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Sammendrag

Dette arbeidet diskuterer representasjonsteorien for artinske algebraer
med fokus p̊a de nesten-splitte sekvensene. Først introduserer vi Nakayama-
algebraer, Auslander-algebraer og Auslander-Reiten-kogger. Deretter un-
dersøker vi endeliggraderte representasjoner av et endelig tre; vi introduserer
treet D̈n og beregner de endelige representasjonene av trærne D̈5 og D6.
Til slutt introduseres Nakayama-endelige graderinger av et endelig tre, og
vi gir den generelle formelen for Nakayama-endelige graderingen av trærne
D̈n og Dn.

Abstract

This work discusses the representation theory of Artin algebras with
a focus on the almost split sequences. First, we introduce the Nakayama
algebras, Auslander algebras and Auslander-Reiten quivers. Second, we
examine the representation finite gradings of a finite tree. We introduce the
tree D̈n and calculate the representation finite gradings of the trees D̈5 and
D6. Finally, we introduce the Nakayama finite gradings of a finite tree. We
give the general formula for the number of the Nakayama finite gradings of
the trees D̈n and Dn.
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Introduction

In this thesis, we study the representation theory of artin algebras. In a broad
sense, this is the study of the modules over artin algebras. When we study the
theory of modules, category theory and homological algebra are useful. The prop-
erty of artin algebras, that every finitely generated module admits finite length,
gives us a good perspective when considering the category of finitely generated
modules over an artin algebra. We concentrate on studying the theory of almost
split sequences. The reason is that the results from the study of almost split se-
quences plays an important role in many recent work across several topics. We
illustrate this point by looking at the Nakayama algebras and the representation
finite gradings for a finite tree.

We are assuming the reader is familiar with the general concepts of rings and
modules such as projective, and injective modules, and also some basic results
from homological algebra.

This work is divided into six chapters. The first chapter contains the relevant
background on artin algebras, quivers and path algebras. We discuss the duality
and the transpose on module categories. In the second chapter, we focus on the
almost split sequences and show the existence theorem of them. We also illustrate
irreducible morphisms by giving an example from PIDs.

In chapter 3, we introduce the Nakayama algebras. We concentrate on the
invariants of the indecomposable modules which are helpful to determine an in-
decomposable Nakayama algebra from a given admissible sequence. We show the
general form of the almost split sequences of an indecomposble Nakayama alge-
bra which are a helpful tool to understand the special structure of a Nakayama
algebra.

Since it is useful to consider Auslander algebras while studying the artin
algebras of representation finite type, we introduce the Auslander algebra and
Auslander-Reiten quiver in chapter 4. We describe how to associate an Auslander-
Reiten quiver to an artin algebra which is based on the almost split sequences.

In chapter 5, we introduce the representation finite gradings for a finite tree.
We start by associating a translation quiver to a graded tree by defining the di-
mension map. We summarize the result from Bongartz and Gabriel in [3] showing
that there is a bijection between the isomorphism classes of representation finite
graded trees and the isomorphism classes of simply connected algebras. The the-
ory studied in previous chapters is important here. We introduce the tree D̈n.
Last, we obtain the first result of this work by calculating the representation finite
gradings for the trees D̈5 and D6.

In chapter 5, to show the existence of the representation finite gradings of a
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arbitrary finite tree, we introduce the result from Rohnes and Smalø in [5] which
uses the corresponding Nakayama algebra of the tree. The final result of this thesis,
is to give the general formula for the number of the Nakayama representation finite
gradings of the trees D̈n and Dn respectively.

Acknowledgements
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1 Preliminary

In this chapter, we start by introducing the length of a module over an arbitrary
ring referring to chapter 1-4 in [2]. After proving the Jordan–Hölder Theorem, we
prove that for a left artin ring, every finitely generated module has finite length.
We introduce the notion of a quiver and it’s path algebra. Specifically, we illustrate
how to associate a quiver to a finite dimensional basic algebra over an algebraically
closed field. After that, we introduce the D-functor and the transpose. We also
include the projectivization and the block decomposition of an artin algebra.

1.1 Modules

Let Λ be an arbitrary ring and let A be a Λ-module. If there is a finite filtration
of submodules F : A = A0 ⊃ A1 ⊃ · · · ⊃ An = 0 such that for i ∈ {0, . . . , n},
Ai/Ai+1 is simple, we call F a composition series and call the Ai/Ai+1 the
composition factor of F . The composition series is not unique. For example,
Z2 × Z3 has two composition series.

We use mF
S (A) to denote the number of composition factors of F which are

isomorphic to S where S is a simple Λ-module. We use lF (A) to denote the sum
of mF

Si
(A) where Si ranges over all the isomorphism classes of simple Λ-modules.

Further, we define the length of A denoted as l(A) be the minimum of lFi(A) and
mS(A) be the minimum number ofmFi

S (A) where Fi ranges over all the composition
series of A.

Jordan–Hölder Theorem state that lF (A) and mF
S (A) are actually independent

from the choice of the composition series. The following proof is referring to
Chapter 3 in [4].

Theorem 1.1. Jordan–Hölder Theorem. Let M be a Λ -module of finite
length. Let F : 0 ⊂M1 ⊂ · · · ⊂Mn = M and G : 0 ⊂ N1 ⊂ · · · ⊂ Nm = M be two
composition series of M where m ≥ n then we have that lF (M) = lG(M) = l(M)
and mF

S (M) = mG
S (M) = mS(M) where S ranges over all the isomorphism classes

simple modules of Λ.

Proof. We prove it by induction on l(M). If l(M) = 0, there is nothing to prove.
If l(M) = 1, then M is simple and the only composition factor is itself. We
assume when l(M) ≤ n − 1, the hypothesis is satisfied. Suppose l(M) = n. Let
K = Mn−1 ∩Nm−1.

1. If Mn−1 = Nm−1, we are done.

2. IfMn−1 6= Nm−1, Mn−1+Nm−1 = M andMn−1/K ∼= (Mn−1+Nm−1)/Nm−1 =
M/Nm−1. Similarly, we have Nm−1/K ∼= M/Mn−1. Again by Mn−1, Nm−1
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being maximal, Mn−1/K and Nm−1/K are simple. K has composition se-
ries by taking the intersection of K with the composition series of M and
deleting one zero factor. Let H : 0 ⊂ K1 ⊂ · · · ⊂ Kr = K be a com-
position series of K. Then F ′ : 0 ⊂ K1 ⊂ · · · ⊂ Kr = K ⊂ Mn−1 and
G′ : 0 ⊂ K1 ⊂ · · · ⊂ Kr = K ⊂ Nm−1 are two composition series for Mn−1

and Nm−1 respectively. Since l(K) ≤ n − 1, we know that F ′ and J have
the same length and composition factors, the same as G′ and L. Then by
Mn−1/K ∼= M/Nm−1 and Nm−1/K ∼= M/Mn−1, we have that n = m and
mF
S (M) = mG

S (M).

Observation 1.2. Modules are not uniquely determined by composition factors.
For example, Z4 and Z2 × Z2 have the same composition factors but they are not
isomorphic.

For a ring Λ, we define the radical r of Λ be the intersection of the maximal
left ideals of Λ. We state Nakayama lemma without giving a proof.

Lemma 1.3. Nakayama lemma Let Λ be a ring and let r be the radical of Λ.
Let M be a finitely generated Λ-module. Then rM = M if and only if M = 0.

Proposition 1.4. Let Λ be a left artin ring and r be the radical of Λ. Let A be a
Λ -module. Then we have the following.

1. The radical r is nilpotent.

2. Λ/r is a semisimple ring.

3. A is semisimple if and only if rA = 0.

4. There is only a finite number of isomorphism classes of simple Λ-modules.

5. Λ is left noetherian.

Proof. 1. We look at the radical filtration Λ ⊃ r ⊃ r2 ⊃ · · · ⊃ rn ⊃ . . . . There
is a number n ∈ N such that rn = rn+1. By Nakayama’s lemma, rn = 0.
Thus r is a nilpotent.

2. Since Λ is left artinian, Λ/r is left artinian. Since rad(Λ/r) = rad(Λ)/r = 0,
Λ/r has no non-zero nilpotent ideals. So Λ/r is semisimple.

3. Obviously, when A is semisimple, then rA = 0. When rA = 0, the module
A is also Λ/r -module. Thus A is semisimple.
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4. Each non-isomorphic simple module of Λ is a Λ/r -module and occurs as a
direct summand of Λ/r. Λ/r has only a finite number of isomorphism classes
simple modules.

5. For the radical filtration Λ ⊃ r ⊃ r2 ⊃ · · · ⊃ rn = 0, we have that
r(ri/ri+1) = 0, i ∈ {0, . . . , n}, then ri/ri+1 is semisimple artinian. So ri/ri+1

is noetherian. Thus Λ is neotherian.

Corollary 1.4.1. Let Λ be a ring and r be the radical, the following are equivalent.

1. Every finitely generated Λ -module has finite length.

2. Λ is left artinian.

3. The radical r is a nilpotent and ri/ri+1 is a finitely generated semisimple
module for all i ≥ 0.

1. (1) ⇒ (2). Since Λ as a finitely generated module over itself, it has finite
length, so Λ is left artin.

2. (2)⇒ (3). This is a direct consequence of the last proposition.

3. (3) ⇒ (1). Let A be a finitely generated Λ -module. Since A is finitely
generated, there is a surjective map f : Λn → A, for some n ∈ N. It is
enough to show l(Λn) has finite length. It is straightforward that Λ has finite
length by (3). Then l(Λn) has finite length , and then A has finite length.

This corollary plays a very important role in the study of finitely generated
modules of a left artin ring. In the rest of the thesis we use mod Λ to denote the
category of finitely generated modules of Λ.

We state the Krull–Schmidt theorem without giving proof. The proof can be
found in chapter 3 of [4] which is given by the induction on length.

Theorem 1.5. Krull–Schmidt theorem. Let Λ be a left artin ring and let M
be a finitely generated module. Then we have the following.

1. M can be written as a finite direct sum of indecomposable modules.

2. The decomposition of M into indecomposable modules are unique up to iso-
morphism.
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1.2 Path algebras

Definition 1.1. R-algebra. Let R be a commutative artin ring. An artin R-
algebra is a ring Λ together with a ring homomorphism Φ : R→ Λ, where Im Φ is
in the center of Λ, and such that Λ is a finitely generated R-module.

Definition 1.2. K-algebra. Let K be a field. A K-algebra is a ring Λ together
with a ring homomorphism Φ : K → Λ, where Im Φ acts centrally in Λ, i.e. for
k ∈ K and a, b ∈ Λ, if we use ka to denote Φ(k)a, then k(ab) = (ak)b = a(kb) =
(ab)k.

Definition 1.3. Quiver. A quiver Γ = (Γ0,Γ1) is an oriented graph. Γ0 denotes
the set of vertices and Γ1 denotes the set of arrows between vertices.

A quiver Γ is said to be finite if both Γ0 and Γ1 are finite. In the rest of this
thesis, we assume Γ is a finite quiver. For each arrow α, we define the starting
vertex function s such that s(α) is the starting vertex of the arrow α and define
the ending vertex function e such that e(α) is the ending point of the arrow
α.

A path in a quiver Γ is either a trivial path of a vertex i denoted as ei with
s(ei) = i and e(ei) = i or an ordered composition of arrows q = a1a2 . . . an where
e(ai) = s(ai−1) for i ∈ {1, . . . , n}. We have e(q) = e(a1), s(q) = s(an). If q is
non-trivial and e(q) = s(q), we call it a cycle. We define the length l of a path
as the number of arrows in the path, so l(ei) = 0 and l(q) = n.

Example 1.1. Let Γ be the quiver 1 2 3 4 5
a1 a2 a3 a4 a5 .

So a5 is a cycle. Hence e1, e2, e3, e4, e5 are the trivial paths and a2a1 is the path
starting in 1 and ending in 3.

For a quiver Γ, we define the associated path algebra as following.

Definition 1.4. Path algebra. Let k be a field and Γ be a quiver. The path algebra
kΓ is the k-vector space with all the paths of Γ as basis. The multiplication is given
by juxtaposition of paths and then extended by bilinearity.

We illustrate the multiplication as the following. Let Γ be a quiver. Let ei, ej
be the trivial path of the vertex i and j respectively. Let a, b be arrows in Γ1.

eiej =

{
ei i = j

0 else
eia =

{
a e(a) = i

0 else

aei =

{
a s(a) = i

0 else
ab =

{
ab s(a) = e(b)

0 else
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Example 1.2. Let k be a field. Let Γ be the quiver 1
a1−→ 2

a2−→ 3. So kΓ is the
k-vector space with basis {e1, e2, e3, a1, a2, a2a1}.

Clearly, the identity of kΓ is the sum of all idempotents ei. We write it as
1 = e1 + · · · + en. Since eiej = 0 if i 6= j, it is a orthogonal decomposition of the
identity.

Let J denote the ideal in kΓ generated by all the arrows in Γ. When kΓ is
finite dimensional i.e. Γ has no cycle, kΓ/J ∼= ke1 × · · · × ken is semisimple, then
J is the radical of kΓ.

In example 1.1, it is trivial that the associated path algebra of this quiver is an
infinite dimension k-algebra since there is a circle which makes the basis infinite.
Thus, kΓ is finite if and only if there it no cycle in Γ.

Example 1.3.

2

1 Γ1 3

4

2

1 Γ2 3

4

Let k be a field. kΓ1 is finite

dimensional. kΓ2 is infinite dimensional since there is a cycle in Γ2.

It is natural to ask that for each k-algebra Λ, dose there exist a path algebra
kΓ such that kΓ ∼= Λ? We give an counter example as following.

Example 1.4. Let k be a field, k[x]/(x2) is the polynomial ring modulo the ideal
generated by x2. So {1, x} is a basis of k[x]/(x2). If a path algebra kΓ are iso-
morphic to k[x]/(x2), kΓ has to satisfy the relation 1x = x1 = x. The only quiver

Γ we can find is 1 x . But since it has a cycle, the path algebra kΓ is not

isomorphic to k[x]/(x2).

Definition 1.5. Relation of quiver. A relation ρ in quiver Γ over a field k is a
k-linear combination of paths ρ = k1p1 + · · ·+ knpn where e(p1) = · · · = e(pn) and
s(p1) = · · · = s(pn). We assume l(pi) ≥ 2 for all i ∈ {1, . . . , n}.

For a finite dimensional path algebra, we have the following observation.

Observation 1.6. Let Γ be a finite quiver without cycles and let ρ be a relation
in the path algebra kΓ. The ideal (ρ) generated by ρ satisfies that ∃n ∈ N, Jn ⊆
(ρ) ⊆ J2 where J is the ideal generated by all the paths in kΓ.

Let ρ denote a set of relations in the quiver Γ over a field k, we use (Γ, ρ)
to denote the quiver with relations. The associated path algebra is k(Γ, ρ) =



1 PRELIMINARY 10

kΓ/(ρ). In example 1.4, we can see k[x]/(x2) ∼= k(Γ, ρ) where ρ = x2 in the quiver

1 x .

In the rest of this section, we will show how to associate a quiver to an basic
finite dimensional algebra over an algebraically closed field. We will first introduce
tensor ring and it’s associate quiver since there is a natural connection between
tensor ring and the associated path algebra.

Definition 1.6. Tensor ring. Let Σ be a ring and let V be a Σ-bimodule.
V 2 ∼= V ⊗ V and V i is the i-fold tensor product of V . The tensor ring T (Σ, V ) =
Σ
∐
V
∐
V 2
∐
. . . .

If we let Σ =
∏

n(k) where k is a field and let V be a finite Σ-bimodule
where k acts centrally. Then Φ : k → Σ defined by φ(x) = (x, x, . . . , x) gives the
structure of T (Σ, V ) being a k-algebra. Then we define the associated quiver Γ
for T (Σ, V ) as follows.

• The ith-vertex εi in Γ0 is the idempotent in Σ of the form of (0,. . . ,1,. . . 0)
where only ith coordinate is 1 and the rest is 0. Then we have 1 = ε1+· · ·+εn.

• The number of arrows from the vertice j to the vertice i is the dimension of
εjV εi which is a k-subspace of V .

For a finite dimensional path algebra kΓ, we call a relation ρ admissible if
it satisfies that there exists n ∈ N, Jn ⊆ (ρ) ⊆ J2 where J is the radical of kΓ
in observation 1.6. Motivated by that, we want to find a homomorphism which
maps Vi to Ji for the tensor ring T (Σ, V ).

Proposition 1.7. Let Σ =
∏

n(k) and V be a finite dimensional Σ-bimodule
where k acts centrally. Let Γ be the associated quiver for T (Σ, V ), then there is a
k-algebra isomorphism Φ : T (Σ, V )→ kΓ such that Φ : (

∐
i≥t V

i) = J t where J is
the ideal generated by the paths in kΓ.

Proof. We define a homomorphism f : Σ
∐
V → kΓ as following. For any

(a1, . . . , an) ∈ Σ, f(a1, . . . , an) =
∑n

i=1 aiεi. The union of a chosen basis for
each εiV εj in {εiV εj}i,j∈{1,2,...,n} are a basis of V . The map f : εiV εj → KΓ1

is defined by giving a bijection between the chosen basis of εiV εj and the set of
arrows from j to i. Clearly, f is a bijection of vector space Σ

∐
V to kΓ0 ⊕ kΓ1 .

To extend f to f̃ : T (Σ, V ) → kΓ where f̃ |Σ∐
V = f , we let f̃ |V n (V1, . . . , Vn) =

f(V1)f(V2) . . . f(Vn). So f̃(a, w,w1, . . . , wn) = f(a, w) +
∑n

i=1 f̃ |V n . Obviously,

it is a ring homomorphism. Clearly, Im(f(V )) = J . So f̃(
∐

i≥t V
i) = J t. By

observation 1.6, f̃ is surjective. Obviously, the kernel of f̃ is 0. So f̃ is the desired
isomorphism.
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Definition 1.7. Basic finite dimensional algebra. A finite dimensional al-
gebra Λ is basic if and only if Λ/r ∼=

∏i=n
i=1 (Mi), where each Mi is a division

rings.

Definition 1.8. Elementary finite dimensional algebra. A finite dimen-
sional algebra Λ over an a field k is elementary if and only if Λ/r ∼=

∏i=n
i=1 (k) as

a k-algebra.

Proposition 1.8. A basic finite dimensional algebra Λ over an algebraically closed
field k is an elementary k-algebra.

Proof. Let Λ/r ∼=
∏i=n

i=1 (Mi) where Mi are division rings and r is the radical. Let
φ : k → Λ/r be the ring morphism making Λ a k-algebra. Then we have the
projection φMi : k → Mi. Thus Mi is a finite dimensional extension of k. Since k
is algebraically closed, Mi is isomorphic to k. Thus Λ/r ∼=

∏i=n
i=1 (k).

The associated quiver Γ of a finite dimensional elementary algebra Λ over field
k is the associated quiver of the tensor ring T (Λ/r, r/r2). We will show that there
is a path algebra with relation k(Γ, ρ) such that Λ ∼= k(Γ, ρ).

Proposition 1.9. Let Λ be an elementary finite dimensional algebra. Let {e1, . . . , en}
be a set of primitive orthogonal idempotents in Λ such that the image in Λ/r gen-
erates Λ/r, and {r1, . . . , rt} be the set of elements in r such the the image in r/r2

is a basis of r/r2 as Λ/r-module. Then {e1, . . . , en, r1, . . . , rt} generate Λ.

Proof. We prove it by induction on the Loewy length ll of Λ. Λ is elementary that
Λ/r ∼=

∏i=n
i=1 (k). So the idempotent ei in Γ/r is of the form (0, . . . , 1, . . . , 0) where

the ith position is 1 and the rest is 0.

1. When ll(Λ) = 1, r = 0 and Λ is semisimple. Obviously Λ is generated by
{e1, . . . , en}.

2. When ll(Λ) = 2, r2 = 0. Obviously Λ is generated by {e1, . . . , en, r1, . . . , rt}.

3. We assume it is ture for ll(Λ) = m. When ll(Λ) = m + 1, let A denote the
set {e1, . . . , en, r1, . . . , rt}.
Since ll(Λ/rm) = m and (r/rm)/(r2/rm) = r/r2, also (Λ/rm)/(r/rm) =
Λ/r, then {e1/(r

m), . . . , en/(r
m), r1/(r

m), . . . , rt/(r
m)} is a generating set of

Λ/(rm). So Λ/rm ∼=< A > / < (A∩rm) >. ∀x ∈ Λ, ∃y ∈ A that x−y ∈ rm.
∃α ∈ rm−1 and β ∈ r that αβ = x − y. But ∃α′ ∈ A and α′′ ∈ rm that
α = α′ + α′′. The same for β that β = β′ + β′′ where β′ ∈ A and β′′ ∈ rm.
So x− y = αβ = (α′ + α′′)(β′ + β′′). Since ll(Λ) = m, α′′β, α′β′′, α′′β′′ = 0,
so x− y = α′β′ ∈ A. Thus x is in A.
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Corollary 1.9.1. There is a surjective ring homomorphism f̃ : T (Λ/r, r/r2)→ Λ
such that

∐
i≥ll(Λ)(r/r

2)i ⊂ kerf̃ ⊂
∐

i≥2(r/r2)i.

Proof. Let {e1, . . . , en} be the primitive idempotents set of Λ such that the image
{e1, . . . , en} in Λ/r is a basis of Λ/r. Let {r1, . . . , rt} be the set of elements in
r such that the image {r1, . . . , rt} in r/r2 is a basis of r/r2. By proposition 1.9,
{e1, . . . , en, r1, . . . , rt} is a generating set of Λ. We define a ring isomorphism
f : Λ/r

∐
r/r2 → Λ/r2 by letting f(ei) = ei and f̃(ri) = ri. Let f̃ |(Λ/r∐ r/r2)= f .

For each x = x1 ⊗ · · · ⊗ xi in (r/r2)i, we define that f̃(x) = f(x1)f(x2) . . . f(xi).
Thus f̃ : T (Λ/r, r/r2) → Λ is a surjective ring homomorphism. Clearly, for a
non-zero element x in Λ/r

∐
r/r2, f̃(x) 6= 0. Then kerf̃ ⊂

∐
i≥2(r/r2)i. Since

(r/r2)i = 0 when i ≥ ll(Λ),
∐

i≥rl(Λ) r
i ⊂ kerf̃ . Thus f̃ is the desired map.

Corollary 1.9.2. Let Λ be a finite dimensional elementary algebra over an alge-
braically closed field k, there is a path algebra with relation k(Γ, ρ), Jn ⊆ (ρ) ⊆ J2

such that k(Γ, ρ) ∼= Λ.

Proof. Let f̃ : T (Λ/r, r/r2)→ Λ be the homomophism from corollary 1.9.1 and let
h̃ : T (Λ/r, r/r2)→ kΓ be the isomorphism from proposition 1.7. So a generating
set of h̃(ker−1(f̃)) is the desired relation ρ. Thus k(Γ, ρ) ∼= Λ.

We have seen a finite dimensional basic algebra Λ over an algebraically closed
field k is elementary. So the associated quiver of Λ is the associated quiver Γ of
tensor ring T (Λ/r, r/r2). Thus, there is a path algebra with relation k(Γ, ρ) that
is isomorphic to Λ.

Proposition 1.10. Let Λ be a finite dimensional basic algebra over an alge-
braically closed field k and {e1, . . . , en} be the primitive idempotents decomposition
set of identity such that 1 = e1 + · · ·+en. Then Λ = Λe1 + · · ·+Λen. Let Pi denote
Λei and Si denote Pi/rPi, so Pi → Si is the projective cover. The following are
equal.

1. dimk(Ext1
Λ(Si, Sj))

2. the multiplicity of Sj in rPi/r
2Pi

3. the multiplicity of Pj in P , where P → Pi → Si is a minimal projective
presentation of Si.

4. dimk(ej(r/r
2)ei)

Proof. We have the exact sequence 0 → rPi → Pi → Si → 0. Applying
HomΛ(−, Sj) , we have the exact sequence:

0→ HomΛ(Si, Sj)→ HomΛ(Pi, Sj)
HomΛ(h,Sj)−−−−−−−→ HomΛ(rPi, Sj)→ Ext1

Λ(Si, Sj)→ 0
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For rPi ↪→ Pi
h−→ Sj, rPi is in ker(h). Since P is indecomposable, HomΛ(h, Sj) = 0.

Thus dimk(Ext1
Λ(Si, Sj)) = dimk HomΛ(rPi, Sj).

Since r2Pi is in the kernel of all f : rPi → S with S being simple, we have
HomΛ(rPi, Sj) ∼= HomΛ(rPi/r

2Pi, Sj). Then the multiplicity of Sj in rPi/r
2Pi is

equivalent to dimk HomΛ(rPi, Sj) which is equal to dimk(Ext1
Λ(Si, Sj)).

Since P is the projective cover of rPi, P is also the projective cover of rPi/r
2Pi.

Because projective cover is unique up to isomorphism, we have the multiplicity of
Pj in P is equivalent to the multiplicity of Sj in rPi/r

2Pi.

We have HomΛ(rPi/r
2Pi, Sj) ∼= HomΛ(Sj, rPi/r

2Pi) as vector space over k by
rPi/r

2Pi is semisimple and HomΛ(Pj, rPi/r
2Pi) ∼= HomΛ(Pj/rPj, rPi/r

2Pi) ∼=
HomΛ(Sj, rPi/r

2Pi). But HomΛ(Pj, rPi/r
2Pi) = HomΛ(Λej, rei/r

2ei). Since ej
is primitive idempotent and for all f in ∈ HomΛ(Λej, rei/r

2ei), f is determined by
f(ej), HomΛ(Λej, rei/r

2ei) is isomorphic to ej(r/r
2)ei. Thus dimk(Ext1

Λ(Si, Sj)) =
dimk HomΛ(rPi/r

2Pi, Sj) = dimk(ej(r/r
2)ei).

Definition 1.9. Artin R-algebra. Let R be a commutative artin ring and let Λ
be an R-algebra. Λ is said to be an artin R-algebra if Λ is finitely generated as an
R-module.

Definition 1.10. Basic artin algebra. An artin algebra Λ is basic if Λ = P1 ⊕
· · · ⊕ Pn where Pi is indecomposable projective module, and Pi � Pj for i 6= j.

Clearly, if a quiver Γ over a field k has no cycles, the path algebra kΓ is an artin
k-algebra. In proposition 1.10, we have described the associated quiver for a basic
finite dimensional algebra by using simples and dimk(Ext1

Λ(Si, Sj)). Motivated by
that, we associate with any artin algebra Λ a quiver such that the vertices are
simples and there is a arrow between vertices i and j if Ext1

Λ(Si, Sj) 6= 0.

Example 1.5. Let k be a field. T =

k 0 0
k k 0
k k k

 be the 3 × 3 matrix k-algebra.

The associated quiver of T is the quiver 1
a−→ 2

b−→ 3 denoted as Γ and kΓ ∼= T .

Proof. Let e1 =

1 0 0
0 0 0
0 0 0

 e2 =

0 0 0
0 1 0
0 0 0

 e3 =

0 0 0
0 0 0
0 0 1

 a =

0 0 0
1 0 0
0 0 0

 a =

0 0 0
0 0 0
0 1 0

 then ba =

0 0 0
0 0 0
1 0 0

.
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So T ∼= ke1 + ke2 + ke3 + ka+ kb+ kba = kΓ.

A representation (V, f) of a quiver Γ = (Γ0,Γ1) over a field k is a collection
of finite dimensional vector spaces {Vi | i ∈ Γ0} together with a k−linear map
f : Vi → Vj for each arrow i→ j.

We consider the category of finitely generated modules of kΓ as the represen-
tation category of kΓ.

For a finite dimensional k-algebra Λ with k a field, We call it finite repre-
sentation type if there is only a finite number of isomorphism classes of finitely
generated indecomposable left Λ-modules.

1.3 Duality and transpose

1.3.1 D-functor

Let Λ be a ring and let B ⊂ A where B,A are Λ-modules. We call A an essential
extension of B if the intersection of each non-zero submodule of A with B is
not zero. Let f : A → I be a monomorphism where I is injective. We call f an
injective envelop if I is an essential extension of Im f .

Let R be a commutative artin ring, so R has only a finite number of isomor-
phism classes simple modules denoted as {S1, . . . , Sn}. Let Si → Ii be the injective
envelop which exists and let J = ⊕ni=1Ii.

Proposition 1.11. Let X be an R-module of finite length and let D = HomR( , J).
Then we have the following.

1. HomR(Si, Si) ∼= D(Si) ∼= Si, i ∈ {1, . . . , n}.

2. mSi(D(X)) = mSi(X), i ∈ {1, . . . , n}

3. D as a contravariant R-functor is a duality.

Proof. 1. Let Si ∼= R/mi, where mi is the maximal ideal of R correspond to
Si. Then HomR(Si, Si) ∼= HomR(R/mi, Si). Since the morphism R → Si
maps mi to zero, we have that HomR(R/mi, Si) ∼= HomR(R, Si) ∼= Si. Since
the morphism Si → J maps Si to either zero or Si, we have that D(Si) ∼=
HomR(Si, Si). Thus we have that HomR(Si, Si) ∼= D(Si) ∼= Si.

2. We prove it by induction on the the length of X. Obviously, when l(X) = 0
or l(X) = 1, the hypothesis is satisfied. We assume that when l(X) ≤ m−1,
the hypothesis is satisfied. Let l(X) = m, we consider the following exact
sequence 0 → X ′ → X → X ′′ → 0, where l(X ′) = 1. Applying the functor
D, we have the exact seqence 0 → D(X ′′) → D(X) → D(X ′) → 0 by J
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being injective. Since the length of both X ′, X ′′ is less than m, we have that
mSi(D(X ′)) = mSi(X

′) and mSi(D(X ′′)) = mSi(X
′′). Thus mSi(D(X)) =

mSi(X).

3. It is straight forward that D is an R-functor. From (2), we know that l(X) =
l(D2(X)). To prove D is a duality, it is enough to show φ : X → D2(X),
given as φ(x)(f) = f(x) for x ∈ X and f ∈ D(X), is a monomorphism. For
each x 6= 0 ∈ X, if φ(x) = 0, then for all f ∈ D(X), f(x) = 0. Let Rx
be the submodule of X generated by x. Since Rx is not zero, R/r(Rx) 6= 0
by Nakayama’s lemma where r is the radical of R. Then we have a map
h : R/r(Rx) → J such that h(x) 6= 0, and we can extend h to a map
k : X → J such that k(x) 6= 0 by J is injective. So x is not in the kernel of
φ. Then φ is a monomorphism. Thus D is a duality on modR.

The following corollary is a direct result of the proposition.

Corollary 1.11.1. l(D(X)) = l(X).

Let Λ be an artin R-algebra and let X be a module in mod Λ and λ ∈ Λop.
D(X) is considered as a Λop-module by defining for each f in D(X), (fλ)(x) =
f(λx). D(X) is a finitely generated Λop-module, i.e. X is a finitely generated
Λ -module. Thus D : mod Λ → mod Λop is a contravariant R-functor. And φ :
X → D2(X) is still an isomorphism, since φ(λx)(f) = f(λx) = φ(x)(fλ) =
(λφ(x))f where f ∈ D(X), λ ∈ Λ. We have an isomorphism between 1mod Λ and
D2 and similarly an isomorphism between 1mod Λop and D2. So we have proved the
following proposition.

Proposition 1.12. Let Λ be an artin R-algebra, D : mod Λ → mod Λop as an
contravariant funtor is a duality, with the inverse D : mod Λop → mod Λ.

1.3.2 The functor HomΛ(−,Λ)

Let Λ be an artin algebra and let A be a finitely generated Λ-module. We consider
HomΛ(A,Λ) as a finitely generated Λop-module by defining (fλ)(a) = f(a)λ where
f ∈ HomΛ(A,Λ), λ ∈ Λ, a ∈ A. We denote HomΛ(A,Λ) as A∗. It is straightfor-
ward that HomΛ(−,Λ) is a R-functor. Since HomΛ(Λ,Λ) ∼= ΛΛ, so Λ∗∗ ∼= Λ. Thus
φΛ : Λ→ Λ∗∗ is an isomorphism in mod Λ.

Proposition 1.13. Let P be a indecomposable projective Λ-module, then P ∗ is
projective in mod Λop and P ∼= P ∗∗

Proof. We know that ΛΛ∗ ∼= ΛΛ is projective in mod Λop. Since P is a direct
summand of Λ, P ∗ is a direct summand of Λ∗. Thus P ∗ is projective in mod Λop.
Similarly, since Λ∗∗ ∼= Λ and P/rP is simple, we have that P ∗∗ ∼= P .
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We use P(Λ) to denote the full subcategory of mod Λ such that the objects
are all the projective modules. The following corollary is a immediate consequence
of the proposition.

Corollary 1.13.1. The functor HomΛ(−,Λ) : mod Λ → mod Λop restricted to
P(Λ) is a duality P(Λ)→P(Λop), with inverse HomΛ(−,Λ) : P(Λop)→P(Λ).

1.3.3 The transpose and the dual of the transpose

Let Λ be an artin algebra and C be a module in mod Λ. Let P1
f−→ P → C → 0

be A minimal projective presentation. Applying HomΛ(−,Λ), we get an exact

sequence 0 → C∗ → P ∗0
f∗−→ P ∗1 → TrC → 0. TrC is the cokernel of f ∗. We call

TrC the transpose of C. Obviously, TrC is in mod Λop. If C is projective, we
have that the minimal projective presentation 0→ P → P → 0, by the definition
of the transpose, TrC = 0. Similarly, we have that if TrC = 0, then C is projective
in mod Λop.

Proposition 1.14. Let C be an indecomposable non-projective module in mod Λ
and P1 → P0 → C → 0 be a minimal projective presentation. Then σ : P ∗0 →
P ∗1 → TrC → 0 is a minimal projective presentation in mod Λop.

Proof. In the last section we have seen that P ∗i , i ∈ 0, 1 are projective in mod Λop

when Pi is projective in mod Λ. If σ is not a minimal projective presentation, then
we have P ∗1

∼= P ⊕ E where π : P → TrC is a projective cover in mod Λop. Let
F → kerπ be a projective cover. Then P ∗0 = E ⊕ F ⊕G. Since P ∗∗i = Pi, i ∈ 0, 1,
it contradict that fact that P1 → P0 → C → 0 being a minimal projective
presentation. Thus σ : P ∗0 → P ∗1 → TrC → 0 is a minimal projective presentation
in mod Λop.

Corollary 1.14.1. If A and C are indecomposable non-projective module in mod Λ,
we have the following

1. Tr(TrC) = C.

2. TrA ∼= TrC if and only if A ∼= C.

3. TrC is indecomposable in mod Λop.

Proof. 1. It is a direct implementation from the last proposition and the duality
of HomΛ(−,Λ) on P(Λ).

2. It is a trivial consequence of (1).

3. It is not hard to see that Tr(A⊕ B) = Tr(A)⊕ Tr(B). Since Tr(TrC) = C
is indecomposable, TrC is indecomposable.
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We consider the dual of the transpose DTr which is applying the D-functor
to the transpose. We know that D(P ) is injective when P is projective. The
following proposition are direct consequence from above.

Proposition 1.15. 1. TrDC = 0, if and only if C is injective in mod Λ.

2. TrD(DTrC) ∼= C, if C is an indecomposable non-projective module in mod Λ.

3. DTr(A1 ⊕ A2) ∼= DTrA1 ⊕DTrA2 where A1, A2 ∈ mod Λ.

4. For non-projective indecomposable modules A and B in mod Λ, DTrA ∼=
DTrB if and only if A ∼= B.

1.4 Projectivization

In this section, we want to show the connection between path algebras and basic
artin algebras. For an artin algebra Λ, we introduce the endomorphism algebra
ΓA = EndΛ(A)op where A is in mod Λ. Clearly, HomΛ(A,−) is a functor between
mod Λ and mod ΓA. We denote HomΛ(A,−) as eA. In addition, addA denote
the full subcategory of mod Λ where the objects are {X | X ∈ mod Λ,∃Y ∈
mod Λ,∃n ∈ N, An ∼= X ⊕ Y }.

Proposition 1.16. Let A be a finitely generated module of an artin algebra Λ.
For X ∈ addA and Y ∈ mod Λ, eA : mod Λ→ mod ΓA has the follwing properties.

1. eA : HomΛ(X, Y )→ HomΓ(eA(X), eA(Y )) is an isomorphism.

2. eA(X) is in P(ΓA) where P(ΓA) is the full subcategory of mod ΓA whose
objects are all projective modules in mod ΓA.

3. eA |addA: addA→P(ΓA) is an equivalence of categories.

Proof. 1. For each f ∈ HomΛ(X, Y ), eA(f) = HomΓ(A, f). Clearly, eA is
surjective. For a non-zero map f in HomΛ(X, Y ), since X ∈ addA, eA(f) 6=
0. Then it is an isomorphism.

2. Clearly, eA(X) is a summand of eA(An) for some n ∈ N. Since eA(An) =
HomΛ(A,An) ∼= HomΛ(A,A)n ∼= ΓnA is projective in mmod ΓA, then eA(An)
is projective in mmod ΓA.

3. From (1), we have eA |addA is faithful and full. For any P ∈P(ΓA), we have
P ⊕Q ∼= ΓnA. So there is a idempotent eA(f) : eA(An) ∼= ΓnA → eA(An) that

ker(eA(f)) = P . Then, we have the left exact sequence P � eA(An)
eA(f)−−−→

eA(An). Because eA preserve left exactness, we also have kerf → An
f−→ An,

there eA(ker f) = P . Since eA(f) is idempotent, f is idempotent. So f
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is split, kerf is in addA. Then eA |addA is dense. Thus eA |addA is an
equivalence.

We use modP to denote the full subcategory of mod Γ such that X is in modP
if and only if P0, P1 are in addP where P1 → P0 → X is the minimal projective
presentation of X.

Proposition 1.17. Let P be a projective Γ-module, eP |modP : modP → mod ΓP
is an equivalence of categories.

Proof. • Dense. For any X ∈ mod ΓP , there is a projective minimal pre-
sentation P1

g−→ P0 → X → 0. From proposition 1.16, we know there
is a Qi ∈ addP that eP (Qi) = Pi. So we have a right exact sequence

Q1
f−→ Q0 � cokerf where eP (f) = g. Because P is projective, HomΛ(P,−)

is exact functor. Then X = eP (cokerf). Thus eP |modP is dense.

• Faithful and full. For any A and B in modP , let P1 → P0 → A → 0 be
the minimal projective presentation of A. Since HomΛ(−, B) and eP both
preserve left exactness, we have following commutative diagram.

0 HomΛ(A,B) HomΛ(P0, B) HomΛ(P1, B)

0 HomΛ(ep(A), ep(B)) HomΛ(ep(P0), ep(B)) HomΛ(ep(P1), ep(B))

ep(1) ep(2) ep(3)

Since P0 and P1 is in addP , by proposition 1.16, we know ep(2) and ep(3)
is isomorphism. So ep(1) is also isomorphism. Thus eP |modP is faithful and
full.

Let P be the sum of all the indecomposable projective Λ-modules. We can see
that modP is the same as mod Λ since every Λ-module has minimal projective
presentation. Thus we have the corollary as following.

Corollary 1.17.1. Let P be the sum of all the indecomposable projective Λ-
modules. Then eP : mod Λ→ mod ΓP is an equivalence of categories.

Definition 1.11. Morita equivalence. Let Γ,Λ be two artin algebra. They are
said to be morita quivalent if and only if mod Γ ∼= mod Λ.

If we choose P as the sum of one from each isomorphic class of the indecom-
posable projective Λ-module. Then ΓP = End(P )op is a basic artin algebra.
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Observation 1.18. By corollary 1.17.1, every artin algebra is morita equivalent
to a basic artin algebra.

Morita equivalence explains the connetion between an arbitrary artin algebra
and a basic endomorphism algebra. We will use this property to construct the
Auslander algebra of an artin algebra.

1.5 Block decomposition

For an artin algebra Λ, we could decompose it in to a product of indecomposable
artin algebras. Let 1 = e1 + e2 + · · · + en be the sum of primitive orthogonal
idempotents of Λ. We can easily see that Λ = e1Λ×e2Λ×· · ·×enΛ is the product
decomposition and ei is the primitive idempotent in eiΛ. eiΛ is indecomposable
follows from eiΛ is primitive. We call eiΛ the blocks of Λ.

Example 1.6. In quiver Λ : · → · → ·, the identity is the sum of all the vertices,
1 = e1 + e2 + e3. So the block decomposition is Λ = e1Λ × e2Λ × e3Λ. Each
component of the decomposition is the natural indecomposable projective module.

As an artin algebra could be written as a direct sum of finite copies of inde-
composable projective modules, we want to investigate how to decompose it to
projective blocks.

Definition 1.12. Block partition. Let P be the set of all indecomposable projec-
tive modules of aritin algebra Λ. The P = P1 ∪P2 ∪ · · · ∪Pn is block partition
if

1. Let P ∈PiandP ∈Pj, i 6= j, then HomΛ(P,Q) = 0.

2. If P and Q are in the same Pi, there is a chain P = Q1−Q2−· · ·−Qn = Q
in Pi with nozero map from Qi to Qi+1 or Qi+1 to Qi.

We will prove the block partition actually give the block decomposition of an
artin algebra Λ.

Proposition 1.19. Let P = P1 ∪P2 ∪ · · · ∪Pn be the block partition of inde-
composable projective modules for an artin algebra Λ. Let Λ = P1 ⊕ P2 ⊕ · · · ⊕ Pn
where Pi is the sum of the indecomposable modules in P. The Λ ∼= EndΛ(Λ)op =
EndΛ(P1)op × EndΛ(P2)op × · · · × EndΛ(Pn)op is the block decomposition of Λ.

Proof. Λ is isomorphic to EndΛ(Λ)op since all f in EndΛ(Λ)op are determined
by f(1Λ). Suppose EndΛ(Pi)

op is decomposable, let EndΛ(Pi)
op = EndΛ(P ′i )

op ×
EndΛ(P ′′i )op. So HomΛ(P ′i , P

′′
i ) = 0 and HomΛ(P ′′i , P

′
i ) = 0, then P ′i and P ′′i are in

the different block partition which contradicts the assumption. Then 1EndΛ(Λ)op =
1EndΛ(P1)op + · · ·+1EndΛ(Pn)op , is the decompostion of primitive orthogonal idempo-
tents. Thus the Λ ∼= EndΛ(Λ)op = EndΛ(P1)op × EndΛ(P2)op × · · · × EndΛ(Pn)op

is the block decomposition.
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Observation 1.20. Let Λ be an indecomposable artin algebra, the block partition
of Λ only contains one component formed by all the indecomposable projective
modules up to isomorphism.
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2 Almost split sequences

In this chapter, we introduce almost split sequences and irreducible morphisms
referring to chapter 4 and 5 in [2]. We first look at the connection between the
covariant defect and the contravariant defect of a exact sequence. Based on this,
we present the proof of the existence theorem of almost split sequences. We also
give an example for PID to illustrate the irreducible morphisms.

2.1 Defects of exact sequences

Definition 2.1. Let Λ be an artin R-algebra and let δ : 0 → A → B → C → 0
be an exact sequence in mod Λ. We define the covariant defect δ∗ of the exact
sequence and the contravariant defect δ∗ of the exact sequence by the following.

0→ HomΛ(C, )→ HomΛ(B, )→ HomΛ(A, )→ δ∗ → 0

0→ HomΛ( , A)→ HomΛ( , B)→ HomΛ( , C)→ δ∗ → 0

Clearly, both δ∗(X) and δ∗(X) for each X ∈ mod Λ are finitely generated
R-module. For an R-module M , we use < M > to denote the length of M .

Theorem 2.1. Let δ : 0 → A → B → C → 0 be an exact sequence in mod Λ
where Λ is an artin R-algebra. We have < δ∗(DTrX) >=< δ∗(X) >.

Proof. Let P1 → P0 → X → 0 be a minimal projective presentation of X and
let Z be a Λ-module. Since the funtor − ⊗Λ Z preserves right exactness and the
functor HomΛ(−, Z) preserves left exactness. We use −∗ to denote HomΛ(−,Λ).
We have the following exact sequences.

P ∗0 ⊗Λ Z P ∗1 ⊗Λ Z TrX ⊗Λ Z 0

0 HomΛ(X,Z) HomΛ(P0, Z) HomΛ(P1, Z)

∼= ∼=

We define φ : Λ∗ ⊗Λ Z → HomΛ(Λ, Z) by φ(f ⊗ z)(λ) = f(λ)z where f ∈
Λ∗, z ∈ Z, λ ∈ Λ. Then φ is an isomorphism. φ : P ∗i ⊗Λ Z → HomΛ(Pi, Z) is
defined by φ(f ⊗z)(x) = f(x)z where f ∈ P ∗i , z ∈ Z, x ∈ Pi. Since Pi is projective
in mod Λ, we have P ∗i ⊗ΛZ ∼= HomΛ(Pi, Z), i ∈ {0, 1}. Then we have the following
exact sequence.

0→ HomΛ(X,Z)→ HomΛ(P0, Z)→ HomΛ(P1, Z)→ TrX ⊗Λ Z → 0

We use < −,− > to denote < HomΛ(−,−) >. Since HomΛ(Z,DTrX) ∼=
D(TrX ⊗Λ Z), we have < P1, Z > − < P0, Z > + < X,Z > − < Z,DTrX >= 0
since the module length is an invariant of the functor D.
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By the definition of defects, we have that

< δ∗(DTrX) >=< A,DTrX > − < B,DTrX > + < C,DTrX >

< δ∗(X) >=< X,C > − < X,B > + < X,A >

Then we have< δ∗(X) > − < δ∗(DTrX) >=< P0, C > − < P1, C > + < P0, A >
− < P1, A > + < P1, B > − < P0, B >=< δ∗(P0) > − < δ∗(P1) > Since Pi
is projective, HomΛ(Pi,−) is exact. So < δ∗(Pi) = 0 >. Thus < δ∗(X) > − <
δ∗(DTrX) >=0

Corollary 2.1.1. Let δ : 0 → A
f−→ B

g−→ C → 0 be an exact sequence in mod Λ.
Then for each X ∈ mod Λ, the following are equivalent.

1. Every morphism h : X → C factors through g : B → C.

2. Every morphism t : A→ DTrX factors through f : A→ B.

Proof. (1) implies < δ∗(X) >= 0. Thus < δ∗(DTrX) >= 0 which implies (2).
Similarly, we have that (2) implies (1).

By duality we have the following corollary.

Corollary 2.1.2. Let δ : 0 → A
f−→ B

g−→ C → 0 be an exact sequence in mod Λ.
Then for each X ∈ mod Λ, the following are equivalent.

1. Every morphism h : TrDX → C factors through g : B → C.

2. Every morphism t : A→ X factors through f : A→ B.

2.2 Almost split sequences

Let A
f−→ B be a monomorphism. If there is h : B → A such that hf = 1A, then

f is a split monomorphism. Similarly, let B
g−→ C be an epimorphism. If there

is k : C → B such that gk = 1C , then g is a split epimorphism.

Let σ : 0→ A
f−→ B

g−→ C → 0 be an exact sequence. If f or g split, then they
both splits and we call σ a split exact sequence.

If A
f−→ B is not a split monomorphism and for each morphism h : A → Y

which is not a split monomorphism, h factors through f , we call f left almost
split. Similarly, if B

g−→ C is not a split epimorphism and for each morphism
h′ : Y ′ → C which is not a split epimorphism, h′ factors through g, we call g right
almost split.
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For a morphism A
f−→ B, if every g : A → A which makes

A B

A

f

g
f

commute is an automorphsim, we say f is right minimal. Similarly, for a mor-

phism B
f−→ C, if every g : C → C which makes

B C

C

f

f
g commute is an

automorphsim, we say f is left minimal.

Observation 2.2. Monomorphism are right minimal.

Example 2.1. For an artin algbra Λ, P is a indecomposable projective module,
then i : rP ↪→ P is right almost split morphism. The map i is a natural in-
clusion, so it is non-split epimorphism. For each morphism A

g−→ P which is
not a split epimorphism, Im(g) is in or equal to rP since P is indecomposable.

Then,

rP P

A

i

g
f commutes. Thus i is right almost split.

So we have determined i : rP ↪→ P is right almost split for each indecomposable
projective module P . But is it the unique right almost split morphism to P? For
a morphism g : A→ rP , the induced morphism A⊕ rP −→ P is also right almost
split. If a morphism f : A → P is right almost split, Imf must be equal to rP .
Obviously, i : rP ↪→ P is right minimal.

We call a morphism minimal right almost split if it is both right minimal
and right almost split. Similarly, We call a moprhism minimal left almost split
if it is both left minimal and left almost split. The morphism i : rP ↪→ P is
minimal right almost split.

There are some straightforward observations from the definition of almost split
morphism.

Lemma 2.3. 1. Let f : A→ B be right almost split, then B is an indecompos-
able module.

2. Let g : B → C be left almost split, then B is an indecomposable module.

Proof. 1. Assume B is decomposable and B ∼= B1 ⊕ B2 where B1 and B2 are
both non-zero. Since the natural inclusion B1 → B and B2 → B is not
split epimorphism so they factor through f . So 1B factors through f which
implies f is a split epimorphism. Thus, f is not right almost split.
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2. It follows by duality.

Proposition 2.4. Let 0→ A
f−→ B

g−→ C → 0 be a exact sequence.

1. If g is not a split epimorphism and C is indecomposable, then f is left min-
imal.

2. If f is not a split monomorphism and A is indecomposable, then g is right
minimal.

Proof. 1. Assuming f is not left minimal, then there is a non-isomorphic en-
domorphism i : B → B such that if = f . But since C is indecompos-
able, EndΛ(C) is local. Then there are some n ∈ N such that in = 0. So
f = inf = 0 which contradicts the hypothesis. Thus g is left minimal.

2. It follows by duality.

Proposition 2.5. Let f : B → C be a minimal right almost split morphism such
that C is not projective. Then we have the following.

1. f is surjective.

2. For the exact sequence 0 → ker f
g−→ B

f−→ C → 0, we have that ker f ∼=
DTrC and g is a minimal left almost split morphism.

Proof. 1. The map f being surjective follows by that the projective cover of C,
which is not a split epimorphism, factors through f .

2. C is indecomposable by f is right almost split. By proposition 2.4, the map
g is left minimal.

We now show ker f is indecompsable. We assume ker f = A1⊕· · ·⊕An, n ∈ N
with Ai indecomposable and non-zero. Since f is non-split, g is non-split
monomorphism. Then there is an Ak ∈ {A1, . . . , An} such that j : kerf →
Ak dose not fact through g. Then we consider the following pushout diagram.

0 ker f B C 0

0 Ak PO C 0

g

j

f

i ∼=

g∗ f∗

The map g∗ being non-split follows by that j dose not fact through g. Since
Ak is indecomposable, by proposition 2.4, f ∗ is also right minimal. So PO
is isomorphic to B. Thus ker f is indecomposable.
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We now show that ker f ∼= DTrC. Since g is not a split monomorphism, we
know that ker f is not injective. Let Y be a non-injective indecomposable
module such that Y � DTrC. So TrDY exists and is not isomorphic to C.
Since TrDY is indecomposable and f is right almost split, all morphisms
TrDY → C factor through f . By corollary 2.1.2, we know that all mor-
phisms ker f → Y factor through g. Thus ker f � Y since g is non-split. So
ker f ∼= DTrC. Thus to prove that g is left almost split, we now only need
to show that each non-isomorphism h : ker f → ker f factors through g.

We know Imh is a proper submodule of ker f , so ker f → Imh factors
through g, thus h factors through g.

We call an exact sequence 0 → A
f−→ B

g−→ C → 0 almost split if f is left
almost split and g is right almost split.

Proposition 2.6. The following are equivalent for an exact sequence σ : 0 →
A

f−→ B
g−→ C → 0.

1. The sequence σ is almost split.

2. The map g is minimal right almost split.

3. The map f is minimal left almost split.

4. A is indecomposable and g is right almost split.

5. C is indecomposable and f is left almost split.

6. A ∼= DTrC and g is right almost split.

7. C ∼= TrDA and f is left almost split.

Proof. In the proof of the last proposition, we have seen the equivalence between
(1),(2),(4) and also have seen (2) implies (6).

(6)⇒ (2), since g is right almost split which implies C is indecomposable and
A ∼= DTrC, A is indecomposable. So g is minimal right almost split.

The rest follows by duality.

The following is the existence theorem of almost split sequence. In [1],
Auslander illustrates the idea in multiple perspectives. The proof is referring to
chapter 5 in [2].

Theorem 2.7. Let Λ be an artin algebra with C in mod Λ. There exists an almost
split sequence σ : 0→ DTrC

e−→ D
r−→ C → 0.
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Proof. By proposition above, it is enough to show r is right almost split then σ is
almost split.

As DTrC is not injective, we can find an non-split exact sequence 0 →
DTrC

q−→ A
w−→ B → 0.

We have seen that if all C → B factors through w, then all endomorphisms
of DTrC factor through q in corollary 2.1.1. Since q is non-split, there exists
some morphisms from C to B does not factor through w. Thus Ext1

Λ(C,DTrC)
is non-zero. Let Γ = EndΛ(C)op. Ext1

Λ(C,DTrC) is an Γ -module of finte length.
We choose the morphism j : C → B such that in the following pullback diagram,
0→ DTrC → D → C → 0 is in the socle of Ext1

Λ(C,DTrC) as a Γ-module.
We consider

0 DTrC D C 0

0 DTrC A B 0

e

∼=

r

i j

q w

Claim: 0→ DTrC
e−→ D

r−→ C → 0 is an almost split sequence.

1. We first prove r : D → C is not split. If r splits, we have that j = yi |C
which contradicts that j does not factor through w. So r is not split.

2. We want to prove for each non-split epimorphism h : E → C, h factors
through r.

We assume that h factors through r i.e. there is a morphism k : E → D
such that rk = h. Then we have the following pullback diagram.

PB E

D C

E

t

y

r

h

1C
∃!q

k

Claim: h factors through r if and only if t : PB → E splits.

There is an unique q : E → PB such that 1C = tq. Then t is a split
epimorphism. It is straightforward that when t splits, h factors through r.
Thus h factors through r if and only if t splits.

So we have a split exact seuqence 0→ DTrC
l−→ PB

t−→ E → 0. The map l
splits if and only if all endomorphisms of DTrC factor through l, which is
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equivalent to that each C
s−→ E factors through t by corollary 2.1.1. Thus it

is enough to show C
s−→ E factors through t, then h factors through r.

We consider the following pullback diagram.

PB E

D C

A B

C

t

w

i j

y

r

h

z

v

s

m

So the image of jhs in coker HomΛ(C,w) as a Γ -module is a proper sub-
module of the image of j in coker HomΛ(C,w). Since the image of j in
coker HomΛ(C,w) is a simple Γ -module by our choice, the image of jhs in
coker HomΛ(C,w) is zero. Thus there is m : C → A such that wm = jhs.
Since D is a pullback, there is an unique v : C → D such that rv = hs.
Again since PB is a pullback, there is an unique z : C → PB such that
tz = h. So s factors through t.

Thus 0→ DTrC
e−→ D

r−→ C → 0 is our desired almost split sequence.

2.3 Irreducible morphisms

Definition 2.2. Let Λ be an artin algebra. A morphism f : A → B in mod Λ is
called irreducible if f satisfies the following.

1. f is not a split monomorphism.

2. f is not a split epimorphism.

3. If there are s : A → X, t : X → B such that ts = f , then s is a split
monomorphism or t is a split epimorphism.

Proposition 2.8. Let f : A→ B be an irreducible morphism in mod Λ. Then f
is either injective or surjective.

Proof. We consider the induced map A
s−→ A/ ker f

t−→ B. Obviously, ts = f . If s
is a split monomorphism then f is injective. If t is a split monomorphism then f
is surjective.
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Example 2.2. Let P be a Principal Integral Domain. Then the irreducible mor-

phism P → P of in the form P
[p]−→ P where p is a prime element in P and [p] is

the 1× 1 matrix.

Proof. We consider the following communicate diagram such that ts = f and f is
irreducible. Let f = [k], k ∈ P .

M

P P

ts

f

If k is not prime, assuming k = ab, a, b ∈ P , let s : P
b−→ P, t : P

a−→ P , then we
have that s is not a split monomorphism and t is not a split epimorphism. But
then ts = f which contradicts the fact that f is irreducible.

Let k be prime. Assuming t is surjective, since P is free, t is split epimorphism.
Assuming t is not surjective, we have that kP = Im f where kP is a maximal ideal
of P . Then we have P → M → kP → 0. Since f is injective, s is injective. So
t(Im s) = kP , then M ∼= P ⊕ ker t. Thus s is a split monomorphism.

Proposition 2.9. Let Λ be an artin algebra and let B be an indecomposable module
in mod Λ. The following are equivalent.

1. The morphism f : A→ B in mod Λ is irreducible.

2. There exists a morphism f ′ : A′ → B such that (f, f ′) : A ⊕ A′ → B,A′ ∈
mod Λ is a minimal right almost split morphism.

Proof. 1. (1) ⇒ (2). In theorem 2.7 and example 2.1, we have proved the
existence of a minimal right almost split morphism for an indecomposable
module. Then let g : E → B be right minimal almost split. Since f is not a
split epimorphism, so f factors through g denoted as f = gh. Since g is not
a split epimorphism, h is a split monomorphism. Then E = A ⊕ A′ where
A′ is cokerh. Thus (f, f ′) = (f, g |A′).

2. (2) ⇒ (1). f is not a split monomorphism by (f, f ′) is right minimal. f
is not a split epimorphism by (f, f ′) is not a split epimorphism. For each
g : A→M, t : M → B such that tg = f , it is enough to show that when t is
not a split epimorphism, g is a split monomorphism, then f is irreducible.
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Supose t is not a split epimorphsim, there is k : M → A such that fk = t.
We consider the following diagram.

A⊕ A′ M ⊕ A′ A⊕ A′

B

(
g 0
0 1

) (
k 0
0 1

)
(t, f ′)

(f, f ′)
(f, f ′)

So (fkg, f ′) ∼= (tg, f ′) ∼= (f, f ′). Since (f, f ′) is right minimal, (kg, 1) is an
isomorphism, thus g is a split monomorphism.
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3 Nakayama Algebras

In this chapter, we introduce the Nakayama Algebras, referring to chapter 4 in [2].
We look at the general form of an almost split sequence of a Nakayama algebra
which gives further understanding of what we studied in the last chapter. Later
this is useful for studying the representation finite graded trees. We show that
every indecomposable module of a Nakayama algebra is uniserial. We prove that
the length of a non-projective module is an invariant of DTr. We introduce the
Kupisch series of a Nakayama algebra and how to construct a Nakayama algebra
from a given admissible sequence.

Definition 3.1. Uniserials. Let M be a module of an algebra Λ. M is uniserial if
it’s submodules are totally ordered by inclusion.

Proposition 3.1. Let M be a non-zero a finite length module of an algebra Λ.
Then The following are equivalent.

1. M is uniserial

2. M only has one composition series

3. The radical filtration, M ⊇ rM ⊇ r2M ⊇ · · · ⊇ rnM , is a composition
series of M

Proof. Obviously, the submodules of a uniserial module are uniserial.

• (1) ⇒ (2) Assume M is uniserial. Let M ⊇ F1 ⊇ · · · ⊇ Fn and M ⊇ G1 ⊇
· · · ⊇ Gn be two different composition series of M. Then F1 and G1 are
both maximal submodules. We assume F1 6= G1. But we have G1 ⊆ F1,
or F1 ⊆ G1 by (1) which contradicts the fact that F1, G1 both are maximal
submodules. Thus F1 = G1.

• (2) ⇒ (3) From (2), we know there is only one maximal submodule of M
which is equivalent to the radical, so the radical filtration is the composition
series.

• (3)⇒ (2) The radical rM is a maximal submodule of M and if rM 6= 0, it’s
submodule also only has one maximal submodule. So The radical filtration
is a composition series.

Observation 3.2. Let M be an uniserial module of an algebra Λ and l(M) = n.

• Any submodule is of the form of riM, i ∈ {0, 1, . . . , n}.
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• Let f : P → M be a projective cover. If P is uniserial, there exist j ∈
{0, . . . , l(P )} such that kerf ∼= rjP .

Definition 3.2. Nakayama Algebra. Let Λ be an artin algebra. Then Λ is called
Nakayama algebra, if all the indecomposable projective modules and all the injective
modules are uniserial.

By duality, an artin algebra Λ is a Nakayama algebra if and only if all the
indecomposable projective modules of Λ and Λop are uniserial.

Example 3.1. Let K[x] be a polynomial ring over a field K. Then K[x]/(xn) is a
Nakayama algebra when n ≥ 1. It’s composition series is K[x]/(xn) ⊇ (x)/(xn) ⊇
(x2)/(xn) ⊇ · · · ⊇ (xn−1)/(xn) ⊇ 0. The only simple submodule up to isomorphism
is K[x]/(x) and the composition series is also the radical filtration. So K[x]/(xn)
is a uniserial projective module.

Proposition 3.3. Let M be an indecomposable module of a Nakayama algebra Λ.
The follwoing are equivalent.

1. M is uniserial.

2. M/rM is simple

3. If f : P →M is a projective cover, then P is uniserial.

Proof. (1) ⇒ (2). M is uniserial implies rM is maximal submodule, so M/rM
is simple. (2) ⇒ (3). Since P/rP ∼= M/rM , M/rM is simple implies P is
indecomposable then uniserial. (3)⇒ (1) rnM ∼= rnIm(f). The radical filtration
is a composition series of M. Thus M is uniserial.

Proposition 3.4. Let M, N be uniserial modules of the Nakayma algebra Λ. Then
N ∼= M if and only if l(N) = l(M), N/rN ∼= M/rM .

Proof. From left side to right side is obvious. Suppose P → N is a projective
cover, then P → N/rN is also projective cover. We do the same thing to M, so by
the uniqueness of projective cover, we have and P → N and P →M are projective
cover. Then, by observation 3.2, the kernel of P → N/rN and P → M/rM are
both rnP , where N and M both have the length n. Thus, N ∼= P/rnP ∼= M .

Corollary 3.4.1. Let M, N be uniserial modules of the Nakayma algebra Λ. Then
N ∼= M if and only if l(N) = l(M) and soc(M) ∼= soc(N)

Proof. By duality, D(soc(N)) ∼= DD(D(N)/rD(N)) ∼= D(N)/rD(N). Then we
have D(M)/rD(M) ∼= D(N)/rD(N). Since the funcor D preserves the length of
modules, we have l(D(M)) = l(D(N)). By proposition 3.4, D(N) is isomorphic to
D(M). Thus, N is isomorphic to M.
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For artin algebras, in general, the transpose does not always preserve the length
of nonprojective module. But for Nakayama algebras, the transpose preserves the
length of nonprojective module and also the property of being uniserial.

Proposition 3.5. Let C be a nonprojective uniserial module of a Nakayama al-
gebra Λ where l(C) = n. Then, TrC and DTrC are both uniserial and l(TrC) =
l(DTrC) = l(C).

Proof. • Suppose P1 → P0 → C is the minimal projective presentation. P0

is indecomposable and uniseiral since P0 → C is projective cover and C
is uniserial. So P ∗1 is indecomposable and uniserial since P1 → ker(P0 →
C) is a projective cover. Since P ∗0 → P ∗1 → TrC is a minimal projective
presentation, TrC is uniserial. Thus DTrC is uniserial.

• l(C) = n describes the maximal length of the chain P1 → Qn−1 → · · · →
Q1 → P0, where Qi is indecomposable projective and the maps are noniso-
morphism. The kernel of P0 → C is rnP0 since C is uniserial. So P1 → rnP0

is a projective cover. Let Q be a projective module. As P0 is uniserial,
Im(Q → P0) is of the form of riP0. Since Q is projective, Q → riP0 is a
projective cover. We choose Qi → riP0 to be a projective cover. Then we
have the chain above. By the uniqueness of projective cover, the maximal
length of the chain is l(C).
Applying the transpose to the chain, we have the chain σ : P ∗0 → Q∗1 →
· · · → Q∗n−1 → P ∗1 → TrC. Similarly, we get l(TrC) is the same as the
maximal length of the chain σ which by duality is equal to l(C). Thus,
l(DTrC) = l(TrC) = l(C)

Corollary 3.5.1. Let C be a nonprojective uniserial module of a Nakayama alge-
bra Λ where l(C) = n. If P → C is a projective cover, then DTrC ∼= rP/rn+1P .

Proof. Let P1 → P0
f−→ C be the minimal presentation, then soc(DTrC) ∼=

P1/rP1. Since P is uniserial, soc(rP/rn+1P ) ∼= rnP/rn+1P . We also have ker(f) ∼=
rnP0, so P1 → rnP0 is projctive cover. Since both P → C and P0 → C are
projective cover, by uniqueness, rnP/rn+1P ∼= rnP0/r

n+1P0
∼= P1/rP1. Thus

soc(DTrC) ∼= soc(rP/rn+1P ). Obviously, l(rP/rn+1P ) = n = l(DTrC). By
corollary 3.4.1, DTrC is isomorphic to rP/rn+1P .

Proposition 3.6. Let P be an indecomposable projective module of a Nakayama
algebra Λ. Then P/rnP where n ≤ l(p) are uniserial.

Proof. We prove P/rnP is uniserial by induction. Since P is indecomposable,
P/rP is simple. When n ≤ 2, it is obvious that P/rnP is uniserial. Assume n ≥ 3,
P/rn−1P is uniserial whose composition series is P/rn−1 ⊇ rP/rn−1 ⊇ r2P/rn−1 ⊇
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· · · ⊇ rn−2P/rn−1P ⊇ 0. riP/ri+1P , where i ≤ n − 2, as a composition factor is
simple. The compostion series of P/rnP is that P/rn ⊇ rP/rn ⊇ r2P/rn ⊇ · · · ⊇
rn−1P/rnP ⊇ 0. To show P/rnP is uniserial, it is enough to prove rn−1P/rnP is
simple. There exist a projective module Q such that Q → r2P is the projective
cover of r2P . Since rn−2P/rn−1P is simple, Q is indecomposable and uniserial.
rQ/r2Q is simple. But rQ/r2Q → rn−1P/rnP is an epimorphism, so rn−1P/rnP
is simple.

Observation 3.7. By uniserial, when n ≤ l(p), l(P/rnP ) = n, where P is an
idecomposable projective module.

Proposition 3.8. All indecomposable modules of Nakayama algebra are uniserial.

Proof. Let Λ be a Nakayama algebra and let M be an arbitrary indecomposable
Λ-module. There are p : P � M and i : M ↪→ I where p is a projective cover
and i is a injective envelop. Let I = I1 ⊕ · · · ⊕ In, n ∈ N where Ii, i ∈ {1, . . . , n}
is non-zero indecomposable and Ii � Ij when i 6= j. Let ρi : I1 ⊕ · · · ⊕ In → Ii
be the projection. Let j be the index with maximal length of ρji(M). Let P =
P1 ⊕ · · · ⊕ Pm,m ∈ N where Pi, i ∈ {1, . . . ,m} is non-zero indecomposable and
Pi � Pj when i 6= j. Let li : Pi → P1 ⊕ · · · ⊕ Pm be the natural inclusion. Then
there is Pk, k ∈ {1, . . . ,m} such that ρjiplk : Pk → ρji(M) is a projective cover.
By corollary 3.7, ρji(M) ∼= Pk/r

(l(ρji(M))). Then Pk/r
(l(ρji(M))) is also a submodule

of M , and in fact a direct summand of M . Since M is indecomposable, M is
Pk/r

(l(ρji(M))) which is uniserial by proposation 3.6. Thus M is uniserial.

Corollary 3.8.1. Any indecomposable module of a Nakayama algebra is of the
form P/rnP where n ≤ l(p), where P is a indecomposable projective module in the
algebra.

Proof. Let M be an indecomposable module of a Nakayama algebra Λ. Then

M is uniserial by proposition 3.8. Let P
f−→ M be a projective cover, then P is

indecomposable by proposition 3.3. Thus there is n ≤ l(p) such that kerf = rnP .
So M ∼= P/rnP .

For an artin algebra Λ, we define the top of a module M to be M/rad(M). By
proposition3.4, for a Nakayama algebra, an indecomposable module is determined
up to isomorphism by the length and the top, or by the length and the socle.

3.1 Kupisch series

Definition 3.3. DTr-orbit. Let M be an indecomposable Λ-module where Λ is an
artin algebra. The DTr-orbit of M is the collection {(DTr)iM}i∈N of modules.
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If Λ is an artin algebra of finite representation type, the DTr-orbit is finite.
Let {(DTr)0M = M, . . . , (DTr)nM} be the DTr-orbit of M , then (DTr)nM is
projective or (DTr)n+1M = (DTr)0M .

Definition 3.4. Kupisch series. Let S be an indecomposable module of a Nakayama
algebra Λ. Then the Kupisch series of S is the DTr-orbit of S in the order
{(DTr)iS}i∈N where DTr0S = S.

Let oi denote the Kupisch series of Si in a Nakayma algebra Λ where Si is a
simple module in mod Λ. The correspond projective module set {Pi}i∈N where
Pi → DTriS is projective covers is called the induced kupisch series of S.

Proposition 3.9. Let Λ be an indecomposable Nakayama algebra and {Pi, . . . , Pn}
be the induced Kupisch series of S where S is a simple module in mod Λ. Then
h : Pi+1 → rPi is a projective cover and there is a morphism f : Pi+1 → Pi.

Proof. We have DTri(S) ∼= rPi/r
2Pi by corollary 3.5.1. Since Pi+1 → DTri(S) is

a projective cover, we have Pi+1
h−→ rPi is also a projective cover. Let Pi

s−→ rPi be
the natural surjection, then there is a morphism f : Pi+1 → Pi that sf = h.

Proposition 3.10. Let Λ be an indecomposable Nakayama algebra, all the simple
Λ-modules are in the same DTr-orbit.

Proof. We assume that the simple Λ-modules are in two different Kupisch se-
ries o = {S1, . . . , Sn} and o′ = {S ′1, . . . , S ′n}. Let õ = {P1, . . . , Pn} and õ′ =
{P ′1, . . . , P ′n} be the correspond induced Kupisch series. Suppose HomΛ(Pi, P

′
j) 6= 0

where Pi is in õ and P ′j is in õ′. For ∀f ∈ HomΛ(Pi, P
′
j), ∃k ∈ {0, . . . , l(P ′j)}

that Imf = rkP ′j since P ′j is uniserial. So Pi → rkP ′j is a projective cover thus

Pi → rkP ′j/r
(k+1)P ′j is a projective cover. But rkP ′j/r

(k+1)P ′j is in o′ by P ′j/rP
′
j is

in o′ and corollary 3.5.1, so Pi is in õ′. Thus if o and o′ are different DTr-orbits,
HomΛ(P, P ′) = 0 and HomΛ(P ′, P ) = 0 for ∀P ∈ õ and ∀P ′ ∈ õ′. But that
means {P1, . . . , Pn} and {P ′1, . . . , P ′n} are in different block partitions. Then Λ is
decomposable by propostion 1.19 which contradicts the assumption. Thus all the
simple Λ-modules are in the same DTr-orbit.

An indecomposable projective module P is determined up to isomorphism by
the simple module P/rP . Thus for an indecomposable Nakayama algebra, all
indecomposable projective modules up to isomorphism are in the same induced
Kupisch series. Let {P1, . . . , Pn} be the induced Kupisch series. We have Pi+1 →
rPi is a projective cover when i ∈ {1, . . . , n − 1}. So l(Pi+1) ≥ l(Pi) − 1 when
i ∈ {1, . . . , n− 1}. Since either Pn is simple projective or P1 → rPn is projective
cover, we have l(P1) ≥ l(Pn)− 1.
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Definition 3.5. Admissible sequence. The positive integers sequence {a0, . . . , an}
is called an admissible sequence if ai+1 ≥ ai − 1 for i ∈ {0, . . . , n − 1} and a0 ≥
an − 1.

Obviously, the sequence of the length of projective modules in the induced
Kupisch series of a Nakayama algebra Λ is a admissible sequence. We call it the
admissible sequence of Λ.

Proposition 3.11. Given any admissible sequence {a0, . . . , an} over a field k,
there is a
Nakayama algebra whose admissible sequence is {a0, . . . , an}.

Proof. If an = 1, we associate a quiver Γ to the admissible sequence as following.

1
b1−→ 2

b2−→ . . .
bn−1−−→ n.

If an 6= 1, then a0 ≥ an− 1, we associate a quiver Γ to the admissible sequence
as following.

1
b1 2

b2 . . . bn−1 n

bn

For ith vertex, there is a unique path pi started from i such that l(pi) = ai−1.
Let I be the ideal generated by {p1, . . . , pn}. Let T denote the path algebra
with relation (kΓ, I). Let Λ denote kΓ. Let ei denote the correspond primitive
idempotent of ith vertice in Λ, then the correspond indecomposable projective
module is Λei. Obviously, T is Nakayama algebra. In addition, l(Λei) = ai and
rΛei/r

2Λei = Λei+1/rΛei+1 for all i ≤ n−1. In the first quiver, we have l(Λen) = 1.
In the second quiver, we have rΛen/r

2Λen = Λe1/rΛe1. So the admssible sequence
of kΓ/I coincide with {a0, . . . , an}. Thus T is the desired Nakayama algebra.

Example 3.2. In example 3.1, the Nakayama algebra K[x]/(xn) is introduced.
Now we can look at it’s Kupisch series and also admissible sequence. We know
that it’s only simple module is the field K[x]/(x) and K[x]/(xn) → K[x]/(x) is
a projective cover. So the Kupisch series are {K} and {K[x]/(xn)} where the
correspond admissible sequence is {n}.

At corollary 3.5.1, we have looked at the form of DTrC where C is a nonpro-
jective uniserial module. Since we have also proved that all the indecomposable
module are actually uniserial and of the form P/rnP . It is interested to look at
the uniform form of DTrC in a Kupisch series.

Proposition 3.12. Pi is in the projective cover Kupisch series of an indecompos-
able Nakayama algebra. Then DTr(Pi/r

nPi) ∼= Pi+1/r
nPi+1, when n ≤ l(Pi)− 1.
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Proof. Trivially, l(Pi/r
nPi) = n. Pi/r

nPi is uniserial by proposition 3.8 and f :
Pi → Pi/r

nPi is a projective cover, so DTr(Pi/r
nPi) is isomorphic to rPi/r

n+1Pi if
n ≤ l(Pi)−1 by corollary 3.5.1. Clearly, rPi/r

n+1Pi is uniserial and l(rPi/r
n+1Pi) =

n. In addition, the top of rPi/r
n+1Pi is rPi/r

2Pi. Pi+1 → rPi is projective
cover, so top(Pi+1/r

nPi+1) = Pi+1/rPi+1
∼= rPi/r

2Pi. Since l(Pi+1/r
nPi+1) = n,

Pi+1/r
nPi+1 and rPi/r

n+1Pi have the same top and length. Thus Pi+1/r
nPi+1

is isomorphic to rPi/r
n+1Pi by proposition 3.4. Therefore, DTr(Pi/r

nPi) ∼=
Pi+1/r

nPi+1.

Since we now know the form of DTr(Pi/r
nPi), if we could find a non-split exact

sequence whose left and right side are DTr(Pi/r
nPi) and Pi/r

nPi respectively, we
can easily tell if it is almost split or not.

3.2 The general form of almost split sequences

Proposition 3.13. Let {P1, . . . , Pn} be the induced Kupisch series in an inde-
composable Nakayama algebra Λ, then

0→ Pi+1/r
nPi+1 → Pi+1/r

n−1Pi+1 ⊕ Pi/rn+1Pi → Pi/r
nPi → 0

is an almost split sequence when n ≤ l(Pi)− 1.

Proof. There are a natural surjection Pi+1/r
nPi+1 → Pi+1/r

n−1Pi+1 and a natu-
ral injection Pi/r

n+1Pi → Pi/r
nPi. Since Pi+1 → rPi is a projective cover, we

havePi+1/rPi+1 is isomorphic to rPi/r
2Pi. Consequently, there is a natural inclu-

sion Pi+1/r
n−1Pi+1 → Pi/r

nPi. Since Pi and Pi+1 are indecomposable, we have
l(Pi+1/r

n−1Pi+1⊕Pi/rn+1Pi) = l(Pi+1/r
n−1Pi+1)+ l(Pi/r

n+1Pi)) = n+1+n−1 =
2n. So the sequence is exact. By proposition 3.12, DTr(Pi/r

nPi) ∼= Pi+1/r
nPi+1,

to prove the sequence is almost split, it is enough to show f : Pi+1/r
n−1Pi+1 ⊕

Pi/r
n+1Pi → Pi/r

nPi is right almost split. Since Pi and Pi+1 are both indecom-
posable, f is a nonsplit epimorphism. In addition, each non-split epimorphism
X → Pi/r

nPi can factor through Pi/r
n+1Pi → Pi/r

nPi. Thus, f is right almost
split.
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4 Auslander-reiten quiver

In this chapter, we start by introducing the Auslander algebra and the Auslander-
Reiten quiver, referring to chapter 6 and 7 in [2]. We show that for an artin
algebra Λ of finite representation type with M as an additive generator, the algebra
EndΛ(M)op is an Auslander algebra. This helps us to associate the Auslander-
Reiten quiver to an artin algebra. This is an implementation of the almost split
sequences and the irreducible morphisms. We will study the gradings for a finite
tree based on the result in this chapter.

4.1 Auslander algebras

Definition 4.1. Finite representation type. An artin algebra Λ is of finite rep-
resentation type if there is only a finite number of finitely generated isomorphism
classes of indecomposable left Λ-modules.

To study artin algebra of finite representation type, it is helpful to look at the
Auslander algebra. In this section, we will introduce the associate Auslander alge-
bra for an artin algebra of finite representation type and discuss some important
homological facts of it. Motivated from the associated quiver of an artin algebra,
we will also associate a quiver to an Auslander algebra.

Definition 4.2. Aslender algebra. An artin algebra Γ is said to be an Auslan-
der algebra if and only if gl.dimΓ ≤ 2 and if 0 → Γ → I0 → I1 → I2 → 0 is a
minimal injective resolution of Γ, then I0, and I1 are projective Γ-modules.

Definition 4.3. Additive generator. Let M be a module of an artin algebra Λ. M
is called an additive generator of Λ if addM = mod Λ.

Observation 4.1. An artin algebra Λ is of finite representation type if and only
if there existes an additive generator of Λ.

Proof. Let M be an additive generator of Λ, then all the indecomposable modules
in mod Λ are up to isomorphism summands of M . And also we know M is finitely
generated if M exists. So the existence of M implies that Λ is of finite repre-
sentation type. And if Λ is of finite representation type, the direct sum of one
copy from each isomorphism class of the indecomposable module is an additive
generator of Λ.

In addtion, the additive generator of Λ is not unique. Let M be an additive
generator of Λ. Then any finitely generated module with M as a summand is also
an additive generator.

Let M be an additive generator of an artin algebra Λ of finite representa-
tion type. We associate the algebra ΓM = EndΛ(M)op to Λ. As we discussed
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in proposition 1.16, the functor HomΛ(M,−) introduces an equivalence between
the category addM and the full subcategory P(ΓM) of mod ΓM that consists of
projective modules of mod ΓM . Then we have that mod Λ is equivalent to P(ΓM)
since mod Λ = addM . Thus, if M ′ is also an additive generator of mod Λ, we have
that P(ΓM) is equivalent to P(ΓM ′).

We want to show that the associate algebra ΓM of Λ is actually an Auslander
algebra. To prove that, we need first to introduce some important homological
facts.

Proposition 4.2. Let Λ be an artin algebra. Then we have following.

1. Let M be a finitely generated Λ-module with pdΛM = n, then ExtnΛ(M,Λ) 6=
0

2. Assume gl.dimΛ = n where n is a finite number. Then we have the following.

(a) idΛΛ = n

(b) Let 0 → Λ → I0 → · · · → In → 0 be a minimal injective resolution of
Λ in mod Λ. Then any indecomposable injective Λ-module is isomophic
to a summand of Ii, i ∈ {0, 1, . . . , n}.

Proof. 1. Let 0 → Pn
i−→ Pn−1 → · · · → P0 → M be a minimal projec-

tive resolution of M . Since each indecomposable projective module up to
isomorphism is a summand of Λ, we have that if ExtnΛ(M,Λ) = 0, then
ExtnΛ(M,Pn) = 0. So HomΛ(Pn−1, Pn)→ HomΛ(Pn, Pn) is an epimorphism.
Then ∃g ∈ HomΛ(Pn−1, Pn) and ∃f ∈ HomΛ(Pn, Pn−1), gf = 1Pn . Thus i is
a split monomorphism which contradicts pdΛM = n. So ExtnΛ(M,Λ) 6= 0.

2. (a) Since gl.dimΛ = n, there is a Λ-module M such that pdΛM = n. Then
ExtnΛ(M,Λ) 6= 0 which implies that idΛΛ ≥ n. But idΛΛ ≤ gl.dimΛ =
n. Thus idΛΛ = n.

(b) For each indecompodable injective Λ-module, there is an injective en-
velop S → I, where S is a simple Λ-module. Suppose pdΛS = m. Then
ExtmΛ (S,Λ) 6= 0 which implies that there is m ∈ 0, 1, . . . , n such that
HomΛ(S, Im) 6= 0. So there is an indecomposable summand I ′ of Im
such that HomΛ(S, I) 6= 0. Then S → I is an injective envelop. So
I ∼= I ′.

Proposition 4.3. Let Λ be an artin algebra of finite represetation type and M be
an additive generator of Λ. Then gl.dimΓM ≤ 2.
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Proof. Let X be a ΓM -module and P1
h−→ P0 → X be part of the minimal resolution

of X. Then there is 0→ ker f → A1
f−→ A0 where ker f, A1, A0 ∈ mod Λ such that

0→ HomΛ(M,kerf)→ HomΛ(M,A1)
HomΛ(M,f)−−−−−−−→ HomΛ(M,A0)→ X

is a minimal projective resolution, where HomΛ(M, f) = h, P1
∼= HomΛ(M,A1)

and P0
∼= HomΛ(M,A0) by that HomΛ(M,−) : mod Λ→ ΓM introduces an equiv-

alence between mod Λ and P(ΓM). So we have pdΓMX ≤ 2. Thus gl.dimΓM ≤
2.

Proposition 4.4. Let Λ to be an artin algebra of finite representation type and
M be an additive generator of Λ. Then we have following.

1. Let I be an injective module in Λ, then HomΛ(M, I) is also an injective
module in ΓM .

2. Let 0 → A
f−→ I0 → I1 be a minimal injective copresentation of A where

A ∈ mod Λ. Then 0 → HomΛ(M,A)
h−→ HomΛ(M, I0) → HomΛ(M, I1) is

also a minimal injective copresentation of HomΛ(M,A) where HomΛ(M,A)
is a projective ΓM module.

3. Let N be a ΓM -module. N is both projective and injective if and only if there
exists a injective Λ-module I such that N is isomorphic to HomΛ(M, I).

4. The functor HomΛ(M,−) : mod Λ → mod ΓM introduces an equivalence
between the full subcategory I (Λ) of mod Λ that consists of the injective
modules of mod Λ and the full subcategory of mod ΓM that consists of the
modules of mod ΓM being both projective and injective.

Proof. 1. Let I ′ denote HomΛ(M, I). To prove I ′ is injective, we shall show that
for any X in ΓM -modules, Ext1

ΓM
(X, I ′) = 0. We have seen in proposition

4.3 that there is a minimal projective resolution of X, 0→ HomΛ(M,A)→
HomΛ(M,B) → HomΛ(M,C) → X such that 0 → A → B → C → 0 is
exact where A,B,C ∈ mod Λ. Applying HomΓM (−, I ′), we have

HomΓM (HomΛ(M,C), I ′)→ HomΓM (HomΛ(M,B), I ′)→
HomΓM (HomΛ(M,A), I ′)→ 0

(1)

Since addM = mod Λ and I is injective Λ-module, we have (1) is isomorphic
to the exact sequence

0→ HomΛ(C, I)→ HomΛ(B, I)→ HomΛ(A, I)→ 0

Thus (1) is exact. So Ext1
ΓM

(X, I ′) = 0.
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2. Obviously, 0 → HomΛ(M,A) → HomΛ(M, I0) → HomΛ(M, I1) is an injec-
tive copresentaion. That is minimal follows from the fact that I0/Imf → I1

is an injective envelop, so HomΛ(M, I0)/Imh → HomΛ(M, I1) is also an
injective envelop.

3. Obviously, HomΛ(M, I) is both projective and injective. Since N is a pro-
jective ΓM -module, there is a Λ-module A such that HomΛ(M,A) ∼= N .
Let A → I be an injective envelop, then HomΛ(M,A) → HomΛ(M, I) is
also an injective envelop. But HomΛ(M,A) is injective, so HomΛ(M,A) →
HomΛ(M, I) is a split monomorphism. Then A→ I splits, so A ∼= I. Thus
HomΛ(M,A) ∼= HomΛ(M, I) and then N ∼= HomΛ(M, I).

4. It directly follows from 3.

Right now we are ready to prove the associate algebra ΓM of Λ is an Auslander
algebra.

Proposition 4.5. Let M be an additive generator of an artin algebra Λ, then ΓM
is an Auslander algebra.

Proof. In proposition 4.3, we have seen that gl.dimΓM ≤ 2. So it is enough to
show if HomΛ(M,M) → I ′0 → I ′1 → I ′2 → 0 is minimal injective resolution for
HomΛ(M,M) in mod ΓM , then I ′0 and I ′1 are projective. Let M → I0 → I1 be
minimal injective copresentation of M in mod Λ. From proposition 4.4, we know
that

0→ HomΛ(M,M)→ HomΛ(M, I0)
f−→ HomΛ(M, I1)

s−→ cokerf → 0 (2)

is the minimal injective resolution. In addition, HomΛ(M, I0) and HomΛ(M, I1)
are projective. And cokerf is injective since gl.dimΓM ≤ 2. In addition, if cokerf
is projective then s splits which contradicts (2) being minimal. So cokerf is not
projective. Thus ΓM is an Auslander algebra.

Observation 4.6. Let Λ be a semisimple artin algebra and M be a additive gen-
erator of Λ. Then Λ is morita equivalent to ΓM and gl.dimΛ = gl.dimΓM = 0.

Proof. If Λ is semisimple, then all the modules are semisimple and projective. So
M is semisimple. Then ΓM is semisimple and all ΓM -modules are projective. So
we have that mod Λ ∼= P(Λ) ∼= P(ΓM) ∼= mod ΓM and gl.dimΛ = gl.dimΓM =
0.

Let ΓM → I0 → I1 → · · · → In → 0 be a minimal injective resolution.
We introduce dominant dimension to describe the maximal number n in an
minimal injective resolution such that when i < n, Ii is projective. Thus, if ΓM
is an Aslender algebra and ΓM → I0 → I1 → I2 → 0 is the minimal injective
resolution of ΓM , we have dom.dimΓM = 2.
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Proposition 4.7. Let Λ be a non-semisimple artin algebra of finite representation
type and M be an additive generator of Λ, then we have the following.

1. idΓMΓM = gl.dimΓM = 2

2. dom.dimΓM = 2.

3. Let Q be a projective injective ΓM -module such that addQ is the full sub-
category of mod ΓM that consists of the modules that are both projective and
injective. Then P(EndΓM(Q)op) ∼= P(Λ).

Proof. 1. Since Λ is non-semisimple, we know that there is a simple module
S such that S is not projective. Let P → S be a projecive cover, then

HomΛ(M,P )
f−→ HomΛ(M,S)→ cokerf → 0 is part of a minimal projective

resolution of cokerf since HomΛ(M,P ) and HomΛ(M,S) are both idecom-
posable and projective. Then pdΓM cokerf ≥ 2. From proposition above we
have that gl.dimΓM ≤ 2. Thus gl.dimΓM = 2.

2. Since ΓM is an artin algebra, we have idΓMΓM = gl.dimΓM = 2 by propo-
sition 4.2. Since Λ is not semisimple, M is not injective. Let M →
I0 → I1 be part of the minimal injective resolution of M in mod Λ. Then

HomΛ(M,M) → HomΛ(M, I0)
f−→ HomΛ(M, I1) → cokerf → 0 is the mini-

mal injective resolution of HomΛ(M,M) in mod ΓM . cokerf is injective since
idΓMΓM = 2. Since mod Λ ∼= P(ΓM), HomΛ(M, I0) and HomΛ(M, I1) are
projective. In addition, If cokerf is projective, then HomΛ(M, I1)→ cokerf
is a split epimorphism. It contradict that the injective resolution is minimal.
So we have cokerf is not projective. Thus dom.dimΓM = 2.

3. Since for each Λ-module N , HomΛ(Λ, N) ∼= N , then addD(Λ) is equivalent
to the full subcategory of injectives in mod Λ.

So HomΛ(M, add(D(Λ))) = add HomΛ(M,D(Λ)) is the full subcategory of
mod ΓM that consists of the modules that are both projective and injec-
tive by proposition 4.4. Then we have addQ = add HomΛ(M,D(Λ)). So
P(EndΓM (Q)) ∼= P(EndΓM (HomΛ(M,D(Λ)))).

But EndΓM (HomΛ(M,D(Λ))) ∼= EndΛ(D(Λ)) ∼= Λop by D(Λ) ∈ addM .
Thus P(EndΓM (Q)op) ∼= P(Λ).

We will use almost split sequence to associate a quiver to mod ΓM . But we
have seen that for a semisimple artin algebra Λ with additive generator M , the
associated algebra ΓM is also semisimple. Then all simple modules in mod ΓM are
projective. So there is no almost split sequence in mod ΓM . Thus, we will mainly
look at non-semisimple artin algebras.
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Firstly, we will study right almost split morphisms in P(ΓM) by using mod Λ ∼=
P(ΓM).

Proposition 4.8. Let Λ be a artin algebra. Then for f : P → Q where P and Q
are in P(Λ), the following are equivalent.

1. f is right almost split in P(Λ)

2. Q is indecomposable and Im f = rQ.

Proof. 1. (1 =⇒ 2) Since f is right almost split, we have Q is indecomposable
by lemma 2.3. If f is an epimorphism, then f is split since Q is projective.
Thus f is not an epimorphism. Then Imf ⊆ rQ since Q is indecomposable.
There exists a projective module P ′ such that g : P ′ → rQ is surjective.
Let i : rQ ↪→ Q be the natural inclusion, then we have ig : P ′ → Q where
Im ig = rQ. Then ig factors through f . Thus Im f ⊇ Im ig = rQ. So we
have Im f = rQ.

2. (2 =⇒ 1) Obviously, f is not a split epimorphism. Let g : M → Q be a

non-split epimorphism in P(Λ). So Im g ⊆ rQ. But we have that P
f−→ rQ

is surjective. Since M is projective, there is a morphism k : M → P such
that fk = g. Thus f is right almost split in P(Λ).

Proposition 4.9. Let Λ be a non-semisimple artin algebra with finite representa-
tion type and M be an additive generator of Λ. Then the following are equivalent
for a morphism f : P → Q in mod Λ.

1. f is right almost split

2. HomΛ(M,−) : HomΛ(M,P )→ HomΛ(M,Q) is right almost split in P(ΓM)

3. HomΛ(M,P ) is an indecomposable projective module in mod ΓM . In addi-
tion, Im HomΛ(M, f) = rHomΛ(M,Q).

Proof. The equivalence between (1) and (2) comes from the fact that the functor
HomΛ(M,−) introduces an equivalence between mod Λ and P(ΓM).

The equivalence between (2) and (3) is a simple implementation of proposition
4.8.

Proposition 4.10. Let Λ be an artin algebra and let S be an Λ -module. The
following are equivalent for S.

1. Each non-zero homomorphism f : M → S in mod Λ is a split epimorphism.

2. S is a simple projective Λ -module.



4 AUSLANDER-REITEN QUIVER 43

Proof.

(1 =⇒ 2) Since f : P → S is a spilt epimorphism for all projective Λ-modules, we
have that S is simple. Suppose S is not projective, then there is a projective cover

P ′
h−→ S such that P ′ is indecomposable which contradicts that h splits. Thus S

is simple projective Λ -module.

(2 =⇒ 1) Since S is simple, all non-zero morphisms to S are surjective. Since S
is projective, f splits.

Right now we are ready to show some homological facts of mod ΓM which is
crucial for associating a quiver to the Auslander algebra ΓM .

Proposition 4.11. Let Λ be a non-semisimple artin algebra of finite representa-
tion type and let M be an additive generator of Λ. Let S be a simple ΓM -module
and let C be the Λ -module up to isomorphism such that HomΛ(M,C) → S is a
projective cover. Then we have the following.

1. The following are equivalent.

(a) pdΓMS = 0

(b) HomΛ(M,C) = S

(c) C is a simple projective Λ -module

2. The following are equivalent.

(a) pdΓMS = 1

(b) C is a nonsimple projective Λ -module

(c) 0 → HomΛ(M, rC) → HomΛ(M,C) → S → 0 is a minimal projective
resolution of S

3. The following are equivalent.

(a) pdΓMS = 2

(b) C is not a projective Λ -module

Proof. 1. • (a =⇒ b) Since pdΓMS = 0, S is a simple projective module.
Thus HomΛ(M,C) = S.

• (b =⇒ c) For any non-zero homomorphism f : B → C in mod Λ,
HomΛ(M, f) : HomΛ(M,B) → HomΛ(M,C) is a split epimorphism
since HomΛ(M,C) is simple and projective. But then f is also a split
epimorphism. Thus C is a simple projective Λ -module by proposition
4.10.
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• (c =⇒ a) For each projective ΓM -module HomΛ(M,B), if there is a
non-zero homomorphism HomΛ(M,h) : HomΛ(M,B) → HomΛ(M,C),
since h : B → C is a split epimorphism, we have that HomΛ(M,h) is
split epimorphism. Then HomΛ(M,C) is simple projective ΓM -module
by proposition 4.10. Thus pdΓMS = 0.

2. • (a =⇒ b) we will prove it at the end.

• (b =⇒ c) From the assumption, we have that C is indecomposable.
We have seen that i : rC → C is right almost split in example 2.1. By
proposition 4.9, we have that HomΛ(M, i) : HomΛ(M, rC)→ HomΛ(M,C)
is right almost split and Im HomΛ(M, i) = rHomΛ(M,C). Conse-
quently, cokerHomΛ(M, i) = HomΛ(M,C)/rHomΛ(M,C) = S. Thus
0→ HomΛ(M, rC)→ HomΛ(M,C)→ S is a minimal projective reslo-
tion.

• (c =⇒ a) It is trivial.

3. • (a =⇒ b) We have seen above that if C is a projective Λ -module, then
pdΓMS = 1 or pdΓMS = 0. We also know that pdΓMS ≤ 2 since ΓM
is an Auslander algebra. Thus if pdΓMS = 2, C is not a projective
Λ -module.

• (b =⇒ a) Since C is not projective and is indecomposable, there exists
an almost split sequence 0 → A → B → C → 0. So B → C is
a right almost split. Then g : HomΛ(M,B) → HomΛ(M,C) is right
almost split and Im g = rHomΛ(M,C) by proposition 4.9. Thus 0 →
HomΛ(M,A) → HomΛ(M,B) → HomΛ(M,C) → S is a projective
resolution of S. If it is not minimal, then HomΛ(M,B) splits and
HomΛ(M,B) ∼= HomΛ(M,A)⊕ rHomΛ(M,C). But then B splits and
B = A⊕C which contradicts 0→ A→ B → C → 0 is almost split. So
0 → HomΛ(M,A) → HomΛ(M,B) → HomΛ(M,C) → S is a minimal
projective resolution of S. Thus pdΓMS = 2.

For (2) (a =⇒ b), we now can conclude that pdΓMS = 1 if and only is C is
a nonsimple projective Λ -module.

From the proposition above, we know that the simple modules in mod ΓM is
one to one correspond with the isomorphism classes of indecomposable modules
in mod Λ. We use [X] to denote the isomorphism class in mod Λ of X where X is
the indecomposable Λ -module such that HomΛ(M,X)→ S is a projective cover.
Let SX denote the correspond simple module of [X] in mod ΓM .

We have introduced how to construct a quiver for an artin algebra. Motivated
by that, we let the isomorphism classes of indecompoable Λ -module be the vertices
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of the quiver of ΓM . There is an arrow from vertices [X] to [Y ] if Ext1
ΓM

(SX , SY ) 6=
0. Let P → HomΛ(M,X)→ SX be the minimal projective presentation of SX in
mod ΓM . We have seen in proposition 1.10 that Ext1

ΓM
(SX , SY ) 6= 0 if and only if

HomΛ(M,Y ) is a summand of P .
By proposition 4.11, let 0→ A→ B → X → 0 be the almost split sequence of

X where 0 → HomΛ(M,A) → HomΛ(M,B) → HomΛ(M,X) → SX is a minimal
projective resolution of SX . We can easily see that HomΛ(M,Y ) is a summand of
HomΛ(M,B) if and only if Y is a summand of B where B → X is minimal right
almost split. Thus there is an arrow from vertices [X] to [Y ] if and only if there
is an irreducible morphism Y → X.

We associate a valuation (a, b) to the arrow from [X] to [Y ] such that b is the
multiplicity of HomΛ(M,Y ) in P . Since B → X is minimal right almost split, then
b is the multiplicity of Y in B. Similarly, if Y → Q is minimal left almost split, a
is the multiplicity of X in Q. In general, a is not equal to b. But for Nakayama
algebras, the valuation based on the minimal right and left split morphisms are
always (1, 1) .

We will look at some examples for indecomposable Nakayama algebras. In
proposition 3.11, we have seen that we can associate an indecomposable Nakayama
algebra to a given admissible sequence. In addition, we have investigated in propo-
sition 3.13 that for an indecomposable Nakayama algebra Λ, the almost split se-
quences are of the form

0→ Pi+1/r
nPi+1 → Pi+1/r

n−1Pi+1 ⊕ Pi/rn+1Pi → Pi/r
nPi → 0

Where {P1, . . . , Pn} is the induced Kupisch series of Λ. We use Sji denote Pi/r
jPi.

We will look at two examples with different admissible sequence as following.

Example 4.1. Given an admissible sequence {3, 4, 3}, the associated quiver Γ is

1 2 3 Let pi be the path starting from the ith vertex such that
l(pi) = v(i) where v(i) is the ith item in the admissible sequence. Let k be a field,
the associated Nakayama algebra Λ of this admissible sequence is the path algebra
kΓ modulo the ideal generated by {p1, p2, p3}. Thus the almost split sequence of Λ
is the following.

S2 → S2
1 → S1

S2
2 → S2 ⊕ P1 → S2

1

S3 → S2
2 → S2

S2
3 → S3 ⊕ S3

2 → S2
2

S1 → S2
3 → S3

S2
1 → S1 ⊕ P3 → S2

3

P3 → S2
3 ⊕ P2 → S3

2
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For [S1] → [S2
1 ], the valuation is (1, 1) and for [S3

2 ] → [P2], the valuation is also
(1, 1).

The quiver of the associated Auslander algebra of Λ is as following.

S1 S2 S3

S2
1 S2

2 S2
3

P1

S3
2 P3

P2

The dotted arrow is the translation DTr. We can see from the quiver that the
going-up arrows are irreducible epimorphisms and the going-down arrows are ir-
reducible monomorphisms. And because the admissible sequence is not end up by
1, Λ does not contain simple projective module, so the quiver is periodic. In ad-
dition, by the definition of DTr, we know that the modules in the quiver without
going-out dotted arrows are projective and without coming-in dotted arrows are
injective. Thus, we have that P3 are projective and P1, P2 are projective injective,
also S3

2 are injective.

Example 4.2. Given the admissible sequence {3, 5, 4, 3, 2, 1}, the associated quiver

Γ is 1 2 3 4 5 6 . Let k be a field. The associated Nakayama
algebra Λ is kΓ/(p1, p2, p3, p4, p5, p6). Thus we have the following almost split se-
quences.

S2 → S2
1 → S1 S2

2 → S2 ⊕ P1 → S2
1

S3 → S2
2 → S2 S2

3 → S3 ⊕ S3
2 → S2

2

S4 → S2
3 → S3 S2

4 → S4 ⊕ S3
3 → S2

3

S5 → S2
4 → S4 P4 → S2

4 ⊕ P3 → S3
3

P6 → P5 → S5 P5 → S5 ⊕ P4 → S2
4

S3
3 → S2

3 ⊕ S4
2 → S3

2 P3 → S3
3 ⊕ P2 → S4

2

For [P5]→ [P6], the valuation is (1, 1). For [S2
1 ]→ [S2], the valuation is (1, 1).

The quiver of the associated Auslander algebra is as following. The dotted arrows
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are the translation DTr.

S1 S2 S3 S4 S5 P6

S2
1 S2

2 S2
3 S2

4 P5

P1

S3
2 S3

3 P4

S4
2 P3

P2

We can see from the quiver that P3, P4, P5, P6 are projective and P1, P2 are projec-
tive injective, also S1, S

2
1 , S

3
2 , S

4
2 are injective. The going-up arrows are irreducible

epimorphisms and the going-down arrows are irreducible monomorphisms. The
quiver is not periodic because S6 = P6 is a simple projective Λ-module.

4.2 Auslander-Reiten-quivers

Motivated by the last section, for any artin algebra Λ, we associate to Λ a valued
quiver ΓΛ such that the vertices of ΓΛ are in one to one correspond with the
isomorphism classes of indecomposable modules in mod Λ. We use [X] to denote
the isomorphism class of X in mod Λ. There is an arrow between vertices [X]
and [Y ] if and only there is an irreducible morphism from X to Y . The arrow
between [X] and [Y ] has valuation (a, b) if Xa ⊕ M → Y , where X is not a
summand of M , is minimal right almost split and if X → Y b⊕N , where Y is not a
summand of N , is minimal left almost split. The vertices correspond to projective
isomorphism classses are called projective vertices. The vertices correspond to
injective isomorphism classes are called injective vertices. Moreover, we define
the translation of ΓΛ to be the correspondence DTr which induces a map from
the nonprojective vertices to the noninjective vertices.

Definition 4.4. Auslander-Reiten-quiver (AR-quiver). For any artin algebra Λ,
the AR-quiver of Λ is the associated quiver ΓΛ together with the translation τ .

Example 4.3. Let k be a field and let Γ be quiver 1 → 2 ← 3. For path algebra
kΓ, we have the following.

1. Projective modules:

P1 : k → k ← 0 P2 : 0→ k ← 0 P3 : 0→ k ← k
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2. Injective modules:

I1 : k → 0← 0 I2 : k → k ← k I3 : 0→ 0← k

3. Applying HomΛ(−,Λ) to the projective module P1, P2 and P3 respectively, we
have:

P ∗1 : k ← 0→ 0 P ∗2 : k ← k → k P ∗3 : 0← 0→ k

I1, P2, I3 are simple modules.

1. P2 → P1 → I1 is a minimal projective presentation. Then we have P ∗1 →
P ∗2 → TrI1. Thus DTrI1 = P3

2. P2 → P1 ⊕ P3 → I2 is a minimal projective presentation. Then we have
P ∗1 ⊕ P ∗3 → P ∗2 → TrI2. Thus DTrI1 = P2

3. P2 → P3 → I3 is a minimal projective presentation. Then we have P ∗3 →
P ∗2 → TrI3. Thus DTrI3 = P1

So we have almost split sequence as following.

1. P3 → I2 → I1

2. P2 → P1 ⊕ P3 → I2

3. P1 → I2 → I3

Thus the AR-quiver of Λ is the following. The dotted arrow is the translation.

P3 I1

P2 I2

P1 I3

We will also give the AR-quiver for examples 4.1 and 4.2.
AR-quiver of example 4.1.

S1 S2 S3

S2
1 S2

2 S2
3

P1

S3
2 P3

P2
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AR-quiver of example 4.2.

S1 S2 S3 S4 S5 P6

S2
1 S2

2 S2
3 S2

4 P5

P1

S3
2 S3

3 P4

S4
2 P3

P2

We have observed that in the AR-quiver, the going-up arrows are irreducible
monomorphisms and the going-down arrows are irreducible epimorphisms. In ad-
dition, the vertices without dotted arrow going-out are projective and the vertices
without dotted arrow coming-in are injective.
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5 The representation finite graded trees

In this chapter, we introduce the translation quiver, grading tree and simply con-
nected algebra. We mainly discuss the representation finite gradings for a finite
tree. In [3], Bongartz and Gabriel showed that there is a bijection between the iso-
morphism classes of representation finite graded trees and the isomorphism classes
of simply connected algebras. We summarize the result here. We introduce the
tree D̈n. We calculate and list all the representation finite gradings for D̈5 and
D6.

5.1 Translation quivers

Let Γ be a quiver. We call Γ locally finite if for each vertex x in Γ0 has only a finite
number of arrows which are ending in x and starting from x. We use x− denote the
set {y ∈ Γ0 | ∃ (y → x) ∈ Γ1} and x+ denote the set {y ∈ Γ0 | ∃ (x→ y) ∈ Γ1}.

Definition 5.1. Translation quiver. Let Γ be a quiver and let τ : Γ0 → Γ0 be
partially defined. (Γ, τ) is called a translation quiver if it satisfies the following
conditions.

1. Γ has no loop

2. If two vertices in Γ are connected, there is only one arrow between these two
vertices

3. If τ(x) is defined where x ∈ Γ0, then x− = (τ(x))+.

Let (Γ, τ) be a translation quiver. A vertex is called projective if τ is not
defined on it. A vertex is called injective if τ−1 is not defined on it.

Since x− = (τ(x))+, for a non-projective vertex x, the mesh of x is the full
sub-quiver of Γ formed by x, τ(x) and x−. We denote the mesh of x as mx. If

there is a arrow y
α−→ x in mx, there is a unique arrow τ(x)

β−→ y such that αβ is a
arrow from τ(x) to x. We define map σ : Γ1 → Γ1 such that σ(α) = β.

Example 5.1. Let the map DTr be the translation denoted as τ and let Λ be any
artin algebra. Then the AR-quiver of Λ together with τ is a translation quiver. τ
is not defined on projective vertices and τ−1 is not defined on injective vertices.

In the rest of this thesis, we use dotted arrow to illustrate the translation.
We call a translation quiver stable if τ and it’s inverse is defined everywhere.
Let (Γ, τ) be a translation quiver. We define Γ̃ as the extended quiver of Γ

such that

1. Γ̃0 = Γ0.
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2. There is two different type of arrows in Γ̃.

(a) The first type of arrows are the arrows and the inverse arrows in Γ1.
Let α be a arrow in Γ1, we use α−1 to denote the inverse arrow.

(b) The second type of arrows are the translations and the inverse transla-
tions in Γ. Let τx denote x→ τ(x) where τ is the translation in Γ. We
denote the inverse of τx as τ−1

x .

We illustrate the extension quiver in the following example. We use dotted
arrows to represent the second type of arrows.

Example 5.2. The quiver Γ on the left side is a translation quiver. The extension
quiver Γ̃ is the one on the right side.

y

τ(x) x

βα

τ

y

τ(x) x

β

α−1

τ

α

τ−1

β−1

Let x, y be vertices in Γ, we define a walk from x to y denoted as w = (x |
anan−1 . . . a1 | y) of Γ is a path of Γ̃ such that anan−1 . . . a1 is a composition of
arrows in Γ̃ where s(anan−1 . . . a1) = x and e(anan−1 . . . a1) = y. The composition
of two walks is still a walk. Let v be a walk form y to z and k be a walk from x
to y, then the composition vk is a walk form x to z.

We define the homotopy for walks by giving a equivalent relation as following.

1. (x | aa−1 | x) ∼ (x | b−1b | x) ∼= (x | | x) where (x | | x) is the trivial path
of x in Γ̃1 and a, b is in Γ̃1.

2. (x | (σ(α))−1α−1 | τ(x)) ∼ (x | τx | τ(x)) where x is non-projective.

3. (τ(x) | ασ(α) | x) ∼ (τ(x) | τ−1
x | x) where x is non-projective

4. Let v, w, w′, v′ be walks and the index be the starting and end points of the
walk. If wx,y ∼ w′x,y, then vy,zwx,y ∼ vy,zw

′
x,y and wx,yv

′
z,x ∼ w′x,yv

′
z,x

Let Π(Γ, x) be the homotopy classes defined above of walks from x to x where
x is a vertex in Γ0. It is obviously that Π(Γ, x) forms a group. We call Π(Γ, x)
the fundamental group of Γ in x .

Example 5.3. Let Γ be the following translation quiver.

y τ(x) x

m

n

τx

σ
(α

)
σ
(β

)

α

β
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We have all the walks from x to x is equivalent to (x | | x) thus the fundamen-
tal group of Γ in x is trivial. Similarly, the fundamental group of Γ in y and
τ(x) are also trivial. For vertex m, we have that (m | σ(α)τxα | m) ∼ (m |
σ(α)(σ(α))−1α−1α | m) ∼ (m | | m), so the fundamental group of Γ in m is also
trivial.

Observation 5.1. Let Γ be a connected translation quiver. It is straightforward
that the fundamental group Π(Γ, x) dose not depend on the choice of x.

Thus if Γ is a connected quiver, we define the fundamental group of Γ denoted
as Π(Γ) to be Π(Γ, x) for any x ∈ Γ0.

Definition 5.2. Simply connected translation quiver. A connected transla-
tion quiver Γ is simply connected if it’s fundamental group is trivial.

That definition is equivalent to that a translation quiver Γ is called simply
connected if there exist x in Γ0 such that Π(Γ, x) is trivial.

Observation 5.2. Let Γ be a simply connected translation quiver, then there is
only one homotopy class of the walk from x to y where x, y ∈ Γ0.

We now consider the map between two translation quiver.

Definition 5.3. Translation quiver morphism. A morphism f : (Γ, τ) → (Γ′, τ ′)
is called a translation quiver morphism if the following conditions are satisfied.

1. f |Γ0
: Γ0 → Γ′0 and f |Γ1

: Γ1 → Γ′1.

2. Let α : x → y be a arrow in (Γ, τ), then f(α) is a arrow f(x) → f(y) in
(Γ′, τ ′).

3. f(τ(x)) = τ ′(f(x)) for all non-projective vertices x ∈ Γ0.

Further, we consider the onto translation quiver morphism.

Definition 5.4. Covering. A translation quiver morphism f : (Γ, τ)→ (Γ′, τ ′) is
called a covering if the following conditions are satisfied.

1. f is onto.

2. If x ∈ Γ0 is projective, then f(x) is projective in Γ′0.

3. If x ∈ Γ0 is injective, then f(x) is injective in Γ′0.

4. For each x ∈ Γ0, f introduces a bijection from x− to f(x)− and from x+ to
f(x)+ respectively.
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Example 5.4. The following translation quiver morphism f : (Γ, τ)→ (Γ′, τ ′) is
a covering. Dotted arrow represents translation.

·

··

·

· ·

· ·

We now consider the quiver whose objects is the homotopy class of walks of Γ
denoted by [w] where w is a walk in Γ.

Definition 5.5. Universal cover. Let (Γ, τ) be a translation quiver. The universal
cover (Γ̂, τ̂) of Γ at the point x ∈ Γ is a translation quiver defined in the following
way.

1. The vertices are the homotopy class of walks of Γ which is starting from x.

2. There is an arrow between [w] and [u] if there is an arrow in Γ1 from the
endpoint of [w] to the endpoint of [u].

3. Let y be the endpoint of [w], if y is a non-projective vertex in Γ0, then τ̂([w])
is the homotopy class of the composition [(y | τy | τ(y))w].

We now introduce a natural projection π : (Γ̂, τ̂)→ (Γ, τ). We use ẇ to denote
the endpoint of [w] ∈ Γ̂0. π maps [w] ∈ Γ̂0 to ẇ which is in Γ0. Let α be an arrow
between [w] and [v], then π maps α to the arrow in Γ from ẇ to v̇. Obviously, the
natural projection π is a covering.

Proposition 5.3. Let Γ be a simply connected translation quiver, then each con-
nected covering f : δ → Γ is an isomorphism.

Proof. f is onto by the hypothesis. Since f is a connected covering, we know for
each x ∈ δ0, f introduce an isomorphism from x− to f(x)− and from x+ to f(x)+

respectively. Let m be any vertex in Γ0, if the number of f−1(m) is more then
one, then it contradicts the fact we stated above. So the number of f−1(m) is one,
then f is injective. Thus, f is an isomorphism.

Corollary 5.3.1. Let Γ be a simply connected translation quiver. The universal
cover Γ̂ is equivalent to Γ.

Proof. We have defined the natural projection π : Γ̂ → Γ which is a connected
covering. By the proposition above, we know π is an isomorphism. Thus Γ̂ is
equivalent to Γ.
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Proposition 5.4. Let Γ be a simply connected translation quiver and x0 ∈ Γ0.
There is one and only one translation quiver morphism f : Γ → ZA2 such the
f(x0) = 0.

0

1

2

-1

-2

-3

ZA2

Proof. We define the length l of the homotopy class of a walk in Γ as the following
way.

1. l(x | | x) = 0.

2. Let α be an arrow x→ y in Γ, then l(x | α | y) = 1 and (y | α−1 | x) = −1.

3. Let τx be the translation from x to τ(x), then l(x | τx | τ(x)) = −2 and
l(τ(x) | (τx)−1 | x) = 2.

4. l(xn | an . . . a1 | x0) = l(x0 | a1 | x1) + · · ·+ l(xn−1 | an | xn).

From observation 5.2, we know that all walks from x to y are in the same homotopy
class where x, y ∈ Γ0. Let f(x) = l(x0 | · · · | x), then we have that f(x0) = l(x0 |
| x0) = 0. Thus we get our desired map.

Corollary 5.4.1. If Γ is a finite simply connected translation quiver, there is one
and only one translation quiver morphism f : Γ→ ZA2 such that min∀x∈Γ0 f(x) =
0.

Proof. Pick arbitrary x0 ∈ Γ0 as the fixed point. Let h : Γ → ZA2 be the map
introduced in proposition 5.4 such that h(x0) = 0. Since Γ is finite, there is a ∈ Γ0

such that h(a) ≤ h(x) for all x ∈ Γ0. We define f as in proposition 5.4 and by
letting f(a) = 0. Thus we get our desired map.

5.2 Grading Trees

Definition 5.6. Tree. Let T0 denote the set of vertices and let T1 denote the set of
path between vertices. A tree T = (T0, T1) is a non-oriented graph which satisfies
the following.

1. There is no circle path

2. If two vertices are connected, there is exactly one simple path
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We call a tree finite if the number of vertices is finite. Two vertices are
neighbours in a tree if they are connected by an edge. To study the simply
connected algebras, K.Bongartz and P.Gabriel introduced graded trees in [3]. A
grading of a tree T is a function g : T0 → N which satisfies the following.

1. If x and y are neighbours in T , then g(x)− g(y) is odd.

2. ∃x ∈ T0, g(x) = 0.

Definition 5.7. Graded Tree. A graded tree (T, g) is a tree T together with a
grading g.

We will define a representation-finite graded tree by giving the associated trans-
lation quiver and a dimension map to this quiver.

Definition 5.8. Associated translation quiver of a tree. Let QT be the associated
translation quiver of a tree T . We define QT in the following way.

1. The vertices in QT are the collection of (n, t) where t is a vertex in T and
n− g(t) ∈ 2N.

2. There is a arrow from (m, s) to (n, t) if n − 1 = m and s, t are neighbours
in T .

3. Projective vertices are (g(t), t).

4. Let τ denote the translation, then τ(n, t) = (n−2, t) if (n, t) is non-projective.

Example 5.5. For the graded tree T =

6 8
3
0 , we have the associated trans-

lation quiver QT as following.

(0, s) (2, s) (4, s) (6, s) (8, s) (10, s) . . .

(3, t) (5, t) (7, t) (9, t) (11, t) . . .

(6,m) (8,m) (10,m) . . .

(8, n) (10, n) . . .

where dotted arrow is translation τ . (0, s), (3, t), (6,m), (8, n) are projective.

The dimension map d : QT → N(QT )0 is defined as following.
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1. For a projective vertice (g(t), t), d(g(t), t) = δ(t) +
∑

s d(g(t)− 1, s) where s
is the neighbour of t such that g(s) < g(t). δ(t) is the vector having value 1
at t-th position and having zero at the rest place.

2. For a non-projective vertices (n, t), d(n, t) =
∑

s d(n − 1, s) − d(n − 2, t) if
d(n− 2, t) > 0 and

∑
s d(n− 1, s)− d(n− 2, t) > 0 where s is the neighbour

of t such that g(s) < n.

3. For any other vetices, we have d((n, t)) = 0.

Let RT denote the full sub-quiver of QT such that if the vertex (n, t) is in RT ,
then d(n, t) 6= 0. We call the graded tree (T, g) admissible if RT is a connected
sub-quiver of QT . Then T is called admissible graded tree. The grading g is
called representation-finite if (T, g) is admissible and RT is finite. Then T is
called a representation-finite graded tree.

Observation 5.5. Apparently, T is admissible if and only if RT is a component
which contains all the projective vertices (g(t), t).

We have looked at the associated quiver for example 5.5. In the following we
will look at the correspond dimension map and whether it is a representation-finite
tree.

Example 5.6. Dimension map of T =

6 8
3
0


1
0
0
0




0
0
0
0




0
0
0
0




0
0
0
0




0
0
0
0




0
0
0
0




0
0
0
0

 . . .


0
1
0
0




0
0
0
0




0
0
0
0




0
0
0
0




0
0
0
0




0
0
0
0

 . . .


0
0
1
0




0
0
0
0




0
0
0
0




0
0
0
0

 . . .


0
0
0
1




0
0
0
0




0
0
0
0

 . . .

The sub-quiver RT is finite but not connected, so T is not admissible also not
representation-finite.
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Since we have introduced how to associate a translation quiver to a tree, we
are also interested in how to find an associated tree for a given translation quiver.

Let (Γ, τ) be a locally finite translation quiver. Let x be an arbitrary vertex in
Γ0 where τ is defined. We call the set xτ = {τn(x) : n ∈ Z} the τ-orbit of x. We
call xτ stable if τn(x) 6= 0 for all n ∈ Z. If xτ is stable and the cardinality is a
finite number, then we say xτ is periodic. We have the following straightforward
observation.

Observation 5.6. Let x and y be two connected stable vertices in Γ0, if one of
them are periodic then both of them are periodic.

We say a component is a periodic component if it is formed by connected
periodic τ -orbits.

Let x be a vertex in Γ0 where τ is defined and let y be a vertex in Γ0 such that
there is an arrow y

α−→ x. Then there is an arrow τ(x)→ y denoted as σ(α). The
σ-orbit of α denoted as ασ is the set of all arrows in Γ1 of the form σn(α) where
n ∈ Z. Two τ -orbits are connected if they are connected by a σ-orbit.

We define the associated graph GΓ of a quiver Γ as following.

1. The vertice of GΓ are the periodic components and the τ -orbits of Γ.

2. If the vertex of GΓ is the periodic components of Γ, we associate a loop to

it

3. If xτ and yτ are two connected τ -orbits by ασ and they are not in the same
periodic component, then the correspond vertices of xτ and yτ in GΓ are also
connected.

Observation 5.7. Let Λ be an algebra over an algebraically closed field k such that
it has a simply connected Auslander-Reiten quiver ΓΛ. Then the associated graph
GΓΛ

is a tree, since simply connected translation quivers do not admit periodic
τ -orbit.

Observation 5.8. Let Γ be a simply connected translation quiver. Let f : Γ →
ZA2 be the map we defined in corollary 5.4.1 such that min∀x∈Γ0 f(x) = 0. We
use this result to define the grading of GΓ.

We use (GΓ, gΓ) to denote the graded associated graph of quiver Γ. By the
construction of GΓ, each vertex y in GΓ is correspond with an τ -orbit in Γ denoted
as yτ . There is only one the projective vertex P in yτ . We define g by letting
gΓ(y) = f(P ). Since g(y) − f(x) is odd when y and x are neighbours in GΓ and
g−1

Γ (0) is not empty, gΓ is a grading function.
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5.3 Simply connected algebras

Let k be an algebraically closed field and Λ be a finite-dimensional basic k −
algebra. Let Γ be the quiver such that kΓ/I is isomorphisc to Λ where I is
admissible. We call Λ connected if Γ is connected, i.e. Λ is indecomposable as an
algebra.

Definition 5.9. Simply connected algebras. An algebra Λ over an alge-
braically closed field k is simply connected if Λ is representation-finite, connected,
basic, finite-dimensional and having simply connected Auslander-Reiten quiver ΓΛ.

We use GΛ to denote the associated graph of the Auslander-Reiten quiver ΓΛ.
From observation 5.7, we know that ΓΛ is a finite tree. It is natural to ask the
relation between finite trees and simple connected algebras. Bongartz and Gabriel
showed the following statements in [3].

1. The number of isomorphism classes of simply connected algebras Λ such that
GΛ is isomorphic to a finite tree is finite.

2. Each finite tree admits only a finite number of representation-finite gradings.

This is proved by induction on the size of the tree.
We will use mesh category to transfer the studying of indecomposable mod-

ules to the study of homomorphism space.

Definition 5.10. Mesh category. Let Γ be a translation quiver. A mesh on
x ∈ Γ0 is the full subquiver of Γ whose vertices are the same as Γ0. The mesh
relation mx of Γ on x where x ∈ Γ0 is defined by mx = Σ{α∈Γ1|e(α)=x}ασ(α). The
mesh ideal is the ideal I generated by {mx} where x rangs over all vertices in Γ0.
The mesh category of Γ is the residue category kΓ/I denoted as k(Γ).

Example 5.7. For ZA2, the meshes are of the form ·
· ·

or

·
· · The

objects of the mesh category k(ZA2) are the vertices in (ZA2)0 and the morphisms
are the arrows in (ZA2)1.

0

1

2

-1

-2

-3

ZA2

We use ind Λ to denote the full sub-category of Λ whose objects are a chosen
set of representative of the indecomposable modules.
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Proposition 5.9. For a simply connected algebra Λ, k(ΓΛ) is isomorphic to ind Λ
and Λ is isomorphic to ⊕

p,q
k(ΓΛ)(p, q) where p, q ranges over all the projective in-

decomposable modules of Λ.

Proof. By the construction of ΓΛ, we know the objects in k(ΓΛ) are indecompos-
able modules in Λ. Since Λ is representation finite, the dimension of the homo-
morphism space between two indecomposable modules of Λ is less than two. Thus,
ind Λ ∼= k(ΓΛ). Λ ∼= ⊕

p,q
k(ΓΛ)(p, q) is coming from Λ ∼= ⊕

p,q∈ind Λ
HomΛ(p, q) .

Let (T, g) be an admissible graded tree and let RT be the full sub-quiver of
the associated translation quiver of (T, g) such that d(n, t) 6= 0 where d is the
dimension map of (T, g). We use AT to denote the algebra ⊕

p,q
k(RT )(p, q), where

q, p ranges over all projective vertices of RT .
We associate ⊕

p
k(RT )(p, x) to x ∈ (RT )0. It is obvious that ⊕

p
k(RT )(p, x)

becomes a left module of AT
op. There are morphisms from ⊕

p
k(RT )(p, x) to

⊕
p
k(RT )(p, y) in modAT if there are some paths from x to y in RT . It yields

a functor M : k(RT )→ modAT
op.

Proposition 5.10. Let p be projective in k(RT ). For M : k(RT ) → modAT
op,

we have the following.

1. dimk(EndAT (M(p))) = 1. Equivalently, EndAT (M(p)) = k.

2. ⊕
α
M(x) is isomorphic to the radical of M(p) where x → P ranges over all

the arrows stoping at p.

Proof. 1. Since there is no cycle in k(RT )1, the only path from p to p in k(RT )
is the identity. Then the identity map is a generator of EndAT (M(p)). Thus
dimk(EndAT (M(p))) = 1. Consequently, EndAT (M(p)) = k.

2. Since M(p) is isomorphic to HomAT (AT ,M(p)), radAT (M(p)) is isomorphic
to radAT (HomAT (AT ,M(p))) where AT ∼= ⊕

q
M(q) that q ranges over all the

indecomposable projective modules in k(RT ).

Then ⊕
q

HomAT (q, p) where q ranges over all the projective vertice except p

in RT is the radical of HomAT (AT ,M(p)) since there is no cycle in RT .

If there is a path from the projective vertex q to p, the path must pass
through a vertex x such that there is a arrow from x to p. Since each vertex
in (RT )0 only belongs to one τ -orbits and each τ -orbits of RT only contains
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one projective vertex, we have that ⊕
α
M(x) is isomorphic to ⊕

q
HomAT (q, p).

Thus ⊕
α
M(x) is isomorphic to the radical of M(p)

Corollary 5.10.1. Let p be projective vertex in k(RT ), then M(p) is indecompos-
able projecitve module in modAT

op.

Proof. We know that M(p) is indecomposable in RT if and only if EndAT (M(p))
only admits 0 and 1 as idempotents. Thus M(p) is indecomposable in modAT

op.
Since AT

op = ⊕
q
M(q) where q ranges over all projective vertices in RT , M(p) is

projective.

Proposition 5.11. Let (n, t) be a non-projective vertex in k(RT ), then M(n −
2, t)

M(f̃)−−−→ ⊕
s
M(n− 1, s)

M(g̃)−−−→M(n, t) where s ranges over all the neighbours of t

is an Auslander Reiten sequence.

Proof. In mesh category, the mesh relation is isomorphisc to zero, so M(g̃) ◦
M(f̃) = M(g̃f̃) = 0. The kernel of M(f̃) is zero in M(n − 2, t) since there is an
arrow from (n− 2, t) to (n− 1, s) in k(RT ). Then M(f̃) is injective.

By that for each path from a projective vertex p to (n, t) in k(RT ), the path
must pass through one of the (n − 1, s), we know M(g̃) is minimal almost right

split which implies M(g̃) is surjective. Thus M(n− 2, t)
M(f̃)−−−→ ⊕

s
M(n− 1, s)

M(g̃)−−−→
M(n, t) is an almost split sequence then an Auslander Reiten sequence.

Corollary 5.11.1. Let (n, t) be a non-projective vertex in (k(RT )), then M(n, t)
is indecomposable in modAT

op.

Proof. From proposition 5.11, we know ⊕
s
M(n − 1, s)

M(g̃)−−−→ M(n, t) is minimal

right almost split which implies M(n, t) is indecomposable.

Summarizing corollary 5.10.1 and 5.11.1, we proved the following proposition.

Proposition 5.12. 1. For each vertex (n, t) in (k(RT ))0, M(n, t) is indecom-
posable in modAT

op.

2. Let indAT
op be the full sub-category of modAT

op which consists of the in-
decomposable modules. M : k(RT ) → modAT

op introduces an equivalence
between k(RT ) and a full sub-category of indAT

op. It also introduces an
translation quiver isomorphism between RT and a component of ΓAT op.

For a finite graded tree (T, g), the second part of the proposition describes
there is an Auslander reiten quiver such that it is isomorphic to RT .
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Proposition 5.13. Let (T, g) be a representation-finite graded tree, then (T, g) is
isomorpic to the associated graded graph (GAT , gAT ) of AT defined in observation
5.8.

Proof. Since M(p) where p ranges over all projective vertexs in k(RT ) completes
the set of indecomposable projective modules in AT , we have that (GAT )0

∼= T0.
If two vertices are connected in T , then the correspond vertice are connected in
GAT by proposition 5.12.

Let ΓAT be the Auslander reiten quiver of AT . In observation 5.8, we il-
lustrated how to define gAT through a specific map f : ΓAT → ZA2 such that
min∀x∈(ΓAT )0 f(x) = 0. Clearly x is a projective vertex in ΓAT . Then for each
projective vertex pi in ΓAT , f((x | an . . . a0 | pi)) is equal to the grading of the
correspond vertex of pi in T . Thus (T, g) ∼= (GAT , gAT )

Proposition 5.14. There is a bijection between the isomorphism classes of rep-
resentation finite graded trees and the isomorphism classes of simply connected
algebras.

Proof. Let Λ be a simply connected algebras, then ⊕
p,q
k(ΓΛ)(p, q) where p, q ranges

over all the projective indecomposable modules of Λ by proposition 5.9. By propo-
sition 5.13, for a representation finite graded tree, we have that (T, g) ∼= (GAT , gAT )
where AT is in the form of ⊕

p,q
k(RT )(p, q). Thus there is a bijection between the

isomorphic classes of representation finite graded tree and simply connected alge-
bra.

Proposition 5.15. Each finite tree T only admits a finite number of representa-
tion finite gradings.

Proof. We will prove it by induction. Let NT denote the number of vertices of T .
When NT = 1, there is only one grading g such that g = 0. We assume when
NT ≤ m− 1, the hypothesis is satisfied.

When NT = m, for each representation finite grading g of T , there is a vertex
x ∈ T such that the sub-tree of T containing all vertices except x in T is still
representation finite.

Since there is only a finite number of trees having m− 1 vertices and they all
only admits a finite number of representation finite gradings, there is N ∈ N such
that N is the maximum of all the grades in all representation finite graded trees
which has m − 1 vertices. Then for x ∈ T0, g(x) ≤ M + 2. Thus for NT = n, T
admits only finite number of representation finite gradings.
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For each vertex x in k(RT ), M(x) is isomorphic to ⊕
p
k(RT )(M(p),M(x)) where

p ranges over all the indecomposable vertices in k(RT ). Thus dimATM(x) is equal
to ⊕

p
dimAT k(RT )(M(p),M(x)).

Definition 5.11. Dimension vector. Let Λ be an artin ring and A be a finite
length Λ -module. Let {S1, . . . , Sn}, n ∈ N be be a chosen set of representative of
the simple modules in mod Λ. The dimension vector d of A is defined as the n
dimensional vector (d1, . . . , dn) such that di = mSi(A) .

Proposition 5.16. Let Λ be an elementary artin algebra and A be a finitely gen-
erated Λ -module. Let {S1, . . . , Sn} be a chosen set of representative of the simple
modules in mod Λ. Let {P1, . . . , Pn} be the set of the indecomposable projective
modules such that Pi → Si is a projective cover. Let (d1, . . . , dn) be the dimension
vector of A. Then di = lEnd(Pi)

op HomΛ(Pi, A) = dimEnd(Pi)
op HomΛ(Pi, A).

Proof. We will prove it by induction on the length of A. When l(A) = 1, if
A ∼= S1, we have di = 1 and dimEnd(Pi)

op HomΛ(Pi, A) = 1. Otherwise, di =
dimEnd(Pi)

op HomΛ(Pi, A) = 0.
We assume that when l(A) ≤ n− 1, di = dimEnd(Pi)

op HomΛ(Pi, A).
When l(A) = n, let A ⊃ N ⊃ · · · ⊃ 0 be composition series of A. We

have the exact sequence 0 → A/N → A → N → where A/N is simple. Apply-
ing HomΛ(Pi,−), 0 → HomΛ(Pi, A/N) → HomΛ(Pi, A) → HomΛ(Pi, N) → 0 is
exact. Then we have that dimEnd(Pi)

op Hom(Pi, A) = dimEnd(Pi)
op Hom(Pi, N) +

dimEnd(Pi)
op Hom(Pi, A/N). Since l(N) and l(A/N) both less then n, we have that

dimEnd(Pi)
op HomΛ(Pi, A) = di(N) + di(A/N) = di(A).

Proposition 5.17. For each vertex (n, t) in k(RT ), the dimension vector of
M(n, t) is d(n, t).

Proof. Let d(n, t) = (d1, . . . , dn). We showed in proposition 5.16 that di =
dimAT k(RT )(M(pi),M(n, t)) where Pi is the correspond indecomposable projec-
tive vertex in k(RT ).

We will prove it by induction. We use Nt to denote the set of neighbors of t
in T .

For each (0, s) in k(RT ), di(0, s) = dimAT k(RT )(M(pi),M(n, t)) = 1 ifM(pi) =
M(n, t). Otherwise, di(0, s) = 0. Thus for n = 0, the hypothesis is satisfied.

We assume when n ≤ m− 1, the hypothesis is satisfied.
When n = m, there is a morphism from M(Pi) to M(m, t) if there are some

paths from Pi to (m− 1, s) where s is an arbitrary neighbor of t.
When (m, t) is projective, EndAT (M(m, t)) is generated by the identity map.

Then dimAT k(RT )(M(pi),M(m, t)) = 1, if pi = (m, t). Otherwise, we have that
dimAT k(RT )(M(pi),M(m, t)) = Σ

s
dimAT k(RT )(M(pi),M(m−1, s)) where s ∈ Nt.

Thus dimAT k(RT )(M(pi),M(m, t)) = di(m, t).
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We use I to denote the cardinality of the set that consists of the independent
relations from Pi to (m, t) which contains the mesh relation on (m, t).

For non-projective vertex (m, t), I = dimAT k(RT )(M(pi),M(m− 2, t)). Then
dimAT k(RT )(M(pi),M(m− 2, t)) = di(m− 2, t) since m− 2 < m.

Since dimAT k(RT )(M(pi),M(m, t)) = ( Σ
s∈Nt

dimAT k(RT )(M(pi),M(m−1, s)))−
I, we have that Σ

s∈Nt
dimAT k(RT )(M(Pi),M(m − 1, s)) = Σ

s∈Nt
di(M(m − 1, s)).

Thus, dimAT k(RT )(M(pi),M(m, t)) = Σ
s∈Nt

di(M(m−1, s))−di(m−2, t) = di(n, t).

5.4 Representation finite gradings of D̈5 and D6

We define D̈n be the tree with n+ 1 vertices and of the form

1 2 3 4 . . . n-1

n

n+1

5.4.1 Representation finite gradings of D̈5

In the following, we will calculate all the representation finite gradings for the tree

D̈5

· · · ·
·

· . For each represenation finite gradings g, there is a vertex t in the
tree such that the sub-tree T of D̈5 by removing t is still a tree and the correspond
grading for T is generated by g|T − min

x∈To
g(x) where g|T is g confined in T is still

representation finite. The connected sub-tree with 5 vertices of D̈5 are of the form

D5
· · · ·
·

or C5

· · ·
·

· . Thus we can find the representation finite gradings
for D̈5 by extending the representation finite gradings of D5 and C5. For example
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for 3 0 1 0

3

, we have the none-zero dimension quiver

10000

01000

11100

01100

10100

01110

01101

00100

01211

00110

00101

01111

00111

00001

00010

Then we have extensions

3 0 1 0

3

1 ,

3 0 1 0

3

3 ,

3 0 1 0

3

5 ,

3 0 1 0

3

7 .
Specially,let t be the vertex in D̈5 which only have one neighbour and let the

grade of t be the only zero in D̈5. Let gt be the grading of D5 or C5 such that
the correspond vertex which will be the neighbour of t in D̈5 has grade 0, then
the grading of the vertices in D̈5 except t is defined by gt + 1. For example,

we can extend 3 0 1 0

3

to

4 1 2 1

4

0 . Bongartz and Gabriel have calculated
the representation finite gradings of D5 and C5 in [3]. Based on their result, we
calculated the the representation finite gradings for D̈5. The gradings are listed
as following in the order of

1 2 3 4

5

6

Remark 5.1. By the rotation of the vertices in D̈5, the gradings with the form of
The gradings in the form of E − − − BC,E − − − CB,B − − − EC,B − − −
CE,C −−−BE and C −−−EB are considered as the same. are considered as
the same. ′A′ denotes number 10.

101415 101615 101815 101A15 101215 101015 105611
105411 103215 103415 501013 501213 501413 501613
501813 105431 105631 105831 105A31 103217 103417
107631 107831 301017 301217 301417 301617 301033
301233 103233 103433 103633 103833 301035 301235
103235 103435 103635 103835 305431 305631 501035
501235 305451 305651 305851 501037 501237 703251

Continued on next page
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703451 105637 105437 307815 307615 010106 010506
016500 016700 010300 210106 210306 210506 012106
012306 012506 012706 012906 016520 016720 410104
410304 014304 014504 014704 410106 410306 014306
014506 014706 210126 210326 210526 121620 321620
521620 721620 921620 216520 216720 410124 410324
410524 410724 412140 412340 014324 014524 014724
014924 410126 410326 410526 410726 410926 612140
612340 014326 014526 216540 216740 121017 321017
521015 521017 321037 521035 521037 101011 101013
101015 101031 101033 101035 101037 101039 101051
101053 101055 101057 301031 301033 301035 301037
301051 301053 301055 301057 121011 121015 121013
121017 121019 121031 121033 121035 121037 121039
121051 121053 121055 121057 321033 321031 321035
321037 321039 321051 321053 321055 321057 010100
010102 010104 010106 010108 010120 010122 010124
010126 010140 010142 010144 210120 210122 210124
210126 210128 210140 210142 210144 210146 210148
410140 410142 410144 410146 410160 410162 410164
410166 410168 230122 230124 230126 230128 230142
230144 230146 230148 230162 230164 230166 230168
430142 430144 430146 430148 430126 430146 430166
430186 012100 012102 012104 012106 012120 012122
012124 012126 012140 012142 012144 012146 012148
012160 012162 012164 012166 012168 101211 101213
101215 101231 101233 101235 210151 210153 210155
210157 301231 301233 301235 301237 301251 301253
301255 301257 301259 501251 501253 501255 501257
501271 501273 501275 501277 501279 103211 103213
103215 103217 103219 103231 103233 103235 103237
103251 103253 103255 103257 010300 010302 010304
010306 010308 010320 010322 010324 010326 010328
010340 010342 010344 010346 010360 010362 010364
010366 010368 210320 210322 210324 210326 210328
210340 210342 201344 210346 210360 210362 210364
012320 012322 012324 012326 012328 012340 012342
012344 012346 012348 012360 012362 012364 012366
012368 014300 014302 014304 014306 014320 014322
014324 014326 014328 101411 101413 101415 101417

Continued on next page
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101419 101431 101433 101435 101437 103411 103413
103415 103417 103419 103431 103433 103435 103437
103451 103453 103455 103457 103471 103473 103475
103477 103479 105431 105433 105435 105437 010500
010502 010504 010506 010508 010520 010522 010524
010526 010528 210520 210522 210524 210526 210528
21052A 210540 210542 210544 210546 210548 012500
012502 012504 012506 012508 012520 012522 012524
012526 012528 014500 014502 014504 014506 014508
014520 014522 014524 014526 014528 101611 101613
101615 101631 101633 101635 101637 101639 103631
103633 103635 105631 105633 105635 105637 105639
210740 210742 210744 012700 012702 012704 012706
012720 012722 012724 012726 212120 212140 212160
412140 412160 212320 212340 214360 212520 212540
214520 214540 214560 214580 216540 212710 212740
214740 216740 212360 412340 412360 612360 612380
214320 214340 010146 010148 012128

Table 2: Representation finite gradings for D̈5

5.4.2 Representation finite gradings of D6

We first calculated the representation finite gradings for A5 through extending A3.

We listed the gadings as following in the order of 1 2 3 4 5 .

01212 01214 01232 01234 30121 50121 01210
21012 41012 61012 10121 10123 10125 01010
01012 01014 10101 30101 50101 21014 41014
10143 10145 30103 01032 01034 21034 10343
10345 30123 50123 70123 21032 21036 21056
21054 10321 10323 10325

Table 3: Representation finite gradings for A5

We calculated the representation finite gradings for D6 through extending A5

and D5. The gradings are listed in the order of

1 2 3 4 5

6
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Remark 5.2. By the rotation of the vertices in D6, the gradings with the form of
B − − − −E and E − − − −B are considered as the same. ′A′ denotes number
10.

012120 012122 012124 012126 212100 212102 212104
212106 412100 412102 412104 412106 012140 012142
012144 012146 012148 012320 012322 012324 012326
012328 232102 232104 232106 012340 012342 012344
012346 012348 432102 432104 432106 301211 301213
301215 121031 121033 121035 121037 501211 501213
501215 501217 121051 121053 121055 012100 012102
012104 012106 210120 210122 210124 210126 410120
410122 410124 410126 210140 210142 210144 610120
610122 610124 610126 610128 210160 210162 210164
101211 101213 101215 101217 121011 121013 121015
101231 101233 101235 101237 321011 321013 321015
101251 101253 101255 521011 521013 521015 521017
010100 010102 010104 010120 010122 010124 010126
210100 210102 210104 210106 010140 010142 010144
410100 410102 410104 410106 101011 101013 101015
301011 301013 301015 101031 101033 103015 103017
501011 501013 501015 501017 101051 101053 101055
210140 210143 210145 410120 410123 410125 410127
410140 410142 410144 410146 101431 101433 341013
341015 341017 101451 101453 541013 541015 541017
301031 301033 301035 301037 010320 010322 010324
010326 230102 230104 230106 010340 010342 010344
010346 010348 430102 430104 430106 301231 301233
301235 301237 321031 321033 321035 321037 501231
501233 501235 501237 321051 321053 321055 701231
701233 701235 701237 701239 321071 321073 321075
210340 210342 210344 210346 430122 430124 430126
103431 103433 103435 103437 343013 343015 343017
103451 103453 103455 103457 103459 543013 543015
543017 121032 321032 521032 721032 230122 230124
230126 210360 210362 210364 210366 630122 630124
630126 630128 210560 210562 210564 650124 650126
650128 210540 210542 210544 450124 450126 450128
103211 103213 103215 123011 123013 123015 123017
103231 103233 103235 103237 323011 323013 323015
323017 103251 103253 103255 523011 523013 523015

Continued on next page
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523017 412320 612320 212320 212340 212360 212120
412120 212140 612120 212160 212540 212560 412140
412340 612340 812340 214540 214560 214320 214340
214360 101011 101031 101051 101071 101013 101033
101053 101073 101015 101035 101055 301013 301033
301015 301035 121011 121031 121051 121071 121013
121033 121053 121073 121015 121035 121055 321012
321033 321053 321073 321015 321035 321055 321075
321095 010100 010120 010140 010160 010180 010102
010122 010142 010162 010182 010104 010124 010144
210102 210122 210142 210162 210182 210104 210124
210144 210164 210184 410104 410124 410144 410106
410126 410146 230102 230122 230104 230124 230106
230126 430104 430124 430106 430126 012100 012120
012140 012160 012102 012122 012142 012162 012182
012104 012124 012144 012106 012126 012146 101211
101231 101251 101213 101233 101253 101215 101235
101255 301215 301235 301213 301233 501215 501235
501217 501237 103211 103231 103251 103213 103233
103253 103273 103215 103235 103255 010320 010340
010360 010322 010342 010362 010324 010344 010326
010346 210322 210342 210362 210324 210344 210364
210384 210326 210346 210366 012320 012340 012360
012380 0123A0 012322 012342 012362 012382 0123A2
012324 012344 012326 012346 014320 014340 014360
014322 014342 014362 101431 101451 101471 101433
101453 101473 103431 103451 103433 103453 103473
103435 103455 103437 103457 105433 105453 105473
010540 010560 010542 010562 210542 210562 210544
210564 210584 012540 012560 012580 012542 012562
012582 014540 014560 014542 014562 101651 101671
101653 101673 103653 103673 105653 105673 210764
210784 012760 012780 012762 012782 212102 212104
212106 412104 412106 232102 232104 232106 432104
432106

Table 5: Representation finite gradings for D6
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6 Nakayama algebras and graded trees

In this chapter, referring to [2], we show that each finite tree admits some repre-
sentation finite gradings by looking at the Nakyama algebras related to the walks
around the tree. We calculate and list the Nakayama representation finite gradings
for the trees D̈5 and D6. We give the formula for the number of the Nakayama
representation finite gradings of D̈n and Dn respectively.

6.1 Nakayama algebras and finite trees

In [5], Rohnes and Smalø showed that for each finite tree T , there is a representa-
tion finite grading g such that T ∼= GΛ where Λ is an indecomposable Nakayama
algebra.

In proposition 3.11, we have showed how to associate an indecomposable

Nakayama algebra Λ to the quiver 1 2 . . . n by given an ad-
missible sequence. In addition, in proposition 3.13, we have seen the form of
almost split sequence by the induced projective Kupisch series.

0→ Pi+1/r
nPi+1 → Pi+1/r

n−1Pi+1 ⊕ Pi/rn+1Pi → Pi/r
nPi → 0 (3)

Obviously, the fundamental group of Λ is trivial. Since Λ is an artin algebra, the
τ -orbit are finite. By the form of it’s almost split sequences, ΓΛ is representation
finite. Thus Λ is a simply connected algebra.

In proposition 5.13 and proposition 5.14, we have seen that the bijection be-
tween the isomorphic classes of simply connected algebra and the isomorphic
classes of representation finite graded tree are introduced by (T ′, g′) ∼= (GA′ , gA′)
where (T ′, g′) is a representation finite graded tree and A′ is a simply connected
algebra. The grading gA′ is defined as in observation 5.8. Since gA′ is unique by
construction, for each finite tree T , if we can find a simply connected algebra A
such that GA

∼= T , then T has a representation finite grading.

6.1.1 Admissible sequences of a finite tree

Let {t1, t2 . . . tn} be the vertices of T . Let w be a walk from ti to tj passed through
k edges in T . Then we define the length of w that l(w) = k. It is not hard to see
that the shortest walk between two vertices is the walk that does not pass through
any vertex twice. We use L(ti, tj) to denote the length of the shortest walk from
ti to tj.

In the this section, we will illustrate an admissible sequence in the reverse order
of definition 3.5 such that {a0, . . . , an} is a admissible sequence if an ≥ a0− 1 and
ai−1 ≥ ai − 1.

We associate an admissible sequence S to T by the following steps.
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1. Fixing an vertex x in T.

2. Finding the walk w from x to x which exactly passes trough each edge of T
twice.

3. Ordering the vertices of T by the first time w passing through them.

4. Ordering the sequence of L(x,−) in the order of step 3. This sequence is
admissible by construction.

We use the following example to illustrate how to associate an admissible sequence
to a tree.

Example 6.1.

A

B
C D

E F
GH

Fixing A, then A−B−D−F−D−E−G−E−H−E−D−B−C−B−A is the walk
which passes through each edge in the tree exactly twice. We order the vertices by
the ordering of the walk passing through each vertex the first time. Then we have
the sequence T̃ = {A,B,D, F,E,G,H,C}. The associated admissible sequence of
the tree is the correspond length of the shortest walk from A to the vertices in order
of T̃ which is {0, 1, 2, 3, 3, 4, 4, 2}.

Observation 6.1. Obviously, the associated admissible sequence for a tree is not
unique. It could varies from the choice of the fixing vertex and also the choice of
the walk.

We are ready to prove that each finite trees admits at least one representation
finite grading.

So for a finite tree T with the vertices {ti, . . . , tn}, n ∈ N, we associate an
admissible sequence S = {s1, . . . , sn} to it. Then K = {k1 = s1 + 1, . . . , kn =
sn+1} becomes a Kupisch series. We construct the correspond Nakayama algebra
Λ for K in terms of proposition 3.11. Obviously, the number of vertices in GΛ is
the same as the number of vertices in T . From observation 5.7, we have that GΛ

is a tree since Λ is simply connected. To prove T ∼= ΓΛ, it is enough to show the
correspond vertices in ΓΛ of two connected vertices in T are also connected.

Let {Pi, . . . , Pj} be the correspond projective Kupisch series of K. We also
use {Pi, . . . , Pj} to denote the vertices of GΛ since the vertices in GΛ are one to
one correspond to {Pi, . . . , Pj} by observation 5.8. Let ti and tj be two connected
vertices in T . By construction, if we assume kj > ki, we know that kj−ki = 1 and
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km > ki when j > m > i. Let Pi and Pj be the correspond vertices in GΛ of ti and
tj. Then l(Pi) = ki and l(Pj) = kj. If Pi and Pj are connected, then there is an
irreducible morphism from an element in DTr-orbit of Pi to Pj. By the equation
3, we have that the almost split sequence containing Pj is the following.

0→ Pj−1/r
kiPj−1 → Pj−1/r

ki−1Pj−1 ⊕ Pj → Pj/r
kiPj → 0

If Pj−1/r
kiPj−1

∼= DTr(Pj/r
kiPj) ∼= Pi, then Pi and Pj are connected.

If Pj−1/r
kiPj−1 6= Pi, we calculate DTr2(Pj/r

kiPj) in the same way. We repeat
this process until that for q ∈ N, DTrq(Pj/r

kiPj) = Pj−q/r
kiPj−q is projective.

From observation 3.7, we know that l(Pj−q/r
kiPj−q) = ki. Since km > ki when

j > m > i, Pj−q/r
kiPj−q = Pi/r

kiPi = Pi. Then DTr(Pj/r
kiPj) belongs to the

DTr-orbit of Pi which implies there is an irreducible morphism from an element
in the DTr-orbit of Pi to Pj. Thus Pi and Pj are connected.

Summarizing all results above, we have proved the following theorem which is
the main result in [5].

Theorem 6.2. If T is a finite tree, then there is a grading g such that (T, g) is
representation-finite, and such that the corresponding simply connected algebra Λ
is a Nakayama algebra.

Observation 6.3. Let {t1, . . . , tn}, n ∈ N be the vertices of a finite tree T and
S = {s1, . . . , sn} be the associated admissible sequence. The admissible sequence is
a grading but not always is representation finite. For example, the following tree
has grading (01111) which coincides one of the admissible sequence of the tree but
the grading is not finite.

01 1

1

1

We will show how to find a Nakayama representation finite grading for D6 in
detail.

Example 6.2. Let denote the vertices of D6 in the following way.

A B C D E

F

The walk C − D − E − D − C − B − F − B − A − B − C gives the admissible
sequence S = {0, 1, 2, 1, 2, 2}. Let Λ be the correspond Nakayama algebra of S and
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{P1, P2, P3, P4, P5, P6} be the correspond projective Kupisch series. Then we list
all the almost split sequences of Λ.

P5/r
2P5 → P5/rP5 ⊕ P6 → P6/r

2P6

P5/rP5 → P6/r
2P6 → P6/rP6

P4 → P4/rP4 ⊕ P5 → P5/r
2P5

P4/rP4 → P5/r
2P5 → P5/rP5

P3/rP3 → P4 → P4/rP4

P2 → P2/rP2 ⊕ P3 → P3/r
2P3

P2/rP2 → P3/r
2P3 → P3/rP3

P1 → P2 → P2/rP2

We use Smn to denote Pn/r
mPn. Then we have the Auslander Reiten quiver for Λ

as following.

P1 S1
2 S1

3 S1
4 S1

5 S1
6

P2 S2
3

P3

P4 S2
5 S2

6

P5

P6

t1

t2

t3

t4

t5

t6

The right side is GΛ which has grading {0, 1, 2, 5, 6, 8}. Thus GΛ
∼= D6 and

{850126} in the same order of table 7 is a Nakayama representation finite grading
of T .

6.2 The Nakayama representation finite gradings of D̈n

and Dn

A representation finite grading g of a finite tree T is said to be Nakayama rep-
resentation finite if g is correspond to a Nakayama algebra in the way described
above.

We have seen all the representation finite grading of D̈5 and D6. By analysing
the walk of D̈5 and D6, we listed all Nakayama representation finite gradings for
them.

Nakayama representation finite grading of D̈5
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We give the gradings in the order of

1 2 3 4

5

6

Remark 6.1. The gradings in the form of E − − − BC,E − − − CB,B − − −
EC,B −−− CE,C −−−BE and C −−− EB are considered as the same.

Observation 6.4. By looking at the number of different walks on D̈n, the number
of Nakayama representation finite gradings of D̈n is 2n.

By the formula above, the number of Nakayama representation finite gradings
of D̈5 is 10.

012368 016724 014528 307815 703419
105639 701259 630148 410926 721035

Table 6: Nakayama representation finite gradings for D̈5

Nakayama representation finite grading of D6

We give gradings in the order of

1 2 3 4 5

6

Remark 6.2. The gradings in the form of B − − − −E and E − − − −B are
considered as the same.

Observation 6.5. By looking at the number of different walks on Dn, the number
of Nakayama representation finite gradings of Dn is 2n− 2.

By the formula above, the number of Nakayama representation finite gradings
of D6 is 10.

014562 012348 105673 103459 701239
210784 650128 543017 321095 432106

Table 7: Nakayama representation finite gradings for D6
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7 Conclusion

We have studied almost split sequences, the Auslander algebra and the represen-
tation finite graded trees. Specifically, we have calculated the representation finite
gradings for D̈5 and D6. We also give the general formula for the number of the
Nakayama representation finite gradings of D̈n and Dn.

Bongartz and Gabriel have given the general formula for the number of the
representation finite gradings in [3] by looking at the binary tree on lexicographi-
cally form. An interesting topic for future work would be to try to find the general
formula for the number of the representation finite gradings of Dn. Also of interest
would be to look at other relevant topics such as covering spaces, tilting theory
and homologically finite subcategories.
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