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Abstract

The objective of this work is to investigate the importance of mesh resolution for the
stochastic partial differential equation (SPDE) approach by Lindgren et al. (2011). In this
approach, a Gaussian Random Field (GRF) is approximated on a mesh. The resolution of
this mesh plays an important role in determining the predictive power, the behaviour of
parameter estimates and the fitness of the model. A higher mesh resolution gives better
approximations, but at the cost of longer runtime. In addition to increasing the resolution
of the mesh, it is possible to extend the mesh beyond the boundary of the domain to reduce
possible boundary effects. This, however, adds more nodes to the mesh and gives longer
runtime. Therefore, it is interesting to investigate this trade-off between approximation
accuracy and runtime. The SPDE approach is widely used for spatial modelling, so many
users will benefit from finding guidelines on how to construct the mesh.

We have performed two case studies, one with continuous data - annual precipitation
in the conterminous US, and one with count data - prevalence of secondary education for
women in Kenya. A Gaussian model and a Binomial model are used. The mesh is cre-
ated independently of the observation locations inside a given boundary. We have varied
two mesh parameters, the maximum edge length between mesh nodes (h) and the outer
boundary extension (r). For each configuration, the elements of interest are computed.

Throughout this study, we find that increasing the mesh resolution through h has the
strongest impact on the results, both in terms of predictive power, when the parameter
estimates stabilize and for model fitness, but only up to a certain mesh resolution. Specif-
ically, a maximum edge length of 1/12 of the spatial range seems to be sufficient for the
Gaussian case. For the Binomial case, a lower resolution is sufficient with an h of 1/4
of the spatial range. Increasing the mesh resolution more than this will only increase the
runtime. These suggestions are only guidelines on where to start when building the mesh,
and thus it is important to explore meshes with both lower and higher resolutions to find
the optimal mesh for a particular problem.
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Sammendrag

Målet med denne oppgaven er å undersøke viktigheten av oppløsningen til triangelnettet
(eng: “Mesh”) for SPDE-tilnærmingen til Lindgren et al. (2011). I denne tilnærmingen
approksimeres et romlig Gaussisk felt (GRF) på et triangelnett. Oppløsningen til dette
nettet spiller en viktig rolle i å avgjøre den prediktive styrken, atferden til parameteresti-
matene, og tilpasningsevnen til dataen for SPDE-modellen. En høyere nettoppløsning gir
bedre approksimasjoner, men på bekostning av høyere beregningstid. I tillegg til å øke
oppløsningen til nettet så er det mulig å utvide nettet utover grensene til domenet for å
redusere eventuelle grenseeffekter. Imidlertid gjør dette antallet noder i nettet øker, og gir
derfor en høyere beregningstid. Det er derfor interessant å undersøke dette kompromisset
mellom nøyaktigheten til approksimasjonene og beregningstiden. SPDE-modellen er mye
brukt til romlig modellering, så mange brukere vil ha nytte av å finne retningslinjer for
hvordan triangelnettet bør konstrueres.

Vi har gjort to case-studier, en med kontinuerlig data - logaritmisk transformert årlig
nedbørsmengde over det kontinentale USA, og en med diskret data - utbredelse av videregående
opplæring for kvinner i Kenya. En Gaussisk modell og en Binomisk modell blir brukt.
Triangelnettet lages uavhengig av observasjonslokasjonene innenfor en gitt grense. Vi
har variert to nettparametere, nemlig maksimal kantlengde mellom nettnoder (h) og ytre
grenseutvidelse av nettet (r). For hver konfigurasjon beregner vi den prediktive styrken,
atferden til parameterestimatene, og tilpasningsevnen til dataen.

Gjennom denne studien ser vi at økt nettoppløsningen gjennom h har størst innvirkning
på resultatene, både når det gjelder prediktiv styrke og når parameterestimatene stabilis-
erer seg, men bare inntil en viss oppløsning. Nærmere bestemt ser en maksimal kantlengde
på 1/12 av den romlige rekkevidden ρ tilstrekkelig ut for den Gaussiske dataen. For den
Binomiske dataen er det tilstrekkelig med en lavere oppløsning på 1/4 av den romlige
rekkevidden ρ. Å øke oppløsningen utover disse verdiene vil kun øke beregningstiden.
Disse forslagene er bare retningslinjer for hvor man burde begynne når man lager triangel-
nett i SPDE-modellen, og det er derfor viktig å utforske nett med både finere og grovere
oppløsning for å finne det optimale triangelnettet for et spesifikt problem.

iii



iv



Table of Contents

Table of Contents vi

1 Introduction 1
1.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Work on the Importance of Mesh Resolution . . . . . . . . . . . 3
1.3 Case Study 1 - Precipitation in the conterminous US . . . . . . . . . . . . 4
1.4 Case Study 2 - Prevalence of Secondary Education for Women in Kenya . 5

2 Background 7
2.1 GRFs and GMRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Stochastic Partial Differential Equations Approach . . . . . . . . . . 9

2.2.1 Discretizing the Random Field . . . . . . . . . . . . . . . . . . . 9
2.2.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Spatial Modeling with Bayesian Hierarchical Models . . . . . . . . . . . 13
2.3.1 Latent Gaussian Models . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Priors and their distributions . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Computationally efficient INLA . . . . . . . . . . . . . . . . . . 15

2.4 Model Assessment and Prediction Scores . . . . . . . . . . . . . . . . . 17
2.4.1 Model Assessment - WAIC . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Prediction Scores . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Investigating the Influence of Mesh Resolution for Gaussian and Non-Gaussian
Responses 23
3.1 Aim of the Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Design of Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Spatial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Mesh Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Setup of Case Studies . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Case Study 1 - Precipitation in the Conterminous US . . . . . . . . . . . 26
3.3.1 Model Assessment and Parameter Evaluation. . . . . . . . . . . . 28
3.3.2 Repeated 10-fold Cross-Validation . . . . . . . . . . . . . . . . . 29
3.3.3 Hold-Out Regions . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Predictions on Grid . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Case Study 2 - Secondary Education Prevalence for Women in Kenya . . 36

v



3.4.1 Model Assessment and Parameter Evaluation . . . . . . . . . . . 38
3.4.2 Repeated 10-fold Cross-Validation . . . . . . . . . . . . . . . . . 38
3.4.3 Hold-Out Regions . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.4 Predictions on Grid . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.5 Analysis using Non-Spatial Model . . . . . . . . . . . . . . . . . 42

4 Discussion and Recommendations 45
4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusion and Further Work 51

Bibliography 53

Appendix 55

vi



Chapter 1

Introduction

1.1 Introduction and Motivation

In many real-world scenarios, the goal is to predict a value at an unobserved location,
based on observations at observed locations. Gaussian Random Fields (GRFs) are one of
the most important modeling tools for solving such problems. A GRF assumes that the
values at the observed and unobserved locations are multivariate Gaussian distributed and
correlated to each other. GRFs are intuitive to work with in the sense that they are speci-
fied by a correlation matrix, which gives information on the correlation between locations
directly. They are, however, computationally difficult to work with due to the need of fac-
torizing dense matrices. When there are many observations, which often is the case, this
becomes almost computationally infeasible. Lindgren et al. (2011) proposed an approach
where a Stochastic Partial Differential Equation (SPDE) is used to approximate a GRF.
Combining this with the Integrated Nested Laplace Approximations (INLA) approach by
Rue et al. (2009) has become a popular choice for modeling spatial data. It is easy to
use thanks to the open-source R-package R-INLA1 by Lindgren et al. (2015), where these
approaches are implemented. It also exists another popular R-package named TMB2, by
Kristensen et al. (2016), where the SPDE approach can be used.

In the SPDE approach, the GRF is approximated on a mesh, by a finite element (FEM)
representation with Gaussian distributed weights and piece-wise linear basis functions.
The mesh is a triangulation with a set of nodes and edges that form non-intersecting tri-
angles. The weights are located on the mesh nodes and are the values of the GRF ap-
proximation. The piece-wise linear basis functions interpolate the weights so that we can
obtain values at locations of interest. The mesh resolution is given by the number of
triangles in the mesh, so a mesh with more triangles gives an approximation with more
weights. The mesh plays a central part in the SPDE approach, and specifically, it deter-
mines both the quality of our results and the computational cost. The quality of results
in this context means both the predictive power of the model, how well the model fits the
data and how parameter estimates behave with models with varying mesh resolutions. Pre-

1Available at www.r-inla.org
2Available at http://tmb-project.org/
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Chapter 1. Introduction

dictions made by the SPDE model can be compared with the observed values, by holding
out some observations in the estimation process, and then predict on the locations of the
held out observations. In this work, we use a 10-fold cross-validation as well as hold-
out regions for different mesh resolution. To quantify the predictive power, we use the
scoring rules root-mean-square-error(RMSE) and the continuous ranked probability score
(CRPS). RMSE measures point-wise errors between a prediction and the observed value at
a location, while CRPS measures how well a predicted distribution fits with the observed
value. Better predictions mean lower values of the scoring rules.

Our interest in the mesh has both a practical and a theoretical aspect. The practical
aspect comes from the fact that there is no automacy in creating this mesh. Therefore,
users of the SPDE approach have to consider carefully how to construct the mesh. Most
importantly, which resolution and how large buffer region should the mesh have? There are
many users of the SPDE approach, as highlighted by Bakka et al. (2018), but there are few
guidelines for how to construct the mesh. Thus coming up with general recommendations
for mesh resolution will be of great use for many. Generally, high resolutions with large
buffer regions yield good predictions that are almost unaffected by boundary effects. On
the other hand, there is a computational complexity involved when working with spatial
models. The SPDE approach makes modeling more computationally efficient than using
only a GRF, but it still has a computational complexity worth attention, which is mainly
determined by the mesh resolution. Therefore, users of the SPDE approach have to balance
between accurate estimates with long running time and less accurate estimates with shorter
running time. The purpose of this work is to gain insight in how to determine this balance.

A more theoretical aspect revolves around the fact that we want to approximate an
exact GRF. In this work, we use Bayesian hierarchical models formulated at three lev-
els, (1) an observation model conditioned on a latent field and parameters, (2) a latent
field that includes fixed covariates and the GRF approximation, and (3) a prior for the pa-
rameters range ρ, marginal variance σ2

s and the nugget effect σ2
N. When a mesh has too

low resolution relative to the range, the GRF approximation might deviate strongly from
the desired Matérn structure, as shown by Fuglstad and Beguin (2018). In particular, the
marginal variance will vary over the domain instead of being constant. This effect will
be explained more in Section 2.2.2. When we work with a finite element method that has
piece-wise linear basis functions, there is a limitation on how precisely the GRF can be ap-
proximated, and we get a discretization error which will be captured by the nugget effect.
This discretization error is variability that cannot be resolved on a mesh with piece-wise
linear basis functions, i.e., a subgrid variation. The nugget effect contains a combination
of measurement error and a small scale variability as well, where the latter is variation on
a smaller scale than we observe. For Gaussian observation models, the nugget effect can
be seen as the variance in the Gaussian likelihood. For non-Gaussian observation models
on count data, for example, when the model has a Binomial likelihood, the nugget effect
will contain an observation noise as well. This observation noise comes from the fact that
the true underlying field is continuous, but we observe discrete outcomes that can only
take a few values on the continuous scale. Since the non-Gaussian observation model on
top makes us unable to observe the latent field directly, we have less information about the
latent field, and it is less obvious how the mesh resolution affects the results.

From the SPDE approach, we will obtain both predictions based on some observed

2



1.2 Previous Work on the Importance of Mesh Resolution

data, as well as parameter estimates. The SPDE model is an approximation of the GRF, so
the parameter estimates, i.e., the range ρ̂ and marginal variance σ̂2

s , cannot be interpreted
exactly as the parameters of the Matérn covariance function in the GRF. However, the
purpose of spatial modeling is in most cases to predict, in which case we try to find a well-
suited model to make as good predictions as possible. It should therefore be noted that even
though parameter estimates cannot be interpreted exactly as the true GRF parameters, this
is fine, since the goal is to obtain the best possible predictions, and not to approximate the
GRF itself as accurately as possible.

We believe that the mesh in the SPDE approach has a different impact for Gaussian and
non-Gaussian models. We will therefore use two datasets, one with continuous responses
on which we will use a Gaussian likelihood, and one with count data using a Binomial
likelihood. Note that our interest lies not specifically in the results of these datasets, but in
which conclusions and recommendations we generally can draw from modeling on these
types of datasets.

We will use R-INLA as data processing and modeling tool, since the SPDE approach
is implemented there. The git-book “Advanced Spatial Modeling with Stochastic Partial
Differential Equations Using R and INLA” by Krainski et al. (2018) has been a major
inspiration for theory development and the code implementation. In this book, there is a
lot of information about the mesh, especially on how it is constructed both theoretically
and practically in R-INLA. There are however no clear guidelines on which resolution to
use.

In the next subsection, we briefly present some relevant previous work. Then, in the
next sections, we present the datasets to be used in the case studies. Chapter 2 consists
of theory behind the SPDE approach, spatial modeling with Bayesian hierarchical models
and finally a section with model assessment and prediction scores. In the third chapter, the
case studies are presented. This includes both the aim and design of the studies, specific
details for the two models and the results. A discussion of the obtained results follows in
Chapter 4, with some recommendations based on the results, and a conclusion is given in
Chapter 5.

1.2 Previous Work on the Importance of Mesh Resolution
In the article by Righetto et al. (2020), “On the choice of mesh for the analysis of geo-
statistical data using R-inla”, they study a similar problem. In particular, they construct
different meshes with the SPDE approach and measure the impact of the mesh on inference
and prediction. They have used the locations of the observations to create the mesh, i.e.,
the locations are some or all nodes in the mesh. They then investigate different configura-
tions, specified by a parameter c (cutoff in R-INLA) which denotes the shortest allowed
distance between mesh nodes, and h, the maximum allowed distance edge length. They
find that the optimal value of c depends on the number of observations, and must therefore
be determined in accordance with the observation size. A change in this parameter has a
greater effect than a change in the maximum allowed edge length between nodes.

We, on the other hand, are interested in creating a mesh without knowing the spatial
distribution of the locations. The mesh will only be constructed based on the domain of the
locations, so that the mesh does not adapt to the spatial design. We then do not need the

3



Chapter 1. Introduction

Figure 1.1: Map over conterminous US with annual log precipitation (mm / year) at 7040 stations.

cutoff parameter c, since this parameter only applies if one uses the observation locations
as mesh nodes, and observations are so close that we want a mesh node at only one of the
locations. We are mainly concerned with the mesh resolution, and when we make the mesh
independent of the observation locations, the resolution is controlled by h. This approach
makes it possible to use the same mesh when doing for instance k-fold cross-validation or
hold-out region validation.

1.3 Case Study 1 - Precipitation in the conterminous US

In this work, we use a dataset of the conterminous US (the USA except Alaska and
Hawaii), with monthly total precipitation at different measurement locations. The dataset
is a binary file called RData.USmonthlyMet.bin and can be found at https://
www.image.ucar.edu/public/Data/. A description of the dataset can be found
at https://www.image.ucar.edu/Data/US.monthly.met/USmonthlyMet.
shtml. Note that the total monthly precipitation unit is in centimeters and not in millime-
ters as in the description.

Specifically, we use annual log precipitation for the year 1981 by summing up the
monthly precipitation at each location and taking the logarithm, inspired by Fuglstad et al.
(2015). This dataset was chosen due to its many observations, the simplicity of prepro-
cessing and that a Gaussian likelihood can be used in the fitting process.

Only measurement stations without missing data are included in the dataset, which
gives a total of 7040 stations. Figure 1.1 shows the log-precipitation at each of the loca-
tions. The Albers projection (Snyder, 1987) with lat0 = 39 and lat1 = 45 is used in the
visualization. The dataset also contains the elevation (in meters) at the stations, which will
be an explanatory variable in this analysis. We will use the unit kilometers for elevation.

4
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1.4 Case Study 2 - Prevalence of Secondary Education for Women in Kenya

1.4 Case Study 2 - Prevalence of Secondary Education for
Women in Kenya

In the second case study, we want to use a dataset with count data that can be modelled
using a Binomial likelihood. Specifically, we use a dataset from the Demographic and
Health Services (DHS) Program, “Kenya: Standard DHS, 2014 Dataset”. This survey
covers many responses, like education, mortality, diseases and general health, for children
and adults in Kenya. The structure of the survey is built upon interviewing people that
belong to a certain cluster. These clusters contain a number of households in for example
a village or a city, and are selected based on a survey design. More information about the
dataset and the DHS Program can be found in Kenya National Bureau of Statistics et al.
(2015) and at their website https://dhsprogram.com/.

We choose to look at the proportion of women in Kenya between the ages 20-29 that
have completed their secondary education, with inspiration from Paige et al. (2019). In
this dataset, there are 1580 clusters, with GPS locations for the clusters given in longitude-
latitude format. In a cluster at location si, ni women are interviewed and yi women have
completed their secondary education. In total, 11290 women are interviewed, where 3268
answered that they have completed their secondary education, which is a proportion of
about 30%. In Figure 1.2, the proportion of women with secondary education is shown for
the cluster locations. A cluster is also assigned a categorical label, rural or urban, which
is a fixed covariate that we use in the model. A likelihood needs to be determined for the
model. For this, we make the following assumptions:

• There are two outcomes for each woman in the cluster, i.e., has completed or has
not completed secondary education

• Each woman in the cluster has the same probability p of completing secondary edu-
cation

• The completion of secondary education for one woman is independent of the other
women’s outcomes.

In practice, for a survey like this, there might be violations of these statements. We assume,
however, that they are adequate, and that we therefore can use a Binomial likelihood.

5
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Chapter 1. Introduction

(a) (b)

Figure 1.2: (a) Proportion of women that have completed secondary education, yi/ni, on cluster
locations si for all i = 1, . . . , 1580 clusters. (b) Urbanicity in clusters.
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Chapter 2

Background

In this chapter, we begin with a short introduction to Gaussian Random Fields (GRFs) and
Gaussian Markov Random Fields (GMRFs). We then explain the theory behind the SPDE
approach and its elements, among other the mesh and prior specifications. We further
introduce Latent Gaussian Models (LGMs) and how to perform inference computationally
efficient using INLA. Finally, the model assessment criteria WAIC and scoring methods
RMSE and CRPS will be given.

2.1 GRFs and GMRFs

Data in a spatial domain D often have the property that the closer two observations are
in space, the higher is the similarity between them. When making a suitable model to
fit the data, this spatial dependency should be taken into account, hence a spatial field is
required. For point-referenced data, i.e., data with observations that are observed at some
given locations on our map, we commonly use a continuously indexed random field.

A Gaussian Random Field (GRF) {u(s) : s ∈ D ⊂ Rd} is a spatial process with
random variables occurring in a fixed, continuous domain D, where every collection
with a finite number of these variables follows a multivariate Gaussian distribution. Let
{si}i=1,...,n be the locations of the observed data. The spatial effects u(s1), . . . , u(sn)
are then realizations of the spatial process such that u(s1), . . . , u(sn) can be modelled by
a multivariate Gaussian distribution with a mean µ = [µ1, . . . , µn] ∈ Rn and a covari-
ance matrix Σ ∈ Rn×n with entries Σi,j = c

(
u(si), u(sj)

)
for a given positive definite

covariance function, c(·, ·).
We use spatial covariance functions from known families to ensure that they are posi-

tive definite. In this work we use the Matérn covariance function, as defined in Definition
2.1.

Definition 2.1 (Matérn covariance function). The Matérn covariance function is given by

Cν(d) = σ2 21−ν

Γ(ν)

(√
8ν
d

ρ

)ν
Kν

(√
8ν
d

ρ

)
, d ∈ R⊕, (2.1)

7



Chapter 2. Background

where d is the distance between two locations, ν > 0 is a smoothness parameter, ρ is a
range parameter, σ2 is the marginal variance and Kν(·) is the modified Bessel function of
the second kind with order ν.

Hence, the covariance matrix for the GRF at locations s1, . . . , sn has entries Σi,j =
Cν(|si− sj |). With the Matérn covariance, the spatial process u(s) is often stationary and
isotropic. The spatial process is second-order stationary if it has a constant mean µ for
every location si and the spatial covariance function only depends on the distance vector
between two locations, (si − sj). If, in addition, the covariance function only depends
on the distance (Euclidean) and not the direction between the locations, the process is
isotropic.

GRFs are intuitive to work with to capture spatial dependency as they have a defined
expectation and correlation, and a simple covariance structure. They have good analytical
properties as only linear algebra is needed for computing the conditional distributions at
unobserved locations, based on a set of observations. On the other hand, GRFs have
computational challenges. In spatial statistics, it is normal to have many observations,
such as on the order of 10 000. To calculate the likelihood of a GRF, we need to factorize
the n × n-matrix Σ. This has a computational cost of O(n3) because Σ is generally a
dense matrix. With this amount of observations, it becomes practically impossible to work
with the GRF. This is often referred to as the “big n problem”. Gaussian Markov Random
Fields (GMRFs) can become a solution to this challenge (Rue and Held, 2005).

A GMRF is a GRF where observations are assumed to be conditionally dependent on
for example first and second-order neighbours. Conditional independence is assumed for
higher-order neighbours, which gives Markov properties to the GMRF. The conditional
independence information is “hidden” in the covariance matrix, but stated explicitly in the
precision (inverse covariance) matrix Q, as in the following theorem.

Theorem 2.1 ((Rue and Held, 2005)). Let x = (x1, . . . , xn)> follow a multivariate Gaus-
sian distribution with mean µ and precision matrix Q > 0. Then for i 6= j,

xi ⊥ xj | x−{i,j} ⇐⇒ Qij = 0. (2.2)

The notation x−{i,j} means all elements in x that are not xi and xj , i.e. (x1, . . . , xi−1, xi+1,
. . . , xj−1, xj+1, . . . , xn). Thus, if two variables xi and xj are conditionally independent
given all other elements, the precision matrix for x has value 0 for Qij = Qji. This yields
a sparse precision matrix if we assume many variables being conditionally independent.
Now let G be a labelled graph G = (V, E) with a set of nodes, V = {1, . . . , n}, and a
set of edges E , where it only exists edges between nodes that are conditionally dependent.
Thus the graph G and the precision matrix Q both can give information on the conditional
independence.

The formal definition of a GMRF is given in Definition 2.2.

Definition 2.2 (Gaussian Markov Random Field (Rue and Held, 2005)). A random vector
x = (x1, x2, . . . , xn)> ∈ Rn is called a Gaussian Markov Random Field (GMRF) with
respect to a labelled graph G = (V, E) with mean µ and precision matrix Q > 0 if and
only if its density has the form

π(x) = (2π)−n/2|Q|1/2 exp
(
− 1

2
(x− µ)>Q(x− µ)

)
, x ∈ Rn, (2.3)

8



2.2 The Stochastic Partial Differential Equations Approach

and
Qij 6= 0 ⇐⇒ {i, j} ∈ E for all i 6= j.

Now, when working with a precision matrix that is sparse, the factorization of Q can
be performed using sparse matrix algorithms, which results in a lower computational cost
than for a GRF. In particular, a temporal sparsity structure with dimension R in gives
a computational cost of about O(n), a spatial structure with dimension R2, gives about
O(n3/2) and a spatiotemporal structure gives about O(n2). (Rue and Held, 2005)

2.2 The Stochastic Partial Differential Equations Approach
Using GMRFs alone has practical limitations for irregular observation locations, so Lind-
gren et al. (2011) proposed an approach where a Stochastic Partial Differential Equation
(SPDE) is used to create a link between GRFs and GMRFs. In this way, the continuously
indexed GRF properties are kept and the computational efficiency of GMRFs is gained.

2.2.1 Discretizing the Random Field
In the SPDE approach, a GMRF represents a GRF with Matérn covariance structure in
such a way that an SPDE has the GRF as a stationary solution. This SPDE is defined in
Definition 2.3.

Definition 2.3. (Stochastic partial differential equation) A GRF with the Matérn covari-
ance function is a stationary solution to the SPDE[

κ2 −∆
]α/2

τ u(s) =W(s), s = [s1, s2, . . . , sd] ⊂ Rd, (2.4)

with a smoothness parameter ν = α − d/2 and scaling parameters κ > 0 and τ > 0.
These parameters are related to the parameters of the Matérn covariance function by a
range ρ =

√
8ν/κ and marginal variance σ2

s = 1
τ2κ2ν

Γ(ν)
Γ(ν+1/2)(4π)d/2

. W(s) denotes a

spatial Gaussian white noise process with unit variance. ∆ =
∑d
i=1

∂2

∂s2i
is the Laplacian.

This SPDE is solved by a stochastic weak approach on a limited domain D, as derived
in the author’s project thesis, Røste (2020). Here, the dimension was 1D, but the procedure
is the same for 2D. We use the Neumann boundary conditions, i.e., the normal derivative
at the boundary is zero. We use α = 2 so that the smoothness ν = 1. We divide the
domain D into a mesh consisting of non-intersecting triangles with m nodes and edges
between these nodes. The solution to the SPDE, u(s), can be approximated by a finite
element representation (FEM),

u(s) =

m∑
k=1

ψk(s)wk, s ∈ D, (2.5)

wherewk are Gaussian-distributed weights located at the mesh nodes and {ψk(s)}k=1,...,m

are piece-wise linear basis functions that are used interpolate the weights for any location
s.

9
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(a) (b)

(c) (d)

Figure 2.1: (a) Low-resolution mesh over conterminous US with the boundary with parameters
h = 4, r = 10%. (b) Predicted standard deviation on 400 × 200 grid using an SPDE model with
mesh from (a). (c) Mesh with parameters h = 1, r = 0%. (d) Mesh with parameters h = 1,
r = 20%.

The resulting derivation when solving the SPDE, yields the precision matrix

Q = τ2
(
κ4C + 2κ2G + GC−1G

)
, (2.6)

where Ci,j = 〈ψi, 1〉 and Gi,j = 〈∇ψi,∇ψj〉. The parameters τ and κ are as in
Definition 2.3, and can be interpreted as the parameters of the Matérn covariance func-
tion, range ρ and marginal variance σ2

s , for sufficiently fine meshes and small bound-
ary effects. Note that we use these parameter symbols for all mesh resolutions, even
though they cannot be interpreted as the Matérn parameters for low resolutions. The
Gaussian-distributed weights, w = [w1, . . . , wm]> will then follow the joint distribution
w ∼ N (0,Q−1(τ, κ)) with Q from (2.6).

The choice of mesh plays an important role in the resulting SPDE model, and will
therefore be discussed more thoroughly in Section 2.2.2.

2.2.2 Mesh
The mesh in the SPDE approach is a collection of nodes inside a boundary with edges be-
tween the nodes, creating triangles. It must cover the study region, i.e., where we are going
to observe data. For example, inside the boundary of a country. A mesh is described by
two elements in addition to the boundary region. The first element is the mesh resolution,
that is, how close the mesh nodes are. This can be controlled by introducing a maximum
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allowed edge length between the nodes, which will be denoted h. The second element is
the region that the mesh covers. To avoid boundary effects, it is common to add an outer
extension to the domain boundary. This can be set by a relative factor, r, that determines
how large the extension should be compared to the domain size. There are other ways to
define the mesh as well, but we will in this work focus on h and r.

When the spatial domain has two dimensions, every location s ∈ D ⊂ R2 will be either
inside a triangle, at an edge between two mesh nodes or at one mesh node. The piece-wise
linear basis functions ψ(s) = ψ1(s), . . . , ψm(s) are centered at the mesh nodes, and are
constructed such that for a given location s, only the three mesh nodes defining the triangle
can contribute to the field value u(s). They have value 1 at node k and 0 at the other nodes.

When a location s is inside a triangle, three inner triangles are formed when drawing
an edge from s to each of the three mesh nodes. We denote the area of these three triangles
to be T1, T2 and T3, and the total area of all three triangles is T . The basis function values
between the mesh nodes are computed as proportions of the total area of the triangle T ,
such that u(s) = wk−1

T1

T +wk
T2

T +wk+1
T3

T . Note that the value connected to wk is made
by the inner triangle on the opposite side, such that if s is located near wk, the opposite
triangle is large, and the contribution from this mesh node to u(s) is large.

When we have a finite number of observations, n, we can write the approximation in
(2.5) on matrix form

u = Aw, (2.7)

where u is an n× 1 vector with the approximated GRF values and w is the m× 1 vector
with Gaussian distributed weights. A is an n ×m-matrix consisting of the values of the
m the basis functions for all n observations. Each row in A consists of maximum three
non-zero elements, which together sum up to 1. Thus observing u(s) is to observe linear
combinations of the discrete underlying representation.

The number of triangles in the mesh will then be determined by how high the mesh
resolution is, and how large the extension is relative to the domain. The number of trian-
gles m affects the computational cost of the SPDE approach. In particular, the number of
triangles determines the number of basis functions in (2.5), and thus, the size of the pre-
cision matrix Q. It has a sparse structure, which yields a computational cost of O(m3/2)
for the SPDE approach in 2D. (Rue and Held, 2005). Increasing the mesh resolution by
halving the maximum edge length h will increase the number of triangles by a factor of
four, which again will result in an increased computational cost of a factor of 8.

To get a better understanding of the properties and impact of the mesh, we will now
discuss the impact of mesh resolution for the variance of the GRF, with a numerical exam-
ple. In Figure 2.1, three meshes with different configurations are shown in (a), (b) and (d).
Note that the same configurations will be used in the analysis in Chapter 3. The predicted
standard deviation on a regular 400× 200 grid is shown in (b). The SPDE model with the
mesh shown in (a) is used. The colorbar to the right is shown on log2-scale, and we clearly
see that there is an underlying structure here which we do not expect to come from the
spatial model. At the mesh node locations and on the edges between these, the predicted
standard deviation is higher (typically 0.05-0.1), while in the middle of the triangles, the
value is lower (typically around 0.025).

This phenomenon can be explained by the following. The prediction ûi = ai,1ŵi,1 +
ai,2ŵi,2 +ai,3ŵi,3 on a location si is an interpolation of the values at the three closest node
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Table 2.1: Matérn correlation C and variances for three locations of si are shown for different
maximum allowed edge lengths h.

h C(h) Va1=a2=a3=1/3 Va1=a2=0.5,a3=0 Va1=1,a2=a3=0

2 0.01 0.34 0.51 1.00
1 0.14 0.43 0.57 1.00
0.5 0.44 0.63 0.72 1.00
0.25 0.73 0.82 0.87 1.00
0.125 0.89 0.93 0.95 1.00
0.0625 0.96 0.98 0.98 1.00

locations in the mesh, ŵi,1, ŵi,2 and ŵi,3, with factors ai,1, ai,2 and ai,3, . These factors
sum up to 1 and are the elements of the piece-wise linear basis functions. They define
how much the three node weights contribute to the predicted value ûi. For a location
si inside a triangle, all three factors are greater than 0. At an edge between two mesh
nodes, one factor is zero, and at a node location, one factor equals 1 and the two others are
zero. For simplicity we now let a1, a2, a3 denote the factors for a location si, w1, w2, w3

denote the mesh node weights, and we let the these weights have the same variance so that
Var(w1) = Var(w2) = Var(w3) = σ2. The variance of ûi is given by

Var(ûi) = Var(a1w1 + a2w2 + a3w3), 0 ≤ a1, a2, a3 ≤ 1

= σ2
(
a2

1 + a2
2 + a2

3+

2a1a2Corr(w1, w2) + 2a1a3Corr(w1, w3)+

2a2a3Corr(w2, w3)
)

≤ σ2(a1 + a2 + a3)2, since − 1 ≤ Corr(·, ·) ≤ 1

= σ2, since a1 + a2 + a3 = 1.

(2.8)

From this we can see that the variance of ûi will be small when the prediction location si
is in the middle of the mesh triangle, i.e., a1 ≈ a2 ≈ a3, because a2

j ≤ aj on the interval
[0,1]. The variance is larger towards an edge and largest when a prediction location is
on a mesh node. Therefore it is natural that we observe a lower standard deviation inside
triangles and a higher on the edge and on the node locations. If the correlations between
mesh nodes are low, i.e., a low mesh resolution, this difference in variance is even larger.

To see how this changes when varying the mesh resolution, we construct the following
example. Let w1, w2, w3 be nodes in an equilateral triangle, with side length h. Reducing
this side length h corresponds to increasing the mesh resolution. Let the variance at the
nodes be σ2 = 1. The correlation between these mesh nodes are given by a Matérn
correlation function with parameters range ρ = 1 and smoothness ν = 1. In Table 2.1, the
correlation C(h) between two mesh nodes with internal distance h is given for h = [2, 1,
0.5, 0.25, 0.125, 0.0625]. For coarse meshes, this correlation is low. Let si be inside the
triangle formed by w1, w2, w3. Then ûi = a1w1 +a2w2 +a3w3. We define three cases. In
the first case, the location si is in the middle of the triangle, yielding a1 = a2 = a3 = 1/3,
i.e., all three mesh nodes contributes equally to the value of ûi. The variance for ûi is
computed as in Equation (2.8) for different side lengths h. In the second case, the location
si is at an edge so that a1 = a2 = 0.5 and a3 = 0, and in the third case, the location is at
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a mesh node.
The resulting variances for different locations si and increasing mesh resolution are

shown in Table 2.1. Here, we clearly see that for a high value of h, i.e., low mesh res-
olution, the variance is substantially lower in the center of the triangles compared to on
the edges and nodes. This is in accordance with Figure 2.1, which also has a coarse mesh
given by h = 4. In addition, the difference in variances between locations in the middle
of the triangle and locations close to the mesh node, shrinks with higher mesh resolution,
with a change from [0.34, 0.51, 1] for h = 2 and up to [0.98, 0.98, 1] for h = 0.0625.
Thus the observed variance will be less influenced by the mesh itself when using a higher
mesh resolution in the SPDE approach.

2.3 Spatial Modeling with Bayesian Hierarchical Models
To model spatial data, Bayesian Hierarchical Models are often used. These are defined
the following way: For observed data y = (y1, . . . , yn) given unknown parameters θ, we
have a probability distribution π(y | θ), called the likelihood. The unknown parameters
also have an associated probability specified as the prior distribution π(θ | τ ) given some
hyperparameters τ , which again can have a hyperprior distribution, or be fixed. For the
following explanation, we let it be fixed, and therefore disregard τ . The prior distribution
π(θ) is unrelated to the observed data, and says something about our prior beliefs for θ.

In this work, we will use a class of Bayesian models called Latent Gaussian Models,
which now will be introduced.

2.3.1 Latent Gaussian Models
Latent Gaussian Models (LGMs) are a class of Bayesian models that consist of three el-
ements: A likelihood π(y | x,θ), a latent Gaussian field x and a vector of parameters θ.
The data are assumed to be conditionally independent given the latent field, and (often)
the mean of yi is linked to a Gaussian linear predictor ηi through a link function g(·).
Generally, the linear predictor can be written as

ηi = µ+

p∑
j=1

βjzi,j +

K∑
k=1

fk(vi,k) + εi, (2.9)

where µ is the intercept, z are covariates with linear coefficients β, and {fk(·) =
[fk(v1,k), . . . , fk(vi,k), . . . , fk(vn,k)]>}k=1,...,K are functions on covariates v, which,
among others, can be random iid, temporal, spatial or spatio-temporal effects. The la-
tent field consists of the elements in the linear predictor and the linear predictor itself,
x = {η, µ,β, f1(·), f2(·), . . . }. This latent field is assumed to be a GMRF with zero
mean and precision (inverse covariance) matrix Q.

We can then write the latent Gaussian model as

y | x,θ1 ∼
∏
i

π(yi | ηi,θ1),

x | θ2 ∼ N (0,Q−1(θ2)),

θ = [θ1,θ2] ∼ π(θ).

(2.10)
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With the SPDE approach in mind, we will for the functions fk insert the spatial field u(s)
represented as in Equation (2.5). Furthermore, the parameter vector θ will be given by the
range ρ and the marginal variance σ2

s from the GMRF, as well as a nugget variance σ2
N .

The priors for these must now be specified.

2.3.2 Priors and their distributions
We need priors for the parameters range ρ and marginal standard deviation σs in the Matérn
covariance function. In addition we want priors on the nugget effect σN. In this work, we
will use the Penalized Complexity (PC) priors by Fuglstad et al. (2019). The joint PC prior
that corresponds to a base model with infinite range and zero variance is

π(ρ, σs) =
d

2
λ̃1λ̃2ρ

−d/2−1 exp(−λ̃1ρ
−d/2 − λ̃2σs),

σs > 0, ρ > 0.
(2.11)

The hyperparameters λ̃1 and λ̃2 are given by

λ̃1 = − log(α1)ρ
d/2
0 and λ̃2 = − log(α2)

σs,0
, (2.12)

so that the prior in (2.11) satisfies P (ρ < ρ0) = α1 and P (σs > σs,0) = α2. Note that
we limit the range with a lower limit ρ0 and the marginal standard deviation with an upper
limit σs,0.

The joint prior in (2.11) can be divided into π(ρ) and π(σs) by

π(ρ, σs) = π(ρ) · π(σs),

= λ̃1ρ
−2e−λ̃1/ρ · λ̃2e

−λ̃2σs

= IG(1, λ̃1) · E(λ̃2), ρ, σs ∈ [0,∞),

(2.13)

where IG is the inverse Gamma distribution and E is the exponential distribution. We can
look at these distributions to find a 95% interval for both quantities ρ and σs with fixed
limits (ρ0 and σs,0) and tail probabilities (α1 and α2).

The density π(ρ) is an inverse Gamma distribution with unit shape and rate λ̃1. Thus
to easily find the interval boundaries, we can instead transform the boundaries of π(1/ρ),
which is an exponential distribution with rate parameter λ̃1, since the interval boundaries
are invariant to transformation. The cumulative distribution of 1/ρ is given by F (1/ρ) =
1− exp(−λ̃1/ρ). Thus we get the interval

[Iρ,L, Iρ,U] =
[
(I1/ρ,U)−1, (I1/ρ,L)−1

]
=
[
(− log(1− pU)/λ̃1)−1, (− log(1− pL)/λ̃1)−1

]
,

(2.14)

with pL = 0.025 and pU = 0.975. Note that the upper limit for 1/ρ becomes the lower
limit for ρ and vice versa.

The density π(σs) is an exponential distribution with parameter λ̃2 as given in (2.12).
The cumulative distribution function for σs is F (σs) = 1 − exp(−λ̃2σs), and the lower
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and upper interval boundaries for σs are then given by

[Iσs,L, Iσs,U] = [− log(1− pL)/λ̃2,− log(1− pU)/λ̃2], (2.15)

with pL = 0.025 and pU = 0.975.

(a) Probability distribution of ρ with corresponding
95% interval.

(b) Probability distribution of σs with corresponding
95% interval.

Figure 2.2: Probability distributions of ρ and σ with respective 95% credibility intervals.

Example 2.1. For an initial range ρ0 = 10 with tail probability α1 = 0.5, the hyperpa-
rameter λ̃1 = 6.93. A 95% credibility interval for π(ρ) then becomes [1.88, 273.78] as
shown in Figure 2.2a. An initial marginal standard deviation of σs,0 = 1 with tail proba-
bility α2 = 0.5 yields a rate parameter of λ̃2 = 0.69 and thus a 95% credibility interval
with boundaries [0.04, 5.32], as shown in Figure 2.2b.

A complete Bayesian Hierarchical Model has now been defined, through the latent
Gaussian models and appropriate priors. The next step is then to estimate the latent field
x and parameters θ. Therefore, the posterior π(x,θ | y) is of interest. Unfortunately,
this is often impossible to calculate analytically, and difficult to approximate. A classic
approach to such cases is to use sampling-based methods, like Markov Chain Monte-Carlo
(MCMC). These are, however, computationally expensive. Therefore, we will instead use
Integrated Nested Laplace Approximations (INLA). This is a numerical method that can
be used for performing fast approximate Bayesian inference on latent Gaussian models,
and is often a computationally more efficient alternative to MCMC methods. A brief
introduction will now be given.

2.3.3 Computationally efficient INLA
Integrated Nested Laplace Approximations (INLA) is a numerical method to do fast ap-
proximate Bayesian inference, see Rue et al. (2009). The aim is to approximate the pos-
terior by a combination of analytical approximations and numerical algorithms, instead of
using possibly high-dimensional sampling, which MCMC is based on.

In short, the INLA strategy consists of approximating the posterior marginals

π(θi | y) =

∫
π(θ | y)dθ−i (2.16)
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and

π(xi | y) =

∫
π(xi | θ,y)π(θ | y)dθ, (2.17)

and then solving the resulting integrals numerically. Hence, the INLA scheme is appro-
priate if π(θi | y) and π(xi | y) are of interest. Furthermore, the following elements in an
LGM should be true for the INLA scheme to be appropriate:

1. y must be assumed conditionally independent given x and θ1, such that the relation
y | x,θ1 ∼

∏n
i=1 π(yi | xi,θ1) holds.

2. The size of the parameter vector θ must be small, while the size of the latent field x
can be large.

3. The precision matrix Q(θ2) must be sparse.

This holds for the SPDE approach, since only the spatial field u(s) is inserted for fk, the
parameter vector is given by θ = (ρ, σ2

s , σ
2
N ), and the precision matrix Q comes from a

GMRF, which has the Markov property, and therefore is sparse. Finally, we are interested
in determining x and θ given y, and for that the marginals π(θi | y) and π(xi | y) are
sufficient. Hence, the INLA scheme is appropriate.

INLA solves the inference problem by first approximating the distributions π(θ|y) and
π(xi | θ,y), and then solving the integrals in (2.16) and (2.17) numerically. In particular,
π(θ | y) is approximated by using a Laplace approximation, while π(xi | θ,y) can be
approximated by either a Gaussian approximation, a Laplace approximation or a simplified
Laplace approximation.

The Laplace approximation for π(θ | y) is based on the following relation:

π(θ | y) =
π(x,θ | y)

π(x | θ,y)
∝ π(y | x,θ)π(x | θ)π(θ)

π(x | θ,y)
. (2.18)

Here, π(y | x,θ) is available through the LGM, π(x | θ) is available through the GMRF,
and π(θ) is of course given. The denominator π(x |θ,y), however, is difficult to evaluate,
and thus, an approximation is necessary. In the Laplace approximation, this is done by
using a Gaussian approximation π̃G(x |θ,y), which is built by using Taylor expansions to
match the mode, and curvature around the mode, of π(x | θ,y). In this Gaussian approx-
imation, it is necessary to calculate the Cholesky decomposition of the precision matrix.
This is given by Q = LL>, where L is a lower triangular matrix and L> is its conju-
gate transpose. This is decomposition normally a very computationally expensive step for
dense matrices of this dimensionality. Hence, having a sparse precision matrix makes this
Gaussian approximation feasible.

The approximation for π(xi | θ,y) is a little more complicated. It can be done effi-
ciently from the Gaussian approximation π̃G(x |θ,y). However, this method often results
in location and skewness errors, and is therefore not recommended. A Laplace approxi-
mation can also be constructed, based on the similar relation to (2.18), given by

π(xi | θ,y) =
π(x | θ,y)

π(x−i | xi,θ,y)
∝ π(y | x,θ)π(x | θ)π(θ)

π(x−i | xi,θ,y)
. (2.19)
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Again, the nominator is easily calculatable, however, the denominator is difficult. Again,
Laplace approximation can be applied by approximating the denominator by a Gaussian
approximation π̃GG(x−i | xi,θ,y), which can be built by matching the mode and curva-
ture around the mode. However, this is very computationally expensive due to the high
dimensionality of x. The third and preferred approximation is the simplified Laplace ap-
proximation. This is based on correcting the Gaussian approximation in terms of location
and skewness, by a Taylor expansion around the mode of the Laplace approximation. The
simplified Laplace approximation will be used in this work.

Once the distributions π(θ | y) and π(xi | θ,y) have been approximated, the integrals
in (2.16) and (2.17) can be calculated numerically. This will be done by first exploring the
space of θ through the approximation for π(θ |y). By locating the mode, and finding a set
of high-density points (θ1, . . . ,θk), the integrals can be approximated by summing over
the high-density area of π(θ | y).

Note that since we work with an SPDE approximation, the estimated posterior
marginals for ρ and σ2

s are not estimates of the true parameters of the Matérn covari-
ance function for the underlying GRF. However, for a good approximation, the resulting
parameters will in general be close to the true parameters.

2.4 Model Assessment and Prediction Scores

To evaluate how well the SPDE model we use fits the data and to which extent the SPDE
model succeeds in predicting at some given locations, we need a model assessment score
and prediction scores.

2.4.1 Model Assessment - WAIC

The Widely Applicable Information Criteria (WAIC) introduced by Watanabe and Opper
(2010), also called ”Watanabe-Akaike information criteria”, is an extension of AIC and
is a Bayesian approach for estimating a log pointwise predictive density and corrects for
the effective number of parameters. We will use the approach described by Gelman et al.
(2014). The reported score for a given model is

WAIC = −2(lppd− pWAIC). (2.20)

lppd means the log pointwise posterior predictive density and is given by

lppd =

n∑
i=1

log

∫
p(yi | θ)p(θ | y)dθ

≈
n∑
i=1

log
( 1

S

S∑
s=1

p(yi | θs)
)
,

(2.21)

for S simulations of the posterior p(θ | y) labeled θs. The symbol ≈ means the computed
version.
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pWAIC is a correction for effective number of parameters in the model to adjust for
overfitting. It is computed by summing the posterior variance of the log predictive density
for each data point yi as in the following

pWAIC =

n∑
i=1

Varpost(log p(yi | θ))

≈
n∑
i=1

1

S − 1

S∑
s=1

(
log p(yi | θs)− µi

)2
,

(2.22)

where µi =
∑S
s=1 log p(yi | θs). In practice we sum over the sample variance for the

posterior log predictive density.
We can now compare SPDE models with different mesh resolutions to see which model

fits the data best. We want low values for WAIC.
The WAIC score does not explicitly say how big the difference between two models

in practice is. It is therefore challenging to determine how big the difference between two
models should be before, we can conclude that one is better than the other.

2.4.2 Prediction Scores
To evaluate the predictive performance of the SPDE model, we hold out some of the ob-
servations when fitting the models. These held-out observations are unobserved for the
model, but the true response is known to us and the scoring methods. When predicting at a
held-out location si, we want to compare the predictive distribution with the true response
yi to measure how accurate the predictions are. We will use the root mean square error
(RMSE) and the continuous ranked probability score (CRPS). Both of these scoring rules
are negatively orientated, which means that a smaller value indicates a better prediction.

RMSE

In general, RMSE is given by

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2, (2.23)

where ŷi is the prediction and yi is the true response. This applies to both continuous and
count data. In a repeated k-fold cross-validation, we compute the MSE for all predictions
in a given fold, take the average of all K folds and then take the square root to get the
mean RMSE for all repetitions. When predicting on a hold-out set, we need a weighted
scoring rule, since the number of prediction locations inside a region varies.

RMSEhold-out =

√√√√No. of states∑
j=1

MSEj × wj , (2.24)

where wj = No. of locations in state j
Total number of locations in dataset , and MSEj = 1

nj

∑nj
i=1(ŷi − yi)

2 is the mean
scoring for state j. When computing the RMSE, only point predictions are taken into
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account, so that the prediction obtained at location si, is only compared to the true response
yi at the same location.

CRPS

In contrast to RMSE, the CRPS uses the predictive cumulative distribution function and
the predictive density function to evaluate how well the true value fits with the predictive
distribution. As defined in Gneiting et al. (2007), CRPS measures sharpness which is the
concentration or spread of the predicted distribution, and calibration which is the statistical
consistency between the predictive distribution and the true response yi.

From Gneiting and Raftery (2007), the CRPS is defined as

CRPS(F, x) =

∫ ∞
−∞

(F (y)− I{y ≥ x})2dy, (2.25)

where F is the cumulative distribution function for the predictive distribution, x is the
observed value and I is the indicator function which equals 1 if y ≥ x and 0 if not. CRPS
is a proper scoring rule, which means that the true distribution is the one that minimizes
the expected score. A more formal definition is as follows

Definition 2.4. (Proper Scoring Rules (Gneiting and Raftery, 2007)) Let S(F, x) ∈ R be
a scoring rule, where F is the predictive distribution and x is an observation drawn from a
distribution G. The expected score value of S(F, x) is denoted S(F,G). The scoring rule
is proper if S(G,G) ≤ S(F,G) for all F and G. If we have equality S(F,G) = S(G,G)
only when F = G, the scoring rule is strictly proper.

Note that the definition of CRPS in Equation (2.25) is multiplied by −1 compared to
the one provided by Gneiting and Raftery (2007) since we want a negatively oriented score.
In this work, we will use the CRPS for both continuous and count data, which means that
we need both a continuous and a discrete version of CRPS. For the count data, we will have
a Binomial likelihood, while for the continuous version, we will have a likelihood that is
Gaussian, which means that the predictive distribution will be Gaussian with a mean µ and
variance σ2.

For an observation yi in the Gaussian case, the CRPS can be written as

crpsc(N (µ̂i, σ̂
2
i ), yi) = σ

[
2φ(zi) + zi(2Φ(zi)− 1− 1√

π
)
]
, (2.26)

where zi = (yi − µ̂i)/σ̂i with predicted mean µ̂i and variance σ̂2
i . φ(·) is the probability

density function (pdf) and Φ(·) is the cumulative distribution (cdf) of a standard Gaussian
variable. When using the INLA approach, we can for a given location si get posterior
summary statistics like the mean, standard deviation and median with others, for the pre-
diction. For the predicted mean, µ̂i, we can use the posterior mean from the SPDE model,
but for the variance σ̂2

i , we can not use the posterior standard deviation. This is because
it does not contain both the marginal variance σ2

s and the nugget variance σ2
N. We will

therefore generate samples and compute the variance σ̂2
i using the following procedure:

• Generate S samples from the (approximate) joint posterior of the latent field
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• For each of these samples:

1. extract the estimated nugget variance σ̃2
N

2. draw a random effect ε̃i ∼ N (0, σ̃2
N)

3. add ε̃i to the latent field sample

• Take the variance of these S transformed samples, which will be the predicted vari-
ance σ̂2

i .

The average CRPS in the continuous case for a set of locations {si}i=1,...,n with true
responses yi is then

CRPSc =
1

n

n∑
i=1

crpsc(N (µ̂i, σ̂
2
i ), yi). (2.27)

For the discrete version of CRPS, when we want to evaluate count data, the approach is
a bit different than for the continuous version. For the continuous CRPS, we use samples
of the joint posterior of the latent field to create the variance σ̂2

i , which again is used
as a parameter into the CRPS function in (2.26). For the discrete CRPS we will draw
samples from the joint posterior of the latent field and use these to draw new samples from
a Binomial distribution, and use the new samples themselves to create the cumulative
distribution used in the general equation for CRPS, Equation (2.25). Our observations are
probabilities on the form p∗i = yi/ni, where yi is the number of successes and ni is the
number of trials, which means that we want to compare these predictions at probability
scale. The samples are created the following way.

• Generate S samples from the (approximate) joint posterior of the latent field,
{η̃si }s=1...,S

• For each of these samples:

1. Draw a new sample from the Binomial distribution using the latent field sam-
ples, ỹsi ∼ B(n = ni, p = logit−1(η̃si ))

• Create an empirical cumulative distribution of the new samples {ỹsi }s=1,...,S

The empirical cumulative distribution is then for a location si given by

F̂i(ti) =
Number of samples ≤ ti

S
=

1

S

S∑
s=1

I(ỹsi ≤ ti), (2.28)

where ti = [0, 1
ni
, 2
ni
, . . . , ni−1

ni
, 1] and I is the indicator function. After this, we can

define the discrete CRPS for a location si as

crpsd(F̂i, p
∗
i ) =

1

ni

ni∑
j=0

(
F̂i(j/ni)− I(p∗i ≤ j/ni)

)2
. (2.29)

The average discrete CRPS for a set of locations {si}i=1,...,n is then given by

CRPSd =
1

n

n∑
i=1

crpsd(F̂i, p
∗
i ). (2.30)
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2.4 Model Assessment and Prediction Scores

As with RMSE, we will use CRPS to evaluate predictions for a repeated K-fold cross-
validation and a hold-out set. The average CRPS for a repetition r will therefore be

CRPSr =
1

K

K∑
k=1

[ 1

nk

nk∑
i=1

crps(Fi, xi)], (2.31)

with nk being the number of observation/prediction locations in fold k and crps(Fi, xi)
being the CRPS value for the observation at location si in fold k. This will either be
the continuous CRPS, crpsc(N (µ̂i, σ̂

2
i ), yi), or the discrete, crpsd(F̂i, p

∗
i ). For a hold-out

region, the CRPS is

CRPStotal =

No. of states∑
j=1

CRPSj × wj , (2.32)

where wj = No. of locations in state j
Total number of locations in dataset , and CRPSj = 1

nj

∑nj
i=1 crps(Fi, xi) is the mean

scoring for state j with crps(Fi, xi) as above.

21



Chapter 2. Background

22



Chapter 3

Investigating the Influence of
Mesh Resolution for Gaussian
and Non-Gaussian Responses

In this chapter, we will perform two case studies to investigate how the SPDE model is
influenced by different mesh configurations. We first explain the purpose of these case
studies. Then a description of the studies and assessment criteria follows. Finally, the two
case studies of datasets introduced in Sections 1.3 and 1.4 are presented. Here we give the
specific model choices for the continuous and count data.

3.1 Aim of the Studies
We want to investigate the influence on estimation and prediction of mesh resolution for
Gaussian and Non-Gaussian responses using the SPDE approach for GRFs in 2D (Lind-
gren et al., 2011) described in Section 2.2. This is interesting and important because the
mesh in the SPDE approach determines both the accuracy and precision of our results as
well as the computational cost. We also believe that the mesh has a different influence
on continuous data, compared to count data. We will therefore study the influence of the
mesh on two datasets, one with a Gaussian likelihood and one with a Binomial likelihood.

Throughout this study, we want to answer three questions; How well does the SPDE
model with different mesh resolutions fit our data? How does the mesh resolution influence
parameter estimates? How does the mesh resolution influence the prediction quality both
in terms of accuracy and the computational complexity measured in running time?

3.2 Design of Case Studies
In this section, we will describe the general setup for our case studies, which includes the
spatial model, the mesh setup and how to answer the three questions above. This setup
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applies to both continuous and count data, while the specific details for each case will be
explained in Section 3.3 and 3.4.

3.2.1 Spatial Model
Let y1, . . . , yn be observations at locations s1, . . . , sn. We assume that the underlying
model for our observations is a Gaussian random field (GRF) with zero mean and a co-
variance matrix with Matérn covariance function, as defined in Definition 2.1. The Matérn
covariance function has two parameters, the range ρ and the marginal variance σ2

s .
We can therefore let our observations yi follow a likelihood p(·) given a mean µi which

is linked to a linear predictor ηi through a link function g(·). The linear predictor consists
of an intercept β0, covariates with coefficients, Xβ, and a spatial effect u(s). In addition,
we introduce a nugget parameter, σ2

N. For the Gaussian model, σ2
N will be a likelihood

parameter, while for the Binomial model, this is a parameter of an iid random effect εi in
the linear predictor ηi.

As presented in Chapter 1 - Introduction, the GRF that we assume as an underlying
model for the observations, can be computationally expensive to work with. Therefore,
we will use the SPDE approach by Lindgren et al. (2011) described in Section 2.2. In this
approach, we need the model specifications which include the likelihood p(·) and priors
for the parameters defined above, and we must also decide on the mesh structure.

3.2.2 Mesh Setup
In Section 2.2.2, the mesh on which the SPDE approach works was defined. To investi-
gate how the prediction quality varies with the mesh resolution, we will change two mesh
parameters; h, the largest allowed triangle edge length, and r, a factor that adds an outer
extension to the domain boundary. It is possible and common to use different mesh reso-
lutions in the inner and the outer domain, where the latter can have a lower resolution to
save running time. We choose to use only one resolution on the whole domain since we
are only interested in resolution effects and boundary effects. Besides, more parameters
would give more complex results. The mesh will be made independent of the observation
locations. This is because we are interested in the general performance for different mesh
resolutions, and we therefore do not want the mesh to be influenced by the observation
locations of these particular datasets.

3.2.3 Setup of Case Studies
In the first question introduced in Aim of the Studies, we are interested in finding out
how well the chosen model fits with the datasets for different mesh configurations. A
configuration in this context is given by the largest allowed edge length, h, in the mesh
triangulation and the outer boundary extension, r, which will vary for different configura-
tions. We therefore begin with a model assessment, where we calculate the model score
WAIC defined in Section 2.4. We also report the computation time of fitting the model.

To answer the second question, we fit the spatial model for different mesh resolutions
on both datasets and report the parameter estimates. These parameters are estimated by
maximizing the log-likelihood of the SPDE-approximation. We consider fixed parameters
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such as the intercept β0 and covariate coefficients β, parameters for the spatial model,
range ρ, marginal variance σ2

s , and the nugget effect σ2
N. Specifically, we will investigate

which mesh resolution the parameter estimates start to stabilize on, and how different the
estimated posteriors are compared to their priors. We do not know the values of the true
parameters, thus we can not check whether the parameter estimates really are close, we
can only look at their behaviour.

For answering the third question, the mesh’s impact on predictive power, we will per-
form repeated ten-fold cross-validation, as well as a hold-out analysis where one region is
held out at a time. Firstly, we evaluate predictive performance by calculating the scoring
rules CRPS and RMSE as described in Section 2.4, and report running times for different
mesh resolutions. The motivation behind doing the repeated cross-validation is to investi-
gate how much better the model predicts when increasing the mesh resolution. For each
repetition, the dataset will be randomly split into ten folds of equal size. Observations
from nine folds will be used to fit the model, and the last fold will be predicted on and
assigned a score by the scoring rules CRPS and RMSE. This will be done for all ten folds
so that every observation location is predicted on once. The average score of the held-out
observations in one fold is then calculated, and we report the average for a repetition. This
process is repeated ten times so that the choice of folds does not affects the final results.

We are also interested in seeing how the prediction quality changes with increasing
mesh resolution when holding out larger areas at a time. We will therefore, for each mesh
configuration, hold out one region (states in the US / counties in Kenya), use the remaining
observations to fit the model, and then predict on the held out locations. This will say
something about how well the model predicts over longer distances when the distance
between the point to be predicted is possibly at a long distance from other observations.

Lastly, we visualize the model estimates for both datasets on a fine grid and report the
runtimes for a selection of mesh configurations. This is to visually inspect our results and
give a qualitative summary. Do we see any visual differences when increasing the mesh
resolution?
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3.3 Case Study 1 - Precipitation in the Conterminous US
We will now examine the dataset ”Precipitation in the Conterminous US” which was in-
troduced in Section 1.3. The objective is to solve the questions raised in Section 3.1.
Let y1, . . . , yn be observations of precipitation on log2-scale at locations s1, . . . , sn, with
n = 7040 in this particular case. These observations are shown in Figure 1.1. We also have
elevation data, xi, at these locations. We assume that yi can be described by the model
defined in the previous section, with a Gaussian likelihood and the identity link function.

The hierarchical model for yi then becomes

Stage 1: yi | ηi ∼ N (yi | ηi, σ2
N),

ηi = β0 + xiβ1 + u(si)

Stage 2: ui | θ ∼ GRF(0,Σ(θ)), i = 1, . . . , n

Stage 3: θ, σ2
N ∼ π(θ, σ2

N).

(3.1)

As presented in Section 2.3.2, we will use PC-priors for ρ, σ2
s and σ2

N. From an initial
look, we choose the prior for the range parameter to have a median of 10, which is about
1/5 of the diameter of our study region. For the marginal standard deviation, σs, we choose
a median of 1, and we set the nugget variance prior to be 10 % of the marginal variance,
which yields a median of

√
0.1 for σN. As shown in Example 2.1 in Section 2.3.2, this

gives 95% credible intervals of [1.9, 273.8] for ρ, [0.04, 5.32] for σs and [0.01,1.68] for
σN.

We will run the different analyses described in Section 3.1 with the following values of
maximum edge length h: [8, 4, 2, 1, 0.5, 0.25, 0.125]. The offset values will be [0, -0.05,
-0.1, -0.2, -0.4], which corresponds to an increase of [0, 5, 10, 20, 40] % of the existing
domain. In Figure 3.1, six meshes are shown with the boundary of the conterminous US
(blue line) and our location domain (red points) for different combinations of maximum
edge length h and offset r.
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(a) h = 4 and r = 0%. Number of triangles are 254. (b) h = 4 and r = 20%. Number of triangles are 649.

(c) h = 1 and r = 0 %. Number of triangles are 3676. (d) h = 1 and r = 20%. Number of triangles are 9873.

(e) h = 0.25 and r = 0%. Number of triangles are
58430.

(f) h = 0.25 and r = 20%. Number of triangles are
154154.

Figure 3.1: Meshes with different resolution. Grey line is the mesh, blue line is the US boundary
and red points are the predefined domain.
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3.3.1 Model Assessment and Parameter Evaluation.

We start by investigating the model fit for different maximum edge lengths, h. The model
score WAIC is shown in Table 3.1 with running times and the number of triangles. Increas-
ing the mesh resolution improves the WAIC score for all resolutions, but at a lower rate
for the finest resolutions. h = 0.125 gives the best WAIC score of −7868. The runtime,
on the other hand, increases slowly in the beginning (with a rate of 2 to 3) and faster for
the higher resolutions (rate of 5). For h = 0.125, the running time is almost an hour, com-
pared to about 10 seconds for the lowest resolution (h = 8 to h = 2), and a few minutes
for h = 1 to h = 0.25. Note that the running time includes making the mesh, fitting the
SPDE model and estimating parameters.

Table 3.1: Table of model fitness and running times for estimating the model and creating the
meshes, for increasing mesh resolution in the first case study.

r h WAIC Est. time (s) + mesh time (s) no. of triangles
10% 8 1285 8.3 + 0.3 115

4 -1065 7.5 + 0.2 441
2 -4044 13 + 0.2 1675
1 -6506 40 + 0.3 6495

0.5 -7394 114 + 0.9 25521
0.25 -7779 602 + 5.7 101459

0.125 -7868 3183 + 56 404994

The increased runtime is caused by the higher number of triangles that are needed to
cover the domain when reducing h. With more triangles in the mesh, there are more nodes
on which the SPDE model works. The dimensionality m of the projector matrix A and
the Gaussian weights w increases, and thus the total CPU time for running the model
increases as well. In addition to a larger estimation time for finer mesh, the time it takes to
build the mesh also increases.

To answer the second question for this case, we continue with investigating how the
mesh resolution influences the parameter estimates. Table 3.2 show estimates for the fixed
parameters intercept (β̂0) and elevation (β̂1), the spatial parameters range (ρ̂) and marginal
standard deviation (σ̂s), and the nugget effect (σ̂N). The intercept β̂0 stabilizes at h = 0.5
with value β̂0 = 6.2 and the elevation β̂1 stabilizes at h = 1 with value β̂1 = 0.7. The

Table 3.2: Tables of estimated parameters for increasing mesh resolution with offset r = 10%. The
values shown are the 50% quantiles with corresponding 2.5% and 97.5% quantiles in brackets.

h β̂0 β̂1 ρ̂ σ̂s σ̂N
8 6.62 [4.86, 8.40] 0.52 [0.50, 0.54] 26.3 [16.0, 52.9] 1.09 [0.78, 1.73] 0.264 [0.259, 0.268]
4 6.50 [5.47, 7.63] 0.65 [0.63, 0.67] 18.6 [12.6, 37.2] 1.03 [0.76, 1.70] 0.222 [0.218, 0.225]
2 6.37 [5.84, 6.95] 0.66 [0.64, 0.68] 10.9 [ 8.6, 15.1] 0.86 [0.70, 1.15] 0.174 [0.171, 0.178]
1 6.24 [5.91, 6.58] 0.69 [0.68, 0.71] 7.2 [ 6.1, 8.7] 0.76 [0.65, 0.89] 0.138 [0.135, 0.140]

0.5 6.21 [5.92, 6.52] 0.70 [0.68, 0.72] 6.4 [ 5.6, 7.6] 0.73 [0.64, 0.85] 0.122 [0.120, 0.125]
0.25 6.20 [5.92, 6.50] 0.70 [0.68, 0.72] 6.2 [ 5.1, 7.2] 0.74 [0.62, 0.85] 0.116 [0.113, 0.120]

0.125 6.19 [5.94, 6.46] 0.70 [0.68, 0.72] 6.2 [ 5.3, 8.4] 0.73 [0.63, 0.94] 0.115 [0.111, 0.118]
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size of the 95% credibility interval for β̂0 is at its smallest for h = 0.125, while for β̂1

the smallest interval is at h = 1. The parameters ρ̂ and σ̂N stabilize at h = 0.25, while σ̂s
stabilizes at h = 0.5. The 95% credibility intervals are at the smallest for h = 0.5 for ρ̂, σ̂s
and σ̂N.

To summarize this initial analysis, we see that by increasing the mesh resolution, the
model score WAIC improves, and the parameters converge, to a cost of longer running
time.

(a) Boxplot of CRPS scores for cross-validation. (b) Boxplot of RMSE scores for cross-validation.

(c) Total CPU time for estimation. (d) Number of triangles in the mesh for each h.

Figure 3.2: Cross-validation scores, running time in seconds and number of triangles for varying h
and constant r = 10%.

3.3.2 Repeated 10-fold Cross-Validation
In the third question, we want to investigate the predictive power as function of mesh
resolution. In Figure 3.2a and 3.2b, boxplots with mean CRPS score and mean RMSE
score for the ten repetitions are shown for decreasing maximum edge lengths. Within the
boxplots, the variations are very small, which means that the choice of prediction locations
almost not affects the scores. We see that both prediction scores stabilize around h = 0.5
with a value of about 0.08 for CRPS and 0.149 for RMSE. Boxplots of total computation
time for estimation are shown in Figure 3.2c with the corresponding number of triangles
in the mesh in Figure 3.2d. We see a linear relationship on log2-scale between the running
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time and h, as well as the number of triangles and h. When halving h, the number of
triangles is quadrupled.

As described in Section 2.4.2, we need to sample the estimated values at prediction
locations to compute the variance which is needed in the CRPS score. This sampling
procedure takes some time in addition to the time it takes to fit the model and estimate
values at prediction locations. The mean computation time for sampling is reported in
the Appendix, in Table A.1, together with mean RMSE, mean CRPS and mean estimation
time.

Note that the running times in Figure 3.2c are larger than the running times shown in
Table 3.1. The implementation in R-INLA is parallellized for 10-fold CV and hold-out
region analysis, so the above difference is because only one thread is used in Figure 3.2c,
while 10 threads are used in Table 3.1.

(a) CRPS score (b) RMSE score

(c) Total CPU time in seconds. (d) Number of triangles in mesh.

Figure 3.3: Scores, runtime and number of triangles for combinations of h and r for cross-
validation. The order of boxes within each h group coincides in all plots with r = 20% to the
left (red), r = 0% to the right (purple).

Until now, we have only run the SPDE model with r = 10%, which is an increase of
10% of the original domain. To check whether there is any further connection between a
low maximum edge length and a larger outer boundary extension, combinations of h = [2,
1, 0.5, 0.25] and r = [0%, 5%, 10%, 20%] are run.

The results are shown in Figure 3.3. We clearly see that the maximum edge length
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(a) (b)

Figure 3.4: (a) The state North Dakota as hold-out region with prediction locations in blue. The
other observations (red) will be used for estimation. (b) Example of a 10-fold CV splitting. One fold
with locations shown in blue will be used for predictions while the nine remaining are for estimation.

parameter h, influences the prediction quality in terms of RMSE and CRPS score more
than the offset parameter r. For h between 0.25 and 1, a change in r has very little effect on
the RMSE and CRPS score, it only increases the running time for estimating at prediction
locations. For both the scores and the runtimes in Figure 3.3c, there is little variation
between the repetitions within each h group, which give the small boxplots.

The runtime increases with a larger r, expect for the runs with h = 2, which is natural
as there are more triangles for lower values of h. For h = 2, which is an exception from
this trend, there is a difference of 960 triangles (r = 0%) to 2508 triangles (r = 20%),
which is a rather small difference. There are other factors in the estimation process which
do not depend on the number of triangles, and we therefore do not observe the same trend
here.

From this analysis we can justify continuing using our default offset value r = 10%,
corresponding to a 10% increase of the mesh.

3.3.3 Hold-Out Regions
In our study region, which is the conterminous US, there are 48 states. Some are close
to the boundary and some are in the middle of the mesh. In addition to the former analy-
ses, we are interested in seeing how the prediction quality changes with increasing mesh
resolution when holding out larger areas at a time, like a state.

In Figure 3.4, two plots of the conterminous US with estimation and prediction loca-
tions are shown for (a) a hold-out region and (b) one prediction fold in the 10-fold CV.
In comparison to using a hold-out region for prediction, the 10-fold CV randomly splits
all observations in the study region into ten folds, where one is a prediction fold and the
remaining nine are for estimation. Thus, most prediction locations in the 10-fold CV have
closely related points that are used for fitting the model, while most prediction locations
in the hold-out region have a long distance to the closest observations.

We therefore leave observations of one state out at a time. We then predict the log
annual precipitation at these hold-out locations, and compare the predictions with the ob-
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served values through the weighted scoring rules RMSE and CRPS,
In Table 3.3, the prediction scores with mean estimation time and mean sampling times

are presented. From these results we see that by reducing the maximum edge length, h, the
prediction quality improves. h = 0.5 yields the best prediction qualities both with RMSE
and CRPS. This corresponds to a mean estimation time of 324 seconds and a prediction
time of 136 seconds, in total about 8 minutes on average.

Table 3.3: Table of prediction scores and runtimes including estimation time and sampling time for
computing CRPS, for increasing mesh resolution for hold-out regions analysis.

r h RMSE CRPS Estimation time + Prediction time (s)
10% 8 0.372 0.184 14 + 15

4 0.304 0.154 17 + 18
2 0.288 0.146 35 + 29
1 0.280 0.141 148 + 52

0.5 0.270 0.138 324 + 136
0.25 0.274 0.139 1598 + 438

0.125 0.274 0.139 8767 + 1756

As a final task, we keep h constant with a value of 0.5 and vary the offset r for one
hold-out region located near the boundary of the US, specifically North Dakota. By doing
this, we can check whether the model suffers from boundary effects. In Table 3.4 RMSE
and CRPS values are shown for varying r. There is no clear trend for the prediction
quality, especially not in the CRPS score. Thus, it does not seem that the model suffers
from boundary effects, at least not when the maximum edge length is as short as h = 0.5.

Table 3.4: Table of prediction scores and runtimes including estimation time and sampling time for
computing CRPS, for increasing boundary region when holding out the state North Dakota.

r h RMSE CRPS Estimation time + Prediction time (s) No. Triangles
0% 0.5 0.163 0.115 89 + 37 14706
5% 0.5 0.165 0.113 124 + 45 19796

10% 0.5 0.171 0.115 151 + 53 25521
20% 0.5 0.171 0.114 238 + 72 38706

3.3.4 Predictions on Grid
To visualize what we have seen, we predict the model on a grid of size 400 × 200. As
we want to predict the posterior mean and the posterior standard deviation on the grid
locations, we need elevation data at all these 80 000 locations. We use elevation data from
Hastings et al. (1999). In Figure 3.5, the posterior mean is shown for three different values
of h; 4, 1 and 0.25. The elevation covariate is clearly seen in all three plots.

When only looking at the random field, as in Figure A.1 in Appendix, a lower value of
h, i.e., a finer mesh, gives more variability in the predicted mean.

Figure 3.6 shows the posterior standard deviation on the predicted locations. The col-
orbar is shown on log-scale. For the low resolution case, with maximum edge length

32



3.3 Case Study 1 - Precipitation in the Conterminous US

(a) Parameter h = 4.

(b) Parameter h = 1.

(c) Parameter h = 0.25.

Figure 3.5: Predicting annual log-precipitation on 400 × 200 grid.
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h = 4, we clearly see the triangles in the mesh as the triangle edges and intersections have
higher standard deviation. This effect was explained in Section 2.2.2.

For shorter maximum edge lengths in Figure 3.6b and 3.6c, the standard deviation is
generally higher. If we compare the observation locations in Figure 1.1 with the standard
deviation, we see that areas with low density of observations have higher standard devia-
tion, which is natural. Thus, if the posterior standard deviation is of interest, one should
increase the mesh resolution.

Predicting on the grid with h = 4 took about 88 seconds, with h = 1 it took 267 seconds
and with h = 0.25 it took 891 seconds (≈ 15 minutes). In comparison, estimation in the 10-
fold CV took respectively about 16, 128 and 1448 seconds for each fold, in each repetition,
in all 100 times.
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(a) Parameter h=4.

(b) Parameter h=1.

(c) Parameter h=0.25.

Figure 3.6: Standard deviation of predicted annual log-precipitation on 400 × 200 grid.
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3.4 Case Study 2 - Secondary Education Prevalence for
Women in Kenya

We will now perform a similar analysis as we did in Section 3.3 on the dataset of secondary
education prevalence for women in Kenya introduced in Section 1.4. Let n1, . . . , nn be
the number of interviewed women at observation locations s1, . . . , sn. Furthermore, let
y1, . . . , yn denote the secondary education prevalence at these locations, i.e., the number
of interviewed women that have completed their secondary education. The observed prob-
ability of completing secondary education at location si is then given by p∗i = yi/ni. The
dataset is shown in Figure 1.2.

We assume that our data yi have a Binomial likelihood which can be expressed by

yi | ηi ∼ B(ni, pi),

ηi = logit(pi) = log
pi

1− pi
= β0 + βURBIurban(si) + u(si) + εi, i = 1, . . . , n

(3.2)

where B(ni, pi) is the Binomial likelihood with ni trials and a probability pi of success.
The logit of the prevalence pi is denoted ηi and is a sum of the intercept β0, the indicator
covariate ”urbanicity” which is 1 if the location is urban and 0 if it is rural, with parameter
βURB, a spatial field u(si) defined by our GRF and an iid Gaussian random effect, εi, with
zero mean and a nugget variance σ2

N.
Our spatial field u(si) is a GRF with a Matérn covariance function, as defined in Sec-

tion 2.1. This function has two parameters, the range ρ and the marginal variance σ2
s . The

Gaussian noise εi in the linear predictor ηi has parameter σ2
N. As we are in a Bayesian set-

ting, we want priors on these hyperparameters, and we use the PC-priors defined in Section
2.3.2. Following the approach of Paige et al. (2019), we set the median of the prior for the
range ρ to be about one fifth of the diameter of the spatial domain. On longitude-latitude
scale, this corresponds to a prior of P (ρ < 2) = 0.5. For the marginal standard deviation
and the nugget effect we set P (σs > 1) = P (σN > 1) = 0.01. This yields 95% credibility
intervals of [0.4, 54.8] for ρ and [0.006, 0.801] for σN and σs.

As a final step, we need to decide on the mesh structure, in terms of its size and
resolution. As earlier described, we will vary the maximum edge length, h, and the offset,
r. We have set the median of the prior to be 2, thus we start with a maximum edge length
of h = 4, and halve this until h = 0.125 with a boundary offset of r = 10%. In Figure
3.7, we see different configurations of the mesh structure to be used. The boundary of
Kenya is shown in blue together with the chosen boundary domain with red points. A finer
resolution gives more triangles.
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(a) h = 1 and r = 0%. Number
of triangles are 240.

(b) h = 1 and r = 10%. Num-
ber of triangles are 376.

(c) h = 1 and r = 20%. Number
of triangles are 520.

(d) h = 0.25 and r = 0%. Num-
ber of triangles are 3674.

(e) h = 0.25 and r = 10%.
Number of triangles are 5590.

(f) h = 0.25 and r = 20%. Number
of triangles are 7926.

(g) h = 0.125 and r = 0%.
Number of triangles are 14325.

(h) h = 0.125 and r = 10%.
Number of triangles are 21985.

(i) h = 0.125 and r = 20%. Num-
ber of triangles are 31111.

Figure 3.7: Meshes with different resolution. Grey line is the mesh, blue line is the US boundary
and red points are the predefined domain.
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Table 3.5: Table of model fitness and running times for estimating the model and creating the
meshes, for increasing mesh resolution in the seond case study.

r h WAIC Estimation time + Mesh time (s) No. of triangles
10% 4.00 4856 9.1 + 0.3 32

2.00 4836 10.7 + 0.3 103
1.00 4801 9.6 + 0.3 376
0.50 4784 11.1 + 0.3 1441
0.25 4785 51.8 + 0.4 5590

0.125 4783 296.0 + 1.3 21985
0.0625 4783 6092.9 + 5.7 87379

Table 3.6: Table of fixed parameters and hyperparameters with median and [2.5%, 97.5%] credibil-
ity interval in brackets. Offset r = 10%.

h β̂0 β̂URB ρ̂ σ̂s σ̂N
4.0000 -2.42 [-3.34, -1.53] 1.09 [0.97, 1.22] 2.81 [1.33, 5.82] 1.01 [0.65, 1.61] 0.77 [0.85, 0.70]
2.0000 -2.47 [-3.14, -1.87] 1.04 [0.91, 1.17] 2.08 [1.07, 3.94] 0.92 [0.65, 1.33] 0.77 [0.82, 0.67]
1.0000 -2.55 [-3.14, -2.03] 1.01 [0.88, 1.14] 1.80 [1.12, 2.97] 0.92 [0.70, 1.21] 0.69 [0.77, 0.62]
0.5000 -2.57 [-3.12, -2.10] 1.00 [0.87, 1.13] 1.67 [1.14, 2.54] 0.90 [0.70, 1.17] 0.66 [0.74, 0.58]
0.2500 -2.56 [-3.14, -2.07] 0.99 [0.86, 1.13] 1.82 [1.26, 2.74] 0.88 [0.68, 1.15] 0.66 [0.74, 0.58]
0.1250 -2.56 [-3.14, -2.08] 0.99 [0.86, 1.13] 1.79 [1.24, 2.68] 0.88 [0.68, 1.15] 0.65 [0.73, 0.58]
0.0625 -2.56 [-3.13, -2.08] 0.99 [0.86, 1.13] 1.77 [1.24, 2.67] 0.88 [0.68, 1.15] 0.65 [0.73, 0.58]

3.4.1 Model Assessment and Parameter Evaluation
Similarly to the Gaussian data case, we start off with a model assessment and a parameter
evaluation. In Table 3.5, the results of an initial analysis are shown. The model score
WAIC stabilizes at a maximum edge length of h = 0.5, with a value of 4784. This
corresponds to an estimation time of about 11 seconds and a mesh creation time of 0.3
seconds. Reducing h two steps further, to h = 0.125, only improves the WAIC-score to
4783 but increases the runtime to about 5 minutes.

We are also interested in looking at the behaviour of our estimated parameters, both
the fixed parameters β̂0 and β̂URB, and the hyperparameters ρ̂, σ̂s and σ̂N. The median
estimates of these parameters are shown in Table 3.6 with corresponding 2.5% and 97.5%
- quantiles inside brackets. Most model parameters stabilize around h = 0.5, and thus
increasing the resolution more than this will not change the estimated parameters further.
Keep in mind that the spatial hyperparameters, ρ̂ and σ̂s are not necessarily the true pa-
rameters of the underlying GRF, but the parameters of the GRF approximation.

3.4.2 Repeated 10-fold Cross-Validation
For this dataset as well, we have performed a repeated 10-fold cross-validation. In contrast
to the Gaussian case, we now need to calculate the CRPS in a discrete way, since we are
working with Binomial data. These calculations are described in Equation 2.30 in Section
2.4.

Figure 3.8 shows the results of the repeated cross-validation. Both the CRPS score
and the RMSE score start to stabilize at h = 0.5, with values of about 0.112 and 0.216
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(a) Boxplot of CRPS score CV repetitions. (b) Boxplot of RMSE score for CV repetitions.

(c) Total CPU estimation time for CV repetitions. (d) Number of triangles in the mesh for each h.

Figure 3.8: Repeated cross-validation scores for case 2. Varying maximum edge length h with
constant offset r = 10%. Running time in seconds and number of triangles in the mesh.

respectively. The running time in Figure 3.8c seems to increase more than linearly, while
the number of triangles increases linearly with a factor of four when halving h. The run-
ning time in this case only consists of estimation time. The prediction time used to sample
predictions to compute CRPS is included in Table A.2 in Appendix. Note again that the
running times in Figure 3.8c are larger than the running times shown in Table 3.5 due to
the parallellization structure when predicting.

As in the Gaussian case, we have until now only varied the largest allowed edge length,
h. We also want to investigate the effect of the boundary offset, and therefore vary this as
well. Specifically, we use h = [1, 0.5, 0.125] and r = [0%, 5%, 10%, 20%]. The results
are shown in Figure 3.9. Here we see that the best scores with h = 1 and h = 0.5 are
obtained when using r = 5%. For higher mesh resolution there is almost no change.
When varying r, the locations of the mesh nodes might change in order for the mesh adapt
to the mesh parameters, and thus small changes in the scoring rules can occur because of
the mesh node locations rather than the extended boundary.
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(a) CRPS score (b) RMSE score

(c) Total CPU time in seconds. (d) Number of triangles in mesh.

Figure 3.9: Scores, runtime and number of triangles for combinations of h and r for cross-
validation. The order of boxes within each h group coincides in all three plots with r = 20% to
the left (red), r = 0% to the right (purple).

3.4.3 Hold-Out Regions

There are 47 counties in our study region, Kenya. As with the Gaussian case, we are
interested in seeing how the prediction quality changes with increasing mesh resolution
when holding out larger areas at a time. Table 3.7 shows scoring results from holding
out one county at a time and predicting the prevalence of secondary education at these
locations. For this analysis we use the weighted versions of the scoring rules CRPS and
RMSE, which depend on number of locations in the county, as explained in Equation 2.24
and 2.32 in Section 2.4.2.

To check how the offset parameter r influences boundary effects for hold-out regions,
we hold out the region Narok and keep a fixed maximum edge length h = 0.25 and vary
the boundary offset r. Table 3.8 shows that the best scores are obtained using r = 5%,
which also gives the lowest runtime.

40



3.4 Case Study 2 - Secondary Education Prevalence for Women in Kenya

Table 3.7: Table of prediction scores and runtimes including estimation time and sampling time for
computing CRPS, for increasing mesh resolution for hold-out regions analysis.

r h CRPS RMSE Estimation + Prediction time (s)
10% 4.000 0.121 0.229 18 + 4

2.000 0.116 0.223 21 + 5
1.000 0.117 0.224 23 + 5
0.500 0.115 0.221 54 + 6
0.250 0.115 0.221 252 + 14
0.125 0.115 0.220 3360 + 49

Table 3.8: Table of prediction scores and runtimes including estimation time and sampling time for
computing CRPS, for holding out the county Narok.

r h CRPS RMSE Estimation + Prediction time (s)
0% 0.25 0.096 0.188 129 + 9
5% 0.095 0.185 122 + 11

10% 0.095 0.186 183 + 12
20% 0.095 0.186 278 + 15

3.4.4 Predictions on Grid

Lastly, we visualize our predictions on a 200 × 200 grid for different mesh resolutions,
given by h = [1, 0.5, 0.25, 0.125] and r = 10%. To be able to visualize the posterior mean,
we need information about the covariate ”urbanicity” on each of the 40 000 grid locations,
i.e., whether or not the particular location is an urban or rural area. Unfortunately, we do
not have this information. We therefore choose to visualize the effect that the posterior
median of the random field, û0.5q(s), projected onto the 200 × 200 grid, has on the odds.
On each grid location inside the border of Kenya, we plot this median effect, given by

exp{û0.5q(s)}. (3.3)

The projection is shown in Figure 3.10. We clearly see the connection between higher odds
and the observations with high probability in Figure 1.2. For the lowest resolution, we see
traces of the mesh structure in the upper middle part of Kenya. For higher resolutions, the
estimates are smoother.

In Figure 3.11, four plots of the posterior 95% credibility interval proportion projected
onto the 200× 200 grid is shown. This proportion is calculated by

exp{û0.975q(s)}
exp{û0.025q(s)}

, (3.4)

where û0.975q(s) and û0.025q(s) denote the upper and lower 95% quantiles of the estimated
random field û(s) projected onto the grid locations. For the lowest mesh resolution, we
see the mesh structure in the upper part of Kenya. For finer resolutions, the estimates are
smoother, but they are otherwise similar.
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(a) h = 1 (b) h = 0.5

(c) h = 0.25 (d) h = 0.125

Figure 3.10: Median posterior effect on odds for the second case study with different mesh resolu-
tions.

3.4.5 Analysis using Non-Spatial Model
In the analysis of this section, we have seen that the results from running models with
different mesh resolutions do not vary that much. The model fit score, WAIC, improves
with an absolute value of 73 from the coarsest to the finest mesh, and the CRPS and RMSE
scores only have changes in the third decimals. It is therefore tempting to check whether
the spatial part of the model really contributes to improving the model fit and predictive
power.

When removing the spatial field from the model in (3.2), the linear predictor ηi be-
comes

ηi = logit(pi) = β0 + βURBIurban(si) + εi, i = 1, . . . , n. (3.5)

When using this simplified model, we get a WAIC score of 5009, compared to 4856
for the poorest model with the spatial field included. A lower score means a better fit,
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and thus, the non-spatial model noteworthy worse than the spatial model. The parameters
when excluding the spatial model is only the intercept β0, the urbanicity parameter βURB
and the nugget parameter σN. These are estimated to be β̂0 = −1.63[−1.72,−1.53],
β̂URB = 1.18[1.05, 1.32] and σ̂N = 0.92[0.84, 1.00] for the non-spatial model. Compared
to the spatial model, the non-spatial model has a higher intercept, a higher urbanicity
effect and a higher standard deviation. For the 10-fold cross-validation, the average CRPS
is 0.128 and the average RMSE is 0.238, which is higher than when including the spatial
part. The predictive power of the non-spatial model is therefore worse.

As we expect, running this non-spatial model is more efficient than running the spatial
model since the spatial (and computationally heavy) part is excluded. Each run takes about
7 seconds plus a prediction time of 2 seconds in comparison with 48 and 6 seconds for the
spatial model with h = 0.5 and r = 10%. All in all, we can conclude that the non-spatial
model performs worse than the spatial model.
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(a) h = 1 (b) h = 0.5

(c) h = 0.25 (d) h = 0.125

Figure 3.11: Projected 95% credibility interval proportion for different mesh resolutions for the
second case study.
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Chapter 4

Discussion and
Recommendations

In this chapter, we discuss the results presented in Chapter 3. From this discussion, we try
to gather the insight we have gained on how the mesh resolution influences the results, and
how important this influence is. Finally, we formulate practical recommendations on how
to construct meshes.

4.1 Discussion

We have seen how different input meshes affect parameter estimates, the model fit and
the predictive power for the SPDE model. The questions raised in Section 3.1 will now
be discussed in turn. These questions were: How well does the SPDE model with dif-
ferent mesh resolutions fit our data? How does the mesh resolution influence parameter
estimates? How does the mesh resolution influence the prediction quality both in terms of
accuracy and the computational complexity measured in running time?

Model Fitness

The model fit is measured using the WAIC score. In both the Gaussian and Binomial cases,
we see that the WAIC score improves with an increasing mesh resolution, which means
that the model fits better to the data for higher mesh resolutions. This is the expected
result.

For the Binomial case, this fitness improvement stops for resolutions higher than h =
0.5, while for the Gaussian case, the improvement continues for all resolutions, though at
a slower pace for higher resolutions. Thus, it seems like there is more to gain by using a
very fine mesh in the Gaussian case.
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Parameter Estimates
The parameter estimates for the models stabilize at around h = 0.25 to h = 0.5 for both
the Gaussian and Binomial case. Hence, we observe that there is no gain in using a finer
mesh than h = 0.25 if the parameter estimates are of interest.

The estimated ranges for the models are ρ̂N = 6.2 for the Gaussian case and ρ̂B = 1.8
for the Binomial case, the estimated marginal standard deviations are σ̂s,N = 0.7 and
σ̂s,B = 0.9, and the estimated nugget effects are σ̂N,N = 0.1 and σ̂N,B = 0.7.

With the estimated ranges above for the two cases, h = [0.25, 0.5] corresponds
to h/ρ̂N = [0.04, 0.08] of the estimated range for the Gaussian case, and h/ρ̂B =
[0.14, 0.28] of the estimated range for the Binomial case. This indicates that there is more
to gain by using a finer mesh with continuous data, compared to count data.

Predictive Power
The predictive power is measured by performing a 10-fold cross-validation and a hold-
out region analysis for both the Gaussian and Binomial cases. The prediction quality,
measured by CRPS and RMSE, improves little for meshes finer than h = 0.5. Thus, if the
predictions are of interest, there is still no gain in using a mesh finer than this. It seems
like the predictive power reaches more or less its maximum when the parameter estimates
have converged.

This is natural since the parameters of the SPDE model become the same for all models
with a sufficiently fine mesh. One could imagine that a finer mesh, which would yield a
smoother finite element representation, would result in more accurate predictions, even
though the underlying model was the same. However, we observe that this is not the case
and that when the parameter estimates have converged, the finite element approximation
is sufficiently precise to yield good predictions.

When predicting on hold-out regions, the CRPS and RMSE for both cases are in gen-
eral larger than when predicting on randomly chosen folds in the cross-validation. This is
natural since there is no information about the field in the entire hold-out region. Thus, the
field can not be adapted to nearby observations in this case, and the error becomes larger.

In the previous analyses, we have worked with the same boundary extension, given
by r = 10%. We also varied the boundary extension, to investigate if there are any con-
nections between boundary effects and predictive power. This is done both for the 10-fold
cross-validation, and for the hold-out region case, where a region on the edge of the domain
is held out. For the Gaussian case, we observe a slight improvement for larger extensions
when the mesh resolution is low. This improvement is still small compared to the influence
of the mesh resolution. Furthermore, for higher mesh resolutions, the size of the boundary
extension does not influence the prediction quality. For the Binomial case, there is no clear
trend for the influence of the boundary extension size. Thus, it seems like the boundary
extension is not that important for the SPDE model, which means that the SPDE model
almost does not suffer from boundary effects.

As we have seen, the computational complexity of running the models increases with
higher mesh resolutions. For the Gaussian case, the running times increase linearly on
the logarithmic scale when halving the maximum edge length h. In the Binomial case,
however, it seems to be a higher than a linear relationship on a logarithmic scale between
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the runtime and the maximum allowed edge length. The important thing to note is that
fine meshes require long runtimes, up to hours for each model run. Thus when we are
interested in performing several model runs, like for cross-validation, it is necessary to
have computationally feasible runtimes.

General Comments
There can be many reasons why the Gaussian model and the non-Gaussian model differ in
how fine the mesh resolution needs to be to obtain optimal results. First, when looking at
the datasets, the Binomial case has data with a more clustered structure than the Gaussian
case. This can make it difficult to predict in the less clustered part of the domain for the Bi-
nomial case, since there is a higher distance between prediction locations and observation
locations, both in the 10-fold cross-validation and for hold-out regions.

It also seems to be more variation in the Binomial case, and the higher nugget effect
shows that the responses deviate more from the model, compared to the Gaussian case. As
presented in the Introduction, Section 1.1, the nugget effect for the Binomial case includes
more elements in general than in the Gaussian case. In the Binomial case we only observe
a discrete number, y successes out of n trials, and if n is low, p = y

n and p = y+1
n will

be different numerical values. However, the Binomial likelihood is rather diffuse for low
n, thus the model will not learn that much when observing different p = y

n and p = y+1
n .

Since the median number of trials n for the prevalence data is low, (≈ 7), we can expect
the Binomial likelihood to be confounded with the nugget effect.

In the author’s project thesis, (Røste, 2020), we saw that the amount of nugget effect
present in the dataset affected at which point it is not necessary to increase mesh resolution
any further. It seems like this is the case here as well since the Binomial data have a
relatively higher nugget effect, and also requires a less fine mesh for optimal results.

Predictions on Grid
Often, when doing spatial modeling, we are interested in visualizing our results. We want
to plot for example the posterior mean and the posterior standard deviation, and visually
compare with the observations. We have done this for both the Gaussian and the Binomial
case, for different mesh resolutions. For both cases, increasing the mesh resolution gives
smoother plots, and we see more of the spatial field. For the posterior standard deviation
plots in the Gaussian case, we see the mesh structure for low resolutions clearly. This
structure effect is discussed in Section 2.2.2. In addition, higher mesh resolution yields
higher standard deviation. For the Binomial case, we have shown the proportion of the
95% posterior credibility interval, thus a large interval yields high values, and therefore
shows spread. We do not see the same trends for the Binomial case, which means that the
sizes of the intervals do not change for increasing mesh resolution.

Comparing with Results of Righetto et al. (2020)
In the study of Righetto et al. (2020), they use the observation locations as mesh nodes.
These observations are generated randomly on a unit square with a response yi = 1+2xi+
ui+εi, where xi is a uniform covariate, ui is the SPDE approximation and εi ∼ N (0, 0.3)

47



Chapter 4. Discussion and Recommendations

for locations i. In the SPDE approximation, they used α = 1.5, which corresponds to a
smoothness ν = 0.5, and a log-gamma distribution for the prior on the parameters.

They found that the best meshes in terms of model fitness and prediction quality (MSE)
had a cutoff of c = 0.05, c = 0.03, and c = 0.01 for the number of observations n = 50,
n = 100 and n = 300 respectively. In addition, they found that for these cutoff values, the
best value of h was given by h = 0.05. The simulated field had an approximate range of
ρ∗ = 0.2, thus their meshes had a resolution relative to the range, [c/ρ∗, h/ρ∗], given by
[0.25, 0.25], [0.15, 0.25] and [0.05, 0.25] respectively, where the lower bound represents
the shortest allowed edge length (c) and the upper bound represents the maximal edge
length (h).

We have made the meshes independent of the distribution of the observation locations,
thus the sizes of the triangles are approximately the same size. In the results we have
obtained for the Gaussian case, which is the most similar case to their simulation study,
we have found that a maximum edge length of 1/12 of the spatial range should give the
best results. This corresponds to h = ρ∗/12 = 0.2/12 = 0.017, which is much smaller
than h = 0.05, which is the lowest value they used for h in the simulation design. The
main challenge is that the chosen values for h are too large so that the maximum edge
length h is not bounded by the size of the triangles from above. Instead, the density of the
observations, together with the cutoff c, decides how the mesh becomes. Thus, when they
find that the value of h does not seem to influence the results very much, we argue that this
is because the observation locations, together with c, overrides the effect of h on the mesh.

When defining a shortest edge length, c, they obtain some triangles with shorter edge
lengths when locations are located close, and thus their mesh resolution varies over the do-
main. This is a nice property when all locations one is interested in are know and used to
create the mesh since it maintains a good model fit and reduces the overall computational
complexity. On the other hand, it might lead to lower predictive power if one wants to
predict on unobserved locations that are unknown for the mesh, like with cross-validation.
This is why we, in this work, chose to create the mesh independently of the spatial distri-
bution of the locations.

4.2 Recommendations
One of the main goals of this work is to collect the results and formulate recommendations
on how to proceed when defining a mesh.

We first note that the range parameter ρ describes how the underlying GRF fluctuates
relative to the scale we are on. In the SPDE approach, an approximated effective range is
used, corresponding to a Matérn correlation of 0.1 when the distance between two obser-
vations is the range ρ. Since the mesh has to be sufficiently fine to accurately model these
fluctuations, it makes sense to formulate maximum edge length recommendations relative
to ρ. In practice, we therefore have to determine ρ before proceeding with the mesh, where
an initial guess of 1/5 of the spatial domain often has been a good starting point.

Through these analyses, we have seen that using a maximum edge length of h = 0.5,
gives good results with feasible runtime. For the Gaussian case, the estimated range is
ρ̂ = 6.2 which corresponds to a maximum allowed edge length relative to the spatial
range of 0.5/ρ̂N = 0.08 ≈ 1

12 . In the Binomial case, the estimated range ρ̂ = 1.8, which
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gives 0.5/ρ̂B = 0.28 ≈ 1
4 relative to the spatial range.

These values are only indications of where to start when building the mesh. In general,
increasing the mesh resolution improves the results, but if there is a large nugget effect
present in the data, it is not certain that a finer mesh improves the results. We recommend
that users of the SPDE approach try different meshes based on this work, like halving the
maximum edge length h to see if their results change. If there is a significant change when
increasing the mesh resolution, one has to consider whether it is worth the running time or
not. If there was not a significant change, one should decrease the mesh resolution to save
running time.
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Chapter 5

Conclusion and Further Work

A thorough analysis of the behaviour of the SPDE approach, for various meshes, has now
been performed. In particular, various maximum edge lengths h, and boundary extension
sizes r have been applied on a dataset with continuous responses, as well as a dataset with
count responses. For the various meshes, we have studied how the model fits the data, the
parameter estimates, and the prediction quality of the model.

For both the Gaussian and the Binomial case, increasing the resolution of the mesh
improves the model fit and predictive power, and makes the parameter estimates stabilize.
However, the model only improves for mesh resolutions up until a certain point, which
typically is around h = 0.5 for these particular datasets. It turns out that for most applica-
tions, there is really no need to have a finer mesh resolution than this. The computational
time, on the other hand, keeps increasing for finer mesh resolutions. Thus, it is clear that
we do not want to use a finer mesh than necessary.

From the analysis of this work, it seems like a maximum edge length of h = ρ/12
for the Gaussian case, and h = ρ/4 for the Binomial case is sufficient to obtain more
or less optimal results. If computational time is a high priority, good results might be
obtained with somewhat coarser meshes as well, but the results indicate that a too coarse
mesh will result in a significantly worse model performance. These recommendations
are suggestions on where to start when making a mesh. For a different dataset, one can
possibly obtain optimal results in terms of model fit and prediction quality at a lower
runtime cost than we have found here. It can also be that the model requires a finer mesh
than what we have recommended to obtain optimal results.

The effect of varying the boundary extension size r has also been investigated, and the
results have indicated that this setting plays an insignificant role on the resulting model
performance.

There are several extensions to this work that could be applied. First of all, it would be
interesting to do a simulation study based on the estimated parameters from the datasets
used in this work. Then, the spatial parameters range ρ and marginal standard deviation
σs would be input parameters to a simulated GRF. The estimated parameters from the
approximated SPDE model could then be compared to the true, underlying parameters,
and although the SPDE estimates cannot be interpreted as the true GRF parameters, they
will generally be close for good approximations.
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Furthermore, in a simulation study, it would be possible to vary the input parameters
ρ and σs for the underlying GRF. By doing this, the mesh resolution could be analyzed
for a wider range of different data types. This way, it would be possible to verify if the
recommendations of this work hold, particularly for various ranges ρ.

This could also be analyzed more thoroughly in real-world applications, by studying a
wide range of different datasets. By looking at different types of data for different areas,
the true, underlying parameters would likely cover a higher range. This way, it would be
easier to generalize the results and give mesh recommendations based on a higher collec-
tion of results.
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E. T. Krainski, V. Gómez-Rubio, H. Bakka, A. Lenzi, D. Castro-Camilo, D. Simpson,
F. Lindgren, and H. Rue. Advanced Spatial Modeling with Stochastic Partial Differen-
tial Equations using R and INLA. CRC Press, Boca Raton. Florida., 2018.

K. Kristensen, A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell. TMB: Automatic
Differentiation and Laplace Approximation. Journal of Statistical Software, Articles,
70(5):1–21, 2016. ISSN 1548-7660. doi: 10.18637/jss.v070.i05. URL https://
www.jstatsoft.org/article/view/v070i05.

F. Lindgren, H. Rue, and J. Lindström. An Explicit Link Between Gaussian Fields and
Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Ap-
proach. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(4):423–498, 2011.

F. Lindgren, H. Rue, et al. Bayesian Spatial Modelling with R-INLA. Journal of Statistical
Software, 63(19):1–25, 2015.

J. Paige, G.-A. Fuglstad, A. Riebler, and J. Wakefield. Design and Model-Based Ap-
proaches to Small-Area Estimation in a Low and Middle Income Country Context:
Comparisons and Recommendations. arXiv preprint arXiv:1910.06512, 2019.

A. J. Righetto, C. Faes, Y. Vandendijck, and P. J. Ribeiro Jr. On the Choice of the Mesh for
the Analysis of Geostatistical Data using R-INLA. Communications in Statistics-Theory
and Methods, 49(1):203–220, 2020.

H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications. CRC
Press, Boca Raton. Florida., 2005.

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian Inference for Latent Gaus-
sian Models by using Integrated Nested Laplace Approximations. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 71(2):319–392, 2009.

J. Røste. Investigating the Influence of Mesh Resolution of the SPDE Approach for Gaus-
sian Random Fields in 1D. 2020.

J. P. Snyder. Map Projections–A Working Manual, volume 1395. US Government Printing
Office, 1987.

S. Watanabe and M. Opper. Asymptotic Equivalence of Bayes Cross Validation and
Widely Applicable Information Criterion in Singular Learning Theory. Journal of Ma-
chine Learning Research, 11(12), 2010.

54

https://www.jstatsoft.org/article/view/v070i05
https://www.jstatsoft.org/article/view/v070i05


Appendix

A.1 Additional Results for Case 1

Table A.1: Table with results from 10-fold CV for the first dataset.

r h CRPS RMSE Estimation time + Prediction time (s)
10% 8.000 0.140 0.265 12 + 7

4.000 0.118 0.225 14 + 9
2.000 0.098 0.183 32 + 19
1.000 0.084 0.157 125 + 36
0.500 0.081 0.152 274 + 75
0.250 0.080 0.151 1365 + 277
0.125 0.080 0.150 7537 + 1201

A.2 Additional Results for Case 2

Table A.2: Table with results from 10-fold CV for the second dataset.

r h CRPS RMSE Estimation time + Prediction time (s)
10% 4.0000 0.117 0.224 16 + 4

2.0000 0.114 0.219 19 + 4
1.0000 0.113 0.218 22 + 4
0.5000 0.112 0.216 48 + 6
0.2500 0.112 0.216 247 + 14
0.1250 0.112 0.216 3128 + 46
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Appendix

(a) Prediction on grid of size 400× 200. Parameter h = 4.

(b) Prediction on grid of size 400× 200. Parameter h = 1.

(c) Prediction on grid of size 400× 200. Parameter h = 0.25.

Figure A.1: Projection of random field onto 400 × 200 grid for case study 1.
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