TM =
⊔
p∈M

TpM.

The projection map of TM is the surjective map

π : TM −→M, (p, v) 7−→ p,

sending a tangent vector v at p to the base point p.

Proposition A.1.26. The tangent bundle TM of a smooth manifold
has a natural smooth structure, making it into a smooth manifold.
With this structure, the map π : TM −→M is smooth. The dimension
of TM is twice the dimension of M .

Proposition A.1.27. The tangent bundle har local trivializations

Recall that if we have a smooth map F : M −→ N , then we can
create a (linear) map dFp : TpM −→ TF (p)N . (See definition A.1.17.)
These gives ut a “global” differential dF : TM −→ TN . In essence,
we can consider

Proposition A.1.28. If F : M −→ N is a smooth map, then its global
differential

dF : TM −→ TN, (p, v) 7−→
(
F (p), dFp(v)

)
,

is a smooth map.
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Corollary A.1.29. We have a functor

T : Man −→Man,

M 7−→ TM,

(F : M −→ N) 7−→ (dF : TM −→ TN)

Vector fields are 1st order differential operators, vectorfields, and
infinitesimal automorphisms

Definition A.1.30. Let M be a smooth manifold. Then a vector field
on M is a smooth map X : M −→ TM , usually written p 7−→ Xp, such
that

π ◦X = idM : M −→ TM −→M.

The set of all vector fields on M is usually denoted X(M) or Γ(M),
depending on the perspective.

Remark A.1.31. The criterion π◦X = idM is equivalent to specifying
Xp ∈ TpM .

Proposition A.1.32. The set X(M) of all vector fields on M is a
vector space.

A.2. Lie groups and equivariant maps

Lie groups are special types of manifolds. We study them now. All
the material can be found in [Lee13] and [Tu17].

A.2.1. Lie groups

Definition A.2.1. A Lie group is a smooth manifold G that is also
a group (in the algebraic sense), with the property that the maps

e : G0 −→ G, 0 7−→ eG,

i : G1 −→ G, g 7−→ g−1,

m : G2 −→ G, (g, h) 7−→ gh,

are all smooth. (The space G2 is a smooth manifold by meta theo-
rem 1.2.1.)

Example A.2.2. If G is a Lie group, any element g ∈ G defines two
maps,

Lg : G −→ G, h 7−→ gh, and Rg : G −→ G, h 7−→ hg.

These are called left translation and right translation, respectively,
as they translate elements around the manifold. It should be noted
that these maps are both smooth, as they are the composition of two
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smooth maps. For example, Lg is the composition of the injection
map h 7−→ (g, h) and the multiplication map (g, h) 7−→ gh. They
are actually diffeomorphisms, as the maps Lg−1 and Rg−1 are smooth
inverses.

Example A.2.3. Let G be a Lie group, and g ∈ G be any point in G.
Similarly to the previous example, we have a map

ψg : G −→ G, h 7−→ ghg−1,

called the conjugation map, as it conjugate h with g. There are several
ways of proving this is smooth: for example, it is the composition
ψg(h) = ghg−1 = Lg(hg

−1) = Lg
(
Rg−1(h)

)
= Lg ◦ Rg−1(h) of the

left translation map Lg and the right translation map Rg−1. This
also shows that it is a diffeomorphism, as it is the composition of two
diffeomorphisms. The inverse, as can easily be checked, is ψg−1 .

A.2.2. Group actions and equivariant maps

In this subsection we discuss left actions, but we could just as easily
talked about right actions.

Recall that a (left) action of a group G on a set X is a map G ×
X −→ X, often written as (g, x) 7−→ g · x, that satisfies

e · x = x, g1 · (g2 · x) = (g1g2) · x.

Definition A.2.4. Let G be a Lie group, and M a smooth manifold.
We call M a (left) G-space if G ×M −→ M is a continuous map. If
this is a smooth map, we say we have a smooth (left) action.

Definition A.2.5. Let M be a G-space.

(1) For each p ∈ M , the orbit of p, G · p, is the set of all images
of p under the action by G:

G · p = {g · p | g ∈ G} ⊆ G.

(2) For each p ∈M , the stabilizer of p, Gp is the set of all elements
of G that fixes p:

Gp = {g | g · p = p ∈ G} ⊆ G.

(3) The action is called transitive if, for every p, q ∈ M , there
exist some g ∈ G such that g · p = q.

(4) The action is called free if, for every p ∈M such that g ·p = p,
we must have g = e.

Remark A.2.6. We collect a few remarks from the above definiton.
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(1) Observe that the stabilizer Gp of p is always a subgroup Gp ≤
G of G.

(2) A transitive action is equivalent to every orbit space being
M .

(3) A transitive action is equivalent to to every stabilizer group
being trivial.

Definition A.2.7. Let M and N be G-spaces with smooth actions

M ×G −→M, (m, g) 7−→ m · g,
N ×G −→ N, (n, g) 7−→ n · g,

and let f : M −→ N . We call f equivariant if, for all g ∈ G, we have
f(m · g) = f(m) · g, or equivalently, the following diagram commutes.

M M

N N

f

·g

f

·g

A.2.3. Lie algebras

Recall that a vector field is a map X : M −→ TM such that Xp ∈
TpM . (See definition A.1.30.) Let f : M −→ R be a smooth function.
Because Xp is a derivation at p, then Xf will be another smooth
function. IF we apply the vector field Y to this new function Xf , we
get yet another smooth function Y Xf = Y (Xf). But the derivation
f 7−→ Y X is not, in general, a derivation at p as it does not always
satisfy the product rule. This is because the product Y X of two 1st
order differential operators is a 2nd order differential operator. The
same problem applies to f 7−→ XY . But what is also true is the fact
that all the 2nd degree terms of Y X and Y X commute. So if we
subtract them, Y X − XY , the 2nd degree parts die, and we are left
with a 1st degree term only. And this satisfies the product rule, or,
put differently, Y Xf −XY f is a differential operator.

Definition A.2.8. Given two vector fields X, Y : M −→ TM , the
operator [X, Y ] : C∞(M,R) −→ C∞(M,R), defined by

[X, Y ]f = XY f − Y Xf,
is called the Lie bracket of X and Y .

Proposition A.2.9. The Lie bracket of X and Y at p is a derivation
at p.

Proof. Just calculate [X, Y ]p = Xp(Y f)− Yp(Xf). �
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The Lie bracket is bilinear and antisymmetric.
Recall that a Lie group acts smoothly on itself via left translation:

Lg(h) = gh. (See example A.2.2.)

Definition A.2.10. Let G be a Lie group. A vector field X on G
is said to be left-invariant if it is invariant under all left translations,
meaning, for any g ∈ G, derivation of the vector field X at any point
g′ is the same as translating the vector field by g from the left. More
explicitly,

d(Lg)g′(Xg′) = Xgg′ .

Remark A.2.11. Since Lg is a diffeomorphism, we can abbreviate
the equation in definition A.2.10 to (Lg)∗ = X, which also makes the
terminology more clear.

One can observe the fact that the set of all left-invariant vector
fields X ∈ X(M) form a linear subspace of X(M). This follows directly
from the fact that (Lg)∗ is a linear transformation. But, slightly less
obvious,, but far more important, is the fact that taking the Lie bracket
of two left-invariant vector fields gives a left-invariant vector field.

Proposition A.2.12. Let G be a Lie group, and suppose X and Y
are smooth left-invariant vector fields on G. Then [X, Y ] is also left-
invariant.

Definition A.2.13. Let G be a Lie group. The set of all smooth left-
invariant vector fields on G, denoted Lie(G), is called the Lie algebra
of G.

Recall that we use the notation g for the tangent space TeG at the
identity of a Lie group G.

Theorem A.2.14. Let G be a Lie group. The evaluation map

ε(X) : Lie(G) −→ g

given by ε(X) = Xe is a vector space isomorphism. Thus, Lie(G) is
finite-dimensional, with dimension equal to dim(G).

Recall that ψg(h) = ghg−1 is a diffeomorphism, called the conju-
gation map. (See example A.2.3.) Observe that it sends e 7−→ e, so
the derivative at e would be a map g = TeG −→ Tψg(e)G = TeG = g.
This map,

g −→ g, X 7−→ d(ψg)e(X),

has the name Adg.
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Definition A.2.15. Let G be a Lie group. The adjoint representation
of G, denoted Ad is the map

Ad: G −→ Aut(g), g 7−→ Adg .

The reason for the name is the following:

Proposition A.2.16. The adjoint representation of G is a (group)
representation of the Lie group G.
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