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Abstract

Artificial neural network models have been popular in diverse applications
lately. The predictive abilities of these approaches have been extremely promis-
ing. Yet, it has not been easy to construct reliable uncertainty statements related
to these network model results. There is hence ongoing work in formulating artifi-
cial neural network models in a Bayesian context, where the posterior distribution
would enable coherent uncertainty quantification.

In this thesis, a Bayesian neural network model called Bayes-by-Backdrop is
studied. The model differs from standard feedforward neural networks in that point
estimates for a neuron’s weights and biases are replaced by a full prior distribu-
tion, allowing for the application Bayesian methods. The implementation uses
spike-and-slab priors, a Gaussian mixture with the same mean for each compo-
nent distribution. Variation Inference is used to arrive at a posterior distribution
of the network’s predictions. In an experimental setup for tuning different hyper-
parameters, the implementation of the Bayes-by-Backprop algorithm is tested and
investigated on a univariate nonlinear regression task including a sinusoidal signal
and Gaussian noise. This class of algorithms utilizes Bayesian formalism to create
a systematic and theoretically well-founded way of estimating data variability in
the prediction. However, the uncertainty estimates of the algorithm is here shown
to be very sensitive to hyperparameter settings, as well as the sheer number of data
points.

The number of hyperparameters in an ANN is usually large. Doing a grid
search of all hyperparameters is prohibitive in most cases. Instead, deep learning
practitioners often manually try out one hyperparameter at a time, see what it does,
and then select a small subset that seem promising for further tuning. However,
tuning the centre and spread (mean and variance) of the variational posterior cannot
be entirely decoupled in the Bayes-by-Backprop algorithm.

Even so, the basic strategy hyperparameter tuning strategy applied in this thesis
tries to simplify the process. Find a good setting for the posterior mean, then tune
the hyperparameters of posterior spread. For posterior variance tuning, the neural
network width is shown to be a more stable dial than the variance of weight priors.

The thesis briefly goes over theory and background, then presents and discusses
experiments. Finally, results are summarised and contextualised.
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Oppsummering

Kunstige nevrale nettverksmodeller har vært populære i forskjellige applikasjoner
i det siste. De prediktive evnene til disse tilnærmingene har vært ekstremt lovende.
Likevel har det ikke vært lett å lage pålitelige usikkerhetsestimater knyttet til disse
nettverksmodellresultatene. Det arbeides derfor kontinuerlig med å formulere kun-
stige nevrale nettverksmodeller i en Bayesisk kontekst, der posteriorfordelingen vil
muliggjøre tolkbar usikkerhetskvantifisering.

I denne oppgaven studeres en Bayesiansk nevralnettverksmodell kalt Bayes-
by-Backdrop. Modellen skiller seg fra standard ”feedforward” nevrale nettverk ved
at punktestimater for et nevrons vekter erstattes av en fullstendig prior-distribusjon,
slik at Bayesianske metoder kan brukes. Implementeringen bruker spike-and-slab
priors, en gaussisk blanding med samme gjennomsnitt for hver komponentfordel-
ing. Variasjonell inferens brukes til å komme til en posterior-fordeling av nettver-
kets prediksjoner. I et eksperimentelt oppsett for tuning av forskjellige hyperpa-
rametere blir implementeringen av Bayes-by-Backprop-algoritmen testet og un-
dersøkt på en univariat ikke-lineær regresjonsoppgave med et sinusformet signal
og Gaussisk støy. Denne klassen av algoritmer bruker Bayesiansk formalisme for
å skape en systematisk og teoretisk velbegrunnet måte å estimere datavariabilitet
i spådommen. Imidlertid er usikkerhetsestimatene for algoritmen her vist å være
veldig følsomme for innstillinger for hyperparameter, så vel som det store antallet
datapunkter.

Antall hyperparametere i et ANN er vanligvis stort. Å gjøre et rutesøk av alle
hyperparametere er i de fleste tilfeller uoverkommelig. I stedet prøver man ofte
manuelt et hyperparameter om gangen, ser hva det gjør, og velger deretter en lite
delmengde som virker lovende for videre innstilling. Imidlertid kan innstilling av
sentrum og spredning (gjennomsnitt og varians) av den variasjonelle posterior ikke
helt frakobles i Bayes-by-Backprop-algoritmen.

Likevel prøves den grunnleggende strategien for hyperparameterjustering som
er brukt i denne oppgaven å forenkle prosessen. Finn en god setting for posterior-
gjennomsnittet, og still deretter inn hyperparametrene for posterior-spredningen.
For posterior variansjustering er nevrale nettverksbredder vist å være en mer stabil
hyperparameter for tuning enn variasjonen av parameterenes priorfordeling.

Oppgaven går kort over teori og bakgrunn, og presenterer og diskuterer eksper-
imenter. Til slutt blir resultatene oppsummert og kontekstualisert.
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1 Introduction

The fields of deep learning and machine learning (ML) have seen a lot of de-
velopment over the last decade, with many new applications in technology and
science, as well as impressive advances in high-profile fields, such as a superhu-
man performance in the game of chess, contributing largely to the hype around
the term artificial intelligence (AI). Such advances easily capture the attention and
imagination of the public, in part because they have an easy-to-measure metric of
whether a system/algorithm is superhuman or not - chess only has one winner and
one loser, there are no in-betweens, no fuzzy logic, no qubit-like uncertainty in the
state of the outcome (although draws can occur in chess).

However, there are many ”fuzzy” tasks where we would like to be assisted by
computers, where the answer we are looking for is not merely ”yes or no”. This is
certainly true for some of the most financially and socially profitable applications
of AI: tumour detection and classification in cancer research and medicine now
performs at a superhuman level. Strides have been made towards self-driving cars,
as one can now let cars drive on auto-pilot on highways. AI algorithms are be-
ing given an increasingly greater degree of autonomy over their own work, along
with more influence over the lives of millions of people, whether through Net-
flix and Amazon recommender systems, Google advertisements tailored to each
user, and even Chinese surveillance infrastructures used to monitor and calculate
the value of each citizen in the eyes of the authorities. Some believe that AI will
have an increasingly greater social impact in the coming decades. Deep learning
is now a billion dollar industry, yet the theory underlying it is somewhat under-
developed. The urgency in inventing ever new methods for solving increasingly
complex challenges has pushed research communities into a largely trial-and-error
based methodology, where the focus is on producing good results in applications
at any cost. Developing a solid and far-reaching theoretical foundation that tell us
exactly what ML and AI can and cannot do under various constraints has fallen to
the wayside, and may be impossible.

The main workhorse of modern, high-profile AI is the Artificial Neural Net-
work (ANN), a form of ML algorithm which can infer a layered representation of
increasingly complex or abstract features in a process called deep learning. The
word ”deep” refers to the number of representational layers in a network; if it has
more than two, the network is said to be ”deep”. Being provided a data set or an
interactive environment, this form of AI can ”learn”, or infer, patterns that are too
complex for humans to be able to hard-code into an algorithm. This self-inferring
trait is part of what gives ANNs their flexibility and appeal - unlike earlier forms
of AI, it does not rely on meticulous, time consuming attempts to convert human
domain knowledge into hard-coded features. Instead, data is fed into the input part
of the algorithm, and out comes impressive results in a much shorter time. How-
ever, because we do not easily see what happens to the data inside the algorithm,
it is called a ”black box” model, and this trait is a substantial challenge to model
interpretability and accountability. The ANN simply attunes itself to any pattern
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that exists in the data set, with no regards for whether human biases are coded into
it. For this any many other reasons, the predictions of an ANN should be met with
healthy scepticism.

If the ANN is provided with a data set with covariates and responses, it is said
to perform supervised learning, while a data set with only covariates requires un-
supervised learning. If instead the ANN is given the task to maximise some benefit
in an interactive environment, it performs reinforcement learning. Such an algo-
rithm could play chess, control a robot, or even monitor and tweak the traffic lights
system in a city in order to optimize traffic flow. There are many forms of ML mod-
els besides ANNs, such as trees, support vector machines and K-nearest-neighbor,
which tend to perform at least as well as ANNs on many simpler tasks, and they
are usually much faster and less memory costly to fit, but ANNs tend to have ad-
vantages in certain situations. Among the most popular deep learning methods,
ANNs are regularly used in several practical problems related to regression and
classification tasks, see e.g. overview papers by [1] and [2]. In this work, the focus
will be on regression problems, where the goal is to predict a response on the real
line from covariates. The standard linear regression model is often too simplistic in
complex data types, and it is rarely possible to directly extract transformed features
in this context. With the abundant software that exist today, it is relatively easy to
use ANNs to conduct non-linear regression tasks in such cases.

Getting uncertainty estimates for the results of an ANN is a central goal in nu-
merous applications. One of the most important AI applications may be medicine,
since many decisions in the health sector can be made in a better way when given
improved probability estimates of different outcomes. This is true for each individ-
ual doctor all the way up to central authorities making decisions on public health
for an entire country. Take tumour identification and classification as an example:
Suppose a patient has an MRI/CT scan to reveal any tumours. An ANN looks at
the scan, and gives a ”yes/no” answer as to whether there is a tumour in the im-
age. If it says ”yes”, what is then the probability that the patient has a tumour?
Is it 51% or 99%? What if it says ”no”; is there a 49% or a 1% probability of a
tumour being present? Clearly, having a detailed probability interface would be a
lot more informative for the medical practitioner, rather than being given only a
”yes/no” answer - this is likely true for many questions that show up in a treatment
process. Access to accurate, reliable uncertainty estimates may have a large impact
on major decision making in patient care.

Another example, in a reinforcement network setting: Let us say that AlphaGo
finds 2 potential moves, labelled I and II. Move I has a higher expected increase
in probability of a win, but also higher variance - i.e. it is a high risk, high reward
move. A regular ANN can only say something quantitative and substantial about
the probability of winning by looking at its past training history, which may involve
playing against itself thousands or millions of times.

Other interesting applications where uncertainty statements are critical include
self-driving cars, city planning, finance, corporate decisions, artistic/aesthetic uses,
fluid mechanical simulations that rival state-of-the-art numerical methods, and so
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much more. Some of these applications are ”high-profile” in the sense of being
the subject of media hype, yet other, less known uses may still prove to have a
greater substantial impact on society than the hype cases. Arguably, uncertainty
estimates could prove important in any ANN application that has a bearing on
decision making with consequences for things humans value.

As it turns out, there are several ways of including uncertainty/stochasticity
in a ”standard” ANN setup, but it has not been straightforward to understand the
properties of these methods. See e.g. the overview by [3]. Fast approaches use
stochastic inclusion or deletion (dropout) of components in a standard architecture,
random initialization or components in the stochastic gradient-based optimization.
One naı̈ve way of doing ANN uncertainty is then simply to treat each fit as a sim-
ulation, and use the set of simulations as an empirical distribution, whence can
be found some uncertainty measures. In a regression setting, finding standard de-
viation and confidence intervals are natural candidates. Including a probabilistic
model for the weights in the network structure, can facilitate the uncertainty quan-
tification, moving beyond simple drop-out approaches. In a formal Bayesian set-
ting with a prior model for the weights, one can address the posterior distribution
of the weights in the network. Albeit easily done in theory, it is not obvious how
to analyze this posterior distribution in practice, and several approximations have
been suggested. This thesis will investigate the Bayes-by-Backprop (BBB) algo-
rithm, which is a version of the variational inference (VI) approach. The algorithm
used in the experiments is an implementation of BBB, as described in [4].

The thesis is structured as follows: In Chapter 2 we introduce the key com-
ponents of the ANN model in the regression setting. This chapter hence sets the
notation and terminology used in the later chapters. We further explain elements
related to the network training, which involves the estimation of parameters in the
ANN model as well as hyperparameter and architecture tuning. In Chapter 3 we
present the Bayesian view of ANNs. After a brief historical background and mo-
tivation, we describe the core elements of the BBB methodology relying on VI
methods for fitting the posterior distribution of the ANN weights. The criteria we
use for comparison of different setting of the BBB approach includes the Mean
square error (MSE) and rank statistics with tests such as the Kolmogorov-Smirnov
(KS) statistic. In Chapter 4 we have simulation studies in a regression problem with
a sine function, where the particular focus is on tuning the hyperparameters of the
BBB reliably. In Chapter 5 we conclude with a summary of the main findings of
this work and point to further work.

2 Artificial neural networks

2.1 Background on regression

Regression is a method for predicting a random continuous response variable
yi ∈ R as a function of explanatory variable vector xi = (xi1, . . . , xip) ∈ Rp,
where i = 1, . . . , n denotes the index of observations and p denotes the number
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of covariates. Sometimes the explanatory variables are alternatively referred to in
statistics as ’factors’ or ’covariates’, or in ML literature as ’features’. In a regres-
sion model, we represent the response as being generated by deterministic function
of the explanatory variables xi with some additive noise;

Yi = fw(xi) + εi, i = 1, . . . , n, (1)

where w denotes unknown model parameters. In most settings, the noise terms,
also known as the errors of the response variable, are considered to be indepen-
dent and identically distributed Gaussian variables with zero mean and constant
variance σ2ε so that

εi ∼ N(0, σ2ε), i = 1, . . . , n, independent. (2)

In ML, inference is commonly referred to as ”training” a model. The data used
in the training is:

Dtrain = {(y1,x1), (y2,x2), . . . , (yn,xn)} .

The goal is in most settings to train the functional relation in equation (1), given
this data. When testing the approach, one often uses a hold-out or test data set. To
understand the properties of the methods. This validation set will be denoted by
Dvalid. Given new explanatory variables x0 (in the validation set) one can then
predict the associated response through the trained functional relation:

E(Y |x0) =

{
f̂(x0),
fŵ(x0).

Here, the training works on the function form f directly (top row), or on param-
eters w in a pre-determined functional form for f , defining a family of mappings
of which fŵ(·) is an instantiation. Other goals may be finding the median or other
quantiles of the response for the specified covariate, as is done in quantile regres-
sion [5]. Yet another goal is to characterize the uncertainty of the prediction to a
reasonable level as we will discuss further in the next section.

The main question in regression analysis is the selection of the function f in
equation (1). A common choice is that of linear multiple regression analysis where
one can have

fw(xi) = w0 + xi1w1 + . . .+ xipwp. (3)

This can be rather flexible even though it has a simple linear form. In particular,
there are many possibilities in using derived features or transformed covariates as
the explanatory variables xi, such as products or logarithms of xij with i constant.
Also, the estimation of parameters is trivially done by the method of least squares,
assuming the number of observations n is larger than the number of model param-
eters p+ 1, that is the number of features along with the constant term w0.

Despite its abundant use in practice, the linear regression model in equation
(3) has limited ability to train relations in complex multivariable settings, and this
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has motivated the search for more complex and nuanced functions such as neural
networks. In particular, it is only natural to assume that any given dataset may have
been created by a different, more complex process than what is assumed by a linear
regression model. In this one is in a case of imposing assumptions onto a data set
which are untrue, but which still serves the purpose of simplifying analysis and
providing insights about the data. As we shall see, ANNs can be viewed as iterated
polynomial regression. The fact that ANNs in principle have no known limits to
what functions it can estimate, or how accurately, shows that regression has a great
deal of flexibility in what models it can represent.

As touched upon, statisticians and computer scientists have somewhat different
nomenclatures in reference to mathematical/probabilistic modelling. Covariate and
response variables are known in the ML literature simply as ”inputs and outputs”,
or even ”features and labels”, respectively. The ML language is a bit less rigorous.
E.g. it does not distinguish between random variables and their values - both are
referred to as ”labels”. This is not a huge problem, since the ML literature is so
focused on applications - one usually knows what a researcher is referring to from
the context.

2.2 Neural Networks Models

Neural networks in the human brain inspired the ANN term to describe computer-
generated algorithms where quantitative data are flowing along network edges in a
system with connected layers.

The ANN model can be regarded as a regression model where the features are
derived by non-linear functions of linear combinations of covariates. This can oc-
cur via many layers of variables and with different number of variables per layer,
see Figure 1. There exists myriads of versions of ANNs. In a simple setting with
one hidden layer, consider feature variables zj , j = 1, . . . ,K as an intermediate
variable. Each of these features are activated by linear combinations of input co-
variates. Then the features take part in a linear predictor for the expected response.
In mathematical terms, we then have:

zij = σ(w1
0,j +w1xi), j = 1, . . . ,K,

g(zj) = w2
0 +w2zj , (4)

where the weights at level l are denoted by wl
· and the activation function σ(r)

can be selected. A common choice is the sigmoid function σ(r) = 1/(1 + e−r).
The final output function f(·) is now a combination of functions (σ and g in this
simple example) going between the different layers, where one function is input to
the next.

The term ”weights” of one layer l refers to all parameters wl
i that are multiplied

by the output from the previous layer, while ”bias” refers to the constant term w0.
(Confusingly, ”weights” may also refer to both of these - we will refrain from
this usage and distinguish between weights and biases.) The unknown nonlinear
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Figure 1: The Feedforward Neural Network. The system of edges going out from
layer hi multiplied with weight matrix Wi,i+1, added to bias vector b, and finally
passed to the next layer hi+1. Biases are excluded from this graphical setup. From
[6].

regression parameters are here then w = (w1,w2) in this simple illustration of
an ANN model. With many layers in the ANN, there are plenty parameters that
must be specified in this representation, and one often needs much training data to
estimate them all. Note that the special case of multivariate regression is a type
of feedforward neural network with activation equal to identity, σ(r) = r, in all
layers. The response is a linear combination of the covariates. In general, the
output could be multivariate as well. In this work, however, the scope is limited
to having one output response, which is the simplest special case of the rightmost
part of Figure 1.

Even though the scope is limited in this work where the focusing is on study-
ing the robustness of parameterization in the ANN models for a nonlinear function
prediction, it is worthwhile just touching the large-scale situation. How many co-
variates and responses can an ANN process? Figure 3 provides an example using
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Figure 2: Commonly used activation functions: ReLU and the tangens hyperboli-
cus tanh(·). The first shoots off to infinity with increasing input, while tanh(·) has
horizontal asymptotes in y ∈ {−1, 1}.

the VGG-16 CNN, which can classify images into upto 1000 classes. VGG-16 ac-
cepts a 224x224 image, which is turned into a 224x224x3 tensor. The tensor depth
of 3 corresponds to the image’s three color channels. This tensor is run through
convolutional and max pooling layers, the latter of which reduces the tensor height
and breadth. The last max pool returns a 7x7x512 tensor, which can be viewed as
7 · 512 = 3584 vectors, each with a length of 7. The flatten operation concatenates
all of these vectors, producing one long vector with dimensions 1x1x25088. This
forms the input of a fully connected feedforward neural network sporting 2 ReLU
layers, each with 4096 neurons, finally producing 1000 output layer activations,
the largest of which is the predicted class. Hence, the point of this digression: in
theory, ANN’s can handle arbitrarily large input and output vectors, enabling their
state-of-the-art performance on high-dimensional problems involving complex sta-
tistical relationships.

One downside of ANNs is the difficulty in the interpretation of results. Un-
like the linear regression model or other generalized linear models, there is no
direct explicit way of relating a weight to the factor influence on the response.
For linear regression one could look directly at the slope estimates in equation (3),
while common logistic regression models use odds ratios to interpret estimated ef-
fects. However, for ANNs, the response is a highly complex relation of the inputs,
which may be connected in inherently hard-to-interpret ways. Recent approaches
attempt to look at ideas from sensitivity analysis to address these challenges of
interpretability [8], but this remains a challenge for deep learning methods overall.
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Figure 3: Model architecture of the VGG-16 CNN, an image classification ANN.
Figure from [7]

2.3 Optimization, backpropagation and inference methods

While the coefficients in a multiple linear regression model can be estimated
directly using the method of least squares, the challenge of specifying the weights
in an ANN is not that straightforward. A common conception about ANNs is that
it learns parameters from data through ”trial and error”. This statement can lead
to the misconception that an ML algorithm tests out, say, M randomly selected
hypotheses, and then represents the best hypothesis. Such a procedure would be
much too inefficient - ANNs can have as many as 150 billion parameters, each of
which can hold any real value in principle. It stands to reason that a search policy
of the space of all hypotheses based solely on random selection will be extremely
inefficient, and would be prohibitive in projects such as learning to play chess at
a superhuman level, which takes millions of self-play sessions even with state-of-
the-art optimisation techniques.

Instead of trying out parameter permutations randomly, the estimation pro-
cedures associate with ANNs strategically use what is learned from the current
hypothesis to select the next candidate hypothesis, so as to arrive at an optimal
solution as fast as possible. This sounds impressive, but is simple to express in
programming and mathematical terms: choose a loss function L(w) (also known
as ’objective function’, ’cost function’) and an optimization function, and the al-
gorithm will ”walk its way”, i.e. iteratively move, through the parameter space
according to the optimizer’s policy, and try to fit a good model, i.e. a model with a
minimal loss value between the fitted model’s predictions and the labels.

As such, the goal of the hypothesis search can be stated as finding parameter
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vector w such that the loss is minimized:

ŵ ∈ argmin
w

L(w). (5)

The objective function L(w) used in the current work is that of a negative log like-
lihood, assuming Gaussian error terms. Notably, this will later be modified when
we introduce the Bayesian setting with a prior density function on the weights,
which can be regarded as a way of regularizing the objective function. Alternative
loss functions include cross-entropy and others [9].

This problem statement is easy to follow in theory, but is a central challenge
in ML which has attracted a large portion of current and past literature. Parameter
optimization in ANNs is usually non-convex, and it can be very high-dimensional.
It also varies a lot from one problem to the next - a small change in the loss func-
tion or the network structure can lead to very different parameter estimates. The
objective function is optimized iteratively, where one for each epoch strategically
selects each new hypothesis based on what it learned from the previous hypothesis.
This is done using a gradient optimization algorithm (though some optimizers are
not gradient based). The iterative optimization is truncated when there is no more
increase in the objective function for several epochs. The nonlinear challenges in
the ANNs is often recognized when plotting the objective function as a function of
the epochs. Quite often, it can appear as if one has reached convergence, but then
the objective function suddenly drops further. This just illustrates that the objective
function is very difficult to optimize.

In Figure 4 the main elements of the backpropagation routine are shown. This
is used as an important step in the training of ANNs, where the goal is to find
the weights that minimize the objective function. The derivates are then computed
based on kernel derivatives that combine to get the desired result.

The objective function surface can look very ugly. An illustration is shown
in Figure 5. It is of course extremely difficult to optimize such surfaces on the
computer, no matter what technique is used.

The theory of ANNs is not very well developed. This is seen in the ML lit-
erature, which very often relies on a trial-and-error procedure and lots of experi-
mentation to arrive at important results. One important theoretical baseline is the
Universal Approximation Theorem, which ambitiously states that ’A neural net can
do anything’. This result is impressive, since it implies that there is no task that
ANNs, in principle, cannot perform, as long as one can somehow arrive at a good
value for weights-and-biases vector w. However, it only holds true for infinitely
wide ANNs. Real applications have two hard restrictions that limit the capabilities
of ANN’s: layers must have finite width, and we cannot try out all possible param-
eter vectors, meaning we have to do some kind of search to find a good hypothesis.
Still, the representation and hypothesis space of a large (wide and/or deep) ANN
can be huge. Because an ANN relies on numerical optimization to try to find the
best solution in this parameter space (i.e. search the argmin of the loss function),
there is always a chance that the optimization procedure will find its way to a lo-
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Figure 4: The Backpropagation Algorithm. Here, the input layer is at the right-
hand side. A batch x-values has been passed forward, and the loss L(y ∗ −y)
has been calculated. The derivative of L with respect to a weight/bias wk

j

will come out as an iterated chain rule, since each neuron activation aki de-
pends on the previous layers’ activations ak−1, which in turn depends on ak−2,
hence the notion of the loss being propagated ”backwards” in the ANN. From
youtube.com/watch?v=An5z8lR8asY

cal minimum on the optimization surface which does not satisfy the intent of the
practitioner. The large size of the hypothesis space means we can assume that
overfitting will be a central tendency in unregularised ANN’s. Experience supports
this notion: there are lots of add-ons and a large ML literature focused on how to
avoid overfitting. However, if regularisation is too strong, it will lead to underfit-
ting. Hence ANN applications often involve some kind of balancing act between
too much and too little regularisation. The strong focus on avoiding overfitting has
implications for the optimization procedure as well; an ML practitioner ultimately
wants not to find the best parameter setting for the training set, but for the test set,
leading to practices like early stopping, and more.

There are by today a number of possibly tools to stabilize the optimization pro-
cedure, including regularization, batches, batch and weight normalization, weight
initialization, etc. [9]. We will focus on presenting the main ideas required for
what follows.
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Figure 5: Example optimization surface in a backpropagation setting, plotted with
respect to two learnable parameters. Efficiently finding the global minimum of
such as surface forms a considerable engineering challenge, particularly when the
number of parameters is large.

2.4 Hyperparameter Tuning

We do not give a full detail over what non-learnable parameters the ANN mod-
els have here. As we brought up briefly in the previous section, there are a number
of switches and dials to turn, to make it work in practice. Even though this has
become an art that often required much experience, there are still much room for
experimentation to see what settings might work better than others.

This thesis uses the optimizer called ADAM - the Adaptive Moment (or Adap-
tive Moment Estimation). This algorithm arose from the machine learning com-
munity after a decades-long process of development in the field of gradient-based
optimization. One can find a starting point for this field in the Gradient Descent
algorithm proposed by Cauchy in 1847 [10]. Gradient descent is relatively slow
and unstable, so ML researchers developed mini-batch gradient descent, which
randomly selects a subset of the parameter over which to optimize in one step (or
epoch, in the case of ANN’s.) Adding acceleration and momentum parameters to
each learnable parameters gives ADAM.
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Figure 6: The ADAM optimizer algorithm. Using gradient and Hessian to infer the
direction and magnitude of the next step in the parameter space, ADAM assigns
separate parameters to each of the parameters in a batch. Image from [9].

The following inputs or hyperparameters must often be tweaked in an ANN
training exercise:

• Epochs.

• Architecture (Layers, neurons, activation function).

• Learning rate.

3 Bayesian neural networks

3.1 Bayesian View

The Bayesian approach is generally applicable to most statistical inference
tasks. By treating the slopes in the linear regression model in equation (3) or the
weights in equation (4) as random variables, we turn the optimization problem into
a challenge of assessing a probability distribution for the parameters of interest,
given the data.
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There are at least two reasons for studying Bayesian methods in the context of
ANNs. First, the Bayesian viewpoint enables a natural regularizer for the weights
in the ANN structure, and this can lead to faster convergence and more robust
structures that limit the risk of overfitting to the training data. There are also sev-
eral other regularizers in the literature, but most of these can be transformed to
a Bayesian setting with a more or less natural prior distribution for the weights.
Second, the Bayesian viewpoint naturally leads to uncertainty quantification in the
sense that there is not just one prediction with fixed network weights but infinitely
many predictions when marginalizing over the distribution of the network weights.
On this aspect, the standard optimization approaches have come up with a num-
ber of ad hoc solutions such as random drop-out of edges or simple addition of
the training error in the data space. The Bayesian setting in principle allows for
much more nuanced probabilistic statements in this context and has proven highly
effective. Bayesian methods for neural networks have been around for a long time
[11]. And [12] presented a Bayesian solution of an ANN model for the NIPS com-
petition, which outperformed all competing suggestions. A recent discussion of
Bayesian approaches to ANN analysis is provided by [3].

The Bayesian approach assigns a prior distribution to the weights in the ANN.
We let p(w) denote the prior density function of the weights. A network model as
in equation (4) and Figure 1 defines the likelihood model for the response variables
y = (y1, . . . , yn). The resulting density function (likelihood) for the response,
given the weights, can be represented by p(y|w). Bayes’ theorem now states that
the posterior density function for the weights is defined by

p(w|y) =
p(w)p(y|w)

p(y)
∝ p(w)p(y|w). (6)

Similarly, Bayes’ theorem naturally leads to a marginalization over the trained
ANN weights. Assume one aims to predict a new response y0. The frequentist
approach would then plug the predicted weights into the functional model; fŵ(x0),
where the ANN model which is here described by f . In the Bayesian setting the
solution is to marginalize over the posterior distribution for the weights:

p(y0|y) =

∫
p(w|y)p(y0|w)dw. (7)

In practice, the integral in equation (7) is often difficult to solve. An obvious
solution is that of Monte Carlo sampling from the posterior density for the weights,
and then predicting y0 for each weight sample. We then have

p(y0|y) ≈ 1

N

M∑
j=1

p(y0|wj), (8)

which represents a mixture distribution over the predictive distributions for the N
sampled weights wj ∼ p(w|y), j = 1, . . . , N .
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Yet, the sampling from the posterior distribution of the weights is not a straight-
forward task. One possible solution is provided by Markov chain Monte Carlo
(MCMC) sampling, see e.g. [13]. Here, the sampled weights form a Markov chain
with limiting distribution equal to the posterior in equation (6). Hence, this pro-
vides fantastic opportunities for Bayesian inference in ANNs: the implementation
is often relatively easy and the convergence is achieved under very weak regularity
condition on the proposal density. In their NIPS work on Bayesian methods for
ANN, [12] used MCMC sampling to explore the posterior distribution of the ANN
weights.

The challenge with MCMC sampling is related to the often difficult practical
exploration of the sample space of the posterior. In large-size applications the
MCMC sampler often requires tedious iteration efforts to ensure convergence of
the iterative Markov chain simulation. Especially so for difficult posterior surfaces
like that of high-dimensional weights that might be hard to separate. For this reason
the actual convergence and mixing properties of the Markov chain can be very
slow. Hence, the samples in equation (7) become very dependent and could also be
biased if convergence is not yet achieved, and it is not always reliable for posterior
assessment.

Some researchers feel that Bayesian methods are altogether too slow. Alter-
native methods for acquiring uncertainty estimates include Evidential Neural Net-
works

3.2 Variational Bayesian inference in neural networks

In Bayesian inference, variational inference (VI) techniques have gained popu-
larity because they are much faster than MCMC approaches. Unfortunately, it has
only rarely been possible to derive the properties of the VI methods and it does
not give an exact solution to the posterior, but they have shown useful in practical
assessment of weights uncertainty in Bayesian ANNs.

At its core, VI approaches find an approximation q(w) to the posterior distribu-
tion p(w|y). The density q(w) is constructed using certain principles, in particular
that of minimum Kullback-Leibler divergence between a parametric form of q(w)
and the actual posterior. This divergence can be phrased as:

DKL =

∫
qθ(w) log

qθ(w)

p(w|y)
dw. (9)

The parametric form of qθ(w) is most commonly set to be a multivariate Gaussian
distribution, and the specification of parameter θ is done via minimization of the
DKL in equation (9). In essence, this approach then fits a Gaussian approximation
to the posterior distribution. In practice, the calculation of equation (9) relies on
evaluation of this expression up to a proportionality constant, as in equation (6).

The BBB approach [4] provides a highly practical implementation of the VI ap-
proach in this setting of ANN. Here, the approximation to DKL is constructed in a
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special way. Rather than working with the weights directly, it applies a transforma-
tion of variables, where the weights are a function of the parameter and a random
sample; w = t(ε,θ). This enables an efficient implementation of the derivatives
in the backpropagation in the ANN, see e.g. [4] or [3]. With its tight connection
with backpropagation, one can benefit from good implementations such as ADAM
in the BBB steps.

The prior model can be of different types, such as a Gaussian with spike-and-
slab priors, which can be implemented in the BBB approach that has been studied
here.

3.3 Practical elements on implementation

Since the parameter vector w in a deterministic ANN is swapped for a vector
of hyperparameters, calculated from Monte Carlo simulations. This means that the
stochastic and simulation aspects of the BBB algorithm cannot be separated from
the deterministic one during training. The mean-of-simulations ŷj , j = 1, . . . , N ,
seen in red in the plots below, is calculated after Monte Carlo sampling has been
performed, and cannot be calculated otherwise as the algorithm stands. If one
wanted to train the BNN to find the mean ŷ alone, the only option would be to
create a wholly separate, traditional FFNN (feedforward NN) with the same archi-
tecture, now with point estimates on parameters.

We add some comments related to the particular Monte Carlo sampling based
BBB implementation which this thesis built upon: Statistical experiments often
rely on stochastic modelling, i.e. being able to draw samples from a random vari-
able. In order to create replicable experiments, probabilistic programs rely on an
RNG (random number generator) to produce a pseudo-random array of number.
The numbers in this array are then fetched consecutively, i.e. in the listed order,
whenever a random sample is needed. The seed parameter of the RNG determines
the exact list that is produced. Hence, using the same seed value in the same RNG
will give exactly the same results, allowing completely reproducible scripts in the
fields of probabilistic programming. Experimental reproducibility is obviously an
important and sought-after feature of in scientific research. However, seeding not
only allows for experimenters to reproduce eachother’s results - it is highly use-
ful when developing an ANN model, since two different train-and-predict runs of
identical scripts can give vastly different results, especially when training is prone
to poor model fitting or producing NaNs. With seeding, one can be fairly certain
that a change in results is produced by a change in the code, and not by dumb luck.
In order to guarantee this, one would make sure that the similar parts of two scripts
are receiving the same RNG number string, but this level of rigour is usually not
required. The distribution of the ”base” RNG can be uniform. From a uniformly
distributed stochastic variable, many well known distributions can be simulated,
making a uniform RNG very useful in any program that involve simulation. How-
ever, expecting the result to be the same requires seeding.

At the beginning of the experimentation phase for this thesis, the Keras objects
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in the code would not allow themselves to be seeded, meaning that the only way to
know the behaviour of a piece of code was to run it multiple times. A seed value
was provided for random.seed(), numpy.random.seed() and tf.compat.v1.
set random seed(seed value) as well as for the os.environ object, which is used to
set environment variables. The code being non-seedable had a considerable effect
on the experimental setup, since it meant that any change in the outcome of fitting
an ANN model and using it to predict could have been caused by pure chance.

On the other hand, the simulation and deterministic aspects are separate in the
sense that they rely on different tunable parameters in their entirety, meaning that
the mean hyperparameter can be tuned in an separate process from the standard
deviation hyperparameter.

Keras with Tensorflow is the chosen framework in with the BBB algorithm
implementations have been written. This is a high-level language made for ease
of use. Alas, it can have bugs, as evidenced by the numerous bug-fixes Keras:bug-
fixes.

A note for newcomers to Python ANN development is that Keras and tf.keras
are not the same frameworks. This is to say that Tensorflow has an implemented
sub-library called ”keras” which is separate from the standalone Keras framework,
with different syntax and other implementation details. This is in spite of the fact
that Keras is ”built on top of” Tensorflow, meaning TF is the backend of the Keras
API. Hence, combining syntax from Keras and tf.keras may lead to errors. This fact
is seemingly nowhere to found in their respective documentations - most users will
have to infer it either from blogs, online fora or personal experience. Most online
tutorials are simply too rudimentary to go into this level of detail, and perhaps it
does not affect too many people. Still, it can be a bit of a headache to get around.

The Adam optimizer is said to make learning rate tuning obsolete, since it can
work with different values. The idea that Adam is entirely agnostic with respect
to learning rate is empirically false from the results shown here. A better, more
precise wording may be: the Adam optimizer is less sensitive to learning rate,
giving good results in a larger learning rate neighborhood instead of only being
good for a single value.

One might want for a BNN to train all parameters of the priors in the training
process, inferring all traits of the prior from the data in the same way that a standard
ANN learns totally from the data. This is not the case in Krasser’s implementation
- only the mean of the prior is learned from data, the standard deviation is set by
the static (non-learnable) parameters σ1, σ2.

Essentially, a BNN is a neural network that is able to say ”I don’t know”. In
a regression setting, a standard ANN returns a point estimate E(Y |x), while an
BNN yields a whole distribution for the posterior, p(y|x). This density holds all
the information that can be known about the data conditional on the model, and
can be manipulated using any tool in classical statistic to find e.g. confidence
distributions, mode, and 1D values like quantiles and mean.
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3.4 Metrics

To compare results on different parameter setting in the ANNs we use a number
of criteria. Each one is explained briefly in what follows. They are all based
on comparison of predictions or predictive distributions for a size T hold-out test
dataset.

The mean square error (MSE) is used a measure for the prediction strength of
the method. The goal is to have a small mismatch between the prediction and the
actual data. The MSE equals

MSE =

T∑
k=1

(ytest,k − ŷtest,k)2, (10)

where the hold-out data are denoted ytest,k and the associated prediction is ŷtest,k.
In a standard ANN, considering a frequentist viewpoint, this prediction would
equal the functional representation for the model; ŷtest,k = fŵ(xtest,k). In a
Bayesian setting that we focus on here, it would be more reasonable to take the
average value

f̄(xtest,k) =
1

N

N∑
j=1

fwj (xtest,k),

extracted from posterior predictive samples in equation (8), where the ANN is used
for each sample wj , j = 1, . . . , N .

The goodness-of-fit (GOF) is assessed by comparing the predictive distribution
and the observed test data. In our context, we rank the position of the data ytest,k
among the samples

ŷjtest,k = fwj (xtest,k).

The rank statistic of this sample is then the order, such that

rk =
1

N

N∑
j=1

I(ŷjtest,k < ytest,k), k = 1, . . . , T. (11)

Here, if the prediction is reasonably good, the distribution of r1, . . . , rT should be
more or less uniformly distributed.

A Kolmogorov-Smirnov (KS) test statistic is used to compare whether the uni-
form distribution is justified. This is based on the maximal difference between
the data empirical cumulative distribution and a reference cumulative distribution
function. In the current setting, first, the empirical cumulative distribution function
for the ranks rk, k = 1, . . . , T , is computed, and secondly this is compared with
the straight line between 0 and 1 which defines the cumulative distribution function
of the uniform distribution.
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4 Procedure/experiments

Having gone over the required theoretical groundwork, we now turn to experi-
ments. Section 4.1 brings up some general concerns about systematic ANN experi-
ments, and about this Keras BBB setup in particular. The next sections detail fitting
of the variational posterior mean to noisy sinusoidal data. Lastly, in Section 4.4 we
look at how to fit uncertainty in a reasonable way, by selecting a small subset of
hyperparameters for fine-tuning. Results are presented and discussed.

4.1 Background

Implementing and successfully training an ANN is a wholly different endeavor
from understanding deep learning in the abstract theoretical case. Software devel-
opment know-how, critical thinking, patience and ”common sense” implementa-
tion choice are at least as important as having a deep understanding of calculus,
optimization or probability theory. Part of the reason for this is that the theory of
ANNs is not at all sufficiently well developed that it can reliably tell a priori which
hyperparameter settings will yield a good result - not even for noiseless data sets.
This is a very different scenario than e.g. the theory of linear regression, which
guarantees convergence under certain constraints. For this reason, one usually has
to simply try out a few different settings and see which, if any, yield an acceptable
model fit. Libraries such as Keras makes creating an ANN as simple as 10 lines of
code. The challenge comes in selecting an ANN model from a large set of different
models and hyperparameter settings.

This being said, theory has a lot of use when it comes to processing the data
before inputting it to the ANN, and how to interpret/evaluate model’s predictions.
Probability theory will help us when it comes to evaluating the uncertainty esti-
mation performance of the BBB algorithm. Concepts like rank statistic, quantiles,
probability distributions and the KS metric will be central in that regard.

The complexity of the ANN model, its reliance on calculus, matrix algebra and
optimization, as well as the thousands of paper that have been produced in the ever-
developing field of research, can make the newcomer ask: where to even begin? A
new practitioner is well advised to confer online blogs, tutorials or courses, which
may condense decades of research into accessible, step-wise and concise program-
ming strategies. Using academic research publications as a primary guideline for
creating one’s own ANN should only be done after some basic implementation
practices have been establishes - starting from the bottom and jumping straight
into a very recent paper on advanced ANN technology will simply be too steep of
a learning curve.

As illustrated by Figure 5 and ??, ANN training can be messy, and a model’s
performance and ability to generalise can be difficult to assess. This also holds for
the experiments conducted here, and they do not prove anything generally about the
performance of the BBB algorithm applied to DL problems. Notably, if a trained
model performs its task well 10 times in a row, it may still conceivably fail the
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next 10 times. Training a model is often rife with similar kinds of instability - if
an ANN model is well fitted after running the script once, i.e. it achieves a high
performance metric, running the exact same script over again may yield very poor
model fits simply as a result of the stochasticity inherent in the model. If NaN’s
are returned by the optimizer, no model will be produced at all - this can happen
at random when using a stochastic optimiser, although there are steps one can take
to reduce that chance. Still, experiments can show how well an ANN performs
over many replicate trials. The theory gives no guarantees of performance, as
opposed to, again, the theory of linear regression, which is computed analytically,
minimises least squares exactly, and is guaranteed to converge to any underlying
linear trend asymptotically under strict assumptions. Neural networks make very
few assumptions about the domain under investigation, and can pick up on much
more complex statistical relationships. The great flexibility of ANN’s comes with
several downsides: since there is no guarantee on convergence, there may always
be an error that the network cannot get rid of. During training, there is often an a
priori chance of failure (i.e. NaN or bad model fit).

The performance of an ANN on a certain task will be contingent on the train-
ing and hold-out datasets, which usually involve inherent randomness/noise. For
most purposes, acquiring a new training set will require wholly or partly retrain-
ing the network in order to incorporate the new information gained through data.
Even a small change in the dataset used may lead to the trained architecture of
the ANN no longer being optimal. For these reasons, it is not clear a priori how
wide of a family of problems a trained ANN can viably perform for. Capturing
out-of-distribution data points (i.e. extrapolation in the case of regression) is a no-
toriously hard problem for ANNs. Bayesian approaches may help in this regard.
Colloquially speaking, a BNN is a neural network that can say ”I don’t know”,
instead of simply assigning a prediction (label) without supplying any warning on
how far out of distribution the data point is. A standard ANN does not even give us
any information on the spread (e.g. variance) exhibited by the sample distribution
of the data. The ability to estimate the spread of the data in some region of the
covariate space is a great feature of Bayesian approaches to ANN’s, but it must
rely on considerable inductive biases. The difficulty in investigating and choosing
the right inductive bias for a given problem may be central challenge that deter-
mines if BNN’s will be surpassed by other DL uncertainty estimation techniques
in state-of-the-art applications.

ANN predictions are determined by many factors: the data, the model and
inference assistance tools such as the optimizer, batch norm layers or . Hence,
it would useful to have some guarantee that the ANN is only used to predict on
observations from the same distribution as the data. However, this is often an
unfeasible demand - for instance, a self-driving car will always, in theory, be at
risk of seeing a situation unlike anything it has ever seen. This is a reason why
modelling uncertainty must be developed, along with sensible policies on what the
agent will do when it encounters a novel challenge. In the case of self-driving cars,
the car should perhaps slow down? But at what rate? What if slowing down for
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obstacle A puts the car at risk of crashing into obstacle B? To make such difficult
decision making, a realistic uncertainty description is helpful.

Learning how to program and properly use ANNs in Tensorflow and Keras
has, so far, been a considerable challenge. This is largely due to the complexity
of the ANNs, which consequently means that professional ANN libraries, such
as Tensorflow, are fairly complicated for a novice in this field of study. While
there are many tutorials online, each tutorial has a different approach, making it
challenging to transfer knowledge gained from one setting into another. When a
novice first creates their very own ANN, there is a good chance the result will
be bad, whether the task is classification, fitting a regression line or something
entirely different. It will not be obvious why the result is bad - pouring over forum
posts and instructional books on deep learning may be the best way to find a way
forward. This may the case with traditional statistical methods as well - what’s
special about ANN’s is the hugely modular nature of the model. One can always
add another layer, try a different optimizer or regularizer, try different priors in
the case of BNN’s, or even have two adverserial ANN’s (GAN’s) compete against
one another doing opposite tasks, creating seemingly novel representation spaces.
Sometimes it seems that one’s imagination is the only limit in coming up with new
models. The large variation in ANN models on the intellectual marketplace means
that there exists no overarching inference methodology that will give great results
in all or even most cases. Instead, one has a number of ”rules of thumb” and context
sensitive strategies, along with lots of trial and failure.

The particular combination of linear algebra, calculus, optimization and statis-
tics that comprises ANNs makes for a field that is hard to learn, and even when
the student has a full overview of the workings of a deep FNN (feedforward neural
network), it will not at all be obvious what implementation choices they should
make as a practitioner or researcher.

Architecture (i.e. the number of layers and nodes), activation functions (which
may have their own parameters), optimizer (contains learning rate) and loss func-
tion must always be chosen. This choice in itself can seem daunting, since one is
picking a point in a fairly large hyperparameter space. Here, it is easy to get stuck
trying out different value combinations on these must-have hyperparameters. Tun-
ing them is a substantial field in ML literature. If the ANN still does not work, one
may have to use additional techniques, like feature manipulation and add-ons onto
the network like batchnorm. (Data should always be normalised, as is a common
saying in the community (Andrew Ng).) This all makes for a substantial challenge
when ”going Bayesian” on top of all this. Hence, a lot of the time has been spent
reading up on ANNs, Bayesian and otherwise.

Neural networks are complicated algorithms - some of the most computation-
ally demanding programs that perform modern, real-world applications are ANNs,
taking several weeks to train. Therefore, it is a good rule of thumb to always start
out with simple tasks and networks and progress incrementally to more challeng-
ing tasks of a similar sort. This way, one can make sure that the code runs and
that everything works out as expected along the way. In order to get a practical
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understanding of the BBB algorithm and what it can do, let us use a simple 1D
regression case.

On the topic of regression data sample simulation: remember that the under-
lying process is forgotten after it has created the data set. Therefore, the function
f(x) has no impact or salience on the neural network fitting on its own. However,
for larger data sets, the resulting model would predict increase in proximity to the
original underlying process. Hence, it is useful to include the graph of f(x) in the
plot of the BNN prediction, to get a visual sense of how well the prediction fits the
dataset. Obvious, for very small datasets (say, N = 10), one cannot expect the best
fit to the data set to also be a good fit to the underlying trend.

In the BBB algorithm, the mean E(Y |x,w) can be seen as separate from prior
distributions and the choice of its parameter values - at least when the prior dis-
tribution is symmetric. Further, the uncertainty estimates rely on having a good
estimated mean Ê(Y |x,w) = µ̂(x), since the posterior distribution conditional
on an observation, will be centered on µ̂(x). Therefore, we can start out by ad-
justing the hyperparameters that are commonly found in a non-Bayesian ANN -
layers, nodes, activation functions, learning rate, optimizer, and so forth. Then,
we will adjust the BBB hyperparameters, namely the prior parameters σ1, σ2, π.
In our implementation, the latter three will be static and identical for all neurons
throughout the training process. Making them learnable and unique (separate) for
each neuron/layer could be an interesting further model expansion that we will not
investigate here.

4.2 Univariate nonlinear regression

A simple implementation of the BBB algorithm created by M. Krasser pro-
vides a good starting point. The implementation is meant to be an introduction,
and is based on Blundell et.al. [4] which implements a simple (one-dimensional)
regression, with the following set-up.

A set of N equally spaced points {xi} ranging from values a to b is used as the
gridpoints for the dataset:

{xi} = {a = x1, x2, ..., xN−1, b = xN} (12)

For each of these covariate values xi, the stochastic response yi is generated using
a sinusoidal trend function:

yi = 10(sin(2πxi)) + εi , i = 1, . . . , N (13)

with ε ∼ N(0, σ2ε) and σε = 1. This process, when applied to each covariate point
xi, generates response data {yi}, which is normally distributed about the curve
of the underlying trend. We now have a simulated dataset Dtrain = {yi, xi} on
which inference can be based, and we can select the best model with respect to
some metric. In a simulated data setting we can generate as much data as we like,
so we can create a separate, arbitrarily sized data set of the same structure, called
Dvalid = {yj , xj}. The training data set is plotted in Figure [7].
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Figure 7: Dataset of 32 points generated from f(x) = 10sin(2πx) + ε

This simulated dataset is well-behaved compared to most datasets seen in the
real world. The data generating function f(x) assigns one and only one response
value to each point in the linearly spaced grid {xi}. This is a far cry from the
messy data that tends to result from studies or experiments on real-life phenomena.
Uncertainty caused by unseen variables and from inherent aleatoric processes often
gives rise to data that is not well-behaved: it may not seem to coalesce with any
available theoretical distribution, it may have unpredictable, chaotic outliers, it may
be strongly unbalanced, with many observations in one value and few or none
in another, or it may have very few observations altogether. It may even have
missing values on some variables - estimating these is a field in itself in the machine
learning literature. All of these situations can be challenging for data analysts to
deal with, which high-lights the benefits of using a simulated dataset starting out:
we can begin with a well-behaved simulated setting and add on increasingly more
features and complexities as we go along.

Running the BBB script, we are presented with the plot in Figure 8. A varia-
tional posterior distribution has been fitted toDtrain. The variational mean Ê(Y |X)

is seen in red, ostensibly a close fit trend in the training data set. Ê(Y |X) is la-
belled ”Predictive Mean” in the legend. In addition, a lower and upper bound are
found about Ê(Y |X), forming an interval given by

(Ê(Y |X)− 2σ̂ε, Ê(Y |X) + 2σ̂ε)

29



Figure 8: Bayes-by-Backprop 20ReLU-20ReLU model fit. Simulation mean in
red, +-2 variational simulation sample standard deviations in yellow. Unedited
fork from M. Krasser’s github blog.

One may note that this interval is not a credible interval. The term ”credible in-
terval” is simply the Bayesian term for an interval formed by posterior quantiles
containing some portion of the posterior probability density. The uncertainty inter-
val we are given is referred to as ”Epistemic uncertainty” in the legend, meaning
uncertainty that could be eliminated with more data. This is somewhat imprecise.
A better term would simply be ”posterior mean +/- 2* posterior standard devia-
tions”, which is neither a credible or confidence interval. Still, it does the job of
telling us how spread out the posterior distribution for various covariate values. The
bounds are sensible - they closely follow the data, with only a few points falling
above or below. In the out-of-distribution regions, given by

x ∈ (−∞,−.5) ∪ (.5,∞),

we find that the uncertainty bounds spread out about linearly away from the training
set, although it spreads out at different rates in positive and negative directions
(to the left and right along the x-axis). We see the inductive bias of the model
at work: the model is completely guessing what will happen outside the regions
where observations, i.e. training data point, have been made. Yet it is not a bad
guess.
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Figure 9: BBB model fit, produced from exactly the same script as in figure 8. Due
to stochasticity in the code, the data set has changed, and the model fit is poorer.

It is one thing to estimate the trend E(Y |X) as closely as possible. It is quite a
different thing to estimate the error variance σ2ε as well, fulfilling the hopes of what
the BBB algorithm delivers on the promises of reliable interpolation/extrapolation
and belief-based uncertainty estimates - even in a highly controlled simulated set-
ting. In the language of Bayesian statistics, a fitted model may have a good pos-
terior mean that lies close to E(Y |X), but the 2σ̂ε bounds may be completely out
of proportion, and it may not catch on to more complicated patterns such as het-
eroscedasticity. The implementation used here assumes homoscedasticity, since
the data is generated with constant noise variance. Still, the model can pick up
on some variation in variance when it forms itself about the data set according to
Bayes’ Theorem. The uncertainty estimate of the model is largely controlled by
separate hyperparameters σ1, σ2, although network width also has a lot of impact
on uncertainty estimate.

Running the same script again, we get a different result shown in Figure 9.
The model fit is now much worse: it has failed to pick up the signal for the right-
most 40% of the data, so instead of tracing the underlying sine wave, it shoots out
horizontally. The uncertainty bound also begin growing from this point, the model
seemingly oblivious to the data in this region.

Why does the model change from one run to the next? The code is highly
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Figure 10: 500 variational simulations making up a sample posterior

probabilistic in nature. It calls a RNG function when generating the data set, all
trainable parameters are initialised by a normal distribution, and the optimizer is
an advanced form of stochastic gradient descent, which makes stochastic choices
during training. The BBB algorithm also randomly samples the weights and biases
used for each epoch. This means that seeding the RNG’s in the code is necessary
in order to ensure that the program does not change results are random. From now
on, we will seed the code in order to be able to isolate the effects of changes in the
code.

Why does the model fit deteriorate from one run to the next? The simple answer
is that the current choice of hyperparameters makes training unstable. We should
change it up to find a better permutation of values that makes training more stable,
so that the failure or success of a hyperparameter setting to fit well to the data can
be relied upon to a higher degree.

The question of whether training stability is important really depends on the
application. If we have no constraints on time and compute, we can try out dif-
ferent hyperparameter settings in a roundabout way, and as soon as the model fit
is acceptable, simply save the parameter values and the model architecture, and
you have a production ready model. However, in on-site training, as seen in e.g.
Internet-of-Things applications, data is continuously updated, and inference must
be quite fast in order to respond quickly to the change in observations. Here, un-
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Figure 11: 100 variational simulations giving a new sample posterior. The grid
step size 10 times smaller than previously.

stable training can be catastrophic. Hence, creating ANN algorithms that can be
relied upon to fit models to the data reasonably well every time has been a goal of
importance in the ML literature. One technique is data normalisation, whereby the
whole data set is transformed by

xnormalised
i = (xi − µtrain)/σtrain (14)

where µtrain, σtrain are the sample mean and standard deviations of the train-
ing set. This technique did not work at all for the sinusoid regression task - results
where bad, and fitting the models slowed down, taking more epochs to finish con-
vergence. It is clear that scaling a data set along the x and y directions does not
yield an equivalent problem with respect to the model: some data scaling are better
than others, and, as with most other factors in the model, one cannot know a prior
what scaling to choose - one simply has to try out different ones. In the last stage
of experiments, we will scale the data out further in the x-direction, reducing the
slope of the sinusoid curve and making model fitting more stable.

The plot in Figure 10 displays 500 variational posterior samples. It is from
these samples the uncertainty bounds are calculated, by taking their standard devi-
ation in each point along the x-axis and adding/subtracting 2 of them to the poste-
rior mean, which in turn is just the pointwise mean of the samples along the x-axis.
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Figure 12: A 5-bin histogram showing the how many data points fall in each quin-
tile (5-quantile) of 64 variational posterior samples. This histogram is somewhat
U-shaped, meaning tails are heavy. This is a common problem in statistics: the
spread in the data is underestimated, so many data point fall in the upper and lower
quintiles. There are too few points in the middle. In order to rectify this issue, we
must make the posterior distribution spread out more, so it covers and describes
the spread of the data well.

Note that one could calculate any desired statistic from these simulated curves:
higher order moments, quantiiles, ect.

The plot in Figure 11 shows the exactly same model fit, but the number V
of variational simulations has been reduces by a factor of 5, and the granularity
of evaluation has been increased by a factor of 10. These changes do not affect
training or model fit - only serves to highlight different parts of the model. The
lower V means that the mean will vary more.

The histogram in Figure 12 shows the rank statistic of where the validation
data points fall in between 64 variational curves, which are indexed from 1 to 64
at each point on the x-axis. Falling below every one gives a rank statistic of 0 for
that data point, while being above all of them gives a rank statistic of 64. With
32 data points, the cumulative count ends up at 32. The horizontal axis shows all
variational curves lined up from lowest to highest response value at the covariate
point of that observation.

34



Figure 13: Comparing cumulative distribution functions (CDFs): Empirical train-
ing data CDF vs discrete uniform going from 1 to 64 - one step for each variational
simulation. Dn+=.126, Dn-=.121 (above, below)

The plot in Figure 13 shows the results in the histogram in Figure 12 in cumula-
tive distribution form. The cumulative sample distribution of the data is compared
to the discrete uniform distribution. This uniform is the ideal distribution of the
rank statistic of the data in the model perfectly fits the data. The largest distances
in cumulative probability mass above and below betweent the two CDF’s are shown
in magenta and red. The largest of these distances is the K-S statistic for that model
with respect to the data.

The plot in Figure 14 is the MSE diagnostic of the 20ReLU-20ReLU model
during training. It can be used to monitor how fast the model training converged.
However, it is in linear scale, meaning that the changes in the beginning of training
had the largest impact on the plot. If we make the y-axis logarithmic, we get the
result in Figure 15. Here, the oscillation in MSE near the end of training are much
more visible, allowing us to see at what epoch the model truly converged.

Having explored the 2-layer ReLU 20-neuron-per-layer architecture for BBB,
the problem still remains that the model sometimes fails to fit. Having some-
what unstable training may not always be a problem in applications - if one has
enough compute, one could simply train the model repeatedly until a sufficient fit
is achieved. More clever, one could save the best model using a checkpoint call-
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Figure 14: Minimum Squared Error between the 20ReLU-20ReLU model’s predic-
tion and the training set, plotted across the 1500 epochs of the training procudure.

back, as in Keras, for saving the best model (i.e. the best parameter setting) for
each run, and then start from there in the next run with different hyperparameter
settings. We can only speculate as to how far such ”common sense” techniques are
used in production level AI. Theory can be very helpful in developing new methods
for fast, robust ANN training with less hyperparameter tuning. A simple example
However, such techniques can only take us so far - many problems still rely on
more bruteforce, common sense implements, such as having checkpoints that save
the best model fit so far along the way during training.

In the context of this thesis, the main problem with unstable training is that
we want to know what hyperparameter and architecture setup gives the best un-
certainty estimate, which relies on a good mean fit - the fit of the model should
have a low MSE with respect to the training and validation sets. If we increase the
weight-and-bias prior variance σw, and the posterior mean shifts in the next run,
was the change in posterior mean caused by the change in σw, or did it happen by
chance? We can only know for sure by running the two scripts many times over,
where the σw value is the only difference between the two. Such a strategy would
tease out the impact of this particular hyperparameter given the values of all the
other hyperparameters, but in order to know what it does in general, we need more
trials. This strategy easily becomes prohibitive with respect to time, as we would
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Figure 15: log(MSE) between 20ReLU-20ReLU model and training set, plotted
across 1500 epochs. Small changes in the MSE near the end of training are exacer-
bated by showing logarithmic training MSE, enabling a closer view of whether the
MSE trend converged or not.

need several runs for each hyperparameter setting, for many different settings, and
each run takes about 5-20 minutes.

We create a new data set, Dvalid, used for evaluation purposes. A systematic
experiment is performed, where different architectures are tried out. Let us refer to
the BBB architecture so far as ”20tanhX2”, meaning 20 neurons, tanh(x) activation
function and 2 hidden layers. An architecture called ”5ReLU” will then have 5
neurons a layer, ReLU activation function and only 1 hidden layer, and so forth.

Given the large space of hyperparameter values, there is a challenge in selecting
which ones to vary. Changing all of them at once will give little insight in the
impact of each hyperparameter.

The scientific process seeks to find out what causal relationships exist in the
world, by untangling and isolating them. In an experimental setting, one tries
to isolate factor and change only one at a time, to see the effects of each. This
highlights the need for seeding code’s RNG, so that one can see the effect of a
single change in the code. Even so, can should keep in mind that a full view of
what a probabilistic script does can only be found by running it with a constant
hyperparameter setting, changing only the seed. This will reveal its stability: if the

37



Figure 16: The model fit for the 5ReLU setup. This is the worst fit of all the
experiments, with an MSE of 19.179.

model fitness varies greatly across seed values, one can the sure that the training is
not stable at this hyperparameter setting.

We will be using our two metrics, MSE and the Kolmogorov-Smirnov statistic,
distribution, to evaluate each fitted model. Note that while the MSE is calculated
directly from the holdout data set, called validation set in Keras, and can be plot-
ted directly from the Keras history object. The K-S statistic is evaluted using the
validation data along with variational simulations, making it very time consuming
to evaluate for each epoch. Therefore, it is only produced after training is finished.
It would, however, be interesting to see a validation K-S vs epoch plot, as the
validation K-S statistic should reach a minimum and start increasing if the model
becomes overfitted.

The increase in compute time increases linearly with the granularity of the
grid on which the network’s prediction is plotted, as well as with the number of
variational simulations created. The size of the data also affects compute time
linearly, since the implementation evaluates all of the data every epoch. However,
since the network in fully connected, adding more neurons and layers will increase
the time to compute more than linearly. Adding one neuron to a layer creates one
bias, one weight per neuron in the previous layer, and one weight per neuron in
the next layer. In addition, the BB algorithm doubles the number of (trainable)
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Figure 17: Histogram: The validation response’s rank statistic among 5ReLU’s
variational curves. It is about as U-shaped as a histogram can get.

parameters per weight/bias, since both the centre and spread (mean and variance)
must be encoded in parameters. (A regular ANN only expresses the mean, as a
point estimate.)

The implementation by M. Krasser uses the BBB algorithm to find uncertainty
estimates around the regression line in a standard univariate regression setting. A
dataset is made from the deterministic f(x) = 10sin(2πx) on x ∈ (−.5, .5) with
added iid noise ε ∼ N(0, σ2). The underlying process ftrue is now ”forgotten”,
i.e. it cannot be accessed by the regression algorithm, and it cannot be used to eval-
uate metrics of model fitness. While ftrue is what we really want to estimate, we
settle for the next best thing: adapting a regression curve that minimizes the RSS
(residual sum of squares) to the dataset. For medium sized datasets, polynomial re-
gression can be fitted analytically under strict assumptions, but for n observations
and k = p − 1 covariates the asymptotic runtime is O(p2(n + p)), which can be
restrictive. The BBB algorithm instead draws a sample S of simulated curves s
from the estimated posterior p(y, w|x), and uses S as its representation of the dis-
tribution from whichD was drawn. For each x ∈ X , BBB now takes the mean and
variance of s ∈ S as the regression line and the variance of the stochastic process
f(x) + ε, respectively.

The code produces a plot of a regression curve estimating the underlying trend
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Figure 18: 5ReLU: CDF comparison. Dn+, Dn- evaluated only for the validation
data. See tables for values.

along with predictive mean and uncertainty bounds. The predictive mean is seen
as the red curve seen in figure 6 - this is the mean of 500 simulation curves, each
being a realization of the fitted BNN model with randomly sampled parameter
(weights and biases) values. The simulation curves are also used in producing the
uncertainty bounds. The bounds correspond to 2 standard deviations of the data set
along the y-axis. Since the errors are Gaussian and iid, i.e. ε ∼ N(0, σ2), these
bounds are approximate to 95% confidence intervals to the regression line. This is
to say that given that the regression is an accurate fit to the underlying process, and
that the uncertainty bounds are also accurate, the bounds will contain about 95% of
all data points in the data set. Since the errors are Gaussian, we can create CI’s not
only for 95% of the data, but for arbitrary data set portions centred at the sample
mean. Since the posterior from which simulations S are drawn is itself normal,
their empirical distribution should approach the data set distribution as the sizes of
both data set and simulation set go to infinity - assuming the posterior is a perfect
fit. This means that the data points (the elements of the data set) should appear
among the simulation curves in a uniformly distributed fashion. More specifically,
the rank statistic of the data points among the simulation curves along the y-axis
should be uniformly distributed - the data points should fall in the lower 5% of
the simulation curves 5% of the time, it should fall between the lower 95 and
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Figure 19: 5ReLUX2 model fit - the most well fitted model to the training data.

90 percent 5% of the time, and so forth. The degree of uniform goodness-of-
fit (GOF) of this rank statistic is therefore a good metric for the accuracy of the
uncertainty bounds produced by the algorithm. Plotting a histogram with 20 bins,
one for each 5-percentile, gives a decent visual tool to see where the uncertainty
bound has strengths and weaknesses - e.g. large tails is interpreted to mean that the
bounds are too small, and we need to increase the according parameters innate in
the DenseVariational hidden layer class.

Some experimentation was undertaken to find better architectures and hyperpa-
rameter settings for the sinusoid regression. Sometimes, training produces NaN’s
as predicted response values, no matter the covariate value. This issue could al-
ways be resolved by decreasing the learning rate of the Adam optimizer to some
small number (α = 0.001 always gives real-valued response values, i.e. not NaN
or Inf, for all models used), though it may cause the model to not learn well. This
implies that the minimization topology is challenging for the optimizer - it likely
gets stuck in a local minimum, after which it has trouble exploring a wider region
of the parameter space.

As illustrated in another blog , Laplace distributions may serve as a better prior
than the Gaussian mixture used in this BBB model. This again underscores the
multivariate nature of the hyperparameter space of the model - in a certain sense.
The choice of prior distribution not a hyperparameter per se, but has importance
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Figure 20: 5ReLUX2 histogram: rank stastistic of data response among variational
curves.

for inference. The space of possible prior models one could choose is large, and
the number of trainable parameters involved in different priors is variable. The use
of Gaussian or Laplace gives L2 and L1 regularization, respectively, but that does
not prohibit the use of other distributions. A hyperparameter space search would
necessarily be limited in its coverage. Ideally, one could try to update the priors in
a non-parametric fashion, as seen in MCMC methods, though such methods have
their own difficulties. This would remove the need for directly training the prior
parameters. But it requires an extremely rich model with a fully hierarchical prior
model.

How stable is this algorithm? We want to be able -optimizer may get stuck in
local minimum of parameter space. Once in a local minimum, for the optimizer
to get out of it and traverse the argument space can be unlikely. Adam decreases
its learning rate steadily, which can make it focus too hard on minima it comes
across. - the methods .compile() and .fit() of Keras.models.Model() clearly do not
refresh and start over when they are called multiple times in a for-loop. This is
demonstrated by Figure ??.

Table 1: one could include KS metric as a loss metric in Keras, to try to include
uncertainty tuning more closely to the training of the model. This would require
writing a custom K-S metric class, then create an object for keras.model.compile to
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Figure 21: The 5ReLUX2 model’s CDF’s: comparison of cumulative distributions
for data and variational curves.

accept as a loss argument. It is not at all clear a priori that such an uncertainty train-
ing technique would work well, since the K-S metric cannot distinguish between
the model’s estimated uncertainty bounds being to narrow or too broad (i.e. un-
certainty underestimation and overestimation, respectively). The K-S metric only
give a measure of the ”distance” from a uniform distribution to the empirical rank
statistic distribution, but not the ”direction” of said divergence.

Table 1: one could here run one script many times over, to find the sample
distribution of MSE’s (while changing the RNG seed). This should give us a better
idea of how stable the architecture is, since it eliminates the possibility that the
results in this table were derived completely by chance. Doing so would take some
measure of time, and we will instead focus on taking our lessons from the trials
thus far and use them to try to fit a better uncertainty estimate in a setting with
more data.

Results in table Table 1 are noisy. The 20tanh model sometimes fit the data
well, but in this case it failed. This instability could be removed by decreasing the
error in the data set, or get more data points in it. This table only shows a snapshot
of the results for one seed value - a more thorough way of doing it would be to run
each script repeatedly, and analyse the set of all results for each case.

(Here, saying that 20tanh the model ”failed” this task simply means that its
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Table 1: MSE experimental results for sinusoid data

BBB Deterministic ANN
φ Layers Nodes MSE, train MSE, valid MSE, train MSE, valid

Tanh 1 5 5.910 4.647 .753 1.038
Tanh 2 5 7.429 6.016 9.476 7.776
Tanh 1 20 4.055 3.058 .712 1.022
Tanh 2 20 6.960 5.860 .401 1.641
ReLU 1 5 19.179 15.945 19.325 16.136
ReLU 2 5 .854 1.276 .986 1.109
ReLU 1 20 2.215 1.436 2.291 2.055
ReLU 2 20 .888 1.135 .380 1.391

Table 2: Kolmogorov-Smirnov statistic for experimental results for sinusoid data
BBB

φ Layers Nodes KS, train KS, valid
Tanh 1 5 .296 .313
Tanh 2 5 .327 .313
Tanh 1 20 .250 .281
Tanh 2 20 .313 .296
ReLU 1 5 .438 .531
ReLU 2 5 .218 .218
ReLU 1 20 .234 .296
ReLU 2 20 .105 .150

prediction was substantially different from the ”underlying truth” - in this case, it
was strongly under-fitted. Of course, the data set we gathered could conceivably
been generated from a trend curve identical to that of the badly fitted 20tanh model.
In other words, there is no objective answer to what constitutes a bad fit - it depends
on what sort of prediction we are looking for. The question of whether the model
would keep producing the same under-fitted prediction is a different matter - the
20tanh model )

Table 2 shows results of the KS statistic for these examples. With 2 layers, the
ReLU results are her pretty promising in this Bayesian model.

...
As we have seen, different 1D regression problems require different neural

network architectures to find the best solutions - at least for shallow networks (not
deep). One could desire to find a single architecture than could solve a large fam-
ily of problems, so that one does not have to hyperparameter tune (i.e. search for
a good setup of numbers of nodes and layers) for every new problem one comes
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across. This has the offset/disadvantage of more challenging training - deeper net-
works yield more difficulties with training - so it may be more pragmatic to create
a new architecture for every new problem. This is likely true for multivariate re-
gression and classification tasks as well.

Figure 22: A 2-layer model with form (200tanh,200ReLU) fitted to a training set
of 500 datapoints. The first layer smoothly follows the ground truth, while the
second layer increases the representation space of the uncertainty bounds, without
disturbing the posterior mean.

4.3 Uncertainty estimation

Tuning the hyperparameters that have the biggest impact on uncertainty may
create a bias in the posterior mean - fitting the variational posterior is a ”single
package” in this sense, as fitting its centre and spread (specifically mean and vari-
ance) cannot be entirely decoupled. This phenomenon has a clear analogy to the
bias-variance trade-off in ”regular” ANN’s, i.e. ANN’s where weights and biases
w and ANN predicted response on the test labels are both point estimates, inciden-
tally conditional on the training set. The analogy is found in the fact that tuning hy-
perparameters that increase uncertainty estimation may affect the posterior mean,
making it biased. Note that ”bias” in this context simply denotes that the estimated
mean is different from the trend.
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Figure 23: The best uncertainty fit achieved: the 350tanh BBB architecture. After
many attempts tuning other hyperparameters, tuning the network breadth turned
out to be the most reliable way of tuning uncertainty, i.e. posterior spread, without
biasing the posterior mean. A surprising, yet satisfying result.

When the process of getting a good variational posterior variance creates a bias
in the posterior mean, a naive tactic may come to mind: partition the domain of
the covariates into separate sections, and train different ANN’s on the training data
that falls into each section. Then, simply combine the predictions into a piece-
wise function that covers the whole domain. However, such a strategy would be
incredibly cumbersome in many applied settings, because of the enormous dimen-
sionality of their covariate domains. A better strategy for creating more general
purpose AI is creating ANN’s that automatically adapt to arbitrarily complex and
high-dimensional functions, with little to no human data preparation needed. This
is what one should seek to achieve when developing ANN methods, and it makes
applying them much more practical once their proper use is better understood.

5 Closing remarks

Insight in properties of the BBB method has been gained in this work, via
sensitivity studies to the various settings of hyperparameters in the network mod-
els. One may come into the ANN field assuming that a well-chosen architecture
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Figure 24: Histogram show data rank statistic for 350tanh BBB architecture.

(layer-and-neuron arrangement) will learn equally well on all appropriately sized
data sets drawn from the same distribution. Surprisingly, the BBB algorithm (or at
the very least, this implementation of it) is highly sensitive to the amount of data
used in training. Substantially increasing the size of the data set requires retraining
the network, returning and retraining the data set - either the ANN must be made
wider, or the priors must be modified to allow for the posterior to have greater
spread, balancing out the increased certainty induced by including more data. Ac-
tivation function have some impact on representation space and inductive bias -
tanh functions easily fit to sinusoidal data, but it is not as good as ReLU at picking
up on signals when there is a lot of noise. Compared with a frequentist approach,
the BBB results are usually less prone to overfitting when the number of layers is
more than one in our example.

This work looks only at a simple example of a sinusoid model. Much work
on other more complex cases is obviously interesting, but it is likely difficult to
come up with clear-cut advice. A possible solution to these cases, which is cur-
rently being tried by some researchers, is to employ a search for optimal designs of
hyperparameters, for instance using Bayesian optimization methods. Still, in high
dimensions and with very difficult posterior density surfaces, it is not straightfor-
ward how to approach this suggestion. Like most other deep learning methods,
generalization is difficult.
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Figure 25: CDF comparison, detailing the Dn+ and Dn-. The max() of these is the
validation set K-S statistic for the 350tanh model - it comes out to be .0328, an
order of magnitude lowewr than any K-S statistic in the small data scenario. One
should keep in mind that the one-way K-S statistic is sensitive to the size of the
data set being compared to an ideal distribution.
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