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Summary
This thesis deals with the use of genetic group animal models in the context of wild animal
populations. The animal model is a type of generalized linear mixed model which lets us
study a population’s genetic parameters, such as the additive genetic variance. Through
the use of genetic groups, the animal model can be used to investigate these parameters
in genetically differentiated subpopulations. Animal models have traditionally been based
on pedigree data, but genome-based approaches are becoming more common. The main
focus of this text is an extension of a genome-based genetic groups animal model, which
enables its usage on wild animal populations. Our extension involves gametic phasing of
genotype data to allow for heterozygous genetic markers, and an expansion of the math-
ematical framework to allow for an arbitrary number of genetic groups. We contrast the
genome-based approach with the traditional pedigree-based approach to animal models
and genetic groups, which we also describe in detail. As a practical example, we apply the
extended genome-based genetic groups animal model to a metapopulation of house spar-
rows residing on a system of islands in Northern Norway. For comparison, the equivalent
pedigree-based model is also applied to the same data. Both models use a Bayesian frame-
work. The model posteriors obtained from the genome-based model are mostly compa-
rable to their pedigree-based counterparts. We see some limited patterns of disagreement
between the two models, but these patterns are typical when comparing pedigree-based
and genome-based animal models.

Sammendrag
Denne masteroppgaven tar for seg bruk av dyremodeller med genetiske grupper i studier
der vi ser på villdyr-populasjoner. Dyremodellen er en generalisert lineær blandet modell
som lar oss undersøke genetiske parametere i en populasjon, for eksempel additiv genetisk
varians. Ved hjelp av genetiske grupper kan dyremodellen brukes til å granske disse
parametrene i delpopulasjoner som har ulik genetisk struktur. Tradisjonelt sett har dyre-
modellen basert seg på stamtavledata, men i nyere tid har bruk av genomdata blitt mer van-
lig. Hovedfokuset i denne masteroppgaven er en utvidelse av en dyremodell med genom-
baserte genetiske grupper, som lar oss bruke modellen i ville populasjoner. Utvidelsen vår
bygger på gametisk fasing, noe som lar oss inkludere heterozygote genetiske markører, og
på en videreutvikling av det matematiske rammeverket, noe som lar oss bruke et villkårlig
antall genetiske grupper. Vi setter den genombaserte modellen i kontrast med tradisjonelle
stamtavlebaserte dyremodeller og genetiske grupper, som vi også beskriver i detalj. Som
et eksempel anvender vi den utvidete genombaserte dyremodellen med genetiske grupper
på data fra en metapopulasjon av gråspurver som befinner seg på en øygruppe i Nord-
Norge. Til sammenligning anvender vi også en tilsvarende stamtalvebasert modell på
det samme datasettet. Begge modellene bruker et bayesiansk rammeverk. A posteriori-
fordelingene til modellparametrene fra den genombaserte modellen samsvarer i hovedsak
med de tilsvarende fordelingene fra den stamtavlebaserte modellen. Vi ser noen mindre
uenigheter mellom de to modellene, men disse er typiske når man sammenligner stam-
tavlebaserte og genombaserte dyremodeller.
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Chapter 1
Introduction

Within evolutionary biology, the field of population genetics is the study of how genetic
variation is distributed within and between populations, and the causes and consequences
of such variation (Conner and Hartl 2004). Overall genetic differences between popula-
tions are a result of the opposing evolutionary forces of genetic drift and migration. Ge-
netic drift reduces intra-population and increases inter-population genetic variation, while
migration has the opposite effects. Furthermore, when the strength and direction of se-
lection on phenotypes (observable biological traits) differs between populations (due to
e.g. local conditions), we will see differences in the variation at the gene(s) underlying
these adaptive phenotypes. Closely related to population genetics is quantitative genet-
ics (Falconer and Mackay 1996; Lynch and Walsh 1998), which focuses on the study of
the genetics, selection and evolution of complex and (usually) continuously varying phe-
notypes. In quantitative genetics we usually do not investigate the impact of the alleles
(variations of a gene) at specific locations in the genome, but instead utilize overall sum-
maries of the individually minor effects of the alleles at many different genes. The focus
on continuous traits and the macro-level view of genotypes makes quantitative genetics
well-suited to statistical analysis.

Quantitative genetics was originally developed for use in plant and animal breeding,
where selection criteria are decided by the breeder (Henderson 1984). A breeder can
manipulate the selection to artificially induce a desired change in a phenotype and might
use quantitative genetics to study how to perform the selection in the most efficient way.
Quantitative genetic theory was later applied in evolutionary ecology, where there are more
pitfalls to consider (Charmantier, Garant, and Kruuk 2014). One might run into problems
such as sampling issues and a lack of control groups. Questions of interest in ecological
quantitative genetics include what causes some wild populations to be better at adapting
to environmental changes than others, and the prediction of the rate and direction of future
evolutionary change. Answers to these questions are urgently needed in conservation and
wildlife management, for example. Quantitative genetics also plays a role in medicine,
when polygenic genetic disorders in humans and other animals are studied. In this thesis
we will focus on the quantitative genetics of wild animal populations.
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One of the main goals of quantitative genetics is to disentangle the environmental and
the genetic contributions to a phenotype within a population (Lynch and Walsh 1998; Fal-
coner and Mackay 1996). This issue can be recognized from popular discourse as the
question of “nature versus nurture.” Additively disentangling the genetic and environmen-
tal components of the population phenotypic variance of different traits is of particular
interest, as the additive part of the genetic variance has a major evolutionary importance.
The additive genetic variance is a determinant of the expected degree of genetic resem-
blance between parents and their offspring. Thus, the rate of evolutionary change due to
selection is determined by the additive genetic variance; the higher the level of additive ge-
netic variance in the population, the faster it is able to respond to a given selection pressure
(i.e., the higher the rate of adaptive evolution).

A well-established statistical tool in quantitative genetics is a linear mixed effects
model known as “the animal model” (e.g., Kruuk 2004; Wilson et al. 2010). The ani-
mal model estimates additive genetic variance by considering the phenotypic values of
individuals in a population for which we have information about the relatedness (genetic
similarity) between individuals. Measures of relatedness allow the model to (additively)
disentangle the degree to which having similar phenotypes correspond to having similar
genomes, and thus detect the (additive) effect genes have on the phenotypic trait. Tra-
ditionally, relatedness information has been derived from pedigrees (i.e., family trees),
which can provide measures of relatedness that are true on expectation. However, real-
ized genetic similarity can often differ greatly from this expectation (Hill and Weir 2011).
In addition, pedigrees constructed for wild populations are often error-prone (Keller et
al. 2001; Ponzi, Keller, and Muff 2019).

Over the past two decades, the accessibility of genomic data has increased through
improving genotyping technology (Meuwissen, Hayes, and Goddard 2016). A myriad of
methods now use single nucleotide polymorphisms (SNPs) to derive measures of related-
ness (Speed and Balding 2015). SNPs are specific positions in a species’ genome where
the alleles are especially variable, making these positions more informative. For instance,
genome similarity measures can be obtained by comparing the genotypes of two individ-
uals at every SNP (VanRaden 2008). Thus, animal models where relatedness information
is extracted from genomic data have become feasible, with accompanying advantages and
disadvantages compared to pedigree-based animal models.

One of the weaknesses of the animal model is that it does not allow subpopulations to
have different genetic structures (Quaas 1988). This assumption is sometimes unrealistic,
for example when different breeds are crossed in a breeding scenario, or when dealing
with geographically structured wild populations with some dispersal between subpopula-
tions. Genetically distinct subpopulations are denoted as “genetic groups,” and models that
incorporate genetic groups into the pedigree-based animal model exist (Wolak and Reid
2017; Muff et al. 2019). However, equivalent genome-based models were lacking until
Rio et al. (2020a) recently proposed a genetic group animal model with a genome-based
framework. The model relies on the idea of local ancestry (Geza et al. 2019), which lets us
incorporate the fact that different sections of an individual’s DNA originate from different
genetic groups. However, the model proposed by Rio et al. (2020a) has certain limitations
(stemming from its plant breeding origin) that preclude its usage on wild animal data.

This thesis will describe the animal model from a pedigree-based and genome-based
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perspective, and present the existing pedigree-based genetic groups model. We then pro-
pose an extension of the genome-based genetic groups model, enabling it to be used for
wild populations. Our extension involves an expansion of the mathematical framework
introduced by Rio et al. (2020a) and utilizes gametic phasing of genotype data. As a proof
of concept, we apply the extended genome-based animal model to a quantitative genetics
analysis of a system of house sparrows (Passer domesticus) and compare our results to a
corresponding pedigree-based model similar to the one in Muff et al. (2019). The spar-
row population resides on islands in the Helgeland region of Northern Norway and is the
subject of a long-running study by the Centre for Biodiversity Dynamics at NTNU (e.g.
Jensen et al. 2008), who also provided the data for the analysis. We will operate within a
Bayesian framework and will estimate posterior distributions of model parameters using
INLA (Rue, Martino, and Chopin 2009). The main goal of the analysis is evaluating the
performance of the genome-based genetic groups animal model.

3
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Chapter 2
Background

2.1 Generalized linear mixed models
A generalized linear mixed model (GLMM) is an extension of the GLM, the general-
ized linear model (Pinheiro and Bates 2006; Zuur et al. 2009; Galwey 2014; Faraway
2016). While incorporating the linear predictors of a GLM, GLMMs also allow for ran-
dom variable terms. These random variable terms are called random effects, whereas the
non-random terms are called fixed effects. Hence the designation of mixed models: they
utilize a mix of fixed and random effects. Since the random effects do not take some de-
terminate value, we seek to estimate the parameters that determine their distribution rather
than the values of the random effects themselves.

Let us formulate a general GLMM in vector notation and with an arbitrary number of
fixed and random effects. Letting y be the response vector, which we pass through some
link function f(·), the GLMM is given as

f(y) = µ+ Xβ + Zη , (2.1)

where µ is an intercept vector, β is the vector of fixed effects and η is the random effect
vector with some given multivariate distribution. The random effect η is usually assumed
to be multivariate normal. X and Z are design matrices for fixed and random effects,
respectively, and relate the effects to the response appropriately.

As a simple example, take the linear random intercept model with a single fixed effect
(Cohen et al. 2013). In this model we introduce a grouping of the data where each group
intercept takes a random value. Let yij be the response for observation j from group i, and
f(.) be the link function. If the intercept has mean µ and its stochastic part in group i is
the random effect ηi ∼ N

(
0, σ2

η

)
, then

f(yij) = µ+ xijβ + ηi + εij ,

where xij is a covariate corresponding to the fixed effect β and εij ∼ N
(
0, σ2

ε

)
is the

residual. Fitting the model would involve estimating µ, β, σ2
η and σ2

ε .

5



So what is the purpose of including random effects? Take an example adapted from
Galwey (2014, 1-20). Imagine a study with repeated measurements, meaning several ob-
servations are taken from each subject, which leads to a natural grouping of the data. This
grouping by subject should be taken into account by the model to ensure the independence
of residuals, a central assumption of GLMs. One way to avoid the violation of this as-
sumption could be a model instead fit on the mean observed value for each subject, but
we would naturally prefer to retain statistical power by including all observations directly.
Another approach would be to include a subject’s identity as a fixed categorical covariate,
thereby estimating a value that is to be added to the result for observations from a given
subject. This method works but may cost us many degrees of freedom if we have a lot of
different subjects. Additionally, we are often not interested in inferences about the effect
of each individual subject, but rather the greater population of subjects.

The use of random effects can solve this issue. We can include a random effect
ηi ∼ N

(
0, σ2

η

)
, which is independent and identically distributed (IID) between differ-

ent subjects i. Fitting the model then involves estimating the variance σ2
η , which says

something about the between-subject variance of the larger population. This modeling
decision allows us to include all available data, rather than a summary statistic for each
subject, while also causing the residual term present in the linear case to only describe
within-subject variance. Thus, the reason random effects are useful is to explain the re-
sponse when the data contains a covariance structure between observations. Various forms
of covariance structures can be modelled using random effects, not just repeated measure-
ments. We can, for example, include hierarchical and nested structures, by making the
random effects covary between observations in other ways (Faraway 2016, 195).

Whether a covariate should be considered a fixed effect or a random effect is not always
clear, and the rules for making this choice are not universally agreed upon (Gelman 2005;
Searle, Casella, and McCulloch 2006). The determinant of this choice might be either
convenience or what aspects of the study system are of interest. One common convention
is using fixed effects when all levels of a covariate are present in the data, or when we are
interested in the value of the effect itself (Wilson et al. 2010). If not, we would model the
covariate as a random effect. That is, if the effects have many levels and/or these levels
are a randomly chosen subset of a larger set, or the variation in the greater population
is of interest. Under this convention an obvious fixed effect might be the subject’s sex,
while the subject’s identity in a study with repeated measurements is an obviously random
effect. In other cases the choice is more ambiguous, such as when modeling the year of
measurement for a study running over just a few years.

2.2 The animal model
The animal model (as described by Lynch and Walsh 1998; Kruuk 2004; Wilson et al. 2010;
Mrode 2014), is a type of GLMM often applied in the field of quantitative genetics. A
characteristic of the model is the inclusion of “genetic values” (also known as “breeding
values”) as random effects to model some phenotypic trait as a response. Assume this
trait was measured in N individual animals. An individual i’s genetic value gi denotes the
impact of additive genetic effects on the individual’s phenotype, that is, on the measured
value of the trait. The source of non-independence considered by this random effect is the

6



potential similarity of two individuals’ genomes, which can lead to similar genetic impacts
on the phenotypes. For instance, closely related individuals are more likely to share the
same alleles at their genes, potentially causing phenotypes of relatives to be correlated. To
account for this correlation we must quantify to what degree the variation in trait values
can be attributed to an individual’s genes.

To tease out this genetic variation, we base the covariance structure of the genetic
values on the relatedness between individuals, which we also will denote as their “kinship.”
Such a structure is obtained by having the vector of genetic values g follow the multivariate
normal distribution

g ∼ N
(
0, σ2

VA
K
)
, (2.2)

where K is the symmetric N ×N kinship matrix. The entry Kij of K contains a measure
of how similar the genomes of individuals i and j are. For off-diagonal entries a high value
of Kij denotes closely related individuals, where the range of possible values will depend
on the choice of K. For diagonal entries we usually have Kii ≥ 1, where the entries will
be greater than 1 when inbreeding (i.e. mating of close relatives) is present. We can write
Kii = 1 +Fi, where Fi is denoted as individual i’s “coefficient of inbreeding,” a measure
of how inbred i is (Wright 1922). There are many possible choices of kinship measures
Kij , as we shall explore below. In the definition of g in equation (2.2) the covariance
structure K is scaled by σ2

VA
, the additive genetic variance of the population, which is often

denoted simply as VA in evolutionary ecology literature. The additive genetic variance can
be interpreted as the part of the variance in an individual’s phenotype caused by additive
genetic effects.1 Thus, animal models are reliant on knowledge of the relatedness between
individuals, encoded by K. From the definition of the distribution of the genetic value
vector g it is clear that the genetic values of two animals will only strongly covary if their
genomes are similar and there is a high additive genetic variance present in the population.
It is also clear that the estimated value of σ2

VA
will depend on our choice of K, so going

forward we will denote σ2
VA

differently if a specific K was used to find it. For example,
σ2
κ will be the additive genetic variance implied by the relatedness measure contained in

kinship matrix κ. A simple animal model for the continuous phenotype yi of individual
i, containing only an intercept µ, random effect genetic values gi and residual term εi ∼
N
(
0, σ2

ε

)
, can be stated as

yi = µ+ gi + εi .

2.2.1 Relatedness measures

In the context of animal models, K has customarily been inferred from observed pedigrees
(i.e., family trees). Knowing from the pedigree how closely related two individuals are,
one can estimate the expected amount of alleles at their genes that are shared between the
two individuals. Animal models originated in the field of animal and plant breeding, where
accurate pedigree records are readily available (Henderson 1984). In wild study systems
pedigrees are harder to come by, as parentage must be observed in the field or inferred
based on genetic marker information (Jones and Ardren 2003).

1Non-additive genetic effects such dominance and epistatic effects are usually neglected in quantitative ge-
netics studies (Kruuk 2004).

7



More recently, an alternative method of directly inferring relatedness from the ob-
served genotypes of SNP markers has gained popularity (Bérénos et al. 2014; Speed and
Balding 2015; Gienapp et al. 2017). This genomic approach has become a viable option
due to improvements in genomic technologies (Meuwissen, Hayes, and Goddard 2016;
Ødegård et al. 2018), as the cost of large-scale genotyping is steadily decreasing and the
identification and mapping of SNP markers in different species is improving (see e.g. Ha-
gen et al. 2020, for house sparrow SNPs). In this section we will consider how to infer
relatedness from pedigrees or SNPs and consider the advantages and disadvantages of each
approach.

Relatedness inferred from pedigrees

We denote the version of the kinship matrix K that uses pedigree information as A, which
is also known as the “genetic relatedness matrix.” For clarity, genetic value vectors based
on pedigree-induced kinship A will be denoted a rather than g. The matrix A is defined
such that its ijth entry Aij denotes twice the expected probability ρij that an allele picked
at random from animal i is identical to, and originates from the same ancestor as, an allele
picked at random from animal j (Wright 1922; Weir, Anderson, and Hepler 2006). This
expected probability ρij is commonly known as the “coefficient of coancestry” (Lynch and
Walsh 1998, 135). If A is the set containing all of i and j’s (known) most recent common
ancestors, then define

Aij = 2ρij = 2
∑
k∈A

1 + Fk

2φ
k
ij

,

where the inbreeding coefficient Fk is the coefficient of coancestry between k’s parents,
and φkij is the number of individuals involved in the path in the pedigree linking i and j
through ancestor k ∈ A, including i and j themselves. By “most recent” common ancestor
we mean that none of k’s descendants are also common ancestors of i and j. We further
consider individuals to be their own ancestors. In the absence of inbreeding, we have the
following illustrative examples of coefficients of coancestry:

• i = j: here i is its own only most recent common ancestor, so A = {i}. Because
φiii = 1, we end up with ρii = 1

2 .

• i is a parent of j: again i is the only most recent common ancestor, so A = {i}.
However, φiij = 2, and thus ρij = 1

22 = 1
4 .

• i and j are full siblings: we now have two most recent common ancestors, the father
s and mother d, givingA = {s, d}. For the path through each parent φsij = φdij = 3,
so ρij = 1

23 + 1
23 = 1

4 .

When inbreeding is present these probabilities will be greater due to i and j sharing more
ancestors, which increases the likelihood that i and j’s alleles originate from the same
ancestor.

If we have a pedigree accurately describing the familial relationships in our study pop-
ulation, then the relatedness matrix A gives us a measure of expected relatedness between
each individual in the pedigree, without requiring direct knowledge about the genotypes at
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any of their loci (specific DNA positions on a chromosome). Other advantages include ex-
plicitly accounting for inbreeding, and the lack of assumptions made on mating patterns or
selection (Kruuk 2004). Furthermore, we do not in general impose any constraints on the
shape of the pedigree, but the more well-connected the pedigree, the more informative it
will be (Wilson et al. 2010). After all, if the individuals are mostly unrelated, then there is
little relatedness information to be gained from the pedigree. Methods, such as pedigree-
based relatedness, that try to infer kinships based on individual ancestries are commonly
referred to as identity-by-descent (IBD) methods.

A central concept when using the animal model with relatedness inferred from a pedi-
gree is that of a “base population,” the population for which we estimate genetic parame-
ters. For any pedigree we will inevitably have certain individuals with no known parents,
namely the root nodes in the family tree. We label their unknown parents as “phantom
parents.” Note that the phantom parents include not only the parents of the earliest co-
hort in the pedigree (known as the “founder population”), but also the parents of later
(non-founder) individuals for whom we are missing parentage data. The ensemble of all
phantom parents makes up the base population, about which we make the following as-
sumption: they are entirely unrelated and all share the same genetic parameters, and each
only has one offspring (Wilson et al. 2010; Wolak and Reid 2017). Any relatedness mea-
sure based on pedigrees is relative to its base population (Lynch and Walsh 1998, 132),
and the genetic values of the base population are assumed to have a baseline mean of zero.
Therefore, the pedigree-based animal model estimates σ2

A (i.e. the pedigree-based additive
genetic variance) for individuals in the base population and not the population as a whole.
Furthermore, the genetic value of any non-base individual can be interpreted as its devia-
tion in genetic merit from the base population. Thus, if we have a specific subpopulation
for which we wish to measure the genetic parameters, we might choose to modify our
pedigree so that its base population will equal the subpopulation of interest. Such a mod-
ification would involve disregarding the ancestors of members of this subpopulation and
assuming that all individuals in the respective subpopulation are unrelated. Either way,
the base population will necessarily be somewhat arbitrary, whether it is determined by
a deliberate choice or by the constraints of our data collection. Such an arbitrary choice
is nonetheless necessary, since the consequence of adding more and more ancestors to a
pedigree would be ρij converging to 1 for individuals far down the pedigree (Speed and
Balding 2015). The cut-off must thus occur at some point.

One benefit of the pedigree-based approach is that the unrelatedness assumption in
the base population leads A (and in particular its inverse) to be highly sparse (Henderson
1984). In fact, most pairs of non-base individuals will even not have any common ances-
tors, since the earliest level of ancestors will be unrelated. This sparseness leads to more
effective calculation of σ2

A. A disadvantage of relying on pedigrees is that the results can
be sensitive to pedigree errors; one mistake in the pedigree can cause a cascade of errors
through the generations and bias the results in unpredictable ways. Since fatherhood can
be especially difficult to establish by observation, the error rate in paternal pedigree-links
is generally high (Kruuk 2004; Ponzi, Keller, and Muff 2019). Thus, the aforementioned
error-cascades are a common and hard-to-detect flaw in pedigree-based methods.
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SNP-based relatedness measures

An inherent issue with the coefficient of coancestry is that actual (realized) relatedness
between individuals can vary greatly from the expectation denoted by ρij (Hill and Weir
2011). The actual probability of choosing two alleles that are identical by descent can
be much greater or lower than what is indicated by the pedigree-derived relatedness esti-
mate. Furthermore, as mentioned above, errors in observed pedigrees are not uncommon.
We might therefore use realized relatedness rather than expected relatedness in order to
get a more accurate measure of genome similarity (Hayes, Visscher, and Goddard 2009).
For the direct estimation of the relatedness between two individuals we need so-called
identity-by-state (IBS) methods. However, the genomes of two individuals of the same
species are usually very similar; for example, in humans, the 1000 Genomes Project Con-
sortium (2015) found that two genomes typically differed at only 0.6% of the base pairs of
nucleotides that make up the full genome. Therefore, when comparing genomes, we limit
our focus to the loci where the genotypes do vary within a population.

A single nucleotide polymorphism, or SNP, is a genetic marker where the second most
common allele occurs in a non-trivial proportion of the population. We will only consider
diallelic loci, i.e. specific positions on a chromosome that only have two possible alleles.
Denote the most common allele as the “major allele” and the other (second most common)
allele as the “minor allele.” Thus, we consider a SNP to be present at a locus if the rate of
occurrence of the minor allele, the minor allele frequency, is sufficiently large (e.g. 1% or
5%) on that locus.

If we have knowledge about the genotypes of M SNPs for each individual in a popu-
lation of size N , we can define the N ×M genotype matrix V. The entries of this matrix
have values vim ∈ {0, 1, 2} and denote the number of copies of the “alternate” (usually
minor) allele. Thus, when vim = 0 individual i’smth SNP is homozygous with two copies
of the “reference” (usually major) allele, when vim = 1 the SNP is heterozygous with
one copy of each allele, and when vim = 2 the SNP is homozygous with two copies of
the alternate allele. SNP-based relatedness matrices, generally called genetic relationship
matrices (GRMs), all derive from the genotype matrix in some way (Speed and Balding
2015). Many of these definitions also include SNP m’s alternate allele frequency pm to
weigh the importance of each SNP. The rationale behind the weighting is that two individ-
uals sharing a minor allele with a very low allele frequency carries more information than
sharing a minor allele that is almost just as likely as the major allele.

One example of this weighing is the GRM presented by VanRaden (2008), which is
widely used (Crossa et al. 2017). This GRM, which we will mark by GVR, has its entries
defined as

(GVR)ij =

∑M
m=1 (vim − 2pm) (vjm − 2pm)

2
∑M
m=1 pm (1− pm)

=
(Vi − 2p) (Vj − 2p)

>

2
∑M
m=1 pm (1− pm)

, (2.3)

where Vk denotes the kth row of V, and p is the vector of alternate allele frequencies. In
other words,

GVR = ṼṼ>, where entries ṽim =
vim − 2pm√

2
∑M
m=1 pm (1− pm)

.
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GVR is standardized so that its diagonal has a mean value close to 1 (Legarra 2016). In
other words, the scaling is similar to A, with the diagonal entries close to 1 if i is outbred,
i.e. not inbred. Thus we can again denote the inbreeding coefficient as Fi = (GVR)ii − 1.

A large number of GRMs exist in addition to GVR. For instance, the GRM introduced
by Yang et al. (2011) is also widely used (see e.g. Bérénos et al. 2014; Al Abri et al. 2017).
Speed and Balding (2015) suggest a general class of GRMs where a tuning parameter α is
introduced, letting us define any number of genomic relationship matrices Gα. An even
more general class of kinship estimators was found by Wang, Sverdlov, and Thompson
(2017). In another approach, Wientjes et al. (2017) define K in such a way that can also
be used in estimation of between-population genetic correlations.

Edwards (2015) constructs two IBD-based kinship matrices that are not derived from
pedigrees. Instead, they rely on inferring relatedness from shared segments of DNA on the
haplotype-level, that is, looking at each copy of a chromosome separately. Long regions
of shared genes would suggest the existence of recent common ancestors, and thereby
indicate the individuals are closely related. Haplotype-level methods such as these require
the extra step of “phasing” the genotype data. Gametic phasing of diploid individuals
involves inferring for each locus which of the two alleles on a locus is located on which of
the two chromosomes (Excoffier, Laval, and Balding 2003). For each locus we thus obtain
two haplotypes, one associated with each chromosome, letting us know which alleles in
the genome are inherited from the same parent.

All this is to say that we have a plethora of GRMs to choose from. Furthermore, the
relatedness measures will depend on which SNPs/loci are genotyped, the technology used
to perform said genotyping and, in the case of haplotype-level methods, the choice of
phasing method. There is thus no universally correct choice of kinship matrix. Rather,
the choice should depend on the data at hand and the genetic architecture of the study
population (Speed and Balding 2015).

Note that in general the base population (i.e., the population for which we estimate
the genetic parameters) in genome-based methods will differ from the base population in
the pedigree-scenario, where the base population equals the set of phantom parents. In
the IBS kinship methods with single-SNP comparisons, such as GVR, the base population
will correspond to the population that the allele frequency is derived from (Hayes, Viss-
cher, and Goddard 2009; Wientjes et al. 2017). Thus, single-SNP comparison methods
have the potential advantage of letting the entire phenotyped population make up the base
population, in contrast to pedigree-based methods. Unlike pedigree-based IBD methods,
pedigree-free IBD methods such as those proposed by Edwards (2015) have less clearly
defined base populations. In such methods genes must be traced back to the point in time
where they first appeared by mutation, rather than tracing the genes back to the founders of
a pedigree (Thompson 2013), leading to a base population comprised of disparate genes in
various distant ancestors. Overall, a consequence of the discrepancies in base population
that are caused by intrinsic differences between kinship estimators is that comparing addi-
tive genetic variances obtained from animal models relying on different kinship matrices
K is problematic, since the results apply to different base populations.

Issues with comparison of results pertaining to different base populations can be par-
tially resolved by rescaling the obtained variances to refer to the same base population,
as described by Legarra (2016). Suppose we have have two kinship matrices K1 and K2
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(with possibly different base populations) that have been used to produce two separate ad-
ditive genetic variance estimates σ̂2

K1
and σ̂2

K2
. Further, suppose we are interested in the

additive genetic variance of a specific base population B, which is a subset of individuals
whose kinships are described by both of our two kinship matrices. Letting Li (for i = 1
or i = 2) be a shrunken version of Ki which contains only the kinships pertaining to the
preferred base population B, we can scale the variance estimates so that

σ̂2
Li

=
(
diag (Li)− Li

)
σ2

Ki
, (2.4)

where the first term is the mean of the diagonal of Li and second term is the mean value of
the entries of Li. Legarra (2016) then posits that the scaled additive genetic variances σ̂2

L1

and σ̂2
L2

will both refer to our chosen base population B and can thus be compared directly.
GRMs will generally be dense, that is, have very few elements equal to zero. An

example of this denseness is clear from the definition (2.3). Even unrelated individuals
will share alleles at a small amount of SNPs, and the use of pm causes entries to almost
never equal zero. Denseness in the GRMs is the major disadvantage of genome-derived
relatedness compared to pedigree-derived relatedness, as it leads to higher computational
cost and thus slower calculations. However, the computational cost is outweighed by
improvements in the accuracy gained from using GRMs rather than A (Bérénos et al. 2014;
Al Abri et al. 2017). Furthermore, genomic methods are not prone to the fickle biases
induced by pedigree errors, though genomic data can also be used to validate and correct
for mistakes in pedigrees (Flanagan and Jones 2019). On the other hand, the efficacy of
using GRMs is reliant on the number of genotyped SNPs being sufficiently high. In fact,
pedigrees can perform better when only a few genetic markers are available (Nietlisbach
et al. 2017). Conversely, Bérénos et al. (2014) found that their additive genetic variance
estimates stabilized at around 20 000 genotyped SNPs and that adding more markers did
not lead to more accurate estimates. Thus, adding SNPs after a certain point does not
improve results.

2.2.2 Complicating environmental effects
A major use of the animal model is in the estimation of σ2

VA
– the additive genetic variance

in a population (Kruuk 2004; Wilson et al. 2010). In order to correctly estimate this
parameter, we must account for other (possibly confounding) sources of covariance. Such
covariance sources should therefore be included additional fixed or random effects in the
animal model. These sources of covariance can include simple correlating elements such
as time of measurement and individual traits such as sex, but also environmental effects
that can falsely be interpreted by the model as additive genetic effects.

As a first example, let us look at the “common environmental effects” (Kruuk and
Hadfield 2007). These effects are problematic if individuals residing in the same environ-
ment are more likely to have similar genotypes. For instance siblings, who tend to be quite
genetically similar, are usually born in and reside in the same environment. Thus, the simi-
larities in phenotype we see in such relatives might actually partially be a product of living
in similar environments, rather than due to genetic similarities. An animal model that does
not account for individuals living in the same environments might therefore overestimate
the additive genetic variance present. When repeated measurements are present, one must
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also consider “permanent environmental effects,” namely effects unique to an individual’s
personal environment. Should repeated measurements be present in the data, it is recom-
mended to include an ID random effect (Ponzi et al. 2018), as mentioned in Section 2.1.
The inclusion of this effect will capture the correlation between measurements from the
same individual. The ID effect will also contain the non-additive genetic effects that are
not captured by genetic values (Wilson et al. 2010).

Failure to include confounding environmental effects such as the “common environ-
mental effects” might lead to upward bias in additive genetic variance estimates, and it
violates the independence of residuals assumption of a GLMM. Their inclusion also facil-
itates the study of the environmental effects, which might be of interest in and of them-
selves (Wilson et al. 2010). Similarly, a failure to include individual traits (like sex) as
fixed effects might lead to an inflated estimate of the residual variance σ2

ε .
With the inclusion of such extra effects, the basic animal model for a continuous trait

y withB fixed effects and L random effects in addition to the genetic value gi and residual
εij might be stated as follows. Let yij be the phenotypic measurement j for individual
i, and x(b)

ij the corresponding measurement of fixed effect b ∈ {1, . . . , B}. Let the addi-

tional random effects z(l)
ij have a normal distribution with zero mean and some covariance

structure Σl, so that z(l) ∼ N
(
0, σ2

l Σl

)
for l ∈ {1, . . . , L} are the vectors of additional

random effects. We let each random effect be independent of the other random effects and
the genetic value, i.e. z(l) ⊥ z(l′) ⊥ gi for l 6= l′. Then we can write

yij = µ+

B∑
b=1

x
(b)
ij βb +

L∑
l=1

z
(l)
ij + gi + εij . (2.5)

The matrix form of this model is simply equation (2.1), with f(y) = y for a continuous
y and with the genetic value vector g and residual effect vector ε included in η. Since all
random effects in equation (2.5) are normally distributed with zero mean, we can write

E(yij |xij) = µ+

B∑
b=1

x
(b)
ij βb and Var(yij |xij) =

L∑
l=1

σ2
l + σ2

VA
+ σ2

ε .

Note that whenever we include a fixed effect, it changes the interpretation of our results
for the additive genetic variance. Such a model would give the σ2

VA
conditioned on the

value of the fixed effect. If we, for example, include sex as a categorical fixed effect, we
would estimate the sex-specific σ2

VA
, that is, the additive genetic variance of a population

of animals given their sexes.

2.2.3 Genetic groups extension of the animal model
As mentioned, the estimates of genetic parameters such as baseline mean genetic values
and additive genetic variance produced by animal model apply to the base population.
Thus, the animal model makes an implicit assumption that these genetic parameters are
uniform across the entire base population; it does not allow for subpopulations within the
base population to differ genetically. What if this assumption does not hold? Consider the
example of a population that has significant immigration from a distant population over

13



the study period (Wolak and Reid 2017). In the pedigree-based GRM these immigrants
would be part of the base population, since any measured immigrant will necessarily have
unknown parents, whereas in the genomic-based GRM they would be part of the base
population if they are used to calculate allele frequencies. If the distant population has
systematically different genotypes, then the assumption that the base population lacks any
genetic structure is violated. The violation of this assumption could lead the estimated
mean genetic values and additive genetic variances to be biased towards their values among
immigrants rather than the original study population.

These issues lead us to consider the possibility of partitioning the base population into
genetic groups (Quaas and Pollak 1981; Quaas 1988; Wolak and Reid 2017). Rather than
assuming that the population has genetic values g ∼ N

(
0, σ2

VA
K
)
, each genetic group is

allowed a different mean genetic value and possibly a different additive genetic variance
(Muff et al. 2019; Rio et al. 2020a). For example, individuals in genetic group r will have
mean genetic value γr, which we will also refer to as the “genetic group effect” of group
r. The mechanism of partitioning the study population will differ when working with
pedigrees or with genomic data. We will be differentiating between “purebred” individuals
and “admixed” individuals. Purebred individuals are individuals known to belong to a
single genetic group, while admixed individuals are allowed partial membership in more
than one group. The immigrant problem above could be solved by assigning the known
founders of the study population to a “native” genetic group 1 and known immigrants to
an “immigrant” genetic group 2, thereby incorporating the genetic structure in the base
population into the model (as was done by Wolak and Reid 2016 and Charmantier et
al. 2016).

Extending the animal model to include genetic groups not only prevents the aforemen-
tioned bias, but also allows us to study new and interesting parameters. In the immigrant
example, one could study the differences between the two populations, while in general
one could investigate the existence of genetic structure within the base population. For
example, one could investigate whether different subsets of the base population have dif-
ferent genetic parameters.

For admixed individuals it is not straightforward to split the genetic variance into
group-specific genetic variances, as there is an additional source of variance that must be
accounted for, namely the segregation variance (Slatkin and Lande 1994). This variance
manifests due to group differences in allele effects and the level of linkage disequilibrium
(LD; correlation between genotypes at different loci). Segregation variances can grow
non-trivially large when considering admixed individuals in plant or animal breeding sce-
narios, when purebreds are crossed to form admixed individuals (see e.g. Rio et al. 2020a),
or when the number of loci deciding the phenotypes is very low (Muff et al. 2019). We
denote the segregation variance between groups r and r′ as σ2

Srr′
. Since a segregation vari-

ance occurs between all combinations of groups, R(R− 1) segregation variances must be
estimated in the presence ofR genetic groups, quickly making the model much more com-
putationally cumbersome as R increases. Thus, models that include segregation variances
(such as Lo, Fernando, and Grossman 1993, Cantet and Fernando 1995 and Garcı́a-Cortés
and Toro 2006) require a lot more statistical power to fit. Luckily, the segregation variance
will be small when using the infinitesimal model, that is, under the assumption that com-
plex phenotypes are determined by very small contributions from genes at a large number
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of loci. This assumption is very common in study of wild systems (Wilson et al. 2010).
Thus, we can usually ignore segregation variance in such studies.

Pedigree-based genetic groups

If we have a pedigree available, it can be used to derive expected group membership pro-
portions by tracing all matings and applying the usual Mendelian rules of inheritance
(Schaeffer 1991; Wolak and Reid 2017). Each phantom parent must be assigned as a
purebred in a single genetic group, which will depend on the criteria by which we de-
fine our groups (e.g. immigrant vs. non-immigrant). Thus, the base population will be
partitioned into individuals belonging purely to different groups. Each partitioned part of
the base population can then be considered the base population of a single genetic group.
Define qir ∈ [0, 1] as the membership proportion of individual i in genetic group r, so that

R∑
r=1

qir = 1 .

If i is a phantom parent, then qir is 1 for the single group i belongs to. On the other
hand, if i is not a phantom parent, we let qir equal the mean of each of i’s (possibly
phantom) parents’ membership proportions in r. Thus, group membership is inherited
through the generations, and all non-phantom individuals can have partial membership in
various groups depending on their ancestry. This inheritance of group memberships will
be true on expectation, considering an individual inherits half of their genetic material
from each parent. So, in the same way that Aij represents an expected probability, qir
represents an expected group membership proportion.

To begin with, only let the genetic groups differ in their mean genetic value. We
introduce ui, an individual’s “total additive genetic value,” which can be defined as

ui =

R∑
r=1

qirγr + ai ,

where R is the number of genetic groups, and ai is an entry in the pedigree-based genetic
value vector a, while the genetic group effects γr and group membership proportions qir
are as defined previously. The above definition of the total genetic value ui causes its mean
to be a weighted average of the means of the different genetic groups, where the weights
are i’s group membership proportions. Let Q be an N ×R matrix with entries qir and let
γ be a vector of length R containing the genetic group effects. The vector of total additive
effects u then has distribution N

(
Qγ, σ2

AA
)
.

One way to implement genetic group effects into the animal model is by estimating
γr explicitly as a fixed effect for each group r. For identifiability reasons we then add
the constraint that one of the groups, say r′, has mean total additive genetic effect equal
to zero, or we will have an infinite number of solutions. This group will then serve as a
baseline with γr′ = 0. The effects γr for the other groups will denote deviation in mean
total additive genetic effect from the baseline group.

We can also have the genetic groups to differ further by allowing heterogeneous addi-
tive genetic variance, through separating the genetic value vector a into a sum of “partial
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genetic values” (Muff et al. 2019). Ignoring segregation variances for the reasons outlined
previously, let a =

∑R
r=1 a

(r), where a(r) is the vector of partial genetic values with the
individual-specific partial genetic values a(r)

i as its entries. Updating the definition of ui,
we can say

ui =

R∑
r=1

[
qirγr + a

(r)
i

]
. (2.6)

Each partial genetic value corresponds to the contribution from a genetic group r, and has
its own N ×N group-specific relatedness matrix Ar resulting in a group-specific genetic
additive genetic variance σ2

Ar
. One practical interpretation of this partition is that a(r)

represents the genetic merit of genes inherited from the base population of group r. Thus,
summing these values will once again give the genetic value. We will assume the partial
genetic values to be independent because they originate from different base populations.
Therefore, we can fit each partial genetic value as a random effect in the animal model.
When introducing this decomposition of the random component of u, we can write

u ∼ N

(
Qγ,

R∑
r=1

σ2
Ar

Ar

)
. (2.7)

When it comes to finding Ar, consider the generalized Cholesky decomposition

A = TDT> , (2.8)

where T will be an N × N lower triangular matrix with 1s on the diagonal and D is
an N × N diagonal matrix (Mrode 2014, 23-25). T encodes for the gene flow between
generations, so that its ijth entry indicates the proportion of j’s genes that i is expected to
possess. The lower triangular entries of T are given by

tii = 1 and tij =
1

2

∑
p∈Pi

tpj , j < i ,

where Pi is the set containing each known parent of i. The diagonal entries tii are trivially
1, since you possess all of your own genes. The non-diagonal entries tij can be interpreted
as follows: The proportion of j’s genes that i is expected to inherit equals the mean of
the respective proportions of genes that i’s parents inherited from j. Computing this mean
is straightforward when both of i’s parents are known. However, if at least one parent is
unknown, we label these missing parents as phantom parents, like before. Phantom parents
are assumed to be entirely unrelated to all individuals but their descendants. Thus, they
have inherited none of j’s genes. Hence their contribution to the mean would be 0, which
is why we only sum over known parents in the above expression.

A group-specific version of T can be defined in a way that retains these properties
within a given group. For group r define Tr such that column j of T is multiplied by qjr,
i.e. Tr has entries

t
(r)
jj = qjr and t

(r)
ij = tijqjr , j < i .

Then t(r)ij denotes the expected proportion of j’s genes within group r that i possesses.
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Meanwhile, the D in equation (2.8) scales the Mendelian sampling variance in genetic
values according to the number of unknown parents and how inbred said parents are. The
matrix is defined such that

dii = 1− 1

4

∑
p∈Pi

(1 + Fp) , (2.9)

where Fp is the coefficient of inbreeding as defined previously. Note that dii is smaller
when more parents are known. Thus, there is more variance in i’s genetic value the fewer
of i’s parents are known, which is intuitive as we then have less relatedness information
for i, which causes larger uncertainty in the actual genetic value. We can also see from
this expression that an individual’s genetic value will have less variance if its parents are
severely inbred, which results in less diversity in the genes i can inherit. To get a group-
specific Dr, we modify definition (2.9) of dii so that

d
(r)
ii = 1−

 1

|Pi|
∑
p∈Pi

qpr

1

4

∑
p∈Pi

(1 + Fp)

 ,

where |Pi| is the number of known parents of i. In other words, we scale the second term
in the definition of dii by the mean group membership proportion among known parents.
This definition of Dr is an approximation, as an exact expression would also use group-
specific inbreeding coefficients F (r)

p in the definition of d(r)
ii . The approximation makes

the model more computationally feasible, without having a critical impact on the results
(Muff et al. 2019). With Tr and Dr available, we can compute the group-specific genetic
relatedness matrices using the expression

Ar = TrDrT
>
r .

So, through the use of genetic group effects γr and partial genetic values a(r)
i , we can

treat u as a genetic value vector where each individual’s mean genetic value and additive
genetic variance depends on its group membership proportions. Using the notation from
equation (2.5), with ai replaced by the definition of ui in equation (2.6), we can state the
genetic groups animal model with group-specific mean genetic value and additive genetic
variance as

yij = µ+

B∑
b=1

x
(b)
ij βb +

R∑
r=1

(
qirγr + g

(r)
i

)
+

L∑
l=1

z
(l)
ij + εij , (2.10)

where the partial genetic value vectors a(r) are distributed as N
(
0, σ2

Ar
Ar

)
.

Genome-based genetic groups

In the genomic setting, we cannot trace the inheritance of expected partial group mem-
bership qir through the generations via knowledge of the pedigree. We therefore need
some other way to determine group membership proportions for admixed individuals.
Strandén and Mäntysaari (2013) suggest a genetic groups model, which was applied in
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Makgahlela et al. (2013). Though the model is derived based on pedigrees, the authors
claim genome-based genetic relationship matrices can be used in place of pedigree-based
genetic relationship matrices. However, this model involves an approximation based on an
assumption that the relatedness between an individuals’ parents is zero. In other words, no
inbreeding is present, which is not realistic in wild populations. Weir and Goudet (2017)
present a hierarchical model which incorporates both relatedness and population structure
(i.e. genetic groups), but does not use an animal model formulation.

Rio et al. (2020a) propose a genome-based genetic group animal model denoted as
MAGBLUP-RI (multigroup admixed genomic best linear unbiased prediction random in-
dividual), that solves the issue of group membership proportions by using the local ances-
try of each individual allele. An allele’s local ancestry indicates which group the allele has
descended from. MAGBLUP-RI involves defining the total genetic value Ui of individual
i as a sum of contributions to the phenotype from each genotyped loci, where the contribu-
tion depends on the local ancestry of that locus. All loci are assumed to be homozygous,
that is, they have two copies of the same allele. Let βref

mr or βalt
mr be the contribution of

locus m specific to group r ∈ {1, 2}, if locus m is homozygous with two reference or
alternate alleles, respectively. Thus, we define the total genetic value

Ui =

M∑
m=1

2∑
r=1

Λimr
[
βref
mr +Wim

(
βalt
mr − βref

mr

)]
,

where Λimr is a random variable indicating whether the local ancestry of i’s mth locus is
group r and Wim is a random variable indicating which allele is homozygously present
at m. Using our notation for genotypes from Section 2.2.1, Wim = 0 indicates vim = 0
and Wim = 1 indicates vim = 2, while vim 6= 1 due to the homozygosity assumption.
We will give more details on the model in Section 3.1, but for now note that the main
MAGBLUP-RI results are the group-specific GRMs with ijth entries∑M

m=1 λimr (wim − p̂mr)λjmr (wjm − p̂mr)∑M
m=1 λimrλjmrp̂mr (1− p̂mr)

× θ̂(r)
ij = Γ̂

(r)
ij × θ̂

(r)
ij (2.11)

and a segregation covariance matrix ∆ with ijth entries

∆ij = θ̂
(1)
ij − π̂i1π̂j1 . (2.12)

The lowercase variables λ and w denote realizations of the random indicators Λ and W ,
respectively, while p̂mr is the estimated alternate allele frequency within group r, π̂ir
is i’s estimated group membership proportion in group r and θ̂

(r)
ij is the estimate of i

and j’s shared group membership in group r. Note that the factor Γ̂
(r)
ij in expression

(2.11) is a modified version of the GRM GVR proposed by VanRaden (2008), which we
defined in equation (2.3). Firstly, the modification involves multiplying all terms in both
the numerator sum and denominator sum in GVR by λimrλjmr. Thus, genotypes only
contribute to the relatedness estimate if they share local ancestry. Secondly, we no longer
scale allele frequency centering by 2 since w can only take values 0 or 1, not 2. Finally,
these group-specific relatednesses Γ̂

(r)
ij are scaled by θ̂(r)

ij , the shared group membership of
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the individuals. The scaling is performed so that the impact on the group-specific additive
genetic variance from a pair of individuals only comes from the proportion of their genes
that originate from the same group.

In order to use the MAGBLUP-RI model to analyze wild study systems rather than
artificial breeding setups, we have to introduce some modeling extensions. First, in the
plant or animal breeding context, an individual can be assumed to be homozygous on (al-
most) every locus, that is, each locus has two copies of the same allele (Chase 1952). Such
individuals are typically produced via systematically enforced breeding attempts between
close relatives, resulting in extreme inbreeding (Beck et al. 2000). Thus, Rio et al. (2020a)
assume homozygosity at every locus, which is also why MAGBLUP-RI only considers the
local ancestry of each locus, not each allele. As animals in wild populations usually breed
freely without human intervention, these populations have a high amount of heterozygous
loci (that is, loci with at least two different alleles), even in populations where inbreed-
ing occurs, unless the population is small enough that genetic drift becomes a major factor
(Conner and Hartl 2004). Second, in a controlled breeding setup it is easy to restrict breed-
ing to merely two genetic groups. Rio et al. (2020a) therefore assume the existence of only
two genetic groups, which simplifies the analysis of the segregation variance. On the other
hand, there is the potential for an arbitrary number of genetic groups to be present in a wild
system, which justifies the need to extend the model to work in the case of more groups.
In Section 3.1, we will present an extension of the MAGBLUP-RI model which allows for
heterozygosity and an arbitrary number of genetic groups.

In a wild population local ancestry information is not readily available, and must there-
fore be inferred from the genotype data. Fortunately, many methods that perform this in-
ference have been developed (Padhukasahasram 2014; Geza et al. 2019). These methods
generally rely on the genotyped population having been partitioned so that each individual
is designated as either purebred in a specific group or as admixed. Purebred individuals
in a group are used as a reference for what the genomes of individuals from that group
usually look like. The local ancestry inference methods then use these reference genomes
to assign tracts of each admixed individual’s genome as descended from a specific group.
Thus, the local ancestries of the alleles of a purebred individual are all the same (a sin-
gle group), while the local ancestries of the alleles within an admixed individual can vary
across its genome.

2.3 Bayesian inference
In this analysis we will adopt a Bayesian framework for statistical inference (Givens and
Hoeting 2012, 11-13). The Bayesian approach considers all model parameters as stochas-
tic variables, rather than having some fixed unknown value. For the animal model this
assumption would mean that all fixed effects (including genetic group effects gr) and the
variances of all random effects are treated as random variables.

As part of the Bayesian approach, the model parameter vector ψ is given some prior
distribution f(ψ), indicating a priori knowledge or belief about the parameters. Let x be
a data vector containing all observations, and L(ψ|x) be the likelihood function for the
model, indicating how well values of ψ fit the data. Using Bayes’ theorem, we can then
update our prior distribution to incorporate the information we have learned from the data.
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Thus, the updated distribution f(ψ|x) for ψ given x, the posterior distribution, is found
to be

f(ψ|x) = cL(ψ|x)f(ψ) ,

where c is a normalizing constant, i.e.

c−1 =

∫ ∞
−∞
L(ψ|x)f(ψ) dψ ,

making f(ψ|x) a proper distribution. Having a full posterior distribution for a parameter,
rather than a point estimate, gives us more information to work with. Uncertainty esti-
mates are already included in the shape and wideness of the posterior. If we are interested
in point estimates we can, for example, consider the posterior mode or posterior mean. He
and Hodges (2008) recommend using posterior modes for variance components such as the
additive genetic variance in the animal model, because their posteriors are often skewed.
As an alternative to the confidence intervals obtained in frequentist statistics, we can sim-
ply examine the posterior distribution’s quantiles, which in the Bayesian context are called
credible intervals (CI). A commonly considered CI is the highest posterior density credible
interval (HPD CI), which is the narrowest possible credible interval containing (1− α)%
of the probability weight.

The major challenge in Bayesian statistics is that finding c is often hard, as the above
integral usually does not have a closed form solution. Finding the posterior distributions
therefore often involves heavy computations, for example in numerical integration of (2.3).
In some special cases we can pick so-called conjugate priors, which ensure the posterior
distribution is of the same family as the prior, thus giving a closed-form expression for the
posterior distribution. However, conjugate priors usually do not exist. To investigate the
impact of the choice of prior, one can estimate f(ψ|x) when different priors are chosen to
see how the posterior changes, a so-called prior sensitivity analysis.

Here we will use the Integrated Nested Laplace Approximation (INLA) technique to
estimate the posteriors in the Bayesian model (Rue, Martino, and Chopin 2009). In short,
INLA allows for fast Bayesian inference in latent Gaussian models by computing accurate
approximations to the model posteriors. The class of latent Gaussian models includes a
large number of models, such as the animal model (Steinsland and Jensen 2010).
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Chapter 3
Methods

We will apply two different types of genetic groups animal models to measurements of var-
ious phenotypes of house sparrows living on islands in Northern Norway. One of the model
setups will be the pedigree-based genetic groups model established in Section 2.2.3 and
the other will be our genome-based genetic groups model, extended from the MAGBLUP-
RI model introduced by Rio et al. (2020a). In implementing the models on a real house
sparrow data set, our genetic groups will be allowed to differ in both their mean genetic
values and in their additive genetic variance, and the genetic group structure will be based
on which subset of islands the sparrows originate from. The primary focus will be a test
of the genome-based genetic groups model’s validity by checking if it provides reasonable
results (i.e. results comparable to the pedigree-based model). To this end we try the mod-
els on three different phenotypes. Biological analysis of the results will be secondary, as
Muff et al. (2019) already performed such an analysis of two of the phenotypes using the
pedigree-based model. All R code and calls to other software used to generate results in
the project is compiled in Appendix B.

3.1 Extension of MAGBLUP-RI

What follows is an extended version of MAGBLUP-RI (Rio et al. 2020a), as discussed
in Section 2.2.3. The extension allows us to include heterozygosity without dominance
effects rather than only homozygous lines, and R > 2 genetic groups. To take heterozy-
gosity into account we will consider the two allele haplotypes at each locus separately, and
thus expand MAGBLUP-RI to be a haplotype-level method. We thus split the genotype
Wim with local ancestry Λimr into two haplotypes W (1)

im and W (2)
im with local ancestries

Λ
(1)
imr and Λ

(2)
imr, respectively. The extension from 2 to an arbitrary number R genetic

groups is nontrivial, especially when segregation variances are involved. In this section
we start by defining all necessary notation, then derive the covariance matrices between
total genetic value vectors. Finally, we give estimators for all relevant parameters and a
full statement of the genome-based genetic groups animal model.
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3.1.1 Definitions
Again let the “genomic total additive genetic value” Ui of individual i be a sum of genetic
contributions from each allele. In Section 2.2.3 we gave the MAGBLUP-RI definition of
βref
mr and βref

mr as the contributions to the phenotype from a homozygous locus m originat-
ing from group r, with two reference or alternate alleles, respectively. We now assume
these contributions to be equally distributed between the two alleles at the locus, so that
a reference or alternate allele located on locus m ∈ {1, . . . ,M} and originating from ge-
netic group r ∈ {1, . . . , R} will have deterministic contributions 1

2β
ref
mr or 1

2β
alt
mr to the

phenotype, respectively. We can think of these contributions as the “allele effects” of each
allele. A homozygous locus with two reference alleles will still have a total contribution
βref
mr, but the contribution from a heterozygous locus will equal the mean of the possible

homozygous contributions. In other words, we assume no dominance effects, since the
contributions from all heterozygous loci lie exactly between those loci’s two possible ho-
mozygous contributions. Further note that we (like Rio et al. (2020a)) model allele effects
to be group-specific, that is, two copies of the same allele can have a different effect if they
originate from a different genetic group. If, for example, one of the haplotypes at locus m
is a reference allele descended from group r, and the other haplotype is an alternate allele
descended from group r′, then the contribution from locus m is 1

2

(
βref
mr + βalt

mr′

)
.

To indicate an allele’s local ancestry (i.e. which genetic group it is descended from),
we will use the random indicator variable Λ

(h)
imr, where h ∈ {1, 2} indicates which of

the two copies of the chromosome strands in a diploid organism the allele is located on.
Practically, we will not differentiate between h = 1 or h = 2. We will assume that the
local ancestries of these two alleles, each originating from one of the two chromosome
strands in a diploid organism, are interchangeable when it comes to their likelihood of
descent from a particular group. In other words, we assume that Λ

(1)
imr and Λ

(2)
imr are IID.

Λ
(h)
imr has the possible outcomes

Λ
(h)
imr =

{
1, if the allele is descended from group r,
0, otherwise.

The random vector Λ
(h)
im =

[
Λ

(h)
im1,Λ

(h)
im2, . . . ,Λ

(h)
imR

]
has a categorical distribution, that

is, a multinomial distribution with only one trial. Thus, exactly one of the entries of
Λ

(h)
im equals 1, while the other entries equal 0. We parameterize the distribution with

the probabilities πir = P
(

Λ
(h)
imr = 1

)
for each group r, where

∑R
r=1 πir = 1. The

probability πir can be interpreted as i’s true group membership proportion in group r.
Note the difference in interpretation between πir and the previously used qir: the latter is
i’s IBD-derived expected group membership proportion, given that the pedigree is correct,
while the former is its actual group membership proportion.

An important part of analyzing the covariance structure between total genetic values
is the degree to which local ancestry tracts of two individuals’ genomes overlap. We
therefore define some parameters that measure just this. We denote by θ(rr′)

ij the proportion
of alleles where i’s allele belongs to group r and j’s allele belongs to group r′, which can
also be written as E

(
Λ

(h)
imrΛ

(h)
jmr′

)
. θrr

′

ij thus measures the genome-overlap between i’s
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r-descended alleles and j’s r′-descended alleles. In general θ(rr′)
ij 6= θ

(r′r)
ij for r 6= r′,

and θ(rr′)
ij does not depend on locus m and DNA strand h since the distribution of Λ

(h′)
jmr

does not depend on m or h. In particular θ(rr)
ij , which we denote θ(r)

ij for simplicity, is the
shared group ancestry between individuals i and j in group r. An illustrative example of
these overlapping genome-regions is given in Figure 3.1, with R = 3 and θ(13)

ij , θ(2)
ij , θ(31)

ij

θ
(32)
ij all equal to 0. Take extra note of the difference between θ(12)

ij and θ(21)
ij . We can

now define the covariance of two individuals’ allele ancestries at a locus m using π and
θ. Let Cov

(
Λ

(h)
imr,Λ

(h′)
jmr′

)
be denoted by ∆

(rr′)
ij (or simply ∆

(r)
ij if r = r′), which by the

definition of covariance equals θ(rr′)
ij −πirπjr′ . Note that this covariance does not depend

on the values of h and h′, since the designations h = 1 and h = 2 are arbitrary when
considering two different individuals – they are only relevant within a given individual.

Haplotypes are given by the random variable W (h)
im , which indicates the presence of

the alternate allele at the mth locus m on chromosome strand h in individual i’s genome.
Thus, a genotype vim (as defined in Section 2.2.1) will equal the sum of the haplotypes
W

(1)
im and W (2)

im . We specify the distribution of haplotype W (h)
im conditional on its group

membership, letting

W
(h)
im

∣∣∣ (Λ
(h)
imr = 1

)
∼ Bernoulli(pmr) .

The Bernoulli-parameter pmr can be interpreted as the group-specific allele frequency of
the alternate allele at locusm in group r, that is, how common the alternate allele is within
that group. In other words, the genetic groups differ both in their allele effects and in
their allele frequencies. Further note that we, similar to local ancestries, treat the two
haplotypes on m with indices h = 1 and h = 2 separately, merely letting them share the
same distribution. Let Γ

(r)
ij denote the within-group genetic similarity of two individuals

i 6= j, that is, the conditional correlation

Γ
(r)
ij = Corr

(
W

(h)
im , W

(h′)
jm

∣∣∣ Λ
(h)
imr = 1, Λ

(h′)
jmr = 1

)
,

regardless of whether h = h′ or not. Since it measures a genetic similarity of haplotypes
in a group, Γ

(r)
ij can be considered a relatedness conditional on group membership.

r = 1 r = 2 r = 3

r = 3r = 1r = 2

θ
(12)
ij θ

(1)
ij θ

(21)
ij θ

(23)
ij θ

(3)
ij

Ind. i

Ind. j

Figure 3.1: An example of a possible set of overlapping local ancestry regions in two individuals’
genomes. In this particular example we have R = 3 and θ(13)ij , θ(2)ij , θ(31)ij θ

(32)
ij all equal to zero.

Furthermore, all local ancestry regions are contiguous, which will not be the case in general.
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We now define the genomic total genetic value Ui of individual i as the sum over the
contributions of both alleles (with h = 1 or h = 2) at all loci m and from all groups r,

Ui =

M∑
m=1

2∑
h=1

R∑
r=1

1

2
Λ

(h)
imr

[
βref
mr +W

(h)
im

(
βalt
mr − βref

mr

)]
. (3.1)

From the definition it is clear that locus m contributes the mean of the effects of its two
alleles, which are dependent on the alleles’ local ancestry and their haplotypes. The local
ancestry Λ

(r)
imr decides which group contributes a certain allele’s effect, and W (h)

im decides
whether said contribution comes from a reference or alternate allele. We can use this
definition of total genetic value to define the genetic group effect γr of group r. Let
the genetic group effect equal the sum of expected locus contributions γmr if all alleles
belonged to that group, that is, Λ

(h)
imr = 1 for all m and both h, so that

γr =

M∑
m=1

γmr =

M∑
m=1

2∑
h=1

1

2

[
βref
mr + pmr

(
βalt
mr − βref

mr

)]
.

Using this result we can see (Appendix A.1) that the expected total genetic value of indi-
vidual i is

E (Ui) =

R∑
r=1

πirγr .

Thus the mean total genetic value of individual i is a weighted sum of the group means,
where the weights are the group membership proportions, similar to the pedigree-derived
genetic groups model of equation (2.7).

By mean-centering the random variables and defining a group-specific version ofW (h)
im ,

that is,
Λ̃

(h)
imr = Λ

(h)
imr − πir and W̃

(h)
imr = Λ

(h)
imr

(
W

(h)
im − pmr

)
so that E

(
Λ̃

(h)
imr

)
= 0 and E

(
W̃

(h)
imr

)
= 0, we can rewrite (see Appendix A.2) the defini-

tion of Ui to an equivalent and useful form, namely

Ui = E (Ui) +

M∑
m=1

2∑
h=1

1

2

[
R−1∑
r=1

Λ̃
(h)
imr (γmr − γmR) +

R∑
r=1

W̃
(h)
imr

(
βalt
mr − βref

mr

)]
. (3.2)

Since we in equation (3.2) split out the mean value of Ui, the random part of the total
genetic value is captured by the second term. The alternative form (3.2) of the genetic
value will be our starting point when determining the covariance structure of the total
genetic values.

Lastly, we define the group-specific genetic variances and between-group segregation
variances similarly to Rio et al. (2020a), except we use 2M in place of M since we have
split genotypes into haplotypes. The genetic variance of group r is given as

σ2
Gr

=

M∑
m=1

pmr (1− pmr)
(
βalt
mr − βref

mr

)2
,
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and the segregation variance between groups r and r′ is given as

σ2
Srr′

=
2M

2M − 1

M∑
m=1

(γmr − γmr′)2 − 1

2M − 1
(γr − γr′)2

. (3.3)

The genetic variance thus depends on the haplotype variance pmr (1− pmr) and squared
differences in allele effect between the two alleles at a locus. Note that our definition of
segregation variance differs from the definition given by Lynch and Walsh (1998, 227),
whose definition resembles the first term in equation (3.3). As discussed in Section 2.2.3,
there are several cases where the segregation variance is very small. If the difference be-
tween group contributions at each loci is small, the first term in equation (3.3) goes to zero,
whereas the second term will be negligible if the number of loci M is large. Both of these
conditions are assumed to hold under the infinitesimal model, which highlights why segre-
gation variances are commonly neglected in wild systems. We shall nonetheless derive the
full theoretical model, including all segregation variances, for the sake of completeness.

3.1.2 Covariance between total genetic values

We want to derive the covariance between the total genetic values Ui and Uj of two dif-
ferent individuals i and j, so that we can use the total genetic value vector U as a random
effect in a genome-based genetic groups animal model. To this end, we will now explore
the components of the covariance structure of total genetic values between two individ-
uals, and the assumptions we make about said structure. The alternate expression (3.2)
for Ui contains two types random variables, the centered local ancestries Λ̃ and centered
haplotypes W̃ . We thus need to consider covariances between haplotypes, covariances
between local ancestries and covariances between haplotypes and local ancestries.

Starting with haplotype covariances, first note that we assume an absence of LD. In
other words, Corr

(
W

(h)
im ,W

(h′)
jm′

)
= 0 when m 6= m′ regardless of the values of the

other super/subscripts. As shown in Appendix A.3.1, the assumption of no LD leads to
no correlation for centered haplotypes; Cov

(
W̃

(h)
imr, W̃

(h′)
jm′r

)
= 0 for m 6= m′,∀ h, h′.

Further note that centered haplotypes do not covary across groups, since we in (Appendix
A.3.2) find that Cov

(
W̃

(h)
imr, W̃

(h′)
imr′

)
= 0 for r 6= r′,∀ h, h′. In fact, the only non-zero

covariance between the centered haplotypes of different individuals is the within-group
covariance

Cov
(
W̃

(h)
imr, W̃

(h′)
jmr

)
= θ

(r)
ij Γ

(r)
ij pmr (1− pmr) , (3.4)

(as always, regardless of h and h′) as derived in Appendix A.3.3. Recall that θ(r)
ij de-

notes the shared group membership of i and j in group r, while Γ
(r)
ij is the group-specific

relatedness between i and j.
Next, consider local ancestry covariances, which only matter if we include segregation

variances, as is obvious from expression (3.2) for total genetic value and the definition of
segregation variance (3.3). Since Λ̃ is just a centered version of Λ, we know per definition
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that

Cov
(

Λ̃
(h)
imr , Λ̃

(h′)
jmr′

)
= ∆

(rr′)
ij ∀ h, h′ , (3.5)

and we further show in Appendix A.4 that

Cov
(

Λ̃
(h)
imr, Λ̃

(h′)
jm′r′

)
= −

∆
(rr′)
ij

2M − 1
, m 6= m′, ∀ h, h′, r, r′ . (3.6)

Recall that M is the total number of loci, so the between-locus allele ancestry covariance
will be closer to zero the more loci we are considering. One way to interpret this result is
that the fewer loci we are considering, the more extreme the covariances in local ancestry
between loci will be. Finally, as for covariances between haplotypes and local ancestry,
we show in Appendix A.5 that

Cov
(

Λ̃
(h)
imr, W̃

(h′)
jm′r′

)
= 0 (3.7)

for all super and subscripts.
Since the only non-zero covariances are equations (3.4) through (3.6), the covariance

between total genetic values of different individuals can now be derived. The full deriva-
tion is given in Appendix A.6 and yields the following result. LettingR = {1, . . . , R} for
an arbitrary number of groups R, we obtain the following covariance structure

Cov(Ui, Uj | πi,πj ,θij ,Γij) =

R∑
r=1

θ
(r)
ij Γ

(r)
ij σ

2
Gr

(3.8)

+
1

2

R−1∑
r=1

R∑
r′=r+1

∆
(r)
ij + ∆

(r′)
ij −

∑
r′′,r∗∈R\{r,r′}

∆
(r′′r∗)
ij

σ2
Srr′

.

The covariance structure for group-specific additive genetic variances thus involves the
group-conditional relatedness Γ

(r)
ij scaled by the shared group membership proportion θ(r)

ij

(first term), while the structure for the segregation variances (second term) involves taking
the sum of the within-group local ancestry covariances of the two groups in question,
and subtracting all local-ancestry covariances within or between the other groups. For
example, if R = 4, then the coefficient of σ2

S13
would be

1

2

(
∆

(1)
ij + ∆

(3)
ij −∆

(2)
ij −∆

(24)
ij −∆

(42)
ij −∆

(4)
ij

)
.

Since we will use R = 3 in our analysis, we note that in particular we have the following
result:

Cov(Ui, Uj | πi,πj ,θij ,Γij) =

3∑
r=1

θ
(r)
ij Γ

(r)
ij σ

2
Gr

+
1

2

2∑
r=1

3∑
r′=r+1

(
∆

(r)
ij + ∆

(r′)
ij −∆

(r′′)
ij

)
σ2
S,rr′ ,

where r′′ ∈ {1, 2, 3} \ {r, r′}, r 6= r′.
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3.1.3 Genome-based genetic group animal model
The covariance structure in equation (3.8) can be used in a GLMM to define a genome-
based genetic groups animal model. In this section we show how a data set1 of re-
alized local ancestries λ(h)

imr and haplotypes w(h)
im for individual i ∈ {1, . . . , N}, loci

m ∈ {1, . . . ,M}, genetic groups r ∈ {1, . . . , R} and DNA strand h ∈ {1, 2} can be
used to estimate the model parameters pmr, πir, θ

(r)
ij , ∆

(r)
ij and Γ

(r)
ij . We define the param-

eter estimators similarly to Rio et al. (2020a), but using haplotypes rather than genotypes.
Let the group allele-frequency pmr at locus m in group r and true group membership
proportion πir for individual i be estimated by the observed group allele-frequency

p̂mr =

∑N
i=1

∑2
h=1 λ

(h)
imrw

(h)
im∑N

i=1

∑2
h=1 λ

(h)
imr

, (3.9)

and by the observed group membership proportion

π̂ir =
1

2M

M∑
m=1

2∑
h=1

λ
(h)
imr , (3.10)

respectively. The proportion of overlapping group memberships of groups r and r′, θ(rr′)
ij ,

can also be estimated by its observed variant, so

θ̂
(rr′)
ij =

1

4M

M∑
m=1

2∑
h=1

2∑
h′=1

λ
(h)
imrλ

(h′)
jmr′ . (3.11)

Recall that the designations h = 1 and h = 2 are arbitrary and will not correspond between
different individuals. Thus, both alleles at locus m in one individual must be compared to
both alleles on locus m in another individual, necessitating the double-sum over h and h′

in the estimator for θ̂(rr′)
ij . Moreover, the estimators for θ(rr′)

ij and πir imply the following

definition of a ∆
(rr′)
ij -estimator:

∆̂
(rr′)
ij = θ̂

(rr′)
ij − π̂irπ̂jr′ . (3.12)

When it comes to the group-conditional haplotype-correlations Γ
(r)
ij , that is, the group-

specific relatedness, we recall the GRM given by Rio et al. (2020a), which we defined
in expression (2.11). We further modify this GRM by summing over individual alleles
(haplotypes) rather than genotypes. As in equation (3.11), we must compare both alleles
at locus m in individual i with both alleles at locus m in individual j. Our modified
estimator for Γ

(r)
ij is therefore given by

Γ̂
(r)
ij =

∑M
m=1

∑2
h=1

∑2
h′=1 λ

(h)
imr

(
w

(h)
im − p̂mr

)
λ

(h′)
jmr

(
w

(h′)
jm − p̂mr

)
1
2

∑M
m=1

∑2
h=1

∑2
h′=1 λ

(h)
imrλ

(h′)
jmrp̂mr (1− p̂mr)

. (3.13)

1A haplotype and local ancestry data set can be inferred from genotype data, as we will do in Section 3.3.1.
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This particular design for the estimator Γ̂
(r)
ij ensures that it is merely a special case of the

well-known GRM GVR. One can show that in the case R = 1 equation (3.13) simplifies
to the definition of GVR given in (2.3), except that vim = w

(1)
im + w

(2)
im . The equivalence

with GVR is also necessitates the factor 1
2 in the denominator of (3.13), and this factor

also ensures the correct standardization of the relatedness estimates. Namely, entries are
standardized so that the diagonal entries Γ̂

(h)
ii are close to 1 for individuals with πir =

1 in the absence of inbreeding. Note that using GVR as a starting point for a group-
specific GRM allows us to incorporate the local ancestry tracts in both the numerator and
denominator sums in the definition of GVR. Thus, knowing the local ancestries adds value
beyond just letting us utilize the summary statistics πir and θ(r)

ij .
Based on the covariance structure (3.8) we can now define the entries of the covariance

matrices to be used in the animal model as

(Gr)ij = θ̂
(r)
ij · Γ̂

(r)
ij (3.14)

for modeling group-specific additive genetic variance, and

(Srr′)ij =
1

2

∆̂
(r)
ij + ∆̂

(r′)
ij −

∑
r′′,r∗∈R\{r,r′}

∆̂
(r′′r∗)
ij

 (3.15)

for segregation variances. Thus, we have shown that the total genetic value can be written
as

Ui =

R∑
r=1

πirγr +

R∑
r=1

g
(r)
i +

R−1∑
r=1

R∑
r′=r+1

g
(rr′)
i ,

where g(r) ∼ N
(
0, σ2

Gr
Gr

)
and g(rr′) ∼ N

(
0, σ2

Srr′
Srr′

)
, and the distribution of the

genomic total genetic value is

U ∼ N

(
Πγ,

R∑
r=1

σ2
Gr

Gr +

R−1∑
r=1

R∑
r′=r+1

σ2
Srr′

Srr′

)
,

where Π is the N × R matrix of group membership proportions. Now we can use Ui
in place of gi in the animal model equation (2.5) to fit a genomic genetic groups model,
similar to what we did in the pedigree-case (2.10).

3.2 Data description
The Center for Biodiversity Dynamics (CBD) at NTNU has a long-running project where
measurements of house sparrows on islands and the mainland of the Helgeland region in
Northern Norway have been made annually since 1993 (see eg. Sæther et al. 1999; Jensen
et al. 2008; Jensen et al. 2013). Said project provided the data used in this analysis, and the
data we use includes phenotypic measurements from 1984 sparrows from a relatively iso-
lated system of eight islands. These measurements were made in the years between 1993
and 2016. Because every bird is marked with a unique metal ring they are recognizable
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throughout their lives. Several of the 1984 sparrows were measured repeatedly over the
study period, so we have 4625 observations in total. Several phenotypic traits were mea-
sured for each sparrow, including wing length, body mass and tarsus length. The lengths
were measured in millimeters, while body mass is given in grams. Other traits recorded
for each sparrow include their sex and hatch year. In addition, we know the natal (birth)
island for most birds. The date and island of each measurement were also recorded, and
with the date and hatch year taken together we also know the age of each sparrow at the
time of each measurement. Some data is missing for each of the phenotypic traits, with
wing length missing 134 measurements, body mass missing 254 and tarsus length missing
130.

We also have access to genotype-data from 3116 individuals in the study system, in-
cluding the 1984 phenotyped individuals. The genotyping was performed by taking blood
samples from each individual, extracting DNA from the blood and genotyping the samples
on an array with probes for 200 000 SNPs, as described in Lundregan et al. (2018). After
quality control, 183 145 of the SNPs were retained in the analysis (with some missing
genotypes). For all but 1782 SNPs we have a known relative position, which places SNPs
on 30 different chromosomes (Lundregan et al. 2018). The genotypes have already been
used in various applications, of which we will take advantage. A consistently scaled in-
breeding coefficient FGRM for every genotyped individual was computed by Niskanen et
al. (2020), which we will use as a fixed effect accounting for inbreeding, as recommended
by Reid and Keller (2010). The genetic assignment method of Kuismin et al. (2020) was
applied to the data to infer the natal island of phenotyped sparrows that were missing
this information (Saatoglu et al., in review). And notably, an extensive pedigree for the
3116 genotyped individuals was constructed from the data using the R package SEQUOIA
(Huisman 2017). For further details on the construction of this pedigree, see Muff et
al. (2019).

3.3 Statistical model
Within the study population, different subpopulations living on different islands are no-
tably different, as subsets of islands differ in their habitats and environmental conditions
(Muff et al. 2019). To account for possible genetic differences between these subpopula-
tions originating from different island groups, we therefore partition the study population
into genetic groups, where each group is associated with a set of islands. The populations
on five islands closer to the mainland mostly live on dairy farms and enjoy more stabil-
ity and larger population sizes than the sparrows on the islands further out to sea, which
mostly live in local people’s gardens. We label the former group of islands as the inner
genetic group (encoded as 1), and the latter group as the outer genetic group (encoded
as 2). The house sparrows on the remaining islands in the study system have not been
SNP-genotyped yet, and we have notably fewer observations from them. We lump these
islands together in a final genetic group other (encoded as 3).

We will use these genetic groups to test our new genomic genetic groups model and
compare the results with an otherwise similar pedigree-based genetic groups model. The
comparison will be performed in models using three different phenotypic responses: wing
length, body mass and tarsus length.
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3.3.1 Genetic group setup
Pedigree-based genetic groups

For the pedigree-based genetic groups, we must assign all phantom parents to the base
population of one of the genetic groups, as described in Section 2.2.3. The assignment
of phantom parents to groups is done based on the natal island of their offspring. In
other words, for sparrows with unknown parents and a known natal island, the unknown
(phantom) parent is assigned to the genetic group associated with the natal island. For the
phantom parents whose offspring’s natal island is unknown, we instead use the first island
the offspring was observed on. The reason for this procedure is that having offspring that
were present on an island in a given year is the best available evidence we have that the
phantom parent also originated there. With the base population partitioned, both Q and
A can be found found using functions from the R package nadiv (Wolak 2012). We
can then proceed to find the group-specific relatedness matrices A1, A2 and A3 using the
methods described in Section 2.2.3.

It is possible to obtain a measure of the relative sizes of the genetic groups within
the population by summing over all individuals’ expected group membership proportions
qir in a given group and by dividing by the number of individuals. Considering only
the phenotyped individuals, we estimate that a proportion 0.76 of the genetic material is
expected to belong to inner, 0.18 to outer and 0.06 to other.

Genome-based genetic groups

In the case of our genome-based genetic groups, some extra steps are required. First note
that about a third of the SNPs in the genotype data are heterozygous, and we have three
genetic groups, justifying the need to use our extended genetic groups model. In the ge-
nomic case we have more freedom to define the purebred and admixed populations, as we
are not forced to treat every founder individual as a purebred. The status as founder is
irrelevant in the local ancestry approach, only genetic similarity matters. So we only need
to partition the population into the purebreds from each genetic group, and the admixed
individuals, which have partial group memberships. For the sake of easy comparison, we
will simply consider any individual that is admixed in the pedigree-based setup to also
be admixed in the genome-based setup. Conversely, individuals that are purebred in a
single group based on the pedigree will be considered purebred in the same group in the
genome-based model. Note that these purebred individuals include not only founders of
the pedigree, but also offspring of purebred parents from the same genetic group. Among
the 3116 genotyped individuals we have 1336 purebred inner individuals, 286 pure-
bred outer individuals, 106 purebred other individuals and 1388 admixed individuals.
The subset of 1984 phenotyped individuals contains 1002 purebred inner individuals,
144 purebred outer individuals, 50 other individuals and 788 admixed individuals.
Reasonable amounts of phenotypic measurements are available for all four types of indi-
viduals, as missing phenotypic measurements are proportionally distributed between the
admixed and purebred populations. For all phenotypes, the relevant subpopulation with
the greatest proportion of missing phenotypes is purebred inner, which has 1.6% miss-
ing wing length measurements and 2.8% missing body mass measurements, and 1.6%
missing tarsus length measurements.
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As a first step in finding the genomic genetic groups, we must perform the gametic
phasing of the genotype data. The phasing procedure determines haplotypes w(h)

im , so we
know not only the genotype at each locus, but also which chromosome copy each of the
two alleles on a locus belongs to. After using PLINK 1.9 (Chang et al. 2015) to convert
the genomic data to the appropriate input format, we used Beagle 5.1 with default set-
tings to perform the gametic phasing (Browning, Zhou, and Browning 2018). The phasing
was done separately on each of the purebred populations and the admixed individuals since
they are assumed to be genetically distinct. 1782 of the SNPs were not assigned to a spe-
cific chromosome in the reference genome (Lundregan et al. 2018), precluding them from
gametic phasing. These SNPs are therefore omitted from the remaining genomic analysis,
leaving us with 181 363 SNPs. In addition to the gametic phasing, Beagle imputes any
missing genotypes in the genomic data, that is, all missing values are inferred from the
other data in the population.

Next, we need to perform the local ancestry inference to determine the group of origin
of every considered allele in the admixed population. As output from the local ancestry
inference we obtain the local ancestries λ(h)

imr. To this end we have used the command-
line version of the Python package Loter (Dias-Alves, Mairal, and Blum 2018), out
of several possible alternatives (outlined in Geza et al. 2019). Loter requires as input
phased and imputed genotype data, and is able to handle three genetic groups. However,
using three rather than two groups disables Loter’s method of correcting for errors in
the gametic phasing, making the correctness of the initial phasing (using eg. Beagle)
more crucial. Thus, the authors of Loter recommend against using the length of ancestry
tracts in analysis where 3 groups are present, which would be relevant in methods trying
to establish group-specific ancestries (Dias-Alves, Mairal, and Blum 2019). The run time
of the local ancestry inference was relatively slow, taking roughly one week when using
eight Intel Xeon (2.6 GHz) CPUs on a shared computational server.

With the inferred values of the haplotypes w(h)
im and local ancestries λ(h)

imr we can com-
pute group-specific GRMs G1, G2 and G3 and segregation covariance matrices S12, S13

and S23 using equations (3.10) - (3.15). However, we will disregard the segregation vari-
ance in this analysis, under the assumption of the infinitesimal model. A challenge of
implementing these formulas is that we are dealing with very large data sets, namely
3116 × 181 363 × 2 haplotypes, and the same number of local ancestries for each group.
The genomic data is too large to conveniently manipulate directly in-memory in R, and
computing the matrix products in particular require a huge amount of memory. To over-
come this memory limitation issue, we utilized the file-backed matrices implemented in the
R package BGData (Grueneberg and de los Campos 2019). BGData has been developed
specifically for the manipulation of large genomic data sets, and its linked file-backed
matrices allows one to treat very large matrices as if they were loaded in-memory. The
package also includes the function getG(), which is used to efficiently compute matrix
products with parallel methods. Note that several of the estimators in Section 3.1.3 involve
computations on this matrix-matrix product form.
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3.3.2 Model description
Given the partial relatedness matrices Ar and group-specific GRMs Gr we can now for-
mulate the full pedigree and genome-based models. As continuous fixed effects we in-
cluded an intercept µ, age, the month of measurement (May through August treated nu-
merically), the previously mentioned inbreeding coefficients denoted here as FGRM and
genetic group effects γr. Our only categorical fixed effect was sex, with 0 representing
males and 1 representing females. We chose inner to be the reference group for identi-
fiability reasons, so γ1 = 0. The genetic group effects γ2 and γ3 then denote the deviation
in the respective group’s mean total additive genetic effect from inner (Wolak and Reid
2017). We use qir and π̂ir as the covariates used in estimating γr for the pedigree-based
and genome-based models, respectively.

Random effects in the models include the group-specific genetic values for each of
the genetic groups, hatch year, island of measurement, an individual identity effect and a
residual random effect. The individual effect is included to account for permanent environ-
mental effects since there are repeated measurements (Wilson et al. 2010). Group-specific
genetic values g(r) have covariance structure Gr in the genome-based model, while in the
pedigree-based model a(r) have structure Ar. Despite only 1984 sparrows having pheno-
type data, all 3116 genotyped sparrows were used in setting up the group-specific kinship
matrices Ar and Gr to obtain the most accurate possible relatedness estimates. After
finding these matrices, but before fitting the model, we removed all rows and columns in
Ar and Gr corresponding to sparrows that have not been phenotyped, leaving us with
trimmed 1984× 1984 matrices. All relatedness information between sparrows is retained,
while we still only consider the relevant (i.e. phenotyped) individuals. Additionally, a
very small value of 10−12 was added to the diagonals of the Gr matrices to make them
positive definite, and thus proper covariance matrices. This addition is necessary because
whenever there are individuals with πir = 0 for some group r (such as purebreeds) there
will be zeros on the diagonal, and thus at least one eigenvalue will be zero.

Inclusion of the island of measurement as a common environment random effect is
especially critical in this model. The effect not only deals with environmental covari-
ance, but also ensures that the genetic groups estimate what they are intended to estimate.
Our genetic groups are based on geographic origin, so the absence of an island effect
might lead to the genetic group effects capturing environmental differences between the
islands rather than capturing potential genetic differences. The presence of some dispersal
between the islands (8.9% of recorded sparrows changed their island group during their
lifetime; Saatoglu et al., in review) ensures that the data set contains sparrows measured
on islands not corresponding to their genetic group, allowing the model to disentangle the
two sources of variance.

A full mathematical statement of the pedigree-based model is

yij = µ+ x>ijβ +

2∑
r=1

qirγr +

3∑
r=1

a
(r)
i + idi + islandij + yearij + εij , (3.16)

where yij is the jth phenotypic measurement for individual i and xij is a vector storing the
fixed covariates sex, age, month and FGRM. Furthermore, β is a vector of the fixed effects,
qir is i’s expected group membership proportion in group r, and γr is the fixed genetic
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group effects in groups. The group-specific genetic values a(r)
i are entries in the random

vector a(r) ∼ N
(
0, σ2

Ar
Ar

)
, while the random effects idi, islandij , yearij and εij are

distributed with N
(
0, σ2

ID

)
, N
(
0, σ2

island

)
, N
(
0, σ2

year

)
and N

(
0, σ2

ε

)
, respectively. Recall,

the Bayesian modeling approach involves finding posterior distributions of the variance
of each of these random variables. Using similar notation, the equivalent genome-based
model can be stated as

yij = µ+ x>ijβ +

2∑
r=1

π̂irγr +

3∑
r=1

g
(r)
i + idi + islandij + yearij + εij , (3.17)

where π̂ir is the group membership proportion estimated from local ancestries and g(r)
i is

an entry in the random vector g(r) ∼ N
(
0, σ2

Gr
Gr

)
.

3.3.3 Implementation
The Bayesian genetic group animal models were implemented with the R-INLA package
(Rue, Martino, and Chopin 2009). All models were rerun twice (using the inla.rerun()
function) with the posterior modes from the previous run of the model as new starting
points, in order to improve model stability and increase confidence in the results. Using
the previously mentioned computational setup and trimmed kinship matrices, run-times
(including the two reruns) for the genome-based models were roughly an hour for each
of the phenotypes. For the pedigree-based models, the equivalent run-times were around
three minutes.

In terms of priors, for the fixed effects we used wide normal distributions centered at
zero, N

(
0, 103I

)
. The random effect variances were given priors on their inverse, that

is, their precision, as is common to work with in Bayesian statistics. The precisions were
all given penalized complexity (PC) priors (Simpson et al. 2017). A PC prior PC(ν, α)
for ν > 0 and α ∈ (0, 1) on the precision 1

σ2 will assign the proportion α of the prior
probability weight to the case σ > ν. One can thus control how much to weigh values
of σ over a certain threshold ν. All model variance components were given penalized
complexity priors PC(1, 0.05). Thus we gave the most weight to simpler models with
low variances, since the prior assumption is that P(σ > 1) = 0.05 for all random effect
variances σ2 in the model. The data was forced to convince the prior that giving more
probability weight to larger variances is acceptable.
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Chapter 4
Results

4.1 Group membership proportions
We check the efficacy of the local ancestry inference by comparing the local ancestry-
derived group membership proportions, π̂ir, to their pedigree-derived counterparts, qir.
Since the pedigree-based group membership proportions are true on expectation (given
a correct and complete pedigree), they should mostly correspond to the realized group
membership proportions. One way to investigate whether this correspondence occurs is to
simply consider the correlation between qir and πir for each group r. Recall that πir was
only estimated for admixed individuals and was assumed equal to qir for purebred spar-
rows. We therefore only check the correlation between π̂ir and qir within the phenotyped
admixed subpopulation of 788 individuals. The correlations are 0.89, 0.90 and 0.79 for
inner, outer and other, respectively.

We can also investigate the relationship between qir and πir by examining their scatter
plots for different groups (Figure 4.1). Again, we limit the comparison to phenotyped ad-
mixed individuals, as πir = qir for purebred individuals.1 We see that for most individuals
the two genetic group methods give corresponding results. The group membership pro-
portions are especially concentrated along the diagonal of the scatter plots for inner and
outer, indicating agreement. For the inner group more points are concentrated in the
upper right corner, indicating that both methods assign the greatest genome proportions to
this group. Conversely, the opposite pattern is found in outer and other, where more
points are concentrated in the bottom left corner. Neither method assigns a large proportion
of any admixed individual’s genome to the other group, but the pedigree-based method
is more likely to assign moderate other proportions. Furthermore, the genome-based
method assigns larger group proportions to inner than the pedigree-based method, as
more points lie above the diagonal than below. The opposite is true for outer. Notably,
the two methods are never in strong disagreement, as no points are located in the top left
or bottom right corners of the scatter plots.

1Hence, the equivalent figure containing the full phenotyped population would look identical except for clear
dots in the top right and bottom left corners of each figure.
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Figure 4.1: Scatter plots for group membership proportion derived from the pedigree (x-axes) and
local ancestry inference (y-axes). Each point refers to one individual. The plots only contain points
for phenotyped admixed individuals (N = 788). Points are partially transparent to show density
patterns in areas with overlapping points.

4.2 Group-specific allele frequencies
Our genome-based genetic groups model allows for allele frequencies to differ within the
genetic groups. Accordingly, we show how the estimated values of the group-specific
allele frequencies are distributed across all combinations of loci m and DNA strand h
(Figure 4.2). The alleles originating from the outer and other groups are likelier to
have markers with very small allele frequencies. In inner, more markers have allele
frequencies close to 0.2, and inner also has more alleles with frequency just below 0.5
and fewer alleles with frequency just above. The reason we see more allele frequencies in
outer and other that are larger than 0.5 is that inner was used as the basis for which
allele is considered the reference allele. Thus, nearly all alternate alleles have frequencies
lower than 0.5 in inner, but some alternate allele frequencies have fluctuated to over 0.5
in the outer and other groups (possibly due to genetic drift and small sample effects).
Overall, the distributions for the different groups seem to closely follow each other, sug-
gesting there is not much difference in allele frequencies between groups. Moreover, the
correlations between the estimated group-specific allele frequency vectors pr are between
0.8 and 0.9 for all combinations of groups.

4.3 Posterior statistics
We report statistics for the posterior distributions of all fixed and random effects of the six
models (Tables 4.1 and 4.2). Since we assume that the fixed effects have normal distribu-
tions, their posterior means equal their posterior modes. Thus, only the posterior means
are reported for fixed effects. We also report a 95% HPD CI for every parameter. Addi-
tionally, the full posterior distributions of the most interesting parameters γr and σ2

Gr
are

displayed graphically (Figures 4.3 and 4.4, respectively). As inner serves as the baseline
for mean genetic value, γ1 has no posterior distribution and is instead fixed at zero.
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Figure 4.2: Distribution of allele frequencies of the alternate allele within the different genetic
groups.

4.3.1 Wing length

For the wing length of house sparrows both the pedigree-based and genome-based models
strongly indicate that females have shorter wings (Table 4.1). Conversely, both models find
evidence that older birds have longer wings, while measurements made in later summer
months generally find shorter wing lengths. Both models also indicate that the values of γ2

and γ3 are equally smaller than the reference γ1 = 0, though this effect is somewhat more
pronounced in the genome-based model (Figure 4.3, top panel). In other words, originating
from a non-inner island makes a sparrow somewhat likely to have shorter wings, and the
genome-based model implies this situation more strongly. Similarly, both models agree
that being inbred likely has a negative impact on wing length, but the pedigree-based
model finds this effect to be more distinct. The situation where inbreeding has a negative
impact on a phenotype is known as “inbreeding depression” and is not uncommon in wild
populations (Crnokrak and Roff 1999).

As for the decomposition of variance, the models agree that year and island of mea-
surement explain little of the overall phenotypic variance in wing length, and that the
residual environmental variance is close to 1 (Table 4.2). The permanent environmental
variance σ2

ID is found to be larger in the genome-based model than in the pedigree-based
model. When it comes to additive genetic variances, both models find notable differences
between the genetic groups (Figure 4.4, top panel). The models agree that the variance
associated with outer is largest, followed by inner and then other. However, the
posteriors for additive genetic variances are shifted towards higher values in the pedigree-
based model compared to the genome-based model.
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4.3.2 Body mass

In both models for body mass, the posterior fixed effects imply that female or older birds
tend to have higher body mass, while inbreeding and later months are negatively associated
with with body mass (Table 4.1). Both models also indicate that sparrows originating from
outer or other islands have lower body mass (Figure 4.3, middle panel), but disagree
on the magnitude of this difference. The genome-based model shows outer having a
more negative impact and other having a less negative impact than the pedigree-based
model does.

Similar to the results for wing length, both models for body mass show little contribu-
tion to the overall variance from year and island of measurement, a very similar residual
variance and a larger variance in the individual effect in the genome based-model. There is
good agreement between the models when it comes to the posteriors of the group-specific
additive genetic variances (Table 4.2; Figure 4.4, middle panel), as the posteriors follow
each other closely. However, the modes of the inner and outer variances are smaller
in the genome-based model. Both models indicate a higher additive genetic variance in
inner than in other, and an even higher additive genetic variance in outer.

Table 4.1: Posterior statistics for the fixed effects of the genetic group animal models. Each column
corresponds to one model with a given response (i.e., phenotypic trait; wing length, body mass or
tarsus length) and genetic group basis, and each row to a model parameter. For a given effect, the
posterior mean is reported in the first row, and a 95% HPD CI is reported in the second row.

Wing length Body mass Tarsus length

Basis Genome Pedigree Genome Pedigree Genome Pedigree

Sex (f) -2.77 -2.76 0.48 0.47 -0.08 -0.09

(-2.90, -2.65) (-2.89, -2.63) (0.30, 0.65) (0.29, 0.64) (-0.15, -0.01) (-0.15, -0.02)

FGRM -1.15 -1.38 -1.16 -1.15 -0.73 -0.77

(-2.52, 0.23) (-2.76, -0.00) (-3.02, 0.70) (-3.01, 0.71) (-1.45, -0.01) (-1.50, -0.04)

Month -0.19 -0.19 -0.30 -0.30 0.03 0.03

(-0.22, -0.15) (-0.22, -0.15) (-0.35, -0.24) (-0.36, -0.24) (0.02, 0.04) (0.02, 0.04)

Age 0.47 0.47 0.08 0.08 0.00 0.00

(0.43, 0.50) (0.43, 0.50) (0.02, 0.14) (0.02, 0.14) (-0.01, 0.01) (-0.01, 0.01)

γ2 -0.28 -0.17 -0.58 -0.47 -0.02 -0.01

(-0.60, 0.05) (-0.46, 0.14) (-0.98, -0.17) (-0.83, -0.11) (-0.15, 0.11) (-0.14, 0.11)

γ3 -0.25 -0.17 -0.22 -0.38 0.07 -0.01

(-0.70, 0.19) (-0.49, 0.16) (-0.77, 0.31) (-0.83, 0.07) (-0.17, 0.31) (-0.19, 0.17)
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4.3.3 Tarsus length

Posteriors for the tarsus length models are generally more narrow than for the other phe-
notypes, so there is less uncertainty in these models. Table 4.1 shows that female sparrows
generally have shorter tarsi, while sparrows measured in later months have slightly longer
tarsi. On the other hand, there was no evidence that age has an effect on tarsus length. As
with all previous responses, inbreeding depression is prevalent for tarsus length, and the
pedigree-based model finds the strongest evidence of this. The models mostly find little
evidence of different genetic group means (Figure 4.3, bottom panel), except the genomic-
based model shows evidence of longer mean tarsus within the other group compared to
inner and outer.

In terms of the variances of the random effects in the tarsus models, the posteriors are
almost identical between the genome-based and pedigree-based models (Table 4.2). We
again find that island and year of measurement explain little phenotypic variance. As with
the other phenotypes, the pedigree-based model and genome-based model agree on the
residual environmental variance, but tarsus length is the only trait for which the models

Table 4.2: Posterior statistics for the random effect variances of the genetic group animal models.
Each column corresponds to one model with a given response (i.e., phenotypic trait; wing length,
body mass or tarsus length) and genetic group basis, and each row to a model parameter. For a given
variance, the posterior mode and posterior mean (mode;mean) are reported in the first row, and a
95% HPD CI is reported in the second row.

Wing length Body mass Tarsus length

Basis Genome Pedigree Genome Pedigree Genome Pedigree

σ̂2
year 0.05;0.06 0.04;0.04 0.04;0.05 0.04;0.05 0.01;0.02 0.01;0.02

(0.01, 0.16) (0.01, 0.11) (0.01, 0.15) (0.01, 0.15) (0.00, 0.04) (0.00, 0.04)

σ̂2
island 0.06;0.08 0.10;0.12 0.10;0.12 0.11;0.13 0.00;0.01 0.00;0.01

(0.02, 0.22) (0.03, 0.33) (0.02, 0.38) (0.03, 0.39) (0.00, 0.03) (0.00, 0.03)

σ̂2
ID 0.45;0.46 0.32;0.33 1.13;1.13 1.03;1.05 0.36;0.36 0.36;0.36

(0.32, 0.64) (0.20, 0.53) (0.85, 1.46) (0.76, 1.42) (0.32, 0.40) (0.32, 0.41)

σ̂2
G1

1.59;1.60 1.85;1.86 1.24;1.26 1.46;1.48 0.27;0.27 0.29;0.29

(1.32, 1.90) (1.56, 2.22) (0.91, 1.73) (1.08, 1.96) (0.21, 0.35) (0.22, 0.37)

σ̂2
G2

1.92;1.94 2.27;2.30 1.90;1.96 2.08;2.12 0.14;0.15 0.14;0.14

(1.39, 2.62) (1.68, 3.06) (1.15, 3.08) (1.27, 3.24) (0.07, 0.26) (0.07, 0.26)

σ̂2
G3

1.14;1.20 1.55;1.60 0.69;0.89 0.69;0.83 0.31;0.33 0.31;0.33

(0.55, 2.16) (0.84, 2.66) (0.15, 2.76) (0.15, 2.36) (0.14, 0.61) (0.15, 0.60)

σ̂2
ε 0.98;0.98 0.98;0.98 2.86;2.87 2.87;2.88 0.02;0.02 0.02;0.02

(0.93, 1.04) (0.93, 1.04) (2.72, 3.05) (2.72, 3.04) (0.02, 0.02) (0.02, 0.02)
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Figure 4.3: The posterior distribution of genetic group effects (i.e., mean genetic value) in the
models for wing length (top), body mass (middle) and tarsus length (bottom). Posterior effects for
the different genetic groups are shown in different colors. Genome-derived posteriors have solid
lines, whereas the pedigree-based posteriors are shown with dotted lines. As inner is assumed to
be the baseline mean, γ1 = 0 is shown as a straight vertical line.

agree on the posterior for σ2
ID. Meanwhile, the two models seem to agree that inner and

other have similar additive genetic variances (with more uncertainty in other), which
are larger than the additive genetic variances outer (Figure 4.4, bottom panel).
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Figure 4.4: The posterior distribution of group-specific additive genetic variances in the models
for wing length (top), body mass (middle) and tarsus length (bottom). Posterior variances for the
different genetic groups are shown in different colors. Genome-derived posteriors have solid lines,
whereas the pedigree-based posteriors are shown with dotted lines.

4.3.4 General findings

Some patterns are clear across the models for each phenotype. We see that the pedigree-
based model finds slightly more extreme inbreeding depression than the genome-based
model for wing length and tarsus length, although the differences are small with respect
to the uncertainties in the estimates. The posteriors for group means indicate sparrows are
lighter and have shorter wings relative to their tarsus length on the outer and other

41



islands. For wing length and body mass we find that the genome-based models attribute
more variation to permanent environmental (i.e. ID) effects, and pedigree-based models
find greater additive genetic effects, especially for wing length. There is also a tendency
for additive genetic variances to differ between the groups, but the direction of difference
varies between traits. Posteriors relating to other are usually quite flat, which is expected
because we have the least data for this group. The pedigree-based and genome-based
models are generally in agreement regarding the remaining model parameters.
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Chapter 5
Discussion and conclusion

5.1 Comparison of pedigree-based and genome-based model
results

Despite some overall differences in the genetic parameters, the genome-based model finds
results that are in relatively good agreement with the pedigree-based results. Since the
group-specific additive genetic variances tend to differ between the groups in all the mod-
els (regardless of genetic group basis and phenotypic response), the use of a genetic groups
model is justified. In this section we will give some hypotheses that might explain the dif-
ferences we see between the genome-based and pedigree-based model.

Recall that the base population of an animal model using SNP-based kinship is the
population used to estimate the allele frequency pm. However, in the genome-based ge-
netic groups model we use group-specific allele frequencies pmr estimated in equation
(3.9) from the set of all alleles belonging to group r. This set of alleles includes the full
genomes of purebred r-individuals and the r-specific portions of the genomes of admixed
individuals. Therefore, the base population of each of the genetic groups would be its re-
spective purebred individuals, in addition to the genome-portions of admixed individuals
that are descended from the group. Thus, a genome-based genetic group’s base population
is not necessarily easily interpretable, as the admixed individuals usually are partial mem-
bers of different base populations. In contrast, recall that pedigree-based genetic groups
have base populations comprised of any phantom parents assigned to that group. Thus,
despite the fact that the two types of genetic group models consider the same individuals
to be purebred, they have different base populations. In the pedigree-based model only a
subset of purebred individuals belong to the group base populations, while in the genome-
based model the base populations consist of the purebred individuals plus some portions
of admixed genomes. Comparison of the results from the two types of model is therefore
not straight-forward, because the posteriors of the genetic parameters pertain to different
base populations.

As discussed in Section 2.2.1, Legarra (2016) proposed a scaling which allows us to
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explicitly compare genetic additive variance estimates that are based on different relat-
edness measures. However, the method in Legarra (2016) is not yet well-defined for the
genetic groups situation, where admixed individuals have a mix of relatednesses from the
different groups. Moreover, the method has not been derived in a Bayesian framework. In
a preliminary attempt at a Bayesian group-wise version of the respective scaling, we can
transform the posteriors of σ2

Gr
and σ2

Ar
to both refer to the same base population Br. We

choose this population to consist of all r-purebred individuals and then multiply the poste-
riors by the appropriate scaling factors from equation (2.4). We then re-normalize to obtain
proper posterior distributions. This version of Legarra’s scaling is not rigorously derived,
but note that the patterns between the genome-based and pedigree-based posteriors (found
in Figure 4.4) persist after the group-wise scaling, because the scaling factors we obtain
are all very close to 1 (the scaled results are found in Appendix C, Table C.1). Thus, the
disagreements we see for group-specific additive genetic variances in wing length are not
caused by the difference in base population between the two models.

Since the pedigree-based genetic groups model sometimes (especially for wing length)
finds higher additive genetic variances than its genome-based counterpart, it is worth ask-
ing what the cause behind this additional variation is. Note that the patterns we see when
comparing the group-specific additive genetic variances obtained from the genome-based
and pedigree-based models (Figure 4.4) mirror the patterns we see when making a similar
comparison between a non-genetic groups animal model simply based on GVR and an oth-
erwise similar model based on A (results not shown). Just like in our genetic group results,
the non-genetic groups model based on SNPs finds a smaller additive genetic variance for
wing length, a slightly smaller additive genetic variance for body mass and an identical
additive genetic variance for tarsus length. The similar pattern indicates that the difference
between the models caused by is not caused by some incongruence stemming from our
genetic group definitions, but rather inherent differences between the use of pedigrees ver-
sus the use of genomic data. Finding greater additive genetic variances in pedigree-based
models compared to genome-based models is a well-known phenomenon, and variations
of this issue are sometimes known as “missing heritability” problems (Manolio et al. 2009;
for a wild animal example, see Bérénos et al. 2014). We will not dive deeply into miss-
ing heritabilities in this work, but simply note that our results indicate that the degree to
which genetic effects are captured by the genomic data might be smaller in wing length
compared to the other phenotypes. For example, the genetic architecture of wing length
could be different in that there is less LD between QTL (quantitative trait loci, loci that
have an actual impact on phenotype) and SNPs for this trait.

Another question is whether the differences between the pedigree-based and genome-
based models relate to non-additive genetic effects. Our models assume an absence of
dominance genetic effects, but Wilson et al. (2010, Table 1) points out that animal models
can capture such effects, should they be present, in their estimates for additive genetic vari-
ances or σ2

ID. Meanwhile, inbreeding depression and dominance effects are intrinsically
connected, as explored by Wolak and Keller (2014). In fact, as they point out, a population
that displays inbreeding depression must necessarily have a non-zero dominance variance
component as part of the genetic variance. Dominance variances are expected to be negli-
gible when allele frequencies are close to 0 or 1 and are only expected to reach magnitudes
comparable to additive genetic effects when allele frequencies are close to 0.5 (Hill, God-
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dard, and Visscher 2008). Indeed, group-specific allele frequencies in the proximity of
0.5 are not uncommon in the SNP data (Figure 4.2). So, the exact parameters that differ
between the pedigree-based models and the genome-based models are the ones that in-
teract with dominance variance effects, namely FGRM, σ2

ID and additive genetic variances.
However, there is no clear explanation for why the two models would interact with dom-
inance effects differently, that is, why dominance variance would inflate σ2

ID only in the
genome-based model. Exploring this angle further would require estimating dominance
effects in each of the models. However, explicitly estimating dominance genetic effects
requires large amounts of data in the pedigree-case and an expansion of the mathematical
framework in the genome-case. Thus, we will not test these hypotheses here. We will note
that neglecting dominance variance has been known to inflate additive genetic variance
estimates (eg. Ovaskainen, Cano, and Merilä 2008; Lundregan et al. 2020). Thus, while
it is imprudent to give a definitive explanation for the variance patterns, and we should
be wary of over-interpreting differences between quite overlapping posteriors, it is worth
keeping in mind that the effects the two model approaches disagree on, namely inbreed-
ing depression, σ2

ID (and thus possibly dominance effects) and additive genetic effects, are
intricately connected.

5.2 Considerations regarding the genome-based genetic
groups model

As previously mentioned, segregation variances were left out of the genome-based model.
This omission was justified under the assumption of the infinitesimal model, where all
variances σ2

Srr′
become zero. However, testing this assumption was not feasible for the

data at hand. The inclusion of the segregation variances would involve another three ran-
dom effect terms, each with a complicated covariance structure. Thus, even heavier stress
would be placed on the statistical power of the model, possibly precluding model conver-
gence. Furthermore, the computed Srr′ matrices are not positive semi-definite for this data
set, and are thus not proper covariance matrices. Unlike the Gr matrices, the eigenvalues
of the Srr′ are too negative to amend the definiteness issue by adding a small value to the
diagonal, so another trick would need to be utilized. Note that the assumption that the
segregation variance is zero was checked and found not to be crucial in Muff et al. (2019)
for the pedigree-based model.

It might be more realistic to test the assumption σ2
Srr′

= 0 using a model with only two
genetic groups, considering the fact that such a model would have only a single segregation
random effect. Additionally, the definition (3.15) of the segregation covariance matrix
does not involve any subtractions for R = 2, making a positive semi-definite matrix more
likely. The obvious candidate for a group to be left out of such a model is other. Only 50
phenotyped individuals are considered purebred other, and very few alleles in admixed
individuals are assigned to have local ancestry originating from this group (Figure 4.1).
Furthermore, the posteriors for the other genetic parameters are much wider than for
the other groups, reducing our confidence in the results for all genetic parameters relating
to other. An advantage of the genome-based model is that we could simply consider
purebred other individuals to be admixed, which is not possible in the pedigree-based
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approach. Alternatively, the other purebreds could be folded into inner or outer
depending on biological considerations. However, we did not estimate any two-group
models in this analysis because testing the validity of the extension to R = 3 was a higher
priority.

The genome-based model allows the allele effects βmr and allele frequencies pmr to
depend on the group r for a given m. The former assumption implies that otherwise
identical alleles can have different effects depending on which group they are descended
from, regardless of their haplotype. The existence of such group-specific allele effects
was shown in maize (Rio et al. 2020b). Group-specific allele effects can also result from
different levels of LD between SNPs and QTL in the different groups. For instance, the
degree of LD between genotyped SNPs and QTL differed among breeds (genetic groups)
in cattle (De Roos et al. 2008) and in maize (Technow et al. 2012). As for house sparrows,
Hagen et al. (2020) found that levels of LD were generally higher and remained higher
over longer distances along the chromosomes on islands in our study system with smaller
effective population sizes. Island genetic groups were not explicitly considered by Hagen
et al. (2020), but note that inner islands generally have larger effective population sizes.
The decision to allow group-specific allele effects thus has some justification for this study
system. However, allowing allele frequencies to be group-specific seems less necessary in
this system. Based on the correlations given in Section 4.2, allele frequencies at specific
loci are very similar across the genetic groups. Larger differences in allele frequencies are
more likely to be found in populations that are more isolated from each other, with less
dispersal between the island groups.

In a wild system such as the one we consider, accurately assigning individuals as pure-
bred or admixed is difficult. In fact, due to the dispersal between the islands, all indi-
viduals are likely to be at least somewhat admixed if we look far enough back in time.
However, performing local ancestry inference relies on using purebred individuals as ref-
erences, so we are forced to make a choice of how to partition the population into purebred
and admixed populations. Here we simply considered sparrows that are admixed in the
pedigree-based model to also be admixed in the genome-based model. This decision has
obvious drawbacks because it makes the genome-based model partially rely on pedigree-
information. The drawbacks inherent to pedigrees (especially in the wild) might therefore
have impacted our choice of purebred individuals in the genome-based model, which is
a sacrifice we made for the sake of easy comparison between the models. Luckily, the
partition is such that a sizable proportion of phenotyped individuals are admixed (788 out
of 1984). Thus, potential differences between the pedigree-based models and the genome-
based models should be apparent in the results. An alternative that uses somewhat less
pedigree information could be that only founders (rather than purebreds) of the pedigree
are eligible to be purebred in the genome-based model. This choice would reduce the
impact of potential pedigree-errors on the purebred/admixed partition, and increase the
number of admixed individuals we would have to perform local ancestry inference on,
based on even fewer reference-genomes. The amount of reference genetic material for
other would be especially small, which is why we decided against using only founders
as purebred in the genome-based model.

In the future it might be useful to develop rigorous guidelines on how to partition the
population into purebred and admixed individuals, particularly in the absence of a pedi-
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gree. There are several factors to consider, such as what number of purebreds is necessary
to obtain accurate local ancestry inferences. Tools such as the one suggested by Kuismin,
Ahlinder, and Sillanpää (2017) allows us to detect population structure. Thus, a rigorous
approach to choosing purebred and admixed subpopulations might involve designating in-
dividuals as purebred based on genetic clusters in the population. Individuals that are not
clear members of any cluster can be considered admixed. This “blind” approach is feasi-
ble, as it is similar to the analysis performed on the house sparrows by Ranke et al. (2020).
However, the blind approach does not take into account informative previous biological
knowledge about the system, such as knowledge that the different island-group popula-
tions are genetically distinct (Jensen et al. 2013; Niskanen et al. 2020).

A weakness of the genome-based genetic groups model is the long run times of the
local ancestry inference. One reason for these run times is the three-way genetic group
structure. Indeed, finding a method which reliably works with three genetic groups was
challenging when performing the local ancestry inference. For instance, the R package
EILA (Yang et al. 2013) was found to be incapable of handling three groups well and
only converged when applied separately on chromosomes with few (M < 1000) SNPs.
Furthermore, as mentioned in Section 3.3.1, Loter disables some quality-control fea-
tures when R = 3. Run times were also severely affected by the particular partition of
the genotyped population into purebreds and admixed individuals. A Loter run with an
alternative group partition where almost all individuals were admixed, for example, had
a run time of less than two days: a massive improvement. An improvement in local an-
cestry inference run times would probably also be seen if we only used a subset of SNP
markers in our analysis. We utilized as many SNPs in our analysis as possible, namely all
181 363. However, Bérénos et al. (2014, Figure 5) and Rio et al. (2020a, Figure 4) found
that their additive genetic variance estimates and predictive ability, respectively, stabilized
at numbers of SNPs around 20 000. Thus, we might not need all of our SNP markers to
obtain reasonable results and could leave some SNPs out to speed up the calculations in the
local ancestry inference. However, we would need an investigation into how many SNPs
are necessary to obtain accurate results for gametic phasing and local ancestry inference,
which would depend on LD-patterns in the populations. Although local ancestry is slow,
one upside is that it only needs to be performed once for a given genotype data set and
group partition and can then be utilized in many different models.

Despite having developed the theoretical framework for genetic group models with an
arbitrary number of groups, we are limited by the capabilities of local ancestry inference
software. For models with a large number groups we are also limited by the size of the
available data sets, since the number of random effects to be estimated increases with R,
and even more so when segregation variances are included. Indeed, we might already be
imposing too high a of a demand on the data at hand. A prior sensitivity analysis reveals
that our estimates of σ2

A3
and σ2

G3
in particular are not very stable. A much more rigid prior

PC(0.2, 0.05) gave σ2
G3

and σ2
A3

posteriors very close to 0 for all responses, while a less
restrictive prior PC(3, 0.25) gave posteriors shifted to somewhat higher values than in Ta-
ble 4.2. For the rest of the model parameters the choice of prior was less crucial. Posteriors
pertaining to inner and outer shifted somewhat when the more rigid prior was used,
and were barely affected by the less restrictive prior. However, note that using PC priors
weighed towards small values for the model variances might actually be undesirable, since

47



what we want to do is partition the phenotypic variance into various components. Fuglstad
et al. (2018) propose a framework for selecting priors to decompose total variance hierar-
chically, which could be a preferable future alternative to PC priors.

Another step in testing the validity of the genome-based model could involve fit-
ting the model on data from simulated scenarios, as was done with the pedigree-based
heterogeneous-variance genetic groups model in Muff et al. (2019). We could then eval-
uate model performance comprehensively on different genetic architectures, while also
having the ability to compare the results to true parameter values.

5.3 Conclusion
Based on the MAGBLUP-RI model introduced by Rio et al. (2020a), we have developed
a genome-based genetic groups animal model for wild animal systems. We obtained pos-
terior distributions of genetic parameters in a house sparrow metapopulation using the
genome-based model and an equivalent pedigree-based model for different phenotypic re-
sponses. Results from the two types of models are generally in agreement, though the
genome-based model sometimes finds less inbreeding depression, a larger permanent en-
vironmental variance and smaller group-specific additive genetic variances.

Utilizing the genome-based genetic groups model requires some extra steps, including
gametic phasing and local ancestry inference. The need for local ancestry inference was
computationally very demanding in our case, and the accuracy of this step might be lim-
ited in the three-group model. These trade-offs have to be weighed against the potential
weaknesses of pedigree-based models. The causes behind the different results from the
pedigree-based and genome-based model approaches require further investigation, but we
have conceptually introduced genome-based genetic group models in wild populations.

Future work on the genome-based genetic groups model would include a simulation
study allowing us to explore the accuracy of model results. We would also like to check
our segregation variance assumptions using a 2-group model or a much larger data set.
Finally, we would like to explore how the model performs on more and diverse data sets.
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Appendix A
Miscellaneous calculations

A.1 Mean genetic value
We calculate the mean genetic value of an individual i as follows.

E (Ui) =

R∑
r=1

M∑
m=1

E
{

Λ
(h)
imr

[
βref
mr +W

(h)
im

(
βalt
mr − βref

mr

)]}
=

R∑
r=1

M∑
m=1

[
πirβ

ref
mr + E

(
W

(h)
im Λ

(h)
imr

) (
βalt
mr − βref

mr

)]
.

Recall that E
(
W

(h)
im Λ

(h)
imr

)
= pmrπir, and so

E (Ui) =

R∑
r=1

M∑
m=1

[
πirβ

ref
mr + pmrπir

(
βalt
mr − βref

mr

)]
=

R∑
r=1

M∑
m=1

[
πir
(
βref
mr + pmr

(
βalt
mr − βref

mr

))]
=

R∑
r=1

M∑
m=1

πirγmr =

R∑
r=1

πirγr ,

a sum of genetic group effects, weighted by group membership proportions.

A.2 Derivation of equivalent model for genetic value
In this section we show an alternative but equivalent expression of genetic value found
using mean-centered versions of Λ

(h)
imr and W (h)

im . We start with the original definition
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(3.1) of genetic value and first insert the mean centered haplotype variable W̃ (h)
im ;
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m=1

R∑
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For the first term in the above brackets, we split out the R term in the sum over genetic
groups, as follows
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=

M∑
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The term
∑M
m=1

∑2
h=1

∑R
r=1 πirγmr equals the mean value of Ui, so we can split it out

and finally write
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A.3 Haplotype covariances

A.3.1 Between-individual, between-locus, within-group
We calculate the covariance between haplotypes of alleles on different loci (m 6= m′) in
different individuals, so that i 6= j. The values of h and h′ are irrelevant throughout. First
off, because the centered random variables have mean 0, we can say
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Using the law of total expectation, and the fact that W̃ (h)
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We have assumed the LD to be zero, so
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= 0×
√
pmr (1− pmr) pm′r (1− pm′r) = 0

which implies
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A.3.2 Within-individual, within-locus, between-group

We calculate Cov
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)
, using the definition of W̃ , as follows
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Since at least one of Λ
(h)
imr or Λ

(h)
imr′ equal zero, all the expectations above containing a

product between these two will also equal zero, so we have
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A.3.3 Between individual, within-locus, within-group

We calculate the covariance between haplotypes of allele on the same locus m in different
individuals, i 6= j. By the same logic as in Appendix A.3.1, we obtain
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.

Since they are indicator variables that only take the values of 1 and 0, we can observe that
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, which is also

the definition of θ(r)
ij . Further note that
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with the same result for the conditional variance of W̃ (h′)
jmr . With this in hand we can write
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by the definition of correlation. Then finally, we arrive at
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A.4 Between-individual, between-locus local ancestry co-
variance

We find the covariance between local ancestries on different loci in different individuals,
first within groups and then between groups.
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A.4.1 Within-group

The within-group case was already shown in the supplementary material 1 of Rio et
al. (2020a) (they do not need the between-group case), but we include it here for com-
pleteness, using our own notation. From the definition of Λ̃

(h)
imr, we can say
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We now consider P
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. We use the law of total expectation by condi-

tioning on Λ
(h′)
im′r = 1, so that

P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
jm′r = 1

)
=P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r = 1,Λ

(h′)
jm′r = 1

)
P
(

Λ
(h′)
im′r = 1

∣∣∣ Λ
(h′)
jm′r = 1

)
+P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r = 0,Λ

(h′)
jm′r = 1

)
P
(

Λ
(h′)
im′r = 0

∣∣∣ Λ
(h′)
jm′r = 1

)
=P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r = 1,Λ

(h′)
jm′r = 1

) P
(

Λ
(h′)
im′r = 1,Λ

(h′)
jm′r = 1

)
P
(

Λ
(h′)
jm′r = 1

)
+P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r = 0,Λ

(h′)
jm′r = 1

) P
(

Λ
(h′)
im′r = 0,Λ

(h′)
jm′r = 1

)
P
(

Λ
(h′)
jm′r = 1

)
=P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r = 1,Λ

(h′)
jm′r = 1

) θ(r)
ij

πjr

+P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r = 0,Λ

(h′)
jm′r = 1

) πjr − θ(r)
ij

πjr
. (A.2)

Consider that P
(
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(h′)
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(h′)
jm′r = 1

)
will be the group membership pro-

portion of i in group r, on a shrunken set of alleles, since 1 out of the 2M alleles are
already known to be in group r. Thus, we can say

P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r = 1,Λ

(h′)
jm′r = 1

)
=
πir − 1

2M

1− 1
2M

=
2Mπir − 1

2M − 1
. (A.3)
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Similarly, P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r = 0,Λ

(h′)
jm′r = 1

)
is the group membership on the same

shrunken set of alleles, but group r is known not to have been shrunk, so

P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r = 0,Λ

(h′)
jm′r = 1

)
=

πir

1− 1
2M

=
2Mπir
2M − 1

. (A.4)

Insert (A.3) and (A.4) into (A.2), which we insert into (A.1) to end up at

Cov
(

Λ̃
(h)
imr, Λ̃

(h′)
jm′r

)
=

(
2Mπir − 1

2M − 1
×
θ

(r)
ij

πjr
+

2Mπir
2M − 1

×
πjr − θ(r)

ij

πjr

)
πjr − πirπjr

=
(2Mπir − 1) θ

(r)
ij + 2Mπir

(
πjr − θ(r)

ij

)
2M − 1

− πirπjr

=
2Mπirπjr − θ(r)

ij

2M − 1
− πirπjr =

πirπjr − θ(r)
ij

2M − 1

= −
∆

(r)
ij

2M − 1
, m 6= m′ .

A.4.2 Between-group

As for Cov
(

Λ̃
(h)
imr, Λ̃

(h′)
jm′r′

)
for m 6= m′ and r 6= r′, we find

Cov
(

Λ̃
(h)
imr, Λ̃

(h′)
jm′r′

)
= P

(
Λ

(h)
imr = 1

∣∣∣ Λ
(h′)
jm′r′ = 1

)
πjr′ − πirπjr′ , (A.5)

similarly to the approach in Appendix A.4.1. When considering P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
jm′r′

)
,

we this time instead condition on Λ
(h′)
im′r′ in the law of total expectation, so that

P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
jm′r′ = 1

)
=P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r′ = 1,Λ

(h′)
jm′r′ = 1

) θ(r′)
ij

πjr′

+P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r′ = 0,Λ

(h′)
jm′r′ = 1

) πjr′ − θ(r′)
ij

πjr′
. (A.6)

Again, P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r′ = 1,Λ

(h′)
jm′r′ = 1

)
will be the group membership proportion

of i in group r, on a shrunken set of alleles, where 1 out of the 2M alleles are already
known to be in another group r′. Thus,

P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r′ = 1,Λ

(h′)
jm′r′ = 1

)
=

πir

1− 1
2M

. (A.7)

When it comes to P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r′ = 0,Λ

(h′)
jm′r′ = 1

)
, all we know is that i’s loci

allele h′ at m′ is not in group r′. Thus, it can either be in group r, or in neither group r or
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r′. We weight the results from each of these cases by their respective probability, so

P
(

Λ
(h)
imr = 1

∣∣∣ Λ
(h′)
im′r′ = 0,Λ

(h′)
jm′r′ = 1

)
=

θ
(rr′)
ij

πjr′ − θ(r′)
ij

×
πir − 1

2M

1− 1
2M

+
πjr′ − θ(r′)

ij − θ
(rr′)
ij

πjr′ − θ(r′)
ij

× πir

1− 1
2M

. (A.8)

We insert (A.7) and (A.8) into (A.6), which we insert into (A.5) to end up at

Cov
(

Λ̃
(h)
imr, Λ̃

(h′)
jm′r′

)
=

[(
θ

(rr′)
ij

πjr′ − θ(r′)
ij

×
πir − 1

2M

1− 1
2M

+
πjr′ − θ(r′)

ij − θ
(rr′)
ij

πjr′ − θ(r′)
ij

× πir

1− 1
2M

)
×
πjr′ − θ(r′)

ij

πjr′

+
πir

1− 1
2M

×
θ

(r′)
ij

πjr′

]
πjr′ − πirπjr′

=

θ(rr′)
ij

(
πir − 1

2M

)
+
(
πjr′ − θ(r′)

ij − θ
(rr′)
ij

)
πir + πirθ

(r′)
ij

1− 1
2M

− πirπjr′
=

[
πirπjr′ − θ(rr′)

ij
1

2M

1− 1
2M

]
− πirπjr′ =

2Mπirπjr′ − θ(rr′)
ij − (2M − 1)πirπjr′

2M − 1

=
πirπjr′ − θ(rr′)

ij

2M − 1
= −

∆
(rr′)
ij

2M − 1
.

A.5 Covariances between haplotypes and local ancestry

We calculate the covariance Cov
(

Λ̃
(h)
imr, W̃

(h′)
jm′r′

)
, using the definition of the centered

variables as follows.

Cov
(

Λ̃
(h)
imr, W̃

(h′)
jm′r′

)
=Cov

(
Λ

(h)
imr,Λ

(h′)
jm′r′W

(h′)
jm′

)
− Cov

(
Λ

(h)
imr,Λ

(h′)
jm′r′

)
pm′r′

=E
(

Λ
(h)
imrΛ

(h′)
jm′r′W

(h′)
jm′

)
− E

(
Λ

(h)
imr

)
E
(

Λ
(h′)
jm′r′W

(h′)
jm′

)
+

∆
(rr′)
ij

2M − 1
× pm′r′

=P
(

Λ
(h)
imr = 1,Λ

(h′)
jm′r′ = 1,W

(h′)
jm′ = 1

)
− πirπjrpm′r′ +

∆
(rr′)
ij

2M − 1
× pm′r′ .

Note that

P
(

Λ
(h)
imr = 1,Λ

(h′)
jm′r′ = 1,W

(h′)
jm′ = 1

)
= P

(
W

(h′)
jm′ = 1

∣∣∣ Λ
(h)
imr = 1,Λ

(h′)
jm′r′ = 1

)
× P

(
Λ

(h)
imr = 1,Λ

(h′)
jm′r′ = 1

)
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= pm′r′ × E
(

Λ
(h)
imrΛ

(h′)
jm′r′

)
= pm′r′ ×

(
Cov

(
Λ

(h)
imr,Λ

(h′)
jm′r′

)
+ E

(
Λ

(h)
imr

)
E
(

Λ
(h′)
jm′r′

))
= pm′r′ ×

(
−

∆
(rr′)
ij

2M − 1
+ πirπjr

)
.

Thus

Cov
(

Λ̃
(h)
imr, W̃

(h′)
jm′r′

)
= 0 .

A.6 Covariance between total genetic values
To recap, the only nonzero covariances are (regardless of the values of h and h′)

• Cov
(
W̃

(h)
imr, W̃

(h′)
jmr

)
= θ

(r)
ij Γ

(r)
ij pmr (1− pmr),

• Cov
(

Λ̃
(h)
imr, Λ̃

(h′)
jmr′

)
= ∆

(rr′)
ij ,

• Cov
(

Λ̃
(h)
imr, Λ̃

(h′)
jm′r

)
= −∆

(rr′)
ij

2M−1 , (m 6= m′),

which we will use to find the covariance between two individuals

Cov(Ui, Uj | πi,πj ,θij ,Γij)

= Cov

(
M∑
m=1

R−1∑
r=1

2∑
h=1

1

2
Λ̃

(h)
imr (γmr − γmR) ,

M∑
m=1

R−1∑
r=1

2∑
h=1

1

2
Λ̃

(h)
jmr (γmr − γmR)

)

+ Cov

(
M∑
m=1

R∑
r=1

2∑
h=1

1

2
W̃

(h)
imr

(
βalt
mr − βref

mr

)
,

M∑
m=1

R∑
r=1

2∑
h=1

1

2
W̃

(h)
jmr

(
βalt
mr − βref

mr

))

=

M∑
m=1

M∑
m′=1

R−1∑
r=1

R−1∑
r′=1

Cov
(

Λ̃
(1)
imr + Λ̃

(2)
imr, Λ̃

(1)
jm′r′ + Λ̃

(2)
jm′r′

)
4

(γmr − γmR) (γm′r′ − γm′R)

+

M∑
m=1

M∑
m′=1

R∑
r=1

R∑
r′=1

Cov
(
W̃

(1)
imr + W̃

(2)
imr, W̃

(1)
jmr′ + W̃

(2)
jmr′

)
4

(
βalt
mr − βref

mr

) (
βalt
m′r′ − βref

m′r′
)

=

M∑
m=1

R−1∑
r=1

R−1∑
r′=1

4

4
∆

(rr′)
ij (γmr − γmR) (γmr′ − γmR)

−
M∑
m=1

M∑
m′ 6=m

R−1∑
r=1

R−1∑
r′=1

4

4

∆
(rr′)
ij

2M − 1
(γmr − γmR) (γm′r′ − γm′R)

+

M∑
m=1

R∑
r=1

4

4
θ

(r)
ij Γ

(r)
ij pmr (1− pmr)

(
βalt
mr − βref

mr

)2
.
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We note that
∑M
m=1

∑M
m′ 6=m amm′ =

∑M
m=1

∑M
m′=m amm′ −

∑M
m=1 amm, so

Cov(Ui, Uj | πi,πj ,θij ,Γij)

=

R−1∑
r=1

R−1∑
r′=1

∆
(rr′)
ij

[
M∑
m=1

(γmr − γmR) (γmr′ − γmR)

+
1

2M − 1

M∑
m=1

(γmr − γmR) (γmr′ − γmR)

− 1

2M − 1

M∑
m=1

M∑
m′=m

(γmr − γmR) (γm′r′ − γm′R)

]

+

R∑
r=1

σ2
Gr
θ

(r)
ij Γ

(r)
ij

=

R−1∑
r=1

R−1∑
r′=1

∆
(rr′)
ij

[
2M

2M − 1

M∑
m=1

(γmr − γmR) (γmr′ − γmR)

− 1

2M − 1

M∑
m=1

M∑
m′=m

(γmr − γmR) (γm′r′ − γm′R)

]

+

R∑
r=1

σ2
Gr
θ

(r)
ij Γ

(r)
ij .

Now note that
∑M
m=1

∑M
m′=1 ambm′ =

(∑M
m=1 am

)(∑M
m′=1 bm′

)
, so that

Cov(Ui, Uj | πi,πj ,θij ,Γij)

=

R−1∑
r=1

R−1∑
r′=1

∆
(rr′)
ij

[
2M

2M − 1

M∑
m=1

(γmr − γmR) (γmr′ − γmR)

− 1

2M − 1
(γr − γR) (γr′ − γR)

]
+

R∑
r=1

σ2
Gr
θ

(r)
ij Γ

(r)
ij .

Note that the contents of the above brackets can be rewritten as segregation variance terms
because

M∑
m=1

(γmr − γmR) (γmr′ − γmR)

=

M∑
m=1

[
γmrγmr′ − γmrγmR − γmr′γmR + γ2

mR

]
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=

M∑
m=1

[
−1

2
(γmr − γmr′)2

+
1

2
γ2
mr +

1

2
γ2
mr′ − γmrγmR − γmr′γmR + γ2

mR

]

=
1

2

M∑
m=1

[
(γmr − γmR)

2
+ (γmr′ − γmR)

2 − (γmr − γmr′)2
]
,

and similarly

(γr − γR) (γr′ − γR)

=
1

2

[
(γr − γR)

2
+ (γr′ − γR)

2 − (γr − γr′)2
]
,

and thus

Cov(Ui, Uj | πi,πj , θij ,Γij)

=
1

2

R−1∑
r=1

R−1∑
r′=1

∆
(rr′)
ij

[
2M

2M − 1

M∑
m=1

(γmr − γmR)
2 − 1

2M − 1
(γr − γR)

2

+
2M

2M − 1

M∑
m=1

(γmr′ − γmR)
2 − 1

2M − 1
(γr′ − γR)

2

−

(
2M

2M − 1

M∑
m=1

(γmr − γmr′)2 − 1

2M − 1
(γr − γr′)2

)]

+

R∑
r=1

σ2
Gr
θ

(r)
ij Γ

(r)
ij

=
1

2

R−1∑
r=1

R−1∑
r′=1

∆
(rr′)
ij

[
σ2

SrR
+ σ2

Sr′R
− σ2

Srr′

]
+

R∑
r=1

σ2
Gr
θ

(r)
ij Γ

(r)
ij .

Now let R be the set {1, . . . , R}. We note that per definition σ2
Srr

= 0 and σ2
Srr′

= σ2
Sr′r

,
so we can simplify to

Cov(Ui, Uj | πi,πj ,θij ,Γij)

=

R−1∑
r=1

∆
(r)
ij σ

2
SrR

+
1

2

R−2∑
r=1

R−1∑
r′=r+1

(
∆

(rr′)
ij + ∆

(r′r)
ij

) [
σ2

SrR
+ σ2

Sr′R
− σ2

Srr′

]

+

R∑
r=1

σ2
Gr
θ

(r)
ij Γ

(r)
ij

=

R−1∑
r=1

∆
(r)
ij +

1

2

R−1∑
r′ 6=r

(
∆

(rr′)
ij + ∆

(r′r)
ij

)σ2
SrR
− 1

2

R−2∑
r=1

R−1∑
r′=r+1

(
∆

(rr′)
ij + ∆

(r′r)
ij

)
σ2

Srr′

+

R∑
r=1

σ2
Gr
θ

(r)
ij Γ

(r)
ij .
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Since
∑
r=1 Λ

(h)
imr = 1, we can find the identity

∆
(r)
ij =

∑
R\{r}

∆
(r′)
ij +

∑
r′,r′′∈R\{r}

∆
(rr′)
ij , (A.9)

which we can use to rewrite the coefficient

∆
(r)
ij +

1

2

R−1∑
r′ 6=r

(
∆

(rr′)
ij + ∆

(r′r)
ij

)
=

1

2

∆
(r)
ij + ∆

(R)
ij −

∑
r′,r′′∈R\{r,R}

∆
(r′r′′)
ij

 .

Again using eq. (A.9) and the similar identities

∆
(r)
ij = −

R∑
r′ 6=r

∆
(rr′)
ij , ∆

(r)
ij = −

R∑
r′ 6=r

∆
(r′r)
ij ,

we can also rewrite the other coefficient

−1

2

(
∆

(rr′)
ij + ∆

(r′r)
ij

)
=

1

2

∆
(r)
ij + ∆

(r′)
ij −

∑
r′′,r∗∈R\{r,r′}

∆r′′r∗

ij

 .

So, finally, we can write

Cov(Ui, Uj | πi,πj ,θij ,Γij)

=
1

2

R−1∑
r=1

∆
(r)
ij + ∆

(R)
ij −

∑
r′,r′′∈R\{r,R}

∆
(r′r′′)
ij

σ2
SrR

+
1

2

R−2∑
r=1

R−1∑
r′=r+1

∆
(r)
ij + ∆

(r′)
ij −

∑
r′′,r∗∈R\{r,r′}

∆r′′r∗

ij

σ2
Srr′

+

R∑
r=1

σ2
Gr
θ

(r)
ij Γ

(r)
ij

=
1

2

R−1∑
r=1

R∑
r′=r+1

∆
(r)
ij + ∆

(r′)
ij −

∑
r′′,r∗∈R\{r,r′}

∆r′′r∗

ij

σ2
Srr′

+

R∑
r=1

σ2
Gr
θ

(r)
ij Γ

(r)
ij .
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Appendix B
R code and calls to other software

This appendix contains all R code and all calls to other software that were used to gen-
erate the model results. All R code can be found in the Git reposityory located at
https://github.com/kennaas/GGG.

B.1 Pedigree-based kinship matrices

The R file data_and_GG_setup.R is based on code used in Muff et al. (2019), and
prepares the phenotypic and pedigree data for use. We compute the genetic relatedness
matrix A and compute the matrix Q containing as entries expected group membership
proportions qir in each group for all individuals in the pedigree. Using A and Q we
compute group-specific relatedness matrices Ar in the file GG_A.R as described in section
2.2.3.

B.2 Genome-based kinship matrices

The partition of the genotyped individuals into three reference populations and an admixed
population is preformed in the R file ref_adm_partition.R. We generate .txt files
containing all genotyped individuals not contained in each of these populations, which we
use in the gametic phasing.

B.2.1 Gametic phasing

The genotype data is available on the PLINK 1.9 genomic data file format .ped with
an accompanying .map file. The .ped file contains counts of the alternate allele at each
SNP for every individual, while the .map contains additional information such as the
chromosome each SNP is located on. Beagle 5.1, the software we use to phase the
data (Browning, Zhou, and Browning 2018), takes .vcf files as input, so we use PLINK
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to convert the data to this format.

plink.exe --ped genotypes.ped --map genotypes.map

--chr-set 32 --recode vcf-iid --out vcf genotypes

The following Beagle commands were used to phased/impute the data. Inner:

java -jar beagle.18May20.d20.jar gt=vcf genotypes.vcf

excludemarkers=no chrom SNPs.txt

excludesamples=NOT inner inds.txt out=inner phased

Outer:

java -jar beagle.18May20.d20.jar gt=vcf genotypes.vcf

excludemarkers=no chrom SNPs.txt

excludesamples=NOT outer inds.txt out=outer phased

Other:

java -jar beagle.18May20.d20.jar gt=vcf genotypes.vcf

excludemarkers=no chrom SNPs.txt

excludesamples=NOT other inds.txt out=other phased

Admixed:

java -jar beagle.18May20.d20.jar gt=vcf genotypes.vcf

excludemarkers=no chrom SNPs.txt

excludesamples=NOT admixed inds.txt out=admixed phased

These calls to Beagle produces imputed haplotype data for each of the populations, on
the .vcf format. Note that we specific why individuals to exclude from each imputa-
tion/phasing, as well as which SNPs, namely the SNPs not placed on specific chromo-
somes.

In the R file W_setup.R the imputed/phased haplotype data for each reference and
admixed population are merged into a single file-backed haplotype matrix W. Rows of
W correspond to individuals, while columns correspond to alleles. Alleles are ordered so
that odd-numbered columns have alleles with h = 1, and even-numbered columns have
h = 2. In other words, the first few entries in the ith row of W are w(1)

i1 , w(2)
i1 , w(1)

i2 , w(2)
i2 ,

w
(1)
i3 , w(2)

i3 , etc. We use the functions contained in the utility-file file_backed_mat.R
for the initializing of file-backed matrices.

B.2.2 Local ancestry inference
After the gametic phasing we have haplotype available on the .vcf format, separately for
each of the three reference populations and the admixed population. We run local ancestry
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inference on the admixed population using the command-line version of Loter with the
following command:

loter cli -f ’vcf’ -r outer phased.vcf.gz inner phased.vcf.gz

other phased.vcf.gz -a admixed phased.vcf -n 8

-o loter out.txt -v

The use of the -f option makes Loter accept the haplotype data on the .vcf format,
while the -r option lists the reference populations, the -a option lists the admixed popu-
lation, the -n option lists the number of cores to be used, -o names the output file and -v
tells Loter to use the verbose option, that is, it outputs more information while running.

The local ancestry data is outputted on a .txt format where entries 0, 1 and 2 in-
dicate group membership in outer, inner and other, respectively. In the R file
loter_result_conversion.R we convert this data to three separate local ances-
try matrices Λr whose entries refer to the same alleles as the entries of W. The entries in
Λr are 0 or 1, indicating whether or not the allele has membership in group r.

B.2.3 Construction of genome-based relatedness matrices
To implement equation (3.13), we take several steps. Group-specific allele frequencies are
computed in the file Group-specific allele freq.R. The numerator of (3.13)
is computed as a sum of four matrix product in the file gamma numerator.R, which
relies on the matrices computed in V matrix.R. Similarly, the denominator of (3.13) is
computed as a sum of four matrix product in the file gamma denominator.R, which
relies on the matrices computed in L matrix.R. The estimators for θ(r)

ij are computed
in theta.R. Using all these results, in the file GG_GRM_setup.R we find the final
group specific GRMs Gr for each group r, as well as the estimated group membership
proportion vectors πr and the segregation covariance matrix components ∆(r).

B.3 INLA model
The model is fit using R-INLA in the file GG_Animal_Model.R, which when ran from
command line has options for whether to use pedigree-based or genome-based genetic
groups, which phenotypic response to use, and more. The model results are saved and
can be used to generate figures and tables of posterior distributions of the parameters.
Legarra-scaling of the additive genetic variance posteriors is performed in Legarra.R.
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Appendix C
Legarra-scaled additive genetic
variances

Table C.1 shows the group-specific additive genetic variances, scaled to refer to the same
base populations: B1, B2 and B3 for inner, outer and other, respectively. The base
population Br contains the individuals that are purebred in group r.

Table C.1: Posterior statistics for the Legarra-scaled group-specific additive genetic variances. Each
column corresponds to one model with a given response and genetic group basis, and each row to
a model parameter. For a given base population, we report the posterior mode and posterior mean
(mode;mean) in the first row, and a 95% HPD CI in the second row.

Legarra-scaled group-specific additive genetic variances

Wing length Body mass Tarsus length

Basis Genome Pedigree Genome Pedigree Genome Pedigree

σ̂2
B1

1.65;1.65 1.87;1.88 1.28;1.30 1.48;1.49 0.28;0.28 0.29;0.29

(1.36, 1.96) (1.57, 2.24) (0.95, 1.79) (1.09, 1.98) (0.22, 0.36) (0.22, 0.37)

σ̂2
B2

1.98;2.00 2.25;2.28 1.96;2.01 2.06;2.10 0.14;0.15 0.14;0.14

(1.43, 2.70) (1.66, 3.03) (1.18, 3.17) (1.25, 3.21) (0.07, 0.27) (0.07, 0.25)

σ̂2
B3

1.17;1.22 1.51;1.56 0.71;0.91 0.67;0.81 0.32;0.33 0.30;0.32

(0.56, 2.21) (0.83, 2.61) (0.15, 2.82) (0.14, 2.31) (0.14, 0.62) (0.15, 0.59)
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