
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Jørgen Nilsen Riseth

Gradient-Based Algorithms in Shape
Analysis for Reparametrization of
Parametric Curves and Surfaces

Master’s thesis in Applied Physics and Mathematics
Supervisor: Elena Celledoni

February 2021

Jørgen Nilsen Riseth

Gradient-Based Algorithms in Shape
Analysis for Reparametrization of
Parametric Curves and Surfaces

Master’s thesis in Applied Physics and Mathematics
Supervisor: Elena Celledoni
February 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

In this thesis, we study two gradient-based optimization algorithms in shape analysis for reparamet-
rization of open parametric curves and surfaces. One is a previously known Riemannian gradient
descent algorithm on the group of orientation preserving diffeomorphisms. The other is a novel ap-
proach, where finding an optimal reparametrization corresponds to the training of a residual neural
network. We compare the two algorithms using a few test examples for both curves and surfaces,
for which the residual neural network significantly outperforms the gradient descent algorithm.

i

ii

Sammendrag

I denne oppgaven studerer vi to gradientbaserte optimeringsalgoritmer i formanalyse, for repara-
metrisering av parametriske kurver og overflater. Den ene algoritmen er en tidligere kjent “gra-
dient descent”-algoritme p̊a gruppen av orienteringsbevarende diffeomorfier. Den andre er en ny
tilnærming til reparametriseringsproblemet, der det å finne en optimal reparametrisering, tilsvarer
treningen av et restnevralt nettverk. Vi sammenligner ytelsen til de to algoritmene ved hjelp av
noen f̊a eksempler for b̊ade kurver og overflater. I begge tilfeller presterer det restnevrale nettverket
bedre enn “gradient descent”-algoritmen.

iii

iv

Preface

This thesis concludes my studies of applied physics and mathematics at NTNU, specializing in
industrial mathematics.

I would like to thank my supervisor, Prof. Elena Celledoni, for her support and guidance
through the research process. Your genuine interest in my work, as well as countless hours spent
discussing and exploring new ideas, has been invaluable for my work.

Jørgen Nilsen Riseth

v

vi

Contents

1 Introduction 1

2 Literature Review 3
2.1 Shape Analysis of Two-Dimensional Objects . 3

2.1.1 Parametric Approaches . 4
2.2 Shape Analysis of Three-Dimensional Objects . 7
2.3 Shape Analysis in Activity Recognition . 8
2.4 Outro . 8

3 Theoretical Framework 11
3.1 Differential Geometry . 11

4 Optimal Reparametrization of Parametric Curves 17
4.1 Shape Space Metric . 17

4.1.1 Shape Space . 18
4.1.2 Introducing the Q-transform . 18

4.2 Gradient Descent on the Reparametrization Group 19
4.2.1 Computing The Gradient of Er . 20
4.2.2 Gradient Projection . 20
4.2.3 Step Size Bounds . 22
4.2.4 Gradient Descent Formulation . 23
4.2.5 Implementation . 25
4.2.6 Numerical Results . 26

4.3 Deep Reparametrization of Curves . 30
4.3.1 Problem Formulation . 30
4.3.2 Single-Layer Network . 32
4.3.3 Multilayer Network . 33
4.3.4 Weight Optimization . 35
4.3.5 Numerical Results . 36

4.4 Summary . 38

5 Optimal Reparametrization of Parametric Surfaces 41
5.1 Shapes of Parametric Surfaces . 41

5.1.1 Shape Space . 41
5.1.2 The Q-transform for Surfaces . 42

5.2 Gradient Descent on the Reparametrization Group 42
5.2.1 Computing The Gradient of Er . 43
5.2.2 Gradient Projection . 44
5.2.3 Step Size Bounds . 45
5.2.4 Summary and Implementation . 46
5.2.5 Numerical Results . 47

5.3 Deep Reparametrization of Surfaces . 50
5.3.1 Problem Formulation . 50
5.3.2 Single-Layer Network . 51
5.3.3 Multi-Layer Network . 52
5.3.4 Numerical Results . 52

5.4 Summary . 54

vii

CONTENTS

6 Conclusion 55

viii CONTENTS

List of Figures

4.1 Example functions for each of the three bases from section 4.2.2. 23
4.2 Two curves representing the same shape. 27
4.3 Coordinate functions before and after reparametrization 1. 28
4.4 Results and convergence of gradient descent for curves 1 28
4.5 Gradient descent error vs. number of basis elements 29
4.6 Two curves representing different shapes . 29
4.7 Results and convergence of gradient descent for curves 2 30
4.8 Illustration of a single layer in the reparametrization network 32
4.9 Visualization of feasible sets under various constraints for reparametrization network 33
4.10 Illustration of a multilayer reparametrization network 34
4.11 Coordinate functions before and after deep reparametrization 36
4.12 Results and convergence of deep reparametrization 1. 36
4.13 Deep reparametrization error vs. number of layers and basis functions 1 37
4.14 Result and convergence of deep reparametrization 2 38
4.15 Deep reparametrization error vs. number of layers and basis functions 2 38

5.1 Four examples of basis elements of Tid(Γ). 45
5.2 Different cases for step size upper bounds for reparametrization of surfaces 46
5.3 Example surfaces and surface reparametrized by gradient descent 1. 48
5.4 Reparametrizations and convergence of gradient descent for surfaces 1. 48
5.5 Example surfaces and surface reparametrized by gradient descent 2 49
5.6 Reparametrizations and convergence of gradient descent 2 49
5.7 Examples surfaces and surface after deep reparametrization 1 53
5.8 Reparametrizations and convergence of deep reparametrization 1 53
5.9 Example surfaces and surface after deep reparametrization 2 53
5.10 Reparametrizations and convergence of deep reparametrization 2 54

ix

LIST OF FIGURES

x LIST OF FIGURES

Chapter 1

Introduction

The geometric shape is of major importance when characterizing objects. As toddlers, many
children start learning about shapes through various toys and puzzles, and when asked to describe
an object, most people will resort to comparing it to familiar shapes. Based on this observation,
it seems only natural that objects’ shape should be of significant importance when developing
algorithms for automatic object recognition, such as in computer vision tasks.

According to the Oxford Learners Dictionary, shape (when used as a noun) is defined as the
form of the outer edges or surfaces of something; an example of something that has a particular
form. While this definition encapsulates the general concepts of the word, we require a more
precise mathematical definition to enable automatic object analysis. The field of shape analysis
concerns itself with this subject: It provides a formal definition of the shape of an object and tools
to compare and measure differences between shapes of objects.

In [29], Kendall describes shapes informally as ’what is left when the differences which can be
attributed to translations, rotations, and dilatations have been quotiented out’. This notion of
shapes may be formalized by defining shapes as elements of a quotient manifold called shape space.
The algorithms described in this thesis is developed within this framework.

In [51], the authors identify four main goals for the field of shape analysis.

1. Quantification of shape differences.

2. Building templates for specific shape classes.

3. Modelling shape variations through statistical models.

4. Shape clustering, classification and estimation.

In this thesis, we will mainly concern ourselves with problems related to the quantification of
shape differences. Whereas Kendall represented objects by a set of points along its boundary, we
will be representing objects as parametric curves or surfaces. This is arguably a more natural
representation of real objects. However, this introduces some difficulties. These are elements of
infinite-dimensional function spaces, which complicates the construction of shape space. More-
over, the same shape may be outlined by different parametrizations (e.g. two curves tracing out
the same path in the plane, but with different velocities). This is often dealt with by defining
distances in shape spaces in terms of optimization problems over the space of reparametrizations.
For parametric curves, this problem is usually solved using a dynamic programming algorithm.
However, the introduction of additional constraints to the optimization problem might prevent the
application of the algorithm, and to our knowledge, no such algorithm is currently available for
surfaces.

This thesis describes two gradient-based approaches for finding optimal reparametrizations,
applicable for both curves and surfaces. The first approach is based on the Riemannian gradient
descent algorithm over the reparametrization group outlined in [33]. In the second approach, we use
ideas from deep learning to rephrase the optimization problem as the process of training a neural
network. This leads to a finite-dimensional optimization problem that we solve with the BFGS
algorithm. This is to our knowledge a novel approach to solving the problem of finding optimal
reparametrizations. We emphasize that even though we are using tools from deep learning, we are
not attempting to make predictions regarding unseen instances, which is usually the main goal in

1

CHAPTER 1. INTRODUCTION

machine learning. The training corresponds to finding an optimal reparametrization of a single
curve, and the network will have to be retrained to work for other curves.

We evaluate the performance of the algorithms for both curves and surfaces using a few test ex-
amples. Based on the experiments presented, the deep reparametrization significantly outperforms
the Riemannian gradient descent algorithm.

The rest of the thesis is structured as follows: In chapter 2, we review previous approaches
described in the literature on shape analysis for comparing objects. Chapter 3 provides an intro-
duction to the differential geometric theory underlying the algorithms. Chapter 4 considers the
problem of finding optimal reparametrization of curves. We define the functions spaces necessary
to get a formal notion of the shape of a curve and describe the two gradient-based algorithms. We
provide numerical results from the two algorithms and compare their performance. In chapter 5,
we extend the problem formulation and algorithms to reparametrization of parametric surfaces and
compare the performance of the two algorithms. Chapter 6 concludes the thesis, with a summary
of the results presented in the previous chapters and ideas for further work.

Note to the reader

Some of the sections throughout this thesis describe ways to solve very similar problems. Therefore,
the contents of these sections look a lot like each other. This is especially true for the extension of
the deep reparametrization algorithm from curves to surfaces. While it would be possible to use a
higher level of abstraction to put these sections together in a single place, we have decided to keep
them apart, such that it is easier to look up parts of particular interest.

2

Chapter 2

Literature Review

The earliest work regarding the field of shape analysis is generally attributed to D’Arcy Thompson.
In the book “On Growth and Form” [58], originally released in 1917, he studied plants and animals
and visualized how the shapes of, for example, different types of fish may be made to look similar by
applying non-linear transformations to the coordinate system where the objects were represented.
Since then, many different efforts have been made towards solving the problems posed in shape
analysis, based on a broad range of theoretical approaches; the ability to identify and compare
shapes of objects is relevant in numerous branches of science and engineering.

In this section, we review some of the previous work in shape analysis. We do not intend to
give a comprehensive description of all available methods, and will focus mainly on the literature
taking a differential geometric perspective as outlined in [51]. For a broader picture of tools in
shape analysis, we refer to the works of Loncaric [37], and Zhang and Lu [62].

2.1 Shape Analysis of Two-Dimensional Objects

Point Cloud Analysis

One way to represent objects, is by a collection of points X = {xi}ki=1 ⊂ R2 giving the planar
coordinates of k points sampled along the objects boundary. In case the point collections are
unordered, they are often referred to as point clouds. A popular approach to compare objects in
this setting uses variations of the iterated closest point (ICP) algorithm [10, 18, 63]. This algorithm
easily extends to the case with three-dimensional surfaces. In [50], the authors describe it as an
algorithm for solving the optimization problem

min
O∈SO(2),ρ∈R+,a∈R2,ζ

k∑
i=1

|(a + ρOxi)− yζ(i)|2,

for two points clouds X,Y . Here O is a rotation matrix, ρ is a scaling constant, a is a translation
vector, while ζ : {1, 2,, k} → {1, 2, ..., k} is a mapping called the registration of y to x, assigning
to each xi a corresponding point yi. The optimization problem may be split into two different
optimization problems with well-defined solutions: One is the search for optimal transformation
variables, i.e. the rotation, translation and scaling given a fixed registration, and in the other we
want to find an optimal registration for a given set of transformation variables. The ICP algorithm
solves these problems iteratively, alternating between the two problems until convergence.

Kendall’s Landmark-Based Shape Analysis

Kendall was one of the first to formally define shapes as elements on a manifold [29, 30]. In his
works, he represented objects by an ordered set of points, called landmarks, from the boundary of
an object.

Let X ∈ Rk×2 be a matrix where each row xi corresponds to one of these landmarks. In the
two dimensional case it is often useful to represent each vector as a complex number. Identify xi

with zi = xi1 + ixi2 ∈ C, and X with z = (zi)
k
i=1 ∈ Ck. To remove differences between objects

attributed to translations, these objects are standardized by mapping their centroid z0 to the

3

CHAPTER 2. LITERATURE REVIEW

origin, and scaled to have unit norm by

z 7→ 1

‖z− z0‖
(z− z0) , z0 =

1

k

k∑
i=1

zi

where ‖ · ‖ denotes the standard euclidean norm for complex numbers. The image of Ck under this
standardization is what Kendall calls the pre-shape space:

C =

{
z ∈ Ck

∣∣∣∣∣ 1

k

k∑
i=1

zi = 0, ‖z‖ = 1

}
.

The motivation behind the name pre-shape is due to the fact that different points in Cee may
represent the same shape, as different rotations of objects have not yet been considered. To identify
elements which differ only by a rotation, define the equivalence relation

z1 ∼ z2 ⇐⇒ z1 = z2eiθ for some θ ∈ S1.

The equivalence classes [z] = {z∗ ∈ C | z ∼ z∗} corresponds to all possible rotations of an element
in C, and may formally be defined as the shape of an object. The set of all shapes S is then defined
as the quotient space

S = C/S1 = {[z] | z ∈ C}

Now to quantify differences between shapes, we define the distance function in shape space as

dS([z1], [z2]) = min
θ∈S1

dC(z1, z2eiθ)

where dC is a distance function on C, defined as the length of geodesics in C.
The importance of the constructs given here will be further highlighted through later sections:

While most of the recent literature on differential-geometric approaches to shape analysis considers
objects represented by curves instead of point samples, they still use the idea of representing shapes
as elements on quotient spaces.

Deformation-Based Shape Analysis

Another approach for comparing two-dimensional objects represented as images is based on de-
formable templates. Pioneered by Grenanders work in e.g. [25], this approach poses the registration
problem as a variational problem, where the goal is to find an optimal “warping” of the image
domain to match two different images. Paraphrasing the description given in [42], we considers
images Ii : D → R, i = 1, 2 on some domain D, e.g. D = [0, 1]2. The difference between the
images is given by

C(I1, I2) = min
ψ:D→D

d(I1, I2 ◦ ψ) + E(ψ)

for some distance function d, often chosen as the L2-distance, and a regularization term E(ψ)
penalizing large deformations of the image domain. In many cases, it is useful to impose further
restrictions on the set of warping functions ψ, such as requiring them to be diffeomorphisms
on the domain D. One big difference between the deformable template-matching as compared
to the previously described point-based approaches and the curve-based approaches that will be
presented shortly is that it takes into account the contents of a complete image, rather than just
the contours of an object. This may both be considered a strength or a weakness, depending on
the application. However, the deformable template-matching of images is closely related to the
Riemannian framework for matching surfaces that we study in this thesis.

2.1.1 Parametric Approaches

The use of curves or surfaces instead of point collections to represent objects complicates the
construction of shape metrics. In [50], however, the authors make a compelling argument for
studying objects as continuous parametric curves and surfaces anyways: For one, real-life objects
are indeed continuous objects themselves, hence the information loss occurring by sampling objects
and representing them as finite-dimensional vectors may be avoided. Moreover, any approach where
objects are represented by point vectors, impose a somewhat arbitrary correspondence between

4 2.1. SHAPE ANALYSIS OF TWO-DIMENSIONAL OBJECTS

CHAPTER 2. LITERATURE REVIEW

points on the two objects, through the ordering of the vector elements. If the points are not
ordered, then we are still faced with matching points between objects, which is also the main
difficulty when utilizing parametric curves.

There are two common approaches to represent objects as curves: Either as open curves defined
on some interval I (typically [0, 1] or [0, 2π]) or as closed curves define on the circle S. The curves
considered are typically assumed to be immersions, i.e. smooth with non-zero velocity. In most of
the literature, smooth is taken to mean infinitely differentiable. However, some authors also allow
functions with lower regularity, (e.g. C2 [60]).

For simplicity, we will concern ourselves with open curves on the unit interval I = [0, 1], and
we will take smooth to mean infinitely differentiable. We will refer to the space of parametric
curves as C ⊂ C∞(I,R2), but note that the exact definition of the pre-shape space C varies in the
literature.

Riemannian Metrics

When comparing shapes of parametric curves, it is useful to make use of the underlying manifold
structure of the space of curves C. By defining equivalence relations between curves which differ
only by their velocity, then we may construct the shape space as the quotient manifold under this
relation. To define distance functions in such a shape space typically requires two steps: Firstly,
we need to equip the underlying space of parametrized curves with a Riemannian metric G. A
Riemannian metric gives us a mean of measuring local deformations of curves, which in turn enables
the computation of geodesics, i.e. the shortest path between curves. Secondly, we need to find the
correct representatives for the equivalence classes of the curves we compare. This is done through
solving an optimization problem over the group of reparametrizations.

There are multiple ways to define the Riemannian metric on the manifold of curves. When
comparing curves, its often tempting to consider the standard L2-metric. However, the L2-metric
induces a distance which is not invariant to reparametrizations (see section 3). One attempt to
alter the L2-metric to become reparametrization invariant, is to integrate with respect to the arc
length of a curve, i.e.

Gc(h, k) =

∫
I

〈h, k〉|c′(t)|dt.

This approach was studied by Michor and Mumford in e.g. [41, 40]. However, they showed that
given any two curves in C, it is possible to find some geodesic with length zero. This pathology
is related to the lack of information regarding derivatives of the curves and motivates the use of
higher-order Sobolev-type metrics of the form

Gnc (h, k) =

∫
I

n∑
i=0

ai〈Di
sh,D

i
sk〉|c′(t)|dt

where Dsh = h′/|c′(t)|, and ai ≥ 0 are weighting coefficients. Such metrics were studied in e.g.
[39], with further investigation of a special case of these, called immersion-Sobolev metrics of the
form

GImm,nc (h, k) =

∫
I

〈h, k〉+ an〈Dn
s , D

n
s 〉|c′(t)|dt.

While Sobolev metrics of higher orders n are nice theoretical generalizations of the L2-metric, their
practicality is limited due to the geodesic equations being partial differential equations of order
2n. To avoid dealing with higher-order PDEs, much focus has been given to first-order Sobolev
metrics, and especially the so-called elastic metric

Ga,bc (h, k) =

∫
I

a2〈Dsh, n〉〈Dsk, n〉+ b2〈Dsh, v〉〈Dsk, v〉|c′(t)|dt

where n, v are the unit normal and tangent vectors to c. Whenever h = k, the first term in the
integrand may be considered a measure of the stretching of the curve in the direction of h, while
the second term may be considered a measure of the bending of the curve. The importance of these
two features may thus be adjusted by changing the weights a, b. In [61], Younes et al. showed that
its possible to find explicit expression for the geodesics in the case a = b = 1, by representing the
curve by

√
c′ where c is interpreted as a complex-valued function, rather than a planar curve.

2.1. SHAPE ANALYSIS OF TWO-DIMENSIONAL OBJECTS 5

CHAPTER 2. LITERATURE REVIEW

An alternative representation of the curves, which has seen much popularity in the literature is
the square-root velocity transform (SRVT) of the curve, introduced in [49]. It is given as the map

R : C → C∞(I,R2) \ {0}, c 7→ c′√
|c′|

.

One reason behind its popularity is that under this transformation, the elastic metric with coeffi-
cients a = 1 and b = 1/2 becomes the flat L2-metric, which greatly simplifies the computation of
shape distances and geodesics.

The success of the SRVT has spawned similar approaches to constructing reparametrization
invariant metrics by transforming the curves in a way which reduces various Riemannian metrics to
the flat L2-metric. In [5], Bauer et al. study the theoretical properties of some of these metrics: In
addition to the SRVT, and the aforementioned transform of Younes et al. [61], they also consider
an analogue to the Q-transform which Kurtek et al. developed for surfaces [33]. The pullback of
the L2-metric under this transformation, is a first-order immersion-Sobolev metric on the space of
curves. While it lacks some of the nice properties of the SRVT, such as translation invariance and
a known inverse, it is more easily generalized to surfaces. Therefore we will put a lot of emphasis
on this transform.

Optimizing over the Reparametrization Group

After having endowed the space of parametric curves with some Riemannian metric, we need an
approach to find an optimal parametrization of the curves we want to compare. To do this, we con-
sider the group of orientation preserving diffeomorphisms, also referred to as the reparametrization
group

Diff+(I) =: {γ ∈ C∞(I, I) | γ(0) = 0, γ(1) = 1, γ′(x) > 0 ∀x ∈ I} .

The reparametrization group is a Lie group, which acts on C from the right by composition. The
effect of this action on the curve is that its velocity changes. We may identify two objects as having
the same shape, if one may be attained through composing the other from the right, by a function
from the reparametrization group. If we assume that the Riemannian metric defines a distance
function dC(c1, c2) on the space of parametrized curves, then a distance between the chapes c1 and
c2 may be defined as infγ∈Diff+(I) d(c1, c2 ◦ γ).

There are multiple approaches to finding such an optimal diffeomorphism. The most popular of
these is through a dynamic programming algorithm [48], which approximates the diffeomorphism
by piecewise linear functions. It entails mapping the unit square [0, 1]2 into a grid {(xi, yj)}1≤i,j≤,N
of points, where the first coordinate represents the domain of the function, and the second is the
range. The graph of the reparametrization is found by drawing lines between points on this grid
in an optimal way. Due to the ordering of points in time, it is possible to rewrite the optimization
problem as a sum of subproblems which may be solved recursively, to find a globally optimal
solution.1 This algorithm has been developed further in e.g. [20, 9] to significantly reduce the
computational cost from O(N4) to O(N), but with reduced precision. In [60], a semi-discretized
algorithm was proposed in which only the domain is discretized.

The DP algorithm offers a great alternative to find optimal reparametrizations for computing
shape distances when it is applicable. However, in some circumstances further restrictions are
imposed on the diffeomorphisms, e.g. when considering closed curves, or if the cost function is
augmented with additional terms. These additional constraints may prevent the cost function
from being additive over the graph of the diffeomorphism. Moreover, there are to our knowledge
currently no similar approach available for the case of surfaces. This motivates the developments
of alternative approaches for finding optimal reparametrizations. In [19], the authors considered
closed curves parametrized on the unit circle S1 and found diffeomorphisms generated by flows of
vector fields. In [5], the authors expanded upon a gradient-based algorithm proposed in [55], where
the optimal diffeomorphism is found by a gradient descent algorithm on the reparametrization
group. This is similar to approach described in [49], but while the former samples the diffeomor-
phism at a grid of point at each iteration, the latter works directly with functions from a subspace
of the diffeomorphism group, formed by a truncated Fourier series. We will expand upon this in a
later section.

1Since the algorithm is restricted to find linear functions passing through a predetermined set of points, it is of
course not able to cover the whole reparametrization group.

6 2.1. SHAPE ANALYSIS OF TWO-DIMENSIONAL OBJECTS

CHAPTER 2. LITERATURE REVIEW

2.2 Shape Analysis of Three-Dimensional Objects

Many of the methods already described for shape analysis of curves have natural extensions to
three-dimensional objects and surfaces. Increasing the dimension of the point cloud analysis ap-
proaches poses no challenges (at least theoretically), and the ICP algorithm was developed to
work also for this case. The landmark-based tools for Kendall’s shape analysis, such as Procrustes
methods, are still available, even though we can no longer use the identification with complex
numbers. In case of parametrized surfaces, one approach to solving the problem is the SPHARM,
and SPHARM-PDM [12, 52] approaches, in which surfaces are approximated by use of spherical
harmonics, possibly augmented by shape descriptors on the surface.

Another popular approach is an extension of deformation based approaches. In the method of
large deformation diffeomorphism matching metric (LDDMM), studied in e.g. [13, 6], the objects
are embedded in e.g. a unit cube [0, 1]3. Transformations are then applied to the ambient space,
dragging the surfaces along. Similarly as for the two-dimensional case, the shape distance is com-
puted through minimizing a cost functional which measures differences after the transformation,
but penalizes large deformations. Metrics based on this approach are often referred to as outer
metrics.

Contrasting the LDDMM framework are methods based on so-called inner metrics. These
methods consider parametric surfaces and use Riemannian metrics similar to the ones we described
for curves, where deformations are prescribed directly to the surface itself without changing the
ambient space. In [33] the Q-transform2 for surfaces was introduced,

Q : Imm(M,R3)→ C∞(M,R3), f 7→
√
|fx × fy|f(x)

where Imm(M,R3) the set of immersions defined on some domain M , and fx, fy refer to par-
tial derivatives of the surface. This transform allows us to use the L2-metric to compute shape
distances. The authors also provided a framework to compute the optimal reparametrization of
surfaces trough a gradient-based algorithm, allowing the computation of shape distances. This
method was extended in [35, 34], to compute the geodesics between surfaces. The Q-transform for
surfaces exhibits the same theoretical difficulties as the curves. To find a shape metric independent
of translation and scaling requires a pre-processing step similar to the landmark-based approach.
Denoting the area scaling factor of a surface f by af = |fx × fy|, the standardization of surfaces
is given by the map

f 7→ fc(x)√∫
M
afc(x) dx

, fc(x) = f(x)−
∫
M
f(x)af (x) dx∫
M
af (x) dx

,

which maps the centroid of the surface to the origin, and scales the surfaces to have unit area. The
image of this standardization is analogue to Kendall’s pre-shape space.

In [28], Jermyn et al. defined a general elastic metric on the space of parametrized surfaces
and introduced a transform more closely related to the successful SRVT: The Square Root Normal
Field (SRNF), where the surface is represented by its normal vector and divided by the square
root of the local area scaling factor. Similarly as for the Q-transform, distances between surfaces
under this transform may be computed in terms of the L2-metric. Using the SRNF, the authors
improved upon the Q-transform in clustering tasks, in terms of cluster purity and symmetry of
shape distances. They did, however, recognize that the SRNF is not injective; there exists different
shapes with the same SRNF-representation, causing problems (at least theoretically) when defining
shape distances. In [31], Klassen and Michor investigated the nature of this lack of invertibility and
found multiple examples of closed surfaces which have the same image under the SRNF. However,
they were also able to show that the SRNF of a strictly convex surface is unique.

The SRNF framework has seen some recent developments. In [53], Su et al. augment the
SRNF-distance with another metric. Under this representation, the distance function between
shapes is a sum of the L2-distance of the transformed surfaces and the length of the geodesic under
the so-called DeWitt-metric. In [54], the authors define a family of elastic metrics on the space of
parametrized three-dimensional surfaces, which includes the elastic metric induced by the SRNF
transform.

2The original name of the Q-transform was the q-map. However, the authors used this word to refer both to the
transform itself, as well as elements in its image. To avoid this ambiguity, we adopt the name used in [5].

2.2. SHAPE ANALYSIS OF THREE-DIMENSIONAL OBJECTS 7

CHAPTER 2. LITERATURE REVIEW

Optimal Reparametrizations

Under all of the aforementioned metrics for parametric surfaces, we are still required to find an
optimal representative of each shape to compute distances in shape space. One fact that greatly
complicates finding optimal reparametrizations of surfaces is the lack of a canonical ordering of
points on a surface. The extra dimensions added allows the reparametrization functions to rotate
points so that two points switch places in one or both of its coordinates. The reparametrization
group for surfaces on some domain M ⊂ R2 may be defined as

Diff+(M) =
{
γ ∈ C∞(M,M)

∣∣ Jγ > 0, γ bijective, γ−1 ∈ C∞(M,M)
}

where Jγ is the Jacobian determinant of γ. Diffeomorphisms in the reparametrization group for
surfaces may move points along the boundary, as opposed to the reparametrization group for
curves, which necessarily preserves the endpoints.

The dynamical programming algorithm for optimal reparametrization of curves is therefore not
easily extended to surface, and to our knowledge, no such global optimization algorithm has been
developed in this case. This leaves us with various gradient-based algorithms.

In [33] this was solved through gradient descent on a subset of the group of diffeomorphisms,
spanned by a set of basis functions that are tensor products of Fourier series. This will be further
elaborated upon in section 4. Other approaches to solving this have been proposed in e.g. [4],
where the group of diffeomorphisms are approximated in a linear space, and optimal coefficients
found using BFGS. The deep reparametrization algorithm described in sections 4 and 5 may be
considered a mixture of the two approaches.

2.3 Shape Analysis in Activity Recognition

Until now, we have mainly considered shape analysis for static object recognition. Another impor-
tant application for the tools presented is in automatic identification of activities from videos or
motion capture data. A typical approach is to extract the shapes as e.g. the silhouettes of objects
in each frame of a video and make use of the usual tools for comparing shapes. This, however,
requires additional time-series modelling to compare sequences on shape spaces, which may be
solved in very different ways. We will settle to describe one of these approaches, which is given as
a natural extension of the SRVT framework for comparing objects.

A popular way of capturing realistic motions for use in computer animation is through motion
capturing, where the movement of an actor is recorded, and imposed onto a virtual skeleton. In
[21], Eslitzbichler provided an approach to model character animations from motion capture data
as curves on an n-torus. Each point on the curve corresponds to a pose, that may be mapped or
embedded in R3. This allows the use of the SRVT of the curves to compare and classify different
movements. In [15], Celledoni et al. provided an extension of the SRVT for Lie group valued
curves, which in turn made it possible to model these character animations directly as curves in
SO(3)n. In [16], the SRVT was further generalized for curves in homogeneous spaces.

Similarly as in object recognition, it is necessary to find an optimal parametrization of the
curves to best compare different animations. In [3], the authors describe both a gradient de-
scent algorithm and a dynamic programming algorithm to find optimal reparametrizations when
comparing character animations. 3

2.4 Outro

The contribution of this thesis to the field of shape analysis is twofold. Most importantly, we
put forth a novel approach to finding optimal reparametrizations, where we approximate diffeo-
morphisms using a residual neural network. This approach admits a seemingly effective, unified
framework for optimal reparametrization of both curves and surfaces. Secondly, the Riemannian
gradient descent algorithm considered within this thesis is based on the framework provided in
[33] for reparametrization of surfaces. However, the algorithm in the original paper is stated with
a high level of abstraction, and we could not find a detailed explanation of how to implement

3These algorithms are really just extensions of the algorithms described for optimal reparametrizations of open
curves, but they augment the optimization problem with an additional term matching feature points on the anima-
tions to be compared.

8 2.3. SHAPE ANALYSIS IN ACTIVITY RECOGNITION

CHAPTER 2. LITERATURE REVIEW

the algorithm within available literature. While there are probably better ways to implement the
gradient descent algorithm than the one we propose, we hope to provide a sufficient description of
the algorithm for interested readers to understand, and that it may serve as a starting point for
future improvements.

2.4. OUTRO 9

CHAPTER 2. LITERATURE REVIEW

10 2.4. OUTRO

Chapter 3

Theoretical Framework

This chapter contains the differential geometric theory underlying the algorithms studied in this
thesis. Basic theory regarding Riemannian geometry and Lie groups is based on [50], while the
introduction to infinite-dimensional manifolds is based on [14]. For the manifold structure of
manifolds with corners, and the manifold structure of function spaces we refer to [38], while the
description of Riemannian gradient descent is taken from [36].

3.1 Differential Geometry

Smooth Manifolds

Definition 3.1.1 (Smooth Manifold). A smooth manifold modelled on a topological vector space
E, is a Hausdorff topological space M together with a family of charts (ϕi, Ui)i∈I satisfying

1. M =
⋃
i∈I Ui.

2. Ui is open in M for all i ∈ I.

3. φi : Ui → φ(Ui) are homeomorphisms onto open subsets φ(Ui) ⊂ E .

4. φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj) are smooth (i.e. C∞) for all i, j ∈ I.

This definition of manifolds covers both finite and infinite-dimensional manifolds (without
boundary) depending on the choice of the vector space E. We are also interested in finite-
dimensional manifolds with boundaries and corners.

Definition 3.1.2 (n-dimensional Manifolds). We say that a smooth manifold with a family of
charts (ϕi, Ui)i∈I is an n-dimensional manifold

1. without boundary if the open sets φi(Ui) are open in Rn.

2. with boundary if the open sets φi(Ui) are open subset of Hn := [0,∞)× Rn−1.

3. with corners if φi(Ui) are open in Rnk = [0,∞)k × Rn−k for some 0 ≤ k ≤ n.

Here Hn−1,Rnk ⊂ Rn are equipped with the subspace topology.

While the domain of the functions used to represent objects is assumed to be finite-dimensional
manifolds, the function spaces themselves may be given an infinite-dimensional manifold structure.
Four common modelling spaces for infinite-dimensional manifolds, are

� Hilbert spaces.

� Banach spaces.

� Fréchet spaces.

� Convenient vector spaces.

Hilbert and Banach spaces are relatively nice to work with, as most of multivariate calculus on
finite-dimensional spaces generalizes easily to Banach spaces. However, due to Omori [44], we know
that a Banach Lie group with the properties we desire of the diffeomorphism group is necessarily
finite-dimensional. This means that Banach spaces are not fitting as a modelling spaces for the
diffeomorphism group. Therefore, we turn to the other two alternatives.

11

CHAPTER 3. THEORETICAL FRAMEWORK

Definition 3.1.3 (Locally Convex Vector Spaces). A vector space E is called a locally convex
vector space if its topology is induced by a family of semi-norms {pi}i∈I for some index set I, and
the semi-norms are point-separating (i.e. pi(x) = 0 ∀ i ∈ I ⇐⇒ x = 0). A locally convex vector
space which is sequentially complete, is called a Fréchet space.

The construction of the manifold structure of relevant functions spaces is a complicated process
far beyond the scope of this master thesis. However, it is possible to show that by equipping the
space C∞(M,N) of smooth functions between smooth manifolds with the so-called compact-open
topology, it becomes a Fréchet space. Moreover, it is possible to show that interesting function
spaces such as the set of immersions are open subsets of C∞(M,N), and are therefore manifolds
covered by a single chart. We will be using this setting throughout the thesis. For a thorough
exposition of the last alternative; convenient vector spaces, we refer to [32].

Tangent Spaces

While smooth manifolds are inherently non-linear spaces, they are by definition locally homomor-
phic to vector spaces. By approximating manifolds around a point by linear spaces, the tools of
linear algebra, such as inner products, are made available locally. By using the smooth structure
of the manifolds, local arguments may be extended to the whole manifold, enabling concepts such
as distances on the manifold.

Definition 3.1.4 (Tangent Vectors). Let M be a manifold modelled on a locally convex vector
space E, and let p ∈M . A curve α : (a, b)→M is considered smooth if the map φ ◦α : (a, b)→ E
is smooth for some coordinate map φ. We say that a smooth curve α passes through p if α(0) = p.
Given two smooth curves α, β passing through p, we define the equivalence relation

α ∼ β ⇐⇒ (φ ◦ α)′(0) = (φ ◦ β)′(0)

for any1 chart φ of M around p. The equivalence class [α] is called a tangent vector of M at p.
The tangent space of M at p, denoted TpM , is defined as the set of all tangent vectors at p. The
collection of all tangent tangent spaces TM =

⋃
p∈M TpM is called the tangent bundle.

The tangent space at a point is locally isomorphic to the modelling space. If φ is a coordinate
chart of M around p, then there exists a bijective map TpM → E defined by

[γ] 7→ (φ ◦ γ)′(0) = φ(γ(0))

which allows us to transfer the operations of addition and scalar multiplication from E to TpM ,
turning TpM into a vector space. Given a curve α passing through 0, we denote the equivalence
class of α in TpM by α′(0).

Since the tangent space TpM is isomorphic to the modelling space E, then for any manifold
M which is an open subset of E, every tangent vector v at a point p may be represented by the
line t 7→ p+ tv, defined for some interval (a, b) 3 0. This will be the case for most of the function
spaces we are working with throughout this thesis.

The tangent vectors of a manifold give us a notion of moving along a manifold in a specific
direction, which allow us to define the directional derivative of a map f : M → N between
manifolds.

Definition 3.1.5 (Directional Derivatives). Given a differentiable map f : M → N between
manifolds M,N and a smooth curve α : (a, b) → M passing through p ∈ M with α′(0) = v, the
directional derivative or differential of f at p is given by

dfp : TpM → Tf(p)(N), dfp(v) = (f ◦ α)′(0) =
d

dt

∣∣∣∣
t=0

f(α(t)) (3.1)

which defines a linear map between tangent spaces at p. If g : N → K is another map between
manifolds, then the directional derivative satisfies the chain rule

d(g ◦ f)p = dgf(p) ◦ dfx
1If the equality holds for some chart, then it holds for every chart around p, by the chain rule.

12 3.1. DIFFERENTIAL GEOMETRY

CHAPTER 3. THEORETICAL FRAMEWORK

Riemannian Manifolds

Definition 3.1.6 (Riemannian Metrics). Let M be a smooth manifold modelled on a vector space
E. A weak Riemannian metric G is a smooth map G assigning to each p ∈M a map Gp satisfying

1. Gp(·, ·) is symmetric and bilinear for all p ∈M .

2. Gp(h, h) ≥ 0 for all h ∈ TpM with equality only for h = 0.

If a weak Riemannian metric in addition satisfies

3. The topology of the inner product space (TpM,Gp) coincides with the topology TpM inherits
from the manifold M .

then we call it a strong Riemannian metric. A (weak/strong) Riemannian manifold (M,G) is a
smooth manifold M endowed with a (weak/strong) Riemannian metric G.

The difference between a weak and strong Riemannian metric is a purely infinite-dimensional
phenomenon. It does have some consequences in the field of shape analysis. If we define distances
on M in terms of the length of geodesics with respect to the metric, then a weak Riemannian
metric is not point-separating. This means that there exist distinct points on the manifold, for
which there is a curve of arbitrarily short length connecting the two points. Even worse, this might
happen for any two points on the manifold. We briefly mentioned one example of this degeneracy
in section 2.1.1: The arc-length parametrized L2-metric.

Definition 3.1.7 (Geodesic). Let c : [a, b]→M be a piecewise C1-curve on a Riemannian manifold
(M,G). The length of c is

L(c) :=

∫ b

a

|c′(t)| dt =

∫ b

a

√
Gc(t)(c′(t), c′(t)) dt (3.2)

The geodesic distance between to points p1, p2 ∈M is given by

dist(p1, p2) = inf
c
L(c)

where the infimum is taken over the set of all piecewise C1-curves with c(a) = p1, c(b) = p2.
We say that a curve c is arc-length parametrized if |c′| = 1. A shortest geodesic is an arc-length
parametrized curve attaining the infimal length. A geodesic is an arc-length parametrized curve
that is locally length minimizing, in the sense that there exist some δ > 0 such that c restricted to
any subinterval I ⊂ [a, b] of length smaller than δ, is a shortest geodesic.

In the algorithms considered in this thesis, we are not computing any of these geodesics. How-
ever, the distance functions we will use to compare shapes correspond to the geodesic distance for
some Riemannian metric on the spaces of curves and surfaces, and the geodesics play a central role
for the theory behind gradient descent on manifolds.

Definition 3.1.8 (Riemannian Gradient). Let f : M → R be a function over a Riemannian
manifold (M,G). Denote by 〈·, ·〉p = Gp(·, ·). The Riemannian gradient ∇f : M → TM of f is a
vector field assigning to each p ∈M the unique tangent vector ∇f(p) ∈ TpM satisfying

dfp(v) = 〈∇f(p), v〉p ∀ v ∈ TpM. (3.3)

The gradient of a function defines a direction of largest growth. By taking short steps in the
opposite direction of the gradient, we should expect a decrease in the function value. However,
due to the non-linearity of manifolds, we need to take care when talking about small steps along
a direction. For this purpose we define the Riemannian exponential map.

Definition 3.1.9 (Exponential Map). Let M be a Riemannian manifold. Given a point p ∈ M
and a vector v ∈ TpM , there exists for some ε > 0, a unique constant-speed parametrized geodesic
αv : (−ε, ε)→M , such that αv(0) = p, α′v(0) = v. The Riemannian exponential map,

expp : U ⊂ TpM →M, expp(v) 7→ αv(1),

maps elements from an open 0-neighbourhood U in TpM to the manifold M .

3.1. DIFFERENTIAL GEOMETRY 13

CHAPTER 3. THEORETICAL FRAMEWORK

For the exponential map to be well defined, it needs to be restricted to a 0-neighbourhood U
for which the integral curve αv is defined at time 1. However, for any vector v outside of this
neighbourhood, there exist some a > 0 such that av ∈ U . Hence any tangent vector may be
rescaled to a vector such that the exponential map is defined.

Using the Riemannian exponential, one can define Riemannian gradient descent analogously as
the Euclidean case:

pt+1 = exppt(−η∇f(pt)) (3.4)

On vector spaces equipped with a flat metric (e.g. Rn, L2(I)), geodesics are given as straight lines
t 7→ p+ tv, which reduces the exponential map to addition expp(v) = p+ v. On general manifolds,
however, the exponential map may be more complicated to compute. Therefore, Riemannian
gradient descent algorithms are often defined in terms of retractions.

Definition 3.1.10 (Retraction). A retraction on a manifold M is a map r : TM → M that
assigns to the tangent space at each point p ∈M a map

rp : TpM →M, v 7→ rp(v) (3.5)

satisfying
rp(0) = p, (drp)0 = Id|TpM .

A retraction is a first order approximation of the Riemannian exponential map, and the expo-
nential map is a retraction itself. Using retractions, we may define an alternative update rule for
Riemannian gradient descent by

pt+1 = rpt (−η∇f(pt)) (3.6)

A family of retractions that are especially useful for gradient-based algorithms on manifolds
embedded in a vector space E, is given by

rp : TpM →M, v 7→ π(p+ v) (3.7)

where π : E →M is a differentiable projection (i.e. π ◦ π = π).

Lie Groups

Definition 3.1.11 (Lie Groups). A Lie Group G is a smooth manifold endowed with a group
structure such that the group operations multiplication

µG : G×G→ G, µG(g, h) = gh

and inversion
ι : G→ G, ι(p) 7→ p−1

are smooth maps. We denote by

Lg : G→ G, Lg(h) = gh

the left-multiplication by g.

Since left multiplication by g is a smooth operation, the neighbourhood around any element
g ∈ G is diffeomorphic to the neighbourhood around the identity element, and the derivative map
d(Lg)id : TidG→ TgG defines an isomorphism between tangent spaces. By describing the tangent
space at the identity element id, then d(Lg)id(TidG) describes the tangent space around any element
g ∈ G. Therefore, the tangent space at the identity of a lie group is of special importance.

The set
Diff(M) =

{
γ ∈ C∞(M,M)

∣∣ γ bijective, γ−1 ∈ C∞(M,M)
}

of smooth diffeomorphisms on a manifold (possibly with corners) M , forms a Lie group under
composition of smooth maps, µDiff(M)(γ, ϕ) = γ ◦ϕ. It is possible to show that the diffeomorphism
group forms an open subset of the Fréchet space C∞(M,M) 2, hence the manifold structure. The
smoothness of composition and inversion is, in turn, inherited from the model space.

2If M is a manifold with corners, then the model space is instead C∞nice(M,M), of smooth functions mapping the
boundary of M onto itself.

14 3.1. DIFFERENTIAL GEOMETRY

CHAPTER 3. THEORETICAL FRAMEWORK

Remark (Lie Group Exponential). When studying Lie groups, it is common to define the Lie group
exponential map

expG : TidG→ G

which takes elements from the tangent space of the identity element to elements in the group itself.
This is similar to the Riemannian exponential map, and if we equip G with a Riemannian metric
which is invariant to left- and right-multiplication, then the two definitions coincide.

As this is not the case for the diffeomorphism group equipped with the metrics we consider in
this thesis, any use of the term exponential map throughout this thesis will refer to the Riemannian
exponential map.

3.1. DIFFERENTIAL GEOMETRY 15

CHAPTER 3. THEORETICAL FRAMEWORK

16 3.1. DIFFERENTIAL GEOMETRY

Chapter 4

Optimal Reparametrization of
Parametric Curves

This chapter describes two algorithms for finding optimal reparametrizations of parametric curves.
We start by formally defining shapes, and a distance function on shape space. After that, in section
4.2, we describe the gradient descent algorithm and present numerical results for two test examples.
In section 4.3 we describe how the gradient descent algorithm has similarities with a residual neural
network, and how we may use this structure to create a new algorithm for reparametrization of
curves. We also provide numerical examples for the new algorithm. Finally, in 4.4 we compare the
performance of the two algorithms for the given test examples.

4.1 Shape Space Metric

We consider planar curves taken from the space of immersions defined on the unit interval I = [0, 1],

C := Imm(I,R2) = {c ∈ C∞(I,R2) | c′(t) 6= 0, ∀t ∈ I}. (4.1)

To be able to identify two curves representing the same shape, we define the reparametrization group
as the set of orientation preserving diffeomorphisms, which consists of monotonically increasing
functions from I onto itself,

Γ := Diff+(I) = {γ ∈ C∞(I, I) | γ(0) = 0, γ(1) = 1, γ′(x) > 0, ∀x ∈ I}. (4.2)

Γ is an infinite-dimensional Lie group with a manifold structure modeled on a subspace of the
Fréchet space C∞(I,R). The reparametrization group Γ has a natural right group action on C by
composition

C × Γ :→ C (c, γ) 7→ c ◦ γ,
which we will refer to as reparametrization of c by γ (or more generally as reparametrization of c).

To define the gradient of a function defined on the reparametrization group, we need to charac-
terize the tangent space TγΓ. For this purpose consider the curve α : (−ε, ε)→ Γ passing through
γ (i.e. α(0) = γ), and define the map

α∧ : (−ε, ε)× I → I, (t, x) 7→ α(t)(x).

Since α is a curve in Γ which consists of smooth functions with fixed endpoints, then α∧(t, 0) = 0,
α∧(t, 1) = 1. Therefore, the velocity

(α)′(0) =
∂

∂t

∣∣∣∣
t=0

α∧(t, ·) (∈ C∞(I,R))

satisfies
∂

∂t

∣∣∣∣
t=0

α∧(t, 0) =
∂

∂t

∣∣∣∣
t=0

α∧(t, 1) = 0.

Hence the tangent space of the reparametrization group at a point γ may be identified by

TγΓ = {v ∈ C∞(I,R) | v(0) = v(1) = 0}. (4.3)

17

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

4.1.1 Shape Space

To formally define the shape of a parametric curve, we define an equivalence class based on the
orbits of c w.r.t. reparametrization. Define the orbit of an element c ∈ C as the set

[c] = {ĉ ∈ C | ĉ = c ◦ γ for some γ ∈ Γ},

and the equivalence relation
c1 ∼ c2 ⇐⇒ c1 ∈ [c2].

We say that c and ĉ have the same shape if c ∼ ĉ, and define the shape of a curve c as the
equivalence class [c] (i.e. the orbit of c). The shape space is the collection of all shapes, and
corresponds to the quotient space

S = C / Γ.

Our goal is to compute distances between elements in S, defined in terms of a metric dS . Such a
metric is typically constructed by defining a metric dC on the underlying space of curves C, and
then defining the shape distance by

dS([c1], [c2]) = inf
γ∈Γ

dC(c1, c2 ◦ γ). (4.4)

Hence to compute the distance between two shapes we need to solve an optimization problem. Our
goal is to study gradient-based algorithms to solve this problem.

One important property of the shape distance, is that we want it to be independent of the
chosen representative for each shape. One way to achieve this, is to use an underlying metric dC
which is reparametrization invariant, which is formally defined by the property

dC(c1 ◦ ϕ, c2 ◦ ϕ) = dC(c1, c2), ∀ϕ ∈ Γ. (4.5)

Assuming reparametrization invariance of dC , then for φ, ϕ ∈ Γ,

dS([c1 ◦ φ], [c2 ◦ ϕ]) = inf
γ∈Γ

dC(c1 ◦ φ, (c2 ◦ ϕ) ◦ γ)

= inf
γ∈Γ

dC(c1, c2 ◦ ϕ ◦ γ ◦ φ−1︸ ︷︷ ︸
∈Γ

)

= inf
γ∈Γ

dC(c1, c2 ◦ γ)

= dS([c1], [c2]).

which shows that dS is indeed independent of the chosen representatives from the shapes [c1], [c2].

4.1.2 Introducing the Q-transform

One way to define the underlying distance function dC , is by transforming the curves into alternative
representations, under which familiar metrics such as the L2-norm is reparametrization invariant.
In section 2.1.1 we mentioned some examples of such transformations used for curves, and we
will be using the so-called Q-transform. This transform is closely related to the Q-transform for
surfaces, which is used in the Riemannian gradient descent algorithm presented in [33].

Definition 4.1.1. Define the Q-transform as the map

Q : C → C∞(I,R2), c(·) 7→
√
|c′(·)|c(·). (4.6)

We say that for any c ∈ C, the curve q = Q(c) is the q-map or q-representation of c, and we
define the set of q-maps as

Q := Q(C) = {q ∈ C∞(I,R2) | q = Q(c) for some c ∈ C}.

Using the Q-transform, we define a metric on C by

dC(c1, c2) := ‖Q(c1)−Q(c2)‖L2(I,R2) =

(∫
I

|Q(c1)(t)−Q(c2)(t)|2 dt
)1/2

.

18 4.1. SHAPE SPACE METRIC

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

Before proceeding to show that this is a reparametrization invariant metric, we derive the following
property for the Q-transform:

Q(c ◦ γ)(t) =
√
|c′(γ(t))||γ′(t)| c(γ(t)) =

√
γ′(t) Q(c)(γ(t)) =

√
γ′(t) (Q(c) ◦ γ)(t). (4.7)

By inserting this into the distance function dC ,

dC(c1 ◦ ϕ, c2 ◦ ϕ) =

(∫
I

|Q(c1 ◦ ϕ)(t)−Q(c2 ◦ ϕ)(t)|2 dt
)1/2

=

(∫
I

|
√
ϕ′(t) Q(c1)(ϕ(t))−

√
ϕ′(t) Q(c2)(ϕ(t))|2 dt

)1/2

=

(∫
I

ϕ̇(t)|Q(c1 ◦ ϕ)(t̃)−Q(c2 ◦ ϕ)(t̃)|2 1

ϕ̇(t)
dt̃

)1/2

=

(∫
I

|Q(c1)(t̃)−Q(c2)(t̃)|2 dt̃
)1/2

= dC(c1, c2),

which shows that that dC is reparametrization invariant. In light of (4.7), we also define a right
action of the reparametrization group on the set of q-maps, by

Q× Γ→ Q, (q, γ) 7→
√
γ′(q ◦ γ),

and the orbit of q ∈ Q by

[q] = {r ∈ Q | r =
√
γ′(q ◦ γ) for some γ ∈ Γ}.

Note that we have defined the right action of Γ on Q such that for c ∈ C and q = Q(c) ∈ Q, we
have [q] = Q([c]). Lastly we define the orbit map for a given r ∈ Q, by

φr : Γ→ [r], φr(γ) =
√
γ′(r ◦ γ).

4.2 Gradient Descent on the Reparametrization Group

In this section, we describe the gradient descent algorithm over the reparametrization group for
curves. In short, it works by iteratively reparametrizing one of the curves by small perturbations
of the identity-diffeomorphism. It is based on the algorithm described in [33] for surfaces.

Assume that we are given two curves c1, c2 ∈ C, and want to find a reparametrization minimizing
the shape distance. Instead of directly minimizing the shape distance, we will be working with its
square. Denote by q = Q(c1) and r0 = Q(c2), and define for any r ∈ [r0] the cost function

Er : Γ→ R, Er(γ) = ‖q − φr(γ)‖2L2(I,R2)

Our goal is to minimize the cost function Er0 by iteratively reparametrizing r0 according to

rn = φrn−1(γn) =
√
γ′n(rn−1 ◦ γn), n = 1, 2, ...,

for a sequence of diffeomorphisms

γn = id− ηn∇Ern−1(id).

Here ηn > 0 is the step size in each iteration, and ∇Ern(id) is the Riemannian gradient of Ern

at the identity. This procedure is repeated until convergence, and assuming that the algorithm
terminates after m iterations, then the optimal reparametrization is given by

γ̄ = γ1 ◦ γ2 ◦ ... ◦ γm.

It might seem unintuitive that we are using the gradient with respect to a sequence of cost functions
Ern that changes at each iteration of the algorithm. However, in section 4.2.5, we relate this
approach to a proper Riemannian gradient descent algorithm for the original problem Er0 .

4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 19

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

4.2.1 Computing The Gradient of Er

To simplify the computation of the gradient, define

F : C∞(I,R2)→ R, F (s) = ‖q − s‖2L2(I,R2)

with differential
dFs : C∞(I,R2)→ R, dFs(h) = −2〈q − s, h〉L2(I,R2).

Then Er = F ◦ φr, such that the directional derivative dErγ : TγΓ→ R is given by the chain rule,

dErγ(v) = dFs(dφ
r
γ(v)) = −2

〈
q − φr(γ), dφrγ(v)

〉
L2(I,R2)

. (4.8)

To find the differential of φr, consider the curve

α : (−ε, ε)→ Γ, α(t) = γ + tv

passing through γ ∈ Γ with v = α′(0) ∈ TγΓ. The differential of the orbit map

dφrγ : TγΓ→ Tφr(γ)[r]
(
⊂ C∞(I,R2)

)
,

is defined by

dφrγ(v) =
d

dt

∣∣∣∣
t=0

√
α′(t) (r ◦ α(t)) =

d

dt

∣∣∣∣
t=0

√
γ′ + tv′ (r ◦ (γ + tv))

=
1

2
√
γ′

(
d

dt

∣∣∣∣
t=0

(γ′ + tv′)

)
(r ◦ γ) +

√
γ′(r′ ◦ γ)

d

dt

∣∣∣∣
t=0

(γ + tv)

=
1

2
√
γ′
v′(r ◦ γ) +

√
γ′(r′ ◦ γ)v.

(4.9)

By letting γ = id, (4.9) is reduced to

dφrid(v) =
1

2
v′r + vr′, (4.10)

which inserted into (4.8) gives

dErid(v) = −2〈q − r, 1

2
v′r + vr′〉L2(I,R2). (4.11)

The differential dErid(v) is a linear functional from a subspace of the Hilbert space L2(I,R), and
by Riesz representation theorem, there exists a unique element δErid ∈ L2(I,R) such that

dErid(v) = 〈δErid, v〉L2(I,R).

By applying integration by parts to (4.11), and using the fact that elements of TidΓ vanish at the
boundary, we may show that the element δErid, which we call the functional gradient is given by

δErid = rT q′ − qT r′.

At first sight, it is tempting to declare this function as the Riemannian gradient of Er at the
identity. However, it is only guaranteed to be an element of the larger space L2(I,R), and will
generally not be an element of the tangent space Tid(Γ). To deal with this, we will need to project
the gradient onto the tangent space at the identity of the reparametrization group.

4.2.2 Gradient Projection

Assume that we are given a basis {vi}i∈N for TidΓ, which is orthonormal with respect to an inner
product 〈〈·, ·〉〉. By equipping the tangent space with this inner product, the Riemannian gradient
at the identity is defined as the element ∇Er(id) satisfying

dErid(v) = 〈δErid, v〉L2(I,R) = 〈〈∇Er(id), v〉〉 .

20 4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

Writing ∇Er(id) in terms of the basis, we want to find a set of coefficients ai such that

〈δErid, v〉L2(I,R) = 〈〈∇Er(id), v〉〉 = 〈〈
∑
i∈N

aivi, v〉〉 =
∑
i∈N

ai 〈〈vi, v〉〉 .

Specifically, if we let v = vk, then by the orthonormality of {vi}i∈N,

〈δErid, vk〉L2(I,R) =
∑
i∈N

ai 〈〈vi, vk〉〉 = ak.

Thus the Riemannian gradient of Er with respect to the inner product 〈〈·, ·〉〉, is at the identity
given by

∇Er(id) =
∑
i∈N

vi〈δErid, vi〉L2(I,R) =
∑
i∈N

vi〈rT q′ − qT r′, vi〉L2(I,R).

In practice, we need to approximate the infinite sum in the projection step by using a finite
orthonormal basis (vi)

N
i=1, spanning some subspace V ⊂ TidΓ. In the following, we present three

alternative bases.

Truncated Fourier Basis The arguably simplest choice of basis is a truncated Fourier sine
series. These basis functions are given on the form

vn =
√

2 sin(nπx), n ∈ N,

and are orthonormal with respect to the L2 inner product. These functions are clearly smooth,
and vanish on the boundaries of the interval. By choosing some N ∈ N representing the maximal
frequency of the sines, the truncated Fourier sine basis spans a subspace

VF := span{(vi)Ni=1}.

Jacobi Polynomials The Jacobi polynomials P
(α,β)
n are a family of polynomials that are orthog-

onal on the interval [−1, 1], with respect to a weight function x 7→ (1−x)α(1 +x)β for α, β > −1 .
While the Jacobi polynomials themselves do not vanish at the boundaries of the interval, we may
use the weight function to construct a set of polynomials, spanning some subspace VJ of TidΓ, that
are orthonormal with respect to the L2 inner product. For simplicity we will only consider the
case where α = β = 2. Define the weight function

w(z) = (1− z)2(1 + z)2,

and the polynomials
p̃n(z) = (1− z)(1 + z)P (2,2)

n (z), n ∈ N0. (4.12)

By the orthogonality of the Jacobi polynomials with respect to w, then for all n,m ∈ N0,

〈P (2,2)
n , P (2,2)

m 〉w :=

∫ 1

−1

(1− z)2(1 + z)2P (2,2)
n (z)P (2,2)

m (z) dz

=

∫ 1

−1

p̃n(z)p̃m(z) dz

= 〈p̃n, p̃m〉L2([−1,1],R)

= δn,m

where δn,m defines the Kronecker delta. Hence the polynomials from (4.12) are orthogonal with
respect to the L2 inner product on the interval [−1, 1]. Before they may be used to construct an
orthonormal set in TidΓ, we first need to normalize them by

pn =
p̃n

‖p̃n‖L2([−1,1])
,

and then map them onto the interval I. For this purpose, define the map

Φ : [0, 1]→ [−1, 1], Φ(x) = 2x− 1,

4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 21

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

such that

δn,m = 〈pn, pm〉L2([−1,1]) =

∫ 1

−1

pn(z)pm(z) dz =

∫ 1

0

pn(Φ(x))pm(Φ(x)) 2dx

= 〈
√

2(pn ◦ Φ),
√

2(pm ◦ Φ)〉L2(I,R).

Thus the set of polynomials {vn}n∈N0
defined by

vn(x) =
√

2(pn ◦ Φ)(x) =
√

2 pn(2x− 1)

is an orthonormal set with respect to the L2 inner product over the interval I. While we will leave
out the details in the derivation, it may be shown (see e.g. [57]) that these polynomials may be
expressed by

vn(x) = Cnx(1− x)

n∑
m=0

Bmn (x− 1)m

Cn =

√
2n+ 5

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
, Bmn =

∏n+m+4
k=m+3 k

m!(n−m)!
.

Note that these functions vanish at the boundaries of I, and as polynomials they are clearly smooth.
Hence the set

VJ := span{vn}Nn=0

forms a finite dimensional subspace of the tangent space TidΓ.

Palais Basis Both of the preceding bases use functions with large oscillations, which means
large derivatives. This may cause problems in the gradient descent algorithm, due to the positive
derivative constraint on the reparametrization group. As we will see in the next section, this
constraint limits the largest allowed step size that can be performed in the direction of the gradient,
without stepping outside of the reparametrization group. This motivates the use of orthogonal
bases with respect to a Sobolev-type metric, taking derivatives into account. One such basis is a
version of the Fourier series which is orthogonal with respect to a first-order Palais metric [45],
given by

〈u, v〉s = u(0)v(0) +

∫
I

u′(x)v′(x) dx.

Forming an orthonormal basis for the tangent space with respect to this metric is simple: Since
the basis functions should vanish at the boundary, the first term in the Palais metric will always
be zero. Thus we only need to find a set of functions that vanish at the boundaries of I, whose
derivatives are orthonormal with respect to the L2-metric. In [49, 50] such a basis is formed using
the trigonometric functions

v(1)
n (x) =

1√
2πn

sin(2πnx), v(2)
n (x) =

1√
2πn

(cos(2πnx)− 1) .

The presence of n in the denominator prevents large derivatives in the higher-order elements. Once
again we fix some N ∈ N representing the maximal frequency of the basis functions and form a
basis of 2N elements spanning a subspace

VP := span{v(1)
n , v(2)

n }Nn=1.

4.2.3 Step Size Bounds

After projection, we have an expression for the Riemannian gradient at the identity, and we want
to take a small step in its direction. Since both the reparametrization group and its tangent space
form subspaces of C∞(I,R), we may define a retraction map at the identity by

ρid : TidΓ ⊂ C∞(I,R)→ Γ, ρid(v) = id + v

with pointwise addition. Then a single step of a Riemannian gradient descent algorithm for Er,
starting at γ0 = id, is given by

γ1 = ρid(−η∇Er(id)) = id− η∇Er(id). (4.13)

22 4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

(a) Fourier Basis (b) Jacobi Polynomial Basis (c) Palais Basis

Figure 4.1: Example functions for each of the three bases from section 4.2.2.

However, if the step size η is too large, the positive derivative constraint on the reparametrization
group may be violated, causing us to step outside of Γ. To simplify notation, denote by v =
−∇Er(id)1. We want to find some η̄ > 0 such that for any η < η̄

γ′1(x) = 1 + ηv′(x) > 0 ∀x ∈ I. (4.14)

In any point x such that v′(x) ≥ 0, γ′1(x) is positive for any η > 0. If we assume that v 6≡ 0,
however, there exists some x ∈ I such that v′(x) < 0. To ensure that γ′1(x) is non-negative in such
a point, η must satisfy

1− η|v′(x)| ≥ 0 =⇒ η ≤ 1

|v′(x)|
=

1

−v′(x)
.

The upper bound η̄ is the smallest, postive step size which satisfies the above relation for every
x ∈ I. Thus for

η̄ =
−1

minx∈I v′(x)

we have 1 + η̄v(x) ≥ 0 ∀x ∈ I, and (4.14) is satisfied for every η < η̄.
The upper bound η̄ is formulated in terms of an optimization problem. We will be satisfied to

find a simple estimate η̃ for this minimum. Consider a set of linearly spaced points xi = i/K for
i = 0, ...,K on I. Denote by h = 1/K, and define intervals around each of the points by

Ii =

[
xi −

h

2
, xi +

h

2

]
.

Now assume that the minimizer x̄ = argminx∈Iv
′(x) is contained in Ik. Using that v′′(x̄) = 0 2,

then by Taylors formula with integral remainder,

v′(xk) = v′(x̄) +
1

2

∫ xk

x̄

v′′′(ξ)(x− ξ)2 dξ ≤ v′(x̄) +
h3

16
max
x∈I
|v′′′(ξ)|︸ ︷︷ ︸

=:ε

.

By reordering the elements in the above equation, and using that minx∈I v
′(x) < 0,

|v′(xk)− ε| ≤ |v′(x̄)| =⇒ η̃ :=
1

|mini=0,...,K v(xi)− ε|
≤ η̄ (4.15)

Thus η̃ gives a simple, practical upper bound for the step size η. However, for the purpose of the
gradient descent algorithm, we rarely want to take a single step that takes us all the way to the
boundary of Γ. Therefore we choose some relative step size α ∈ (0, 1), and use η = αη̃ as the
chosen step size in (4.13).

4.2.4 Gradient Descent Formulation

Putting the previous steps together, we sum up the gradient descent algorithm for finding an opti-
mal reparametrization by the pseudocode in Algorithm 1. After finding the optimal reparametriza-
tion γ̄, the final shape distance may thus be computed by

dS([c1], [c2]) = ‖Q(c1)−Q(c2 ◦ γ̄)‖L2(I,R2).

1The minus sign allow us to reuse the argument here in the deep reparametrization chapter.
2Here we have assumed that x̄ is an internal point of I. If this is not the case, the derived bound will still work,

since the endpoints are included in the gridpoints xi.

4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 23

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

Algorithm 1 Gradient Descent for Optimal Reparametrization of Curves

Require: q, r0 ∈ Q: q-maps of parametric curves.
Require: {vi}Ni=1: Orthonormal basis for V ⊂ TidΓ.

1: for n = 0, 1, 2, ... do B until convergence criterion is met
2: δErn ← rTn q

′ − qT r′n
3: ∇Ernid ← project(δErnid , {vi}Ni=1)
4: η ← step select(Ern ,−∇Ernid) B max step size by (4.15), and backtracking
5: γn+1 ← id− η∇Ernid

6: rn+1 ← φrn(γn)
7: end for
8: return γ0 ◦ γ1 ◦ ...

Now we want to show that the algorithm actually corresponds to a Riemannian gradient descent
algorithm for the original problem Er0 .

Theorem 1. Assume that 〈·, ·〉TidΓ is an inner product on the tangent space TidΓ, and denote by

Lγ : Γ→ Γ, Lγ(ϕ) = γ ◦ ϕ

the left composition by γ. Then Algorithm 1 is equivalent to a Riemannian gradient descent algo-
rithm with update rule

γ(n+1) = ργ(n)(−η∇Er0(γ(n))),

where ρ is a retraction which assigns to each γ ∈ Γ the map

ργ : TγΓ 7→ Γ, ργ(vγ) = γ ◦ (id + d (Lγ)
−1
id (vγ)),

and ∇Er0(γ) is the Riemannian gradient of Er0 with respect to the Riemannian metric defined by

〈u, v〉TγΓ =
〈
d(Lγ)−1

id u, d(Lγ)−1
id v

〉
TidΓ

.

Proof. Given q, r0 ∈ Q, Algorithm 1 corresponds to an iteration on the form on the form

γ(n+1) = γ(n) ◦ (id− η∇Ern(id)) (4.16)

where rn = φrn−1(γn) = φr0(γ(n)), and

Ern(γ) = ‖q − φrn(γ)‖2L2(I,R).

First we see that the orbit map on Q satisfies

φφ
r(γ)(ϕ) =

√
ϕ′
√
γ′ ◦ ϕ ((r ◦ γ) ◦ ϕ) =

√
(γ ◦ ϕ)′(r ◦ γ ◦ ϕ) = φr(γ ◦ ϕ) = (φr ◦ Lγ)(ϕ),

such that

Eφ
r(γ)(ϕ) = ‖q − φφ

r(γ)(ϕ)‖2L2(I,R2) = ‖q − φr(γ ◦ ϕ)‖2L2(I,R2) = Er(γ ◦ ϕ).

Thus the sequence of cost functions is related to the original problem by Ern(γ) = Er0(γ(n) ◦ γ).
Next, we relate the gradients ∇Ern(id), to the Riemannian gradient ∇Er0(γ) of the original

problem. To keep track of which tangent space a vector belongs to, we will use the notation
vγ ∈ TγΓ. Consider the derivative of the left multiplication

d(Lγ)ϕ : TϕΓ→ Tγ◦ϕΓ, d(Lγ)ϕ(vϕ) = (γ′ ◦ ϕ)vϕ

and its inverse

d(Lγ)−1
ϕ : Tγ◦ϕΓ→ TϕΓ, d(Lγ)−1

ϕ (vϕ) =
1

γ′ ◦ ϕ
vγ◦ϕ.

This gives for the derivative of the orbit map

dφφ
r(γ)
ϕ = dφrγ ◦ d(Lγ)ϕ ⇐⇒ dφrγ = dφφ

r(γ)
ϕ ◦ d(Lγ)−1

ϕ .

24 4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

Inserting this into the derivative for Er we get

dErγ(vγ) =
〈
q − φr(γ), dφrγ(vγ)

〉
L2(I,R)

=
〈
q − φφ

r(γ)(id), dφ
φr(γ)
id

(
d(Lγ)−1

id (vγ)
)〉

L2(I,R)

=
3 〈
∇Eφ

r(γ)(id), d(Lγ)−1
id vγ

〉
TidΓ

=
〈
d(Lγ)−1

id

(
d(Lγ)id

(
∇Eφ

r(γ)(id)
))

, d(Lγ)−1
id vγ

〉
TidΓ

=
〈
d(Lγ)id

(
∇Eφ

r(γ)(id)
)
, vγ

〉
TγΓ

.

Then by definition

∇Er(γ) = d(Lγ)id

(
∇Eφ

r(γ)(id)
)

= γ′ ∇Eφ
r(γ)(id).

Finally, to check that the map ρ is indeed a retraction, we write out

ργ(vγ) = γ ◦ (id + d(Lγ)−1
id (vγ)) = γ ◦

(
id +

1

γ′
vγ

)
,

and evaluate ργ at the zero-vector

ργ(0) = γ ◦ (id + 0) = γ ◦ id = γ.

Moreover, since the domain of the retraction map at a point is a vector space TγΓ, we may define
a curve on TγΓ passing through 0 with velocity uγ ∈ TγΓ by t 7→ tuγ . Then

d(ρ(γ))0(uγ) =
d

dt

∣∣∣∣
t=0

γ ◦
(

id +
t

γ′
uγ

)
= (γ′ ◦ id)

1

γ′
uγ = uγ

which means that d(ργ)0 = id|TγΓ, and ρ does indeed define a retraction map. Inserting all of this
into the update rule,

γ(n+1) = ργ(n)(−η∇Er(γ(n)))

= γ(n) ◦
(

id− η 1

(γ(n))′
(γ(n))′ ∇Eφ

r(γ(n))(id)

)
= γ(n) ◦

(
id− η∇Eφ

r(γ(n))(id)
)

= γ(n) ◦ (id− η∇Ern(id))

which corresponds to the update (4.16).

4.2.5 Implementation

The algorithm was implemented using the Julia language [11]. The language treats functions as
so-called first-class citizen, that may be passed as arguments, and returned as a value from other
functions. This allows us to implement the algorithm using actual functions rather than finite-
dimensional approximations, and makes the implementation as closely related to the described
algorithm as possible. It does, however, increase the computational cost, and as the length of the
chain of compositions increases, so does the computational cost of each iteration. We will see that
this is manageable for curves but will become a problem when we extend the algorithms to surfaces
in section 5.2. The source code for the implementation is available on GitHub4.

Backtracking

Since the computational cost increases with each iteration, we want to choose the step size in a
way that ensures sufficient progress with each reparametrization. For this purpose, we will use

3This comes from the original computation of the gradient at the identity in section 4.2.2
4https://github.com/jorgenriseth/Reparam.jl

4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 25

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

a backtracking line search algorithm, which ensures that the step satisfies the Armijo-Goldstein
condition [2], which in this case corresponds to

Ern(id− η∇Ern(id)) ≤ Ern(id)− ηc‖∇Ern(id)‖2L2(I,R) (4.17)

for some c ∈ (0, 1). To achieve this, we chose an initial step size η as described in 4.2.3. If the
Armijo-Goldstein condition is not satisfied, we scale down the step size by a factor ρ ∈ (0, 1) and
check again. This process is repeated until we find a step size which satisfies (4.17). If no such
step is found within a maximum number of iterations, we terminate the algorithm.5

Quadrature

Since the algorithm is implemented using functions, rather than finite-dimensional representations,
we need to approximate the integrals occurring in the function norms and inner products by a
quadrature rule. For this purpose, we use the Gauss-Legendre quadrature rule defined by∫ 1

0

f(x) dx ≈ 1

2

K∑
k=1

wkf(xk)

where wk are quadrature weights, and xk are the quadrature nodes, corresponding to affine trans-
formations of the roots of the Legendre polynomials. The nodes and weights were found using the
package FastGaussQuadrature.jl [59].

Automatic Differentiation

The Q-transform, orbit map φr, and the expression for the functional gradient, all contain the
derivatives of functions and curves. To compute derivatives, we use the ForwardDiff.jl package
for so-called forward-mode automatic differentiation. The package implements a multidimensional
version of a dual number, which in the one-dimensional case is defined by an element x+ εy whose
behaviour satisfies

f(x+ εy) = f(x) + f ′(x)ε

and ε2 = 0, when used as input for a function f . Most functions evaluated by a computer may
be broken down into simple functions whose derivatives are easily evaluated. By defining the
behaviour of these simple functions when applied to a dual number, we may retrieve the derivative
of the original function as the composition of these elementary operations. Due to Julia’s support
of multiple dispatch i.e., that the type of the input values determines a function’s behaviour,
then most user-defined code automatically works with dual numbers as well. For further details
regarding implementation and the extension to multiple dimensions, we refer to the paper [47] by
the authors of the package.

Termination

To check for convergence of the algorithm, we check if the relative change in the cost function

Er(γn)− Er(γn+1)

Er(γn)

is smaller than some tolerance. In addition, we stop the algorithm after a fixed number of iterations,
if the termination citerion is not met.

4.2.6 Numerical Results

This section presents numerical results from using the gradient descent algorithm. Firstly, we will
compare two curves representing the same shape, and see if we can reparametrize one curve to
match the other. Thereafter we will compare two curves representing different shapes for which
we have an analytical solution. The algorithm parameters were chosen heuristically as a set that
has shown to perform well for various curves and are listed in Table 4.1.

5Under sufficient regularity of the cost function, there is a theoretical guarantee to find a step size satisfying
the Armijo condition within a finite number of steps using exact arithmetic. However, due to approximation and
rounding errors, we also use a maximal number to ensure termination.

26 4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

Parameter Value
Relative Step Size α 0.1
Quadrature Points K 128
Backtracking Coefficient c 0.9
Backtracking Coefficient ρ 0.9
Relative Error Tolerance 10−6

Max Iterations 200

Table 4.1: List of parameters used in the gradient descent
algorithm for curves throughout this section.

Same Shape Comparison

In this section we compare two parametric curves representing the same shape. Start out by
defining the curve

c2(x) = [cos(2πx), sin(4πx)], (4.18)

and then reparametrize it by a function ψ to get another curve

c1(x) = (c2 ◦ ψ)(x)

from the same equivalence class. We will be using the diffeomorphism

ψ(x) =
log(20x+ 1)

2 log(21)
+

1 + tanh(20(x− 0.5))

4 tanh(10)
(4.19)

which will present a challenge for the algorithm. The two curves are illustrated in figure 4.2. The
dots along the curves represent linearly spaced points in the interval I = [0, 1].

(a) c2 (b) c1 = c2 ◦ ψ

Figure 4.2: Two curves representing the same shape. (left) The curve c2 (4.18). (right) The curve
c2 reparametrized by the diffeomorphism (4.19).

Now let q = Q(c1) = Q(c2 ◦ ψ) and r = Q(c2). The optimal reparametrization of r is of course
ψ, and by applying the gradient descent algorithm to these curves, the resulting diffeomorphism γ̄
should ideally be as close to ψ as possible. Moreover, since the shape distance should be zero, we
may use the cost function

Er(γ̄) = ‖q −
√
γ̄′(r ◦ γ̄)‖2L2(I)

as a measure of the error of the parametrization.
We start by testing the algorithm using the truncated Fourier sine basis, with only three

basis functions for the gradient projection. The results are presented in figures 4.3 and 4.4. The
algorithm comes a long way towards finding an optimal reparametrization, and significantly reduce
the estimated shape distance.

In figure 4.5, we compare the final error when using different types and number of basis func-
tions. In this case, all three basis functions seem to reach its best performance with as few as 3-4
basis elements, and the error increases for a larger number of elements. The performance of the
Palais basis seems to be more stable with respect to the number of basis functions used.

4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 27

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

(a) Before Reparametrization (b) After Reparametrization

Figure 4.3: Comparison of the 1st (top) and 2nd (bottom) coordinate of the two curves. The dashed
blue line represents c1, while the orange line represents c2 before and after reparametrization.

(a) Comparison of the true reparametrization
ψ and the one found by the reparametrization
algorithm.

(b) The cost function Er versus number of it-
erations. The initial error is 9.433, while the
final error is 0.5956. a reduction to 6.3% of the
original error.

Figure 4.4

The increase in the error when adding basis elements may be attributed to the fact that the
search space increases significantly by adding dimensions to the problem, which increases the
probability that the algorithm falls into a local minimum. For the Fourier and Jacobi bases, the
increased number of basis elements also reduce the allowed step size in the parametrization updates,
preventing convergence within a reasonable amount of time.

28 4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

Figure 4.5: The final error of the reparametrization algorithm when used to compare two curves
representing the same shape, versus the number of basis elements used in the gradient projection
step.

Different Shapes Comparison

In this section we test the performance of the algorithm when comparing curves representing
different shapes: A half-circle and a straight line. The examples are constructed such that we have
a known analytical solution to the problem. The two curves are given by

c1(x) =
1
3
√
π

[cos(πx), sin(πx)] , c2(x) =
[
0, 3
√

3x+ 1
]

(4.20)

with Q-maps
q(x) = [cos(πx), sin(πx)], r(x) = [0, 1].

(a) c1 (b) c2

Figure 4.6: The two curves defined in (4.20).

We refer to [60, Appendix A] regarding the derivation of the optimal solution, and will be
content to state that the optimal solution is given by

ψ(x) = x− sin(2πx)

2π
. (4.21)

As a measure of the error in the algorithm, we will use the difference between the true value of the
cost function E(ψ) and the error found by the algorithm,

∆Er(γ, ψ) = E(γ)− E(ψ).

For this example, the true shape distance is given by E(ψ) = 2 −
√

2 ≈ 0.58579. In figure 4.7 we
present the results of the algorithm using 5 Fourier basis functions in the projection step. In this
case, we see that the algorithm matches the true parametrization quite close, oscillating slightly
around the optimal solution.

4.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 29

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

(a) Comparison of the true reparametrization
ψ and the one found by the reparametrization
algorithm.

(b) The error ∆Er versus number of iterations.
The initial error is 0.141, while the final error
is 0.0146, a reduction to 10.3% of the original
error.

Figure 4.7

4.3 Deep Reparametrization of Curves

This section presents a novel gradient-based approach to optimal reparametrization of curves by
using ideas from deep learning. One big advantage of this approach is the ability to implement
the algorithm using neural network frameworks such as pytorch and tensorflow, which allow us
to easily produce fast and scalable code. Moreover, the diffeomorphism group is approximated by
a set of functions defined on a linear space, such that optimization algorithms on euclidean spaces
are made available.

The idea behind the algorithm is inspired by the previously discussed gradient descent approach.
In each iteration of the gradient descent algorithm, we use an orthogonal projection to find a set
of coefficients c and define a diffeomorphism

γn(x) = x+

N∑
i=1

civi(x).

where {vi}Ni=1 span some finite-dimensional approximation of the tangent space TidΓ. Once the
coefficients have been determined, they will remain fixed throughout the whole algorithm. For
the algorithm to proceed, we need to find a new weight vector, defining a new diffeomorphism,
which we compose with the previous estimate. Assuming that the algorithm terminates after L
iterations, the optimal parametrization is given as

γ̄ =

(
id +

N∑
n=1

c1nvn

)
◦ ... ◦

(
id +

N∑
n=1

cLnvn

)
.

This chain of compositions may become arbitrarily long, and the computational cost of evaluating
the functions increases with each iteration.

If we instead fix the number L of functions that we want to compose, and then consider the
weight vectors as coefficients to be optimized, we get a structure similar to the successful residual
neural networks [27]. In this setting, the task of finding an optimal reparametrization corresponds
to what is usually referred to as training the neural network.

We emphasize again that we do not attempt to generalize to unseen instances. The loss function
that we optimize is given in terms of two fixed curves (or rather their q-maps), and the input of
the network will be a fixed vector of points from the domain I = [0, 1], which will be used to
approximate the squared shape distance. Even though we use a fixed vector for the optimization
process, the network defines a diffeomorphism that accepts as input an arbitrary number of points,
from anywhere on the domain.

4.3.1 Problem Formulation

Given q, r ∈ Q, we want to find a minimizer to the function

E : Γ→ R, E(F) = ‖q −
√
F ′ (r ◦ F) ‖2L2(I,R2)

30 4.3. DEEP REPARAMETRIZATION OF CURVES

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

such that F ∈ Γ. We will search for functions on the form

F = FL ◦ FL−1 ◦ ... ◦ F1

for some L ∈ N, where each layer Fl is given on the form

Fl(x) = x+ fl(x), fl(x) =

N∑
n=1

clnvn(x),

for a set of basis function {vn}Nn=1 ⊂ TγΓ. We denote by C = {cl}Ll=1 ⊂ RN the collection of
weight vectors cl, and use the notation

F (x;C) = FL(x; cL) ◦ ... ◦ F1(x; c1)

to highlight the dependence of F and Fl on C and cl respectively. Our goal is to find a set of
vectors C, such that the function F (·, C) ∈ Γ minimizes the distance between q, r. To approximate
the shape distance, we take a vector x = (xk)Kk=1 ∈ IK of linearly spaced points on I, and compute
the mean squared error (MSE) between the q-maps sampled at these points. In other words we
want to minimize the function

E(C; x) =
1

K

K∑
k=1

∣∣∣q(xk)−
√
F ′(xk;C)r(F (xk;C))

∣∣∣2 .
under the constraints that F (0, C) = 0, F (1, C) = 1, and F ′(· : C) > 0. We will be solving the
problem using the BFGS algorithm, with a projection step in case the algorithm steps outside of
the feasible set6.

To uphold the derivative constraint, we require that the derivative F ′l of each layer Fl is positive.
If we denote by

F (l) = Fl ◦ Fl−1 ◦ ... ◦ F1

the composition of the first l layers, then by the chain rule(
F (l)

)′
=
(
Fl ◦ F (l−1)

)′
=
(
F ′l ◦ F (l−1)

)(
F (l−1)

)′
.

Continuing by induction, the derivative of F = F (L) satisfies

F ′ =

L∏
l=1

F ′l ◦ F (l−1)

where F 0 = id. Hence, the positivity of F ′ follows from the positivity of the derivative of each
layer.

Basis Functions

Contrasting the gradient descent algorithm, the basis functions are in this case not required to be
orthonormal. However, to ensure that the function F preserves the endpoints of I, we still want the
basis functions to be vanishing at the boundaries, such that each layer Fl preserves the endpoints as
well. In practice, we could easily have avoided this requirement by adding an affine transformation
at the end of the network, mapping the output back onto I. However, since there are no simple
extensions of this procedure to surfaces, we prefer boundary preserving basis functions.

For the numerical experiments in this thesis, we are reusing the Fourier and Palais basis func-
tions from 4.2.2, which have proven to work well. In the future, it would be interesting to adopt
the standard approach from deep learning of letting the network “learn its own basis functions”.
One possible way to achieve this, is by choosing

vn(x) = ζ(x)σ(wnx+ bn)

where σ is a so-called activation function such as tanh or the sigmoid function, and ζ is some
function satisfying ζ(0) = ζ(1) = 0, that ensures that the network is boundary preserving. wn and
bn represent coefficients to be optimized. This will increase the dimensionality of the optimization
problem, but will allow more flexibility in each layer.

6This is a makeshift solution which has performed well for the experiments in this thesis. A large scale application
of the reparametrization algorithm will probably gain from changing to a constrained optimization routine, or other
projected quasi-Newton algorithms with a better theoretical foundation.

4.3. DEEP REPARAMETRIZATION OF CURVES 31

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

4.3.2 Single-Layer Network

In this section, we will concern ourselves with a network consisting of a single layer, i.e. L = 1.
For simplicity, we will suppress the sub- and superscripts l denoting the layer number, as we only
have a single layer. Let xk ∈ I, and denote by

zk = F (xk; c) = xk +

N∑
n=1

cnvn(xk) =: xk + v(xk)T c,

yk = F ′(xk; c) = 1 +

N∑
n=1

cnv
′
n(xk) =: xk + u(xk)T c.

(4.22)

The cost function may then be expressed as

E(c; x, z,y) =
1

K

K∑
k=1

|q(xk)−√ykr(zk)|2 , subject to (4.22).

By a slight abuse of notation we will overload the use of F to allow vector inputs: Let F : IK → IK

be defined by

z = F (x) = x + V (x)c

y = F ′(x) = 1 + U(x)c

where V (x)kn = vn(xk) and U(x)kn = v′n(xk). The above expression shows that the diffeomor-
phism layers are affine transformations in the weights c (but not in x, as the basis functions are
nonlinear).

Figure 4.8: An illustration of how a single layer maps a point xk ∈ I to both zk = F (xk) and
yk = F ′(xk) simultaneously. The weights cn are shared between the two paths.

Invertibility Constraints

The positive derivative constraint on the layers in the network, is to ensure that the network is
invertible, as is required of a diffeomorphism. In [7] the authors enforces invertibility of residual
networks by ensuring that the Lipschitz constants of f are smaller than one. This is achieved
through a projection step at each iteration of training, as proposed in [24]. The projection step
entails restricting the norm of the weight vector ‖c‖p for p ∈ [1,∞] (typically p = 1, 2 or ∞) to be
lower than some threshold depending on the specific function.

32 4.3. DEEP REPARAMETRIZATION OF CURVES

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

Such a constraint is unnecessarily strict for the diffeomorphism group: While a Lipschitz con-
stant smaller than one does indeed ensure that the derivatives of F are strictly positive, they also
impose an upper bound of F ′(x) < 2. No such upper bound exist for the diffeomorphism group.
In figure 4.9, we have visualized the feasible sets under such constraints, as opposed to the actual
feasible set, when using a Fourier sine basis with N = 2.

Figure 4.9: Feasible sets under various constraints ensuring that the derivative of Fl stays positive
for N = 2, with vn(x) = sin(πnx). The outermost shape corresponds to the actual sets of vectors
c ∈ R2 for which F ′l (x) > 0 for all x ∈ I. The square, circle and diamond corresponds to Lipschitz
constraints on the norm of c for p = 1, p = 2 and p =∞ respectively.

To avoid imposing unnecessarily strict constraints on the weight vectors, we make use of the
linearity of f with respect to c. Assume that for the current weight vector c, there exist some
x ∈ I such that

y = F ′(x; c) = 1 + f ′(x; c) = 1 + u(x)T c ≤ 0

We want to scale down the vector c by a constant k ∈ (0, 1) such that kc is a feasible weight vector,
i.e.

F ′(x; kc) = 1 + f ′(x, kc) = 1 + kf ′(x, c) > 0.

This corresponds to the problem of finding a step size bound discussed in section 4.2.3, and we
may reuse the expression (4.15) to find k. Let (xi)

K
i=0 be a grid of points on I, and denote by

ymin = mini=0,...K F
′(xi). Using the relation −f ′(x; c) = 1− y, then

k =
−1

mini=1,...,K f ′(xk; c)− ε
=

1

1− (ymin − ε)
=⇒ F ′(x; kc) ≥ 0

where ε is an error term depending on the basis functions vi and c. It is possible to find a tight
bound for ε, but as we want F ′ to be strictly positive, we will in practice add a small constant
to this bound. This constant will also work as a numeric stabilizer that might be necessary when
evaluating the gradient, as we will see in section 4.3.4.

This projection onto the feasible set should be performed after each update of the weight vectors.
Of course it should only be done if c is outside of the feasible set (or rather our approximation of
the feasible set), which correspond to the condition ymin ≥ ε. In general the projection may be
written as

π(c, ymin) =
1

1−min{0, ymin − ε}
c. (4.23)

such that no scaling occurs if c is feasible.

4.3.3 Multilayer Network

Extending the concepts from the single-layer network to a multilayer network is simple. Since
all layers in the multilayer network are assumed to have the same structure as the single layer

4.3. DEEP REPARAMETRIZATION OF CURVES 33

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

network, the notation and constraints provided in the previous sections easily lends themselves to
the multilayer case. Let xk ∈ I, and set z0

k = xk and y0
k = 1. Then we denote by

zlk = F (l)(xk) = Fl(z
l−1
k) = zl−1

k + v(zl−1
k)T cl

ylk =
(
F (l)

)′
(xk) = F ′l (z

l−1
k)

(
F (l−1)

)′
(xk) =

(
1 + u(zl−1

k)T cl
)
yl−1
k

(4.24)

for l = 1, ..., L, or in vector notation:

zl = zl−1 + V (zl−1)cl

yl =
(
1 + U(zl−1)cl

)
� yl−1.

Here � denotes the Hadamard (entrywise) product. The loss function will be on the same form as
in the single-layer case, but with the output of the last layer as its inputs

E(C; x, zL,yL) =
1

2

K∑
k=1

wk

(
q(xk)−

√
yLk r(z

L
k)

)2

, subject to (4.24)

Figure 4.10: Illustration of the information flow through a multilayer reparametrization network.
The upper path corresponds to the diffeomorphism itself, while the lower path corresponds to the
derivative of the diffeomorphism.

To ensure the derivative of the network is positive, we apply to each layer the same procedure
as we did in the single-layer: Choose a grid x ∈ IK , evaluate yl = Fl(x; cl), and scale the weight
vector cl according to (4.23). Pseudocode for the projected gradient method to be used while
training a network with multiple layers is provided in Algorithm 2.

Algorithm 2 Optimization of weight vectors in a multilayer network for reparametrization of
curves, with intermediate projection.

Require: C0 = {cl0}Ll=1 ⊂ RN : Initial weights.
Require: x = (xk)Kk=1 ∈ IK : Vector of points on I.

1: C ← C0

2: while c not converged do
3: z← F (x;C)
4: y← F ′(x;C)
5: g ← ∇CE(C; x, z,y)
6: Ĉ ← update(C, g)
7: for l = 1 to L do
8: cl ← π(ĉl, ylmin)
9: end for

10: end while
11: return C

34 4.3. DEEP REPARAMETRIZATION OF CURVES

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

4.3.4 Weight Optimization

Optimizing the weights in a neural network is usually done by an iterative line search method,
where the weights are updated according to

clt+1 = clt + ηpt

where η > 0 is the step size, and pt is the search direction, typically related to the gradient of the
cost function. For example the gradient descent algorithm corresponds to pt = −∇clE, and in
various momentum algorithms (see e.g. [56]) the search direction is chosen as pt = −∇clE + αvt,
for some constant α ∈ (0, 1), and vt a vector depending on previous search directions pτ for τ < t.

Due to the stochasticity that is usually present in deep learning, second-order optimization algo-
rithms such as Newton’s method or other Quasi-newton algorithms are not often used. However,
since we are dealing with a deterministic problem, we may use the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm. The BFGS algorithm is a Quasi-Newton line-search method. The
search direction pt at stage t of the algorithm, is the solution to the problem

Btpt = −∇clE(clt),

where Bt is an approximation of the Hessian of the objective function. The Hessian approximation
is constructed such that it satisfies

Bt+1(clt+1 − clt) = ∇clE(clt+1)−∇clE(clt).

We refer to e.g. [43, 22] for further details on the Hessian approximation Bt, but note that it
requires the computation of the gradient of E at each iteration.

To compute the gradient of the E with respect to the weights, we make use of a reverse-
mode automatic differentiation algorithm called back-propagation. Back-propagation differs from
forward-mode automatic differentiation (AD) which was discussed in section 4.2.5. Both algorithms
break larger function down into smaller elementary operations for which its easy to compute the
derivative, and then use the chain rule to compute the derivative of the function as a whole. How-
ever, the derivatives in forward-mode AD is computed simultaneously as the function is evaluated,
while the back-propagation algorithm works in two steps: First it takes a forward pass, where
the cost function is evaluated. During the forward pass, the AD software builds a computational
graphs, keeping track of all operations applied to the input data. Then back-propagation computes
gradients of the cost function with respect to each of the weight vectors, by applying the chain
rule in the reverse direction of the computational graph.

For the reparametrization network, the gradients are computed according to the relations

∇clE =

K∑
k=1

∂E

∂zlk
∇clz

l
k +

∂E

∂ylk
∇cly

l
k =

K∑
k=1

∂E

∂zlk
v(xk) +

∂E

∂ylk
u(xk)

∂E

∂zlk
=

∂E

∂zl+1
k

∂zl+1
k k

∂zlk
=

∂E

∂zl+1
k

Fl+1(zlk)

∂E

∂ylk
=

∂E

∂yl+1
k

∂yl+1

∂ylk
+

∂E

∂zl+1
k

∂zl+1
k

∂ylk
=

∂E

∂yl+1
k

F ′′l+1(zlk) +
∂E

∂zl+1
k

F ′l+1(zlk)

∂E

∂zLk
= − 2

K

(
q(xk)−

√
yLk r(z

L
k)

)T
r′(zLk)

∂E

∂yLk
= − 1

K

(
q(xk)−

√
yLk r(z

L
k)

)T
r(zLk)√
yLk

.

(4.25)

Hence by first computing the derivatives of the loss function with respect to the elements of the
output vectors yL and zL of the network, then the above relations allow us to recursively compute
the gradients with respect to each of the weight vectors cl.

We have implemented the network using the PyTorch-library[46] for Python, which takes care
of the computation of gradients, and updates the weight vectors . The source code for our imple-
mentation is available on GitHub.7

7https://github.com/jorgenriseth/deepshape

4.3. DEEP REPARAMETRIZATION OF CURVES 35

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

From the last expression of (4.25), we see that the gradients of the cost function includes a

division by
√
yLk . Since the yLk is meant to represent the derivative of a diffeomorphism at a point,

we ideally want to allow it to be arbitrarily close to zero. This means that the gradients are not
Lipschitz continuous, which may cause problems for the convergence of the algorithm. However,
by letting the “buffer” ε in the projection step be sufficiently large, the derivative yLk should never
be so small that it causes a problem in practice.

Imposing such a limit is not ideal. To ensure the robustness of the algorithm, further investiga-
tion should be put into possible alterations to either the optimization algorithm, or to the problem
formulation, to avoid this degeneracy.

4.3.5 Numerical Results

In this section, we present numerical results using the deep reparametrization algorithm. We will
be using the same examples as those presented in section 4.2.6, such that we may easily compare
the two algorithms.

Same Shape Comparison

We start out by comparing the two curves c2 and c1 = c2 ◦ ψ with c2 and ψ given in (4.18)
and (4.19) respectively. In figure 4.11 and 4.12 we present the results of the reparametrization
using a network with 5 layers, each with 5 Fourier basis functions. The results show that the

0.0 0.2 0.4 0.6 0.8 1.0
1

0

1

0.0 0.2 0.4 0.6 0.8 1.0
1

0

1

(a) Before reparametrization.

0.0 0.2 0.4 0.6 0.8 1.0
1

0

1

0.0 0.2 0.4 0.6 0.8 1.0
1

0

1

(b) After reparametrization.

Figure 4.11: Comparison of the 1st (top) and 2nd (bottom) coordinate of the two curves defined
by (4.18) and (4.19). The dashed blue line represents c1, while the orange line represents c2 before
and after reparametrization.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Found
Analytic

(a) Comparison of the true reparametrization
ψ and the one found by the reparametrization
algorithm.

0 20 40 60 80 100 120 140 160
Iteration

10 3

10 2

10 1

100

101

Er
ro

r

(b) The cost function Er versus number of iter-
ations. The initial error is 9.44, while the final
error is 0.000175, a reduction to 0.0019% of the
original error.

Figure 4.12

36 4.3. DEEP REPARAMETRIZATION OF CURVES

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

deep reparametrization algorithm does a very good job of finding the optimal reparametrization.
Both the resulting diffeomorphism, and coordinate functions are visually indistinguishable after
reparametrization. In figure 4.13 we compare the performance of the algorithm for a varying
number of layers and basis functions. Similarly as for the gradient descent algorithm, the error
may increase when adding Fourier basis functions. However, when using Palais basis functions, the
performance only seems to improve by adding more. A plausible explanation for this behaviour
is that the constraints for the Fourier basis is poorly scaled. Since the derivatives of higher order
basis elements have large derivatives, the size of the feasible set in some directions is smaller than
in others. This makes it difficult to find a learning rate/step size which works well for the given
problem. This is not the case for the Palais basis functions.

On the other hand, increasing the depth (i.e. the number of layers) of the network seems to
improve the reparametrization for both bases. It is, however, still desirable to keep the number of
layers low, as it lowers the dimensionality of the problem.

2 4 6 8 10
Layers

10 4

10 3

10 2

10 1

100

Fi
na

l E
rro

r

Fourier
Palais

(a) Error vs. layers.

2 4 6 8 10
Basis Functions

10 4

10 3

10 2

10 1

100

101

Fi
na

l E
rro

r

Fourier
Palais

(b) Error vs. basis functions per layer.

Figure 4.13: The final error of the deep reparametrization algorithm when comparing two curves
representing different shapes, versus (left) the number of layers in the network and a fixed number
of 5 basis functions per layer, and (right) number of basis functions per layer with a fixed number
of 5 layers.

Different Shape Comparison

Applied to the half-circle and line defined in (4.20), the algorithm once again performs very well,
and the diffeomorphism found by the algorithm is visually indistinguishable from the optimal
solution.

When comparing the performance of the algorithm for a varying number of basis functions
(figure 4.14b), there seems to be little to gain from using more than two basis functions. However,
upon inspecting the optimal solution 4.21, this has a simple explanation: The optimal solution
may be represented exactly by a single-layer network with only two basis functions. Hence by
setting all other weights close to zero, the network finds a good approximation to the optimal
reparametrization.

4.3. DEEP REPARAMETRIZATION OF CURVES 37

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Found
Analytic

(a) Comparison of the true reparametrization
ψ and the one found by the reparametrization
algorithm.

0 10 20 30 40 50 60 70
Iteration

10 3

10 2

10 1

Er
ro

r

(b) The error ∆E versus number of iterations.
The initial error is 0.142, while the final error is
6.3×10−4, a reduction to 0.0044% of the original
error.

Figure 4.14

2 4 6 8 10
Layers

10 3

6 × 10 4

2 × 10 3

3 × 10 3

Fi
na

l E
rro

r

Fourier
Palais

(a) Error vs. layers.

2 4 6 8 10
Basis Functions

10 3

10 2

10 1

Fi
na

l E
rro

r

Fourier
Palais

(b) Error vs. Basis Functions

Figure 4.15: The final error of the deep reparametrization algorithm when comparing two curves
representing the different shape, versus (left) the number of layers in the network and a fixed
number of 5 basis functions per layer, and (right) number of basis functions per layer with a fixed
number of 5 layers.

4.4 Summary

Throughout this chapter we have presented two gradient based algorithms for finding optimal
reparametrizations of curves, and tested their performance on two test examples. To compare
their performance we will be using two metrics:

‖ψ − γ̄‖∞ ≈ max
i,j=1,...,256

|ψ(xi, xj)− γ̄(xi, xj)|, ∆E(γ̄, ψ) = E(γ̄)− E(ψ), (4.26)

where ψ denotes the true optimal reparametrization, γ̄ denotes the reparametrization found by
the algorithms, and the points xi are sampled on an equidistant grid on I. The results are taken
from the examples in section 4.2.6 and 4.3.5. While the parameter settings (e.g. type and number
of basis functions) may be adjusted for both the algorithms to improve the performance, the given
settings performed reasonably well compared to alternative parameter settings.

It should be noted that while the cost function E for the two algorithms are approximations
of the squared shape distance, the approximation differs in the two algorithms, so one should be
careful when using ∆E to compare the algorithms. However, the difference between the final results
is sufficiently large, that we allow ourselves to make a conclusion based on them. The results are
summarized in table 4.2.

For the given test examples, the gradient descent algorithm typically needed between 1 to 10
seconds until termination, while the deep reparametrization algorithm terminated in less than
1 second, i.e. about one order of magnitude faster8. However, since the algorithms are imple-
mented using two different languages, we are careful to put too much emphasis on the speed of

8Timings are taken with an Intel® Core� i7-10875H CPU @ 2.30GHz Ö 16

38 4.4. SUMMARY

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

Algorithm Test Case ‖ψ − γ̄‖∞ ∆E(γ̄, ψ)
Gradient Descent Same Shape 2.4× 10−2 5.9× 10−1

Deep Reparametrization Same Shape 6.0× 10−4 1.7× 10−4

Gradient Descent Different Shapes 2.1× 10−2 1.0× 10−1

Deep Reparametrization Different Shapes 3.7× 10−3 6.3× 10−4

Table 4.2: Comparison of the results achieved by the two algorithms for the two test
cases described in previous sections.

the algorithms. Even though Julia should be a high-performance language in terms of speed, the
pytorch-library is a highly optimized framework used both by researchers and industry, and is
likely to be faster than our implementation of the gradient descent algorithm.

Based on the two test examples, the deep reparametrization algorithm far outperforms the
gradient descent algorithm for optimal reparametrization of curves.

4.4. SUMMARY 39

CHAPTER 4. OPTIMAL REPARAMETRIZATION OF PARAMETRIC CURVES

40 4.4. SUMMARY

Chapter 5

Optimal Reparametrization of
Parametric Surfaces

5.1 Shapes of Parametric Surfaces

We will consider parametric surfaces embedded in R3, represented by immersions defined on the
unit square M = [0, 1]2,

F = {f : C∞(M,R) | |fx × fy| > 0} . (5.1)

Here fx, fy denote the partial derivatives of f . The reparametrization group on F is the group
of orientation preserving diffeomorphisms, which consists of smooth invertible maps from M onto
itself, such that the Jacobian determinant Jγ is positive,

Γ = {γ ∈ C∞(M,M) | Jγ > 0, γ(0, y) = γ(x, 0) = 0, γ(1, y) = γ(x, 1) = 1}

The tangent space TγΓ consists of smooth boundary preserving vector fields on M ,

TγΓ =
{
γ ∈ C∞(M,R2)

∣∣ v|∂M · ν = 0, v smooth
}

(5.2)

where ν denotes the outwards normal vector along the boundary of M (see e.g. [38]). Writing out
the set condition explicitly gives for v ∈ TγΓ

v1(0, y) = v1(1, y) = v2(x, 0) = v2(x, 1) = 0.

Once again, the reparametrization group Γ acts on F from the right by composition;

(·, ·) : F × Γ, (c, γ) 7→ c ◦ γ.

Remark. For a function γ ∈ C∞(M,M) to have a positive Jacobian determinant in a point, then
the eigenvalues of the Jacobian matrix is either both positive, or both negative. However since
we are working with boundary preserving functions on a manifold with corners, the eigenvalues of
Dγ(x∗) are both 1 (i.e. positive) in any cornerpoint x∗. Since Dγ varies smoothly over M this
means that the eigenvalues of the Jacobian matrix for any γ ∈ Γ must be positive everywhere in
M .

5.1.1 Shape Space

The construction of shape space for surfaces is completely analogue to the case for curves: We
define an equivalence relation on F by

f1 ∼ f2 ⇐⇒ f1 = f2 ◦ γ for some γ ∈ Γ,

and define shape space as the quotient space

S = F/Γ,

where each equivalence class [f] represents the shape of a surface. To define a shape space metric,
we require a reparametrization invariant distance function dF on the underlying space of parametric
surfaces, and define the shape distance by

dS([f1], [f2]) = inf
γ∈Γ

dF (f1, f2 ◦ γ). (5.3)

41

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

5.1.2 The Q-transform for Surfaces

The Q-transform for surfaces serves to transform parametric surfaces into a representation that
is reparametrization invariant under the L2-metric. We will be using the same name for the
Q-transform for curves and surfaces, as the distinction should be clear from the context.

Definition 5.1.1. Define the Q-transform as the map

Q : F → C∞(M,R3), f(·) 7→
√
af (·)f(·)

where
af (x) = |fx(x)× fy(x)|

is the area scaling factor of the surface. We say that for any f ∈ C, the surface q = Q(f) is the
q-map or q-representation of f , and we define the set of q-maps as

Q := Q(C) = {q ∈ C∞(M,R3) | q = Q(c) for some c ∈ C}.

The q-map of a surface after reparametrization satisfies the relation

Q(f ◦ γ) =
√
Jγ(Q(f) ◦ γ).

See e.g. [34] for details regarding the derivation of this property. Now, we define the underlying
shape distance by

dF (f1, f2) = ‖Q(f1)−Q(f2)‖L2(M,R3)

which satisfies the reparametrization invariance property by

dF (f1 ◦ γ, f2 ◦ γ) = ‖Q(f1 ◦ γ)−Q(f2 ◦ γ)‖L2(M,R3)

=

∫
M

∣∣∣∣√Jγ(x)Q(f1)(γ(x))−
√
Jγ(x)Q(f2)(γ(x))

∣∣∣∣2 dx

=

∫
M

Jγ(x)|Q(f1)(s)−Q(f2)(s)|2
(
Jγ(x)−1 ds

)
=

∫
M

|Q(f1)(s)−Q(f2)(s)|2 ds

= dF (f1, f2)

We define a right action of the reparametrization group on the set of q-maps, by

Q× Γ→ Q, (q, γ) 7→
√
Jγ(q ◦ γ)

and the orbit of any q ∈ Q by

[q] = {r ∈ Q | r = Jγ(q ◦ γ) for some γ ∈ Γ}.

Finally, for a given r ∈ Q we define the orbit map

φr : Γ→ [r], φr(γ) =
√
Jγ(r ◦ γ).

5.2 Gradient Descent on the Reparametrization Group

This section describes the Riemannian gradient descent for optimal reparametrization of surfaces.
It is very similar to the gradient descent algorithm for curves, and many of the expressions involved
are natural higher-dimensional extensions of the expressions found in section 4.2. The two main
challenges when extending the algorithm to surfaces, lies in the nature of the tangent space TidΓ
and in finding a step-size bound.

Assume that we are given two surfaces f1, f2 ∈ F , and we want to compute their shape distance.
Denote by q = Q(f1), r0 = Q(f2) the q-maps of the curves, and define for any r ∈ [r0] the cost
function

Er : Γ→ R, Er(γ) = ‖q − φr(γ)‖2L2(M,R3)

42 5.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

We want to find a minimizer for the squared shape distance Er0 by iteratively reparametrizing r0

according to

rn+1 = φrn(γn) =
√
Jγn(rn ◦ γn), n = 0, 1, 2, ...,

by a sequence of diffeomorphisms

γn = id− ηn∇Ern(id).

Here ηn > 0 is the step size in each iteration, and ∇Ern(id) is the Riemannian gradient of Ern at
the identity.

5.2.1 Computing The Gradient of Er

Let

F : C∞(M,R3)→ R, F (s) = ‖q − s‖2L2(M,R3)

with directional derivative

dFs : C∞(M,R3)→ R, dFs(v) = −2〈q − s, v〉L2(M,R3).

Then Er = F ◦ φr and dErγ(v) = dFφr(γ)

(
dφrγ(v)

)
. The orbit map φr has three components

[φr
1

, φr
2

, φr
3

]T , so that we may differentiate each component separately. We denote by Df the
Jacobian matrix of any function f . Let v ∈ TidΓ, and assume that α : (−ε, ε) → Γ is some curve
such that α(0) = id and α′(0) = v. Then

dφr
j

id (v) =
d

dt

∣∣∣∣
t=0

φr
j

(α(t)) =
d

dt

∣∣∣∣
t=0

(√
Jα(t)(r

j ◦ α(t))
)

=

(
1

2
√
Jα(0)

(
d

dt

∣∣∣∣
t=0

Jα(t)

)
(rj ◦ α(0)) +

√
Jα(0)(∇rj ◦ α(0))Tα′(0)

)

=

(
1

2
√
Jid

(
d

dt

∣∣∣∣
t=0

Jα(t)

)
(rj ◦ id) +

√
Jid(∇rj ◦ id)T v

)
=

1

2
div(v)rj + (∇rj)T v,

where we used that

d

dt

∣∣∣∣
t=0

Jα(t) =
d

dt

∣∣∣∣
t=0

det(Dα(t)) = d(det)Did([Did]︸ ︷︷ ︸
=I

Dv)

= d(det)I(Dv) = tr(Dv) = div(v).

Putting the components together as a vector, gives the expression

dφrid =
1

2
div(v)r + (Dr)v.

To help us derive an expression for the Riemannian gradient of Er, we will require the adjoint of
the divergence operator. Assuming ϕ ∈ C∞(M,R) and v ∈ Tid(Γ), then integration by parts gives

〈ϕ, div(v)〉L2(M,R) =

∫
M

div(v)ϕ dx =

∫
∂M

ϕv · ν ds︸ ︷︷ ︸
=0 since v·ν=0

−
∫
M

∇ϕ · v dx = 〈−∇ϕ, v〉L2(M,R2).

5.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 43

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

Inserting this into the differential of Er gives

dEid(v) = −2〈q − r, dφrid(v)〉L2(M,R3) = −2

3∑
j=1

〈q − r, dφr
j

id (v)〉L2(M,R2)

= −2

 3∑
j=1

〈
1

2
(qj − rj)rj , div(v)

〉
L2(M,R2)

+ 〈(qj − rj)∇rj , v〉L2(M,R2)

= −2

 3∑
j=1

〈
−∇

(
1

2
(qj − rj)rj

)
, v

〉
L2(M.R2)

+ 〈(qj − rj)∇rj , v〉L2(M,R2)

=

〈
3∑
j=1

(rj∇qj − qj∇rj), v

〉
L2(M,R2)

=
〈
(Dq)T r − (Dr)T q, v

〉
L2(M,R2)

Hence we define the functional gradient

δErid = (Dq)T r − (Dr)T q

Similarly as for curves, the functional gradient is generally not boundary preserving and needs to
be projected onto the tangent space TidΓ.

5.2.2 Gradient Projection

The tangent space of the diffeomorphism group on M consists of smooth vector fields such that the
vectors along the boundary ∂M are purely tangential. We will construct the basis component-wise,
as tensor products of Fourier series.

We start by finding a basis B1 for the space

{v ∈ C∞(M,R) | v(0, y) = v(1, y) = 0}

of functions on M that vanish at the boundaries in the x-direction. We will form a basis consisting
of three families of functions:

ξk(x, y) =
√

2 sin(πkx)

ηk,l(x, y) = 2 sin(πkx) cos(2πly)

ϕk,l(x, y) = 2 sin(πkx) sin(2πly),

(5.4)

and define B1 := {ξk}∞k=1 ∪ {ηk,l}∞k,l=1 ∪ {ϕk,l}∞k,l=1.

For any vn ∈ B1, define the function ṽn(x, y) = vn(y, x), such that ṽn is a smooth function that
vanish on the boundaries in the y-direction. Denote by B2 := {ξ̃k}∞k=1 ∪ {η̃k}∞k,l=1 ∪ {ϕ̃k}∞k,l=1. A
full basis for TγΓ is then given by

B =

{[
vn
0

]
,

[
0
ṽn

] ∣∣∣∣ vn ∈ B1, ṽn ∈ B2

}
(5.5)

Finally, choosing some N ∈ N representing the maximal frequency of the basis functions, we form
a basis for a subspace V ⊂ TγΓ by truncating the bases

B1
N = {ξk}Nk=1 ∪ {ηk,l}Nk,l=1 ∪ {ϕk,l}Nk,l=1 ⊂ B1

B2
N = {ξ̃k}Nk=1 ∪ {η̃k,l}Nk,l=1 ∪ {ϕ̃k,l}Nk,l=1 ⊂ B2

and define the basis BN similarly as in (5.5). The total number of basis functions in BN is
2(2N2 +N), which means that there is a significant computational cost to increasing the number
of basis functions used in the algorithm.

44 5.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

(a) ξ1 (b) ϕ1,1 (c) η̃1,1 (d) η̃1,3

Figure 5.1: Four examples of basis elements of Tid(Γ).

5.2.3 Step Size Bounds

After computing the Riemannian gradient ∇Er(id), we define a new diffeomorphism by taking a
step

γ = id− η∇Er(id).

To ensure that γ is a diffeomorphism, we require that the step size η is sufficiently small such
that the Jacobian determinant Jγ is positive. To find an upper bound for the allowed step size,
fix a point x ∈ M , and denote by A(x) = D(∇Er(id))(x) the Jacobian matrix of the vector field
∇Er(id) at x. The Jacobian determinant Jγ satisfies

Jγ(x) = det(Dγ(x)) = det(I − ηA(x)) = 1− η trace(A(x)) + η2 det(A(x)) =: Px(η)

which is a quadratic polynomial in η, intersecting the y-axis at 1. Depending on A(x), this
polynomial has zero, one, or two roots. The upper bound for η corresponds to the smallest
positive root. If no positive roots exists then Jγ(x) > 0 for all η > 0. To determine the smallest
positive root η, denote by a = det(A(x)), b = −trace(A(x)),1 and consider the following cases:

1. a < 0: If a < 0, then Px(η) will always have one positive and one negative root. Since a is
negative, the positive root is given by

η =
−b−

√
b2 − 4a

2a
.

2. a > 0: In this case we might have 0, 1 or two valid roots. If b > 0, then any real root will
be negative. If b < 0 and b2 − 4a < 0 =⇒ b > −

√
4a, Px(η) has no real roots. Finally, for

b ≥ −
√

4a there are two positive roots (or one with multiplicity 2 if the equality holds). We
are interested in the smallest of the two roots,

η =
−b−

√
b2 − 4a

2a
.

which coincides with the formula in case 1.

3. a = 0 : In the case a = 0, Px(η) is reduced to a linear function which will have a positive
root if and only if b < 0. In this case the root is given as

η = −1

b
.

Of course, a will rarely be exactly 0. However, for a ≈ 0 the quadratic formula may become
numerically unstable. Hence for |a| sufficiently small, we will use the linear approximation
to determine the bound.

The different cases are illustrated in figure 5.2.

1By choosing b to be negative, then the analysis presented here translates to a similar argument for the projection
step required for deep reparametrization of surfaces

5.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 45

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

1

Px()
b > 0
b < 0

(a) Case 1: det(A) < 0.

1

Px()
b > 0
0 > b > 4a

4a > b

(b) Case 2: det(A) > 0

1

Px()
b < 0
b > 0

(c) Case 3: det(A) ≈ 0

Figure 5.2: Different cases to consider when determining the smallest positive root of Px(η),
determining the largest possible step size η allowed in the parametrization updates.

We sum up the different cases by the operator εδ defined as

εδ(a, b) =

−1/b |a| < δ and b < 0
−b−

√
b2−4a

2a (a < −δ) or
(
a > δ and b < −

√
4a
)

∞ otherwise

(5.6)

where δ is chosen as a small positive constant. εδ may be used to find an upper bound for the
allowed step size, such that Jγ(x) remains positive for a fixed x ∈ M . To ensure that this holds
everywhere, we therefore require

η < η̄ = min
x∈K

εδ(det(A(x)), trace(A(x))).

To find an approximation of the above upper bound, consider a set of points X = {xi}Ki=1 from a
tight grid on M , define

η̃ = min
i=1,...,K

εδ(det(A(xi)), trace(A(xi))),

and then choose η = αη̃ for some relative step size α ∈ (0, 1). It is important to note that η̃ is
just a rough approximation of η̄, and by choosing α too close to 1, the step size may be too large.
However, for the purposes of the numerical examples in this thesis, we will be satisfied to choose
α heuristically.

5.2.4 Summary and Implementation

We sum up the algorithm by the pseudocode in Algorithm 3. To show that this algorithm actually
corresponds to a Riemannian gradient descent algorithm, the argument from Theorem 1 for curves,
translates almost one-to-one to the case for surfaces. The only difference lies in the definition of
differential of the left multiplication by γ,

d (Lγ)ϕ : TϕΓ→ Tγ◦ϕΓ, d (Lγ)ϕ (vϕ) = (Dγ ◦ ϕ)vϕ

and its inverse

d (Lγ)
−1
ϕ : Tγ◦ϕΓ→ TϕΓ, d (Lγ)ϕ (vϕ) = (Dγ ◦ ϕ)−1vϕ.

Otherwise, the definitions of the retraction map and Riemannian metric translates directly to work
for surfaces.

Implementation The implementation of the gradient descent algorithm for reparametrization of
surfaces is also completely analogue to the algorithm for reparametrization of curves. We therefore
refer to section 4.2.5 for details regarding the implementation. We do, however, note that the
Gauss-Legendre quadrature is extended to the two-dimensional case, by∫ 1

0

∫ 1

0

f(x, y) dx dy ≈
∫ 1

0

1

2

n∑
i=1

wif(xi, y) dy ≈ 1

4

n∑
i=1

n∑
j

wiwjf(xi, xj).

46 5.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

Algorithm 3 Gradient Descent for Optimal Reparametrization of Surfaces

Require: q, r ∈ Q: q-maps of parametric surfaces.
Require: BN : Orthonormal basis for TidΓ.

1: r0 = r
2: for n = 0, 1, 2, ... do B until convergence criterion is met
3: δErn ← (Drn)T q − (Dq)T rn
4: ∇Ernid ← project(δErnid , BN)
5: η ← step select(Ern ,∇Ernid)
6: γn ← id− η∇Ernid

7: rn+1 ← φrn(γn)
8: end for
9: return γ0 ◦ γ1 ◦ ...

5.2.5 Numerical Results

In this section, we present numerical results of Algorithm 3. Since we do not have available
two different shapes for which we have a known optimal reparametrization, we will only consider
surfaces representing the same shapes.

Before presenting the results, we note that the computational cost for the gradient descent
algorithm for surfaces is significantly larger than for curves. For one, the number of basis functions
increases by 2(2N2 + N), where N is the maximal frequency of the basis functions. For N = 1
this corresponds to 6 basis functions and for N = 2 we get 20 basis functions. In addition, the
computation of double integrals using Gauss-Legendre quadrature with K quadrature nodes per
dimension requires O(K2) evaluations. Already at N = 2, the computational cost is so large that it
may pose a problem in large scale applications such as clustering tasks. Therefore, in the numerical
experiments presented here, we have chosen N to be low. In the first experiment, the algorithm
performed best with N = 1, and in the second we have used N = 2.

Rotation Diffeomorphism

Define the surface f2 by
f2(x, y) = [x, y, x2 − y2]T , (5.7)

and f1 = f2 ◦ ψ, for

ψ(x, y) =

[
(x− 0.5) cos (θ(x, y))− (y − 0.5) sin (θ(x, y)) + 0.5
(x− 0.5) sin (θ(x, y)) + (y − 0.5) cos (θ(x, y)) + 0.5

]
, (5.8)

θ(x, y) =
π

2
sin(πx) sin(πy).

By applying the reparametrization algorithm to f2, we want to find a diffeomorphism γ̄ as close
to ψ as possible. Since the correct shape distance for these two surfaces is zero, we use

Er(γ̄) = ‖q −
√
Jγ̄(r ◦ γ̄)‖2L2(M,R3)

as a measure of the error. The results of the reparametrization are shown in figure 5.3 and 5.4,
where we have used the colour of the surface to represent the local area scaling factor. The
reparametrized surface has a rotation resembling that of g, but with somewhat erroneous area
scaling factors. The algorithm terminated after 13 iterations, due to a relative error change below
the threshold of 10−6.

5.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 47

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

(a) f2 (b) f1 = f2 ◦ ψ (c) f2 ◦ γ̄

Figure 5.3: Two surfaces representing the same shape, and the reparametrized surface. (left) The
surface f2 (5.7). (middle) The surface f2 reparametrized by the diffeomorphism ψ(5.8). (right)
The surface f2 reparametrized by γ̄ found by the deep reparametrization algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(a) ψ

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) γ̄

0 2 4 6 8 10 12

10 1

(c) Error vs. Iteration

Figure 5.4: Results from the reparametrization algorithm applied to f1 = f2 ◦ψ and f2, defined in
equation (5.7). (left) Correct reparametrization ψ defined in (5.8). (middle) Reparametrization γ̄
found by the algorithm. (right) Convergence plot. Initial error is 0.248 and final error is 0.0167,
which is a reduction to 6.7% of original error.

48 5.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

Wrapped Cylinder

As a stress test for the algorithm, we compare another set of surfaces representing the same shape,
but with a surface and reparametrization that is less “well-behaved” than previously. Define the
surface f2 by

f2(x, y) = [sin(2π), sin(4πx), y]T , (5.9)

and reparametrize it to get a new surface f1 = f2 ◦ ψ, where the reparametrization ψ is given by

ψ(x, y) =

[
0.9x2 + 0.1x

log(20y+1)
2 log(21) + 1+tanh(20(y−0.5))

4 tanh(10)

]
(5.10)

The surfaces and the result of the reparametrization are presented in figures 5.5 and 5.6. In this
case we see the limitations of the gradient descent algorithm: While there are some improvements,
there is still a significant difference between the reparametrized surface and the target.

(a) f2 (b) f1 = f2 ◦ ψ (c) f2 ◦ γ̄

Figure 5.5: Two surfaces representing the same shape, and the reparametrized surface. (left) The
surface f2 (5.9). (middle) The surface f2 reparametrized by the diffeomorphism ψ(5.10). (right)
The surface f2 reparametrized by γ̄ found by the deep reparametrization algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(a) ψ

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) γ̄

0 2 4 6 8 10

101

4 × 100

6 × 100

(c) Error vs. Iteration

Figure 5.6: Results from the reparametrization algorithm applied to f1 = f2 ◦ψ and f2, defined in
equation (5.9). (left) Correct reparametrization ψ defined in (5.10). (middle) Reparametrization γ̄
found by the algorithm. (right) Convergence plot. Initial error is 15.6 and final error is 3.3, which
is a reduction to 21% of original error.

5.2. GRADIENT DESCENT ON THE REPARAMETRIZATION GROUP 49

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

5.3 Deep Reparametrization of Surfaces

This section extends the deep reparametrization framework to surfaces. Similarly as for gradient
descent, the main difference from the algorithm for curves lies in the nature of the tangent space
TγΓ and the projection step.

5.3.1 Problem Formulation

Given q, r ∈ Q, we want to find a minimizer to the function

E : Γ→ R, E(F) = ‖q −
√
JF (r ◦ F) ‖2L2(M,R3)

such that F ∈ Γ. We will search for solutions on the form

F = FL ◦ FL−1 ◦ ... ◦ F1

for some L ∈ N, where each layer Fl is given on the form

Fl(x) = x + fl(x), fl(x) =

N∑
n=1

clnvn(x),

for a set of basis function {vn}Nn=1 ⊂ TγΓ. We denote by C = {cl}Ll=1 ⊂ RN the collection of
weight vectors cl, and use the notation

F (x;C) = FL(x; cL) ◦ ... ◦ F1(x; c1)

to highlight the dependence of F and Fl on C and cl respectively. Our goal is to find a set of vectors
C, such that the function F (·, C) ∈ Γ minimizes the shape distance between q, r. To approximate
the shape distance, we sample the Q-maps q and φr(F) on a set of points X = {x}Kk=1 ⊂M , and
compute the mean squared error (MSE) between the points. In other words we want to minimize
the function

E(C;X) =
1

K

K∑
k=1

∣∣∣q(xk)−
√
JF (xk;C)r(F (xk;C)

∣∣∣2 .
under the constraints that JF (· : C) > 0 and F (∂M ;C) = ∂M . To uphold the constraint on the
Jacobian determinant JF , we require that the Jacobian determinant JFl of each Fl is positive.
Denote by

F (l) = Fl ◦ Fl−1 ◦ ... ◦ F1

the composition of the first l layers. Then by the chain rule,

JF (l) = det(DF (l)) = det((DFl ◦ F (l−1))DF (l−1))

= det(DFl ◦ F (l−1)) det(DF (l−1)) =
√
JFl ◦ F (l−1)

√
JF (l−1) .

Continuing by induction, the Jacobian of F = F (L) satisfies

JF =

L∏
l=1

JFl ◦ F (l−1)

where F 0 = id.

Basis Functions

The basis functions are no longer required to be orthogonal, which offers more flexibility in choosing
the basis functions than in the gradient descent algorithm. For the numerical experiments in this
chapter, we have based the basis functions on the vector fields presented in section 5.2.2. However,
to avoid that higher-order basis elements are too sensitive to changes in the weights, we choose
basis functions from one of the three families

ξk(x, y) =
sin(πkx)

k
, ηk,l(x, y) =

sin(πkx) cos(2πly)

kl
, ϕk,l(x, y) =

sin(πkx) sin(2πly)

kl
. (5.11)

These are just scaled versions of the original vector fields, and chosen such that the derivatives of
higher-order elements does not become too large. We refer to 5.2.2 for further details on how to
construct a full basis from these functions.

50 5.3. DEEP REPARAMETRIZATION OF SURFACES

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

5.3.2 Single-Layer Network

To begin with, we consider a network with only a single layer. Since we only have one layer, we
suppress the sub- and superscripts l in the notation. Consider a point x ∈M . Denote by

zk = F (xk) = xk +

N∑
n=1

cnvn(xk) =: xk + V (xk)T c

yk = JF (zk) = det(I +

N∑
n=1

cnDvn(xk)) =: det(I + D(xk)c)

(5.12)

where V (x) is a matrix defined by

V (x)in = vin(x), i = 1, 2 n = 1, ..., N,

and

D(x)i,j,n =
∂vin
∂xj

(x), i = 1, 2, j = 1, 2, n = 1, ..., ,M

is a three-dimensional array. We denote by

D(x)c =

N∑
n+1

D(x):,:,ncn =

N∑
n+1

Dbn(xk)cn

the tensor-vector product2 between the three dimensional array and the weight vector. Using this
notation, we rewrite the cost function as

E(c;X,Z,y) =
1

K

K∑
k=1

|q(xk)−√ykr(zk)|2 subject to (5.12).

Note that the matrix V here differs from the one in section 4.3: Where we previously used matrices
in the vectorized notation for applying the layers to a collection of point in our domain, it is here
used in the setting of a single point x ∈ M ⊂ R2. We avoid introducing the vectorized notation
for each of the layers, as it becomes rather cumbersome, and will be content to introduce the
notation Z = {F (xk)}Kk=1 for the collection of points after reparametrization, and y = (JF (xk))

K
k=1

as the vector of Jacobian determinants evaluated at the same collection of points. However,
the implementation uses 4-dimensional arrays, and vectorized operations available in pytorch to
increase performance.

Invertibility Constraints

To ensure that the network upholds the invertibility constraints, i.e. that the Jacobian determinant
is positive everywhere, we will use a projection step between each parameter update. Assume that
for the current estimate of the weight vector c, there exists some x ∈ M such that JF (x; c) < 0.
We want to find a scaling constant k ∈ (0, 1) such that JF (x; kc) > 0,∀x ∈ M . Following the
analysis in section 5.2.3, the Jacobian determinant of F (x; kc) = x + kf(x; c) at x becomes a
quadratic polynomial in k

Px(k) = 1 + k trace(Df(x)) + k2 det(Df(x)).

To ensure that JF (x; kc) ≥ 0 ∀ x ∈ M , we want to find the smallest positive root of Px(k) (if it
exists) for all x ∈ M , and then set k to the smallest of these roots. To find an approximation of
this k, we start by adding a buffer ε to the polynomial:

P εx(k) = (1− ε) + k trace(A(x)) + k2 det(A(x)).

Altering the operator defined in (5.6) to take into account the buffer, we define

εεδ(a, b) =

−(1− ε)/b |a| < δ and b < 0
−b−
√
b2−4a(1−ε)

2a (a < −δ) or
(
a > 0 and b < −

√
4a
)

∞ otherwise

(5.13)

2Here we use the words tensor and tensor-vector product in the rather crude interpretation as a multi-dimensional
array, often found used in Deep Learning (see e.g. [23])

5.3. DEEP REPARAMETRIZATION OF SURFACES 51

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

for some small number δ, and then choose

k = min
i=1,...,K

εεδ (det(A(xi)), traceA(xi)) ,

for {xk}Kk=1 a collection of points sampled from a grid on M . Of course, if there is no x such that
JF (x; c) < 0, we do not want to change the weight vector. We therefore define the projection
operator by

π(c; {xi}Ki=1) =

(
min

{
1, min
i=1,...,K

εεδ (det(A(xi)), traceA(xi))

})
c. (5.14)

5.3.3 Multi-Layer Network

The extension to a multi-layer network is straight forward. We denote by

zlk = F l(zlk) = zl−1
k + U(zlk)cl

ylk = det
(
DF l(zl−1

k)
)

= det
(
1 + D(zl−1

k)cl
)
yl−1
k

with z0
k = xk and y0

k = 1. Then the cost function for a network with L layers, is given by

E(C;X,Z,y) =
1

K

K∑
k=1

∣∣∣∣q(xk)−
√
yLk r

(
zLk
)∣∣∣∣2 .

The optimization procedure is the exact same as described in 4.3.4, using a BFGS optimizer with
intermediate projection steps. Since pytorch takes care of the computation of gradients and
updating the weight vectors, we may reuse most of the code for reparametrization of curves. The
only major changes are in the implementation of the projection procedure for surfaces, and the
new basis functions.

Algorithm 4 Optimization of weight vectors in a multilayer network for reparametrization of
surfaces, with intermediate projection.

Require: C0 = {cl0}Ll=1 ⊂ RN : Initial weights.
Require: X = {xk}Kk=1 ⊂M : Collection of points in M .

1: C ← C0

2: while c not converged do
3: Z ← F (X;C)
4: y← JF (X;C)
5: g ← ∇CE(C;X,Z,y)
6: Ĉ ← update(C, g)
7: for l = 1 to L do
8: cl ← π(ĉl, X)
9: end for

10: end while
11: return C

5.3.4 Numerical Results

This section presents test results from using the deep reparametrization algorithm for the test
examples introduced in section 5.2. The results are based on a three-layer network with 930 basis
functions per layer, which corresponds to a maximal frequency of N = 15. In both test cases, the
deep reparametrization algorithm is able to approximate the correct solution very closely.

52 5.3. DEEP REPARAMETRIZATION OF SURFACES

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

(a) f2 (b) f1 = f2 ◦ ψ (c) f2 ◦ γ̄

Figure 5.7: Two surfaces representing the same shape, and surface reparametrized by deep
reparametrization. (left) The surface f2 (5.7). (middle) The surface f2 reparametrized by the dif-
feomorphism ψ(5.8). (right) The surface f2 reparametrized by γ̄ found by the deep reparametriza-
tion algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(a) ψ

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) γ̄

0 100 200 300
Iteration

10 4

10 3

10 2

10 1

100

101

Er
ro

r

(c) Error vs. Iteration

Figure 5.8: Results from the reparametrization algorithm applied to f1 = f2 ◦ψ and f2, defined in
equation (5.7). (left) Correct reparametrization ψ defined in (5.8). (middle) Reparametrization γ̄
found by the algorithm. (right) Convergence plot. Initial error is 0.26 and final error is 7.2×10−7.

(a) f2 (b) f1 = f2 ◦ ψ (c) f2 ◦ γ̄

Figure 5.9: Two surfaces representing the same shape, and surface reparametrized by deep
reparametrization. (left) The surface f2 (5.9). (middle) The surface f2 reparametrized by the dif-
feomorphism ψ(5.10). (right) The surface f2 reparametrized by γ̄ found by the deep reparametriza-
tion algorithm.

5.3. DEEP REPARAMETRIZATION OF SURFACES 53

CHAPTER 5. OPTIMAL REPARAMETRIZATION OF PARAMETRIC SURFACES

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(a) ψ

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) γ̄

0 100 200 300
Iteration

10 4

10 3

10 2

10 1

100

101

Er
ro

r

(c) Error vs. Iteration

Figure 5.10: Results from the reparametrization algorithm applied to f1 = f2 ◦ψ and f2, defined in
equation (5.9). (left) Correct reparametrization ψ defined in (5.10). (middle) Reparametrization γ̄
found by the algorithm. (right) Convergence plot. Initial error is 15.4 and final error is 4.9×10−5.

5.4 Summary

Throughout this chapter we have presented two gradient based algorithms for finding optimal
reparametrizations of surfaces, and tested their performance on two test examples. To compare
their performance we will be using two metrics:

‖ψ − γ̄‖∞ ≈ max
i,j=1,...,256

|ψ(xi, xj)− γ̄(xi, xj)|, ∆E(γ̄, ψ) = E(γ̄)− E(ψ), (5.15)

where ψ denotes the true optimal reparametrization, γ̄ denotes the reparametrization found by the
algorithms, and the points xi are sampled on an equidistant grid on [0, 1]. The results are taken
from the first examples in section 5.2.5. Since these examples concern surfaces representing the
same shape, E(ψ) = 0 and ∆E(γ̄, ψ) = E(γ̄).

The results are presented in table 5.1. In the first test case with the rotation diffeomorphism,
the difference between the two algorithms is not too large in terms of the max-norm error of the
diffeomorphisms. However, we see that this difference still has a large impact on the computed
shape distances. For the wrapped cylinder test case on the other hand, the deep reparametrization
algorithm significantly outperforms the gradient descent algorithm in both metrics.

Algorithm Test Case ‖ψ − γ̄‖∞ ∆E(γ̄, ψ)
Gradient Descent Rotation 0.0842 1.7× 10−1

Deep Reparametrization Rotation 0.0113 7.2× 10−7

Gradient Descent Wrapped Cylinder 0.1772 3.3× 100

Deep Reparametrization Wrapped Cylinder 0.0054 4.9× 10−5

Table 5.1: Comparison of the results achieved by the two algorithms for reparametrization
of surfaces, in the two test cases described in previous sections.

For the given test examples, the deep reparametrization algorithm was able to achieve the
given results in between 10 and 20 seconds, whereas the gradient descent algorithm needed from
1 to 3 minutes. The significant increase in computational cost when increasing the number of
basis functions, prevents the gradient descent algorithm from reaching its full potential within a
reasonable amount of time. It might therefore be of interest to improve the implementation of the
gradient descent algorithm, by for example vectorizing functions, before making a final conclusion
regarding its performance relative to the deep reparametrization algorithm.

However, in the comparison between the two algorithms for reparametrization of curves (sec-
tion 4.4) where the computational cost did not restrict the gradient descent algorithm, the deep
reparametrization algorithm still performed significantly better than gradient descent. It therefore
seems improbable that the gradient descent for surfaces will be able to achieve the same level of pre-
cision as the deep reparametrization algorithm, even with improvements to reduce computational
cost.

54 5.4. SUMMARY

Chapter 6

Conclusion

In this thesis, we have studied two gradient-based algorithms for solving the registration problem
for parametric curves and surfaces. The first approach is a Riemannian gradient descent algo-
rithm based on the framework proposed in [33], while the other is a novel approach in which
optimal reparametrizations are found by training a residual neural network. Testing the two al-
gorithms on a few test examples, the residual neural network performs significantly better that
the gradient descent algorithm. This difference in performance is especially large when comparing
parametric surfaces, where the gradient descent algorithm is limited by computational cost. Even
though alterations to the gradient descent algorithm may reduce the computational cost, the deep
reparametrization algorithm still beats gradient descent when both are allowed to run until con-
vergence. Based on this, we recommend that future work focuses on improvements to the deep
reparametrization algorithm.

Ideas for Future Work

The deep reparametrization algorithm seems very promising based on the numerical examples
presented here, and should be tested against real data to evaluate its performance in practical
problems. Moreover, several questions regarding the theoretical aspects of the method deserve
further investigation.

Optimal Control The convergence properties of the algorithm should be further investigated:
Due to the square root in the cost function, the gradient with respect to the weights in the network
is not Lipschitz continuous, which may cause problems. In [26, 17], the authors propose an inter-
pretation of residual neural networks as discrete optimal control problems. In [8] this interpretation
is used to derive optimality conditions for the system, and to develop algorithms which ensure that
the conditions are fulfilled. Adopting such an interpretation of the deep reparametrization algo-
rithm may help in understanding the convergence properties of the algorithm, and provide insight
into possible alterations to ensure convergence, if necessary.

Controllability The interpretation of the algorithm as a control system may also help to under-
stand the representation abilities of the residual neural network. In [1], the authors study control
systems on the group of diffeomorphisms. They show that any orientation preserving diffeomor-
phism may be represented as the composition of a finite number of exponentials of vector fields
rescaled by smooth functions, provided the vector fields are chosen from a bracket generating fam-
ily of vector fields. Interpreting the layers of the network as approximations of the exponential
map, and choosing basis functions that satisfy these properties, may improve the network’s ability
to represent functions on the diffeomorphism group.

55

CHAPTER 6. CONCLUSION

56

Bibliography

[1] A. A. Agrachev and M. Caponigro. “Controllability on the group of diffeomorphisms”. en. In:
Annales de l’Institut Henri Poincaré C, Analyse non linéaire 26.6 (Nov. 2009), pp. 2503–2509.
issn: 0294-1449. doi: 10.1016/j.anihpc.2009.07.003. url: http://www.sciencedirect.
com/science/article/pii/S0294144909000687 (visited on 01/24/2021).

[2] Larry Armijo. “Minimization of functions having Lipschitz continuous first partial deriva-
tives.” en. In: Pacific Journal of Mathematics 16.1 (1966), pp. 1–3. issn: 0030-8730. url:
https://projecteuclid.org/euclid.pjm/1102995080 (visited on 01/23/2021).

[3] Martin Bauer, Markus Eslitzbichler, and Markus Grasmair. “Landmark-Guided Elastic
Shape Analysis of Human Character Motions”. In: arXiv:1502.07666 [cs] (Feb. 2015). arXiv:
1502.07666. url: http://arxiv.org/abs/1502.07666 (visited on 12/31/2020).

[4] Martin Bauer et al. “A numerical framework for elastic surface matching, comparison, and
interpolation”. In: arXiv:2006.11652 [cs, math] (June 2020). arXiv: 2006.11652. url: http:
//arxiv.org/abs/2006.11652 (visited on 12/29/2020).

[5] Martin Bauer et al. “Constructing reparameterization invariant metrics on spaces of plane
curves”. en. In: Differential Geometry and its Applications 34 (June 2014), pp. 139–165. issn:
0926-2245. doi: 10.1016/j.difgeo.2014.04.008. url: http://www.sciencedirect.com/
science/article/pii/S092622451400062X (visited on 12/27/2020).

[6] M. Faisal Beg et al. “Computing Large Deformation Metric Mappings via Geodesic Flows
of Diffeomorphisms”. en. In: International Journal of Computer Vision 61.2 (Feb. 2005),
pp. 139–157. issn: 1573-1405. doi: 10.1023/B:VISI.0000043755.93987.aa. url: https:
//doi.org/10.1023/B:VISI.0000043755.93987.aa (visited on 12/28/2020).

[7] Jens Behrmann et al. “Invertible Residual Networks”. en. In: International Conference on
Machine Learning. PMLR, May 2019, pp. 573–582. url: http://proceedings.mlr.press/
v97/behrmann19a.html (visited on 01/07/2021).

[8] Martin Benning et al. “Deep learning as optimal control problems: models and numerical
methods”. In: arXiv:1904.05657 [cs, math] (Sept. 2019). arXiv: 1904.05657. url: http:

//arxiv.org/abs/1904.05657 (visited on 01/24/2021).

[9] J. Bernal, G. Dogan, and C. R. Hagwood. “Fast Dynamic Programming for Elastic Regis-
tration of Curves”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). ISSN: 2160-7516. June 2016, pp. 1066–1073. doi: 10.1109/CVPRW.
2016.137.

[10] Paul J. Besl and Neil D. McKay. “Method for registration of 3-D shapes”. In: Sensor Fu-
sion IV: Control Paradigms and Data Structures. Vol. 1611. International Society for Optics
and Photonics, Apr. 1992, pp. 586–606. doi: 10.1117/12.57955. url: https://www.

spiedigitallibrary.org/conference-proceedings-of-spie/1611/0000/Method-for-

registration-of-3-D-shapes/10.1117/12.57955.short (visited on 12/22/2020).

[11] Jeff Bezanson et al. “Julia: A Fresh Approach to Numerical Computing”. In: arXiv:1411.1607
[cs] (July 2015). arXiv: 1411.1607. url: http://arxiv.org/abs/1411.1607 (visited on
01/23/2021).

[12] Ch. Brechbühler, G. Gerig, and O. Kübler. “Parametrization of Closed Surfaces for 3-D Shape
Description”. en. In: Computer Vision and Image Understanding 61.2 (Mar. 1995), pp. 154–
170. issn: 1077-3142. doi: 10.1006/cviu.1995.1013. url: http://www.sciencedirect.
com/science/article/pii/S1077314285710132 (visited on 12/29/2020).

57

BIBLIOGRAPHY

[13] M. Bruveris et al. “The Momentum Map Representation of Images”. en. In: Journal of Non-
linear Science 21.1 (Feb. 2011), pp. 115–150. issn: 1432-1467. doi: 10.1007/s00332-010-
9079-5. url: https://doi.org/10.1007/s00332-010-9079-5 (visited on 12/28/2020).

[14] Martins Bruveris et al. “Moser’s theorem on manifolds with corners”. In: Proceedings of the
American Mathematical Society 146.11 (Aug. 2018). arXiv: 1604.07787, pp. 4889–4897. issn:
0002-9939, 1088-6826. doi: 10.1090/proc/14130. url: http://arxiv.org/abs/1604.
07787 (visited on 01/15/2021).

[15] Elena Celledoni, Markus Eslitzbichler, and Alexander Schmeding. “Shape Analysis on Lie
Groups with Applications in Computer Animation”. In: Journal of Geometric Mechanics 8.3
(Sept. 2016). arXiv: 1506.00783, pp. 273–304. issn: 1941-4889. doi: 10.3934/jgm.2016008.
url: http://arxiv.org/abs/1506.00783 (visited on 12/14/2020).

[16] Elena Celledoni et al. “Shape Analysis on Lie Groups and Homogeneous Spaces”. en. In:
Geometric Science of Information. Ed. by Frank Nielsen and Frédéric Barbaresco. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2017, pp. 49–56. isbn:
9783319684451. doi: 10.1007/978-3-319-68445-1_6.

[17] Bo Chang et al. “Reversible Architectures for Arbitrarily Deep Residual Neural Networks”.
en. In: Proceedings of the AAAI Conference on Artificial Intelligence 32.1 (Apr. 2018). issn:
2374-3468. url: https://ojs.aaai.org/index.php/AAAI/article/view/11668 (visited
on 01/24/2021).

[18] Yang Chen and Gérard Medioni. “Object modelling by registration of multiple range im-
ages”. en. In: Image and Vision Computing. Range Image Understanding 10.3 (Apr. 1992),
pp. 145–155. issn: 0262-8856. doi: 10.1016/0262-8856(92)90066-C. url: http://www.
sciencedirect.com/science/article/pii/026288569290066C (visited on 12/22/2020).

[19] Colin J. Cotter, Allan Clark, and Joaquim Peiró. “A Reparameterisation Based Approach to
Geodesic Constrained Solvers for Curve Matching”. en. In: International Journal of Computer
Vision 99.1 (Aug. 2012), pp. 103–121. issn: 1573-1405. doi: 10.1007/s11263-012-0520-0.
url: https://doi.org/10.1007/s11263-012-0520-0 (visited on 01/02/2021).

[20] G. Doğan, J. Bernal, and C. R. Hagwood. “A fast algorithm for elastic shape distances
between closed planar curves”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). ISSN: 1063-6919. June 2015, pp. 4222–4230. doi: 10.1109/CVPR.2015.
7299050.

[21] Markus Eslitzbichler. “Modelling character motions on infinite-dimensional manifolds”. en.
In: The Visual Computer 31.9 (Sept. 2015), pp. 1179–1190. issn: 1432-2315. doi: 10.1007/
s00371-014-1001-y. url: https://doi.org/10.1007/s00371-014-1001-y (visited on
01/03/2021).

[22] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[23] Ian Goodfellow et al. Deep learning. Vol. 1. 2. MIT press Cambridge, 2016.

[24] Henry Gouk et al. “Regularisation of neural networks by enforcing Lipschitz continuity”. en.
In: Machine Learning (Dec. 2020). issn: 1573-0565. doi: 10.1007/s10994-020-05929-w.
url: https://doi.org/10.1007/s10994-020-05929-w (visited on 01/07/2021).

[25] Ulf Grenander and Michael I. Miller. “Computational anatomy: an emerging discipline”. en.
In: Quarterly of Applied Mathematics 56.4 (1998), pp. 617–694. issn: 0033-569X, 1552-4485.
doi: 10.1090/qam/1668732. url: https://www.ams.org/qam/1998-56-04/S0033-569X-
1998-1668732-7/ (visited on 12/23/2020).

[26] Eldad Haber and Lars Ruthotto. “Stable architectures for deep neural networks”. en. In:
Inverse Problems 34.1 (Dec. 2017), p. 014004. issn: 0266-5611. doi: 10.1088/1361-6420/
aa9a90. url: https://doi.org/10.1088/1361-6420/aa9a90 (visited on 01/24/2021).

[27] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: arXiv:1512.03385
[cs] (Dec. 2015). arXiv: 1512.03385. url: http://arxiv.org/abs/1512.03385 (visited on
01/20/2021).

[28] Ian H. Jermyn et al. “Elastic Shape Matching of Parameterized Surfaces Using Square Root
Normal Fields”. en. In: Computer Vision – ECCV 2012. Ed. by Andrew Fitzgibbon et al.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 804–817. isbn:
9783642337154. doi: 10.1007/978-3-642-33715-4_58.

58 BIBLIOGRAPHY

BIBLIOGRAPHY

[29] David G. Kendall. “Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces”.
en. In: Bulletin of the London Mathematical Society 16.2 (1984), pp. 81–121. issn: 1469-
2120. doi: https://doi.org/10.1112/blms/16.2.81. url: https://londmathsoc.
onlinelibrary.wiley.com/doi/abs/10.1112/blms/16.2.81 (visited on 12/15/2020).

[30] David George Kendall et al. Shape and shape theory. Vol. 500. John Wiley & Sons, 2009.

[31] Eric Klassen and Peter W. Michor. “Closed surfaces with different shapes that are indistin-
guishable by the SRNF”. In: arXiv:1910.10804 [math] (Oct. 2019). arXiv: 1910.10804. url:
http://arxiv.org/abs/1910.10804 (visited on 12/29/2020).

[32] Andreas Kriegl and Peter Michor. The Convenient Setting of Global Analysis. Vol. 53. Oct.
1996. doi: 10.1090/surv/053.

[33] S. Kurtek et al. “A novel riemannian framework for shape analysis of 3D objects”. In: 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition. ISSN:
1063-6919. June 2010, pp. 1625–1632. doi: 10.1109/CVPR.2010.5539778.

[34] S. Kurtek et al. “Elastic Geodesic Paths in Shape Space of Parameterized Surfaces”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 34.9 (Sept. 2012), pp. 1717–1730.
issn: 1939-3539. doi: 10.1109/TPAMI.2011.233.

[35] S. Kurtek et al. “Parameterization-Invariant Shape Comparisons of Anatomical Surfaces”.
In: IEEE Transactions on Medical Imaging 30.3 (Mar. 2011), pp. 849–858. issn: 1558-254X.
doi: 10.1109/TMI.2010.2099130.

[36] Mario Lezcano-Casado and David Mart́ınez-Rubio. “Cheap Orthogonal Constraints in
Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group”. In:
arXiv:1901.08428 [cs, stat] (May 2019). arXiv: 1901.08428. url: http://arxiv.org/abs/
1901.08428 (visited on 01/11/2021).

[37] Sven Loncaric. “A survey of shape analysis techniques”. en. In: Pattern Recognition 31.8
(Aug. 1998), pp. 983–1001. issn: 0031-3203. doi: 10.1016/S0031-2023(97)00122-2. url:
http://www.sciencedirect.com/science/article/pii/S0031202397001222 (visited on
12/15/2020).

[38] Peter W Michor. Manifolds of differentiable mappings. Vol. 3. Birkhauser, 1980.

[39] Peter W. Michor and David Mumford. “An overview of the Riemannian metrics on spaces
of curves using the Hamiltonian approach”. en. In: Applied and Computational Harmonic
Analysis. Special Issue on Mathematical Imaging 23.1 (July 2007), pp. 74–113. issn: 1063-
5203. doi: 10.1016/j.acha.2006.07.004. url: http://www.sciencedirect.com/

science/article/pii/S1063520307000243 (visited on 12/27/2020).

[40] Peter W. Michor and David Mumford. “Riemannian geometries on spaces of plane curves”.
In: arXiv:math/0312384 (Feb. 2006). arXiv: math/0312384. url: http://arxiv.org/abs/
math/0312384 (visited on 12/27/2020).

[41] Peter W. Michor and David Mumford. “Vanishing geodesic distance on spaces of subman-
ifolds and diffeomorphisms”. In: arXiv:math/0409303 (May 2005). arXiv: math/0409303.
url: http://arxiv.org/abs/math/0409303 (visited on 12/27/2020).

[42] David Mumford. “Pattern Theory: A Unifying Perspective”. en. In: ed. by Anthony Joseph et
al. Progress in Mathematics. Basel: Birkhäuser, 1994, pp. 187–224. isbn: 9783034891103. doi:
10.1007/978-3-0348-9110-3_6. url: https://doi.org/10.1007/978-3-0348-9110-3_6
(visited on 12/23/2020).

[43] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[44] Hideki Omori. “On Banach-Lie groups acting on finite dimensional manifolds”. EN. In:
Tohoku Mathematical Journal 30.2 (1978), pp. 223–250. issn: 0040-8735, 2186-585X. doi:
10.2748/tmj/1178230027. url: https://projecteuclid.org/euclid.tmj/1178230027
(visited on 01/04/2021).

[45] Richard S. Palais. “Morse theory on Hilbert manifolds”. en. In: Topology 2.4 (Jan. 1963),
pp. 299–340. issn: 0040-9383. doi: 10.1016/0040-9383(63)90013-2. url: http://www.
sciencedirect.com/science/article/pii/0040938363900132 (visited on 01/09/2021).

BIBLIOGRAPHY 59

BIBLIOGRAPHY

[46] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: arXiv:1912.01703 [cs, stat] (Dec. 2019). arXiv: 1912.01703. url: http://arxiv.
org/abs/1912.01703 (visited on 01/26/2021).

[47] J. Revels, M. Lubin, and T. Papamarkou. “Forward-Mode Automatic Differentiation in Ju-
lia”. In: arXiv:1607.07892 [cs.MS] (2016). url: https://arxiv.org/abs/1607.07892.

[48] T. B. Sebastian, P. N. Klein, and B. B. Kimia. “On aligning curves”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 25.1 (Jan. 2003), pp. 116–125. issn: 1939-3539.
doi: 10.1109/TPAMI.2003.1159951.

[49] A. Srivastava et al. “Shape Analysis of Elastic Curves in Euclidean Spaces”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 33.7 (July 2011), pp. 1415–1428. issn:
1939-3539. doi: 10.1109/TPAMI.2010.184.

[50] Anuj Srivastava and Eric P Klassen. Functional and shape data analysis. Vol. 1. Springer,
2016.

[51] Anuj Srivastava, Pavan Turaga, and Sebastian Kurtek. “On advances in differential - ge-
ometric approaches for 2D and 3D shape analyses and activity recognition”. In: Image
and Vision Computing 30.6 (June 2012), pp. 398–416. issn: 0262-8856. doi: 10.1016/j.
imavis.2012.03.006. url: http://www.sciencedirect.com/science/article/pii/
S0262885612000492 (visited on 12/22/2020).

[52] Martin Styner et al. “Framework for the Statistical Shape Analysis of Brain Structures
using SPHARM-PDM”. In: The insight journal 1071 (2006), pp. 242–250. url: https :

//www.ncbi.nlm.nih.gov/pmc/articles/PMC3062073/ (visited on 12/29/2020).

[53] Z. Su et al. “Simplifying Transformations for a Family of Elastic Metrics on the Space of Sur-
faces”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). ISSN: 2160-7516. June 2020, pp. 3705–3714. doi: 10.1109/CVPRW50498.
2020.00432.

[54] Zhe Su et al. “Shape Analysis of Surfaces Using General Elastic Metrics”. In: Journal of
Mathematical Imaging and Vision 62.8 (Oct. 2020), pp. 1087–1106. issn: 1573-7683. doi:
10.1007/s10851-020-00959-4. url: https://doi.org/10.1007/s10851-020-00959-4
(visited on 12/29/2020).

[55] Ganesh Sundaramoorthi et al. “A New Geometric Metric in the Space of Curves, and Ap-
plications to Tracking Deforming Objects by Prediction and Filtering”. In: SIAM Journal
on Imaging Sciences 4.1 (Jan. 2011), pp. 109–145. doi: 10.1137/090781139. url: https:
//epubs.siam.org/doi/abs/10.1137/090781139 (visited on 01/02/2021).

[56] Ilya Sutskever et al. “On the importance of initialization and momentum in deep learning”.
en. In: International Conference on Machine Learning. PMLR, May 2013, pp. 1139–1147.
url: http://proceedings.mlr.press/v28/sutskever13.html (visited on 01/26/2021).

[57] Gabor Szego. Orthogonal Polynomials. en. Google-Books-ID: RemVAwAAQBAJ. American
Mathematical Soc., Dec. 1939. isbn: 9780821810231.

[58] D. W. Thompson. “On growth and form.” English. In: On growth and form. (1942). url:
https://www.cabdirect.org/cabdirect/abstract/19431401837 (visited on 01/03/2021).

[59] Alex Townsend. FastGaussQuadrature.jl. original-date: 2014-08-31T14:35:16Z. Jan. 2021.
url: https://github.com/JuliaApproximation/FastGaussQuadrature.jl (visited on
01/23/2021).

[60] Esten Nicolai Wøien. “A Semi-Discretized Method for Optimal Reparametrization of
Curves”. In: (2019). url: https://ntnuopen.ntnu.no/ntnu- xmlui/handle/11250/

2624611 (visited on 12/16/2020).

[61] Laurent Younes et al. “A Metric on Shape Space with Explicit Geodesics”. In: arXiv:
0706.4299 [math] (May 2008). arXiv: 0706.4299. url: http://arxiv.org/abs/0706.4299
(visited on 12/28/2020).

[62] Dengsheng Zhang and Guojun Lu. “Review of shape representation and description tech-
niques”. en. In: Pattern Recognition 37.1 (Jan. 2004), pp. 1–19. issn: 0031-3203. doi: 10.
1016/j.patcog.2003.07.008. url: http://www.sciencedirect.com/science/article/
pii/S0031320303002759 (visited on 12/15/2020).

60 BIBLIOGRAPHY

BIBLIOGRAPHY

[63] Zhengyou Zhang. “Iterative point matching for registration of free-form curves and surfaces”.
en. In: International Journal of Computer Vision 13.2 (Oct. 1994), pp. 119–152. issn: 1573-
1405. doi: 10.1007/BF01427149. url: https://doi.org/10.1007/BF01427149 (visited on
12/22/2020).

BIBLIOGRAPHY 61

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Jørgen Nilsen Riseth

Gradient-Based Algorithms in Shape
Analysis for Reparametrization of
Parametric Curves and Surfaces

Master’s thesis in Applied Physics and Mathematics
Supervisor: Elena Celledoni

February 2021

