
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Marte Fjelltveit

Image Analysis

Bayesian Inversion in Hidden Markov Models

Master’s thesis in Natural Science with Teacher Education
Supervisor: Karl Henning Omre

January 2021





Marte Fjelltveit

Image Analysis

Bayesian Inversion in Hidden Markov Models

Master’s thesis in Natural Science with Teacher Education
Supervisor: Karl Henning Omre
January 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Preface

This report is my MSc Thesis (MA3950, 30 stp) in my study program in natural
science with teacher education. The study has been carried out during the year
2020, mainly the fall, at the Department of Mathematical Sciences, NTNU.

I would like to thank my supervisor Professor Henning Omre for his guidance and
advises throughout the study. Thank you for motivating conversations and useful
feedback, I am grateful to have you as my supervisor. I would also like to thank my
co-students whose conversations and meetings have been much appreciated during a
challenging year affected by a pandemic. Thank you to my parents and my brother
for spell checking the report. Finally, I would like to thank my fiancé Benjamin for
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Abstract

Image analysis is performed by Bayesian inversion in hidden Markov models. The
recursive reverse algorithm which allows computing the posterior model of a Markov
random profile directly is introduced and demonstrated by examples of Markov ran-
dom profiles. The recursive reverse algorithm is used in an iterative profile block
Gibbs algorithm that focuses on one random row or column in a Markov random
field iteratively. The algorithm efficiency is compared to the regular single-site Gibbs
algorithm, focusing on one random grid node in a Markov random field iteratively,
using examples of Markov random fields and a brain MRI image.

The study reveals that for smaller images, there is little to no difference in the algo-
rithm efficiency of the two algorithms. For larger images, there is a major difference
in the algorithm efficiency in favor of the profile block Gibbs algorithm. The results
from the study encourage more research on the subject.



Sammendrag

I denne studien blir Bayesiansk inversjon i skjulte Markov modeller brukt til å anal-
ysere bilder. Den rekursive bakvendte algoritmen, som regner ut sannsynlighetene i
posterior-modellen til en Markov random profil direkte, er introdusert og bruken av
algoritmen er demonstrert ved eksempler av Markov random profiler. Den bakvendte
algoritmen er brukt i en profil block Gibbs algoritme som fokuserer p̊a en tilfeldig
rad eller kolonne i et Markov random felt iterativt. Effektiviteten til algoritmen er
sammenlignet med effektiviteten til den mer vanlige single-site Gibbs algoritmen
som fokuserer p̊a en enkelt node i et Markov random felt, ved å se p̊a eksempler fra
Markov random felt og et medisinsk bilde av en hjerne.

Studien avslører at for mindre bilder er det liten eller ingen forskjell i algoritme-
effektiviteten til de ulike algoritmene. For større bilder er det derimot en stor forskjell
i algoritmeeffektiviteten i favør til profil block Gibbs algoritmen. Resultatene opp-
muntrer til videre forskning p̊a emnet.
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1 Introduction

My study focus is on becoming a teacher at junior high school or high school, and the theme in
this study is not directly relevant to what I will teach my future students. However, as a teacher
I find it crucial to be passionate about the subject I will be teaching, and I believe having an
MSc Thesis on mathematics will help me inspire the students. When they ask me “what can I
do with higher level mathematics?”, I will be able to refer to my thesis and have a real example
from my own experience. I missed a good answer to the stated question from my teachers when I
went to high school myself. Also, this thesis has helped me improve my programming skills and I
have been working more with algorithms, which is very relevant for the current math curriculum
in school today. The new teaching plan, “Kunnskapsløftet 2020”, has programming and algorithm
as core elements in mathematics [Udir, 2020], but there is not much computing implemented in the
education plan for the future teachers. I therefore find it very useful to have more experience within
both programming and algorithmic thinking. It is important for me to help my students to achieve
their full potential in the subject. I want to be able to inspire and help my students to expand their
mathematical horizon, no matter which academic start-point they have.

In this study, the focus is on discretized hidden Markov models (HMM) as Bayesian inversion, which
combines the likelihood model and the prior model to achieve the posterior model. The product
of the likelihood model and the prior model is proportional to the posterior model which is the
ultimate solution in Bayesian inversion. The posterior model can in one dimension be assessed by
the reverse algorithm, which is a recursive algorithm passing backwards through the HMM once.
Marginal maximum a posteriori (MMAP), maximum a posteriori (MAP), probability maps and
parameter estimation are generated by algorithms presented in this study. The reverse algorithm
can further improve simulation of HMMs in two dimensions using the block Gibbs algorithm of a
profile from a two-dimensional image. One example from a real case study can be found in [Fjeldstad
et al., 2020].

The history concerning Markov models are provided by [Basharin et al., 2004] and [Kouemou, 2011].
A Markov model in its simplest form is a stochastic temporal model where the next step in the
process of modeling is only influenced by the state of the current step. The Markov chain originates
from the Russian mathematician Andrey Markov, and the first paper on the subject is written in
1906 [Markov, 1906]. Here Markov introduced the term “chain” where each node could occur in
one out of two states, namely {0, 1}. The motivation of Markov appears to be the extension of the
law of large numbers for independent observations, but there are also other topics from an earlier
time, such as Brownian motion, that can be considered a Markov processes. The term “Markov
chain” was used for the first time by Bernstein [Bernstein, 1927], and Kolmogorov presented a
generalization with countable finite state spaces [Kolmogorov, 1931].

The Markov chain is useful in a wide variety of applications, which provides motivation to achieve
more complicated models with similar properties [Kindermann and Snell, 1980]. A series of papers
focusing on Markov models are published in the 1960s and 1970s, and HMMs, introduced by Baum
[Baum and Eagon, 1967], have been frequently extended since. Different algorithms related to
HMMs have been developed over the years. The expectation-maximization (EM) algorithm, the
Baum-Welsh algorithm, and the Viterbi algorithm are examples of this [Viterbi, 1967,Baum et al.,
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1970,Dempster et al., 1977]. The EM algorithm is a general iterative algorithm mostly used to find
the maximum likelihood estimates of parameters in the Markov model. The general algorithm is
described in [Dempster et al., 1977], but as they also point out in the paper, the algorithm has been
proposed multiple times before them. The Baum-Welsh algorithm is an iterative algorithm that
adjusts the model parameters in an HMM to the observations by using EM algorithm [Scott, 2002].
The algorithm is based on forward and backward recursions and computes the marginal probabilities
in the HMM. The MMAP contains marginal predictions of the image, but also probability maps for
the image. The Viterbi algorithm computes the most likely path of the HMM, the “Viterbi-path”,
and the probability of this path [Viterbi, 1967]. While many previous studies focus on the maximum
marginal probability as posterior prediction, the main focus in this study is on the full posterior
probability model, which provides all the information on the HMM necessary for further analysis.

The foundations for the theory of spatial Markov random fields (MRF) are introduced as a result of
generalizing the Ising model [Kindermann and Snell, 1980]. An MRF is a random field that satisfies
the Markov properties. For any MRF, the probability concerning the state of a node given the
rest of the field depends singularly on its specified neighbors [Besag, 1974]. Using the Hammersley-
Clifford theorem one can construct a valid MRF with defined clique and neighborhood systems and
a fulfilled positivity condition [Besag, 1974].

As posterior models usually are very computationally demanding, iterative algorithms are used
to simulate from the posterior model. A common approach to assess the posterior model is using
the single-site Gibbs algorithm. In this study, a profile block Gibbs algorithm is suggested as a
way to assess the posterior model. The aim is to find out if the profile block Gibbs algorithm
is a more efficient way to simulate from the posterior model compared to the regular single-site
Gibbs algorithm. The results from this comparison can be useful in several scientific fields, and my
motivation has been medical images. In robotic surgery, the accuracy requirements in the images are
high, as any errors can cause dramatic harm. It is also helpful in medical diagnosis with accurate
images to avoid misdiagnosing patients. A more efficient procedure of reducing the noise in the
images benefits all industries where image analysis is crucial.

We introduce some basic notations for this study. Bold low letter symbols like l and d are vectors.
The vector l−x denotes the entire vector l apart from lx. The functions p(·) and p(·|·) are probability
functions. In this study we do not notationally differentiate probability density functions (pdfs) from
probability mass functions (pmfs). The function I(A) is the indicator function such that I(A) = 1
if statement A is true, and I(A) = 0 if statement A is false. More notation will be specified in the
next section.

In Section 2 we consider general Markov models, both in one and two dimensions, and notations to
make further reading easier. The structure of the models is defined and we look at the connection
between the models in one and two dimensions. A Markov field is defined, and we show that the gen-
eral models presented are Markov models by the Hammersley-Clifford theorem. In the next sections,
we look into specific one- and two-dimensional cases where we consider closest neighbor cliques and
three states. The reverse algorithm is presented in Section 3. We consider a few examples in both
dimensions, and the reverse algorithm is used to simulating from a one-dimensional HMM directly
and a two-dimensional HMM by the iterative profile block Gibbs algorithm. In two dimensions,
we compare it to the regular single-site Gibbs algorithm. A training image is used to estimate the
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parameters in the prior distributions, and in one dimension we also estimate the parameters using
marginal likelihood. Finally, we use the method on a real image of a brain MRI, again with three
states, in Section 5. Section 6 summarize the study and the results.

2 Markov models and notations

This section contains some notations related to the study. An introduction to the models, and some
of the relevant properties of the models are provided.

2.1 Definitions and notations

We consider the categorical image with variables lx ∈ L, where L = {1, . . . , L} is a non-ordered set
of states, x being a spatial reference in D and D being a subset of Rm. The dimensions are m = 1
and m = 2. Assume the reference domain D is discretized into a regular grid LD, and the variable
is l = {lx; x ∈ LD ⊂ D}. Figure 1 illustrates the discretized profile in one dimension and the
discretized image in two dimensions. We specify the model for each dimension. For one dimension,
we consider l = {li; i ∈ LD ⊂ R1} and for two dimensions, l = {li,j ; i, j ∈ LD ⊂ R2}. In this study
we assume the HMM id discretized into finite dimensions, hence in one dimension, i ∈ {1, . . . , n}
and in two dimensions i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2} with n = n1 × n2.

(a) A discretized profile LD ⊂ D ⊂ R1.

(b) A discretized grid LD ⊂ D ⊂ R2.

Figure 1: The discretized image in one and two dimensions.

A clique system is a system consisting of sets of nodes in LD. We define the clique system C =
{c1, . . . , cnc

} where c ⊂ LD. Figure 2 illustrates some examples of cliques. To ease further notation,
define the set of cliques Cx = {c ∈ C; x ∈ c} to be all the cliques that contains the node x.

Let the neighborhood system be N = {nx; x ∈ LD}, where each neighborhood nx = {x; x ∈
c, c ∈ Cx}\x consists of all the nodes that are in a clique with x, but not the node x itself. The
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neighborhood system consists of sets of nodes, one for each x ∈ LD. Any model on LD with specified
neighbors is a Markov field [Besag, 1974,Hurn et al., 2003].

As the neighborhood system is defined by the clique system, Figure 2 displays some examples of
clique and neighborhood relations. The neighborhood of the colored node x does not include x
itself, but the remaining nodes in the figures. In this study we consider the clique system in Figure
2 (a) denoted the closest pairwise cliques.

(a) Four closest neighbors (b) Eight closest neighbors

(c) Twelve closest neighbors

Figure 2: The relations between the cliques and the neighborhood defined by the cliques of an inner
node x.

The MRF is hidden, so we are not able to observe the variable l directly. However, we assume to
have some observations, d : {dx; x ∈ LD}, related to the variable l : {lx; x ∈ LD}. The observations
can be either real-valued or categorical. The aim is to assess l given d, hence [l|d]. To do this we
use Bayesian inversion.

2.2 Bayesian inversion in a hidden Markov model

Consider the prior model, a user specific base to the problem, with probability function p(l). Further,
assume the observation procedure is known, with likelihood model p(d|l). The ultimate solution in
Bayesian inversion is the posterior model with probability function p(l|d) defined by Bayes rule,

p(l|d) = const× p(d|l)p(l) (1)

where

const =
[ ∑
l′∈Ln

p(d|l′)p(l′)
]−1

. (2)
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The constant is defined by summing over all possible configurations of l ∈ Ln, which is usually
very computationally demanding depending on the size of the grid LD. We aim at being able to
assess the posterior model in an efficient way. We further consider the likelihood, prior and posterior
models in general terms.

2.3 Likelihood model

Assume we observe some data d = {dx; x ∈ LD} related to the variable l. The observation procedure
is defined by the likelihood model, p(d|l), and this is the connection between the hidden random
variables and the observations. In the expression p(d|l) the vector d is known and conditioned on,
while the unknown variable of interest is l. Hence the function p(d|l) is not a probability density
function with respect to l and need not be normalized. Assume the likelihood model is conditionally
independent with single-site response,

p(d|l) =
∏

x∈LD

p(dx|lx). (3)

The response can be states such that d ∈ Ln with some known probabilities of misclassifying any
l′ ∈ L given some l. Alternatively the response can be d ∈ Rn, with [di|li] = µi(li) + εdi , where
µi(·) ∈ R and εdi

∈ R being independent errors for each di.

(a) One-dimensional profile
(b) Two-dimensional field

Figure 3: Each observation depend on the corresponding node in a hidden model.

Figure 3 illustrates that each observation dx given l is only influenced by its corresponding node in
the hidden variable.

2.4 Prior model

Consider the prior model related to the HMM, p(l;θ), where θ are unknown parameters suppressed
in the notation. This prior model expresses the initial assumptions about the HMM. We use the
Hammersley-Clifford theorem to ensure we have a valid HMM [Besag, 1974] and define the prior
model on Gibbs form,

p(l) = const× exp
{ ∑

x∈LD

νx(lx) +
∑
c∈C

νc(lx; x ∈ c)
}
, (4)
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where the functions νx(·,θ) and νc(·, ·;θ) are real functions, containing the parameters θ, such that
the positivity condition is fulfilled. The clique system C is the user specified clique system for the
HMM under study. For an HMM the set of conditional marginal probabilities can be written in
Markov form in terms of the neighborhood system N defined by the cliques system C,

p(lx|l−x) = p(lx|ly; y ∈ nx); ∀x ∈ LD. (5)

The prior model on Gibbs form consists of one n-dimensional probability model, while the prior
on Markov form consists of n one-dimensional probability models. To ensure a valid HMM by the
Hammersley-Clifford theorem we define Markov formulation p(lx|l−x) for the general prior model
using the Gibbs form. Consider one particular grid node x ∈ LD,

p(lx|l−x) =
p(l)

p(l−x)
=

p(l)∑
l′x∈L

p(l′x, l−x)

=
const× exp

{∑
y∈LD\x νy(ly) +

∑
c∈C\Cx

νc(ly; y ∈ c)
}

const× exp
{∑

y∈LD\x νy(ly) +
∑

c∈C\Cx
νc(ly; y ∈ c)

}

×
exp

{
νx(lx) +

∑
c∈Cx

νc(lx, ly; y ∈ c\x)
}

∑
l′x∈L

exp
{
νx(l′x) +

∑
c∈Cx

νc(l′x, ly; y ∈ c\x)
}

=
exp

{
νx(lx) +

∑
c∈Cx

νc(lx, ly; y ∈ c\x)
}

∑
l′x∈L

exp
{
νx(l′x) +

∑
c∈Cx

νc(l′x, ly; y ∈ c\x)
}

= const× exp
{
νx(lx) +

∑
c∈Cx

νc(lx, ly; y ∈ c\x)
}

= p(lx|ly; y ∈ nx),

(6)

with normalizing constant,

const =

[∑
l′x∈L

exp
{
νx(l′x) +

∑
c∈Cx

νc(l′x, ly; y ∈ c\x)
}]−1

.

The normalizing constant is feasible to compute since the sum only includes L terms. The prior
model on Markov form,

p(lx|l−x) = const× exp
{
νx(lx) +

∑
c∈Cx

νc(lx, ly; y ∈ c\x)
}

;∀x ∈ LD,

is thereby feasible to compute.

2.5 Posterior model

As previously stated, the ultimate solution in Bayesian inversion is the posterior model in Expression
1 for [l|d]. The likelihood model is, as previously stated, a conditional independent one-to-one model.
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Each node of the hidden variable depends on the nodes in its neighborhood, as illustrated in Figure
4, and this coupling must be taken into account assessing the posterior variable [l|d].

Figure 4: One node in the observation depend on its corresponding node in the hidden model which
again depend on its neighborhood.

The posterior model, reversing the arrows, is then influenced by the total set of observations as
illustrated in Figure 5. Only the influence of a few nodes are illustrated, but it is correspondingly
for the rest of the grid nodes in the observations.

(a) One-dimensional profile
(b) Two-dimensional field

Figure 5: Each observation influences the entire posterior model. (a) two observations influences the
entire posterior model in one dimension. (b) one observations influences the entire posterior model
in two dimensions.

The posterior model is uniquely defined by the product of the likelihood and prior models, as in
Expression 1,

p(l|d) = const× p(d|l)p(l)

= const×
∏

x∈LD

p(dx|lx)× exp
{ ∑

x∈LD

νx(lx) +
∑
c∈C

νc(lx; x ∈ c)
}
.

(7)

The posterior model is also an MRF on Gibbs form as the likelihood model can be included in the
exponential by taking the logarithm,

p(l|d) = const×× exp
{ ∑

x∈LD

[
log
(
p(dx|lx)

)
+ νx(lx)

]
+
∑
c∈C

νc(lx; x ∈ c)
}
. (8)

Similarly to the prior model, we define the Markov formulation of the posterior model p(lx|l−x,d).
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Consider one particular grid node x ∈ LD,

p(lx|l−x,d) =
p(l,d)

p(l−x,d)
=

p(d|l)p(l)∑
l′x∈L

p(d|l′x, l−x)p(l′x, l−x)

=
const×

∏
y∈LD\x p(dy|ly) exp

{∑
y∈LD\x νy(ly) +

∑
c∈C\Cx

νc(ly; ly ∈ c)
}

const×
∏

y∈LD\x p(dy|ly) exp
{∑

y∈LD\x νy(ly) +
∑

c∈C\Cx
νc(ly; ly ∈ c)

}

×
p(dx|lx) exp

{
νx(lx) +

∑
c∈Cx

νc(lx, ly; y ∈ c\x)
}

∑
l′x∈L

p(dx|l′x) exp
{
νx(l′x) +

∑
c∈Cx

νc(l′x, ly; y ∈ c\x)
}

= const× p(dx|lx) exp
{
νx(lx) +

∑
c∈Cx

νc(lx, ly; y ∈ c\x)
}

= p(lx|ly; y ∈ nx, dx),

(9)

with normalizing constant,

const =

[∑
l′x∈L

p(dx|l′x) exp
{
νx(l′x) +

∑
c∈Cx

νc(l′x, ly; y ∈ c\x)
}]−1

.

The constant is feasible to compute since the sum only includes L terms, where L is the number of
states. The posterior model on Markov form,

p(lx|l−x,d) =

[∑
l′x∈L

p(dx|l′x) exp
{
νx(l′x) +

∑
c∈Cx

νc(l′x, ly; y ∈ c\x)
}]−1

× exp
{
νx(lx) +

∑
c∈Cx

νc(lx, ly; y ∈ c\x)
}

;∀x ∈ LD,

consists of n one-dimensional probability models, and is feasible to compute compared to the one
n-dimensional probability model on Gibbs form.

2.6 Parameter estimation

We assume that the prior model is parameterized by unknown parameters, θ. To estimate the
parameters, we consider the marginal likelihood p(d;θ),

p(d;θ) =
∑
l′∈Ln

p(d|l′)p(l′;θ). (10)

An estimate of the unknown parameters θ is found by maximizing the marginal likelihood for d,

θ̂ = arg max
θ

{
p(d;θ)

}
.
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Calculating p(d;θ) is usually very computationally demanding as it sums over all possible config-
urations of the hidden variable. In mathematical terms, this would mean summing over Ln terms
where L is the number of states and n is the number of nodes in the field.

Another method of estimating the unknown parameters is by using a training image l0 ∈ Lm.
Assume the training image is defined on the same grid spacing LD. An estimate of the parameters
is then found by maximizing the prior model p(l0;θ) with respect to θ,

θ̂ = arg max
θ

{
p(l0;θ)

}
.

3 Markov random profile

Consider a stationary spatial profile like in Figure 1 (a) with li; i = 1, . . . , n. Each grid node li ∈ L
where L = {black, grey, white}.

3.1 Likelihood model

The likelihood model is specified in Section 2 as a conditionally independent single-site model
illustrated in Figure 3 (a). The likelihood model for the random profile is defined as follows,

p(d|l) =

n∏
i=1

p(di|li). (11)

3.2 Prior model

The prior model of the random profile is defined on Gibbs form,

p(l) = const× exp
{ n∑

i=1

ν(li) +

n∑
i=2

νC(li−1, li)
}
. (12)

Hence the clique system consists of the two closest neighbors as shown in Figure 6. In Expression
12, ν(·;θ) is a function of a single node, and νC(·, ·;θ) is a function of one clique consisting of two
closest neighbors. They are both real functions, ν(·;θ), νC(·, ·;θ) ∈ R.

Figure 6: The stationary random profile. Colored nodes indicates one clique.
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By the Markov form of the general prior model defined in Expression 6, the Markov profile form of
this specified prior follows,

p(li|l−i) = const× exp
{
ν(li) + νC(li−1, li) + νC(li, li+1)

}
= p(li|li−1, li+1), i ∈ {2 . . . , n− 1}

p(l1|l−1) = const× exp
{
ν(l1) + νC(l1, l2)

}
= p(l1|l2)

p(ln|l−n) = const× exp
{
ν(ln) + νC(ln−1, ln)

}
= p(ln|ln−1).

(13)

For any pdf,

p(l) = p(l1)×
n∏

i=2

p(li|l1:(i−1)),

but note that p(li|l1:(i−1)) is not necessarily feasible to compute. Consider the Markov chain form
for li, i ∈ (2, . . . , n),

10



p(li|l1:(i−1)) =
p(l1:i)

p(l1:(i−1))
=

∑
l′n∈L
· · ·
∑

l′i+1∈L
p(l1:i, l

′
i+1, · · · , l′n)∑

l′n∈L
· · ·
∑

l′i∈L
p(l1:(i−1), l

′
i, · · · , l′n)

=
const× exp

{∑i−1
u=1 ν(lu) +

∑i−1
u=2 νC(lu−1, lu)

}
const× exp

{∑i−1
u=1 ν(lu) +

∑i−1
u=2 νC(lu−1, lu)

}

×
exp

{
ν(li) + νC(li−1, li)

}∑
l′n∈L
· · ·
∑

l′i+1∈L
[

exp
{
νC(li, l

′
i+1)

}
∑

l′i∈L

[
exp

{
ν(l′i) + νC(li−1, l′i)

}∑
l′n∈L
· · ·
∑

l′i+1∈L
[

exp
{
νC(l′i, l

′
i+1)

}

×
exp

{∑n
u=i+1 ν(l′u) +

∑n
u=i+2 νC(l

′
u−1, l

′
u)
}]

exp
{∑n

u=i+1 ν(l′u) +
∑n

u=i+2 νC(l
′
u−1, l

′
u)
}]]

=
exp

{
ν(li) + νC(li−1, li)

}∑
l′n∈L
· · ·
∑

l′i+1∈L
[

exp
{
νC(li, l

′
i+1)

}
∑

l′i∈L

[
exp

{
ν(l′i) + νC(li−1, l′i)

}∑
l′n∈L
· · ·
∑

l′i+1∈L
[

exp
{
νC(l′i, l

′
i+1)

}

×
exp

{∑n
u=i+1 ν(l′u) +

∑n
u=i+2 νC(l

′
u−1, l

′
u)
}]

exp
{∑n

u=i+1 ν(l′u) +
∑n

u=i+2 νC(l
′
u−1, l

′
u)
}]]

=
exp

{
ν(li) + νC(li−1, li)

}
× h(li)∑

l′i∈L
exp

{
ν(l′i) + νC(li−1, l′i)

}
× h(l′i)

= const× exp
{
ν(li) + νC(li−1, li)

}
× h(li)

= p(li|li−1),

(14)

with normalizing constant,

const =

[∑
l′i∈L

exp
{
ν(l′i) + νC(li−1, l

′
i)
}
× h(l′i)

]−1
.
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The term h(li) can be written backward recursively,

h(li) =
∑

l′i+1∈L

· · ·
∑
l′n∈L

exp
{
ν(l′i+1) + νC(li, l

′
i+1)

}
exp

{ n∑
u=i+2

ν(l′u) + νC(l
′
u−1, l

′
u)
}

=
∑

l′i+1∈L

exp
{
ν(l′i+1) + νC(li, l

′
i+1)

} ∑
l′i+2∈L

exp
{
ν(l′i+2) + νC(li+1, l

′
i+2)

}
· · ·

· · ·
∑

l′n−1∈L

exp
{
ν(l′n−1) + νC(l

′
n−2, l

′
n−1)

} ∑
l′n∈L

exp
{
ν(l′n) + νC(l

′
n−1, l

′
n)
}

=
∑

l′i+1∈L

exp
{
ν(l′i+1) + νC(li, l

′
i+1)

}
× h(l′i+1).

(15)

Notice that Expression 14 is valid for i ∈ 2, . . . , n, so we define p(l1),

p(l1) =
h(l1)∑

l′1∈L
h(l′1)

= const× h(l1). (16)

This means that p(l) = p(l1)×
∏n

i=2 p(li|l1:(i−1)) can be factorized such that

p(l) = p(l1)×
n∏

i=2

p(li|li−1).

The prior model can be considered a Markov random chain (MRC), where the next step in the
process only depends on the current step [Norris, 1998].

3.3 Posterior model

The posterior model is uniquely defined by the prior and likelihood models, so consider Expression
11 and 12 when we define the posterior model as in Expression 7,

p(l|d) = const∗ × p(d|l)p(l)

= const×
n∏

i=1

p(di|li)× exp
{ n∑

i=1

ν(li) +

n∑
i=2

νC(li−1, li)
}
.

(17)
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By the Markov form defined for the general posterior model in Expression 9, the Markov profile
form for the specified posterior model is expressed,

p(li|l−i,d) = const× p(di|li) exp
{
ν(li) + νC(li−1, li) + νC(li, li+1)

}
= p(li|li−1, li+1, di), i ∈ {2 . . . , n− 1}

p(l1|l−1,d) = const× p(d1|l1) exp
{
ν(l1) + νC(l1, l2)

}
= p(l1|l2, d1)

p(ln|l−n,d) = const× p(dn|ln) exp
{
ν(ln) + νC(ln−1, ln)

}
= p(ln|ln−1, dn).

(18)

We know that p(l|d) = p(l1|d) ×
∏n

i=2 p(li|l1:(i−1),d), but again the term p(li|l1:(i−1),d) is not
necessarily feasible to compute. Consider the Markov chain form for p(li|l1:(i−1),d) for node i ∈
(2, . . . , n),

p(li|l1:(i−1),d) =
p(l1:i,d)

p(l1:(i−1),d)
=

∑
l′n∈L
· · ·
∑

l′i+1∈L
p(l1:i, l

′
i+1, · · · , l′n,d)∑

l′n∈L
· · ·
∑

l′i+1∈L
∑

l′i∈L
p(l1:(i−1), l

′
i, l
′
i+1, · · · , l′n,d)

=
const×

∏i−1
u=1 p(du|lu) exp

{∑i−1
u=1 ν(lu) +

∑i−1
u=2 νC(lu−1, lu)

}
const×

∏i−1
u=1 p(du|lu) exp

{∑i−1
u=1 ν(lu) +

∑i−1
u=2 νC(lu−1, lu)

}

×
p(di|li) exp

{
ν(li) + νC(li−1, li)

}
×
∑

l′n∈L
· · ·
∑

l′i+1∈L
[∏n

u=i+1 p(du|l′u)

∑
l′i∈L

[
p(di|l′i) exp

{
ν(l′i) + νC(li−1, l′i)

}∑
l′n∈L
· · ·
∑

l′i+1∈L
[∏n

u=i+1 p(du|l′u)

×
exp

{
ν(l′i+1) + νC(li, l

′
i+1) +

∑n
u=i+2 ν(l′u) + νC(l

′
u−1, l

′
u)
}]

exp
{
ν(l′i+1) + νC(l′i, l

′
i+1) +

∑n
u=i+2 ν(l′u) + νC(l′u−1, l

′
u)
}]]

=
p(di|li) exp

{
ν(li) + νC(li−1, li)

}
× g(li,d(i+1):n)∑

l′i∈L
p(di|l′i) exp

{
ν(l′i) + νC(li−1, l′i)

}
× g(l′i,d(i+1):n)

= const× p(di|li) exp
{
ν(li) + νC(li−1, li)

}
× g(li,d(i+1):n)

= p(li|li−1,di:n),

(19)
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with normalizing constant,

const =

[∑
l′i∈L

p(di|l′i) exp
{
ν(l′i) + νC(li−1, l

′
i)
}
× g(l′i,d(i+1):n)

]−1
.

The term g(li,d(i+1):n) can be written backward recursively,

g(li,d(i+1):n) =
∑

l′i+1∈L

· · ·
∑
l′n∈L

[
exp

{
ν(l′i+1) + νC(li, l

′
i+1)

}

×
n∏

u=i+1

p(du|l′u) exp
{ n∑

u=i+2

ν(l′u) + νC(l
′
u−1, l

′
u)
}]

=
∑

l′i+1∈L

p(di+1|l′i+1) exp
{
ν(l′i+1) + νC(li, l

′
i+1)

} ∑
l′i+2∈L

· · ·
∑

l′n−1∈L

p(dn−1|l′n−1)

× exp
{
ν(l′n−1) + νC(l

′
n−2, l

′
n−1)

} ∑
l′n∈L

p(dn|l′n) exp
{
ν(l′n)νC(l

′
n−1, l

′
n)
}

=
∑

l′i+1∈L

p(di+1|l′i+1) exp
{
ν(l′i+1) + νC(li, l

′
i+1)

}
× g(l′i+1,d(i+2):n).

(20)

Consider p(l1|d) separately,

p(l1|d) =
p(d1|l1)× g(l1,d2:n)∑
l′1∈L

p(d1|l′1)g(l′1,d2:n)
= const× p(d1|l1)× g(l1,d2:n). (21)

Combining this with the fact that p(l|d) = p(l1|d)×
∏n

i=2 p(lt|l1:(i−1),d),

p(l|d) = p(l1|d)×
n∏

i=2

p(li|li−1,di:n). (22)

This means that also the posterior can be considered an MRC [Norris, 1998], and by calculating
the different transition probabilities we can simply simulate directly from the posterior model using
the calculated probabilities.

3.4 Calculating the posterior model

The calculations have provided a first ordered MRC in Expression 22. The different transitions
probabilities p(li|li−1,di:n) can be assessed recursively, starting at the end point p(ln|ln−1, dn) [Moja
et al., 2019],
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p(li|li−1, li+1, di) = const× p(li+1|li,d(i+1):n)p(li|li−1,di:n)

m

p(li|li−1,di:n) = const× p(li|li−1, li+1, di)

p(li+1|li,d(i+1):n)

m

p(li|li−1,di:n) = const× p(li|li−1, li+1)p(di|li)
p(li+1|li,d(i+1):n)

.

(23)

The normalizing constant is feasible to compute,

const =

[∑
l′i∈L

p(l′i|li−1, li+1)p(di|l′i)
p(li+1|l′i,d(i+1):n)

]−1
.

Further consider the end points l1 and ln,

p(l1|l2, d1) = const× p(l2|l1,d2:n)p(l1|d)

m

p(l1|d) = const× p(l1|l2, d1)

p(l2|l1,d2:n)

m

p(l1|d) = const× p(l1|l2)p(d1|l1)

p(l2|l1,d2:n)
,

(24)

p(ln|ln−1, dn) = const× p(ln|ln−1)p(dn|ln). (25)
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The posterior model can then be computed recursively starting at ln, using Algorithm 1.

Algorithm 1: Reverse Algorithm - Calculating the posterior model

for all ln, ln−1 ∈ L and dn do
p(ln|ln−1, dn) = const× p(dn|ln)p(ln|ln−1)

end

const =
[∑

l′n∈L
p(dn|l′n)p(l′n|ln−1)

]−1
for all i = n− 1, . . . , 2 do

for all li, li−1 ∈ L and arbitrary li+1 ∈ L and di:n do

p(li|li−1,di:n) = const× p(di|li)p(li|li−1,li+1)
p(li+1|li,d(i+1):n)

end

const =
[∑

l′i∈L
p(di|li)p(l′i|li−1,li+1)
p(li+1|l′i,d(i+1):n)

]−1
end
for all l1 ∈ L and arbitrary l2 ∈ L and d do

p(l1|d) = const× p(d1|l1)p(l1|l2)
p(l2|l1,d2:n)

end

const =
[∑

l′1∈L
p(d1|l1)p(l′1|l2)
p(l2|l′1,d2:n)

]−1
Algorithm 1 calculates all the values of the posterior model,

p(l|d) = p(l1|d)

n∏
i=2

p(li|li−1,di:n),

for any configuration of l.

3.5 Simulating realizations and predictions

The aim is to assess the posterior model to simulate realizations and predictions. The MAP is
calculated by the Viterbi algorithm and we also consider the marginal maximum a posteriori, both
as prediction and probability profile.
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3.5.1 Simulating from the posterior model

With the transition matrices generated by Algorithm 1, realizations of the posterior model are
generated directly.

Algorithm 2: Simulating from the posterior model

ls1 ← p(l1|d)
for all i = 2, . . . , n do

lsi ← p(li|lsi−1,di:n)
end

Algorithm 2 generates one realization ls from [l|d].

3.5.2 Maximum posterior predictor

To find the maximum a posteriori (MAP) predictor, we use the Viterbi algorithm [Viterbi, 1967],

finding the most likely path, l̂,
l̂ = arg max

l

{
p(l|d)

}
. (26)

Algorithm 3: The Viterbi algorithm - MAP predictor

for all l2 ∈ L do

maxl1 p(l1:2|d) = maxl1

[
p(l1|d)× p(l2|l1,d2:n)

]
end
for all i = 2, . . . , n− 1 do

for all li+1 ∈ L do

maxl1:i p(l1:(i+1)|d) = maxli

[
maxl1:(i−1)

p(l1:i|d)× p(li+1|li,d(i+1):n)
]

end

end

l̂n = arg maxln

[
maxl1:(n−1)

p(l|d)
]

for all i = n− 1, . . . , 1 do

l̂i = arg maxli

[
maxl1:(i−1)

p(l1:i|d)× p(l̂i+1|li,d(i+1):n)
]

end

Algorithm 3 generates a MAP predictor, l̂, based on the Viterbi algorithm.
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3.5.3 Marginal maximum posterior predictor

To find the marginal maximum a posteriori predictor (MMAP) we calculate the most likely result
for each lt marginally,

l̃ =
{
l̃i = arg max

li

{
p(li|d)

}
,∀i ∈ (1, . . . , n)

}
, (27)

with
p(li|d) =

∑
l′i−1∈L

p(li|l′i−1,d)p(l′i−1|d). (28)

Algorithm 4: The MMAP predictor

l̃1 = arg maxl1

[
p(l1|d)

]
for all i = 2, . . . , n do

for all li ∈ L do
p(li|d) =

∑
l′i−1∈L

p(li|l′i−1,d)p(l′i−1|d)

end

l̃i = arg maxli p(li|d)

end

Algorithm 4 generates a MMAP predictor, l̃.

Probability profiles is assessed by the MMAP predictor in Algorithm 5 as it calculates the probability
of all li ∈ L for every grid node i.

Algorithm 5: Computing probability profiles

l̃1 = arg maxl1

[
p(l1|d)

]
for all i = 2, . . . , n do

for all li ∈ L do
p(li|d) =

∑
l′i−1∈L

p(li|l′i−1,d)p(l′i−1|d)

end

end

Algorithm 5 generates L profiles displaying the marginal probabilities of each state li ∈ L occurring
in every grid node i.
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3.6 Estimating the parameter

The marginal likelihood model p(d;θ) can be used to estimate the parameters,

p(d;θ) =
∑
l′∈Ln

p(d|l′)p(l′;θ)

=
∑
l′1∈L

· · ·
∑
l′n∈L

p(d1|l′1)p(l′1;θ)

n∏
i=2

p(di|l′i)p(l′i|l′i−1;θ)

=
∑
l′1∈L

p(d1|l′1)p(l′1;θ)
∑
l′2∈L

p(d2|l′2)p(l′2|l′1;θ)
∑
l′3∈L

· · ·

∑
l′n−1∈L

p(dn−1|l′n−1)p(l′n−1|l′n−2;θ)
∑
l′n∈L

p(dn|l′n)p(l′n|l′n−1;θ).

(29)

Since d is a set of conditionally independent data, note the following for i = 3, . . . , n,

p(di−1|li−1)p(li−1|li−2;θ)p(di:n|li−1;θ) = p(d(i−1):n|li−1)p(li−1|li−2;θ). (30)

We can estimate the unknown parameters θ by maximizing the function with respect to the pa-
rameters, p(d;θ),

θ̂ = arg max
θ

{
p(d;θ)

}
.

Algorithm 6: Calculating p(d;θ)

for all ln−1 ∈ L do
g(dn, ln−1;θ) =

∑
l′n∈L

p(dn|l′n)p(l′n|ln−1;θ)

end
for all i = n− 1, . . . , 2 do

for all li−1 ∈ L do
g(di:n, li−1;θ) =

∑
l′i∈L

p(di|l′i)p(l′i|li−1;θ)× g(d(i+1):n, l
′
i;θ)

end

end
p(d;θ) =

∑
l′1∈L

p(d1|l′1)p(l′1;θ)× g(d2:n, l
′
1;θ)

Algorithm 6 returns p(d;θ) and will further on be used to estimate θ. Recall the function g(lt|d(t+1):T )
from Expression 20. The parameters is estimated by maximizing p(d;θ) with respect to θ. Alter-
natively, one may estimate the parameters by using a training image l0. Similarly as to using the
marginal likelihood model, an estimate of the parameters is found by maximizing the prior model
p(l0;θ) with respect to θ,

θ̂ = arg max
θ

{
p(l0;θ)

}
.
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The prior model is assessed by the recursive reverse algorithm in Algorithm 7.

Algorithm 7: Reverse Algorithm - Calculating the prior model

for all ln, ln−1 ∈ L do
p(ln|ln−1) = const× p(ln|ln−1)

const =
[∑

l′n∈L
p(l′n|ln−1)

]−1
end
for all i = n− 1, . . . , 2 do

for all li, li−1 ∈ L and arbitrary li+1 ∈ L do

p(li|li−1) = const× p(li|li−1,li+1)
p(li+1|li)

end

const =
[∑

l′i∈L
p(l′i|li−1,li+1)

p(li+1|l′i)

]−1
end
for all l1 ∈ L and arbitrary l2 ∈ L do

p(l1) = const× p(l1|l2)
p(l2|l1)

end

const =
[∑

l′1∈L
p(l′1|l2)
p(l2|l′1)

]−1
p(l0) = p(l01)

∏n
i=2 p(l

0
i |l0i−1)

Algorithm 7 returns p(l0;θ) with l0 as input.

3.7 Examples of Markov random profiles

The examples are based on the Markov profile with Gibbs form,

p(l) = const× exp
{ n∑

i=1

β1I(li ∈ {B,W}) +

n∑
i=2

β2I(li−1 = li)

− 100
(
I(li−1,j = B, li,j = W ) + I(li−1,j = W, li,j = B)

)}
,

(31)

with β1, β2 > 0. There is a higher probability for {black, white} nodes than {grey}, and the
neighbors tend to be of the same state. The prior also indicate that it is highly unlikely that a black
node appears next to a white node.

3.7.1 Short Markov random profile

The profile consists of 100 grid nodes, so n = 100. Setting the parameters in Expression 31 to
β1 = 1.00 and β2 = 0.50, the profile of interest lT is simulated and displayed in Figure 7. No black
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node occurs next to a white node, and there are more {black, white} nodes then {grey} nodes as
expected.

Figure 7: The true image lT .

A training image is used to estimate the parameters, and in this case the training image is the true
image lT . Figure 8 displays the values of p(lT ;β1, β2) calculated using Algorithm 7 for the different
combinations of β1, β2 as a density plot. The variances and covariance is assessed approximately
from the density plot,

Figure 8: Density plot model of the prior with respect to the parameters.

β̂1 = 1.23

β̂2 = 0.43

V̂ar(β̂1) = 0.15

V̂ar(β̂2) = 0.08

Ĉov(β̂1, β̂2) = −0.09

The variance of β̂1 is slightly larger than the variance of β̂2, and the covariance is a negative,
low-valued number as expected from the shape of the density in Figure 8.

Further we consider three different cases with the truth in Figure 7. The observations procedures
have different likelihood models being variations of a Gaussian and misclassification likelihoods.

Gaussian likelihood, case 1
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Consider the truth lT in Figure 7 and a Gaussian likelihood model. As the likelihood model is
a conditionally independent single-site model, we define the likelihood model for any observation
[di|li], i = 1, . . . , n,

di|li ∼ Gauss(µli , 0.1
2)

µli =


−1 if li = black

0 if li = grey

1 if li = white.

Figure 9: Observations from a Gaussian likelihood model with σ2 = 0.12.

The observations are displayed in Figure 9. The observations are very similar to the truth due to
the relatively small variance in the likelihood model. The observations in this case contain a small
amount of noise.

Figure 10: Density plot of the marginal likelihood model with respect to the parameters.

The marginal likelihood calculated using Algorithm 6 is used to estimate the parameters. Due to
the small variance in the likelihood model, it is not surprising that the density plot for the marginal
likelihood with respect to the parameters in Figure 10 is similar to the density plot in Figure 8.
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Again the estimates, the variances and the covariance of the parameters is approximated,

β̂1 = 1.23

β̂2 = 0.43

V̂ar(β̂1) = 0.15

V̂ar(β̂2) = 0.08

Ĉov(β̂1, β̂2) = −0.09.

Realizations and predictions are generated using the parameters estimated from the marginal like-
lihood model, β̂1 = 1.23 and β̂2 = 0.43.

(a) ls1

(b) ls2

(c) ls3

Figure 11: Three realizations generated by the posterior model.

Using Algorithm 1 and 2, realizations ls are generated from the posterior model, and Figure 11
displays three realizations. The realizations are in this case exactly the same as the truth lT in
Figure 7, which is plausible due to the relatively small variance in the likelihood model. The MAP
and MMAP are calculated using Algorithms 3 and 4 respectively and displayed in Figure 12 and
13. Also the predictions are identical to the truth, which is expected when the likelihood model
contains such a small amount of noise.

Figure 12: MAP predictor by the Viterbi algorithm (Algorithm 3).

Figure 13: MMAP predictor by Algorithm 4.

The probability profiles are generated by Algorithm 5 and displayed in Figure 15. For all the different
states, the probabilities in each grid node is approximately 0 or 1, which causes the realizations and
the predictions to be the same, and further identical to the truth.
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(a) Black

(b) Grey

(c) White

Figure 15: Probability profiles for the possible states {black, grey, white}.

When the observations contain a very small amount of noise, the precision and accuracy in the
predictions and realizations are high for obvious reasons.

Gaussian likelihood, case 2

Again consider the truth lT in Figure 7 and a Gaussian likelihood model. We define the likelihood
model for any observation [di|li], i = 1, . . . , n,

di|li ∼ Gauss(µli , 0.5
2)

µli =


−1 if li = black

0 if li = grey

1 if li = white.

The only difference in this likelihood model compared to the previous one, is that the variance is
larger σ2 = 0.52. There are more noise in the observations, which is clear comparing the observations
d in Figure 16 to the truth in Figure 7.

Figure 16: Observations from a Gaussian likelihood model with σ2 = 0.52.

The parameters are estimated by the marginal likelihood model generated by Algorithm 6, and the
density plot with respect to the parameters is displayed in Figure 17.
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Figure 17: Density plot of the marginal likelihood model with respect to the parameters.

The parameters are estimated, and the related variances and the covariance are approximated. As
the likelihood model in this example contains more noise, the density plot in Figure 17 indicates
that the estimations are more uncertain, which further is confirmed by the variances and covariance,

β̂1 = 1.06

β̂2 = 0.53

V̂ar(β̂1) = 0.57

V̂ar(β̂2) = 0.27

Ĉov(β̂1, β̂2) = −0.35.

More noise in the likelihood model leads to higher uncertainty in the parameter estimates, and
the variances and covariance increase. With these parameter estimates, realizations are generated
from the posterior model by Algorithm 1 and 2. Three realizations are displayed in Figure 18, and
although they are similar, some differences occur.

(a) ls1

(b) ls2

(c) ls3

Figure 18: Three realizations of the posterior model.
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The MAP and MMAP are generated by Algorithm 3 and 4 respectively and displayed in Figure
19 and 20. They are very similar, but there are a few grid nodes that differs in the two prediction
plots, which is plausible as the likelihood model contains a higher uncertainty than in the previous
example.

Figure 19: MAP predictor by the Viterbi algorithm.

Figure 20: MMAP predictor by Algorithm 4.

The probability profiles of the posterior model generated by Algorithm 5 is displayed in Figure 22.
In comparison to the previous example, where the probability profiles consisted of approximately
only 0 and 1 probabilities, we observe that there are higher uncertainty in several grid nodes.

(a) Black

(b) Grey

(c) White

Figure 22: Probability profiles for the possible states {black, grey, white}.

The predictions of the posterior model are similar to the truth, but the images are not exactly the
same. Also the probability profiles generated by the MMAP indicates that there are uncertainties
related to specific positions in the grid.

Misclassification likelihood

Still considering the truth lT in Figure 7, the observation procedure is defined with a misclassification
likelihood. The observation probabilities for any observation [di|li], i = 1, . . . , n are provided in
matrix P ,
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P =


li = B li = G li = W

di = B 0.85 0.10 0.05
di = G 0.10 0.80 0.10
di = W 0.05 0.10 0.85


The first column contains the probabilities when the true color of the node is black, the middle
column contains the probabilities when the true color of the node is grey and the last column
contains the probabilities when the true color of the node is white.

Figure 23: Observation from a misclassification based likelihood model.

The observations d displayed in Figure 23 consist of an “impossible” configuration, as there are black
nodes next to white nodes in several occasions. This configuration is highly unlikely considering the
prior in Expression 31.

As previously, the parameters are estimated by the marginal likelihood model calculated using
Algorithm 6. Figure 24 displays the density plot with respect to the parameters.

Figure 24: Density plot of the marginal likelihood model with respect to the parameters

The parameters are estimated and the related variances and covariance are computed approximately.
The estimates values are different from the previous estimates generated from the truth lT in Figure
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7, which is plausible as the variances of the estimated parameters are relatively high,

β̂1 = 0.70

β̂2 = 0.91

V̂ar(β̂1) = 0.45

V̂ar(β̂2) = 0.34

Ĉov(β̂1, β̂2) = −0.34.

When the observation probabilities consist of values that makes the probability of misclassification
relatively high, the parameter estimates will contain a correspondingly high level of uncertainty.
Calculating the posterior model, we use the parameters estimated by the marginal likelihood model,
that is β̂1 = 0.70 and β̂1 = 0.91.

(a) ls1

(b) ls2

(c) ls3

Figure 25: Three realizations of the posterior model.

Figure 25 displays three realizations of the posterior model. Even though they look similar, there
are also visible differences. Particularly in the first realization ls1 , the first left-most nodes differs
considerably from the other two realizations as it does not contain any black nodes.

Figure 26 and 27 display the MAP and MMAP respectively. Since the MAP is the most likely path
all over, there will be no “impossible” cliques, so in Figure 26 there are no black nodes next to
white nodes. As the MMAP calculates the marginal probabilities for every grid node, there is no
guarantee that we avoid “impossible” cliques. Hence in Figure 27, there are black nodes next to
white nodes in two locations. As previously stated, this configuration is highly unlikely using the
prior model in Expression 31.

Figure 26: MAP prediction generated by the Viterbi algorithm (Algorithm 3).
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Figure 27: MMAP prediction generated by Algorithm 4.

The probability profiles generated by Algorithm 5 are displayed in Figure 29, and as the MMAP
prediction indicates with “impossible” cliques, there are some relatively high uncertainties.

(a) Black

(b) Grey

(c) White

Figure 29: Probability profiles for the possible states {black, grey, white}

With a misclassification likelihood, the probability of misclassification will determine the certainty
in the posterior model, including the estimated parameters. With the observation probabilities
provided in matrix P , the chance of misclassification is relatively high. This provides uncertainty
both considering estimating parameters and generating predictions.

3.7.2 Long Markov random profile

To examine the influence the size of the MRP has on the parameter estimates, let the profile consist
of 1000 grid nodes and consider the same prior model from Expression 31. Choosing parameters
β1 = 1.00 and β2 = 0.50, the truth lT is simulated and displayed in Figure 30.

Figure 30: The true image.

The parameters are estimated using the truth lT as training image and displayed in a density plot
with respect to the parameters in Figure 31. Compared to previous parameter estimates for a profile
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Figure 31: Density plot of the prior with respect to the parameters.

consisting of fewer grid nodes, the density plot is more focused, indicating more reliable estimates of
the parameters. The variances and covariance related to the estimates are approximately calculated,

β̂1 = 0.95

β̂2 = 0.54

V̂ar(β̂1) = 0.010

V̂ar(β̂2) = 0.007

Ĉov(β̂1, β̂2) = −0.006.

The variances and covariance related to the estimates are in this case relatively small compared
to the previous examples using the truth lT displayed in Figure 7. The estimates β̂1 = 0.95 and
β̂2 = 0.54 are close to the parameter values used in simulating the truth lT in Figure 30. The low
variances and covariance are not surprising considering the focused density plot in Figure 31.

The recursive reverse algorithm (Algorithm 1) provides a way to feasibly compute the posterior
of an MRP. As any realization of an HMM, in that case, is generated directly from the posterior
model, it will always be more efficient than an iterative algorithm. The accuracy in the results
from the realizations and predictions depends on the accuracy in the observation procedure. As
the predictions are calculated and not approximated, they are as reliable as the probability profiles
indicate. The results from the examples are expected as a likelihood model containing a low level
of noise provides accurate results both concerning the truth and the certainty in the results. A
likelihood model containing a higher level of noise provides results that differ from the truth at a
larger scale, and the certainty decrease correspondingly. The example of a longer MRP implies that
the estimated parameters from the prior are more accurate than for a shorter MRP.
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4 Markov random field

Consider a stationary spatial field like in Figure 1 (b), with li,j ; i = 1, . . . , n1, j = 1, . . . , n2, n =
n1 × n2. Each grid node li,j ∈ L where L = {black, grey, white}.

4.1 Likelihood model

The likelihood model is specified in Section 2 as a conditionally independent single-site model
illustrated in Figure 3 (b). The likelihood model for the MRF is defined in the following expression,

p(d|l) =

n1∏
i=1

n2∏
j=1

p(di,j |li,j). (32)

4.2 Prior model

The prior of the MRF is defined on Gibbs form,

p(l) = const× exp
{ n1∑

i=1

n2∑
j=1

ν(li,j) +

n1∑
i=1

n2∑
j=2

νh(li,j−1, li,j) +

n1∑
i=2

n2∑
j=1

νv(li−1,j , li,j)
}
. (33)

Hence the clique system is as in Figure 2 (a), consisting of pairwise closest neighbors. Figure 32
displays one vertical and one horizontal clique in a discretized two dimensional field. There are
(n1 − 1)× n2 vertical cliques and n1 × (n2 − 1) horizontal cliques.

Figure 32: The stationary random field. The red indicates one horizontal clique, while the blue
indicates one vertical clique.

In the prior model, ν(·;θ) is a function of a single node, νh(·, ·;θ) is a function of the horizontal
clique consisting of the two closest horizontal neighbors and νv(·, ·;θ) is a function of the vertical
clique consisting of the two closest vertical neighbors.
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All of the grid nodes in the inner field (that excludes all nodes at the border) are in cliques with
four other grid nodes. The borders, excluded the corners, are in cliques with three other grid nodes.
And finally, the corners are in cliques with two other grid nodes. The neighborhoods of the different
positioned grid nodes are illustrated in Figure 33.

Using definition of the Markov formulation of the general posterior in Expression 9, the Markov
formulation p(li,j |l−i,j) for node i, j, i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2} is expressed,

p(li,j |l−i,j) = p(li,j |lx; x ∈ ni,j). (34)

(a) (b) (c)

Figure 33: The neighborhoods for different positioned grid nodes. (a) is valid for all grid nodes i, j,
i ∈ {2, . . . , n1 − 1}, j ∈ {2, . . . , n2 − 1} (b) is valid all grid nodes i, 1, with i ∈ {2, . . . , n1}, and the
neighborhood is similar in the rest of the borders except from the corners. (c) is valid for grid node
1, 1, and the neighborhood is similar in the three remaining corners.

The inner grid nodes like the one in Figure 33 (a), node i, j, i ∈ {2, . . . , n1−1}, j ∈ {2, . . . , n2−1},
are written on Markov formulation using the specified prior model in Expression 33,

p(li,j |l−i,j) = const× exp
{
ν(li,j) + νh(li,j−1, li,j)

+ νv(li−1,j , li,j) + νh(li,j , li,j+1) + νv(li,j , li+1,j)
}
.

(35)

For the remaining nodes the Markov formulation is similar, but we exclude the clique functions that
does not exist due to border issues. For instance, the node in Figure 33 (b) has Markov formulation,

p(li,1|l−i,1) = const× exp
{
ν(li,1) + νv(li−1,1, li,1) + νh(li,1, li,2) + νv(li,1, li+1,1)

}
,

while the node in Figure 33 (c) has Markov formulation,

p(l1,1|l−1,1) = const× exp
{
ν(l1,1) + νh(l1,1, l1,2) + νv(l1,1, l2,1)

}
.

Assessing the prior model, and further the posterior model, is more challenging in two dimensions
in comparison to one dimension, where it could be calculated using the recursive reverse algorithm
(Algorithm 1 and 7). Profile block Gibbs algorithm is a suggested approach to assess the model by
considering the profiles as blocks, and the efficiency of the algorithm is compared to the efficiency
of the regular single-site Gibbs algorithm where we consider one random grid node at a time.
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(a) The row li,· is colored (b) The column l·,j is colored

Figure 34: A two dimensional grid. (a) illustrates all the nodes included in li,·, (b) illustrates all the
nodes included in l·,j .

Consider one row or column at the time, and set the rest of the random field fixed. Figure 34
illustrates the notations for considering a row or a column in the field separately. The row li,· is
colored in Figure 34 (a), and the column l·,j is colored in Figure 34 (b). The node i, j is in both
li,· and l·,j . For notational convenience, l−i,· consists of all the nodes not colored in Figure 34 (a),
while l−·,j is all the nodes not colored in Figure 34 (b). Consider the probability of these profiles
given the remaining grid nodes in the field, p(li,·|l−i,·) and p(l·,j |l−·,j),

p(li,·|l−i,·) = p(li,1|l−i,·)×
n2∏
j=2

p(li,j |li,1:(j−1), l−i,·)

p(l·,j |l−·,j) = p(l1,j |l−·,j)×
n1∏
i=2

p(li,j |l1:(i−1),j , l−·,j).

(36)

Focusing on the row i ∈ {2 . . . , n1 − 1}, the Markov chain form can be expressed,

p(li,j |li,1:(j−1), l−i,·) = const× exp
{
ν(li,j)νh(li,j−1, li,j)

}
× exp

{
νv(li−1,j , li,j) + νv(li,j , li+1,j)

}
× hv(li,j)

= p(li,j |li,j−1, li+1,j , li−1,j), j ∈ {2, . . . , n2}

p(li,1|l−i,·) = const× exp
{
νv(li−1,1, li,1) + νv(li,1, li+1,1)

}
× hv(li,1)

= p(li,1|li−1,1, li+1,1),

(37)
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where

hv(li,j ,li−1,·, li+1,·) =
∑

l′i,j+1∈L

· · ·
∑

l′i,n2
∈L

[
exp

{
ν(l′i,j+1) + νh(li,j , l

′
i,j+1)

}

× exp
{ n2∑

w=j+2

(
ν(l′i,w) + νh(l′i,w−1, l

′
i,w)
)

+

n2∑
w=j+1

(
νv(li−1,w, l

′
i,w) + νv(l′i,w, li+1,w)

)}]

=
∑

l′i,j+1∈L

exp
{
ν(l′i,j+1) + νh(li,j , l

′
i,j+1) + νv(li−1,j+1, l

′
i,j+1) + νv(l′i,j+1, li+1,j+1)

}

×
∑

l′i,j+2∈L

exp
{
ν(l′i,j+1) + νh(l′i,j+1, l

′
i,j+2) + νv(li−1,j+2, l

′
i,j+2) + νv(l′i,j+2, li+1,j+2)

}

× · · ·
∑

l′i,n2
∈L

exp
{
ν(l′i,n2

) + νh(l′i,n2−1, l
′
i,n2

) + νv(li−1,n2
, l′i,n2

) + νv(l′i,n2
, li+1,n2

)
}

=
∑

l′i,j+1∈L

exp
{
ν(l′i,j+1) + νh(li,j , l

′
i,j+1) + νv(li−1,j+1, l

′
i,j+1)

+ νv(l′i,j+1, li+1,j+1)
}
× hv(l′i,j+1, li−1,·, li+1,·).

(38)

For i = 1 or i = n1 it is similar, only we do not include νv(li−1,j , li,j) and νv(li−1,w, l
′
i,w) or

νv(li,j , li+1,j) and νv(l′i,w, li+1,w) respectively. In general, for i ∈ {1, . . . , n1},

p(li,j |li:1:(j−1), l−i,·) = p(li,j |lx; x ∈ ni,j\lx ∈ li,j:n2).

For the columns, the procedure is done correspondingly as for the rows.

4.3 Posterior model

The posterior model is expressed on Gibbs form as in Expression 7,

p(l|d) = const∗ × p(d|l)p(l) = const×
n1∏
i=1

n2∏
j=1

p(di,j |li,j)

× exp
{ n1∑

i=1

n2∑
j=1

ν(li,j) +

n1∑
i=1

n2∑
j=2

νh(li,j−1, li,j) +

n1∑
i=2

n2∑
j=1

νv(li−1,j , li,j)
}
.

(39)

Using Expression 9 we consider the Markov form of the posterior model,

p(li,j | l−i,j ,d) = p(li,j |lx, di,j ; x ∈ ni,j), i ∈ {1 . . . , n1}, j ∈ {1 . . . , n2}. (40)
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As we did for the prior model, focus in the rows and the columns separately and consider the
Markov chain form for the profiles,

p(li,·|l−i,·,d) = p(li,1|l−i,·,d)×
n2∏
j=2

p(li,j |li,1:(j−1), l−i,·,d),

p(l·,j |l−·,j ,d) = p(l1,j |l−·,j ,d)×
n1∏
i=2

p(li,j |l1:(i−1),j , l−·,j ,d).

(41)

Again we focus on the rows as the procedure is done correspondingly for the columns. Recall
Expression 19 and let i ∈ {2, . . . , n1 − 1},

p(li,j |l−i,·, li,1:(j−1),d) = const× exp
{
ν(li,j) + νh(li,j−1, li,j)

}
× exp

{
νv(li−1,j , li,j) + νv(li,j , li+1,j)

}
p(di,j |li,j)× gv(li,j ,di,(j+1):n2

)

= p(li,j |li,j−1, li+1,j , li−1,j ,di,j:n2), j ∈ {2, . . . , n2},

p(li,1|l−i,·,d) = const× exp
{
ν(li,1) + νv(li−1,1, li,1) + νv(li,1, li+1,1)

}
× p(di,1|li,1)× gh(li,1,di,2:n2)

= p(li,1|li−1,1, li+1,1,di,1:n2
),

(42)
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where

gh(li,j ,di,(j+1):n2
,li−1,·, li+1,·) =

∑
l′i,j+1∈L

· · ·
∑

l′i,n2
∈L

[
exp

{
ν(l′i,j+1) + νh(li,j , l

′
i,j+1)

+

n2∑
w=j+2

ν(l′i,w) + νh(l′i,w−1, l
′
i,w)
}

exp
{ n2∑

w=j+1

νv(li−1,w, l
′
i,w)

+ νv(l′i,w, li+1,w)
} n2∏

w=j+1

p(di,w|l′i,w)

]
=

∑
l′i,j+1∈L

exp
{
ν(l′i,j+1)

+ νh(li,j , l
′
i,j+1) + νv(li−1,j+1, l

′
i,j+1) + νv(l′i,j+1, li+1,j+1)

}
p(di,j+1|l′i,j+1)

×
∑

l′i,j+2∈L

· · ·
∑

l′i,n2−1∈L

exp
{
ν(l′i,n2−1) + νh(l′i,n2−2, l

′
i,n2−1) + νv(li−1,n2−1, l

′
i,n2−1)

+ νv(l′i,n2−1, li+1,n2−1)
}
p(di,n2−1|l′i,n2−1)

∑
l′i,n2

∈L

exp
{
ν(l′i,n2

)

+ νh(l′i,n2−1, l
′
i,n2

) + νv(li−1,n2
, l′i,n2

) + νv(l′i,n2
, li+1,n2

)
}
× p(di,n2

|l′i,n2
)

=
∑

l′i,j+1∈L

exp
{
ν(l′i,j+1) + νh(li,j , l

′
i,j+1) + νv(li−1,j+1, l

′
i,j+1)

+ νv(l′i,j+1, li+1,j+1)
}
p(di,j+1|l′i,j+1)× gh(l′i,j+1,di,(j+2):n2

, li−1,·, li+1,·).

(43)

Similarly as for the prior model; for i = 1 or i = n1 the probability function is similar, only we
do not include νv(li−1,j , li,j) and νv(li−1,w, l

′
i,w) or νv(li,j , li+1,j) and νv(l′i,w, li+1,w) respectively.

Having this established we start looking at simulating realizations and predictions.

4.4 Simulating realizations and predictions

The regular single-site Gibbs algorithm is provided in Algorithm 8 where,

p(li,j |ls−i,j ,d) = p(li,j |lsx, di,j ; x ∈ ni,j),
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by Expression 40. The algorithm generates one realization of the posterior model.

Algorithm 8: Single-site Gibbs Algorithm

Initialise ls such that p(ls) > 0
repeat

i ∼ unif[1, . . . , n1]
j ∼ unif[1, . . . , n2]
lsi,j ← p(li,j |ls−i,j ,d)

until convergence;

We can not simply calculate the posterior model in the same way as we could for the MRPs.
Computing the probabilities focusing on one profile, row or column, is feasible. By changing the
p(di|li) from Algorithm 1 to some p∗(di,j |li−1,j , li+1,j) that includes the influence from the grid
nodes in the vertical cliques, we can use Algorithm 1 to calculate p(li,·|l−i,·). Similarly, Algorithm
1 computes the probability of a column given the remaining field.

The profile block Gibbs algorithm (Algorithm 9) generates one realization, ls, of the posterior
model, iteratively calculating the probability of a random profile given the remaining field. The
probabilities in Algorithm 9 are calculated by combining Expression 42 and Algorithm 1.

Algorithm 9: Profile block Gibbs Algorithm

Initialise ls such that p(ls) > 0
repeat

t ∼ unif(0, 1)
if t ≤ n1

n1+n2
then

i ∼ unif[1, . . . , n1]
lsi,1 ← p(li,1|ls−i,·,d)

for all j = 2, . . . , n2 do
lsi,j ← p(li,j |ls−i,·, lsi,1:(j−1),d)

end

else
j ∼ unif[1, . . . , n2]
ls1,j ← p(l1,j |ls−·,j ,d)

for all i = 2, . . . , n1 do
lsi,j ← p(li,j |ls−·,j , ls1:(i−1),j ,d)

end

end

until convergence;

The efficiencies of Algorithm 8 and 9 are compared in Section 4.6 and 5. Further, we consider the
MMAP, and since we do not have the probabilities for the entire field, the MMAP is approximated
by creating many realizations ls and computing the average. Probability maps are also approximated
by calculating proportion of the states in each individual grid node using many realizations.

37



4.5 Estimating the parameters

Assume the clique functions ν(·), νh(·, ·) and νv(·, ·) consists of one or several parameters θ. A
training image, l0 is used in estimating the parameters by maximizing,

θ̂ = arg maxθ p(l
0;θ).

The prior model from Expression 33 is computationally demanding to calculate, so the probability
p(l0;θ) is assessed approximately using the Markov formulation,

p̂(l0;θ) =
∏

x∈LD

p(l0x|l0y; y ∈ nx;θ),

and we can assess a pseudo-estimate of the parameters. The probability p(l0;θ) is calculated directly
for the MRP, but an approximation is performed for the MRF.

4.6 Examples of Markov random field

The examples and their corresponding training images are drawn to have specific geometries. We
present two examples where the HMMs have different properties. We define the prior model of the
MRF on Gibbs form as in Expression 33,

p(l) = const× exp
{ n1∑

i=1

n2∑
j=1

β1I(li,j ∈ {B,W})

+

n1∑
i=1

n2∑
j=2

βh1I(li,j−1 = li,j) + βh2
(
I(li,j−1 = B, li,j = W ) + I(li,j−1 = W, li,j = B)

)

+

n1∑
i=2

n2∑
j=1

βv1I(li−1,j = li,j) + βv2
(
I(li−1,j = B, li,j = W ) + I(li−1,j = W, li,j = B)

)}
.

(44)

The prior model is general, and contains several parameters. Some parameters can be fixed due
to the nature of the training image, the remaining parameters are estimated. The parameters are
estimated using the training image, which should be similar to the field of interest. In the examples,
the truth and the training image are constructed to look similar.

The parameter β1 says something about the proportions of {black, white} compared to {grey}, so
we expect that the field contains more black and white nodes than grey if β1 > 0. The parameters
βh1 and βh2 contain information regarding the horizontal cliques. If βh1 > 0, horizontal neighbors
tend to be the same color. If βh2

> 0, a black node is likely to occur after a white node. Similarly,
βv1 and βv2 contain the same information concerning the vertical cliques. This general prior is used
both in the examples of MRF, and later in the applications to brain MRI image in Section 5.
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4.6.1 Example 1

The MRF consists of 20 × 13 grid nodes, so n1 = 20, n2 = 13 and n = 20 × 13 = 260. The truth
lT is constructed and displayed in Figure 35. The training image l0 is constructed to be similar to
the truth and is displayed in Figure 36. There are no black node next to a white node in horizontal
direction in any location in the training image, so we assume that it is “impossible” and set the
corresponding parameter fixed, βh2 = −100. In the vertical direction, this is not the case, so the
remaining parameters need to be estimated.

Figure 35: The true image lT . Figure 36: The training image l0.

The remaining parameters in the prior in Expression 44 are estimated,

β̂1 = −0.6

β̂h1 = 0.6

β̂v1 = 0.2

β̂v2 = 1.

The estimates are within reason considering the training image, as they indicate that it is likely
that a black node occurs next to a white node in the vertical direction. The estimate β̂1 is not
immediately expected to be negative by the look of the training image, but this is balanced by the
estimate β̂v2, which is relatively high.

Consider a Gaussian likelihood model. The likelihood model is defined for any observation [di,j |li,j ],
i = 1, . . . , n1, j = 1, . . . , n2,

di,j |li,j ∼ Gauss(µli,j , 0.5
2)

µli,j =


−1 if li,j = black

0 if li,j = grey

1 if li,j = white.

39



The observations d are displayed in Figure 37, and it seems to be a medium level of noise as the
original image is hard to recognize.

Figure 37: Observations from a Gaussian likelihood model with σ2 = 0.52.

Using the estimated parameters, convergence plots achieved by the profile block Gibbs algorithm
(Algorithm 9) are compared to convergence plots achieved by the single-site Gibbs algorithm (Al-
gorithm 8). The convergence plots illustrate the proportions of the different colors in relation to the
number of iterations. In the single-site Gibbs algorithm, one random node is chosen. Each time a
node is picked, the number of iterations increases with one. For the profile block Gibbs algorithm,
a random row or column is picked, and the number of iterations increases with the number of grid
nodes in the picked row or column. The convergence plots are displayed in Figures 38 - 40, for
different initial images.

In Figure 38, the initial image is all black, which is clear as the proportions of black starts at one
in Figure 38 (a). Although the profile block Gibbs algorithm seems to converge slightly before the
single-site Gibbs algorithm, there is not a major difference. Similarly, in Figure 39 and 40, the initial
images are all grey and all white respectively. The single-site Gibbs algorithm does not in any case
converge visibly faster than the profile block Gibbs algorithm, but in these cases, neither one of the
algorithms can be assumed to be more efficient than the other. After 2000 iterations, the algorithm
seems to have converged in both algorithms, so the burn-in is set to be 2000. We can not conclude
that the profile block Gibbs algorithm is more efficient than the single-site Gibbs algorithm.
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(a) Proportion of image being black.

(b) Proportion of image being grey.

(c) Proportion of image being white.

Figure 38: Initial image ls0 is all black.
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(a) Proportion of image being black.

(b) Proportion of image being grey.

(c) Proportion of image being white.

Figure 39: Initial image ls0 is all grey.
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(a) Proportion of image being black.

(b) Proportion of image being grey.

(c) Proportion of image being white.

Figure 40: Initial image ls0 is all white.
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Four realizations are simulated from the posterior model and displayed in Figure 41 using Algorithm
9. As the observations contain a medium level of noise, it is not surprising that the realizations
contain several differences.

(a) ls1 (b) ls2

(c) ls3 (d) ls4

Figure 41: Four realizations generated from the posterior model.

Predictions for two-dimensional images are computationally demanding, so the MMAP is approx-
imated by looking at the average of 1000 realizations. After the burn-in time on 2000 iterations,
each realization is picked after 500 new iterations to enable a full sweep and collected until there are
1000 realizations. A full sweep would mean to change/attempt to change in expectation every grid
node in the field. The MMAP is displayed in Figure 42. Although the prediction is not identical to
the true image, they are very similar.
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Figure 42: Approximated MMAP by taking the average of 1000 simulations.

Figure 43 displays the probability maps for the different possible states. The probability maps
are not calculated but approximated looking at the state proportion in each grid node after 1000
realizations. It is clear that there are many uncertainties in several grid nodes, but in many grid
nodes, we have a rather high probability of classifying the state of the grid node correctly. The areas
with high probability for a specific state seems to be mostly correct in comparison to the truth lT

in Figure 35.

(a) Black (b) Grey (c) White

Figure 43: Approximated probability map considering 1000 simulations.

4.6.2 Example 2

The MRF consists of 20 × 13 grid nodes, so n1 = 20, n2 = 13 and n = 20 × 13. The truth
lT is generated and displayed in Figure 44. The truth does not indicate that there are obvious
differences in the horizontal clique functions compared to the vertical clique functions. It seems
that the probability for {black,white} nodes is higher than the probability for {grey} nodes. The
training image l0 is constructed to be similar and is displayed in Figure 45. There are no black node
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next to a white node in any direction, so we assume that it is “impossible” and the parameters
βh2, βv2 are set fixed to −100.

Figure 44: The true image. Figure 45: The training image.

The remaining parameters in the prior in Expression 44 are estimated,

β̂1 = 2.7

β̂h1 = 0.2

β̂v1 = 0.9,

where the estimates are within reason as they agree with what we expected looking at the training
image. A high valued β̂1 indicates that there are more {black, white} nodes than {grey} nodes in
the field. The estimates for βh1 and βv1 differ, but both indicate that neighbors tend to be of the
same state in any direction.

Consider the same Gaussian likelihood model as in the previous example. The likelihood model is
defined for any observation [di,j |li,j ], i = 1, . . . , n1, j = 1, . . . , n2,

di,j |li,j ∼ Gauss(µli,j , 0.5
2)

µli,j =


−1 if li,j = black

0 if li,j = grey

1 if li,j = white.

The observations d displayed in Figure 46 seems to contain a medium level of noise as expected
from the likelihood model. The truth lT in Figure 44 can be recognized in the observations.
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Figure 46: Observations from a Gaussian likelihood model with σ2 = 0.52.

Using the estimated parameters, convergence plots achieved using Algorithm 9 are compared to
convergence plots achieved using Algorithm 8. The convergence plots are displayed in Figure 47 -
49, for different initial images. The convergence plots are constructed in the same way as in the
previous example, plotting the state proportions with the number of iterations.

In Figure 47, the initial image is all black, and the profile block Gibbs algorithm converges faster
than the single-site Gibbs algorithm. The difference is very visible in Figure 47 (a) and (c). When
the initial image is all grey in Figure 48, the efficiency in the different algorithms seems to be the
same or at least similar. Figure 49 displays the convergence plots when the initial image is all white,
and the profile block Gibbs converges faster than the single-site Gibbs algorithm. In comparison
with the previous example, there are more differences considering the algorithm efficiency in this
example. For the profile block Gibbs algorithm we set the burn-in time at 3000 iterations.
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(a) Proportions of image being black.

(b) Proportions of image being grey.

(c) Proportions of image being white.

Figure 47: Initial image ls0 is all black.
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(a) Proportions of image being black.

(b) Proportions of image being grey.

(c) Proportions of image being white.

Figure 48: Initial image ls0 is all grey.
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(a) Proportions of image being black.

(b) Proportions of image being grey.

(c) Proportions of image being white.

Figure 49: Initial image ls0 is all white.
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Figure 50 displays four realizations of the posterior model. Although they are similar, they contain
several differences as expected from the level of noise in the likelihood model.

(a) ls1 (b) ls2

(c) ls3 (d) ls4

Figure 50: Four realizations generated from the posterior model.

The MMAP is approximated by looking at the average of 1000 realizations generated by Algorithm
9, collected after the burn-in time at 3000 iterations, and then after every 500 iteration to enable a
full sweep of the image. The MMAP l̃ is generated and displayed in Figure 51. Again the prediction
is not identical to the truth, but it is similar.
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Figure 51: Approximated MMAP l̃ by taking the average of 1000 simulations.

The probability maps for the different possible states are generated in the same way as in the
previous example and are displayed in Figure 52. The probability maps indicate that the probability
of identifying the grid node is rather high in most grid nodes, but with uncertainties especially in
areas where the states from one grid node to the next are not the same. The grid nodes that contain
a high probability of one specific state are mostly correct according to the truth lT in Figure 44.

(a) Black (b) Grey (c) White

Figure 52: Approximated probability map considering 1000 simulations.

Based on the examples of MRFs, we can not conclude that the profile block Gibbs algorithm
(Algorithm 9) is more efficient than the single-site Gibbs algorithm (Algorithm 8). The single-
site Gibbs algorithm does never converge faster than the profile block Gibbs algorithm, which
provides motivation to explore the algorithms further, as there are some visible differences in the
convergence plots. As the images in the examples of MRFs are relatively small, a suggestion is to
compare the algorithm efficiency using larger images, as they need more iterations to converge for
obvious reasons.
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5 Applications to brain MRI

As the motivation behind this study is to improve the procedure to denoise medical images, we
consider a brain MRI image with noise. The brain MRI image lB displayed in Figure 53 is collected
from [BrainWeb, 2020], consisting of grid nodes having values between zero and 151. This brain
MRI image lB is used in generating observations and a training image.

Figure 53: Simulated brain MRI image, lB , obtained from [BrainWeb, 2020] with 0% noise.

In this study the likelihood model is assumed to be known, so the observations are collected by
generating an image of three states using the brain MRI image lB from Figure 53, and then add
noise. First a “truth” lT is generated using the matrix P ,

P =



B G W

lBi,j < 50 1.00 0.00 0.00
lBi,j ∈ [50, 80] 0.90 0.10 0.00
lBi,j ∈ [81, 90] 0.10 0.90 0.00

lBi,j ∈ [91, 110] 0.00 1.00 0.00
lBi,j ∈ [111, 120] 0.00 0.90 0.10
lBi,j ∈ [121, 130] 0.00 0.10 0.90

lBi,j > 130 0.00 0.00 1.00


.

The values in the matrix P are probabilities of generating the different states {black, grey, white}
depending on the values in the brain MRI image lB in Figure 53.
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Some noise is added to lT by a Gaussian likelihood model to generate the observations d,

di,j |li,j ∼ Gauss(µlTi,j
, 0.52)

µli,j =


−1 if lTi,j = black

0 if lTi,j = grey

1 if lTi,j = white.

The aim is to denoise the observations d displayed Figure 54 into three states {black, grey, white},
where the black state is cerebrospinal fluid (CSF), the grey state is grey matter and the white state
is white matter.

Figure 54: Simulated brain MRI image obtained from [BrainWeb, 2020] with added noise.

The rectangular grid size is n1 = 184 and n2 = 145, but this is a circular object with n = 21085 <
n1 × n2. Hence the grid LD is circular consisting of 21085 grid nodes. The prior is assumed to be
similar to the examples from MRFs as in Expression 44. To estimate the parameters we use the
training image l0 provided in Figure 55. The training image is generated from the brain MRI image
lB in Figure 53 by simple thresholding,

l0i,j =


−1 if lBi,j < 80

0 if lBi,j ∈ [80, 120]

1 if lBi,j > 120.

Since the training image l0 is generated by a slightly different procedure than the “truth” lT , they
are not necessarily identical.
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Figure 55: The training image.

Studying the training image, there is in no case a black node next to a white node in the vertical
direction. The parameter βv2 is set fixed to −100 as we consider that “impossible”. In the horizontal
direction, a black node occurs next to a white node in 15 locations, so we can not make the same
assumption regarding βh2.

With one parameter from the prior in Expression 44 fixed, the four remaining parameters are
estimated using the training image l0 in Figure 55,

β̂1 = 0.1

β̂h1 = 1.8

β̂h2 = −2.8

β̂v1 = 1.7.

The estimates are expected considering the training image. Neighbors tend to be of the same state
in any direction, so the estimates for βh1 and βv2 are relatively high. Analyzing the training image
revealed that there is a black node next to a white node in the horizontal direction in 15 locations,
so even though it may occur, it is not the tendency. The low valued estimate of βh2 is therefore
expected. The estimate regarding β1 indicates that the overall proportion of {black, white} nodes
compared to {grey} is not crucial in the prior, it is the neighbors that have the biggest impact on
an individual grid node.

The observations d in Figure 54, based on the brain MRI image lB in Figure 53, have a Gaussian
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likelihood model defined for each observation di,j , i, j ∈ LD,

di,j |li,j ∼ Gauss(µli,j , 0.5
2)

µli,j =


−1 if li,j = black

0 if li,j = grey

1 if li,j = white.

The posterior model is assessed iteratively by the two algorithms single-site Gibbs algorithm (Al-
gorithm 8) and profile block Gibbs algorithm (Algorithm 9), using the estimated parameters. The
convergence plots of the algorithms are displayed in Figure 56 - 58. In comparison to the examples
from MRF, there are obvious differences. The convergence happens at a slower rate than any of the
examples, so Figure 56 - 58 are displayed over 106 iterations in comparison to 104 in the examples.
This is not surprising as there are more grid nodes in the brain MRI image, also the parameter
estimates are more “extreme” for the brain MRI. After convergence in the simulations, the images
appear as stationary.

Figure 56: ls0 is all black.

In Figure 56 the initial image is all black. The proportion of grey nodes increases rapidly before it
stabilize due to the fact that it is unlikely for a black node to occur next to a white node.
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Figure 57: ls0 is all grey.

Figure 58: ls0 is all white.

Figure 57 and 58 display the convergence plots when the initial image is respectively all grey and
all white. The profile block Gibbs algorithm is visibly more efficient than the single-site Gibbs
algorithm for all tested initial images.

In all convergence plots, a burn-in at 3×105 iterations seems reasonable for the profile block Gibbs
algorithm. For the single-site Gibbs algorithm, the burn-in is set at 7× 105. The algorithms are in
this study not implemented by a trained programmer, but as they both are implemented by the
same person it is reasonable to assume that they are similarly optimized. Using an all grey initial
image, the times of the burn-in period are compared for 10 simulations of both profile block Gibbs
algorithm and single-site Gibbs algorithm. While benchmarking the algorithms no background
programs were running on the computer, so any interruptions were reduced to a minimum. Figure
59 displays the results from the benchmarking where the numbers are seconds the algorithm used
to simulate.
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Figure 59: Time for the burn-in period in seconds for ten simulations of the single-site Gibbs
algorithm (grey) and ten simulations of the profile block Gibbs algorithm (black). The straight
lines are the averages.

The grey dots in Figure 59 represent the single-site Gibbs algorithm running times, and the black
dots represent the profile block Gibbs algorithm running times. The average running time for the
burn-in period at 7×105 iterations for the single-site Gibbs algorithm is 26.14 seconds (grey, dotted
line), and the average running time for the burn-in period at 3× 105 iterations for the profile block
Gibbs algorithm is 7.71 seconds. The results from the benchmarking indicate that in addition to
the fact that the single-site Gibbs algorithm requires a longer burn-in than the profile block Gibbs
algorithm, each iteration also requires more time for the iteration definition in this study. Simulating
from the profile block Gibbs algorithm is approximately three times faster than simulating from
the single-site Gibbs algorithm.
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Figure 60 displays four realizations generated by the posterior model using the profile block Gibbs
algorithm (Algorithm 9). They are not identical but very similar. In this case, there is no true
image, but in comparison to the training image l0 in Figure 55, they all seem to contain more grey
nodes.

(a) ls1 (b) ls2

(c) ls3 (d) ls4

Figure 60: Four realizations generated from the posterior model.

To simulate predictions, a high number of realizations are required to calculate averages. After a
burn-in period of 3× 105 iteration in the profile block Gibbs algorithm, realizations were collected
with 3 × 104 iteration spacing to enable a full sweep of the image. The MMAP is approximated
using 1000 realizations and displayed in Figure 61.
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Figure 61: Approximated MMAP by taking the average of 1000 simulations.

The probability maps for the different possible states is displayed in Figure 62, and they are approx-
imated using 1000 realizations. The probability maps indicate that the probability of identifying
the true state of a grid node is high in most grid nodes supposedly located in an area where every
neighbor is of the same state.

(a) Black (b) Grey (c) White

Figure 62: Approximated probability map considering 1000 simulations.

In comparison to the examples of MRFs, the brain MRI images are larger and the parameter
estimates are more “extreme” values which have an impact on the algorithm efficiencies for both
algorithms tested. For both algorithms, the convergence rate is rather slow. The brain MRI image
is more circular than the images in the examples from MRFs, both the shape of the image and the
pattern. The prior model may not be an ideal fit for the brain MRI as it contains a horizontal and
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vertical closest neighbors based clique system. For instance, using cliques defined by angles can be
more representative for the brain MRI image, and improve the efficiency of both algorithms. This
creates a slightly more complicated model, so it is not tested in this study.

Comparing the two different algorithms, the results using the brain MRI image revealed that the
profile block Gibbs algorithm appears as approximately three times more efficient than the single-
site Gibbs algorithm. The results indicate that larger images implicate greater difference in efficiency
in favor of the profile block Gibbs algorithm. For complicated and large images, the profile block
Gibbs algorithm provides equally precisely analyzed images at a faster rate compared to the single-
site Gibbs algorithm, which improves optimization in several scientific fields.

6 Conclusion

The recursive reverse algorithm is introduced and described in detail in Algorithm 1. This algorithm
calculates the posterior model of an MRP and depending on the number of possible states, L, this
is usually not a computationally demanding operation. Similarly, the marginal likelihood model
for an MRP can be calculated by another recursive algorithm presented in Algorithm 6, and the
parameters in the prior model are estimated by maximizing the marginal likelihood model with
respect to the parameters. Parameters estimates are also generated using training images. The
algorithms are demonstrated by examples of MRPs. The posterior model of an MRF is assessed
iteratively, and the profile block Gibbs algorithm (Algorithm 9) simulates from the posterior model
by considering the probability of one profile of the field given the remaining field. This algorithm
is compared to the regular single-site Gibbs algorithm (Algorithm 8) considering the probability of
one grid node given the remaining field, using examples of MRFs and a brain MRI image.

The examples of MRPs compare parameter estimates obtained by the marginal likelihood model
with the estimates obtained by the truth as a training image. When the observations contain a
small amount of noise, the parameter estimates obtained by the marginal likelihood are similar to
those obtained by the training image. When the observations contain a higher level of noise, the
parameters estimated by the marginal likelihood model contain higher variance and might differ
more from the estimates generated by the truth as a training image. The examples of MRPs also
revealed that when a profile consists of a higher amount of grid nodes, the algorithms provide more
accurate parameter estimates, meaning the variances are smaller compared to the estimates from
a profile consisting of a smaller amount of grid nodes.

Both the regular single-site Gibbs algorithm and the profile block Gibbs algorithm are iterative
algorithms that converge towards the posterior model, and the main purpose of this study is to
find out if the profile block Gibbs algorithm is more efficient. The examples of MRFs in Section 4.6
reveals that the difference in algorithm efficiency of the profile block Gibbs algorithm compared to
the single-site Gibbs algorithm is little to no difference for some images. The results from analyzing
the brain MRI image reveal that the profile block Gibbs algorithm is approximately three times
more efficient than the single-site Gibbs algorithm.

The results encourage more research on the topic, as they indicate that the profile block Gibbs
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algorithm is more efficient. The brain MRI image used in this study is of different geometry and
size than the images created in the examples, it is preferable to use a more representative prior
model for the analyzed image to improve the results as well as the algorithm efficiency. This study
indicates that using the profile block Gibbs algorithm in image analysis may have a great impact on
the efficiency, depending on the image size. To make further conclusions regarding which algorithm
is preferable, more images with different properties and geometries must be analyzed.
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