
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Anna Bakkebø

Implementation of the Number
Theoretic Transform

for Faster Lattice-Based Cryptography

Master’s thesis in Natural Schience with Teacher Education

Supervisor: Kristian Gjøsteen

December 2020

Anna Bakkebø

Implementation of the Number
Theoretic Transform

for Faster Lattice-Based Cryptography

Master’s thesis in Natural Schience with Teacher Education
Supervisor: Kristian Gjøsteen
December 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Acknowledgements

First of all I want to thank my supervisor Professor Kristian Gjøsteen. I have always

had a feeling that you want to help me do the best I can. You have had a good

mix between coming with suggestions on what I can do next, but also let me be in

control of the thesis. I have also felt that you both care about my thesis, but also

about me as a person.

Secondly I want to thank me good friend Elisabeth Enerhaug. You have been a great

support for me this year, and to be able to talk about the process that it is to write

a master thesis with you have been such a gift to me. You have also been a great

source of joy to me this semester, and have made the semester into a semester that I

am thankful for.

I would also like to thank my friends Anna Karina Kristianslund, Thomas Schjem

and Endre Sørmo Rundsveen for giving me fun breaks from writing the thesis, and

for being great friends during the course of my study. I would also like to thank

Thale Lund Ness and Marthe Fjellberg for good conversations in the lunch breaks

leading up to the due date. There are also many other friends outside of school,

that I have not mentioned, that I am also so thankful for in the process of writing

this thesis, thank you all. Finally I would also like to thank my family, Mom, Dad,

Andreas and Sara Alida, for being supporters during the whole course of my study.

Abstract

This thesis is about implementation of the Number Theoretic Transform, NTT. NTT

is an algorithm for multiplying polynomials faster, and through this paper we look

at how it is able to do this, and to what extent it computes multiplication faster. Our

motivation is to use this for faster lattice-based cryptography. In this paper we have

implemented NTT for polynomials in Rq = Zq[X]/〈XN + 1〉, and discovered that

it does multiply faster, especially when N gets bigger. We have looked at how it

would affect the running time of NTRU, which uses multiplication of polynomials in

the key generation, encryption and decryption. We have also looked at how it affects

the running time of a commitment scheme that uses multiplication of a matrix times

a vector where all the inputs are polynomials in Rq. The result showed us that

multiplication was much faster, both in NTRU and in the commitment scheme.

Contents

1 Introduction 1

2 Why NTT 2

2.1 Preliminaries . 2

2.1.1 Notation . 2

2.2 NTRU . 3

2.2.1 Key generation, encryption and decryption 4

2.3 Multiplication of polynomials 5

3 Number theoretic transform 7

3.1 Chinese remainders theorem . 7

3.1.1 The algorithm . 11

4 Running time 14

4.1 Multiplication over Zq[X]/〈f(X)〉 14

4.2 Multiplication using NTT . 15

4.3 Improvements . 16

4.3.1 Deliver polynomials in NTT version 16

4.3.2 When N is a power of two 17

5 Implementation of NTT 26

5.1 Choice of ring . 26

5.2 Setting of testing . 26

5.3 Forward NTT to factors of degree 2 27

5.4 The code . 30

5.5 How fast was it . 31

6 Commitment scheme 34

6.1 Commitment schemes . 34

6.2 Hiding and binding . 35

6.3 The commitment scheme . 35

CONTENTS Masters thesis | MA3950

6.3.1 Key generation, commit and open 36

6.4 Hiding and binding property . 38

6.4.1 Module-LWE . 38

6.4.2 Module-SIS . 39

6.5 Implementation . 40

6.5.1 Parameters used . 41

6.5.2 Code for the commit algorithm 42

6.6 Results of implementation . 42

7 Conclusion 45

References 46

Appendices 47

A Normal multiplication 48

B NTT forward and inverse 50

C NTT multiplication 56

D Commit using normal multiplication 58

E Commit using NTT multiplication 61

Chapter 1

Introduction

Lattice-based cryptography is gaining more popularity nowadays, as it is believed to

be resistant against quantum computers. Many of these lattice-based cryptosystems

use multiplications of polynomials as part of encryption and decryption. Being

able to compute these multiplications fast would help make these cryptosystems

more efficient. In this paper we look at one method for multiplying polynomials

faster, namely the Number Theoretic Transform, or NTT for short. We look at

how it works, whether it is faster or not, in theory, and have also implemented it in

c-code1 and looked at the difference in runtime with NTT multiplication and normal

multiplication.

We have specifically looked at how it is able to make the cryptosystem, NTRU,

and a commitment scheme faster. Both NTRU and the commitment scheme use

multiplication of polynomials in Rq = Zq[X]/〈XN + 1〉 as part of the arithmetic.

We have based our work with the Number Theoretic Transform, and NTRU, on the

paper "NTTRU: Truly Fast NTRU Using NTT" by Vadim Lyubashecsky and Gregor

Seiler (2019). The commitment scheme we have looked at is based on the paper

"More Efficient Commitments from Structured Lattice Assumptions" by Baum,

Damgård, Lyubashevsky, Oechsner and Peikert (2016).

1Source code can be found at https://github.com/annabakkebo/Master_NTT.

1

Chapter 2

Why NTT

2.1 Preliminaries

2.1.1 Notation

Notation Description

f(X) Polynomial that is reducible to factors of small degree in Zq[X].

In this thesis we use f(X) = XN + 1

Rq The ring Zq[X]/〈f(X)〉.

q Prime number q used as modulus in the ring Rq

N The degree of f(X). In this paper we want N to be on the form

N = 2k · a for some k, a ∈ Z

β2 Binomial distribution

Generate a0, a1, a2, a3
$←− {0, 1}

Output a0 + a1 + a2 + a3 mod ± 3

βN2 Generate polynomial in Rq where the coefficients are generated as in β2

mod ± q Function for modular reduction modulo q mapping onto

the space [−(q − 1)/2, (q − 1)/2]

Table 2.1: Notation

Definition 1: A public-key cryptosystem consist of three different algorithms; Key

generation (K), encrypt (E) and decrypt (D).

• The key generation (K) does not take anything as input and outputs a secret

key sk and a public key pk.

2

CHAPTER 2. WHY NTT Masters thesis | MA3950

• The encrypt algorithm takes in the message m and the public key pk, and

outputs the ciphertext c.

• The decrypt algorithm takes in the ciphertext c and the secret key sk, and

outputs the message m.

For a public-key cryptosystem to be valid we need D(E(m, pk), sk) = m, for any

message m and any pair of keys (sk, pk) output by the key generation.

2.2 NTRU

To give context to why we would want to look at the Number Theoretic Transform,

we will look at a cryptosystem called NTRU. NTRU is a lattice-based public-

key cryptosystem, which means that it is a public-key cryptosystem that uses

lattice-based arithmetic in encryption and decryption. NTRU specifically uses

multiplication of polynomials in the ring Rq = Zq[X]/〈f(X)〉. The key generation

produces a secret key, a, and a public key, h. The secret key is produced by:

1. first picking a polynomial who’s coefficients are in {−1, 0, 1},

2. then multiplying this polynomial with a small prime, p,

3. and adding 1. We add 1 to make it easier to retrieve the message in decryption.

This result is set to the secret key if it is invertible in Rq. The public key, h, is the

inverse of the secret key, a, multiplied by a small prime, p, and a polynomial with

small coefficients. All of the coefficients in the secret key is at most p, and the

coefficients in the public key looks random.

Encryption looks like multiplying the public key with a randomness, and then

adding the message. Decryption looks like multiplying the cipher text with the

secret key.

3

CHAPTER 2. WHY NTT Masters thesis | MA3950

2.2.1 Key generation, encryption and decryption

Algorithm 1: Key generation
Output: Secret key a, Public key h

1 a′
$←− βN2

2 a := pa′ + 1

3 if a is not invertible in Rq then

4 Restart

5 g
$←− βN2

6 h := pg/a

7 return (a, h)

Algorithm 2: Encryption
Input: Message m, public key h

Output: Ciphertext c

1 r
$←− βN2

2 c := hr +m

3 return c

Algorithm 3: Decryption
Input: Ciphertext c, Secret key a

Output: Message m

1 m := (ca mod ± q) mod ± p

2 return m

Theorem 1: Let key generation, encryption and decryption be as stated in Algo-

rithm 7, 3 and 2. Let f(X) = XN + 1 with N < (q − 1)/4p. If we encrypt a

message m and decrypt the ciphertext produced by the encryption, we end up with

m. (i.e D(E(m,h), a) = m).

Proof. Let the secret key and public key be as in the description of the key generation

algorithm. The key generation algorithm will then return the secret key a and the

4

CHAPTER 2. WHY NTT Masters thesis | MA3950

public key h. Encrypting the message will return c = hr +m. Decryption looks

like multiplying the ciphertext with the secret key a mod ± q mod ± p.

D(c, a) = (c · a mod ± q) mod ± p

= ((hr +m) · a mod ± q) mod ± p

= ((pg/a · r +m) · a mod ± q) mod ± p

= (pgr +ma mod ± q) mod ± p

= ((pgr +m(pa′ + 1) mod ± q) mod ± p

= ((p(gr +ma′) +m) mod ± q) mod ± p

For us to not have a decryption error we want

(p(gr +ma′) +m) mod ± q = (p(gr +ma′) +m) ∈ R (2.1)

For this to be true we need |(p(gr+ma′)+m)| ≤ (q−1)/2. The coefficients in m

has absolute value less than or equal to 1. This gives that we need |p(gr +ma′)| <

(q − 1)/2. Which leads to |gr +ma′| < (q − 1)/2p. We know that all coefficients

in g, r, a′ and m have absolute value at most 1. This leads to the coefficients of gr

and ma′ are at most N .

|gr +ma′| ≤ 2N < (q − 1)/2p

Which confirms that the Equation (2.1) holds.

D(c, a) = ((p(gr +ma′) +m) mod ± p

= m mod ± p

= m

2.3 Multiplication of polynomials

In the NTRU cryptosystem a crucial step of both encryption and decryption, is

multiplication of polynomials. When decrypting we multiply the cipher text poly-

nomial, c, which looks like a random polynomial of degree less than N , with the

secret key polynomial, a, of degree less than N . Being able to do multiplications of

5

CHAPTER 2. WHY NTT Masters thesis | MA3950

polynomials fast over Rq will therefore be advantageous when computing NTRU

fast.

6

Chapter 3

Number theoretic transform

3.1 Chinese remainders theorem

The Number Theoretic Transform is heavily based on the Chinese Remainders

Theorem. Let {m1,m2, ...,mk} be pairwise coprime integers such that
∏k
i=1mi =

M . Then the system of equations

x = a1 mod m1

x = a2 mod m2

. . .

x = ak mod mk

has a unique x ∈ ZM that solves the equations. This version of the Chinese

Remainders Theorem is related to coprime integers. We will look more specifically

on this theorem in relation to polynomial rings that we will use for our Number

Theoretic Transform.

Theorem 2: Let f(X) ∈ Zq[X] be so that f(X) =
∏k
i=1 fi(X) where 〈fi(X)〉+

〈fj(X)〉 = Zq[X] ∀i 6= j ∈ {1, ..., k} (i.e. fi(X) and fj(X) are coprime,

relatively prime, for all i 6= j). Then

Zq[X]/〈f(X)〉 ∼=
k∏
i=1

Zq[X]/〈fi(X)〉

Proof. We will give a proof by induction. First we check that the base case holds.

If k = 1 we have:

f(X) = f1(X)

7

CHAPTER 3. NTT Masters thesis | MA3950

BecauseZq[X]/〈f(X)〉 = Zq[X]/〈f1(X)〉we definitely have thatZq[X]/〈f(X)〉 ∼=
Zq[X]/〈f1(X)〉. So the Theorem holds for k = 1.

We will now assume that it holds for k = n and want to show that it will then hold

for k = n+ 1. Our assumption is:

1. f(X) =
∏n+1
i=1 fi(X)

2. 〈fi(X)〉+ 〈fj(X)〉 = Zq[X] ∀ i 6= j ∈ {1, 2, ..., n+ 1}

3. Zq[X]/〈
∏n
i=1 fi(X)〉 ∼=

∏n
i=1 Zq[X]/〈fi(X)〉

What we want to show is that this leads toZq[X]/〈
∏n+1
i=1 fi(X)〉 ∼=

∏n+1
i=1 Zq[X]/〈fi(X)〉.

If we can show that

Zq[X]/〈
n+1∏
i=1

fi(X)〉 ∼= Zq[X]/〈fn+1(X)〉 × Zq[X]/〈
n∏
i=1

fi(X)〉 (3.1)

we have by assumption 3 that

Zq[X]/〈
n+1∏
i=1

fi(X)〉 ∼=
n+1∏
i=1

Zq[X]/〈fi(X)〉

First we start by defining a ring homomorphism:

h : Zq[X]/〈f(X)〉 −→ Zq[X]/〈fn+1(X)〉 × Zq[X]/〈
∏n
i=1 fi(X)〉

p(X) + 〈f(X)〉 7→ (p(X) + 〈fn+1(X)〉, p(X) + 〈
∏n
i=1 fi(X)〉)

In Zq[X]/〈fn+1(X)〉 × Zq[X]/〈
∏n
i=1 fi(X)〉 we have component wise multipli-

cation and addition. First we check that it is a ring homomorphism. For all p, s in

Zq[X]/〈f(X)〉 we have the following properties:

1. h(p) + h(s) = (p+ 〈fn+1(X)〉, p+ 〈
∏n
i=1 fi(X)〉) + (s+ 〈fn+1(X)〉, s+ 〈

∏n
i=1 fi(X)〉)

= (p+ s+ 〈fn+1(X)〉, p+ s+ 〈
∏n
i=1 fi(X)〉)

= h(p+ s)

⇒ h(p+ s) = h(p) + h(s)

8

CHAPTER 3. NTT Masters thesis | MA3950

2. h(p)h(s) = (p+ 〈fn+1(X)〉, p+ 〈
∏n
i=1 fi(X)〉) · (s+ 〈fn+1(X)〉, s+ 〈

∏n
i=1 fi(X)〉)

= (ps+ 〈fn+1(X)〉, ps+ 〈
∏n
i=1 fi(X)〉)

= h(ps)

⇒ h(ps) = h(p)h(s)

3. h(1) = (1 + 〈fn+1(X)〉, 1 + 〈
∏n
i=1 fi(X)〉)

⇒ h(1Zq [X]/〈f(X)〉) = 1Zq [X]/〈fn+1(X)〉×Zq [X]/〈
∏n

i=1 fi(X)〉

This shows that it is a ring homomorphism. We would now like to prove that this is

an isomorphism. The Fundamental Theorem of Isomorphisms (Bhattacharya, Jain,

& Nagpaul, 1994, p. 190) states that the image of a homomorphism, φ from R, is

isomorphic to R modulus the kernel. In our instance the image of h is isomorphic

to Zq[X]/〈
∏n
i=1 fi(X)〉 modulus the kernel of h.

Imh ∼= (Zq[X]/〈
n∏
i=1

fi(X)〉)/ kerh

To show that h is an isomorphism we want the kernal of h to be 〈0〉 and the image

to be Zq[X]/〈fn+1(X)〉 × Zq[X]/〈
∏n
i=1 fi(X)〉.

First we start by showing that the image of h isZq[X]/〈fn+1(X)〉×Zq[X]/〈
∏n
i=1 fi(X)〉.

To do this we want to show

∀(p, s) ∈ Zq[X]/〈fn+1(X)〉 × Zq[X]/〈
n∏
i=1

fi(X)〉

∃t ∈ Zq[X]/〈f(X)〉, such that h(t) = (p, s)

By assumption we have 〈fn+1(X)〉 + 〈fi(X)〉 = Zq[X] for all i ∈ {1, ..., n}.

We therefore have that there exist an ai ∈ fn+1(X) and a bi ∈ fi(X) such that

ai + bi = 1. This leads to

1 =
n∏
i=1

(ai + bi) where ai ∈ 〈fn+1(X)〉 and bi ∈ 〈fi(X)〉 (3.2)

= a1a2...an + a1a2a3...bn + ...+ a1...bi...an + ...︸ ︷︷ ︸
= a ∈〈fn+1〉

+ b1b2...bn︸ ︷︷ ︸
= b ∈〈

∏n
i=1 fi(X)〉

(3.3)

1 = a+ b (3.4)

9

CHAPTER 3. NTT Masters thesis | MA3950

Now we can choose t = bp+ as. We then have

h(bp+ as) = (bp+ as+ 〈fn+1(X)〉, bp+ as+ 〈
∏n
i=1 fi(X)〉)

= (bp+ 〈fn+1(X)〉, as+ 〈
∏n
i=1 fi(X)〉)

= ((1− a)p+ 〈fn+1(X)〉, (1− b)s+ 〈
∏n
i=1 fi(X)〉)

= (p+ 〈fn+1(X)〉, s+ 〈
∏n
i=1 fi(X)〉)

This holds for all (p, s) in Zq[X]/〈fn+1(X)〉 × Zq[X]/〈
∏n
i=1 fi(X)〉, and shows

that the image of h is in fact Zq[X]/〈fn+1(X)〉 × Zq[X]/〈
∏n
i=1 fi(X)〉.

To finish the proof that it is an isomorphism, we want to show that the kernel to

h is 〈0〉. The definition of the kernel is the elements in Zq[X]/〈f(X)〉 that sends

to (0, 0). We have that if an element, p, sends to (0, 0) then p ∈ 〈fn+1(X)〉 and

p ∈ 〈
∏n
i=1 fi(X)〉. This leads to p being in the intersection, p ∈ 〈fn+1(X)〉 ∩

〈
∏n
i=1 fi(X)〉.

By (3.4) we have that 1 = a + b, where a ∈ 〈fn+1(X)〉 and b ∈ 〈
∏n
i=1 fi(X)〉.

Using this we can rewrite p to be p = pa+ pb.

pa ∈ 〈
n∏
i=1

(f(X)) · fn+1(X)〉 = 〈f(X)〉

pb ∈ 〈fn+1(X) ·
n∏
i=1

(f(X))〉 = 〈f(X)〉

Which results in p being an element in 〈f(X)〉 as it is a sum of two elements in

〈f(X)〉. Because p is an element in 〈f(X)〉, we have that p = 0 + 〈f(X)〉 in

Zq[X]/〈f(X)〉. So the kernel of h is 〈0〉.

We have now shown that h is an isomorphism. Showing Zq[X]/〈
∏n+1
i=1 fi(X)〉 ∼=

Zq[X]/〈fn+1(X)〉 × Zq[X]/〈
∏n
i=1 fi(X)〉. By assumption 3 we have that this

again is isomorphic to
∏n+1
i=1 Zq[X]/〈fi(X)〉. Proving that if the statement holds

for k = n, it also holds for k = n+ 1, thus completing the proof.

10

CHAPTER 3. NTT Masters thesis | MA3950

3.1.1 The algorithm

The goal of the Number Theoretic Transform in this paper is to perform multipli-

cation of polynomials fast over Rq. The idea is to split f(X) into coprime factors

of small degree, and use the isomorphism that then exists because of Theorem 2.

Assume f(X) =
∏k
i=1 fi(X) where all the different fi(X) are relatively prime.

The algorithm takes in two polynomials a, b in Zq[X]/〈f(X)〉 and computes the

product. The steps are as follows:

1. Compute ai ≡ a mod fi(X) and bi ≡ b mod fi(X)

Through this step ai and bi end up being polynomials of small degree.

2. Compute ci ≡ aibi mod fi(X)

This goes fairly fast as both ai and bi are polynomials of small degree.

3. Use the inverse function of the isomorphism to compute c mod f(X) from

all the (c1, c2, ...cn)

To see how the Number Theoretic Transform works we will give an example.

Example 1: For the arithmetic to be simple, we will work on the ring Z5[X]/〈X2+

1〉. In Z5[X] we haveX2+1 = (X−2)(X−3) and 〈(X−2)〉+〈(X−3)〉 = Z5[X].

In bothZ5[X]/〈X2+1〉 and inZ5[X]/〈X−2〉 andZ5[X]/〈X−3〉 the computations

are fairly simple.

When Z5[X]/〈X2+1〉we have that aX2 ≡ −a mod (X2+1). In Z5[X]/〈X−3〉

we have aX ≡ 3a mod (X − 3), and in Z5[X]/〈X − 2〉 we have aX ≡ 2a

mod (X − 2).

First we define the isomorphism and it’s inverse:

h : Z5[X]/〈x2 + 1〉 −→ Z5[X]/〈X − 2〉 × Z5[X]/〈X − 3〉

p(X) + 〈f(X)〉 7→ (p(X) + 〈X − 2〉, p(X) + 〈X − 3〉)

a(X)(3−X) + b(X)(X − 2) ←[(a(X) + 〈X − 2〉, b(X) + 〈X − 3〉)

11

CHAPTER 3. NTT Masters thesis | MA3950

In the ring Z5[X]/〈X2 + 1〉 all polynomials are on the form a0 + a1X where

a0, a1 ∈ Z5. We will use the steps in the number theoretic transform to compute

the multiplication of two polynomials. We will also compute the multiplication

directly in Z5[X]/〈X2 + 1〉 to check that NTT indeed computes the multiplication

correctly.

First we pick two random polynomials a(X) and b(X) in Z5[X]/〈X2 + 1〉. Which

will be on the form a(X) = a0 + a1X and b(X) = b0 + b1X . We then go through

the steps of NTT:

1. a0 + a1X ≡ a0 + 2a1 mod (X − 2)

a0 + a1X ≡ a0 + 3a1 mod (X − 3)

b0 + b1X ≡ b0 + 2b1 mod (X − 2)

b0 + b1X ≡ b0 + 3b1 mod (X − 3)

2. (a0 + 2a1) · (b0 + 2b1) = a0b0 + 2(a0b1 + a1b0) + 4a1b1

(a0 + 3a1) · (b0 + 3b1) = a0b0 + 3(a0b1 + a1b0) + 9a1b1

≡ a0b0 + 3(a0b1 + a1b0) + 4a1b1

3. h−1(a0b0 + 2(a0b1 + a1b0) + 4a1b1, a0b0 + 3(a0b1 + a1b0) + 4a1b1)

=(3−X)(a0b0 + 2(a0b1 + a1b0) + 4a1b1)

+ (X − 2)(a0b0 + 3(a0b1 + a1b0) + 4a1b1)

=3(a0b0 +((((
(((2(a0b1 + a1b0) + 4a1b1)−X(��

�a0b0 + 2(a0b1 + a1b0) +��
�4a1b1)

− 2(a0b0 +((((
(((3(a0b1 + a1b0) + 4a1b1) +X(��

�a0b0 + 3(a0b1 + a1b0) +��
�4a1b1)

=a0b0 + 4a1b1 + (a0b1 + a1b0)X

To see that it indeed is a(X)b(X), we will compute it directly over Z5[X]/〈X2+1〉

as well:

(a0 + a1X)(b0 + b1X) = a0b0 + a0b1X + a1b0X + a1b1X
2

≡ a0b0 − a1b1 + a0b1X + a1b0X

≡ a0b0 + 4a1b1 + (a0b1 + a1b0)X

12

CHAPTER 3. NTT Masters thesis | MA3950

This result is the same as when we multiplied using NTT.

13

Chapter 4

Running time

We have now seen that the NTT algorithm works. It computes the multiplication

of two polynomials correctly. Now we will look at how fast it computes the

multiplication, and whether there is reason to believe it is faster or not. First we

will look at how fast just normal multiplication is, and then how fast multiplication

using the NTT algorithm is.

4.1 Multiplication over Zq[X]/〈f(X)〉

Let f(X) =
∑N

k=0 fkX
k. Polynomials in Zq[X]/〈f(X)〉 are then polynomials of

degree less than or equal to N − 1, where we have the relation

XN = −
N−1∑
k=0

fkX
k (4.1)

Normal, not NTT, multiplication of two polynomials a(X) and b(X) inZq[X]/〈f(X)〉

can be divided into two steps. First multiplying in Zq[X], and then using the relation

(4.1) so that the result ends up having degree less than N . Multiplication of a(X)

and b(X) in Zq[X]/〈f(X)〉 is computed like this

a(X) · b(X) =

N−1∑
k=0

N−1∑
j=0

akbjX
k+j

The number of multiplications performed in this step isN2. Then we use the relation

(4.1) so that the result have degree less than N . The number of multiplications here

is dependent on this relation. In the case where f(X) = XN +1, which we will use

in this paper, this step does not use any additional multiplication, only additional

subtractions. For the general case of multiplication, without a specific modulus

14

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

polynomial f(X), we can look at multiplication in Zq[X]/〈f(X)〉 as using O(N2)

multiplications.

4.2 Multiplication using NTT

Let f(X) =
∏n
i=0 fi(X). We want to determine how many multiplications that are

performed when multiplying two polynomials a and b in Zq[X]/〈f(X)〉. Multipli-

cation using NTT is divided into three steps.

1. Compute ai ≡ a mod fi(X) and bi ≡ b mod fi(X)

2. Compute ci ≡ aibi mod fi(X)

3. Use the inverse function of the isomorphism to compute c mod f(X) from

all the (c1, c2, ...cn)

To see the running time of the whole NTT process we can look at the three steps and

then add the running time of each step together. When we now describe the running

time we compare the polynomials to a vector. Here the vector corresponding to the

polynomial, a(X), are a vector of length deg a(X), where the inputs in the vector

are the coefficients in the polynomial.

The first step of NTT is a reduction modulo all the fi(X). This reduction is

linear, and can be compared to using a deg fi(X) · deg f(X) matrix multiplied

by the vector corresponding to each of the polynomials a and b. For each of the

polynomials we then end up with O(deg fi(X) · deg f(X)) multiplications for

each of the fi(X). This will be performed for all the different fi(X), so we get

O(
∑n

i=1 deg f(X) · deg fi(X)) multiplications. This step is performed on both

polynomials, so all together this step costs O(2 ·
∑n

i=1 deg f(X) · deg fi(X))

multiplications.

15

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

Step 2 of the NTT algorithm multiplies each of the n new polynomials. For each of

the polynomials the amount of multiplications are O((deg fi(X))2). All together

this step has O(
∑n

i=1(deg fi(X))2) multiplications.

The last step uses the inverse function. This step is very similar to the first step

just the other way around. Where the first step can be compared to a deg fi(X) ·

deg f(X) matrix multiplied with the vector corresponding to the two polynomials,

for each of the i ∈ {1, ..., n}. This step can be compared to a deg f(X) · deg fi(X)

matrix multiplied with each of the ci. So the amount of multiplications performed

in this step will be O(
∑n

i=1 deg fi(X) · deg f(X)).

The number of multiplications performed all together is thenO(3·
∑n

i=1 deg fi(X)·

deg f(X) +
∑n

i=1(deg fi(X))2). The general case of multiplying, stated in Sec-

tion 4.1, uses O((deg f(X))2) multiplications. We have that
∑n

i=1 deg fi(X) =

deg f(X). So the number of multiplications performed in the NTT version is

O(3 · deg f(X) · deg f(X) +
n∑
i=1

(deg fi(X))2) = O((deg f(X))2)

which is the same as just normal multiplication. All of these estimates are not

very specific or accurate, but give us an idea that the general case of NTT is not

necessarily much faster than just normal multiplication. As seen in this section,

the most costly part of the NTT algorithm is the first and last step, the forward and

inverse NTT. So in order for NTT to be advantageous, we need the first and last step

to be more efficient. We will therefore now look at some improvements that can

help make the NTT algorithm faster.

4.3 Improvements

4.3.1 Deliver polynomials in NTT version

The most costly part of the general case of NTT is the forward and invers NTT, first

and last step. Computing the multiplication in NTT version is not as costly. One

16

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

improvement that can be done to the NTT algorithm, when implementing it to the

NTRU cryptosystem, is to send the polynomials in NTT version. When computing

the secret and public key in Algorithm 7, we can send it in NTT version. The same

can be done when sending the ciphertext after decrypting the message in Algorithm

2.

4.3.2 When N is a power of two

When N is a power of two we can use a trick in the forward and inverse NTT. We

will now look at this. First we need a definition.

Definition 2: Let n be a positive integer. An element ω is a primitive n-th root of

unity if ωn = 1 and ωk 6= 1 for k < n.

Forward NTT

Zq[X]/〈XN − ω2〉

Zq[X]/〈XN/2 − ω〉 Zq[X]/〈XN/2 + ω〉

Figure 4.1: NTT first splitting

A modification of the forward NTT is dividing it into different levels and per-

forming a divide and conquer algorithm. Instead of performing forward NTT into

polynomials of low degree in one step, we can split it into different levels.

Assume there exist an element ω ∈ Zq that is a primitive 4-th root of unity, i.e.

ω4 = 1 and ωk 6= 0 when k < 4. From this we know that ω2 is the primitive 2-nd

root of unity, i.e. ω2 = −1. We can then rewrite our ring using our primitive 4-th

root of unity, ω, Zq[X]/〈XN + 1〉 = Zq[X]/〈XN − ω2〉. By Theorem 2 we have

Zq[X]/〈XN − ω2〉 ∼= Zq[X]/〈XN/2 − ω〉 × Zq[X]/〈XN/2 + ω〉.

17

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

In Zq[X]/〈XN/2−ω〉 we have the relation aXN/2 = ω ·a, and in Zq[X]/〈XN/2+

ω〉 we have aXN/2 = −ω · a. When computing forward NTT of a polynomial,

a(X) =
∑N−1

i=0 ai(X), this step looks like:

1. multiplying the second half of the coefficients with ω

2. In Zq[X]/〈XN/2 + ω〉 we subtract these coefficients to the first half of

coefficients, in Zq[X]/〈XN/2 − ω〉 we add these coefficients to the first half

of coefficients.

a(X) mod (X2r−1 − ω) = (a0 + ωa2r−1) + (a1 + ωa2r−1+1)X + ...

+(a2r−1−1 + ωa2r−1)X
2r−1−1

a(X) mod (X2r−1
+ ω) = (a0 − ωa2r−1) + (a1 − ωa2r−1+1)X + ...

+(a2r−1−1 − ωa2r−1X)2
r−1−1

This step ends up with computing N/2 multiplications, N/2 subtractions and N/2

additions.

Example 2: Let our ring be Z17[X]/〈X4 + 1〉. In Z17 4 is a primitive 4-th root of

of unity. We can then use this to perform the first splitting, as shown in Figure 4.2.

Z17[X]/〈X4 − 42〉

Z17[X]/〈X2 − 4〉 Z17[X]/〈X2 + 4〉

Figure 4.2: NTT using primitive 4-th root of unity

Let a(X) ∈ Z17[X]/〈X4 +1〉. First we multiply the second half of the coefficients

with 4.

a2·4, a3·4

18

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

Then we subtract or add these to the first coefficients resulting in

a(X) mod (X2 − 4) = (a0+4a2) + (a1+4a3)X (4.2a)

a(X) mod (X2 + 4) = (a0−4a2) + (a1−4a3)X (4.2b)

All together performing N/2 = 2 multiplications, additions and subtractions

(marked with red).

If we further have primitive 8-th roots of unity, ω1, we can perform another level

of splittings. ω2
1 would be a primitive 4-th root of unity, which would be used

in the first level of splitting. The second level would use different powers of the

primitive 8-th root of unity, shown in Figure 4.3. Each of these two new splittings

would perform N/4 multiplications, additions and subtractions. Since there are

two splittings, the number of arithmetic performed in this level is 2 ·N/4 = N/2

multiplications, additions and subtractions.

Z[X]/〈XN − ω4
1〉

Z[X]/〈XN/2 − ω2
1〉 Z[X]/〈XN/2 + ω2

1〉

Z[X]/〈XN/4 − ω1〉 Z[X]/〈XN/4 + ω1〉 Z[X]/〈XN/4 − ω3
1〉 Z[X]/〈XN/4 + ω3

1〉

Figure 4.3: NTT with two levels of splittings

Example 3: We can continue on our previous example, Example 2. In Z17 we

have primitive 8-th roots of unity. In this example we can use 2, since 22 = 4 which

is the primitive 4-th root of unity used in the previous example. The first splitting is

already computed, we will now perform the two splitting in the next level.

First we will compute the splitting marked with blue in Figure 4.4. First we will do

the multiplication with 2 of the second half of the coefficients in the polynomial.

(a1 + 4a3)·2

19

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

Z[X]/〈X4 − 24〉

Z[X]/〈X2 − 22〉 Z[X]/〈X2 + 22〉

Z[X]/〈X − 2〉 Z[X]/〈X + 2〉 Z[X]/〈X − 23〉 Z[X]/〈X + 23〉

Figure 4.4: NTT with two levels of splittings

Then we subtract or add these to the first half of the coefficients resulting in

a(X) mod (X − 2) = (a0+4a2)+(a1+4a3) · 2

a(X) mod (X + 2) = (a0+4a2)−(a1+4a3) · 2

Then we use the same steps to perform the splitting marked with red in Figure 4.4.

(a1 − 4a3)·8

a(X) mod (X − 8) = (a0−4a2)+(a1−4a3) · 8

a(X) mod (X + 8) = (a0−4a2)−(a1 − 4a3) · 8

Both splittings performed N/4 = 1 multiplication, addition and subtraction, to-

gether resulting in 2 multiplication, addition and subtraction.

If we further would have primitive 16-th roots of unity we could do an additional

level of splittings. Each of the 4 new splittings would perform N/8 multiplications,

additions and subtractions. All together resulting in N/2 multiplications, additions

and subtractions. If we would have primitive 2N -th roots of unity, we could perform

splittings into linear factors. For every level of splitting using this method, we would

perform N/2 multiplications, additions and subtractions.

Multiplication in NTT version

The multiplication when the polynomials are in NTT version does not necessarily

need to be any faster. We will therefore not write about any improvements of

20

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

the multiplication, but will write more specifically how many multiplications and

additions or subtractions that will be performed in the multiplication part of the

NTT algorithm. Let k be the number of levels we use in the forward NTT. The

polynomials in NTT version are all over a ring on the form Zq[X]/〈XN/2k − ωl〉,

where ωl are different powers of a primitive 2k+1-th root of unity. Multiplication

looks like normal multiplication in Zq[X], and then using the relation

XN/2k = ωl (4.3)

Multiplying two polynomials, a and b in Zq[X]/〈XN/2k − ωl〉 looks like first

multiplying all of the coefficients:

a · b =
N/2k−1∑
i=0

N/2k−1∑
j=0

aibjX
i+j (4.4)

This step performs (N/2k)2 multiplications. Then we use the relation (4.3) so that

the degree of the result is less than N/2k.

aibjX
i+j = ωlaibjX

i+j−N/2k , when i+ j ≥ N/2k

To see how many extra multiplications that are performed during the implementation

of this relation, we need to know in how many instances i + j ≥ N/2k. When

i = 0, then i + j � N/2k. When i > 0, then i + j ≥ N/2k in half of the

instances. Resulting in ((N/2k)2 −N/2k)/2 extra multiplications. The number of

multiplications performed all together then ends up being (N/2k)2 + ((N/2k)2 −

N/2k)/2.

The number of additions performed in Equation (4.4) is (N/2k)2. When we use the

relation, we do not necessarily add any extra additions or subtractions. When we are

implementing this we can perform these two steps simultaneously, and therefore the

addition or subtraction would just be performed in front of a different power of X .

For instance assume a(X)·b(X) = c1X+c2X
1+N/2k . Using the relation we would

end up with a(X) · b(X) = (c1+ωlc2)X . The addition is then just moved in front

of X instead of X1+N/2k . The number of additions or subtractions performed all

together for each of the polynomials is (N/2k)2.

21

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

All of the multiplications and additions will be performed for all the 2k polynomials.

So the number of multiplications performed for all polynomials will be

N2/2k +N2/2k+1 −N/2

The number of additions performed for all the polynomials will be

N2/2k

Inverse NTT

When computing the inverse NTT, we also divide it into the same levels as in

forward NTT, shown in Figure 4.1 and 4.3. To give a picture of how this works we

need to define how a merging works.

First we define how NTT works when we have just one level of forward and inverse

NTT. Let ω be the primitive 4-th root of unity, and the splitting for forward NTT be as

shown in Figure 4.1. Let a−ω ∈ Zq[X]/〈XN/2−ω〉 and a+ω ∈ Zq[X]/〈XN/2+ω〉.

Merging the two polynomials for inverse NTT looks like

1. Add the two polynomials

2. Subtract the two polynomials, a+ω − a−ω and multiply by −ω−1, which is

ω when ω is primitive 4-th root of unity. In the end we multiply by XN/2.

(The multiplication by XN/2 is just placing the result as the coefficients of

the last half of the new polynomial, and does not count as a multiplication

when computing the running time.)

All together we end up with N/2 additions, subtractions and multiplications. This

merging results with a superfluous factor of 2. In the end we will therefore need to

multiply by 2−1.

Example 4: We will use the same polynomial as in Example 2, resulting with

(4.2a) and (4.2b). That way we can observe that we actually end up with twice

polynomial that we started the forward NTT with.

22

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

First we add the two polynomials

((a0+4a2)+(a0−4a2)) + ((a1+4a3)+(a1−4a3))X = 2a0 + 2a1X

Then we subtract the two polynomials

((a0−4a2)−(a0+4a2)) + ((a1−4a3)−(a1+4a3))X = −8a2 − 8a3X

Then multiplying by −4−1 = 4 and X2

4·(−8)a2X2 + 4·(−8)a3X ·X2 = 2a2X
2 + 2a3X

3

All together the result of this merging ends up being 2a0+2a1X+2a2X
2+2a3X

3,

which is twice the polynomial used in the forward NTT. To finish the merging we

will then multiply by 2−1 = 9

9·2a0 + 9·2a1X + 9·2a2X2 + 9·2a3X3 = a0 + a1X + a2X
2 + a3X

3

During this merging we have performed N/2 = 2 additions, subtractions and

multiplications and N = 4 multiplication for the finishing part.

If we have performed several levels of splittings in the forward NTT, we will also

have several levels of mergings in the inverse NTT. In the instance where we have

two levels of forward NTT using a primitive 8-th root of unity, illustrated in Figure

4.3, we will then have two levels of mergings in the inverse NTT. When ω1 is the

primitive 8-th root of unity used in the splitting, we will multiply by −ω−11 = ω3
1

in the merging. The two mergings in the first level of inverse NTT would perform

N/4 additions, subtractions and multiplications. This would be performed for both

mergings, resulting in a total of N/2 additions, subtractions and multiplications.

For every merging we would end up with a superfluous factor of 2. In the end of

inverse NTT we would therefore need to multiply by 2−2.

Example 5: We will now use the same example as in Example 3. We compute the

blue merging first. First we add the polynomials

((a0+4a2) + (a1+4a3) · 2)+((a0+4a2)− (a1+4a3) · 2) = 2 · (a0+4a2)

23

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

Then we subtract the polynomials

((a0+4a2)− (a1+4a3) · 2)−((a0+4a2) + (a1+4a3) · 2) = −4 · (a0+4a2)

Then multiply by −2−1 = 23 = 8 and X

8·(−4 · (a0+4a2))X = 2 · (a0+4a2)X

resulting in 2 · (a0+4a2) + 2 · (a0+4a2)X which is twice (4.2a). This merging

performed one addition, one subtraction and one multiplication. The merging

marked with red in Figure 4.4 will similarly perform one addition, subtraction

and multiplication, and end up being (4.2b) times two. All together this level will

perform N/2 = 2 additions, subtractions and multiplication.

After the two mergings in the first level, we would perform the merging in the

second level, which is shown in Example 4. The only difference is that we now start

by merging two times (4.2a) and (4.2b), resulting in four times the polynomial in

forward NTT. We will then have to multiply by 2−2 = 13.

13·4a0 + 13·4a1X + 13·4a2X2 + 13·4a3X3 = a0 + a1X + a2X
2 + a3X

3

We end up with N/2 · 2 = 4 additions, subtractions and multiplications, plus an

additional N = 4 multiplications to finish the inverse NTT.

If we performed three levels of splittings in forward NTT, we would then have three

levels of mergings. The first level of merging would then be four mergings that

all use N/8 additions, subtractions and multiplications, all together performing

N/2 additions, subtractions and multiplications. The second and third level of

merging would also perform N/2 additions, subtractions and multiplications. In the

end we would get an additional N multiplications to finish the inverse NTT. This

would be similar if we would have several mergings. Each level would perform

N/2 additions, subtractions and multiplications, and in the end we would need an

additional N multiplications to finish the inverse NTT.

24

CHAPTER 4. RUNNING TIME Masters thesis | MA3950

Summary

The running time of multiplication with the NTT algorithm is dependent on the

running time of NTT forward, multiplication in NTT version and inverse NTT.

Forward and inverse NTT is dependent on how many levels we perform the splitting

and merging. Let k be the number of levels of splitting and merging. The number of

multiplications, additions and subtractions performed in the forward NTT algorithm

would then be N/2 · k, for each polynomial. The multiplication would be N2/2k +

N2/2k+1 −N/2 multiplications and N2/2k additions or subtractions. The inverse

NTT would perform N/2 · k multiplications, additions and subtraction, plus an

additional N multiplications.

25

Chapter 5

Implementation of NTT

5.1 Choice of ring

When we have implemented the algorithm, we have implemented for several values

of q andN . In order to get a good impression of how much faster the NTT algorithm

can be, compared to normal multiplication, we want to use a prime q such that

q− 1 = 2r · a, for some r ∈ N. This is because in Zq we would then have primitive

2r-th roots of unity. We could then use one of these primitive 2r-th roots of unity to

perform r − 1 levels of splittings (mergings) in the forward (inverse) NTT. In the

results written about in this paper, we have used a q so that q − 1 = 212 · 3. When

using this q, we could see how much faster NTT could be as N got very large.

5.2 Setting of testing

The code1 was tested on a 2, 3 GHz 8-Core Intel Core i9 processor. We chose to

do the multiplication over random polynomials of length N . The code is tested

on different sizes of N so that we could see the difference in runtime as N got

bigger. For all the different N that were tested, we performed multiplication 40

times over random polynomials, and divided the runtime by 40. In that way we

could get an estimate of runtime that were closer to what would be expected. We

also implemented code for normal multiplication.

When testing the NTT version, we also multiplied the polynomials with normal

multiplication. For every multiplication, we computed the runtime as well as
1Source code at https://github.com/annabakkebo/Master_NTT. We ran the main function from

main.c from the branch "master".

26

CHAPTER 5. IMPLEMENTATION OF NTT Masters thesis | MA3950

checking that the result of the multiplication was the same using both NTT and

normal multiplication. It was the same random polynomials that were tested in both

the normal multiplication and the NTT multiplication.

5.3 Forward NTT to factors of degree 2

Theorem 3: Let a(X) and b(X) be random polynomials in Zq[X]/〈XN + 1〉.

Let N = 2r. Using the NTT algorithm for multiplication, as described in section

4.3.2, multiplication would be most optimal if the polynomials at the lowest level

are polynomials of degree 2.

Proof. The number of multiplications, subtractions and additions performed all

together are equal to:

• the number performed in NTT forward of both polynomials

• + the number of arithmetic performed when multiplying at the lowest level

• + the number of arithmetic performed at NTT inverse for the solution poly-

nomial

We then want the sum of these to be as small as possible.

As stated in section 4.3.2 we can compute forward and inverse NTT using 2r−1

multiplications and 2r additions or subtractions at each level.

The number of multiplications at the lowest level is (deg(fi(X)))2 + (deg(fi(X)
2)2

times the number of polynomials at the lowest level if and only if deg(fi(X)) > 1.

If deg(fi(X)) = 1, the number of multiplications at the lowest level is N .

Let k be the number of levels performed. We then have the relation deg(fi(X)) =
deg(f(X)

2k

27

CHAPTER 5. IMPLEMENTATION OF NTT Masters thesis | MA3950

Forward NTT ends up being:

2 · 2r−1 · k

Multiplication will be

(2r−k)2 + ((2r−k)2 − 2r−k)/2) · 2k = (2r−k+1 + 2r−k − 1)2̇r−1

Inverse NTT ends up being:

2r−1 · k + 2r

Multiplications performed all together ends up being:

(3k + 2r−k+1 + 2r−k + 1) · 2r−1

If k = r, i.e. we perform NTT into linear factors, we get that the number of

multiplications performed all together is

(3r + 4) · 2r−1

If k = r − 1, i.e. the polynomials at the lowest level has degree 2, we get that the

number of multiplications performed all together is

(3r + 4)2r−1

Which is the same number of multiplications as when k = r. If k = r − 2 we get

that the amount of multiplications performed all together is

(3r + 7)2r−1

If k = r − 3 we get that the amount of multiplications performed all together is

(3r + 16)2r−1

We get the lowest number of multiplications if k = r or k = r − 1.

The number of additions or subtractions are:

Forward NTT:

2 · 2 · 2r−1 · k = 2 · 2r · k

28

CHAPTER 5. IMPLEMENTATION OF NTT Masters thesis | MA3950

Additions or subtractions at the lowest level:

(
2r

2k
)2 · 2k = 22r−k

Inverse NTT:

2 · 2r−1 · k = 2r · k

Additions or subtractions performed all together ends up being:

3k · 2r · k + 22r−k = (3k + 2r−k)2r

If k = r, i.e. we perform NTT into linear factors, we get that the number of

multiplications performed all together is

(3r + 2r−r)2r = (3r + 1) · 2r

If k = r − 1 the number of additions or subtractions performed all together is

(3r − 3 + 2r−r+1)2r = (3r − 1)2r

If k = r − 2 the number of additions or subtractions performed all together is

(3r − 6 + 2r−r+2)2r = (3r − 2)2r

If k = r − 3 the number of additions or subtractions performed all together is

(3r − 9 + 23)2r = (3r − 1)2r

Which is the same as when k = r − 1. If k = r − 4 the number of additions or

subtractions performed all together is

(3r − 12 + 24)2r = (3r + 4)2r

We perform the lowest number of additions or subtractions if k = r− 2. So now we

need to see how many multiplications and additions or subtractions are performed

when k = r − 1 and k = r − 2 to see at what level we perform the lowest number

of multiplications, additions and subtractions. When k = r − 1 the number of

multiplications and additions or subtractions are:

(3r + 4)2r−1 + (3r − 1)2r = (9r + 2)2r−1

29

CHAPTER 5. IMPLEMENTATION OF NTT Masters thesis | MA3950

When k = r − 2 the number of multiplications and additions or subtractions are:

(3r + 7)2r−1 + (3r − 2)2r = (9r + 3)2r−1

Which gives that the lowest number of multiplications, additions and subtractions is

when k = r − 1, i.e. the polynomials at the lowest level are 2.

Theorem 3 gives us that the NTT algorithm is fastest when the degree at the lowest

level is 2. When we tested the code, we therefore decided that the polynomials at

the lowest level were of degree 2, if possible.

5.4 The code

We have implemented the multiplication in c-code. It is all posted on github and we

have devided the method into different files. We have one file called params.h where

we can change the variable for the prime modulus, q, and can change the different

values for N through the function void set_N(long power). Further we have

a file called NTT.h and NTT.c which contains the function for forward and inverse

NTT. These functions are also added in Appendix B. They take in pointers to the

polynomials that we want to perform forward and inverse NTT on, and changes

the polynomials so that they are in NTT version. The reason why we use pointers

instead of the actual polynomials, is that in doing so we use less memory for these

functions. We use precomputed roots of unity for forward and inverse NTT, which

are precomputed through the function void initiate(long power, long

level). The long power refers to the power of 2 we want N to be, and the

long level refers to how many levels of NTT forward and inverse we want. In

this function we also precompute what 2−levels is.

The functions for multiplications are all stored in the file multiplication.h and

multiplication.c. The functions for normal multiplications is given in Appendix A.

The function takes in a pointer to the two polynomials that will be multiplied, and a

30

CHAPTER 5. IMPLEMENTATION OF NTT Masters thesis | MA3950

pointer to the polynomial where the result will be stored. The functions for NTT

multiplication, given in Appendix C, takes in:

• pointer to the two polynomials in NTT version

• pointer to the polynomial where the result will be stored

• an array of the roots of unity that will be used in the multiplication

• the size of the polynomials in the lowest level

• how many polynomials there are at the lowest level

The function updates the polynomial where the result will be stored to be the product

in NTT version.

5.5 How fast was it

When testing this code we have used the measurement clock_t, which is a mea-

surement that counts the number of clock ticks elapsed since the program was

launched. We have taken samples of clock_t before and after each multiplication,

and subtracted them to see how many clock ticks elapsed during the multiplications.

The numbers in Table 5.1 and in the plot in Figure 5.1 are both measured in clock

ticks.

Figure 5.1 shows the running time, measured in clock ticks, of the NTT algorithm

compared to normal multiplication. The plot is given as a logarithmic graph. This is

so that we can get a better overview of how fast the two algorithm where. The x-axis

shows the value of N and the y-axis shows how long time was used to compute the

multiplication. We can see that as N got bigger the runtime grew much more for

the normal multiplication than the NTT multiplication.

The graph shows N from 23 = 8 to 216 = 65 536. When N is 216 the NTT

algorithm computes the multiplication roughly 1 000 times faster than the normal

31

CHAPTER 5. IMPLEMENTATION OF NTT Masters thesis | MA3950

N Normal multiplication NTT multiplication

23 ≈ 20.38 ≈ 20.26

24 ≈ 21.72 ≈ 21.17

25 ≈ 23.51 ≈ 22.30

26 ≈ 25.45 ≈ 23.43

27 ≈ 27.46 ≈ 24.48

28 ≈ 29.47 ≈ 25.58

29 ≈ 211.51 ≈ 26.66

210 ≈ 213.48 ≈ 27.78

211 ≈ 215.46 ≈ 28.95

212 ≈ 217.48 ≈ 210.08

213 ≈ 219.44 ≈ 211.09

214 ≈ 221.48 ≈ 212.30

215 ≈ 223.47 ≈ 213.70

216 ≈ 225.47 ≈ 215.22

Table 5.1: Running time using normal multiplication and NTT

multiplication. While when N is 23 the NTT multiplication is not noticeably faster

than normal multiplication. The graph and table just shows how there is a difference

in running time as N grows. It is probably not preferred to have an N as high as

216 = 65 536. The normal multiplications would then spend roughly 1.5 minutes,

while the NTT multiplication would still be under a second. The reason why we

have decided to use an N that large in our testing, is that it gives a picture of how

much faster the NTT multiplication is as N grows.

32

CHAPTER 5. IMPLEMENTATION OF NTT Masters thesis | MA3950

Figure 5.1: Plot for running time given in logarithmic values

33

Chapter 6

Commitment scheme

6.1 Commitment schemes

We will now look at a commitment scheme that uses multiplication over Rq as part

of the arithmetic, but first we will look at what a commitment scheme is.

Definition 3: A commitment scheme consist of three different algorithms: Com-

mitment key generation (CK), commit (C) and open (O)

• The commitment key generation algorithm, CK, takes no input and outputs

a commitment key ck.

• The commit algorithm, C, takes as input the commitment key ck, the message

m and a randomness r and outputs the commitment c and an opening t.

• The open algorithm, O, takes as input the commitment key ck, the commit-

ment c, the message m, opening t and outputs either 0 or 1

To be a valid commitment scheme we want O(ck, c,m, t) = 1.

To give some context as to why we would want a commitment scheme and what

purpose it serves: Picture that you have a betting competition with your friend. For

instance that you will roll a die, and you are betting at what the number will be.

When you are both at the same place you can say, ”I bet you will roll a 6 when

you roll the die”. Your friend can then roll the die and check whether or not you

where correct. Now picture that you will do the same, but you are at different places.

Now if you say you bet your friend will roll a 6, your friend can trick you and just

say that he did not roll a 6. In this situation we can use a commitment scheme. If

34

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

you commit 6 through a commitment scheme, your friend can not see what you

committed, what you bet on. When he says what he rolled, he does not know what

you bet and therefore can not trick you. Then after he says what he rolled, he can

open the message and check that you committed what you said you did.

6.2 Hiding and binding

In a commitment scheme we have two properties that we want the scheme to

have: Hiding and binding. If a commitment scheme has a hiding property, that

means when the receiver gets the commitment he can not determine what the

message is. He needs the opening to be able to discern what the message is. If a

commitment scheme has a binding property, that means that the commitment can

not open to different values. The committer can not change his message after he has

committed the message. The commitment can only be opened to the message that

was committed.

6.3 The commitment scheme

We will now introduce a commitment scheme written about in the article "More

Efficient Commitments from Structured Lattice Assumptions" by Baum, Damgård,

Lyubashevsky, Oechsner and Peikert (2016). The reason why this commitment

scheme is interesting for us is that most of the arithmetic is used over the ring Rq.

We will attempt to use NTT on this scheme and look at whether we can compute

the commitments faster with NTT. The parameters used in the commitment scheme

is given in the Table 6.1, and are the same as in the paper just mentioned.

35

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

Notation Description

R The ring Z[X]/〈XN + 1〉 over which the norms of the vectors are defined

Rq The ring Zq[X]/〈XN + 1〉 over which most of the computations are done

q Prime q defining the modulus in Rq

k Width of the commitment matrices, over Rq

l Dimension of the message space, over Rq

d Height of the commitment matrix A1, over Rq

β Norm bound for honest prover’s randomness in `∞-norm

Sβ Set of all elements in Rq with `∞-norm at most β

C Set of all elements in Rq whose `∞-norm is 1 and `1 norm is κ

κ The maximum `1-norm of the element in C

C The set of differences C − C excluding 0

σ σ = 11 · κ · β ·
√
kN , standard deviation

Table 6.1: Notation for the commitment scheme

6.3.1 Key generation, commit and open

Algorithm 4, 4 and 5 defines the key generation, commit and opening of the com-

mitment scheme. The key generation generates two matrices, where part of the

matrices are generated randomly from our polynomial ring Rq. The commit algo-

rithm, Algorithm 4, uses the matrices generated by the key generation, the message

and a random vector and outputs the ciphertext. The polynomials in the random

vector is picked uniformly from Sβ , and the message is a vector, of length l, whose

elements are polynomials in Rq. If the committer is honest, he outputs the message,

the randomness used, and 1 as the opening t.

To check whether the opening is valid, the open algorithm, Algorithm 5, checks

f ·

~c1
~c2

 =

A1

A2

 · ~r + f ·

0d

~m

36

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

and that ||ri||2 ≤ 4σ
√
N . If the committer would be an honest committer, this f

would be 1, and the ~r and ~m would be the ones used in the commitment algorithm.

It is also easy to see that this would be a valid opening for the commitment scheme.

Algorithm 4: Key generation

Output: Two matrices A1 ∈ Rd×kq and A2 ∈ Rl×kq

1: A′1
$←− Rd×(k−d)q

2: A1 :=
(
Id A′1

)
3: A′2

$←− Rl×(k−d−l)q

4: A2 :=
(
0l×d Il A′2

)
5: return

A1

A2

Algorithm 5: Commit

Input: Commitment key

A1

A2

, Message m ∈ Rlq

Output: Commitment ~c =

~c1
~c2

, Opening t = (~m ∈ Rlq, ~r ∈ Rkq , f ∈ C)

1 ~r
$←− Skβ

2 ~c :=

~c1
~c2

 =

A1

A2

 · ~r +
0d

~m

3 t := (~m,~r, 1)

4 return ~c, t

37

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

Algorithm 6: Open

Input: Opening t = (~m ∈ Rlq, ~r ∈ Rkq , f ∈ C), Commitment key

A1

A2

Output: 1 if the opening is valid, 0 if the opening is not valid

1 if (f ·

~c1
~c2

 =

A1

A2

 · ~r + f ·

0d

~m

) then

2 if ||ri||2 ≤ 4σ
√
N then

3 return 1

4 else

5 return 0

6.4 Hiding and binding property

To look at the hiding and binding property we will first give a short introduction

to Module-LWE, Module-Learning With Error, and Module-SIS, Module-Short

Integer Solution. Both of these problems are known, and the hiding and binding

property of the commitment scheme can be compared to these problems. For a more

in depth reasoning to this, look at the article mentioned (Baum et al., 2016).

6.4.1 Module-LWE

The problem of Module-LWE can be divided into two different problems, search

Module-LWE and decision Module-LWE. The problem that relates to the hiding

property of this commitment scheme, is decision Module-LWE. The core of the

problem is, given a matrix A, we want to distinguish A times a small vector ~r, from

a uniformly random vector. The larger ~r can get, i.e. the larger the set from which ~r

is picked from, the harder this problem is. This is due to the fact that the function

h(~r) := A · ~r

38

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

becomes more of an onto function as ~r can get bigger, which results in the product

actually being uniformly random.

In relation to our scheme the hiding property is related to whether

A1

A2

 · ~r looks

random or not. Whether we can distinguish this result from just a uniformly random

vector. If

A1

A2

 · ~r looks random, or is indistinguishable from a uniformly random

vector, then

A1

A2

 ·~r+
0d

~m

 also looks random. Which makes it hard to recover

~m. This is related to the Decisional Module-LWE. Assume that the ~r is chosen from

the same set of vectors as in the commitment scheme. In the article by Baum et al

they write that, if an algorithm A has advantage ε in breaking the hiding property

of the commitment scheme, then there exists an algorithm A′ that has probability

ε in solving the Module-LWE(Baum et al., 2016, p. 11-12). So if Module-LWE

becomes very hard to solve, the hiding property of the commitment scheme also

becomes hard to break

6.4.2 Module-SIS

The binding property of this commitment scheme is related to another known

problem, namely the Module-Short Integer Solution problem. The core of this

problem is, given a random matrix B, what is the probability that we can find a

short vector ~r, so that B · ~r = ~0. In this problem the solution becomes harder when

we want ~r to be shorter. If our random matrix B is on Hermite Normal Form, this

becomes the matrix A1 given in our commitment scheme. The solution to B, when

given in Hermite Normal Form, is the same as when B is uniformly random.

The relation to our commitment scheme is that if we are able to open to two different

values, then we are able to solve Module-SIS. Assume we have two different valid

openings, t = (~m,~r, f) and t′ = (~m′, ~r′, f ′). Assume that f and f ′ are invertible,

39

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

which they will be because of the set these are picked from (Baum et al., 2016, p.

13). As they both are valid openings, we have that the following equations are true.

f ·

~c1
~c2

 =

A1

A2

 · ~r + f ·

0d

~m

f ′ ·

~c1
~c2

 =

A1

A2

 · ~r′ + f ′ ·

0d

~m′

Combining these two equations we end up with the relation.

f ′ · (

A1

A2

 · ~r + f ·

0d

~m

) = f · (

A1

A2

 · ~r′ + f ′ ·

0d

~m′

)

Which again gives the equation

A1

A2

 · (~r · f ′ − ~r′ · f) + f · f ′
 0d

~m− ~m′

 =

0d

0l

Now f · f ′(~m− ~m′) 6= 0, because f and f ′ are invertible, and ~m 6= ~m′. Because of

this we also have that (~r ·f ′−~r′ ·f) 6= 0. Now we have thatA1 ·(~r ·f ′−~r′ ·f) = 0d,

and that (~r · f ′− ~r′ · f) is short and nonzero. So (~r · f ′− ~r′ · f) would be a solution

to Module-SIS in Hermite Normal Form.

6.5 Implementation

When we now have implemented this commitment scheme, our main goal was to

determine how fast it was with normal multiplication compared to NTT multiplica-

tion. All the polynomials where picked randomly from Rq. We did this because,

whether we picked the polynomials from the specific sets or randomly over Rq, the

running time for multiplication would be roughly the same. As our goal was to

40

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

determine whether we could make the commitment scheme more efficient using

NTT, we chose to focus on the dimension of the polynomials and matrices, and not

from what subset of Rq we picked the polynomials.

6.5.1 Parameters used

When we have tested the code, we have tested it for random values of k, l and d,

which determines the sizes of the commitment martices. For our testing we have

used the values k = 8, l = 4 and d = 3. All of these values can easily be changed

in the file params.h1.

To test the running time of the commitment scheme, we have chosen to access

memory by stack, which affects the parameters we have chosen. In c-code, which

we have used for implementation, we have two different types of memory allocation,

stack and heap. Stack has a designated size of storage which we can use, where

memory allocation runs very fast. The downside, though, is that there is a limited

size of storage. In heap we can store larger size of memory, but the allocation is a

bit slower. We have therefore chosen to use stack in our testing, so that memory

allocation is fast, but will through this be limited by the storage size. In our testing

we have therefore chosen to test for N between 22 = 4 and 213 = 8 192, which is a

smaller N than we used for testing multiplication, written about in Chaper 5. We

have also implemented code for accessing memory through heap, which is posted

on github2 but not written about in this paper.
1All files are uploaded to https://github.com/annabakkebo/Master_NTT. To test, and change the

parameters of the code used for the commitment scheme written about in this thesis go to branch

"commitment-scheme".
2The code for this implementation by heap is given in the branch "Commitment_scheme_malloc".

The branch "commitment-scheme" uses stack for memory allocation.

41

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

6.5.2 Code for the commit algorithm

The implementations, for multiplication of the polynomials, are the same as we

referred to in Section 5.4. The implementation for the commit-algorithm, Algorithm

4, is given in the file MatrixMultiplication.h and MatrixMuliplication.c3. The

functions for commit, using normal multiplication, are added to Appendix D. In

Section 5.4, where we talked about the functions for multiplication, we mentioned

that we used pointers to the polynomials for multiplication. When we implemented

commit, which contains multiplication of a matrix times a vector of polynomials,

we also used pointers. This for the same reason, to not use more memory by creating

a copy of the matrices and vectors.

The implementation of commit using NTT multiplication is given in Appendix E.

6.6 Results of implementation

The result of our testing is very similar to when we multiplied two polynomials

(see Section 5.5). We can observe, from Table 6.2 and Figure 6.1, that as N grew

bigger the NTT multiplication got much faster than normal multiplication. When

N is 213 = 8 192, the NTT multiplication is roughly 28.68 times faster. When we

tested with multiplication of just one polynomial the NTT computed roughly 28.35

times faster. So here there is not much difference. This is not very different from

what was expected, due to our k, d and l being fairly small. We would then not gain

much time from performing forward NTT of the randomness vector, ~r, just once.

We can also observe, from Figure 6.1, that when N is very small, there is barely any

difference between committing using normal multiplication and NTT multiplication.

This is probably due to the fact that when N is small, NTT is not necessarily much

faster. In this case the time to go through all the elements of the matrices and the

vector takes longer time compared to what time we save through computing using
3Both of these files can be found on the github page mentioned.

42

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

N Normal multiplication NTT multiplication

22 27.62 27.61

23 27.53 27.51

24 27.73 27.60

25 28.18 27.69

26 29.22 27.93

27 210.85 28.38

28 212.73 29.02

29 214.71 29.88

210 216.76 210.88

211 218.69 211.83

212 220.67 212.92

213 222.67 213.99

Table 6.2: Running time using normal multiplication and NTT

NTT multiplication. As the plot is given in logarithmic values we will not detect

this difference in the running time.

43

CHAPTER 6. COMMITMENT SCHEME Masters thesis | MA3950

Figure 6.1: Running time using stack in logarithmic values

44

Chapter 7

Conclusion

In this thesis we have looked at multiplication of polynomials using the Number

Theoretic Transform. Our goal with the Number Theoretic Transform was to

perform multiplications faster. The motivation for doing this was to be able to

multiply polynomials fast, which could help making NTRU and a lattice-based

commitment scheme more efficient. We discovered that the general case of NTT

was not necessarily faster, but when our ring,Rq = Zq[X]/〈XN+1〉, had a specific

structure, we could use a divide and conquer method that would make the NTT

multiplication faster. The specific structure of Rq, that we have looked at in this

thesis, is:

• q being a prime such that q − 1 = 2r · a

• our modulus polynomial, f(X) = XN + 1, using an N on the form N = 2k

We implemented the NTT multiplication, and normal multiplication for comparison,

in c-code. We did this to see if it could improve the efficiency of NTRU and the

commitment scheme. In our implementation we tested for different values of N .

The results where when N grew bigger, using NTT was much more efficient than

normal multiplication.

45

References

Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., & Peikert, C. (2016).

More efficient commitments from structured lattice assumptions. Cryptol-

ogy ePrint Archive, Report 2016/997. (https://eprint.iacr.org/

2016/997)

Bhattacharya, P. B., Jain, S. K., & Nagpaul, S. R. (1994). Basic abstract algebra.

Cambridge University Press.

Lyubashevsky, V., & Seiler, G. (2019, May). NTTRU:Truly Fast NTRU Us-

ing NTT. IACR Transactions on Cryptographic Hardware and Embed-

ded Systems, 2019(3), 180-201. Retrieved from https://tches.iacr

.org/index.php/TCHES/article/view/8293 doi: 10.13154/

tches.v2019.i3.180-201

46

Appendices

47

A | Normal multiplication

1 /**

2 * Determines what position of the second polynomial that will be

multiplied by the j-th position of the first

3 * polynomial for the i-th position of the result

4 * @param i integer

5 * @param j integer

6 * @param n Size of the modpol

7 * @return The position of the second polynomial that is multiplied.

8 *

9 */

10 long f(long i, long j, long n) {

11 if (i >= j) {

12 return i - j;

13 } else {

14 return i - j + n;

15 }

16 }

17

18 /**

19 * Normal multiplication modulo x^N+1, the result is stored in result

20 * @param pol1 Pointer to the array of the first polynomial

21 * @param pol2 Pointer to the array of the second polynomial

22 * @param result Pointer to the array where the result is stored

23 * @param n The degree of the modulo polynomial

24 */

25 void multiplied_normal(long *pol1, long *pol2,long *result, long n){

26 for (long i = 0; i < n; i++) {

27 for (long j = 0; j < n; j++) {

28 long pos2 = f(i, j, n);

29 if (j + pos2 >= n) {

30 //printf("multipliserer %d og %d og lagrer det i posisjon

%d (bruker minus)\n",pol1[j],pol2[pos2],i);

31 result[i] = (result[i] - pol1[j] * pol2[pos2]) % Q;

32 #if COUNTOPERATIONS==1

33 Mult_Norm+=1;

34 AddSub_Norm+=1;

35 #endif

36 } else {

37 //printf("multipliserer %d og %d og lagrer det i posisjon

%d\n",pol1[j],pol2[pos2],i);

38 result[i] = (result[i] + pol1[j] * pol2[pos2]) % Q;

39 #if COUNTOPERATIONS==1

40 Mult_Norm+=1;

41 AddSub_Norm+=1;

42 #endif

48

43 }

44 }

45 }

46 }

47

48 /**

49 * Normal multiplication modulo x^N+1, the result is stored in result

50 * @param pol1 The first polynomial

51 * @param pol2 The second polynomial

52 * @param result The array where the result is stored

53 * @param n The degree of the modulo polynomial

54 */

55 void multiplied_normal2(struct pol *pol1, struct pol *pol2,struct pol *

result, long n){

56 multiplied_normal(pol1->coeffs,pol2->coeffs,result->coeffs,n);

57 }

B | NTT forward and inverse

1

2 long NTT_forward[NUM_POLYNOMIALS*2]; // Array of the roots of unity that

will be used for forward NTT

3 long NTT_roots[NUM_POLYNOMIALS]; // Array of roots of unity that is used

at the lowest level

4

5 /**

6 * Stores the roots of unity that is used for the forward splitting

7 * @param roots List of roots of unity

8 * @param NTT_forward List where the forward NTT will be stored

9 * @param n The previous root of unity that is used x^N- w^n

10 * @param move How many positions forward the next step should be stored

11 * @param direction Whether you’re splitting to the right or left. Left:

true, right: false, start with false.

12 * @param start The level where it is started

13 * @param stop How many levels the splitting should be

14 */

15 void initiate_NTT_forward(long *roots, long *NTT_forward, long n,

16 long move, bool direction , long start,

17 long stop){

18 if (start==stop){

19 return;

20 }

21 else{

22 NTT_forward[0] = roots[n/2];

23 long current = start +1;

24 long next_move= move*2;

25 if(direction){

26 initiate_NTT_forward(roots,

27 NTT_forward + next_move,

28 n / 2,

29 next_move,

30 true,

31 current,

32 stop);

33 initiate_NTT_forward(roots,

34 NTT_forward + next_move + 1,

35 n / 2 + PRIMITIVE_N / 2,

36 next_move + 1,

37 false,

38 current,

39 stop);

40 } else{

41 initiate_NTT_forward(roots,

42 NTT_forward + next_move - 1,

50

43 n / 2,

44 next_move - 1,

45 true,

46 current,

47 stop);

48 initiate_NTT_forward(roots,

49 NTT_forward + next_move,

50 n / 2 + PRIMITIVE_N / 2,

51 next_move,

52 false,

53 current,

54 stop);

55 }

56 }

57 }

58

59 /**

60 * Creates list of roots that the multiplication will do modulo when doing

multiplication after NTTforward

61 * @param NTT_forward The NTT_forward list

62 * @param level How many levels that will be computed

63 * @param NTT_roots The list where the roots will be stored

64 */

65 void initiate_NTT_roots(long *NTT_forward, long level, long *NTT_roots){

66 long polynomials=1;

67 for (long i=0;i<level-1; i++){

68 polynomials=polynomials*2;

69 }

70 for (long i =0; i<polynomials;i++){

71 NTT_roots[i*2]=-NTT_forward[i+polynomials-1];

72 NTT_roots[i*2+1]=NTT_forward[i+polynomials-1];

73 }

74 }

75

76 /**

77 * Updates the array of polynomial to contain the two splitted polynomials

.

78 * The first half of the array will be modulos x^n-w, the second half

modulos x^n+w

79 * @param pol polynomial that will be splitted

80 * @param n the degree of the two new polynomials, ie half the degree of

the input polynomial

81 * @param w from x^n+w or x^n-w, ie the w in the two new modulos

polynomials

82 */

83 void splitting(long *pol, long n, long w){

84 long a;

85 for(long i=0; i<n; i++){

86 a = pol[i+n]*w;

87 pol[n+i]= (pol[i]-a)%Q;

88 pol[i]=(pol[i]+a)%Q;

89 }

90 }

91

92 /**

93 * Computes forward NTT

94 * @param pol array of the coeefficients of the polynomial that the

forward NTT will be performed on

95 * @param NTT_forward list of the different roots of unity that it will be

splitted modulo

96 * @param move initiated at 0, this showes how long to move forward on the

list of the forward NTT

97 * @param start how many levels performed, start at 0

98 * @param levels how many levels the NTT will be performed

99 * @param n The length of the polynomial that will be splitted

100 */

101 void forward_NTT(long *pol, long *NTT_forward, long move, long start,

102 long levels, long n){

103 if(start==levels){

104 return;

105 }

106 start++;

107 if(move==0){

108 splitting(pol,n/2,NTT_forward[0]);

109 forward_NTT(pol, NTT_forward + 1, 1, start, levels, n / 2);

110

111 }

112 else{

113 move=move*2;

114 for(long i=0; i<move;i++){

115 splitting(pol+i*n,n/2,NTT_forward[i]);

116 }

117 forward_NTT(pol, NTT_forward + move, move, start, levels, n / 2);

118 }

119

120 }

121

122 /**

123 * Computes forward NTT

124 * @param pol the polynomial that the forward NTT will be performed on

125 * @param NTT_forward list of the different roots of unity that it will be

splitted modulo

126 * @param move initiated at 0, this showes how long to move forward on the

list of the forward NTT

127 * @param start how many levels performed, start at 0

128 * @param levels how many levels the NTT will be performed

129 * @param n The length of the polynomial that will be splitted

130 */

131 void forward_NTT2(struct pol *polynomial, long *NTT_forward, long move,

132 long start, long levels, long n){

133 forward_NTT(polynomial->coeffs,NTT_forward,move,start,levels,n);

134 }

135

136 /**

137 *Updates the array to contain the merging of the two previous polynomials

138 * @param pol array containing the two polynomials that will be merged

139 * @param n degree of the two polynomials

140 * @param w some power of the root of unity used for merging

141 */

142 void merging(long * pol, long n, long w){

143 long a;

144 for (long i =0; i < n; i++){

145 a = pol[i]+pol[n+i];

146 pol[n+i]= ((pol[n+i]-pol[i])*w)%Q;

147 pol[i]=a%Q;

148 }

149 }

150

151 /**

152 * Computes inverse NTT

153 * @param pol Array of the coefficients of the polynomial that the inverse

NTT will be performed on

154 * @param NTT_forward The list for the roots of unity for the forward NTT

+ the integer so that the start point is the list for the last level

155 * @param move The length of the roots for the first level

156 * @param start initiated at 0

157 * @param levels how many levels that will be performed

158 * @param n Twice the length of each of the small polynomial

159 */

160 void inverse_NTT(long *pol, long *NTT_forward, long move, long start,

161 long levels, long n){

162 if(start==levels){

163 return;

164 }

165 long i=move-1;

166 for(long j=0;j<move;j++){

167 merging(pol+j*n,n/2,NTT_forward[i]);

168 i=i-1;

169 }

170 move=move/2;

171 start++;

172 inverse_NTT(pol, NTT_forward - move, move, start, levels, n * 2);

173 }

174

175 /**

176 * Computes inverse NTT

177 * @param pol The polynomial that the inverse NTT will be performed on

178 * @param NTT_forward The list for the roots of unity for the forward NTT

+ the integer so that the start point is the list for the last level

179 * @param move The length of the roots for the first level

180 * @param start initiated at 0

181 * @param levels how many levels that will be performed

182 * @param n Twice the length of each of the small polynomial

183 */

184 void inverse_NTT2(struct pol *polynomial, long *NTT_forward, long move,

185 long start, long levels, long n){

186 inverse_NTT(polynomial->coeffs, NTT_forward, move, start, levels, n);

187 }

188

189 /**

190 * Multiplying by the inverse of 2^LEVEL

191 * @param pol Array of the coefficients of the polynomial right after the

inverse_NTT to finnish the inverse algorithm

192 * @param inverse The inverse of the power of two

193 */

194 void inverse_finnish(long *pol, int inverse){

195 for(long i=0; i<get_N(); i++){

196 pol[i]=(pol[i]*inverse)%Q;

197 }

198 }

199 /**

200 * Multiplying by the inverse of 2^LEVEL

201 * @param pol The polynomial right after the inverse_NTT to finnish the

inverse algorithm

202 * @param inverse The inverse of the power of two

203 */

204 void inverse_finnish2(struct pol *polynomial, int inverse){

205 inverse_finnish(polynomial->coeffs,inverse);

206 }

C | NTT multiplication

1 /**

2 * Determines what position of the second polynomial that will be

multiplied by the j-th position of the first

3 * polynomial for the i-th position of the result

4 * @param i integer

5 * @param j integer

6 * @param n Size of the modpol

7 * @return The position of the second polynomial that is multiplied.

8 */

9 long f(long i, long j, long n) {

10 if (i >= j) {

11 return i - j;

12 } else {

13 return i - j + n;

14 }

15 }

16

17 /**

18 * Updates result to be the multiplication of pol1 and pol2

19 * @param pol1 The first polynomial

20 * @param pol2 The second polynomial

21 * @param result Polynomial/ array where the result is stored

22 * @param w The w when the modpol is X^N+w

23 * @param n The degree of the modpol

24 */

25 void step_multiplied_NTT(long *pol1, long *pol2, long *result,

26 long w, long n){

27 for (long i = 0; i < n; i++) {

28 for (long j = 0; j < n; j++) {

29 long pos2 = f(i, j, n);

30 if (j + pos2 >= n) {

31 result[i] = (result[i] - w * pol1[j] * pol2[pos2]) % Q;

32 } else {

33 result[i] = (result[i] + pol1[j] * pol2[pos2]) % Q;

34 }

35 }

36 }

37 }

38

39 /**

40 * Updates result to be the multiplication of pol1 and pol2

41 * @param pol1 Pointer to the array of the first polynomial

42 * @param pol2 Pointer to the array of the second polynomial

43 * @param result Pointer to the array of the olynomial where the result is

stored

56

44 * @param roots list of the roost, w, used for the different polynomials

X^N+w

45 * @param sizeofpol The degree of the modpols

46 * @param amountofpol Number of polynomials that will be multiplied

47 */

48 void multiplied_NTT(long *pol1, long *pol2, long *result,

49 long* roots, long sizeofpol, long amountofpol){

50 long j=0;

51 for(long i=0;i<amountofpol;i++){

52 step_multiplied_NTT(pol1+j,pol2+j,result+j,roots[i],sizeofpol);

53 j+=sizeofpol;

54 }

55 }

56

57 /**

58 * Updates result to be the multiplication of pol1 and pol2

59 * @param pol1 The first polynomials

60 * @param pol2 The second polynomials

61 * @param result Polynomial/ array where the result is stored

62 * @param roots list of the roost, w, used for the different polynomials

X^N+w

63 * @param sizeofpol The degree of the modpols

64 * @param amountofpol Number of polynomials that will be multiplied

65 */

66 void multiplied_NTT2(struct pol *ppol1, struct pol *ppol2,

67 struct pol *presult, long* roots,

68 long sizeofpol, long amountofpol){

69 multiplied_NTT(ppol1->coeffs,ppol2->coeffs,presult->coeffs,

70 roots,sizeofpol,amountofpol);

71 }

D | Commit using normal multiplication

1 /**

2 * Adding all coefficients of two polynomials

3 * @param pol1 The first polynomial that is to be added

4 * @param pol2 The second polynomial that is to be added

5 * @param size The degree of the two polynomials

6 * @return The sum of the two polynomials

7 */

8 struct pol addPolynomials(struct pol pol1, struct pol pol2, long size) {

9 struct pol result;

10 for (int i = 0; i < size; i++) {

11 result.coeffs[i] = (pol1.coeffs[i] + pol2.coeffs[i]) % Q;

12 }

13 return result;

14 }

15

16 /**

17 * Multiplies a row by a vector and returns the result polynomial

18 * @param row The row that is to be multiplied

19 * @param vector The vector that is to be multiplied

20 * @param size The size of the row and vector

21 * @return The polynomial that is the row multiplied by the vector

22 */

23 struct pol multiplyRowByVectorNormal(struct pol *row,

24 struct pol *vector,

25 int size) {

26 struct pol result;

27 struct pol zeropol;

28 for (int i = 0; i < get_N(); i++) {

29 zeropol.coeffs[i] = 0;

30 }

31 result = zeropol;

32 for (int i = 0; i < size; i++) {

33 struct pol step_result = zeropol;

34 multiplied_normal2(&row[i], &vector[i], &step_result, get_N());

35 result = addPolynomials(result, step_result, get_N());

36 }

37 return result;

38 }

39

40 /**

41 * Multiplies the matrix A_1 by the randomnessvector r

42 * where A_1 = [I_D A_1_marked]

43 * @param A_1_marked Pointer to the last part of the A_1 vector with

random polynomials as input

44 * @param randomness Pointer to the randomness vector

58

45 * @param commit Pointer to the commitvector where the result is stored

46 */

47 void pmatrixTimesVectorNormalA_1(struct A_1_marked *A_1_marked,

48 struct randomness_vector_K *randomness,

49 struct comitment_vector_DL *commit) {

50 for (int i = 0; i < D; i++) {

51 struct pol step_result;

52 step_result = multiplyRowByVectorNormal(A_1_marked->pol[i],

53 randomness->pol + D,

54 K - D);

55 step_result = addPolynomials(step_result,

56 randomness->pol[i],

57 get_N());

58 commit->pol[i] = step_result;

59 }

60 }

61

62 /**

63 * Multiplies the matrix A_2 by the randomnessvector r

64 * where A_2 = [0^(LxD) I_L A_2_marked]

65 * @param A_2_marked Pointer to the last part of the A_2 vector with

random polynomials as input

66 * @param randomness Pointer to the randomness vector

67 * @param commit Pointer to the commitvector where the result is stored

68 */

69 void pmatrixTimesVectorNormalA_2(struct A_2_marked *A_2_marked,

70 struct randomness_vector_K *randomness,

71 struct comitment_vector_DL *commit) {

72 for (int i = 0; i < L; i++) {

73 struct pol step_result;

74 step_result = multiplyRowByVectorNormal(A_2_marked->pol[i],

75 randomness->pol + (D + L),

76 K - D - L);

77 step_result = addPolynomials(step_result,

78 randomness->pol[i + D],

79 get_N());

80 commit->pol[i + D] = step_result;

81 }

82 }

83

84 /**Commits the message m by computing

85 * A_1 * r + 0^d

86 * A_2 m

87 * Using normal multiplication

88 * @param A_1_marked pointer to a D times K-D vector used as the last part

of the A_1 vector

89 * @param A_2_marked pointer to a L times (K-D-L) vector used as the last

part of the A_1 vector

90 * @param randomness pointer to the randomnessvector r of length K

91 * @param message pointer to the message m of length L

92 * @param commit pointer to the commitment vector of length D+L

93 */

94 void pcommitNormal(struct A_1_marked *A_1_marked,

95 struct A_2_marked *A_2_marked,

96 struct randomness_vector_K *randomness,

97 struct message_vector_L *message,

98 struct comitment_vector_DL *commit) {

99 pmatrixTimesVectorNormalA_1(A_1_marked, randomness, commit);

100 pmatrixTimesVectorNormalA_2(A_2_marked, randomness, commit);

101 for (int i = 0; i < D; i++) {

102 commit->pol[i + L] = addPolynomials(commit->pol[i],

103 message->pol[i],

104 get_N());

105 }

106 }

E | Commit using NTT multiplication

1 /**

2 * Multiplies a row by a vector and returns the result polynomial

3 * @param row The row that is to be multiplied in NTT version

4 * @param vector The vector that is to be multiplied in NTT version

5 * @param size The size of the row and vector

6 * @return The polynomial that is the row multiplied by the vector in NTT

version

7 */

8 struct pol multiplyRowByVectorNTT(struct pol *row,

9 struct pol *vector,

10 int size) {

11 struct pol result;

12 struct pol zeropol;

13 for (int i = 0; i < get_N(); i++) {

14 zeropol.coeffs[i] = 0;

15 }

16 result = zeropol;

17 for (int i = 0; i < size; i++) {

18 struct pol step_result = zeropol;

19 multiplied_NTT2(&row[i], &vector[i], &step_result, NTT_roots,

20 get_sizeofpol(), get_num_polynomials());

21 result = addPolynomials(result, step_result, get_N());

22 }

23 return result;

24 }

25

26 /**

27 * Computes NTT forward of all the polynomials in the matrices and vector

28 * @param A_1_marked D times (K-D) matrix

29 * @param A_2_marked L times (K-D-L) matrix

30 * @param randomness vector of length K

31 */

32 void forwardNTT_matrices_vector(struct A_1_marked *A_1_marked,

33 struct A_2_marked *A_2_marked,

34 struct randomness_vector_K *randomness) {

35 for (int i = 0; i < D; i++) {

36 for (int j = 0; j < K - D; j++) {

37 forward_NTT2(&A_1_marked->pol[i][j], NTT_forward, 0, 0,

38 get_Level(), get_N());

39 }

40 } // forward NTT of the A_1_marked matrix

41 for (int i = 0; i < L; i++) {

42 for (int j = 0; j < K - D - L; j++) {

43 forward_NTT2(&A_2_marked->pol[i][j], NTT_forward, 0, 0,

44 get_Level(), get_N());

61

45 }

46 } // forward NTT of the A_2_marked matrix

47 for (int i = 0; i < K; i++) {

48 forward_NTT2(&randomness->pol[i], NTT_forward, 0, 0,

49 get_Level(), get_N());

50 } //forward NTT of the randomness vector

51 }

52

53 /**

54 * Inverse NTT of a vector with length D+L

55 * @param vector Vector of length D+L in NTT version

56 */

57 void inverseNTT_commitmentvectorDL(struct comitment_vector_DL *vector) {

58 for (int i = 0; i < D + L; i++) {

59 inverse_NTT2(&vector->pol[i],

60 NTT_forward + get_move() - 1,

61 get_move(),

62 0,

63 get_Level(),

64 get_sizeofpol() * 2);

65 inverse_finnish2(&vector->pol[i],

66 inverses_power_of_two[get_Level()]);

67 }

68 }

69

70 /**

71 * Multiplies the matrix A_1 by the randomnessvector r

72 * where A_1 = [I_D A_1_marked]

73 * @param A_1_marked Pointer to the last part of the A_1 vector with

random polynomials as input

74 * @param randomness Pointer to the randomness vector

75 * @param commit Pointer to the commitvector where the result is stored

76 */

77 void pmatrixTimesVectorNTTA_1(struct A_1_marked *A_1_marked,

78 struct randomness_vector_K *randomness,

79 struct comitment_vector_DL *commit) {

80 for (int i = 0; i < D; i++) {

81 struct pol step_result;

82 step_result = multiplyRowByVectorNTT(A_1_marked->pol[i],

83 randomness->pol + D,

84 K - D);

85 step_result = addPolynomials(step_result,

86 randomness->pol[i],

87 get_N());

88 commit->pol[i] = step_result;

89 }

90 }

91

92 /**

93 * Multiplies the matrix A_2 by the randomnessvector r

94 * where A_2 = [0^(LxD) I_L A_2_marked]

95 * @param A_2_marked Pointer to the last part of the A_2 vector with

random polynomials as input

96 * @param randomness Pointer to the randomness vector

97 * @param commit Pointer to the commitvector where the result is stored

98 */

99 void pmatrixTimesVectorNTTA_2(struct A_2_marked *A_2_marked,

100 struct randomness_vector_K *randomness,

101 struct comitment_vector_DL *commit) {

102 for (int i = 0; i < L; i++) {

103 struct pol step_result;

104 step_result = multiplyRowByVectorNTT(A_2_marked->pol[i],

105 randomness->pol + (D + L),

106 K - D - L);

107 step_result = addPolynomials(step_result,

108 randomness->pol[i + D],

109 get_N());

110 commit->pol[i + D] = step_result;

111 }

112 }

113

114 /**

115 * Commits the message m by computing

116 * A_1 * r + 0^d

117 * A_2 m

118 * Using NTT multiplication

119 * @param A_1_marked pointer to a D times K-D vector used as the last part

of the A_1 vector

120 * @param A_2_marked pointer to a L times (K-D-L) vector used as the last

part of the A_1 vector

121 * @param randomness pointer to a randomnessvector r of length K

122 * @param message pointer to the message m of length L

123 * @param commit pointer to the commitment vector of length D+L

124 */

125 void pcommitNTT(struct A_1_marked *A_1_marked,

126 struct A_2_marked *A_2_marked,

127 struct randomness_vector_K *randomness,

128 struct message_vector_L *message,

129 struct comitment_vector_DL *commit) {

130 forwardNTT_matrices_vector(A_1_marked, A_2_marked, randomness);

131 pmatrixTimesVectorNTTA_1(A_1_marked, randomness, commit);

132 pmatrixTimesVectorNTTA_2(A_2_marked, randomness, commit);

133 inverseNTT_commitmentvectorDL(commit);

134 for (int i = 0; i < D; i++) {

135 commit->pol[i + L] = addPolynomials(commit->pol[i],

136 message->pol[i],

137 get_N());

138 }

139 }

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Anna Bakkebø

Implementation of the Number
Theoretic Transform

for Faster Lattice-Based Cryptography

Master’s thesis in Natural Schience with Teacher Education

Supervisor: Kristian Gjøsteen

December 2020

