
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Martin Bjerke

A Spline-based Latent Variable Model
for Neural State-space Discovery

Master’s thesis in Applied Physics and Mathematics
Supervisor: Benjamin Adric Dunn

February 2021

Martin Bjerke

A Spline-based Latent Variable Model
for Neural State-space Discovery

Master’s thesis in Applied Physics and Mathematics
Supervisor: Benjamin Adric Dunn
February 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

Recent advances in neural data recording have given researchers the opportunity to harness the power of large
neural populations, motivating the use of dimensionality reduction methods as a way to uncover latent variables
that govern the activity of the neurons. Expanding upon the latent manifold tuning model devised by Wu et al.
(2017), we propose replacing the non-parametric Gaussian process to model the tuning curves with a parametric
B-spline function. Using an iterative maximum a posteriori procedure, we compare the performance of the two
models with respect to scaling in data size, initialisation and choice of hyperparameters. Ultimately, we extend
our model further to account for feature sharing among tuning curves of neurons, and utilise this to infer the head
direction of a mouse from neural data gathered by Peyrache et al. (2015).

Sammendrag

Nylige fremskritt innen opptak av nevrale data har gitt forskere muligheten til å betrakte store ansamlinger av
nevroner, noe som motiverer bruken av dimensjonsreduksjonsmetoder som et verktøy for å oppdage skjulte vari-
abler som styrer oppførselen til nevronene. Wu et al. (2017) utarbeidet modellen ”latent manifold tuning”, og
vi bygger videre på denne ved å introdusere parametriserbare B-Spline-funksjoner, som et alterativ til ikke-
parametriserbare Gaussiske prosesser, for å modellere nevroners tuningkurver (sammenhengen mellom en ekstern
påvirkning og et nevrons aktitivitet). Ved å ta i bruk en iterativ maksimum a posteriori-metode sammenligner vi
de to modellene, og evalurerer hvor godt de presterer i forhold til ulik datamengde, initialisering og valg av hyper-
parametere. Avslutningsvis utvider vi modellen vår til å ta høyde for fellestrekk blant tuningkurver hos nevronene,
og bruker denne modellen til å avdekke hodebevegelsene til en mus basert på data innsamlet av Peyrache et al.
(2015).

I

II

Preface

This thesis is submitted as a requirement in TMA4900 Industrial Mathematics Master Thesis at the Department of
Mathematical Sciences, and completes my Master of Science degree in Applied Physics and Mathematics, which
is part of my Integrated Ph.D.-program in Mathematical Sciences at the Norwegian University of Science and
Technology (NTNU).

I wish to thank my supervisor Benjamin Adric Dunn for the help and guidance along the way, his positive de-
meanour in the face of both more and less sensible questions related to neuroscience, and for sticking with me for
a few more years while I pursue my Ph.D. I would also like to thank him for the great environment he has created
within his research group, and extend a thank you to all its members for useful discussions and friendly banter. In
particular, thanks to Claudia for both critical feedback and valuable conversations at the office.

Thanks to Grandma, Mom and Sis for three generations of female support throughout my childhood and during
my studies. It has been said that ”Behind every great man is a great woman”, which unquestionably means I have
thrice the greatness to live up to.
Thanks to Mina for taking that chance, and for spending much of her recent time off making sure I also got mine.
Finally, thanks to Grandpa for teaching me the art of counting cars and for encouraging a young ”Professor Tanke”.

Martin Bjerke
Trondheim, Norway
February 2021

III

IV

Table of Contents

Abstract I

Sammendrag I

Preface III

Table of Contents V

1 Introduction 1
1.1 The neural code . 1
1.2 Advances and the state of neural data recording . 2
1.3 Dimensionality reduction and latent variables . 2
1.4 Motivation and contribution . 3

2 Data 4
2.1 Head direction dataset . 4

2.1.1 Choice of bin width . 5
2.1.2 Neural tuning . 5
2.1.3 Motivation . 7

3 Background 8
3.1 Generalized Linear Models . 8
3.2 Gaussian Processes . 9
3.3 Splines . 10

3.3.1 B-Splines . 11

4 Latent Variable Models 13
4.1 The Latent Manifold Tuning model . 13

4.1.1 The latent process . 13
4.1.2 The tuning curves and spiking model . 14

4.2 The Spline-based Latent Variable Model . 14
4.2.1 The latent process . 15
4.2.2 The tuning curves and spiking model . 15

4.3 Inference of the LMT model . 15
4.3.1 MAP estimation of tuning curves . 16
4.3.2 MAP estimation of the latent variable . 17

4.4 Inference of the spline-based LVM . 18
4.4.1 MAP estimation of spline coefficients . 19
4.4.2 MAP estimation of the latent variable . 19

4.5 The iterative MAP procedure . 20
4.6 Feature Sharing, an extension to the Spline-based LVM . 21
4.7 Inference, feature sharing . 22

4.7.1 Expressions . 23

V

TABLE OF CONTENTS

4.7.2 MAP procedure . 24
4.8 A note on inference regarding periodicity . 25

5 Data Analysis 26
5.1 Modeling choices and challenges . 26

5.1.1 Evaluating the results . 26
5.1.2 Interior knots . 27
5.1.3 Scaling, shifting and flipping . 27
5.1.4 The choice of initialisation . 31

5.2 Simulated data . 33
5.2.1 1D non-periodic case . 33
5.2.2 1D periodic case . 39

5.3 Head direction data . 42
5.3.1 Inferring the tuning curves . 43
5.3.2 Initialisation from true path . 43
5.3.3 Initialisation from PCA . 45

6 Discussion and conclusion 49
6.1 Discussion . 49

6.1.1 Modeling choices and challenges . 49
6.1.2 Simulated data . 49
6.1.3 Head direction data . 50

6.2 Further work . 50
6.3 Conclusion . 51

Bibliography 52

VI

Chapter 1
Introduction

In this chapter, we give a brief introduction to the behaviour of neurons, how to record and interpret it, and the
state of affairs in computational neuroscience. Section 1.1 covers the neural code, while we in Section 1.2 discuss
trend in neural data recording. In Section 1.3, we introduce the concept of dimensionality reduction and its place
in neuroscience, before finishing the chapter by stating the motivation for our work and its scientific contribution.

1.1 The neural code
The brain is our most complex organ. As with many complex structures, we try to understand it by breaking it
down into smaller components. The most studied component of the brain is the nerve cell, or neuron, due to its
ability to produce recordable electrical signals and pass these on to other neurons. A single neuron has an electrical
potential difference compared to its surroundings. When a neuron is presented with certain stimuli, this potential
can either increase or decrease in response. If it passes a certain threshold, it will be brought to a sharp peak,
known as a spike. This event is also referred to as a neuron firing. When a neuron fires, it emits a signal which can
further increase or decrease the probability of other interconnected neurons firing. Figure 1.1 shows how a neuron
may react to received stimuli, and possibly be brought to a spike.

Action
potential

V
o
lt

a
g

e
 (

m
V

)

D
e
p
o
la

ri
za

ti
o
n R

e
p
o
la

riza
tio

n

Threshold

Stimulus

Failed
initiations

Resting state

Refractory
period

+40

0

-55

-70

0 1 2 3 4 5

Time (ms)

Figure 1.1: The red line shows the evolution in time of the potential of a neuron after it receives stimulus. If a neuron is brought
to a spike, its voltage rapidly increases, then peaks and falls below the initial potential before stabilising where it started.
Source: https://commons.wikimedia.org/w/index.php?curid=2241513. License: CC BY-SA 3.0.

As a more concrete and everyday example of how a neuron may react to a stimulus it receives, consider a
neuron in the brain of a cat receiving information about what the cat observes. Imagine the neuron firing very
rapidly when the cat is observing one thing, for example a mouse, but hardly fires at all when the cat is observing
something else, for instance another cat. If the firing rate of a neuron is higher for a certain external stimulus, the

1

Chapter 1. Introduction

neuron is said to be tuned to this stimulus. Said tuning can be visualised by a function that maps from the space of
stimuli to the intensity of firing, commonly referred to as a tuning curve.

This hypothetical setting is in fact very similar to that of the famous experiment by Hubel and Wiesel (1979).
By inserting an electrode into the primary visual cortex (V1) of an anaesthetised cat, they managed to record how
neurons in V1 responded to images shown on a screen, particularly how the firing rate suddenly increased when a
line was moved across the screen at a particular angle. These neurons, who fired more intensely when the line was
positioned at a certain angle, were accordingly said to be tuned to this angle.

However, while our own hypothetical cat is observing a mouse through its eyes, it is also feeling the fabric it
sits on, detecting the temperature of the room, and might also be considering whether it is hungry enough to go
chasing after the mouse or not. All these are stimuli to which a neuron could also be tuned to, either in addition
to or instead of the visual input. It is therefore essential that as many external variables as possible are controlled
when doing neural recording, to avoid potential interference.

1.2 Advances and the state of neural data recording
For the past century, the concept of the lone neuron as the functional unit of neural computation has been somewhat
set in stone. Recent advances have however led to the belief that we should look more towards populations of
neurons, and not necessarily singular entities (Yuste, 2015). One possible driver for this shift in paradigm is the
ability to record from hundreds of neurons simultaneously, a feat that is now more commonplace thanks to e.g.
advanced silicon probes (Steinmetz et al., 2018) and light-sheet microscopy (Ahrens et al., 2013).

Stevenson and Kording (2011) discovered that the growth in the number of simultaneously recordable neurons
exhibited an exponential trend the past decades, a trend that provides both exciting opportunities and challenges
with respect to how one handles large amounts of data. Given that the exponentional trend continues, we should
(theoretically) be able to, at one point, record from the whole neural population of the brain (although we are still
approx. 200 years away from that, according to Stevenson and Kording, 2011).

One of the challenges with respect to such large amounts of data is how to account for variables that we are
unable to record, be they either unobserved neurons or external input which might influence the activity of neurons
in various ways (Brody, 1999). In particular, these variables are interesting because they might relate to the task
performed by the animal, without being immediately visible in the neural population (Ahrens et al., 2012). As
such, these variables elicit the use of a particular type of models to capture possibly important features in the data.

1.3 Dimensionality reduction and latent variables
Harking back to the case of Hubel and Wiesel (1979), where neurons were found to be tuned to a particular angle of
an observed line. It is then reasonable to believe that other neurons may be tuned to different angles, and together
give the cat the ability to observe lines of all angles. In this case, the angle directly influences the neural activity,
and without knowledge of this connection, the angle might instead be referred to as a latent variable, governing the
activity of the neurons.

A product of its time, the equipment used by Hubel and Wiesel (1979) naturally limited their recording capacity,
which meant they had less neurons to consider simultaneously. However, as noted in the previous section, this is no
longer an issue. While evaluating the activity of a single neuron by inspection might be feasible, it is a completely
different story when the number of neurons approach hundreds, if not thousands. Hence, realising we are actually
looking for an angle might be slightly more complicated.

Naturally, due to the increasingly large number of neurons that are possible to record from simultaneously,
there has been an increasing demand in the neuroscientific community for models able to accommodate larger data
sets (Paninski and Cunningham, 2018). Although the massive increase in sheer volume of data is a more recent
phenomenon, researchers have advocated for methods that handle large and high dimensional neural data sets for
a while (Fetz, 1992; Hatsopoulos et al., 1998; Cunningham and Byron, 2014), more specifically dimensionality
reduction techniques. One of many points in favor of dimensionality reduction methods is that they allow us to
visualise a condensed representation of high dimensional data in a lower dimensional space. This is quite a useful
trait, as most humans have trouble envisioning anything that has more than three dimensions.

Perhaps the most known dimensionality reduction method is principal component analysis (PCA). PCA works
by projecting the observed data onto a lower dimensional space, while keeping the maximal amount of variance
intact. It is simple and intuitive, and hence also a widely used method (Briggman et al., 2005; Mazor and Laurent,
2005). Taking a step up the complexity ladder, we find e.g. ISOMAP (Tenenbaum et al., 2000), which creates a

2

1.4 Motivation and contribution

lower dimensional embedding based on the neighbourhood structure of the original data. While ISOMAP solves
one of the limitations of PCA (it can only recover linear relationships), neither of them are probabilistic methods,
limiting their viability in settings where one is interested in performing statistical inference. This lead to the hunt
for more general methods (both with respect to manifold interactions and the statistical inference procedure), one
of the results being the Gaussian process latent variable model (GPLVM), a customisable model used for latent
variable discovery.

The term GPLVM was first used by Lawrence (2003), who proposed it as a generalisation of PCA to circumvent
its inherent linear restrictions. The use of Gaussian processes, which are highly non-linear, allows the model to
capture non-linear mappings between the data and the latent space. One possible interpretation is to consider it as ”a
non-linear probabilistic version of PCA” (Lawrence, 2005, p. 1790). Gaussian processes, being as versatile as they
are, are a common sight in the supervised setting, while also proving useful in this latent discovery setting. Kulkarni
and Paninski (2007), for example, used Gaussian processes to model the effect of hidden neurons on visible
neurons, while Ecker et al. (2014) managed to recover correlation structures in recordings from an anaesthetised
macaque, using Gaussian process factor analysis (GPFA). Returning to the line of research that builds upon the
advances of the GPLVM, Titsias (2009) introduced a variational approximation for selecting hyperparameters, an
inference procedure which was further improved upon by Titsias and Lawrence (2010).

While the early work on the GPLVM assumed Gaussian observations, the structure of neural data makes it
perhaps more suited for a point-process model (Smith and Brown, 2003). Employing a Poisson spiking model,
Wu et al. (2017) devised the model known as the Latent Manifold Tuning (LMT, previously called the Poisson
Gaussian process latent variable model (P-GPLVM)) for spike train data. They later extended the model to be
applicable to calcium imaging data as well (Wu et al., 2018), and applied the model to olfactory data to infer a
lower dimensional latent manifold to explain the relationship between an odorant and the neural population activity
it induces.

More recent work building upon the family of GPLVMs include e.g. extending the latent space to include
various non-Euclidean manifolds (Jensen et al., 2020), and generalising the likelihood to other distributions by
incorporating random Fourier features (Gundersen et al., 2020).

1.4 Motivation and contribution
As mentioned by Wu et al. (2017), and also confirmed by Myklebust (2020), the LMT model can be prone to
solutions of local optimality, which can make inference difficult due to the heavy importance of initialisation. As
the model is also defined by a double Gaussian process, it may scale poorly with respect to large data sets, compared
to other models. Due to Gaussian processes being non-parametric, one also has fewer ways of accounting for
known structure in either tuning curves or the latent variable, as a means of helping the model take more informed
steps during the exploration of the latent space.

To address these potential issues, we inspect the structure of the LMT model, which can be separated into
three parts: a Gaussian process modeling the latent variable, a Gaussian process modeling the tuning curves and a
Poisson point process modeling the neural spiking. We propose to exchange the non-parametric Gaussian process
modeling the tuning curve with a parametric part, more explicitly a B-Spline function (Piegl and Tiller, 1996).

We present the framework for our model, derive expressions necessary for performing inference and define
an iterative maximum a posteriori (MAP) procedure for inference of the latent variable and the tuning curves.
Capitalising on the works of Myklebust (2020), we compare their free-standing implementation of the LMT model
with our Spline-based variation, discuss strengths, weaknesses, and evaluate the performance of the models with
respect to variation in hyperparameters, initialisation and scaling in data size.

Finally, we advocate for sharing features among tuning curves of the neurons where the situation allows it,
and provide an extension to our Spline-based latent variable model for more efficient inference. We compare the
performance against the non-feature sharing variant on simulated data, before applying the model to head direction
data recorded by Peyrache et al. (2015), comparing it to PCA and the LMT model.

3

Chapter 2
Data

In this chapter, we introduce the data set recorded by Peyrache et al. (2015). We discuss the head direction data set
on a general level in Section 2.1, while addressing the choice of bin width and consistency of tuning in Subsections
2.1.1 and 2.1.2. In the final subsection, we present our motivations behind selecting this particular data set for use
in our analysis.

2.1 Head direction dataset
Peyrache et al. (2015) studied the brain’s mechanisms to monitor head direction by making simultaneous recordings
from the antero-dorsal thalamic nucleus and the post-subiculum of the brains of seven mice. The recordings were
done using multi-site silicon probes, both while the mice were asleep and awake. We limit our interest to the
recordings performed on awake mice where, while exploring and foraging in an open environment, the head
direction of the animals were also tracked using stationary cameras. The head directions were derived based on
the relative position of diodes mounted to the head of the mice, at intervals of 25.6 ms, over an awake period of
approximately 36-and-three-quarters minutes, and we will focus on the recordings from a trial labeled Mouse12-
120806. The approximately four-and-a-half first minutes of the recorded head direction in this trial can be seen in
Figure 2.1, after having removed missing observations (which accounted for approx. 3% of the entire data set).

Figure 2.1: Observed head direction for the first 10.000 bins starting at time 6881305.6 in the dataset Mouse12-120806, after
missing data has been removed.

Measured as an angle, the head direction can then be modelled as a one-dimensional variable on the interval
[0, 2π], with periodic boundary conditions. While we in this case have observations for the head direction, and
evidence that certain neurons do seem to respond to it, we do in general not necessarily have this knowledge. The
hunt for such an underlying, latent variable is of uttermost interest, and we will in this thesis consider the head
direction as one such latent variable, with the added benefit of having knowledge of the true variable.

As for the neural activity, the time stamp for whenever a neuron produced a spike was recorded. A customary
way of representing the spike activity is to partition the entire recording interval into bins of equal width, then
count the number of neural spikes present in each bin, for each neuron. The activity can then be presented in the

4

2.1 Head direction dataset

form of this spike count, or alternatively as a binary variable, indicating whether there is at least one spike in each
bin or not. Such a spike presence representation can be seen in Figure 2.2, which covers the activity of the 73
recorded neurons in the trial Mouse12-120806. The interval is set to the same as for the tracked head direction in
Figure 2.1.

Figure 2.2: Binned and binarised spike data for the first 10.000 bins starting at time point 6881305.6. The 73 neurons are
placed on the y-axis, and a black dot means that at least one spike was observed in that particular time bin (of width 25.6 ms).

2.1.1 Choice of bin width

The binned spike data shown in Figure 2.2 has a bin width of 25.6 ms, similarly to that of the recorded head
direction. However, since the neural spike recording was originally done on a much finer time scale, the bin width
can be set to a much shorter interval than 25.6 ms. Alternatively, one can also choose a bin width wider than 25.6
ms. In Figure 2.3 we showcase the distribution of the spike counts in the bins, for four different choices of bin
widths.

As is evident from the spike distribution plots, increasing the bin width results in a much wider spread in the
number of spikes in each bin, as one would expect. Although it might be tempting to select a very small bin width
to construct a spike representation as close as possible to the ”true” recording (a binary variable that either spikes
or not), one must account for the fact that this requires partitioning the total recording length into a staggering
number of bins. In many cases, the computational time for an algorithm scales poorly with increasing data length,
necessitating a more generous bin width. On the other hand, wider time bins means less partitioning, but we might
lose important information by summing over spikes that occur at wildly different head directions. Some neural
models also assume a binary or Bernoulli behaviour of the spike representation, in which case a larger bin width
results in a loss of information whenever a bin includes more than one spike. This makes for an interesting decision
where one has to consider computational complexity versus loss of neural information, as well as the inherent time
scale of the dynamics of the latent variable itself (i.e. picking a bin width of for example 1 min would completely
fail to capture the dynamics, as they happen on a much smaller time scale).

In our case, we chose a bin width of 25.6 ms when doing analysis, corresponding to the time between recordings
of the head direction. Picking a wider time bin could present issues when interpolating the periodic head direction
variable, and shorter bins were dismissed based on early indications of running time.

2.1.2 Neural tuning

While evaluating the tuning of the neurons, highly active neurons can allow us to more easily infer the head
direction they are tuned to. However, a very active neuron does not necessarily equal a tuned neuron. To visualise
this, we partition the domain of the head direction variable [0, 2π] into 30 equally sized intervals, then calculate the
average number of spikes a neuron produces while the head direction resides in each of these intervals (here we
consider the same 10000 time bins as in Figures 2.1 and 2.2). We showcase the activity of two different neurons,
and although the neuron in Figure 2.4 has a higher spiking frequency than the one in Figure 2.5, it seems to have no

5

Chapter 2. Data

Figure 2.3: Log scale distribution of spikes in a bin, for all neurons, for 10.000 bins starting at time 6881305.6. The four
different bin widths are, from upper left to bottom right: 5 ms, 10 ms, 25.6 ms and 50 ms.

preferred head direction for which it produces more spikes. Meanwhile, the neuron in Figure 2.5 seems to clearly
prefer head directions values in the interval [3, 4].

Figure 2.4: Example of a tuning curve with no particular
tuning. Average firing rate of 28.99 Hz.

Figure 2.5: Example of a tuning curve with evident tun-
ing to head direction. Average firing rate of 2.46 Hz.

For neurons with clear head direction tuning, we should expect the tuning to be consistent over time. We
compare the spike rate over the first 10000 bins, starting at time 6881305.6, to the spike rate over an interval of
equal size, starting where the first ends. Given consistent tuning, we would expect the rates to look approximately
the same. A showcase of firing rates for four different neurons, all tuned to head direction, can be seen in Figure
2.6. The tuning seems to be more or less consistent across these two time intervals.

6

2.1 Head direction dataset

Figure 2.6: A comparison of observed firing rates (in Hz) between two non-overlapping time intervals for four selected neurons.
The first interval start at time 6881305.6, the second 10000 time bins after the first one. Bin width of 25.6ms.

2.1.3 Motivation
The decision to use the data set recorded by Peyrache et al. (2015) was motivated by a couple of factors: first of
all, it can be hard to judge whether a model has recovered the latent variable properly, since one usually does not
know the true behaviour (ref. the term ”latent” variable). In this case, however, it is fair to assume that the head
direction does drive the activity of the neurons (although there might be other factors as well), making it a prime
candidate for what we can consider the ”true” latent variable. Having access to a ground truth during evaluation is
a very useful feature, as it lets us compare the results between various models.

Another useful property of the data set is the distinct shape of the tuning curves for neurons that exhibit
tuning with respect to the head direction. The bump shape is quite pronounced, and will hopefully make it a less
demanding task for the models to reconstruct them. The fact that the tuning curves all share an overall similar form
is also an important prerequisite for one of the models which we will introduce later.

7

Chapter 3
Background

In this chapter we introduce relevant background material for deriving and understanding the statistical models
that will be presented in Chapter 4. We touch upon the Generalized Linear Model (GLM) in Section 3.1, before
moving on to detailing the theory of Gaussian Processes and Splines in Sections 3.2 and 3.3.

3.1 Generalized Linear Models
According to Agresti (2015, p. 2), a GLM can be summarised by its three core components; the random compo-
nent representing the response variable and its distribution, the systematic component represented by the linear
predictor, and the link function which relates the random component to the systematic one. An overview of these
three components will be presented here.

Assume that we have n independent observations of a response-covariate pair, i.e. (Yi,Xi), i = 1, . . . , n. The
Generalized Linear Model framework provides an efficient way of modeling the relationship between such pairs
in situations where the response is not necessarily normally distributed.

In the classical linear regression setting, the linear model is

Yi = Xiβ + εi, (3.1)

with the errors εi being independent and identically distributed according to a normal distribution N (εi; 0, σ2
ε).

Thus, the response is also normally distributed Yi ∼ N (yi; Xiβ, σ
2
ε).

Suppose instead that the response comes from a (not necessarily normal) distribution fYi
, with mean E[Yi] = µi

and variance Var[Yi]. According to the GLM framework (Fahrmeir et al., 2013, pp. 301-304), the relationship
between the response yi and the linear predictor ηi = Xiβ can be modelled with a link function

g(µi) = ηi, (3.2)

when the distribution of the response belongs to the univariate exponential family. Given that the GLM describes
the relation between the (conditional) mean and the linear predictor, one often uses the so-called response function
instead

µi = h(ηi), (3.3)

with the requirement that h is twice differentiable and one-to-one. It then follows that g(·) = h−1(·).
When it comes to the distribution, fYi is said to belong to the exponential family if it can be expressed in the

following way

fYi
(yi; θi, φ, wi) = exp

(yiθi − b(θi)
φ

wi + c(yi, φ, wi)
)
. (3.4)

Here, θi is the natural parameter, φ the dispersion parameter and wi the weight parameter, taking the value 1
as long as the data is ungrouped.

Given that fYi can be described as in Equation 3.4, we have the following relations

8

3.2 Gaussian Processes

E[Yi] = µi = b′(θi),

Var[Yi] =
φb′′(θi)

wi
.

(3.5)

Finally, if the relation from Equation 3.2 is such that θi = g(µi), the link function is said to be the canonical
link. This leads to the log-likelihood function being concave, which makes gradient-based methods easy to use for
optimization (see e.g. Haberman, 1977).

3.2 Gaussian Processes
To define a Gaussian process, we will follow Rasmussen and Williams (2006), whose comprehensive introduction
we highly recommend for the interested. Here, we give a brief description of the properties of a Gaussian process.

Formally, let us consider a random process {Xt}t∈T , where T is a continuous domain, for instance time or
space. The process is then a Gaussian process if, for any collection of n time points or locations t1, . . . , tn, the
collection X = (X1, . . . , Xn) follows a multivariate normal distribution

X ∼ Nn(µ,Σ), (3.6)

with mean µ and covariance matrix Σ.
As Gaussian processes are commonly used for modelling the distribution of functions directly, like in the

setting of regression, we will, in accordance with Rasmussen and Williams (2006), denote our random process
f(x), the function value at x. The Gaussian process can then equivalently be written as

f(x) ∼ GP(m(x), k(x,x′)), (3.7)

where m(x) and k(x,x′) denote the mean function and covariance function (sometimes called kernel) of the
Gaussian process respectively

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].
(3.8)

As stated by Rasmussen and Williams (2006, p. 13), the Gaussian process is completely defined by its mean
and covariance function, and while the mean is commonly set to the zero-function, there exists a wide range of
different covariance functions that alter how the corresponding Gaussian process behaves. Assuming that the
variance stays the same for all x, we can formulate three popular choices of covariance functions, the Gaussian,
Matérn and Exponential covariance function, in the following way

kGauss(x, x
′) = σ2exp

(
−||x− x′||22

2δ2

)
,

kMatérn(x, x′) = σ2 21−ν

Γ(ν)

(√
2ν
|x− x′|

δ

)ν
Kν

(√
2ν
|x− x′|

δ

)
,

kExponential(x, x
′) = σ2exp

(
−|x− x′|

δ

)
.

(3.9)

Here, δ represents the length scale parameter and σ2 the marginal variance. As for the Matérn, Γ is the gamma
function, Kν the modified Bessel function, and ν some extra parameter, usually a half-integer for simplification
purposes. The behaviour of the three different covariance functions (with ν = 3

2 for the Matérn), as well as a
realisation of a Gaussian process, with zero mean and an instance of each kernel, is shown in Figure 3.1 and 3.2.

It is clear from Figure 3.1 that the Gaussian kernel results in the stronger correlation over a longer distance,
while the Exponential kernel has the weaker correlation (at least for values smaller than ∼ 1.2). Intuitively, the
Gaussian kernel should then produce a smoother Gaussian process, since subsequent values are more closely
correlated, while the Exponential kernel should yield a more jagged path. This is precisely what can be seen in
Figure 3.2.

Respectively, the δ and σ2 are used to control the smoothness and the variation of the Gaussian process. A large
δ means that a point x can influence other x′ that are farther away, while a large σ2 means the Gaussian process is
allowed to deviate farther away from the mean. For similar parameter values, the covariance functions also decay
at a different rate, resulting in different behaviour for the Gaussian processes, as can be seen in Figure 3.3 and 3.4.

9

Chapter 3. Background

Figure 3.1: Behaviour of the 3 different covariance func-
tions, with δ = 0.6 and σ2 = 12

Figure 3.2: 3 realisations from a Gaussian process, using
different kernels, with δ = 0.6 and σ2 = 12

Observe that the processes largely behave in the manner one would expect, based on the different values for δ and
σ2.

Figure 3.3: Gaussian process realisations with δ = 2.6
and σ2 = 12

Figure 3.4: Gaussian process realisations with δ = 0.6
and σ2 = 52

3.3 Splines

A spline can be thought of as an extension of the linear regression model, providing more flexibility compared to
simple polynomial regression. In many real-life cases, data does not necessarily share the same linear, or a specific
polynomial, relationship on the whole interval of interest. Instead of modeling the connection between (Y,X) as
e.g. strictly linear, splines use a set of basis functions to define Y = f(X) as a piece-wise function of polynomials,
giving more flexibility and freedom in specified intervals. The general formula can be written as

f(X) =

M∑
m=1

βmhm(X), (3.10)

where M is the number of basis functions used, {hm} the set of M basis function and the βm’s being the coeffi-
cients, or weights, of the basis functions. The βm’s are sometimes referred to as control points in spline literature.

The piece-wise part of the spline function comes from the fact that each basis function is defined on a set
interval, thus only contributing to f(X) if it is evaluated at an X which falls inside this interval. The result is
that f(X) will be defined by different polynomials, depending on which interval we look at. Assume now, for
notational purposes, that X is one-dimensional. This separation is then defined by what is called a knot vector
t = [t1, · · · , tK], a vector of non-decreasing values, which divides the domain where the spline function is defined
into K + 1 separate intervals, each with its own polynomial. The spline function can then be either continuous or
discontinuous at the knots, depending on the order of the polynomials.

10

3.3 Splines

We will focus on a basis function set known as B-Splines, which defines a basis for any spline function of order
p, and allow for great flexibility and control. For a classical introduction to both general splines and B-Splines, see
De Boor (1978).

3.3.1 B-Splines
B-Spline functions of order p are piece-wise polynomials of degree (p − 1), joined together at K interior knots
[t1, · · · , tK], using the B-Spline basis (hereby referred to as B-Splines). They are defined on a given interval
specified by boundary knots t0 ≤ t1 and tK+1 ≥ tK . B-Splines are uniquely defined by their knots, and can be
expressed in the following manner, known as the Cox–de Boor recursion formula,

Bi,0(x) =

{
0, if ti ≤ x ≤ ti+1

1, otherwise
,

Bi,j+1(x) = αi,j+1(x)Bi,j(x) + [1− αi+1,j+1(x)]Bi+1,j(x),

(3.11)

where

αi,j(x) =


x− ti
ti+j − ti

, if ti+j 6= ti

0, otherwise
. (3.12)

Since each unique B-Spline Bi,p−1(x) of degree (p − 1) is defined over an interval of (p + 1) interior knots
(as is evident by considering Equation 3.11 and 3.12), it is necessary to add an additional (p− 1) knots (excluding
the boundary knot) at the ends of the knot vector for the B-Splines to be properly defined. It is customary to
simply repeat the boundary knot (p−1) times, which also has the added benefit of degenerating the B-spline at the
edges. Due to the way the B-Spline is constructed, if the knots defining the B-Spline are all unique, its derivative
is continuous up to the order (p − 2). For each repeating knot, the order of continuity is reduced by one, so the
(p− 1) repeats of the boundary knots then results in the desired undefined property outside the boundary knots.

Due to the necessary augmentation of the knot vector, a B-Spline function is usually defined over what is
called the augmented knot vector, in contrast to simply the interior knots. The augmented knot vector τ =
[τ0, · · · , τK+2p−1] consists of K + 2p knots, the first and last p being repeats (τ0 = τ1 = · · · = τp−1 = t0,
and τK+p = τK+p+1 = · · · = τK+2p = tK+1). Together with the order p and M = K + p weights, they fully
define the the B-Spline function

fBS(x) =

K+p−1∑
m=0

βmBm,(p−1)(x). (3.13)

An example of how a B-Spline function is made is shown in Figures 3.5 - 3.7. In this case, the interval [0, 5]
is covered by K = 5 interior knots, excluding the repeated boundary knots at the edges of the interval. With a
degree of three, the resulting M = 9 B-Splines of degree three are shown in Figure 3.5. The weights βm allow us
to control the shape of the B-Spline function, and with the weighting shown in Figure 3.6, they together form the
B-Spline function in Figure 3.7.

Periodic B-Splines

At times, it might be desirable to have a periodic boundary condition for the B-Spline function, in contrast to the
degeneration at the edges of the interval that is described above. This way, the spline will be continuous across
the boundary knots t0 and tK+1. To achieve this, instead of the first and last (p − 1) elements of τ being repeats
of t0 and tK+1 respectively, they are extended over the boundaries, with similar spacing as between the other
elements of τ . Thus we have τ0 < τ1 < · · · < τp−1 < t0 and tK+1 < τK+p < τK+p+1 < · · · < τK+2p. Another
requirement is that the first (p−1) βm’s must be equal the last (p−1) βm’s, i.e. β0 = βK+1, · · · , βp−2 = βK+p−1.
This ensures that the first and last basis functions are similarly weighted and overlapping across the boundary, this
way ensuring continuity.

11

Chapter 3. Background

Figure 3.5: Nine B-Spline basis functions for a B-Spline
of degree three

Figure 3.6: The same nine basis functions, now weighted
randomly with βm ∈ [−2, 2]

Figure 3.7: The weighted B-Splines summed together, yielding a piece-wise connected B-Spline function fBS

12

Chapter 4
Latent Variable Models

In this chapter we introduce our models of choice, and highlight the differences between the LMT-model of Wu
et al. (2017) and our own spline-based LVM. Section 4.1 addresses the setup of the LMT-model, while Section 4.2
describes our spline-based approach. The inference procedure of the models will be showcased in Section 4.3 and
4.4 respectively, where we derive the necessary posterior distributions for performing an iterative MAP estimation
of the latent variable and the tuning curves. We describe and showcase the iterative MAP procedure in Section
4.5, before finishing off the chapter by highlighting an extension to the Spline-based LVM using a technique called
feature sharing.

4.1 The Latent Manifold Tuning model
We wish to model a latent variable which governs the behaviour of the spike counts of N neurons indexed by
i = 1, . . . , N , and discretise the time into bins indexed by t = 1, . . . , T over the period we are interested in. Let
the number of spikes of neuron i in bin t be denoted by yi,t. Furthermore, let yt ∈ RN denote the vector of spike
counts for all neurons at time t, let yj ∈ RT denote the vector of spike counts in all time bins for neuron j, and let
Y ∈ RN×T denote the matrix of spike counts for all neurons for all time bins, with rows equal to yj and columns
equal to yt.

4.1.1 The latent process
The latent process consists of a P -dimensional latent variable x(t) ∈ RP and tuning curves {hi(x)}, i = 1, . . . , N
that map the latent variable to the firing rate of each neuron at a given time. Each component xj(t), j = 1, . . . , P
of the latent variable is modeled as an independent Gaussian process in the time domain

xj(t) ∼ GP(0, kt), (4.1)

with zero mean and temporal covariance function kt(t, t′). We will follow Wu et al. (2017) and use an exponential
covariance function, as defined in Section 3.2

kt(t, t
′) = σx exp

(
−|t− t′|

δx

)
, (4.2)

which enforces smoothness in time for the latent variable. This is reasonable for several variables, for example
head direction. Denote by xj the vector of length T containing the values xj(t) evaluated at all time bins. Since it
is a Gaussian process it will then follow a normal distribution,

xj ∼ N (0,Kt), (4.3)

where Kt ∈ RT×T is the covariance matrix containing the covariance function evaluated at every combination of
time points. In a similar manner to yt and Y, we let the vector xt = x(t) denote the value of the latent variable
at time t, and let matrix X ∈ RP×T contain the values of the P-dimensional latent variable for all time bins, such
that the rows of X are equal to xj .

13

Chapter 4. Latent Variable Models

4.1.2 The tuning curves and spiking model

Let the function hi: RP 7−→ R describe a mapping from the latent variable at time t, to the firing rate λi,t of
neuron i, at time t. The function hi(x) will then be referred to as a tuning curve

λi,t = hi(xt). (4.4)

Now, instead of modeling hi(x), i = 1, . . . , N directly, we use the GLM framework from Section 3.1 to model
the log tuning curves fi(x), i = 1, . . . , N . Exponentiating ensures positive values (as λi,t is always positive), and
allows us to harness the useful properties that the canonical link brings, resulting in the following relation

hi(x) = exp(fi(x)). (4.5)

Following Wu et al. (2017), the log tuning curve fi(x) of neuron i are modeled as a Gaussian process over the
P -dimensional space of the latent variable

fi(x) ∼ GP(0, kx), (4.6)

using the same Gaussian covariance function, which we assume to be shared across all N neurons,

kx(x,x′) = σf exp

(
−||x− x′||22

2δ2f

)
. (4.7)

This enforces smoothness in the latent variable space for the tuning curves, where the degree can be adjusted
by the choice of the parameter δx.

Let the vector f i ∈ RT contain the value of the log tuning curve fi(xt) for all times t. Then, according to the
properties of a Gaussian process, f i has a multivariate normal distribution, given the value of the latent vector at
all time bins. With an additional term handling the possibly noisy observations, the conditional distribution of f i
takes the following form

f i|X ∼ N (0,Kx + σ2
ε I), (4.8)

where Kx ∈ RT×T is the covariance matrix of f i containing elements Kx{t,t′} = kx(xt,xt′) for every pair of
latent states (x,x′) that x attains between t = 1 and t = T . The noise term consists of the noise parameter σ2

ε ,
and an identity matrix I of size T × T .

To obtain a similar notation to Y and X, we gather the f i vectors as rows in the matrix F ∈ RN×T . Then the
rows of F contain the values of the log tuning curves of a single neuron evaluated at every time bin, and a column
f t of F describes the values of the log tuning curves at time t for the entire neuron population i = 1, . . . , N .

Theoretically, it is possible for the latent variable x(t) to visit the exact same state multiple times, and by
defining the conditional distribution of f i as a multivariate normal distribution, there is no guarantee that the same
xt will result in the same value for fi(xt) on multiple occasions. Although this invalidates the assumption that the
tuning curve maps any x to a single firing rate, it is mostly a theoretical curiosity, and has no practical implications
in our case.

Finally, we introduce the Poisson spiking model by assuming that the number of spikes for neuron i in bin t,
conditioned on the log tuning curve and the latent variable, follows a Poisson distribution with rate equal to λi,t

yi,t|fi,xt ∼ Poiss(exp(fi(xt))). (4.9)

4.2 The Spline-based Latent Variable Model

Our goal is still the same, in that we wish to model a latent variable x(t) that determines the behaviour of the
spiking activity of N neurons. We therefore keep the notation of yt, yj and Y from the LMT-model, denoting the
vector of spike counts for all neurons, the vector for all time bins and the matrix of spike counts for all neurons
and time bins, respectively.

14

4.3 Inference of the LMT model

4.2.1 The latent process
In similar fashion to the spike count notation, we also keep the setup of the latent process from the LMT-model, as
the (partial) goal of both models is to recover this latent x(t). That means each component of the P -dimensional
x(t) is modeled as a Gaussian processes, with the same covariance function described in Equation 4.2. Notation
for xt, xj and X will also remain the same.

4.2.2 The tuning curves and spiking model
When it comes to modeling the tuning curves, the spline-based approach deviates from the setup shown in Subsec-
tion 4.1.2. Still, we wish to model the function hi(x), the tuning curve of neuron i. Drawing again from the GLM
framework, we keep the decision to consider the log of the tuning curve, but denote in this case the log tuning
curve with gi(x) = log(hi(x)), i = 1, . . . , N , to differentiate from the log tuning curves of the LMT-model.

Instead of modeling the log tuning curve with a Gaussian process, we draw on the theory from Subsection 3.3.1
to model gi(x) with a B-Spline function of degree 3. Note that gi(x) here denotes an explicit real-valued function,
and thus has no distribution

gi(x(t)) =

Ncp∑
n=1

βi,nBn,3(x(t)). (4.10)

Here Bn denotes the set of functions that make up the B-Spline basis of degree 3, specified in Equation 3.11,
which is shared across all N gi’s. This basis is dependent on the total number of control points, which we denote
Ncp, as well as the augmented knot vector τ , which is defined over a specific interval that we are interested in. This
interval changes depending on the latent variable we are modeling, and thus the basis will look different for the
various cases we will explore in Chapter 5. Keep in mind that the components of the latent x(t) are modeled with
Gaussian processes, which technically means they can take values along the whole real line. This may conflict with
the splines being defined only on the interval specified by the knot vector, notably in the inference part and when
using gradient based searches for MAP estimation. To combat this problem, we define the splines periodically,
repeating them along R in intervals of multiples of the length of the knot vector (note that this necessitates making
an assumption of the domain of X).

To keep the Bayesian setting intact, we give each βi,n a Gaussian prior distribution centred around zero

βi,n ∼ N (0, σ2
β,[i,n]), (4.11)

with hyperparameter σ2
β,[i,n]. The σ2

β,[i,n]’s may then be given distributions of their own, but will in our case be
considered to have a constant, specified value.

Since our target for the tuning curve modeling will be the spline coefficients, and not the spline function, we
denote the vector of coefficients for the spline function for neuron i by βi ∈ RNknots , and gather all βi into the
matrix β ∈ RN×Ncp .

Now that we have modeled the behaviour of the latent variable and the tuning curves, we can calculate the
spike rate of neuron i at time t as λi,t = exp(gi(xt)). Then we assume that the spike count yi,t of neuron i in bin
t, just like earlier, is Poisson distributed with firing rate equal to λi,t

yi,t|βi,xt ∼ Poiss(exp(gi(xt))). (4.12)

4.3 Inference of the LMT model
Our goal is to find the point estimators X̂

LMT
MAP and F̂

LMT
MAP that maximize the posterior distribution of our parameters

X̂
LMT
MAP, F̂

LMT
MAP = argmaxX,Fp(F,X, ξ|Y)

= argmaxX,Fp(Y,F,X, ξ)

= argmaxX,Fp(Y|F)p(F|X, σf , δf , σε)p(X|σx, δx).

(4.13)

Here we have omitted the term [p(Y)]
−1 in the second line, as it does not depend on neither X nor F. Note

that ξ = {σf , δf , σx, δx σε} denotes the set of hyperparameters, which we here assume to be known. The joint
distribution becomes

15

Chapter 4. Latent Variable Models

p(Y,F,X, ξ) =p(Y|F)p(F|X, σf , δf , σε)p(X|σx, δx)

=

N∏
i=1

T∏
t=1

p(yi,t|fi,t)
N∏
i=1

p(f i|X, σf , δf , σε)
P∏
j=1

p(xj |σx, δx)

=

N∏
i=1

T∏
t=1

Poiss(exp(fi,t))

N∏
i=1

φ(f i; 0,Kx + σ2
ε I)

P∏
j=1

φ(xj ; 0,Kt)

=

N∏
i=1

T∏
t=1

(exp(fi,t))
yi,t

yi,t!
exp(− exp(fi,t))

× 1

(2π)
N
2 |Kx + σ2

ε I|
N
2

exp

(
− 1

2

N∑
i=1

fTi
[
Kx + σ2

ε I
]−1

f i

)

× 1

(2π)
P
2 |Kt|

P
2

exp

(
− 1

2

P∑
j=1

xTj K−1t xj

)
,

(4.14)

where we have assumed conditional independence between yi,t, f i and xj respectively, and φ(·; 0,K) refers to the
pdf of a multivariate normal distribution with 0 mean vector and covariance matrix K. From here on we will also
not refer to the hyperparameters, in order to simplify the notation.

Wu et al. (2017) use a method introduced as the decoupled Laplace approximation to perform the estimation,
where a Laplace approximation of the tuning curve posterior is used as a tool to reduce the implicit dependency

between F and X. In contrast, we seek to iteratively compute the MAP estimate of F at iteration k, F̂
LMT(k)

MAP ,

conditioned on the previous estimate of X, X̂
LMT(k−1)

MAP , then use this result to compute X̂
LMT(k)

MAP , now conditioned

on F̂
LMT(k)

MAP . Iterations are then run until convergence.
To perform this iterative maximization, we first show how the posterior distributions can be calculated, before

showcasing the corresponding algorithm.

4.3.1 MAP estimation of tuning curves

Given the assumed conditional independence, we can estimate the f i’s of F separately, before gathering them into
F. Using the standard relation from Bayes’ rule, the posterior p(f i|yi,X) is proportional to the joint distribution
from Equation 4.14

p(f i|yi,X) ∝ p(yi|f i)p(f i|X). (4.15)

Since our goal is maximization, we consider the logarithm of the posterior, as this simplifies the expression
substantially. Taking the logarithm, we see that

log p(f i|yi,X) ∝ log p(yi|f i) + log p(f i|X)

=

T∑
t=1

[
yi,tfi,t − exp(fi,t)

]
− 1

2
fTi
[
Kx + σ2

ε I
]−1

f i,
(4.16)

which we denote ΨLMT
F (f i), our objective function that we wish to maximize

ΨLMT
F (f i) :=

T∑
t=1

[
yi,tfi,t − exp(fi,t)

]
− 1

2
fTi
[
Kx + σ2

ε I
]−1

f i. (4.17)

The elements of F̂
LMT
MAP can then be found by

f̂
LMT
i,MAP = argmaxf iΨ

LMT
F (f i)

= argmaxf i

T∑
t=1

[
yi,tfi,t − exp(fi,t)

]
− 1

2
fTi
[
Kx + σ2

ε I
]−1

f i,
(4.18)

16

4.3 Inference of the LMT model

which can be solved using gradient-based optimization techniques. Since the gradient is simple to express analyt-
ically, and an analytical expression will improve the result of the optimization, we also compute this by differen-
tiating the objective function from Equation 4.17. First, for clarity, note that here ∇ = [∂

∂fi,1
. . . ∂

∂fi,T
]T . To find

∇ΨLMT
F (f i), we calculate the derivative of ΨLMT

F (f i)

∂

∂fi,t
ΨLMT

F (f i) = yi,t − exp(fi,t)−
T∑
j=1

fi,j
[
Kx{t,j} + σ2

ε I{t,j}
]−1

⇐⇒ ∇ΨLMT
F (f i) = yi − exp(f i)−

[
Kx + σ2

ε I
]−1

f i,

(4.19)

where we have used the fact that
[
Kx + σ2

ε I
]

is symmetric. Here the vector exp(f i) has elements exp(fi,t),
t = 1, . . . , T .

4.3.2 MAP estimation of the latent variable
Moving on to the inference of X, due to how the spiking model is defined, conditioned on F, the spiking model
does not depend on X, resulting in it not contributing to the posterior p(X|Y,F). Using Equation 4.14 again, we
have the following relation

p(X|Y,F) ∝ p(F|X)p(X). (4.20)

Taking the logarithm and inserting expressions, we get

log p(X|Y,F) ∝ log p(F|X) + log p(X)

= −N
2

log |Kx + σ2
ε I| −

1

2

N∑
i=1

(
fTi
[
Kx + σ2

ε I
]−1

f i

)
− 1

2

P∑
j=1

(
xTj K−1t xj

)
,

(4.21)

which we will denote with ΨLMT
X (X).

Observe that since Kx is a function of X, it must be calculated multiple times when performing gradient based
optimization, a process that gets progressively more expensive as X increases in size. To combat the computational
challenge this presents, we will draw on the theory of approximate Gaussian process techniques, namely the use of
inducing points (see Quinonero-Candela and Rasmussen, 2005) to reduce the size of the matrix Kx that needs to be
computed and inverted. Since this derivation is quite long and somewhat cumbersome, we will refer to Myklebust
(2020) for a thorough derivation, and simply state the resulting expression when using inducing points.

First, let u denote the vector of function values at Nind inducing points, uniformly spaced in the range of x,
and let the covariance matrices Ku,u ∈ RNind×Nind , Kf ,u ∈ RT×Nind and Ku,f = KT be composed of elements

Ku,u{i,j} = kx(xui ,xuj)

Kf ,u{i,j} = kx(xti ,xuj).
(4.22)

Then, according to Myklebust (2020), we can define our objective function as

ΨLMT
X (X) :=− N

2
log |Kx + σ2

ε I| −
1

2

N∑
i=1

(
fTi
[
Kx + σ2

ε I
]−1

f i

)
− 1

2

P∑
j=1

(
xTj K−1t xj

)
=− 1

2

N∑
i=1

N

2
log |Ku,fKf ,u + σ2

εKu,u| −
N

2
log |K−1u,u| −

N(T −Nind)

2
log |σ2

ε |

− 1

2σ2
ε

N∑
i=1

fTi f i +
1

2σ2
ε

N∑
i=1

[
fTi

(
Kf ,u

(
σ2
εKu,u + KT

f ,uKf ,u

)−1
KT

f ,u

)
f i

]

− 1

2

P∑
j=1

(
xTj K−1t xj

)
,

(4.23)

whereby the MAP estimate can then be found, once again, using optimization techniques

X̂
LMT
MAP = argmaxXΨLMT

X (X). (4.24)

17

Chapter 4. Latent Variable Models

An analytical expression for the gradient ∇ΨLMT
X (X), which for clarity takes the following form (assuming a

one-dimensional latent variable)

∇ΨLMT
X (X) =

[
∂

∂x1
ΨLMT

X (X) . . .
∂

∂xT
ΨLMT

X (X)

]T
(4.25)

has also been derived by Myklebust (2020), with elements

∂

∂xt
ΨLMT

X (X) =− N

2
trace

(
B−1

[(
Ku,f

[
∂

∂xt
Kf ,u

])T
+ Ku,f

[
∂

∂xt
Kf ,u

]])

+
1

2σ2
ε

N∑
i=1

fTi

[(
I−Kf ,uB

−1Ku,f

)(∂

∂xt
Kf ,u

)
B−1Ku,f

+ Kf ,uB
−1
(

∂

∂xt
Ku,f

)(
I−Kf ,uB

−1Ku,f

)]
f i

− xTK−1t{.,t},

(4.26)

where B = Ku,fKf ,u + σ2
εKu,u and

∂

∂xt
Kf ,u =

 0t−1,Nind

kf ,u(xt,xgrid)

0T−t,Nind

 , (4.27)

with kf ,u(xt,xgrid) =
[
kf ,u(xt, xu1

) . . . kf ,u(xt, xuNind
)
]
, kf ,u(xt, xuj

) = −(xt−xuj
)
σf

δ2f
exp

(
−(xt−xuj

)2

(2δ2f)

)
and

appropriately sized zero matrices.

4.4 Inference of the spline-based LVM

In a similar fashion to the inference of the LMT model, we look for point estimators for our latent variable X̂
SPL
MAP

and spline coefficients β̂
SPL
MAP

X̂
SPL
MAP, β̂

SPL
MAP = argmaxX,βp(β,X, ξ|Y)

= argmaxX,βp(Y,β,X, ξ)

= argmaxX,βp(Y|β,X)p(β|σβ)p(X|σx, δx),

(4.28)

where the normalizing constant has been omitted and ξ now contains the set of known hyperparameters ξ =
{σβ , σx, δx}. We then have the following joint distribution

p(β,X, ξ|Y) =p(Y|β,X)p(β|σβ , Ncp, τ)p(X|σx, δx)

=

N∏
i=1

T∏
t=1

p(yi,t|βi,xt)
N∏
i=1

Ncp∏
n=1

p(βi,n|σβ,[i,n])
P∏
j=1

p(xj |σx, δx)

=

N∏
i=1

T∏
t=1

Poiss(exp(gi(xt)))

N∏
i=1

Ncp∏
n=1

N (βi,n; 0, σ2
β,[i,n])

P∏
j=1

φ(xj ; 0,Kt)

=

N∏
i=1

T∏
t=1

(exp(gi(xt)))
yi,t

yi,t!
exp(− exp(gi(xt)))

×
N∏
i=1

Ncp∏
n=1

1

(2π)
1
2σβ,[i,n]

exp

(
−1

2

β2
i,n

σ2
β,[i,n]

)

× 1

(2π)
P
2 |Kt|

P
2

exp

(
− 1

2

P∑
j=1

xTj K−1t xj

)
,

(4.29)

18

4.4 Inference of the spline-based LVM

where conditional independence has been assumed, and φ and N have been specified in earlier sections. We
will again stop referring to the hyperparamters in our notation, when dealing with densities, to simplify whenever
possible.

Do note that Ncp and τ may be considered hyperparameters of the B-Spline function, and as such could be
included in the set ξ. We will however not always consider these fixed, changing them depending on our problem
of interest, and as such, special attention will be given to how Ncp and τ are chosen in Chapter 5. They have
therefore been left out from ξ, our set of fixed hyperparameters.

The iterative MAP procedure, as we will see in Section 4.5, will be somewhat similar to the LMT-case. Thus,
we first calculate the posterior distributions and gradients necessary for maximization.

4.4.1 MAP estimation of spline coefficients
From Equation 4.29 we have that

p(β|Y,X) ∝ p(Y|β,X)p(β). (4.30)

Taking the logarithm to simplify, and inserting expressions for the densities, we get the following

log p(β|Y,X) ∝ log p(Y|β,X) log p(β)

=

N∑
i=1

T∑
t=1

[
yi,tgi(xt)− exp(gi(xt))

]
−

N∑
i=1

Ncp∑
n=1

1

2

β2
i,n

σ2
β,[i,n]

,
(4.31)

which we will denote ΨSPL
β (β). As a reminder, gi(xt) refers to the B-Spline function of degree 3 corresponding to

neuron i, as specified in Equation 4.10. We then find β̂
SPL
MAP by maximizing this expression

β̂
SPL
MAP = argmaxβΨSPL

β (β)

= argmaxβ

N∑
i=1

T∑
t=1

[
yi,tgi(xt)− exp(gi(xt))

]
−

N∑
i=1

Ncp∑
n=1

1

2

β2
i,n

σ2
β,[i,n]

.
(4.32)

As for an analytical expression for the gradient of our objective function, we differentiate row-wise with respect
to the βi,j’s, giving the following

∇ΨSPL
β (β) =

[
∂

∂β1,1
ΨSPL

β (β) . . .
∂

∂β1,Ncp

ΨSPL
β (β) . . .

∂

∂βN,1
ΨSPL

β (β) . . .
∂

∂βN,Ncp

ΨSPL
β (β)

]T
, (4.33)

where∇ΨSPL
β (β) ∈ RNNcp is a vector of length N times Ncp. Subsequently, its elements take the form

∂

∂βi,n
ΨSPL

β (β) =

T∑
t=1

[
yi,tBn,3(xt)− exp(gi(xt))Bn,3(xt)

]
− βi,n
σ2
β,[i,n]

, (4.34)

where Bn,3(xt) is the n’th B-Spline basis of degree 3, evaluated at xt = x(t).

4.4.2 MAP estimation of the latent variable
In the case of the Spline-based LVM, the spiking model still contributes to the likelihood, as the B-Spline function
itself does not have a distribution and is dependent on the argument X. The relationship, using Equation 4.29,
takes the following form

p(X|Y,β) ∝ p(Y|β,X)p(X), (4.35)

and taking the logarithm

log p(X|Y,β) ∝ log p(Y|β,X) + log p(X)

=

N∑
i=1

T∑
t=1

[
yi,tgi(xt)− exp(gi(xt))

]
− 1

2

P∑
j=1

(
xTj K−1t xj

)
,

(4.36)

19

Chapter 4. Latent Variable Models

gives the familiar MAP expression

X̂
SPL
MAP = argmaxXΨSPL

X (X)

= argmaxX

N∑
i=1

T∑
t=1

[
yi,tgi(xt)− exp(gi(xt))

]
− 1

2

P∑
j=1

(
xTj K−1t xj

)
.

(4.37)

With the change from Gaussian process to a B-Spline function, we also circumvent to computational challenges
that necessitated the use of inducing points, resulting in a much simpler expression for the gradient

∇ΨSPL
X (X) =

[
∂

∂x1
ΨSPL

X (X) . . .
∂

∂xT
ΨSPL

X (X)

]T
, (4.38)

with elements

∂

∂xt
ΨSPL

X (X) =

N∑
i=1

[
yi,t

∂

∂xt
gi(xt)− exp(gi(xt))

∂

∂xt
gi(xt)

]
−

P∑
j=1

K−1t xj . (4.39)

The derivative of our B-Spline function ∂
∂xt

gi(xt) =
∑Ncp
n=1 βi,n

∂
∂xt

Bn,3(x(t)) can be expressed in the fol-
lowing manner

Ncp∑
n=1

βi,n
∂

∂xt
Bn,3(x(t)) =

Ncp∑
n=1

βi,n

[
3

τn+3 − τn
Bn,2(x(t))− 3

τn+3+1 − τn+1
Bn+1,2(x(t))

]
, (4.40)

with τ -values originating from the augmented knot vector τ (see Section 3.3.1 for definition). The differentiation
is a known result and can be found in e.g. Piegl and Tiller (1996).

4.5 The iterative MAP procedure
The idea behind the iterative MAP procedure is the same for both the LMT and the Spline-based LVM. Starting
from some initial value for X and either F or β, we use optimization techniques to maximize the corresponding
posterior expressions iteratively until convergence is satisfied. The choice of initialisation is an important one,
as our target functions are not (necessarily) convex, and the result might not be the global maxima of interest,
but rather some local maxima found due to poor initialisation. The discussion surrounding initialisation will be
addressed further in the upcoming chapter. As for the optimization technique, we utilize the L-BFGS-B (see Byrd
et al., 1995) algorithm, an efficient extension of the original gradient-based BFGS (Nocedal and Wright, 2006).
The convergence criterion is similar for both MAP procedures, in that the algorithm terminates whenever the

Euclidean distance between X̂
. . . (k)

MAP and X̂
. . . (k−1)

MAP becomes smaller than a specified tolerance, or if the iterations
exceeds a predetermined limit for the number of iterations. The first of the MAP procedures is shown in Algorithm
1.

Algorithm 1: Iterative MAP procedure for LMT

Input: observations Y, initial guess X0, F0, hyperparameters
1 begin
2 while not converged do
3 for i = 1, . . . , N do

4 Find f̂
LMT(k)

i,MAP by solving (4.18)
5 end

6 Find X̂
LMT(k)

MAP by solving (4.24)
7 Adjust σ2

ε = σ2
ε × χ

8 end

9 return F̂
LMT(k)

MAP , X̂
LMT(k)

MAP
10 end

20

4.6 Feature Sharing, an extension to the Spline-based LVM

We follow Myklebust (2020) by utilising a learning rate parameter 0 < χ < 1, which controls the noise term
σ2
ε in our Gaussian process (see Equation 4.8), to allow for more efficient exploration during the early stages of the

optimization. We will also use a similar initialisation for the F0 as Myklebust (2020), and so we will consequently

also be skipping the first update of F̂
LMT(k)

MAP , by their recommendation.
The quite similar MAP procedure for the Spline-based LVM is shown in Algorithm 2.

Algorithm 2: Iterative MAP procedure for Spline-based LVM

Input: observations Y, initial guess X0, β0, hyperparameters
1 begin
2 while not converged do

3 Find β̂
SPL(k)

MAP by solving (4.32)

4 Find X̂
SPL(k)

MAP by solving (4.37)
5 end

6 return β̂
SPL(k)

MAP , X̂
SPL(k)

MAP
7 end

Observe that as the B-Spline function has no distribution itself, we have no way of controlling how freely the
targeted space can be explored, like we have with the noise parameter for the LMT. To combat this potential issue,
a proposed solution is to not run the L-BFGS-B solver all the way to convergence when solving for β̂

SPL
MAP, but

instead take a single gradient-step. That way, we avoid the possibility of having the solver converging prematurely
to a local maxima too close to the initialisation. If the initialisation of X is good, however, this single-step might
not be all that necessary. This, as well as choices regarding the number of control points and placement of the knot
vector, will be discussed in the next chapter.

4.6 Feature Sharing, an extension to the Spline-based LVM
One of the strengths of the Spline-based LVM is its easily customisable log tuning curve function gi(x), in contrast
to the non-parametric Gaussian process in the LMT-model. One such extension, inspired by the works of Klindt
et al. (2017), is applicable when the neurons in question all share similarly shaped tuning curves of varying strength
and position, like e.g. in the case neurons tuned to visual stimuli, head direction or spatial position (Albright, 1984;
Taube et al., 1990; Hafting et al., 2005). In such cases, we may assume the B-Spline function modeling gi(x) to
be shared by all N neurons, augmented with a scaling variable αi controlling the strength of tuning, and two shift
variables θi and γi, which controls the position of the tuning curve along the first and second axis respectively

gFS
i (x(t)) = αi

Ncp∑
n=1

βnBn,3(x(t) + θi) + γi. (4.41)

The idea behind this feature sharing is hardly new, and has been utilised in the context of neural networks (as
well as more traditional GLMs) by e.g. Klindt et al. (2017), Batty et al. (2017), but, to our knowledge, not in
conjunction with a Spline-based LVM before. (That is, in a neuroscientific setting. The applications of a latent
variable model with shared features are very broad, and might already be used in other fields.) As has been argued
for by said authors, feature sharing lets us utilise the whole set of neuronal data to infer a single shared tuning
curve, instead of only using the data from one neuron to infer its own tuning curve. Additionally, by assuming a
known and suitable shape to the tuning curves, we can possibly infer the other variables more easily, compared to
when one uses models where it is harder to make an educated guess with respect to the initialisation.

The notation for Y,X will be kept the same as in the case without feature sharing. Note that β is now no
longer a matrix of coefficents, as the coefficients are shared across all neurons, and thus instead represents a vector
β ∈ RNcp . Similarly, the αi’s and γi’s are gathered into the vectors α ∈ RN and γ ∈ RN , while the θi’s are
collected into the matrix θ ∈ RN×P . Each αi is given a Gamma prior distribution

αi ∼ Gamma(si, ri), αi > 0 (4.42)

with some hyperparameters si, ri. The θi’s are given a uniform prior,

21

Chapter 4. Latent Variable Models

θi ∼ Unif(θlower,θupper), (4.43)

where θlower,θupper are determined based on the particular space of interest, similarly to how we define the aug-
mented knot vector τ for the B-Spline basis. Finally, each γi is given a Gaussian distribution

γi ∼ N (µγi , σ
2
γi), (4.44)

with some hyperparameters µγi , σ
2
γi .

To motivate our choice of variables α,θ,γ, we present a visualisation of how the three variables affect the
shape of the tuning curve. Consider Figure 4.1, which shows a possible realisation of a tuning curve (note that
gFS
i (x(t)) here has been exponentiated, as it models the log tuning curve, and not the tuning curve itself).

Figure 4.1: Figure showing a possible tuning curve shape
for a neuron responding to a 2π-periodic variable.

Figure 4.2: Figure showing the effect of the variable αi
on the shape of the tuning curve.

Figure 4.3: Figure showing the effect of the variable θi
on the shape of the tuning curve.

Figure 4.4: Figure showing the effect of the variable γi
on the shape of the tuning curve.

First, we note that the sign of gFS
i (x(t)) in this case is negative, since the tuning curve is less than one at all

points. The ”Plain” tuning curve has variables set to αi = 1, θi = 0, γi = 0. Increasing αi scales the tuning curve
down (due to the negative sign), for which the result can be see in Figure 4.2. Note that this not only shrinks the
height of the tuning curve, but also the width. Changing θi, as seen in Figure 4.3, results in a pretty straightforward
change; the tuning curve is shifted along the X-axis, where a shift of any multiple of θi = 2π returns the tuning
curve to the original position. Finally, the change in γi (Figure 4.4) also shifts the log tuning curve, but along the
second axis instead. Exponentiated, this has the same effects as multiplying the tuning curve with some constant.
Instead of scaling both the width and height, this variable only affects the height, with the width of the tuning
staying the same.

4.7 Inference, feature sharing
Inference is done in much the same way as has been shown in the earlier sections, so in an effort to not repeat our-
selves too much, we briefly go over the resulting changes to the inference procedure when utilising feature sharing,

22

4.7 Inference, feature sharing

and describe the resulting changes in the MAP procedure. Inference will be shown for a one-dimensional latent
variable, since this will be the dimensionality of interest in our application chapter. Nonetheless, the inference is
easily extended to a higher dimensional latent variable.

4.7.1 Expressions
Starting with the spline coefficients, we now simply state the relation between the log posterior, the log likelihood
and the log prior. The new model, shown in Equation 4.41, slightly changes the expression, which we denote
ΨFS

β (β), one of our target functions for the MAP estimation

log p(β|Y,X,α,θ,γ) ∝ log p(Y|β,X,α,θ,γ) log p(β)

=

N∑
i=1

T∑
t=1

[
yi,tg

FS
i (xt)− exp(gFS

i (xt))
]
−

Ncp∑
n=1

1

2

β2
n

σ2
β,[n]

:=ΨFS
β (β).

(4.45)

This target gives rise to the following formula for the gradient

∇ΨFS
β (β) =

[
∂

∂β1
ΨSPL

β (β) . . .
∂

∂βNcp

ΨSPL
β (β)

]T
, (4.46)

with elements

∂

∂βn
ΨFS

β (β) =

N∑
n=1

T∑
t=1

[
yi,tαiBn,3(xt + θi)− exp(gFS

i (xt))αiBn,3(xt + θi)
]
− βn
σ2
β,[n]

. (4.47)

The newly introduced variables follow roughly the same pattern, with target functions defined through the
following relations

log p(θ|Y,X,β,α,γ) ∝ log p(Y|β,X,α,θ,γ)

=

N∑
i=1

T∑
t=1

[
yi,tg

FS
i (xt)− exp(gFS

i (xt))
]

:=ΨFS
θ (θ),

(4.48)

log p(γ|Y,X,β,α,θ) ∝ log p(Y|β,X,α,θ,γ)

=
N∑
i=1

T∑
t=1

[
yi,tg

FS
i (xt)− exp(gFS

i (xt))
]
−

N∑
i=1

1

2

(γi − µγi)2

σ2
γi

:=ΨFS
γ (γ),

(4.49)

log p(α|Y,X,β,θ) ∝ log p(Y|β,X,α,θ) + log p(α)

=

N∑
i=1

T∑
t=1

[
yi,tg

FS
i (xt)− exp(gFS

i (xt))
]

+

N∑
i=1

(si − 1) logαi − riαi

:=ΨFS
α (α),

(4.50)

and with gradient elements equal to

∂

∂θn
ΨFS

θ (θ) =

N∑
i=1

[
yi,t

∂

∂θn
gFS
i (xt)− exp(gFS

i (xt))
∂

∂θn
gFS
i (xt)

]
, (4.51)

∂

∂γi
ΨFS

γ (γ) =

N∑
i=1

[
yi,t − exp(gFS

i (xt))
]
− (γi − µγi)

σ2
γi

, (4.52)

∂

∂αi
ΨFS

α (α) =

T∑
t=1

yi,t Ncp∑
n=1

[
βnBn,3(xt + θi)

]
− exp(gFS

i (xt))

Ncp∑
n=1

[
βnBn,3(xt + θi)

]+
si − 1

αi
− ri. (4.53)

23

Chapter 4. Latent Variable Models

Note that ∂
∂θn

gFS
i (xt) actually takes the same form as the derivative ∂

∂xt
gi(xt) in Equation 4.40, only with the

x(t) exchanged with x(t) + θn (and x(t) being a one-dimensional variable), as well as being timed with αi.
Finally, we have the latent variable itself, which more or less keeps its familiar expression

log p(X|Y,β,α,θ) ∝ log p(Y|β,X,α,θ) + log p(X)

=

N∑
i=1

T∑
t=1

[
yi,tg

FS
i (xt)− exp(gFS

i (xt))
]
− 1

2

(
xTK−1t x

)
:=ΨFS

X (X),

(4.54)

including the expression for its derivative

∂

∂xt
ΨFS

X (X) =

N∑
i=1

[
yi,t

∂

∂xt
gFS
i (xt)− exp(gFS

i (xt))
∂

∂xt
gFS
i (xt)

]
−K−1t x. (4.55)

With all five target functions, and their derivatives derived, we have acquired the necessary expressions to
perform our estimation

β̂
FS
MAP = argmaxβΨFS

β (β), (4.56a)

θ̂
FS
MAP = argmaxθΨFS

θ (θ), (4.56b)

γ̂FS
MAP = argmaxγΨFS

γ (γ), (4.56c)

α̂FS
MAP = argmaxαΨFS

α (α), (4.56d)

X̂
FS
MAP = argmaxXΨFS

X (X). (4.56e)

4.7.2 MAP procedure

As previously shown, we alternate between maximizing the various expressions to iteratively estimate our set of
target variables. The MAP procedure when using feature sharing is showcased in Algorithm 3.

Algorithm 3: Iterative MAP procedure for Spline-based LVM, using feature sharing

Input: observations Y, initial guess X0, β0,θ0,γ0,α0 hyperparameters
1 begin
2 while not converged do

3 Find β̂
FS(k)

MAP by solving (4.56a)

4 Find θ̂
FS(k)

MAP by solving (4.56b)

5 Find γ̂FS(k)

MAP by solving (4.56c)

6 Find α̂FS(k)

MAP by solving (4.56d)

7 Find X̂
FS(k)

FS by solving (4.56e)
8 end

9 return β̂
FS(k)

MAP ,θ̂
FS(k)

MAP ,γ̂FS(k)

MAP , α̂FS(k)

MAP , X̂
FS(k)

MAP
10 end

Since we wish to utilise the assumption behind feature sharing in the most efficient way, we skip the first update

of β̂
FS(k)

MAP , to keep the initial tuning curve shape intact while estimating the other variables. This argument is similar

to why the first F̂
LMT(k)

MAP update is proposed skipped in Algorithm 1, as the initialisation for the other variables X0,

θ0, γ0, α0 might be less accurate than the β0, thus worsening the estimate if we immediately solve for β̂
FS(k)

MAP ,
conditioned on poorer initialised variables.

24

4.8 A note on inference regarding periodicity

4.8 A note on inference regarding periodicity
When deriving the expressions for the models utilising a spline-based approach in the previous sections, an un-
derlying assumption that the spline function is non-periodic has been made. However, in cases where the latent
variable is indeed periodic, tuning curves are also assumed to be continuous across the boundaries of the defined
interval of interest. This is simple to account for, as discussed in Subsection 3.3.1, but this slight change in how the
control points behave also changes the inference slightly. Notably, since the first three (due to the use of a degree
three B-Spline) control points must be exactly the same as the three last to obtain periodicity, we exchange βNcp−2
with β1, βNcp−1 with β2 and βNcp with β3. This results in three fewer variables in β (3N fewer, in the non-feature
sharing case), although the B-Spline function itself still has Ncp control points. Thus when calculating the gra-
dients in Equations 4.33 and 4.46, the gradient elements associated with β1, β2 and β3 will get the contributions
from the likelihood that originally belonged to βNcp−2, βNcp−1 and βNcp . Note that the prior contribution is still the
same, and is not ”doubled”.

25

Chapter 5
Data Analysis

In this chapter, we showcase the results from applying the models from Chapter 4 to simulated and real data. In
Section 5.1, we discuss modeling choices and some challenges related to the different models presented in the
previous chapter, before moving on to Section 5.2, where we compare how the models scale with respect to data
size in various cases. Finally, we use the models to infer the head direction of a mouse based on real neural data in
Section 5.3.

5.1 Modeling choices and challenges

5.1.1 Evaluating the results
Since we will be comparing performances in the upcoming sections, both between different models and depending
on initialisations/choice of hyperparameters, we will need some form of measure to decide whether a model is
”better” than another. Our evaluation method of choice is the root mean squared error (RMSE), which measures
how well the inferred latent path X̂ does compared to the true X by taking the square root of the mean squared
error over all the time points

RMSE =

√√√√ 1

T

T∑
i=1

(xt − x̂t)
2
. (5.1)

Taking the square root ensures that the error is proportional to the scale of the inferred X̂. An argument can be
made for using the mean absolute error instead (MAE), which differs from the RMSE by considering the absolute
difference between the elements of X̂ and X, instead of squaring them before averaging

MAE =
1

T

T∑
i=1

|xt − x̂t|. (5.2)

Due to the squared difference used in the RMSE, elements of X̂ far away from the truth are penalized more
compared to the MAE, which is a feature to be aware of. As we already discussed in Subsection 5.1.3, the Spline-
based LVM has a tendency of producing results that might suddenly deviate from the true path by a large margin.
While upon inspection, these deviations might be easy to spot and account for (we might for instance scale them
back to the original area of interest), such a jump will be heavily penalized when using the RMSE measure. Where
such large and obvious deviations occur, we will take the liberty to re-scale X̂ back to the area of interest. This
is in accordance with how the LMT solution also will be scaled and shifted according to the true solution, before
RMSE is calculated. The argument behind this is that since these models are intended to be used in an exploratory
setting, the shape and dynamic of the inferred latent variable might still allow us to identify what the neurons are
in fact responding to, thus also indicating how we might more properly scale or shift the inferred path.

Since the RMSE is a difference measure between inferred path and truth, it is also only available in settings
with simulated data, when we know the true solution. In some real world cases, we can make an argument for
when we have a recording of what we assume to be the true latent variable, but then again, is it really latent when
we both know about it and have already recorded it? Nonetheless, in an exploratory setting, we do not have the

26

5.1 Modeling choices and challenges

luxury of evaluating the performance of our model in the same way as we do with simulated data. Myklebust
(2020) explored whether the target function ΨLMT

X (X) from Equation 4.23, evaluated at the inferred X̂, could in
fact be used as a measure of how accurate X̂ is. This is reminiscent of using the likelihood function to evaluate
goodness of fit. However, their results indicate that the most optimal solution, with respect to RMSE evaluation,
does not always have the highest posterior score, thus rendering this evaluation method ineffective.

We experience similar results when assessing whether ΨSPL
X (X) can be used more effectively than the LMT

variant. Experiments show that ΨSPL
X (X) evaluated at the true solution can have a lower posterior score, compared

to an inferred X̂ initialised from the true solution and with true tuning curves. This indicates that there are local
maxima around the true solution that results in a better score, possibly due to variation in the spike data, which hap-
pens to give a better fit for a slightly noisier solution of the truth. Note that this is not only the case when initialised
from the truth. Initialising the Spline-based LVM from ISOMAP, applied to a smoothed spiking matrix, results in
an inferred X̂ that gives a higher posterior score than the true solution in about half of the cases. Although this is
not a conclusive study, we speculate whether the posterior score could be an unsuitable metric for evaluating the
performance of our model as well, similarly to what Myklebust (2020) discovered, when the RMSE is unavailable.

5.1.2 Interior knots
The number of knots in the knot vector, and thus also the number of control points, is an important choice when
working with splines, along with the placement of the knot vector. One possibility is to consider them free param-
eters, estimating them using e.g. cross-validation, or through MCMC, like in for instance DiMatteo et al. (2001).
In our case, however, we will rely on the somewhat simpler ”elbow” method, where one decides the value of a
parameter based on the location of the ”elbow” of a curve (Thorndike, 1953), plotted against some measure. We
consider the number of interior knots, and plot them against the RMSE of an interpolating spline which interpo-
lates a Gaussian bump tuning curve. The results can be observed in Figure 5.1, where we can see that the accuracy
quickly saturates when the number of knots increase.

Figure 5.1: RMSE as a function of the number interior
knots for an interpolating spline interpolating a Gaussian
bump tuning curve. RMSE axis shown in log scale.

Figure 5.2: (1 − RMSE) as a function of the number
interior knots for an interpolating spline interpolating a
Gaussian bump tuning curve.

For easier inspection of the ”elbow”, we also plot (1−RMSE) as a function of the number of knots, and forgo
the log scale on the RMSE axis.

From Figure 5.2, there seems to be an observable elbow at eight knots, while at 13 there seems to considerable
diminishing returns. Considering Figure 5.1 again, to reduce the average RMSE by another order of magnitude
would require a doubling of the number of interior knots. We therefore decide to continue with eight interior
knots, resulting in B-Splines with Ncp = 12 control points, although an argument could also be made for 13
interior knots. Note that when we work with a periodic latent variable, we increase the number of interior knots to
11, to accommodate for the fact that we now have three less unique control points.

5.1.3 Scaling, shifting and flipping
As mentioned by Myklebust (2020), there are various challenges associated with the usage of the LMT model.
Most of them can be attributed to the target function ΨLMT

X (X) from Equation 4.23 which, upon closer inspection,
is a non-convex and even function. This means that there is no guarantee that any optimization algorithm will con-
verge to the global maxima, as it might get stuck in some local maxima, depending on how good the initialisation

27

Chapter 5. Data Analysis

is. Do note that this is also a problem that one encounters in the spline-variant, so initialisation is equally important
for this model.

The evenness of the target function means that any solution of the latent variable X, which we may refer to as
the ”path”, is just as likely to be found as (−X), so the event of flipped solutions are a possibility. In addition, the
covariance kernels are unable to detect the difference between X and some shifted solution (X + c), and although
they only make up parts of the target function, experiments show that shifted solutions do occur, depending on
the initialisation. Wrong scaling of the inferred X is another issue that presents itself during simulation, which
in theory should prove to be a less optimal solution, compared to the true latent variable. We speculate however,
that due to the non-convexity of the problem, this is but one of the issues that might end up presenting itself when
doing iterative MAP estimation. In Figure 5.3 we see how initially the estimate is both shifted and scaled wrong,
while once corrected, the estimate is quite accurate.

Figure 5.3: Showcase of how the LMT might produce
solutions that are shifted and scaled wrong.

Figure 5.4: Showcase of how the LMT might produce
flipped or even partially flipped solutions.

In Figure 5.4, we see the case where the estimate produced is a flipped variation of the true X. More accurately,
it is actually a partially flipped result, as in the interval from T ≈ 50 to T ≈ 65, the estimate is following the true
trajectory correctly. While completely flipped results are still valuable, since they convey the behaviour of the
latent variable in a way that is interpretable, partly flipped results are difficult to identify and correct for. Although
the result from Figure 5.4 is almost completely flipped, if e.g. one-third of the inferred path was flipped, we would
have no easy way of telling without consulting the underlying truth. While previous knowledge of the experimental
setting or the inferred latent variable itself could be used in an exploratory setting to correct for offset and scaling
issues, the challenge related to partial flipping is one without an immediate solution.

As for the Spline-based LVM, an immediate observation is that the change from Gaussian process to spline
function means the target function (see Equation 4.37) is no longer even. Coupled with the removal of the isotropic
covariance kernel in favour of a non-isotropic spline function (the splines are repeated along R, but not mirrored),
theoretically the chance of converging to a flipped estimate should now be a lot smaller, if even existent. However,
even if early experiments show no sign of the Spline-based LVM producing flipped results, we cannot write off the
possibility that flipped or partially flipped results might occur at some point, as we will see later, since the target
function is still not convex. To give an indication of the different behaviour of the two methods, we initialise 6
estimates from random positions, then let the MAP procedures from Algorithm 1 and 2 run until convergence. The
initialisations can be seen in Figure 5.5, while the resulting final estimates for the LMT model and the Spline LVM
is shown in Figure 5.6 and 5.7, respectively. From Figure 5.6, we see that the final estimates when using the LMT
model can end up flipped in a variety of ways, some completely, some partially and along different axes. This is
not the case with the variant using splines, as more or less each simulation ends up converging towards the truth.

That does not mean the spline-variant is without troubles, however. Many of the final estimates in Figure 5.7
periodically make erratic jumps before returning to the trajectory of the true path. We speculate that this might
partially be due to two reasons, both of whom are easier to envision when considering only one realisation, together
with its initialisation. Such a case is shown in Figure 5.8.

The first thing that is immediately apparent is that the final estimate seems to have an unfortunate tendency of
”sticking” to the initialisation, e.g. at around T = 20, T = 60 and T = 85. The other is that when initialised
close to the borders of the interval which the latent path is defined on (in this case, [0, 10]), the inferred path might
make a large jump that is reminiscent of a shift with length equal to the length of the interval that the path exists
on. Given that we in Section 4.2.2 defined the tuning curves repeatedly along R, it is perhaps not too surprising
that the inferred path might be pulled towards shifted solutions. To combat this one could implement some form

28

5.1 Modeling choices and challenges

Figure 5.5: Six random initialisations, realised by drawing each xt from a Unif[0, 10] distribution, together with the true path.

Figure 5.6: Final estimates of X using LMT, plotted
against the true path.

Figure 5.7: Final estimates of X using the Spline-based
LVM, plotted against the true path.

Figure 5.8: One random initialisation, and the corresponding final estimate of X using the Spline-based LVM, plotted against
the true path.

of penalisation for making large jumps from xt to xt+1, or utilise the constrained optimization implementation
of the L-BFGS-B optimizer. However, early assessments indicate that results are on average worse when solving
the problem as a constrained optimization problem, so it might simply be more useful to inspect the result from
unconstrained optimization and then correct for obviously shifted jumps. Unfortunately, jumps may also occur at
locations that are harder to explain, like at around T = 30, where the final estimate has converged towards the true
path from an initialisation further away, but at one point makes a larger detour. We have no tangible explanation
for why this is the case, other than that this particular point might belong to a local maxima for our non-convex
problem. Couple this with the ”stickyness” with respect to some parts of the initialisation, and it becomes quite
clear that a proper initialisation is a requisite for convergence to an optimal solution, as tends to be the case for
non-convex optimization.

29

Chapter 5. Data Analysis

A note on the impact of the prior

Given that neural data sets can be quite large in size, either with respect to the recording length and/or the number
of neurons recorded, there is always the possibility that when using a MAP procedure for estimation, the contri-
bution from the likelihood might completely dominate that of the prior, resulting in a solution that approaches the
MLE. On inspection, we observe that in the simulated cases we will be discussing in the upcoming sections, the
contribution from the likelihood outweighs that of the prior by approximately one order of magnitude. Still, the
prior may be useful to partially control the shape and behaviour of the final estimate by adjusting the hyperparam-
eters. Consider now the σx and δx parameters in the covariance function in Equation 4.2. By reducing σx, we
can control how much the inferred path varies, as well as strengthening the belief in the prior, since σx is inverse
proportional to the contribution of the prior term in e.g. the MAP expression in Equation 4.37. This might help
controlling the unwanted jumps in the final estimate shown in Figure 5.8. The effect of lower σx can be seen in
Figures 5.9 and 5.10, which showcase two zoomed-in sections of a longer inferred latent path.

Figure 5.9: Section of final estimate of X using Spline-
based LVM, plotted against true path. Initialisation based
on first component of PCA applied to smoothed spike
data.

Figure 5.10: Another section of final estimate of X us-
ing Spline-based LVM, plotted against true path. Ini-
tialisation based on first component of PCA applied to
smoothed spike data.

What’s interesting here is that while there are no immediate signs of large shifted jumps, the stronger prior
seems to have prompted a local maxima that now includes a partially flipped solution. Since the prior term is
indeed even, it does make some sense that a stronger belief in it could provoke flipped solutions, even though
the likelihood does not. This is akin to how the LMT model also struggles with local maxima including partial
flipping, even though it is not entirely clear why by simply inspecting the target function.

We may also change the δx parameter, to control the smoothness of our inferred path. Although this does not
influence the strength of our belief in the same way as changing σx does, it does allow us to pick up the general
trend of the path, instead of trying to perfectly fit all the twists and turns, which might be a useful asset when doing
exploratory analysis. A visualisation of how changing δx affects the result is shown in Figures 5.11 and 5.12.

Figure 5.11: Section of final estimate of X using Spline-
based LVM, with δx same as generative model. Ini-
tialised sufficiently close to the true path, for visualisation
purposes. Periodic true path.

Figure 5.12: Section of final estimate of X using Spline-
based LVM, with δx larger than generative model. Ini-
tialised sufficiently close to the true path, for visualisation
purposes. Periodic true path.

30

5.1 Modeling choices and challenges

As expected when making δx larger than that of the generative model, the inferred X now picks up on the
general trend, but forgoes the large jumps that accompanies a periodic latent variable.

5.1.4 The choice of initialisation
As we have mentioned multiple times, initialisation is a crucial part when solving non-convex optimization prob-
lems. A poor initialisation means the solver might converge to a sub-optimal solution, or worse, something com-
pletely wrong. Both for the LMT model and the Spline-based LVM, there are two variables that need initialisa-
tion(assuming the hyperparameters are set): the latent variable X and the variable related to the tuning curves, be
that F or β.

Since the two models differ in how they model the tuning curves, they also require different initialisations for
those variables. Myklebust (2020) explored different possibilities for the initialisation of F, achieving success with
what iss known as the square root transform (whose usefulness has also been discussed by Yu et al., 2009)

F0 =
√

Y − max
√

Y

2
, (5.3)

which transforms Poisson count data into something approximately Gaussian, proven to be very valuable when
using Gaussian processes in a setting with Poisson data. The existence of such a transform is an advantage to using
the LMT model, as one is able to exploit the available data to make an informed initial guess for the tuning curves.
As for the Spline-based LVM, to our knowledge, there exits no similarly useful transformation for initialising β,
which also incorporates the spike data. One possibility is initialing β from a flat prior, then performing a single
MAP step by maximizing Equation 4.32, conditioned on the initial X of choice.

β0 = argmaxβΨSPL
β (β)|X0. (5.4)

This initialisation is not ideal, as it is heavily dependent on a good initialisation for X, and possibly couples
the β and X too tightly together. However, experiments show that this initialisation is still better than simply
assigning random uniform values from some interval to the elements of β, hence we proceed with this choice of
initialisation.

Consequently, the choice of initialisation for X becomes all the more important. Myklebust (2020) explored
various contenders, but found no indication that one initialisation proved to be much better than the others. Al-
though a flat initialisation was possible when using LMT, possibly due to the strong initialisation of F, such an
initialisation proves to be less fruitful for the Spline-based LVM, due to the initialisation of β. We are therefore
dependent on an X0 that captures the behaviour of the latent variable more efficiently.

One contender is to use a PCA initialisation, that is, first applying a Gaussian filter to the spike data Y, then
applying PCA to the smoothed spikes and extracting the first principal component, before re-scaling the estimate
to match the domain of the latent variable. Two such initialisations, based on a smoothed filter with width 5, are
shown in Figures 5.13 and 5.14, for 20 and 100 neurons respectively.

Figure 5.13: First principal component plotted against true path. PCA applied to smoothed simulated data with 20 neurons,
σx = 40, δx = 16.

We see here that the general trend is captured pretty well by PCA, irrespective of whether we have 20 or 100
recorded neurons, leading us to believe this initialisation is sufficient also when it comes to basing the initial β0

on it.

31

Chapter 5. Data Analysis

Figure 5.14: First principal component plotted against true path. PCA applied to smoothed simulated data with 100 neurons,
σx = 40, δx = 16.

Another possibility is to utilise a more advanced dimensionality reduction technique, like ISOMAP. In this
simple simulated case, we can apply ISOMAP directly on the spike matrix Y, re-scaling the results afterwards.
The results from applying ISOMAP can be seen in Figures 5.15 and 5.16, with a similar number of neurons as in
the PCA case.

Figure 5.15: ISOMAP solution plotted against true path. ISOMAP applied to smoothed simulated data with 20 neurons,
σx = 40, δx = 16.

Figure 5.16: ISOMAP solution plotted against true path. ISOMAP applied to smoothed simulated data with 100 neurons,
σx = 40, δx = 16.

Here we observe that ISOMAP is noticeably better, in fact almost perfectly capturing the trajectory of the
latent variable once given enough neural data. In such a simple case as this non-periodic simulated one, ISOMAP
alone would probably suffice as prediction for the latent path. However, ISOMAP is not a probabilistic model and
does not let us extract information about the tuning curves, so there is still merit to using it as an initialisation for
our models in an effort to further improve our results. Also, in the case of real data, there may be other factors

32

5.2 Simulated data

that influence the neurons, so a model with proper hierarchical setup might be preferable to incorporate as much
knowledge as we can.

The case for feature sharing

As we have just discussed, LMT has an apparent advantage when it comes to the initialisation related to the tuning
curve estimation. Luckily, splines are highly customisable, and using feature sharing when applicable allows us to
overcome (among other things) the issues related to the initialisation of β. In the upcoming sections, where feature
sharing is applicable, we will consider the case where the latent variable is a 2π-periodic variable, with tuning
curves exhibiting a Gaussian bump structure. Using this as a guide for initialisation, we fit an interpolating spline
to a shifted cosine function (see Figure 5.17), then use the accompanying coefficients as the initialisation for β.

Figure 5.17: Cosine bump initialisation for Spline coefficients, when the latent variable is 2π-periodic.

This wide shape of the initialisation should allow the iterative estimation to relax towards the correct tuning
width, and is the reasoning behind picking a cosine shape. Compared to a narrow Gaussian bump, which would be
constant along much of the [0, 2π] interval, we hypothesize that such an initialisation might be more easily trapped
in local maxima due to the abundance of bins with equal firing rate.

As for the initialisation of α, θ and γ, one could use the observed firing rate of the neurons to make a more
informed initial decision of the tuning strength. We will however be content with drawing initialisations based on
the priors described in Section 4.6.

5.2 Simulated data

5.2.1 1D non-periodic case
We first consider the case where our simulated variable is a one-dimensional non-periodic latent variable. That is,
xt ∈ [xmin, xmax],∀t, i.e. x is confined to some specified interval on R1. Tuning curves will be defined as Gaussian
bumps, with peak firing rates randomly distributed along the interval that x exists on. The neuron’s will also be
given a background firing rate, meaning that as x moves further away from a neurons peak firing rate, its firing rate
will approach some intensity 6= 0, to avoid the case where some neurons become completely inactive.

Such a situation with a one-dimensional latent variable can be related to a rat running in a corridor that is
narrow enough to only permit movement along its longitudinal axis, except for when the rat turns (see e.g. Gothard
et al., 1996, for a similar setup). The latent variable then represents the rats position, while the neurons have been
assigned a peak firing rate at some random location in the corridor, for which we say the neuron is tuned to. Far
enough away from its ”preferred location”, the neurons still fire with intensity equal to the background firing rate.

For this particular case, we pick xmin = 0, xmax = 10, with a background firing rate of 0.5 spikes per bin, while
peak firing rate is set to 4 spikes per bin. The latent variable is then generated according to the prior model defined
in Equation 4.3, with a small distinction: as the generative prior in this case is defined by a multivariate normal
distribution, there is no guarantee that the path will not traverse outside of our specified boundaries. To ensure that
the path is contained within our bounds, we ”flip” the path over whenever it would cross the boundaries xmin, xmax,
which also slightly changes the distribution of x, as it is no longer exclusively sampled from a multivariate normal
distribution.

33

Chapter 5. Data Analysis

However, the basis for the generation of x is still the prior model, and thus requires us to specify the two
hyperparameters σx and δx in Equation 4.2. As it is desirable for the path to cover the whole domain [xmin, xmax],
in order to make sure we capture distinct information from all the neurons, we set the variance parameter σx to
a sufficiently high value so that the path is able to traverse the whole domain, e.g. σx = 40. A realisation of a
possible path is shown in Figure 5.18. A corresponding set of tuning curves for 20 neurons, defined as Gaussian
bumps, is presented in Figure 5.19.

Figure 5.18: Example of path generated by the prior model, ensured to stay within boundaries. σx = 40, δx = 16.

Figure 5.19: Selection of 20 tuning curves, defined as Gaussian bumps at random locations, with peak firing rate of 4 and
background firing rate of 0.5 spikes per bin.

The hyperparameters for our two models have been set by trial and error, while keeping the parameters in the
X prior the same as those assigned to the generative model. In the LMT case, we arrived at σf = 2, δf = 0.83. For
the version with splines, as discussed earlier, we chose 8 interior knots for our knot vector, padding the augmented
knot vector τ with repeats of the first and last knot, as is customary when working with non-periodic splines. We
also set all σ2

β,[i,n] = 102.
We begin by investigating how well the models perform with respect to scaling in the number of neurons N

and recording length T . This is done by creating an array of different values for N and T

N = [10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 150, 200, 250],

T = [10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 750, 1000, 5000],
(5.5)

then (considering scaling with respect to N first) for each element in the N -arrray, we generate 20 different
instances of the latent variable X, as well as a corresponding data set of neural activity Y based on the bump
tuning curves, while fixing T = 1000. We run our models until convergence on these data sets, then compare X̂
with the true X by calculating the RMSE, reporting the average RMSE across those 20 cases. Correspondingly,
we do the exact same for the T -array, this time fixing N = 100.

X will be initialised using the PCA initialisation, applied to a spike matrix that has been smoothed with a
Gaussian filter using a width of five. We also include the results when initialising the Spline-based LVM from the
final result of the LMT model, to investigate whether they share similar local maxima, or if it is possible to improve

34

5.2 Simulated data

upon the LMT solution. The PCA initialisation will also be included, for reference. Results can be seen in Figure
5.20 and 5.21, where the LMT model has been dubbed ”GP” and the Spline-based LVM ”Splines”.

Figure 5.20: Average RMSE over 20 runs, as a function
of T , with corresponding 95% confidence intervals. Path
hyperparameters: σx = 40, δx = 100. Domain of X:
[0, 10].

Figure 5.21: Average RMSE over 20 runs, as a function
ofN , with corresponding 95% confidence intervals. Path
hyperparameters: σx = 40, δx = 100. Domain of X:
[0, 10].

Immediately one notices, in Figure 5.20, the dip in the RMSE for the LMT results, before it slowly starts
making its way up again. Although one could expect that more data (larger T) would lead to better results, this is
not the case here. One explanation, also mentioned by Myklebust (2020) in the context of optimal tuning strength,
is that due to the existence of multiple local maxima for the LMT solution, a larger T (i.e. more time bins) means
more possibilities for such maxima to occur. This results in the model performing better in a ”sweet-spot” where T
is large enough for there to be sufficient data, but not so large that the occurence of local maxima solutions become
prominent. This quirk is not present in the Splines-based LVM results, but the ”Splines” also improves much less
on the PCA initialisation, compared to the ”GP”. We note some odd behaviour for lower values of T , but with
so few time bins, a situation that would hardly occur when applying the models to real data, the results are more
a curiosity than an indication of how well the models perform. We also see that when initialised from the ”GP”
solution, the ”Splines” stay in place, indicating the the solution is also a maximum for the ”Splines” (due to this
fact, we observe that the ”GP”-line is mostly obscured by that of ”Splines from GP”).

As for model performance with respect to scaling in N , the ”Splines” solution now seems to improve slightly
more on the PCA initialisation, but that they both saturate pretty fast with respect to the number of neurons. The
”GP”, on the other hand, behaves in a more desirable way, improving further when increasing N . We do see that
the RMSE from the ”GP” model exhibits some sort of wavy tendency, still with the desirable downward trend.
Although the confidence intervals are quite big, and cover almost the whole wavy pattern, we speculate that this
behaviour maybe due to the random placement of the peak firing rate for our neurons. In the event that some of the
tuning curves might be overlapping quite heavily, there will be less activity from the neurons in some particular
areas with poor coverage. If the path spends a good amount of time in said areas, the resulting X̂ might be slightly
distorted, and thus result in a worse RMSE on average. We can also not completely exclude that the wavy behaviour
might simply be due to chance.

We note, however, that these results are all based on a fixed set of hyperparameters, and as such, might not
be representative for all possible modeling situations. This is, of course, unavoidable, as some choices regarding
the modeling must be made in order to produce results. In an effort to accommodate for this fact, we run the
simulation again, this time considering δx = 16, which results in a true path where previous values of xt have
much less influence on upcoming ones. Scaling of RMSE with respect to T and N is shown in Figures 5.22 and
5.23.

These results are in quite the stark contrast to those seen in Figures 5.20 and 5.21. Although Figure 5.22
showcases the same ”sweet-spot” for values of T with respect to the ”GP” performance, the ”Splines” now improve
much more on the PCA initialisation, performing better than the ”GP” as T becomes larger.

Even more noticeable is the improvement with respect to scaling in N , as the ”GP” is now the model that
saturates quickly, while the ”Splines” continue improving with increasingN . This only goes to show that changing
the hyperparameters, and also the truth of the problem we are considering, can have a tremendous effect on the
results, as the behaviour of the two models have entirely switched. Note that when the Spline-based LVM is
initialised from the LMT solution, it actually performs worse, compared to if it is initialised from PCA (which in
and of itself has a worse RMSE than the LMT). This indicates that the local maxima of the LMT model are strong

35

Chapter 5. Data Analysis

Figure 5.22: Average RMSE over 20 runs, as a function
of T , with corresponding 95% confidence intervals. Path
hyperparameters: σx = 40, δx = 16. Domain of X:
[0, 10].

Figure 5.23: Average RMSE over 20 runs, as a function
ofN , with corresponding 95% confidence intervals. Path
hyperparameters: σx = 40, δx = 16. Domain of X:
[0, 10].

enough to keep the Spline-based LVM from escaping and finding a more optimal solution. Parallels can be drawn
to Myklebust (2020), who showed that there is no fixed ”optimal” initialisation for LMT, and sometimes even a
flat initialisation can give better results than when initialised from PCA. Similarly, the ”better” initialisation that is
the LMT solution here proves to be more like a local maxima trap.

Figure 5.24: Histogram showing difference in amount of
time spent in various bins of the latent variable domain
[0, 10]. Simulation number: 1.

Figure 5.25: Histogram showing difference in amount of
time spent in various bins of the latent variable domain
[0, 10]. Simulation number: 2.

Figure 5.26: Histogram showing difference in amount of
time spent in various bins of the latent variable domain
[0, 10]. Simulation number: 3.

Figure 5.27: Histogram showing difference in amount of
time spent in various bins of the latent variable domain
[0, 10]. Simulation number: 4.

We also observe that the RMSE is in general lower when the truth is generated from a prior with smoothness
parameter δx = 100, compared to δx = 16. To investigate this further, we simulate paths from the generative prior

36

5.2 Simulated data

with both δx = 100 and δx = 16, discretise the domain [0, 10] into 40 evenly sized bins, then count the number of
times the path visit each bin. The results are presented as histograms in Figures 5.24 - 5.27, showing four different
simulations.

From these four plots it is clear that the path simulated with δx = 16 generally has a more even distribution of
visits compared to the path with δx = 100, which shows more pronounced peaks and valleys along various parts of
the interval. Considering how the smoothness parameter influences the behaviour of the simulated latent variable,
and inspecting one possible set of the two different instances of the latent trajectory visualised in Figures 5.28 and
5.29, it is perhaps not entirely surprising that the histograms take the shape that they do.

Figure 5.28: Example path generated by the prior model,
hyperparamers: σx = 40, δx = 100.

Figure 5.29: Example path generated by the prior model,
hyperparamers: σx = 40, δx = 16.

A smaller δx means the latent variable can vary more freely along the domain, being less governed by its
previous positions. This, as we see in Figure 5.29, results in larger jumps and more efficient covering of the whole
domain, which is reflected in the more uniform histograms. On the other hand, the path in Figure 5.28 explores the
domain slower, staying longer in subareas of the whole domain, while occasionally making larger detours. Thus
we get the more pronounced peaks in the corresponding histograms, where the path has more or less ”settled in”.
This explains the differences in RMSE between the two choices of δx, as a path that varies wildly with sharp turns
and more erratic behaviour is in general more difficult to accurately infer. There is also the fact that the tuning
curve prior for the LMT model is based on the behaviour of X (it is a spatial prior based on the position of X, not
the domain of X), thus rendering it less accurate when the path is harder to infer. Meanwhile, the Spline-based
LVM does not assume anything about the particular amount of time the true path spends in each bin. In that sense,
we can say there is an underlying uniform assumption, which matches better with the more uniform histogram
produced by the path with hyperparameter δx = 16. This leads to the Spline-based LVM performing better than
the LMT model is able to do, although still not as good as when the path is generated with δx = 100.

Another point of interest is how the two models scale with respect to algorithm run time. We time the algorithm,
excluding the parts shared by both algorithms, like during the initialisation, and plot how the run time scale with
respect to T and N . The results can be seen in Figures 5.30 and 5.31.

Figure 5.30: Scaling of algorithm run time, as a function
of T . GP and Splines initialised from PCA.

Figure 5.31: Scaling of algorithm run time, as a function
of N . GP and Splines initialised from PCA.

Here we see one of the evident advantages to using the Spline-based LVM. Scaling in T seems to be linear for

37

Chapter 5. Data Analysis

both models, while inN it seems to be somewhere in between linear and quadratic. That is, for the LMT model, as
the Spline-based LVM seems to perhaps more closely resemble linear scaling instead of to the power of 1.5. There
is however an order of magnitude offset between the two models (more than one order, in fact, when considering
scaling with respect to N), which quite clearly puts limitations on how efficient LMT can be with respect to large
data sets. We also note that for these simulations, we considered the hyperparameters fixed, which ideally should
be found by estimation as well (either by optimization, or using cross-validation in a supervised setting). This
would further complicate the problem, and consequently also increase the run time.

It is perhaps more interesting and fruitful to discuss the possibilities that accompany the lower run time of the
Spline-based LVM. With a faster algorithm, we are able to further reduce the bin size of our problem (resulting
in larger T) to the point where we are able to assume a Bernoulli spiking model instead of Poisson. This is
advantageous because a Bernoulli random variable has finite support, while a Poisson does not, making the latter
harder to extensively sample. And while the models may in fact be considered equal, given small enough time
bins, computational limitations makes it difficult to achieve close to infinite temporal precision. There is also the
fact that some problems are simply more difficult to solve when using a Poisson spiking model. As pointed out
by Davidovich et al. (2020), when reconstructing the hidden node problem, the inference of neuronal couplings
is much less accurate when assuming a Poisson spiking model. Thus if we can get away with using a Bernoulli
spiking model with the Spline-based LVM, something that would be less feasible with the LMT model, other
findings would indicate that the results might improve even further.

Having observed the effect that the different values of δx can have on the models’ performance, we wish to
investigate whether another initialisation can also have a similar effect. Earlier we discussed various possibilities
for initialising X, where we saw that ISOMAP seemed to be much more effective at capturing the trends of
the latent variable, compared to PCA. We therefore perform similar experiments as those already reported, that is
scaling with respect T andN based on the average RMSE for a set of different T andN ’s, only this time initialised
from ISOMAP (which does not require the use of a Gaussian filter, as ISOMAP can be applied directly on the spike
matrix Y). We will consider both the case where the generative prior has hyperparameter δx = 100, as well as
δx = 16. Before reporting the results, however, we make an adjustment to the augmented knot vector τ . Having
investigated the inferred tuning curves based on β̂

SPL
MAP, we observed that the results were less accurate at the edges

of the domain of the latent variable, possibly due to the path spending less time at the borders (it is ”reflected” at
the border, after all) or perhaps due to the non-continuity of the spline at the end points. To achieve a more accurate
estimate of the tuning curve along the borders, we propose to extend the interval the knot vector t is defined over.
Instead of picking knot end points equal to xmin and xmax, we set them to be xmin − δτ and xmax + δτ , where δτ
is the length between two interior knots. This way, the discontinuous end property is forced slightly outside of
the interval of interest, possibly resulting in a better estimate. We also investigate whether the single gradient-step
discussed in Section 4.5 improves the final result. We compare the average RMSE for a selection of T,N -values,
for the different configurations of t and gradient steps.The results are shown in Table 5.1.

Average RMSE 1 step, t 1 step, ext. t to conv, t to conv, ext. t
N = 100, T = 5000 0.2422 0.2334 0.2453 0.2425
N = 100, T = 1000 0.3180 0.3026 0.3328 0.3187
N = 200, T = 1000 0.2689 0.2533 0.2683 0.2568

Table 5.1: Average RMSE, with four digit precision, for three different sets of T,N -values. The different configurations for the
estimation are: using one gradient step with 0, 10 as endpoints for t, using one gradient step with 0− δτ , 10 + δτ as endpoints
for t, running the optimizer for β until full convergence with 0, 10 as endpoints for t, and running the optimizer for β until full
convergence with 0− δτ , 10 + δτ as endpoints for t.

We see that the difference in average RMSE for the distinct configurations are quite small (possibly due to the
impressive accuracy of ISOMAP, as we will see a bit later). Nonetheless, using one gradient step together with a
knot vector interval that extends over the domain of X results in a consistent lower RMSE, compared to the other
configurations. We speculate that the difference could be even greater if either one uses a less accurate initialisation
than ISOMAP, or if the problem is more complex (as is often the case with real data). We therefore stick with the
one gradient step, extended knot vector configuration as default when utilising the Spline-based LVM further.

Having investigated these variations of the MAP estimation procedure, we turn our attention back to the scaling
in T and N , using ISOMAP as our initialisation. Scaling plots can be seen in Figures 5.32 - 5.35.

From these figures, it is clear that the biggest change brought by using ISOMAP as an initialisation is the
closing of the performance gap between the two other models, in no doubt due to ISOMAPs efficient decoding

38

5.2 Simulated data

Figure 5.32: Average RMSE over 20 runs, as a function
of T , with corresponding 95% confidence intervals. Path
hyperparameters: σx = 40, δx = 100. Domain of X:
[0, 10].

Figure 5.33: Average RMSE over 20 runs, as a function
ofN , with corresponding 95% confidence intervals. Path
hyperparameters: σx = 40, δx = 100. Domain of X:
[0, 10].

Figure 5.34: Average RMSE over 20 runs, as a function
of T , with corresponding 95% confidence intervals. Path
hyperparameters: σx = 40, δx = 16. Domain of X:
[0, 10].

Figure 5.35: Average RMSE over 20 runs, as a function
ofN , with corresponding 95% confidence intervals. Path
hyperparameters: σx = 40, δx = 16. Domain of X:
[0, 10].

of the neural data. In Figures 5.32 and 5.33, as both T and N becomes sufficiently large, the two models seem
to be doing equally well, slightly improving upon the ISOMAP initialisation. We also see the effects of changing
δx in the prior, although not on such a large scale as when we used the PCA initialisation. With δx = 100, we
observe that ”GP” improves slightly more upon the ISOMAP initialisation than the ”Splines” do (Figure 5.33),
while for δx = 16, ”GP” actually does worse than ISOMAP itself. Having touched upon this in Subsection 5.1.1,
we speculate that this is due to some local maxima (a slightly noisier fit to the true solution) proving to be stronger
than the actual solution when doing MAP estimation, thus pulling the algorithm towards the worse and more noisy
solution. This results in the ”GP” solution also saturating faster and at a higher RMSE, similarly to what can be
seen in Figure 5.23. All in all, this provides an indication that the behaviour related to the change in δx is consistent
across different initialisations.

For good measure, we also report the algorithm run time when initialised from ISOMAP, which more or less
follow the same trends as the run time scaling when initialised from PCA, unsurprisingly. Run time plots are shown
in Figures 5.36 and 5.37.

5.2.2 1D periodic case

Having considered the case where we assume non-periodicity for our latent variable, we move over to the more
complicated issue that is inferring a periodic latent variable. The setup is somewhat similar to the non-periodic
one, in that we consider a one-dimensional latent variable, xt ∈ [xmin, xmax],∀t, but where the boundaries simply
wrap around, instead of acting as barriers like in the non-periodic case. Tuning curves are similarly defined as
Gaussian bumps, with peak firing rates and a background firing rate.

By picking values xmin = 0, xmax = 2π, we construct a situation similar to the one we have with the data from

39

Chapter 5. Data Analysis

Figure 5.36: Scaling of algorithm run time, as a function
of T . GP and Splines initialised from ISOMAP.

Figure 5.37: Scaling of algorithm run time, as a function
of N . GP and Splines initialised from ISOMAP.

Peyrache et al. (2015); the latent variable represents the head direction of some animal, e.g. a mouse, doing some
particular action while having the head direction tracked. Neurons have a peak firing rate assigned to some specific
head direction, and far enough away resort to the background firing rate.

In our simulation, we keep the peak firing rate and background firing rate the same as in the non-periodic case,
that is 4 spikes per bin and 0.5 spikes per bin. The path is also generated by the same prior model (the multivariate
normal distribution), although in this case with a periodic covariance function. Due to the paths periodic nature,
we have no need to impose a ”flip” at the boundaries to keep the latent variable between its boundaries. Instead, we
shift its values to be contained inside the interval by taking the modulo in the end. With hyperparameters σx = 5,
δx = 50, we generate a possible realisation and present it in Figure 5.38.

Figure 5.38: Example of path generated by the prior model, with periodic boundary conditions. σx = 5, δx = 50

Notice how the latent variable suddenly makes a big jump from one end of the interval to the other, for example
at around T = 100, representing when the mouse’s head direction passes over a predetermined reference direction
(such as straight forward). These particular points where the path ”wraps around” the interval are known to be
difficult to pick up, as e.g. PCA and ISOMAP have no way of imposing our knowledge of periodicity on the
problem, and will simply try to fit their solution to the data. A set of 20 tuning curves, defined as Gaussian bumps,
are also shown in Figure 5.39. Notice how the tuning curves may also now wrap around the boundary, in contrast
to those shown for the non-periodic case in Figure 5.19.

This particular setup is exactly what inspired the feature sharing extension to the Spline-based LVM. A setting
where the initialisation of X is less accurate, but where knowledge of the behaviour of the neurons allows us to
make a more informed initialisation for the shape of the tuning curves.

As for the hyperparameters, we now use 11 interior knots for both models, and keep σ2
β,[i,n] = 102 and

σ2
β,[n] = 102 as well. For the feature sharing variant, we set si = 1, ri = 3 , assign µγi = 0, σγi = 10, and match

θlower,θupper to xmin, xmax, that is, 0 and 2π.
We then move on to investigate whether we can improve upon the Spline-based LVM by utilising the theory

about feature sharing. We use the same arrays of T and N values as in the non-periodic case (see Equation 5.5),
and compare how the average RMSE scaled with respect to those, with X initialised from ISOMAP.

The results can be seen in Figures 5.40 and 5.41, and are firmly in the favour of utilising feature sharing,

40

5.2 Simulated data

Figure 5.39: Selection of 20 tuning curves, defined as Gaussian bumps at random locations, with peak firing rate of 4 and
background firing rate of 0.5 spikes per bin. Periodic boundary conditions.

Figure 5.40: Average RMSE over 20 runs, as a func-
tion of T , with corresponding 95% confidence intervals.
Path hyperparameters: σx = 5, δx = 50. Domain of X:
[0, 2π] (periodic).

Figure 5.41: Average RMSE over 20 runs, as a func-
tion of N , with corresponding 95% confidence intervals.
Path hyperparameters: σx = 5, δx = 50. Domain of X:
[0, 2π] (periodic).

here dubbed ”FS”. While both the initialisation ISOMAP and the standard Spline-based LVM saturate quickly,
both with respect to T and N , we see that the model incorporating feature sharing has a much lower RMSE, all
while trending downwards with increasing amounts of data. For smaller values of T , we also see that the RMSE
decreases rapidly, which is in accordance with what Klindt et al. (2017) discovered; if you have enough neurons
(N = 100 in this case), you can get away with a shorter recording length, under the assumption that you can pool
all the neuronal data together, due to their similarly shaped tuning. In theory, this should also be the case for when
you have a smaller amount of neurons, but longer recording periods, although we cannot observe this phenomenon
in Figure 5.41. We do note that the confidence intervals are in general quite wide, but the improvement of using
feature sharing is still significant.

As for the algorithm run time, we would expect that incorporating feature sharing would lead to the algorithm
taking longer time. Even though we are reducing the dimension of β, we are introducing three new variables, α,
θ and γ, that each need to be found independently by MAP estimation. Figures 5.42 and 5.43 showcase how the
scaling behaves, and while we do see a slight increase in run time, it is nowhere near as large of a differences as
when we compared the LMT model with the Spline-based LVM. The scaling in N , as seen in Figure 5.43, is now
also clearly linear, compared to the almost quadratic behaviour in Figure 5.37.

One interesting observation is that the run time is quite a bit longer for the feature sharing model where values
of T are very small. We imagine that since the recording length is quite short, the latent variable ends up not
covering the whole space, thus leaving multiple segments of the interval [0, 2π] unvisited. Since we have a large
number of neurons, with many of them possibly tuned to locations X does not visit, we might end up with quite a
few neurons exhibiting no activity at all. This makes it hard to infer a general shape for the tuning curve that fits all
the neurons’ activity, as well as the placement of the peak intensity, resulting in the algorithm taking longer time
to find an optimal solution.

41

Chapter 5. Data Analysis

Figure 5.42: Scaling of algorithm run time, as a function
of T . GP and Splines initialised from ISOMAP.

Figure 5.43: Scaling of algorithm run time, as a function
of N . GP and Splines initialised from ISOMAP.

5.3 Head direction data

Having evaluated our models and compared them with respect to simulated data, we now move over to real head
direction data, recorded by Peyrache et al. (2015). We treat the recorded head direction as the latent variable X, a
one-dimensional periodic variable existing on the domain [0, 2π]. Our goal will be to infer the head direction X,
comparing the results of LMT and the feature sharing model. We will be investigating both how well the tuning
curves are reconstructed, as well as how close the inferred path is to the true head direction.

Although it is known that many of the neurons recorded does indeed respond to the head direction, there is
however no guarantee that other factors does not influence the neurons as well. We will for simplicity assume that
the head direction is the only driving force behind the neural spiking.

For the analysis, we pick an interval of 5000 time bins, for which the development of the head direction can
be seen in Figure 5.44. We note that the behaviour of the path in general is pretty similar to that of the simulated
latent variable in Figure 5.38, perhaps wrapping around the border a bit more.

Figure 5.44: Head direction developement for Mouse12-120806 on a 5000 bin interval, with bin size of 25.6 ms.

For this interval, we inspect the activity and tuning of the 73 recorded neurons, identifying 15 which seem to be
both tuned to head direction and produce a satisfactory amount of spikes to be considered informative. Observed
firing rate for these 15 neurons can be seen in Figure 5.45.

We immediately note that these neurons are less active than the ones we simulated in the previous sections.
The strongest tuned neurons average around 1.5 − 1.8 spikes per bin, while about half average around one spike
per bin, the rest even lower than that. In the simulated case, all neurons were set to spike with an intensity of four
spikes per bin, to contextualise the difference. There is also the fact that we now only have 15 neurons for a data set
of length 5000, which is in stark contrast to the 100 neurons used for the simulated data set of same length when
we investigated the scaling of model performance. For completeness sake, we also showcase the binned spike data
for the 15 neurons in Figure 5.46.

42

5.3 Head direction data

Figure 5.45: Observed firing rates (in Hz) for the 15 neurons, bin size 25.6 ms.

Figure 5.46: Binned and binarised spike data for the 15 chosen neurons for 5000 bins. The 15 neurons are placed on the y-axis,
and a black dot means that at least one spike was observed in that particular time bin (of width 25.6 ms).

5.3.1 Inferring the tuning curves

As a starting point, we investigate how well the tuning curves can be reconstructed when initialising the feature
sharing model from the true head direction, without updating the X estimate. Given the truth, the model should
be able to recover the tuning curves reasonably well. For the hyperparameters, in the prior for X we set σx = 5,
δx = 50, while we keep the same hyperparameters as those used in Subsection 5.2.2 for the rest of the feature
sharing model. These hyperparameters will be consistent throughout the rest of the chapter. We present four
different tuning curves, with results shown in Figures 5.47 - 5.50.

The model does a fairly good job of reconstructing the tuning curves, attempting to also capture the extra bump
that is present in Figure 5.47. This also affects the shape of some of the other tuning curves, like in Figure 5.49,
where we can see the contours of the same bump. We suspect that this is due to the first neuron being more active
compared to the others, having a higher firing rate, and thus contributing more to the likelihood than the less active
neurons. Thus when doing MAP estimation, the resulting spline function might be biased towards providing a
good fit to neuron number one. Other than this, the results seem to be satisfactory.

5.3.2 Initialisation from true path

Moving on, we now investigate how well the tuning curves can be reconstructed when initialising the model from
the true head direction, as well as whether the inferred path deviates from the truth. Since Myklebust (2020)
already established that the LMT model is able to mostly reconstruct the tuning curves, and infer the path of
the head direction (although slightly shifted due to the initialisation of F), we will focus our attention on only
evaluating the feature sharing model in this part as well. The inferred X can be seen in Figure 5.51, while tuning

43

Chapter 5. Data Analysis

Figure 5.47: Inferred tuning curve for neuron 1, using
the feature sharing model.

Figure 5.48: Inferred tuning curve for neuron 3, using
the feature sharing model.

Figure 5.49: Inferred tuning curve for neuron 7, using
the feature sharing model.

Figure 5.50: Inferred tuning curve for neuron 10, using
the feature sharing model.

curves are shown in Figures 5.52 - 5.55.

Figure 5.51: Inferred head direction development plotted against the true development, using feature sharing.

For reference, the resulting RMSE is 0.8449. For the most part, the inferred path seems to stay pretty close
to the truth, while alternating between over-estimating (T ∈ [0, 300], T ∈ [700, 1000]) and under-estimating
(T ∈ [300, 600], T ∈ [3100, 3500]) the path at various parts of the interval. The tuning curves, however, are in a
worse shape. While the location of the tuning curve is mostly reconstructed, the shape and height seem to be quite
far from the truth. Investigating this further, it seems to be the result of the spline-function immediately being fit to
a too narrow shape, thus rendering the intentional effect of α and γ obsolete. With a too narrow fit to begin with,
the model seems to overestimate the intensity, to compensate for the small width. This overestimated intensity
appears to be some sort of local maxima, as trying to adjust the shape of the tuning curve by controlling α and γ
only makes the too narrow shape even more narrow, or resulting in a curve with much smaller area under curve,
compared to the observed tuning curve. One possible way to compensate for this is to lock the initial shape of the

44

5.3 Head direction data

Figure 5.52: Inferred tuning curve for neuron 1, using
the feature sharing model.

Figure 5.53: Inferred tuning curve for neuron 3, using
the feature sharing model.

Figure 5.54: Inferred tuning curve for neuron 7, using
the feature sharing model.

Figure 5.55: Inferred tuning curve for neuron 10, using
the feature sharing model.

spline-function for more iterations during the MAP procedure. Experiments show that this gives a better estimate
of the intensity, however, the variables α,θ,γ then seem to hone in on some local maxima, resulting in the initial
shape of the spline-function not changing at all. As one of the intentions behind using the feature sharing technique
is to be able to infer a suitable fit with the spline-function, it is not obvious that initially locking the shape is the
preferred solution to this problem. Further investigation would be necessary to identify a proper solution to this
issue.

5.3.3 Initialisation from PCA
Finally, to compare the results from the LMT model and the Spline-based LVM with feature sharing, we initialise
X with PCA applied to the neural data (smoothed with a Guassian filter of length 4). Both PCA and ISOMAP are
valid initialisations, but ISOMAP picks up more of the underlying noise, resulting in a more noisy initialisation.
We therefore stick to PCA for this experiment, but note that neither PCA nor ISOMAP are very good at picking up
the parts of the path where the head direction wraps around the border.

For the hyperparameters, in the prior for X we set σx = 5, δx = 50, while the LMT specific hyperparameters
are set to σf = 8, δf = 0.5, a similar setup as the one used by Myklebust (2020). For the feature sharing model,
we keep the same hyperparameters as those used in Subsection 5.2.2. The results can be seen in Figures 5.56 and
5.57.

Immediately, it looks like the results from the two models are somewhat similar. Some parts are captured fairly
well, while others are completely off. Interestingly, it seems like both models have produced inferred paths that
are partially flipped around the interval T ∈ [2500, 3000], as well as T ∈ [4000, 4300]. Neither model seems to
be particularly good at capturing the points where the path wraps around. As for the RMSE, the results from the
model using feature sharing has an RMSE of 1.6759, while the LMT result has an RMSE of 1.7934. For reference,
the PCA initialisation has an RMSE of 1.7249. Although the model using feature sharing in this case has the lowest
RMSE, the results are far from optimal, and we find it difficult to say for certain whether one model truly is better
than the other. However, what we do see indications of is that the model using feature sharing attempts to correct

45

Chapter 5. Data Analysis

Figure 5.56: Inferred head direction development plotted against the true development, using feature sharing.

Figure 5.57: Inferred head direction development plotted against the true development, using LMT.

the PCA failure to pick up on the path wrapping around, like for instance at around T = 1900 and T = 4100. A
selection of inferred tuning curves are also shown in Figures 5.58 - 5.65.

For neurons number one, three and seven, it seems like the fit would be better if we were to mirror the tuning
curves around x = 2, which is in accordance with how the inferred paths seemed to also be partially flipped around
this value in the intervals mentioned above. The intensity is generally better captured by the LMT model, compared
to the results from the feature sharing model, which massively overestimates the peak firing rate. Especially the
tuning curve for neuron 10 seems to be completely wrong, both with respect to placement and intensity. As for why,
the cause has yet to be determined, but we suspect it might be linked to the same reasons discussed in Subsection
5.3.2.

46

5.3 Head direction data

Figure 5.58: Inferred tuning curve for neuron 1, using
the feature sharing model.

Figure 5.59: Inferred tuning curve for neuron 3, using
the feature sharing model.

Figure 5.60: Inferred tuning curve for neuron 7, using
the feature sharing model.

Figure 5.61: Inferred tuning curve for neuron 10, using
the feature sharing model.

47

Chapter 5. Data Analysis

Figure 5.62: Inferred tuning curve for neuron 1, using
the LMT model.

Figure 5.63: Inferred tuning curve for neuron 3, using
the LMT model.

Figure 5.64: Inferred tuning curve for neuron 7, using
the LMT model.

Figure 5.65: Inferred tuning curve for neuron 10, using
the LMT model.

48

Chapter 6
Discussion and conclusion

In this chapter, we discuss the results and findings from Chapter 5. To begin with, we summarise and interpret our
results in Section 6.1. In Section 6.2 we mention possible ways to extend the research further, and build upon the
results, before we close off with a conclusion in Section 6.3.

6.1 Discussion

6.1.1 Modeling choices and challenges

In Section 5.1, we address the choice of spline hyperparameters, and comment on the need for adjustments and
transformations of the inferred path before comparison with the true latent variable can be performed. Indications
show that the Spline-based LVM might be less susceptible to the issue of partially flipped solutions, although it
in turn suffers from partially shifted solutions. We recognise that changing prior hyperparameters might affect the
frequency of these unwanted local maxima appearing, for better or worse.

We describe the importance of initialisation, and mention how the LMT model may have an advantage in this
area, utilising the information in the spike data for a valuable initialisation of the log tuning curves. The Spline-
based LVM, lacking a sophisticated log tuning curve initialisation, becomes increasingly more reliant on a good
initialisation of the latent variable. Under the right circumstances, however, this can be offset by utilising feature
sharing for an advantageous log tuning curve initialisation. We also comment on various initialisations for the
latent variable, and how the available data affects their accuracy.

We also touch upon the subject of evaluation, and note how the posterior score is ineffective for evaluating the
performance of the Spline-based LVM in the absence of ground truth. This result is similar to what Myklebust
(2020) discovered, in that the log posterior score is not a valid measure for the performance of the LMT model.

6.1.2 Simulated data

In Section 5.2, we compare models with respect to their performance scales with increasing T andN , and discover
that with respect to scaling inN , the LMT model does better when the true path exhibits less oscillatory behaviour,
while the Spline-based LVM does better when the opposite is true. We equate this to the LMT model’s spatial prior,
which is dependent on the position and density of the latent variable, in contrast to the ”uniform” assumption in
the Spline-based LVM. We also observe that, regardless of oscillatory behaviour, the LMT model performs poorer
for larger values of T . Attributing this to the increase in opportunities for a local maxima to occur, we speculate
whether such maximas might be less prominent for the Spline-based LVM, or if its continued improvement with
respect to larger T is a product of the tight coupling between β and X, thus only resulting in a slight improvement
on the initialisation (which we also see does not suffer from poorer performance with large T). Doing only a single
gradient step during optimization, instead of running the optimizer until full convergence, seems to results in an
overall more accurate estimate, and might help combat this possible issue.

Investigating other initialisations, we see that on simulated data, the efficiency of ISOMAP as an initialisation
closes much of the performance gap between the two models. However, the LVM model still performs worse when
the true path oscillates more, to the point where it converges to a worse solution than the original initialisation.

49

Chapter 6. Discussion and conclusion

This seems to strengthen the claim that the local maxima issue is more prominent in the LVM model, and not
necessarily only a product of poor initialisation.

On another note, there seems to be a clear difference in algorithm run time, regardless of which initialisation
is used. Being an order of magnitude faster (both with respect to scaling in T and N), the Spline-based LVM
might be able to accommodate a Bernoulli spiking model, in contrast to a Poisson spiking model, which we
speculate might improve results further. This would also implicate a smaller bin width, which should yield a more
accurate representation of the neural spike data. Additionally, one must not forget that algorithm run time can be
an important factor when considering model choices, given that neural data sets continue to grow exponentially in
size.

We compare the results of the Spline-based LVM incorporating theory from feature sharing, to the ordinary
Spline-based LVM. Under the right circumstances (i.e. when the tuning curves all share a similar shape), utilising
feature sharing provides a significant upgrade, resulting in a more accurately inferred path in a setting where the
latent variable is periodic. We see that the increase in computational complexity is not too large, compared to
the gain in accuracy. However, while we in theory should be able to perform more accurate inference with fewer
neurons, as we are now able to pool their data together, results are not indicative of this. We can only speculate
that a recording length of T = 1000 might be to short to harness this power, in the absence of other explanations.

Do note that, as mentioned in Subsection 5.2.1, some modeling choices have been made with respect to e.g.
hyperparameter choices, tuning strength and tuning curve shape. Our results are (partially) a product of these
choices, and we recognise different choices might give rise to different results.

6.1.3 Head direction data
In Section 5.3, we apply our models to data gathered from real head direction neurons by Peyrache et al. (2015).
Compared to simulated data, these neurons spike with vastly lower intensity, as well as being fewer in numbers.
Given that they also might be tuned to other variables (in addition to head direction), be linked to each other
through connectivity and have autoregressive properties, none of which are accounted for in our models, we would
expect the inferred path to be less accurate compared to the simulated case.

We observe that the feature sharing model is able to reconstruct the tuning curves when given the true path,
although it struggles to accurately estimate the peak intensity when also inferring the latent variable X. We
mention the possibility of keeping the initial shape of the spline-function constant during additional steps of the
MAP procedure, but we are, without further investigation, unable to conclude whether this would be a suitable
solution for inferring the tuning curves more accurately.

Comparing the feature sharing model with the LMT model, we see that the two models produce somewhat
similar results, both showing indications of partially flipped solutions. This is also reflected in the tuning curves,
where mirroring some would provide a more accurate result. Although the LMT model is more effective at esti-
mating the firing rate, it has an overall higher RMSE compared to the feature sharing model, which does improve
upon the RMSE of the PCA initalisation. Whether one of the results could truly be deemed ”better” would require
further investigation.

6.2 Further work
As the framework of these latent variable models are made to account for various dimensionalities and manifolds,
it would be interesting to investigate whether the Spline-based LVM would be able to infer a latent variable of
higher dimensionality than one (as was done in the case of head direction data). This is akin to how Jensen et al.
(2020) used the LMT to explore different possible manifolds.

We also recognise that for both of our models, the hyperparameters, which were set according to a trial and
error process, should optimally be found through optimization, in a similar manner to the latent variable and the
tuning curve variables.

Investigating other possibilities for doing variable estimation, as alternatives to the iterative MAP procedure,
is also of interest. Given the dimensionality of our problem, and the existence of local maxima, we recognise that
the MAP procedure might not be an optimal choice. Although Wu et al. (2017) devised the decoupled Laplace
approximation for doing inference, it is not given that this method is also applicable for the Spline-based LVM
(both with and without feature sharing).

On the note of feature sharing; since the variables that control the general shape of the tuning curve (the β’s)
were found through MAP estimation, and very active neurons contribute more towards the likelihood, the general
shape of the tuning curve might be biased in the direction of the shape of these neurons’ tuning curves. We imagine

50

6.3 Conclusion

incorporating something akin to a weight parameter, to account for the differences in neural activity, would ensure
that the most active neurons do not dominate the fit of the general tuning curve shape.

Additionally, since the Spline-based LVM is much faster computationally, it would be interesting to explore
whether a change from spike count data to spike presence data would improve the results, since this model might
be able to accommodate the much smaller bin width.

6.3 Conclusion
We showed how one can exchange the Gaussian process modeling the tuning curve in the LMT model with a B-
spline function, devising a model we named the Spline-based LVM. We compared its performance with the LMT
model on simulated data, evaluating how the models scaled with respect to data size, changes in hyperparameters
and initialisation. While no single model was overall superior in each and every one of the cases, the Spline-based
LVM was consistently less computationally demanding. Besides being a highly useful trait when evaluating large
data sets, it could allow for the consideration of a smaller bin width and a different spiking distribution, which in
turn could improve results further.

Furthermore, we detailed how the Spline-based LVM can be expanded upon by incorporating feature sharing
between neurons. This yielded more accurate results on simulated data, compared to the generic Spline-based
LVM, without too large of a cost in computational complexity.

Finally, we applied the models to head direction data, where we inferred the head direction with higher preci-
sion using the Spline-based LVM incorporating feature sharing, compared to PCA and this particular configuration
of the LMT model.

51

Bibliography

Agresti, A., 2015. Foundations of linear and generalized linear models. John Wiley & Sons.

Ahrens, M.B., Li, J.M., Orger, M.B., Robson, D.N., Schier, A.F., Engert, F., Portugues, R., 2012. Brain-wide
neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477.

Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., Keller, P.J., 2013. Whole-brain functional imaging at cellular
resolution using light-sheet microscopy. Nature methods 10, 413–420.

Albright, T.D., 1984. Direction and orientation selectivity of neurons in visual area mt of the macaque. Journal of
neurophysiology 52, 1106–1130.

Batty, E., Merel, J., Brackbill, N., Heitman, A., Sher, A., Litke, A., Chichilnisky, E., Paninski, L., 2017. Multilayer
recurrent network models of primate retinal ganglion cell responses. 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings .

Briggman, K.L., Abarbanel, H.D., Kristan, W.B., 2005. Optical imaging of neuronal populations during decision-
making. Science 307, 896–901.

Brody, C.D., 1999. Correlations without synchrony. Neural computation 11, 1537–1551.

Byrd, R.H., Lu, P., Nocedal, J., Zhu, C., 1995. A limited memory algorithm for bound constrained optimization.
SIAM Journal on scientific computing 16, 1190–1208.

Cunningham, J.P., Byron, M.Y., 2014. Dimensionality reduction for large-scale neural recordings. Nature neuro-
science 17, 1500.

Davidovich, I., Dunn, B., Hertz, J., Roudi, Y., 2020. Mean field theory inference and learning in networks with
stochastic natural exponential family neurons. 29th Annual Computational Neuroscience Meeting: CNS2020.
BMC Neuroscience .

De Boor, C., 1978. A practical guide to splines. volume 27. springer-verlag New York.

DiMatteo, I., Genovese, C.R., Kass, R.E., 2001. Bayesian curve-fitting with free-knot splines. Biometrika 88,
1055–1071.

Ecker, A.S., Berens, P., Cotton, R.J., Subramaniyan, M., Denfield, G.H., Cadwell, C.R., Smirnakis, S.M., Bethge,
M., Tolias, A.S., 2014. State dependence of noise correlations in macaque primary visual cortex. Neuron 82,
235–248.

Fahrmeir, L., Kneib, T., Lang, S., Marx, B., 2013. Regression: models, methods and applications. Springer Science
& Business Media.

Fetz, E.E., 1992. recognizably coded in the activity of single neurons? Behavioral and brain sciences , 154.

Gothard, K.M., Skaggs, W.E., McNaughton, B.L., 1996. Dynamics of mismatch correction in the hippocampal
ensemble code for space: interaction between path integration and environmental cues. Journal of Neuroscience
16, 8027–8040.

52

Gundersen, G.W., Zhang, M.M., Engelhardt, B.E., 2020. Latent variable modeling with random features. arXiv
preprint arXiv:2006.11145 .

Haberman, S.J., 1977. Maximum likelihood estimates in exponential response models. The annals of statistics ,
815–841.

Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I., 2005. Microstructure of a spatial map in the entorhinal
cortex. Nature 436, 801–806.

Hatsopoulos, N.G., Ojakangas, C.L., Paninski, L., Donoghue, J.P., 1998. Information about movement direction
obtained from synchronous activity of motor cortical neurons. Proceedings of the National Academy of Sciences
95, 15706–15711.

Hubel, D.H., Wiesel, T.N., 1979. Brain mechanisms of vision. Scientific American 241, 130.

Jensen, K.T., Kao, T.C., Tripodi, M., Hennequin, G., 2020. Manifold gplvms for discovering non-euclidean latent
structure in neural data. arXiv preprint arXiv:2006.07429 .

Klindt, D., Ecker, A.S., Euler, T., Bethge, M., 2017. Neural system identification for large populations separating
“what” and “where”, in: Advances in Neural Information Processing Systems, pp. 3506–3516.

Kulkarni, J.E., Paninski, L., 2007. Common-input models for multiple neural spike-train data. Network: Compu-
tation in Neural Systems 18, 375–407.

Lawrence, N., 2005. Probabilistic non-linear principal component analysis with gaussian process latent variable
models. Journal of machine learning research 6.

Lawrence, N.D., 2003. Gaussian process latent variable models for visualisation of high dimensional data., in:
Nips, Citeseer. p. 5.

Mazor, O., Laurent, G., 2005. Transient dynamics versus fixed points in odor representations by locust antennal
lobe projection neurons. Neuron 48, 661–673.

Myklebust, E.M., 2020. A robustness evaluation of the latent manifold tuning model. Master’s thesis. Norwegian
University of Science and Technology.

Nocedal, J., Wright, S., 2006. Numerical optimization. Springer Science & Business Media.

Paninski, L., Cunningham, J.P., 2018. Neural data science: accelerating the experiment-analysis-theory cycle in
large-scale neuroscience. Current opinion in neurobiology 50, 232–241.

Peyrache, A., Lacroix, M.M., Petersen, P.C., Buzsáki, G., 2015. Internally organized mechanisms of the head
direction sense. Nature neuroscience 18, 569.

Piegl, L., Tiller, W., 1996. The NURBS book. Springer Science & Business Media.

Quinonero-Candela, J., Rasmussen, C.E., 2005. A unifying view of sparse approximate gaussian process regres-
sion. The Journal of Machine Learning Research 6, 1939–1959.

Rasmussen, C., Williams, C., 2006. Gaussian Processes for Machine Learning. MIT press.

Smith, A.C., Brown, E.N., 2003. Estimating a state-space model from point process observations. Neural compu-
tation 15, 965–991.

Steinmetz, N.A., Koch, C., Harris, K.D., Carandini, M., 2018. Challenges and opportunities for large-scale elec-
trophysiology with neuropixels probes. Current opinion in neurobiology 50, 92–100.

Stevenson, I.H., Kording, K.P., 2011. How advances in neural recording affect data analysis. Nature neuroscience
14, 139–142.

Taube, J.S., Muller, R.U., Ranck, J.B., 1990. Head-direction cells recorded from the postsubiculum in freely
moving rats. i. description and quantitative analysis. Journal of Neuroscience 10, 420–435.

Tenenbaum, J.B., De Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality
reduction. science 290, 2319–2323.

53

Thorndike, R.L., 1953. Who belongs in the family? Psychometrika 18, 267–276.

Titsias, M., 2009. Variational learning of inducing variables in sparse gaussian processes, in: Artificial intelligence
and statistics, PMLR. pp. 567–574.

Titsias, M., Lawrence, N.D., 2010. Bayesian gaussian process latent variable model, in: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference
Proceedings. pp. 844–851.

Wu, A., Pashkovski, S., Datta, S.R., Pillow, J.W., 2018. Learning a latent manifold of odor representations from
neural responses in piriform cortex., in: NeurIPS, pp. 5383–5393.

Wu, A., Roy, N.A., Keeley, S., Pillow, J.W., 2017. Gaussian process based nonlinear latent structure discovery in
multivariate spike train data, in: Advances in neural information processing systems, pp. 3496–3505.

Yu, B.M., Cunningham, J.P., Santhanam, G., Ryu, S.I., Shenoy, K.V., Sahani, M., 2009. Gaussian-process factor
analysis for low-dimensional single-trial analysis of neural population activity. Journal of neurophysiology 102,
614–635.

Yuste, R., 2015. From the neuron doctrine to neural networks. Nature reviews neuroscience 16, 487–497.

54

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Martin Bjerke

A Spline-based Latent Variable Model
for Neural State-space Discovery

Master’s thesis in Applied Physics and Mathematics
Supervisor: Benjamin Adric Dunn

February 2021

	Abstract
	Sammendrag
	Preface
	Table of Contents
	Introduction
	The neural code
	Advances and the state of neural data recording
	Dimensionality reduction and latent variables
	Motivation and contribution

	Data
	Head direction dataset
	Choice of bin width
	Neural tuning
	Motivation

	Background
	Generalized Linear Models
	Gaussian Processes
	Splines
	B-Splines

	Latent Variable Models
	The Latent Manifold Tuning model
	The latent process
	The tuning curves and spiking model

	The Spline-based Latent Variable Model
	The latent process
	The tuning curves and spiking model

	Inference of the LMT model
	MAP estimation of tuning curves
	MAP estimation of the latent variable

	Inference of the spline-based LVM
	MAP estimation of spline coefficients
	MAP estimation of the latent variable

	The iterative MAP procedure
	Feature Sharing, an extension to the Spline-based LVM
	Inference, feature sharing
	Expressions
	MAP procedure

	A note on inference regarding periodicity

	Data Analysis
	Modeling choices and challenges
	Evaluating the results
	Interior knots
	Scaling, shifting and flipping
	The choice of initialisation

	Simulated data
	1D non-periodic case
	1D periodic case

	Head direction data
	Inferring the tuning curves
	Initialisation from true path
	Initialisation from PCA

	Discussion and conclusion
	Discussion
	Modeling choices and challenges
	Simulated data
	Head direction data

	Further work
	Conclusion

	Bibliography

