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Abstract

This thesis deals with the problem of parameter estimation in statistical analysis, and

in particular Bayesian analysis. Assuming a given model, the main focus is on choos-

ing objective prior distributions for its parameters. The resulting priors are combined

with different Bayes estimators in order to derive estimates of the true value. We de-

rive and discuss the flat, Jeffreys and reference priors, in addition to the more novel

Penalised Complexity prior. Loss functions for the Bayes estimators include Kullback–

Leibler divergence and the Fisher information metric. The priors and Bayes estimators

are compared with frequentist and fiducial approaches. The example chosen to illustrate

the theory is the bivariate normal distribution with zero means and unit variances. A

simulation study is done to see which estimators perform well.





Sammendrag

Denne oppgaven tar for seg problemet med å estimere parametre i statistisk analyse,

og i særdeleshet Bayesiansk analyse. Gitt en modell utledes objektive a priori–fordelinger

for parametrene. De resulterende fordelingene blir s̊a kombinert med Bayes–estimatorer

slik at en kan finne estimater for den sanne verdien av parametrene. Vi utleder og

diskuterer flat, Jeffreys og referanse–fordelinger, samt den nyere Penalised Complexity–

fordelingen. Tapsfunksjoner som diskuteres inkluderer Kullback–Leibler–divergens og

Fisher–informasjons-metrikken. A priori–fordelingene og Bayes–estimatorene sammen-

lignes med frekventistiske og fiduse tilnærminger. Eksempelet som er valgt for å illus-

trere teorien er en bivariat normalfordeling med gjennomsnitt null og varians lik én for

begge dimensjonene. En simuleringsstudie er inkludert for å belyse hvordan estimatorene

presterer.
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Chapter 1

Introduction

A central feature of statistical analysis is the use of models that aim to capture the

behaviour of some physical process. We have an observable quantity x which is usually a

real number, taken either from the whole real line or a subset thereof. It might also be a

vector of such values, in which case we say that the model is multivariate; as opposed to

the univariate case when x is a scalar. Usually, we make several observations, collecting

them in a vector which we name x = (x1, ..., xn), where xi is observation number i for

i = 1, ..., n.

Formal probability theory views these observed values x as realisations of a random

variable X, which is a mapping from an underlying probability space to the domain of

interest (that is, the set of values that we can observe). This underlying probability space

is made up of a triplet consisting of a set Ω, a set of subsets of Ω satisfying the definition

of a sigma algebra, and some measure (which we call a probability measure) satisfying

certain conditions. The mapping X has to be a measurable function, and in this case

it gives rise to a new probability space that among other things contains a probability

measure induced by the probability measure of the underlying space. This probability

measure gives the probability of observing different realisations x of the random variable

X.

While such an abstract construction is necessary for mathematical rigour, most ap-

plications deal with a more restricted set of random variables that allows one to ignore

these complications. In much of statistics, when dealing with real valued domains for

X, the probability measure (more commonly called a probability distribution) induced by

the random variable X has a probability density function given by

p(x) =
d

dx
P (X ≤ x), (1.1)

where we let P (·) denote the probability measure for the probability space induced by

X. It might also happen that the domain of X is countable, and in such cases we use

the probability mass function defined through p(x) = P (X = x) for all x ∈ X.
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Most users of statistical modelling define or choose the probability density function

without ever considering the underlying probability space or distribution. Usually, such

a function is actually a family of functions with a parameter θ (which might be a vector).

We therefore let

p(x | θ) (1.2)

denote the probability density function, explicitly stating that a realisation x depends

on the value of the parameter θ.

The models or probability distributions used in statistics might be quite simple and

straightforward to analyse theoretically, or they might be highly complex and out of

reach of analytic methods, in which case numerical approaches are needed. Regardless

of complexity, a major goal is to determine the actual value of θ through observations

x, and in that way determine the exact form of the model within its class of densities.

Once the exact model has been found, one might perform predictions about future obser-

vations, with estimates of the uncertainty related to such predictions. However, before

any forecasting can be carried out, inference about the parameter needs to be performed.

The determination of the value of the parameter, and the uncertainty related to this, is

the task with which this thesis is concerned.

Looking at the parameter θ, the main approach taught in undergraduate statistics

courses considers this quantity to be an unknown, unobservable number or vector. In

simple terms there exists a correct value for the parameter θ, even though we are unable

to observe it directly, and by collecting observations x, we can estimate the parameter

using the observations together with the model p(x | θ). Frequentist statistics uses this

assumption, together with the idea that repeated experiments will asymptotically lead

to exact probability estimates. An important and widely used example of a frequentist

estimation procedure is the maximum likelihood estimator, which we will discuss later

in this thesis.

Observations x are assumed to be described by a probability distribution. We might

want to consider what happens if we let θ be described by a probability distribution as

well. What we then do, is to approach the problem from a Bayesian perspective. The

main reason for the nomenclature has to do with the foundational role played by Bayes’

theorem. If we let θ be described by a density π(θ), where we for simplicity assume no



Chapter 1. Introduction 3

parameters, we can use Bayes’ theorem to write

π(θ |x) =
p(x | θ)π(θ)

p(x)
, (1.3)

where p(x) =
∫

ΩΘ
p(x | θ)π(θ) dθ, and ΩΘ is the domain of the parameter.

We call the density π(θ) the prior of θ, and the corresponding density π(θ |x) the

posterior. Once we have found π(θ |x), we can use this to make statements about the

value of θ, as well as how certain we are about such a value. There are several ways to do

this, and we will look closer at some of them in this thesis. Still, before we can perform

inference of any type, we have to specify the density π(θ). This step is by no means a

trivial one, and we will look closely at some approaches.

Why bother with the Bayesian approach? One key reason is that we often have some

knowledge concerning the value of θ, and we would like to incorporate this knowledge into

our analysis. Defining π(θ) in such a way that it captures some of this prior knowledge

might improve the subsequent analysis. Another reason is computational. By using a

Bayesian approach, use of various Monte Carlo methods for sampling is possible. This,

along with powerful computers, lets us consider much more complex models. One other

reason has to do with the teaching of introductory statistics. It might be argued (see

e.g. J. O. Berger, 2006) that letting Bayesian statistics be the focus of courses aimed at

novices would make the theory much more accessible.

Hence, there are reasons for preferring a Bayesian approach regardless of the presence

of prior knowledge. If we have nothing on which to base our distribution for θ, could we

find some general prior that would still let us use the Bayesian framework? This question

will be thorougly discussed in this thesis.

In order to see how the theoretical constructions and results presented in this thesis

perform, we will apply them to the bivariate normal distribution with known means and

variances. More precisely, we will assume zero means and unit variances, and look at

the resulting one-parameter model where the parameter is given by the correlation. This

model, while simple, does require a lot of involved calculations, and some formulas do not

seem to lend themselves to analytic solution. Consequently, numerical approximations

and experiments are needed in order to fully investigate the behaviour of the distributions

and estimation procedures.

The bivariate normal model (and indeed the multivariate normal model in general)

has received a lot of attention and has been studied in depth. If we limit our focus to
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Bayesian approaches, the list of publications is still quite extensive, and we will here give

a sample of the available literature.

A thorough investigation into objective priors for the full (that is, all five parameters

are unknown) bivariate normal model is given by J. O. Berger and Sun, 2008. Here,

recommended priors for the different parameters are listed, with arguments focusing on

frequentist matching. Kim, Kang, and Lee, 2009 looks at much the same problem, but

make the assumption that the means are identical. Ghosh et al., 2010 chooses to limit the

focus to the correlation coefficient, while still assuming all parameters to be unknown.

As for J. O. Berger and Sun, 2008, coverage characteristics are central to their approach.

Assuming known means equal to zero and unit variances, Fosdick and Raftery, 2012 uses

frequentist and Bayesian methods to try and find a good estimator for the correlation

coefficient. Criteria include looking at the mean square error between the estimated and

true correlation, and using hypothesis tests for values of the correlation drawn uniformly

from various intervals. Castro and Vidal, 2019 looks at the problem from a regression

perspective and tries to estimate both the variances and the correlation, while assuming

the means to be equal to zero.

The remainder of this thesis is organised as follows. Chapter 2 introduces ways

to find point and interval estimates, using frequentist, Bayesian or fiducial approaches.

Chapter 3 introduces objectivity when using Bayesian statistics, and discusses the notion

of an objective prior distribution. After talking briefly about the problem of improper

distributions, it goes on to define and investigate three approaches to the construction of

default priors. Chapter 4 introduces the bivariate normal model and applies the theory

of chapters 2 and 3 to it. Then, in chapter 5 we perform some simulations in order to

investigate how well the various approaches to estimation perform on our model. Finally,

chapter 6 discusses the content of the previous chapters, and looks at possible future

research based on this.



Chapter 2

Point and Interval Estimators

Statistical analysis is usually divided into two subcategories: frequentist and Bayesian.

Given an underlying model (i.e. probability distribution), which often has a probability

density function p(x | θ), the goal is to observe realisations x of the random variable X in

order to say something about the value of θ. A common feature for both frequentist and

Bayesian analysis is hence the desire to derive estimates of parameter values, as well as

intervals gauging the uncertainty of the parameter estimates, or simply how uncertain we

are about the actual value of the parameters. We will here look at some approaches for

both categories, and then include a brief discussion of a third approach, namely fiducial

inference.

Before we delve into this section, however, we should make absolutely clear what we

refer to when talking about the parameter. For a given model, one might refer to the

whole vector of parameters when using the word parameter. However, oftentimes only

some elements of the vector are of interest, or a transformation of the vector is what we

want to look at. We then define the parameter to be γ = ψ(θ). An example might be

the normal distribution with θ = (µ, σ2)>; if we are only interested in the mean, ψ(·) is

the projection down to the first dimension.

2.1 Frequentist inference

Frequentist methods rely on the basic assumption that the parameter of interest is an

unknown number that is not directly observable. The goal, then, is to find estimators

for this number given the data, as well as confidence intervals with a certain probability

of covering the actual value of the parameter. We will here introduce the much used

maximum likelihood estimator, and then discuss how estimators can be used to find

confidence intervals through bootstrapping.

Given a parameter θ and data x, a confidence interval is meant to provide a measure

of the certainty we have about the parameter. Given α ∈ (0, 1), we want to find values
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L(x) and U(x) such that

P [L(x) < θ < U(x)] = 1− α, (2.1)

for all possible θ. In words, we want to find an interval that has a probability 1 − α of

covering the actual parameter value. We call 1−α the confidence level. Common values

for α are 0.05 and 0.025. Note that we can have either L(x) = −∞ or U(x) = ∞ (or

the left or right limits of the parameter domain), in which case we say that the interval

is one-sided. It should be emphasised that, since equation (2.1) should hold for all θ, the

random variable in this definition is the interval (L(x), U(x)), and not e.g. the parameter

θ.

Bootstrapping refers to a broad category of methods in which one uses random sam-

pling with replacement to get an empirical distribution, and through this be able to

estimate e.g. mean, variance and confidence intervals.

2.1.1 Maximum likelihood estimate

The maximum likelihood estimate (MLE) is arguably the most used method for estimat-

ing parameter values in statistics (see e.g. Miura, 2011). Given observed data x, the MLE

is the value of θ that maximises the likelihood function p(x | θ). A common assumption

is that the observations are independent, which implies that the density p(x | θ) can be

written as
∏n
i=1 p(xi | θ). Notable cases where we do not make such an assumption are

time series analysis, in which past observations are usually assumed to influence future

observations, and data from a spatial model, in which observations that are close to

each other spatially are assumed to be highly correlated. Regardless, we will assume

independent samples throughout this thesis.

From the assumption of independent samples, the likelihood is given by

L(θ |x) =

n∏
i=1

p(xi | θ), (2.2)

with x = (x1, ..., xn).

Using the fact that the logarithm is a monotonically increasing function, it is common

to define the log-likelihood as the natural logarithm of the likelihood function, and denote

it by `(θ |x). Assuming that the likelihood is unimodal, the MLE can be found by solving

d

dθ
`(θ |x) = 0 (2.3)
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with respect to θ.

2.1.2 Interval estimation through bootstrapping

Once an estimator for the parameter has been found, we can use it to generate confidence

intervals. When then distribution of the parameter is known (such as for the empirical

mean of independent and identically distributed normal variables), a 1 − α confidence

interval might be readily available by finding θ̂L and θ̂U such that

P
[
θ̂ ∈

(
θ̂L, θ̂U

) ∣∣∣ x] = 1− α, (2.4)

with θ̂, θ̂L and θ̂U in general depending on the data x.

The exact distribution of most estimators are not known, thus creating a need for

other methods of interval estimation. One such approach is appropriate when we can

draw as many samples as we would like from the distribution of the data. In this way,

we can estimate the parameter for as many different samples as we would like, and the

result is an empirical distribution approximating the true distribution of the estimator.

This empirical distribution can then be used to find an interval. More precisely, we

find the α1 and α2 percentiles of the empirical distribution, with α1 + α2 = α, and use

these values to define an estimated confidence interval. A common approach is to let

α1 = α2 = α/2, in which case we have an equal-tailed interval. We call this approach

parametric bootstrapping, and it is this method that we will utilise in this thesis.

As a side note, in cases where we do not know, and hance cannot sample from, the

distribution, and only a single sample is observed, a different approach to bootstrapping

might be used, in which the sample is resampled with replacement in order to generate

”new” samples and find an empirical distribution. Since the example model in this thesis

is assumed known, we will not make use of such an approach here.

2.2 Bayesian inference

In a Bayesian world the parameter is not simply assumed to be an exact, unknown num-

ber. Rather, the parameter itself is given a probability distribution and treated as a

random variable. The marginal distribution of the parameter θ is called its prior distri-

bution. Then, Bayes’ theorem can be utilised to derive the distribution of θ conditioned

upon the observed data – giving what is called the posterior distribution.
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The fact that our knowledge of θ given observed data is captured in the posterior

distribution means that different procedures for deriving point and interval estimators

are needed, than those used in a frequentist setting. We will first introduce a rather

simple estimator and argue why it is not likely to work well. Then we will look at

Bayes estimators in general and discuss some examples. Lastly, we will present interval

estimation using the posterior distribution.

2.2.1 Maximum a posteriori estimation

One extremely simple and straightforward estimate based on the posterior distribution is

called maximum a posteriori (MAP). The MAP estimate is quite simply the parameter

value for which the posterior distribution reaches its global optimum – obviously within

the domain of the parameter. Hence, given data x and a posterior distribution π(θ |x),

the MAP estimate is given by

θ̂MAP = argmax
θ

π(θ |x), (2.5)

or the mode of the distribution.

Note that, since the location of the global optimum of the posterior distribution

does not change when multiplying the distribution with anything that is constant with

respect to θ, knowing the posterior up to a constant of proportionality is sufficient to

be able to derive the MAP estimate. Or, simply put, we have that argmaxθ π(θ |x) =

argmaxθ p(x | θ)π(θ).

There are some possible difficulties related to such an estimate. One obvious problem

is related to multimodal densities, where the MAP estimate might give a rather biased

estimate ignoring a lot of information provided by the posterior. Another problem arises

when the posterior density is heavily skewed. The global maximum of the density might

be far from the mean, and hence is likely to be biased. Due to potentially quite bad

performance, especially for small sample sizes, we will not make use of the MAP estimate

in the simulations in chapter 5.

Note that the problems discussed above for the MAP estimate are also true for the

MLE of section 2.1.1. Indeed, for a flat prior, the two estimators are the same.
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2.2.2 Bayes estimation

Most Bayes estimators differ from the MAP estimate in that they consider the whole

posterior distribution, and not only the point of highest density. The starting point of

a Bayes estimator is the definition of a loss function (sometimes called cost function)

L(θ, θ̂) which measures the discrepancy between the actual value of the parameter θ and

its estimated counterpart θ̂. Here, θ̂ might be any estimator. Given the loss function,

our goal is to find the best θ̂ available. Note that θ̂ = θ̂(x) in general depends on the

observed data x.

What we mean by best estimator, is that we would like to find an estimator θ̂ that

minimises the expected loss function over both x and θ. That is, we would like to find

θ̂BE = argmin
θ̂

∫
ΩΘ

∫
ΩnX

L(θ, θ̂)p(x, θ) dxdθ, (2.6)

with Ωn
X = ΩX × ... × ΩX . By writing p(x, θ) = π(θ |x)p(x) and changing the order of

integration, we get

θ̂BE = argmin
θ̂

∫
ΩnX

(∫
ΩΘ

L(θ, θ̂)π(θ |x) dθ

)
p(x) dx, (2.7)

and since p(x) ≥ 0 for almost every x, we can reduce the problem to

θ̂BE = argmin
θ̂

∫
ΩΘ

L(θ, θ̂)π(θ |x) dθ. (2.8)

Common examples of loss functions are the mean square error (MSE) and the absolute

error, but other functions might also be used. In particular, functions measuring the

distance between the distribution when using θ and θ̂ as parameter are reasonable choices.

Next we will look closer at the MSE approach, as well as Bayes estimators with Kullback-

Leibler divergence and Fisher information as loss functions.

Mean squared error

Assuming sufficient regularity, we can find the Bayes estimator by solving the equation

d

dθ̂

∫
ΩΘ

(θ̂ − θ)2 π(θ |x) dθ = 0, (2.9)
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by interchanging the order of differentiation and integration to get

∫
ΩΘ

d

dθ̂
(θ̂ − θ)2 π(θ |x) dθ = 0∫

ΩΘ

2(θ̂ − θ)π(θ |x) dθ = 0

θ̂

∫
ΩΘ

π(θ |x) dθ =

∫
ΩΘ

θπ(θ |x) dθ.

(2.10)

Since we in general assume that we have
∫

ΩΘ
π(θ |x) dθ = 1 – that is, the posterior is

proper – we get

θ̂BE =

∫
ΩΘ

θ π(θ |x) dθ, (2.11)

which means that the Bayes estimator when using the MSE as loss function, is given

by the expected value of the posterior distribution. The Bayes estimator found when

using the MSE as loss function is also called the minimum mean square error (MMSE)

estimator.

Maximum a posteriori estimation

It could be noted that MAP estimate in section 2.2.1 can be viewed as the Bayes estimator

when using a loss function given by

LMAP(θ, θ̂) =

0 |θ − θ̂| < δ

1 |θ − θ̂| ≥ δ,
(2.12)

with δ small and the posterior π(θ |x) smooth. That is, we are simply giving a constant

penalty to all deviations larger than some δ > 0. To see why this yields the MAP

estimator, we first note that

θ̂BE = argmin
θ̂

(
1−

∫ θ̂+δ

θ̂−δ
π(θ |x) dθ

)
, (2.13)

which is simply

θ̂BE = argmax
θ̂

∫ θ̂+δ

θ̂−δ
π(θ |x) dθ. (2.14)

Since we assume π(θ |x) to be smooth (and δ to be small enough), the maximum is found
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at the global maximum of the posterior density, which is the MAP estimator.

Kullback–Leibler divergence

Instead of simply applying measures of distance between the parameter and its estimate,

we might want to look at measures of deviation between the model with the true param-

eter, and the model with the estimated parameter. That is, we want to apply measures

of distance between distributions, and not just real numbers.

An important measure in this regard is the Kullback–Leibler divergence. A complete

introduction and definition will be given in section 3.4.1, so we will not go into further

details here, other than to note that the Kullback–Leibler divergence is non-negative, and

hence we do not need to square it, or make any other adjustments, when defining the loss

function. Squaring or taking the square root of the Kullback–Leibler divergence might be

interesting choices as well, and might lead to different and perhaps better results. When

defining the Penalised Complexity prior in section 3.5, we do indeed use the square root of

the Kullback–Leibler divergence. We have, however, not investigated this topic further.

Using Kullback–Leibler divergence, the loss function then becomes

LKL(θ, θ̂) = κ
(
p(x | θ̂)

∣∣∣ p(x | θ)) . (2.15)

A possible closed form solution to the problem of finding this Bayes estimator will depend

on the model used. In many cases, a closed form solution is unlikely to be readily

available, and we will hence resort to the use of numerical optimisation techniques in

order to find the estimate given observed data.

Fisher information metric

Continuing with measures of distance between probability distributions, another possi-

bility is to use of the Fisher information, which we define next.

Definition 2.2.1 (Fisher information). Given a probability density function p(x | θ), the

Fisher information is defined to be

I(θ)ij = E
[(

d

dθi
log
(
p(x | θ)

))( d

dθj
log
(
p(x | θ)

)) ∣∣∣∣ θ] . (2.16)
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In the one-parameter case, we get

I(θ) = E

[(
d

dθ
log
(
p(x | θ)

))2
∣∣∣∣∣ θ
]
. (2.17)

The Fisher information metric (see Taylor, 2019) considers the parameter as a vector

(or a scalar in the one-parameter case) and finds the distance between two distributions by

measuring the shortest distance between the parameter vectors. It should be noted that

names like Fisher-Rao metric (see Rao, 2009), or Rao’s distance measure (see Atkinson

and Mitchell, 1981) also seem to be used for the same construction. The exact distance

measure used is defined using the Fisher information, and makes use of geodesics from

differential geometry (actually, this is part of the field of information geometry, in which

statistics is paired with differential geometry – see e.g. Nielsen, 2018). Taylor, 2019

argues that the derivation of a closed form for distributions with an arbitrary number of

parameters does in general seem unattainable. However, Taraldsen and Lindqvist, 2013

writes that by viewing the problem as being in L2 space, the general solution will be the

arc length of the unit sphere between the two parameter configurations.

Regardless, for one-parameter distributions the expression for the Fisher information

metric is quite simple. A derivation can be found both in Taylor, 2019 and Atkinson and

Mitchell, 1981. Our metric, and hence our loss function, becomes

LI(θ, θ̂) =

∣∣∣∣∣
∫ θ̂

θ

√
I(t) dt

∣∣∣∣∣ , (2.18)

with I(·) the Fisher information given in equation (2.17). Note that, as with the loss

function given by the Kullback–Leibler divergence, we could have squared this or taken

the square root. It would be of interest to investigate this further, but we have not done

so in this thesis.

As with the Kullback–Leibler divergence, the existence of a closed form solution for

the Bayes estimator, as well as the form of such a solution, will depend on the model

used. In most cases, numerical optimisation techniques are likely to be necessary.
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2.2.3 Interval estimation from posterior distributions

The posterior distribution allows us to derive credible intervals for the value of θ. By

finding an interval C(x) =
[
θL(x), θU (x)

]
⊂ ΩΘ such that

P
[
θ ∈ C(x) |x

]
= 1− α, (2.19)

we have a 1−α credible interval. There are several strategies for finding θL(x) and θU (x),

but throughout this thesis we will choose these limits such that P
[
θ ∈

(
−1, θL(x)

)
|x
]

=

P
[
θ ∈

(
θU (x), 1

)
|x
]

= α/2 – that is, an equal-tailed interval.

Once such a credible interval has been found, the next question is whether or not it

actually has a 100(1 − α) % chance of covering the true value of θ – that is, whether

or not it can be treated as a confidence interval. The true probability of covering the

parameter, which might not be 1 − α, is called the frequentist coverage of the interval,

and can be expressed as

P
[
θ ∈ C(x) | θ

]
, (2.20)

where we condition on the true value of θ and let x be the random variable.

Ideally, we would like the frequentist coverage to be identical to, or at least very close

to, the advertised probability of 1−α, and in these cases we say that the prior has exact

frequentist matching (see J. O. Berger and Sun, 2008). In practice, however, this might

fail spectacularly – especially for small sample sizes. In chapter 5 we will take a closer

look at the frequentist coverage of the priors derived and tested in this thesis, and see

how the performance changes with the size of the random sample.

2.3 Fiducial inference

Fiducial inference is often overlooked as an alternative to the more common frequentist

and Bayesian approaches. As we shall see, a fiducial approach might work well for

problems in which either frequentist or Bayesian approaches are normally taken, and

hence including it in a statistical analysis might be worthwhile. Since the use of fiducial

inference is of secondary interest in this thesis, the introduction will be quite brief, aiming

only to cover enough for it to be analysed as an alternative to the other estimators with

which this thesis is concerned.
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A fiducial model (U, χ), as defined in Taraldsen and Lindqvist, 2018, is given by

x = χ(u, θ), (2.21)

with x being observable, u being distributed according to p(u | θ) (where we have, for

simplicity, assumed the distribution of U to have a probability density function), and θ

some parameter. Oftentimes, we are interested in estimating the unknown parameter θ.

If the density of u is independent of θ, we can simply solve (2.21) with respect to θ to

get

θ = θ̂(u, x). (2.22)

If we observe x and simulate a sample u, we can calculate θ using equation (2.22). When

doing this, we say that we are sampling from the fiducial distribution. Most often,

as is common practice for prior and posterior distributions, we simply omit the word

distribution, and say that we sample from the fiducial.

The fiducial might be thought of as a posterior distribution, but one without a cor-

responding prior distribution. Hence, we can apply the methods of point and interval

estimation introduced in section 2.2 to the fiducial in the same way as we did to the

posterior. This last point makes the fiducial approach natural if we are in a situation

where we do not have any prior information – that is, we avoid the whole problem of

choosing a prior, but can still use the Bayesian approach to estimation by viewing the

fiducial as a posterior distribution.



Chapter 3

Objectivity and Priors

An inherent feature in Bayesian statistics, once a suitable model has been selected, is

choosing prior distributions for the parameters of the model. Choosing among the myriad

distributions available might seem like a daunting task. The realisation that the choice of

prior distribution might severely affect the results of the inferences performed, and indeed

completely overshadow the data for small sample sizes, makes the problem even more

complex and important. Thus, one would ideally like to have clear guidelines as to how

one should choose which prior distribution to use in a given setting. The fact of the matter

is that such guidelines or heuristics depend heavily on the model in question, the prior

knowledge of the problem, and the philosophical inclinations of the statistician making

the choice. Further, a trade-off between theoretically sound arguments and practical

applicability might help make the answer even less attainable.

In the end, one would ideally like to have default choices of prior distributions that

works reasonably well (whatever that may mean) for a whole range of different problems,

as this would remove the difficulties encountered when practitioners use less than ideal

prior distributions due to lack of better judgement. The question is then, how do we

approach this goal of defining a default prior distribution that can be used more or less

blindly without having a tremendous impact on the results of the inference?

In some situations a parameter might have a clear and well-understood physical in-

terpretation, and there might exist expert information which can be utilised to choose a

prior that performs well for this specific problem. Instances where this might actually

work are problems and models that are relatively simple and well understood and where

there is a clear procedure for incorporating this knowledge and understanding into a prior

distribution. Needless to say, such knowledge and procedures would be highly context

dependent, and indeed difficult to translate to other situations. Even ignoring the utter

lack of useable, context specific knowledge of the problem at hand, it is a fact that a lot

of models contain an enormous amount of parameters having little or no reasonable inter-

pretation that might be of help. Neural networks in machine learning is an easy example
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in which the number of parameters might be in the millions, and the user might by no

means be able to apply expert information to place prior distributions on the parameters.

Further, situations arise where the user has no useful understanding of the problem con-

text, preventing any reasonably accurate information from being utilised. The seeming

impossibility of generalising the use of expert information to create workable priors that

do in fact perform well, makes it clear that some other approach is needed.

3.1 Objectivity in a Bayesian setting

Creating a framework that provides default prior distributions for the wide range of

applications found in statistics is one key goal of objective Bayesian analysis. The problem

that needs to be resolved before any such framework can be found and agreed upon,

however, is the actual meaning of the word objective in the setting of Bayesian analysis.

While statistical modelling does include a number of arguably subjective choices, in

particular with respect to choice of model, the common way to look at objective Bayesian

analysis is by ignoring the subjectivity introduced by the model choices, or at least leave

that part out of the discussion, and instead focus on the choice of priors for the parameters

of the chosen model. The goal, then, is to set the prior in an objective way.

There are, obviously, some things that need to be adressed and clarified before we

can actually find these priors. First of all, are we correct in ignoring choice of model in

our definition of objective Bayesian analysis? It is inaccurate to say that the topic is not

without controversy, but the general view seems to be that the suitability of the model

can be tested through data, which helps give it a different theoretical status than the

prior (see J. O. Berger, 2006; Consonni et al., 2018). In the end, statistical and scientific

tradition seem to support the choice, and hence we will too.

Next, and more importantly, how do we set a prior in an objective way? For the past

decades several different approaches to this question have been taken, with the focus

shifting from conditions of invariance, frequentist coverage, and information-theoretic

considerations. Before we take a closer look at some of the more notable attempts at de-

veloping objective priors, we end this section by stating the overarching goal of objective

Bayesian analysis – what Consonni et al., 2018 likens to a ”search of the ’philosopher’s

stone’ for the Bayesian community”. Ideally, we would like to properly define the idea

of knowing nothing, and then let the prior reflect this state of ignorance on the part of

the statistician. However, this ideal scenario has proved unattainable, and hence the
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focus now is primarily to find priors that have minimal impact on the statistical analysis

performed. In a way, this means that the prior should introduce no other information

than what has already been introduced by the choice of model. It also incorporates the

view that the data should be given as much weight as possible in the subsequent analysis,

even for small sample sizes. While these goals seem reasonable enough and are mostly

agreed upon, there is still no unanimous agreement on the definition and goals of objec-

tive Bayesian analysis. Due to the fact that priors, regardless of how they are defined,

will always contain information, even the word objective is not accepted by the whole

community of bayesians (see J. O. Berger, 2006; Consonni et al., 2018).

3.2 Dealing with improper priors

When specifying a prior distribution it might happen (in fact, it often does) that the

distribution has infinite measure. What this means, is that it does not integrate to one

and hence fails to fulfil one of the axioms of probability. One obvious solution might

be to avoid the use of such improper priors altogether, and hence remove the problem

entirely. Indeed, this seems to be the preferred solution according to Huisman, 2016,

which attempts to define proper priors with much the same properties as the improper

priors they are meant to replace. However, the fact remains that the usage of such priors

is widespread and often useful, and a proper way to deal with them is necessary.

What we mean by a need to deal with improper priors, is a need for mathematical

arguments defending the usage. After all, an improper prior is not a probability distri-

bution, and it is unclear how prior knowledge is incorporated by such a prior. In most

applications, the question of whether or not using improper priors is justifiable is simply

ignored, so long as the corresponding posterior is proper. While such an approach, i.e. if

it works then it is fine, does have a certain appeal, some argue the need for a more rig-

orous justification for the inclusion of improper distributions (see e.g. Taraldsen, Tufto,

and Lindqvist, 2018 for one suggested solution to this issue).

One approach requires the posterior to be a limiting distribution of a sequence of

posteriors derived from proper priors. What type of limit we are considering, and how

this sequence of proper priors is defined varies. J. O. Berger, Bernardo, and Sun, 2009

defines the proper priors by restricting the improper prior to increasing compact subsets

of the parameter space. They then use logarithmic convergence to define the limit. This

is the approach followed in the construction of reference priors, which we will look at in
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section 3.4. Another approach can be found in Bioche and Druilhet, 2016, where q-vague

convergence is used to define the limit of proper priors.

Efforts toward constructing an axiomatic framework for probability theory that allows

for improper posteriors are also made. In Taraldsen, Tufto, and Lindqvist, 2018, this

is explained thoroughly, and arguments are given for why improper posteriors might

capture the information provided by the data.

In the following, when deriving explicit prior and posterior densities, we will only

verify whether the prior is proper or improper, and that the posterior is proper, without

investigating the issue further.

3.3 Jeffreys prior

Jeffreys prior was first introduced by Harold Jeffreys in Jeffreys, 1997, and has long been

in use as a non-informative prior distribution. Its definition is rather simple, and makes

use of the Fisher information.

Definition 3.3.1 (Jeffreys prior). Jeffreys prior is defined to be proportional to the square

root of the determinant of the Fisher information. That is, for probability density p(x | θ)

we get

π(θ) ∝
√

det I(θ), (3.1)

with I(θ) the Fisher information from definition 2.2.1. In the one-parameter case, we

simply have that π(θ) ∝
√
I(θ).

For multiparameter distributions, use of the Jeffreys prior is normally avoided, as

it may lead to undesirable behaviour. Indeed, J. O. Berger, Bernardo, and Sun, 2015

states that they ”know of no multivariable example in which [they] would recommend

the Jeffreys-rule prior”.

The simplicity of Jeffreys prior is one of its key attributes, and one of the reasons it

has been used so extensively. Another important aspect, which was central to Jeffreys’

notion of an objective prior, is that the prior is invariant to injective transformations.

What this means, is that the the prior density derived by first finding the prior for the

original parameter and then using the change of parameter formula to switch to the

new parameter, should give the same result as simply computing the prior density for

the new parameter directly. Intuitively, this makes sense; the prior density should not

depend on whether we parametrise using scale or rate for the gamma distribution, success
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probability or odds for the binomial function, or variance, standard deviation or precision

for the normal distribution.

Theorem 3.3.1 (Invariance of Jeffreys prior). Jeffreys prior, as defined in definition

3.3.1, is invariant to injective transformations.

Proof. We will restrict attention to the one-parameter case here. The multiparameter

version can be proved similarly, albeit with a bit more cumbersome notation. Let φ = g(θ)

be an injective transformation. Jeffreys prior for φ becomes

π(φ)

=
√
I(φ)

= E

[(
d

dφ
log
(
p(x |φ)

))2
∣∣∣∣∣ φ
]1/2

= E

[(
dθ

dφ

d

dθ
log
(
p(x |φ)

))2
∣∣∣∣∣ φ
]1/2

= E

[(
d

dθ
log
(
p(x | θ)

))2
∣∣∣∣∣ θ
]1/2 ∣∣∣∣ dθdφ

∣∣∣∣
=
√
I(θ)

∣∣∣∣ dθdφ
∣∣∣∣

= π(θ)

∣∣∣∣ dθdφ
∣∣∣∣ ,

(3.2)

where we have used that conditioning on φ and θ gives the same result (since g(·) was

assumed to be injective). Hence, the prior for φ calculated using definition 3.3.1 gives

the same result as using the transformation of variables formula on the prior for θ, and

the proof is done.

3.4 Reference prior

The concept of a reference prior was first introduced by José Bernardo in 1979 (see

Bernardo, 1979), and has since become one of the preferred frameworks for deriving

objective priors. The reference prior offers a complete, rigorous mathematical foundation

in support of its definition of objectivity with respect to the prior. Indeed, Simpson et

al., 2017 states that ”the reference prior framework is the only complete framework for

specifying prior distributions”. However, we shall see that it nonetheless fails to offer all

the desirable features one would hope an objective prior to possess. In fact, the reference



20 3.4. Reference prior

prior is not unique for distributions with more than one parameter, but rather depends

on the ordering of the parameters when deriving the prior. Regardless of this last point,

the reference prior seems to be one of very few obvious choices to consider when trying

to decide on the prior with which to equip the parameter of interest.

The goal of the reference prior is to derive reference posteriors that, in the words of

Bernardo, ”approximately describe the inferential content of the data without incorpo-

rating any other information” (see Bernardo, 1979). In a way, this means that the prior

should have as little impact as possible on the results of the inferences performed. Such

a goal requires one to specify mathematically what as little impact as possible actually

means, and hence the theory needed becomes quite involved.

Due to the mathematical nature of the reference prior, some concepts and definitions

need to be introduced before the actual definition of a reference prior can be formulated.

Since we only deal with one-parameter distributions in this thesis, we will make the

simplifying assumption that the parameter is a scalar, and define the reference prior

with this in mind. This section is, in large parts, based on J. O. Berger, Bernardo, and

Sun, 2009.

3.4.1 Kullback–Leibler divergence

Kullback–Leibler divergence is a form of distance measure between probability distri-

butions first introduced in Kullback and Leibler, 1951. Its usage has since become

widespread, and it is central to the definition of a reference prior. Hence, we start our

tour towards a proper definition of a reference prior by defining this distance measure in

definition 3.4.1. Note that although the definition of Kullback–Leibler divergence allows

for probability measures that are not absolutely continuous (see Mathematics, n.d.(a))

with respect to the Lebesgue measure, we will here make the simplifying assumption

that the probability measures possess the familiar kind of probability densities. More

concretely, for a probability measure P , we have that dP = f(x)dx for some positive,

integrable (in the Lebesgue sense) function f . This assumption will be valid for the

remainder of section 3.4.

Definition 3.4.1 (Kullback–Leibler divergence). Given two probability distributions with

densities f and g satisfying the condition that f(x) = 0 whenever g(x) = 0, the Kullback–
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Leibler divergence between them is defined as

κ (f | g) = −
∫

ΩX

g(x) ln

(
f(x)

g(x)

)
dx. (3.3)

The Kullback–Leibler divergence might also be written as

κ (f | g) = −Eg
[

ln(f)− ln(g)
]
, (3.4)

where Eg[·] is the expectation taken with respect to the probability distribution having

probability density function g. Hence, what we are really considering here is the expected

value of the difference between the logarithms of the densities (taken with respect to one

of the densities). Small deviations between f and g will hence lead to smaller values of

the Kullback–Leibler divergence, whereas larger deviations will have the opposite effect.

The Kullback–Leibler divergence possesses some properties that help explain why it

is so useful. First of all, it is always non-negative.

Theorem 3.4.1 (Non-negativity). The Kullback–Leibler divergence is non-negative.

Proof. By assumption f(x)/g(x) will never blow up, since we will never have g(x) = 0

and f(x) 6= 0. Hence, the fraction is bounded and non-negative, except for the situation

in which g(x) = f(x) = 0. When this happens, we use the convention that 0 · ln(0/0) = 0,

and hence everything is well-defined. If for some subset of ΩX of positive measure we

have that f(x) = 0 and g(x) 6= 0, the Kullback–Leibler divergence becomes equal to

positive infinity. When this is not the case, we can use the concavity of the logarithm

together with Jensen’s inequality (see Mathematics, n.d.(d)) to show that

−κ (f | g) =

∫
ΩX

g(x) ln

(
f(x)

g(x)

)
dx

≤ ln

(∫
ΩX

g(x)
f(x)

g(x)
dx

)
= ln

(∫
ΩX

f(x) dx

)
= ln(1)

= 0,

which completes the proof.
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Further, the Kullback–Leibler divergence is zero if and only if the distributions f and

g are equal almost everywhere.

Theorem 3.4.2 (Vanishing Kullback–Leibler divergence). The Kullback–Leibler diver-

gence vanishes if and only if f = g almost everywhere.

Proof. Let us first prove the forward implication. Assume the Kullback–Leibler diver-

gence equals zero. For all x ≥ 0 we have that ex ≤ 1 + x. Substituting x with ln(x), we

get ln(x) ≤ x−1, with obvious equality if x = 1. Moving ln(x) over to the right-hand side

and differentiating the resulting expression, we see that the derivative is strictly negative

for all x < 1 and strictly positive for all x > 1. This implies that x = 1 is the only point

for which we get equality. Since both f and g are positive functions, we get

−
∫

ΩX

g(x) ln

(
f(x)

g(x)

)
dx ≥ −

∫
ΩX

g(x)

(
f(x)

g(x)
− 1

)
dx = 0,

with equality if and only if

ln

(
f(x)

g(x)

)
=
f(x)

g(x)
− 1

for almost all x. From the above, we therefore get (for almost all x)

f(x)

g(x)
= 1 =⇒ f(x) = g(x).

Now for the backward implication. Assume f = g almost everywhere. It follows

that ln(f/g) is equal to zero almost everywhere. Since g is integrable, it follows that the

integral is equal to zero as well.

These properties make it possible to use the Kullback–Leibler divergence as a measure

of distance between distributions. It should, however, be noted that the we do not have

symmetry, and hence the Kullback–Leibler divergence does not define a metric.

Further, the Kullback–Leibler divergence is invariant to injective transformations. As

discussed for the Jeffreys prior in section 3.3, this property is highly desirable if we want

to define a prior based on this distance measure.

Theorem 3.4.3 (Invariance to injective transformations). The Kullback–Leibler diver-

gence is invariant to injective transformations.

Proof. Due to a desire for brevity, we will omit the proof. Note, however, that it can be

done quite easily by applying the transformation of variables formula to the definition of

the Kullback–Leibler divergence given by equation (3.3).
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3.4.2 Expected convergence

Using the Kullback–Leibler divergence, we can further define a concept of convergence

of a sequence of probability distributions. We call this concept logarithmic convergence,

and define it concisely in definition 3.4.2. While the name logarithmic convergence might

not seem especially obvious or reasonable, it is the one used by J. O. Berger, Bernardo,

and Sun, 2009, and hence we will not do otherwise here.

Definition 3.4.2. A sequence of probability distributions with probability density func-

tions given by pi, i ∈ N, converges logarithmically to a probability distribution with prob-

ability density function p if and only if we have that

lim
i→∞

κ (pi | p) = 0. (3.5)

When dealing with prior distributions that are improper, it is argued in J. O. Berger,

Bernardo, and Sun, 2009 that one needs some form of justification before using Bayes’

theorem to derive the posterior, even though the posterior turns out to be a proper

probability distribution. Thus, next, we turn to the notion of an approximating sequence

of probability distributions. What we would like, is for our prior to be the limit of such

an approximating sequence, and then use this as a justification for using Bayes’ theorem.

Definition 3.4.3 (Approximating sequence of distributions). For some probability dis-

tribution over the space ΩΘ with probability density function p(θ), θ ∈ ΩΘ, let {ΩΘi}i∈N
be such that ΩΘi ⊂ ΩΘj for i < j, and ∪∞i=1ΩΘi = ΩΘ. We call {ΩΘi}i∈N an approx-

imating compact sequence. Further, let pi(θ) be equal to p(θ) restricted to ΩΘi, that is

pi(θ) =
p(θ)∫

ΩΘi
p(t) dt

. (3.6)

Then, {pi(θ)}i∈N is the approximating sequence of distributions to p(θ).

Suppose we have a prior density π(θ) with an approximating sequence of priors

{πi(θ)}i∈N defined as in definition 3.4.3, and suppose the prior satisfies
∫

ΩΘ
p(x | θ)π(θ) dθ <

∞. Then, the corresponding approximate sequence of posteriors given by πi(θ |x) ∝

p(x | θ)πi(θ) converges logarithmically to the posterior π(θ |x). A proof of this point can

be found in e.g. J. O. Berger, Bernardo, and Sun, 2009.



24 3.4. Reference prior

It turns out that this last result is insufficient, as the pointwise convergence with

respect to the data x might cause difficulties in some situations (see Fraser, Monette,

and Ng, 1985). Hence, we take expectations in order to gain a stronger, global form of

convergence of posteriors.

Definition 3.4.4 (Expected logarithmic convergence of posteriors). Given a prior π(θ)

and an approximating sequence {πi(θ)}i∈N, we say that the corresponding sequence of

posteriors {πi(θ |x)}i∈N converges logarithmically to the posterior π(θ |x) in expectation

if

lim
i→∞

∫
ΩX

κ (πi(· |x) |π(· |x)) pi(x) dx = 0, (3.7)

with pi(x) =
∫

ΩΘi
p(x | θ)πi(θ) dθ, and ΩX the space of the data.

3.4.3 Permissible priors

When choosing a prior distribution, we need to know from which subset of the whole

set of existing distributions we are choosing. Some distributions should not even be

worth considering, and hence placing some limitations on the range of possible priors

seems reasonable. First of all it makes sense for the prior to be strictly positive on the

whole domain, since otherwise it would give zero weight to certain parameter values.

[continuity]

Definition 3.4.5 (Permissible prior). If a function π(θ) satisfies the conditions

1. π(θ) is continuous,

2. π(θ) > 0 for all θ ∈ ΩΘ,

3.
∫

ΩΘ
p(x | θ)π(θ) dθ <∞, and

4. there exists some approximating sequence {πi(θ)}i∈N such that the corresponding

posteriors πi(θ |x) converge logarithmically in expectation to the posterior π(θ |x),

as defined in definition 3.4.4,

we say that it is a permissible prior function for our model.

3.4.4 Expected information

How can we quantify the information gain about the parameter θ from observing data

x? Using some measure, the distance between the prior π(θ) and the posterior p(θ |x)
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should contain the added information from conditioning on the oberved x. In order to

make this independent of the actual x observed, we take the expected value with respect

to x. Perhaps not surprisingly, the distance measure chosen will be the Kullback–Leibler

divergence.

Definition 3.4.6 (Expected information). The expected information obtained from mak-

ing one observation of x from the model p(x | θ), using a prior π(θ) is

I
(
π | p

)
=

∫
ΩX

κ (π(θ |x) |π(θ)) p(x) dx, (3.8)

with p(x) =
∫

ΩΘ
p(x | θ)π(θ) dθ.

With definition 3.4.6 giving us a way to measure the amount of information gained

from making one observation of x, we would now like to look at what happens when we

make more than one observation, and in particular what happens when the number of

observations grows large. For x = (x1, ..., xn), denoting n independent and identically

distributed observations, we let

I(π | pn) =

∫
ΩnX

κ (π(θ |x) |π(θ)) p(x) dx, (3.9)

with Ωn
X = ΩX × ...× ΩX n times, be the expected information from the whole sample.

We would like our prior to be the one that gives the largest increase in information

when we make an observation x. Hence, what we want is to find the prior π(θ) that

maximises the expected information for large n. A prior that does this, is said to have

the Maximising Missing Information (MMI) property.

Some care must be taken, since for continuous parameter spaces an infinite amount of

information would be required to determine the parameter value with absolute certainty,

and hence the quantity I(π | pn) should be expected to diverge. The following defini-

tion gives precise meaning, in the one-parameter case, to what maximising the missing

information entails.

Definition 3.4.7 (Maximising Missing Information (MMI) Property). Assume we are

given a model p(x | θ) with one continuous parameter, and a class of priors P yielding

proper posteriors. For any compact set ΩΘ0 ⊂ ΩΘ and any q ∈ P, if a function π(θ) is

such that

lim
n→∞

(I(π0 | pn)− I(q0 | pn)) ≥ 0, (3.10)
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where π0 and p0 are the renormalised restrictions (as seen in definition 3.4.3) of π and

p to the compact subset of ΩΘ, we say that the function π has the MMI property for the

given model and class of priors.

3.4.5 Defining a reference prior

The definition of a reference prior for a one-parameter model can now be formulated.

Definition 3.4.8. If a prior distribution π(θ) satisfies the MMI property of definition

3.4.7, as well as being a permissible prior as stated in definition 3.4.5, it is a reference

prior.

Next, we turn to a method of deriving an explicit form for the reference prior for a

given model, provided that we are in the one-parameter case.

3.4.6 Explicit solution for one-parameter distributions

In the case of one-parameter distributions, including multi-parameter distributions for

which all but one parameter are assumed known, there exists an explicit method for

deriving the reference prior.

Theorem 3.4.4 (Explicit form of reference prior). Assume that we have a random sample

x = (x1, ..., xn), and some asymptotically sufficient statistic tn = tn(x) with tn ∈ Tn. Let

π∗(θ) be a continuous, strictly positive function such that the posterior π∗(θ | tn) is proper.

Let θ0 ∈ ΩΘ be any interior point, and define

fn(θ) = exp

{∫
Tn

p(tn | θ) ln
(
π∗(θ | tn)

)
dtn

}
(3.11)

with

π∗(θ | tn) =
p(tn | θ)π∗(θ)∫

ΩΘ
p(tn | θ)π∗(θ) dθ

, (3.12)

and

f(θ) = lim
n→∞

fn(θ)

fn(θ0)
(3.13)

If the function f(θ) is a permissible prior, then cf(θ) is a reference prior for any c > 0.

Proof. A proof of this theorem is outside the scope of this thesis, but can be found in

the appendices of J. O. Berger, Bernardo, and Sun, 2009.
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Applying theorem 3.4.4 would seem to make finding the reference priors for one-

parameter distributions an easy task. This is not necessarily the case. The actual calcu-

lation might be quite tedious, or even intractable, and hence we introduce a numerical

scheme for estimating the reference prior.

3.4.7 Numerical computation of one-parameter reference prior

Algorithm 1 is based on the numerical scheme presented in J. O. Berger, Bernardo, and

Sun, 2009, setting π∗(θ) = 1, which is based on the method presented in theorem 3.4.4.

Algorithm 1 Computing reference priors numerically

Input: nθ = number of values of θ (assumed here to be evenly spaced in the domain –

but this does not have to be the case). ni = number of iterations per value of θ. nd =

number of data points per iteration.

for i in 1 to nθ do

Set θ equal to value number i in list of parameter values

for j in 1 to ni do

Sample nd realisations from the model p(x | θ) giving the data x = (x1, ..., xnd)

Compute cj =
∫

Ωθ

∏nd
k=1 p(xk | θ) dθ

Evaluate rj(θ) = log
[∏nd

k=1 p(xk | θ)/cj
]

end for

π(θ) = exp(n−1
i

∑n
j=1 rj(θ))

Add (θ, π(θ)) to list of pairs

end for

return List of pairs (θ, π(θ))

3.5 Penalised Complexity prior

A more recent addition to the list of frameworks for choosing default priors is the Pe-

nalised Complexity priors (shortened to PC priors). The PC prior concept was introduced

in Simpson et al., 2017, and have since been incorporated into the R-INLA software pack-

age (see source code in Rue, n.d.). PC priors are meant to provide general default choices

of prior distributions, and its main usage is with complex, hierarchical models. In order

to achieve this, mathematical rigour has been sacrificed for computational tractability,

and hence it stands in some contrast with e.g. reference priors, which rely on a more solid
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theoretical foundation, but remains difficult to use in practise.

3.5.1 General idea

Although this thesis concerns itself with objective priors in a Bayesian setting, the PC

priors do not conform to this standard. In fact, the PC priors are not going to be

objective, but rather contain some weak information based on a few underlying principles

deemed reasonable by the authors of Simpson et al., 2017. The main reasoning behind the

choice to inject or allow some deviation from a pure non-informative prior, goes as follows:

An overparametrised model will likely yield over-fitting when using an objective prior.

This, in addition to the fact that objective priors perform badly from a computational

point of view, leads to the conclusion that the injection of some information is desirable.

At the heart of the PC prior lies a base model, which is in general model specific. In

a way, the base model is the simplest possible model in the class of possible priors, and

the introduction of such a concept helps to avoid the unwanted over-fitting often seen

when using objective priors. An example to illustrate the base model concept might be

given by the a univariate normal distribution with zero mean – that is, the parameter

of interest is the variance. For the base model, the variance is set to zero, consequently

placing all mass at zero. (This is, obviously, a degenerate distribution, and it shows that

the base model might often be regarded as the limit of some sequence of distributions

– in this case, limi→∞N(0, σ2
i ) with σi → 0 when i → ∞.) As a further example, for

a Student’s t-distribution with degrees of freedom as its parameter of interest, the base

model is typically given by setting degrees of freedom equal to infinity. It thus becomes

even more apparent that the base model is, oftentimes, given by an asymptotic, perhaps

idealised, case.

The desire to avoid over-fitting can be seen as a preference for parsimonious models,

often called Occam’s (or Ockham’s) razor principle (see Jefferys and J. O. Berger, 1992).

Without a clear indication to the contrary, the prior should lean towards the simpler

models. The reason for needing a base model hence becomes clearer, as it supplies a

means of measuring the deviation from a parsimonious model. If the evidence does not

suggest a large deviation from the base model, the PC prior will prefer to stay close to

it. If, on the other hand, the data strongly indicate a deviation from the simpler model,

the complexity of the resulting model will be higher.
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3.5.2 One-parameter distributions

Given a model and corresponding base model, we need to calculate the complexity of

the model with respect to the base model using some measure of distance. For the PC

priors, the choice of measure is the Kullback–Leibler divergence. Since we would like the

prior to have less weight for higher complexity models (i.e. models farther from the base

model), the measure of complexity has to be interpretable as a distance, and Simpson

et al., 2017 argues that the proper way to do this is by letting the distance measure used

for the PC prior, for given probability densities f and g, be given by

d(f | g) =
√

2κ (f | g). (3.14)

Since f and g are going to be models from the same family, but with the parameter of

g set to ξ = 0 (or some other value defining the base case), we will in the following just

write d(ξ). We will then provide d(ξ) with a prior distribution, which in turn leads to a

distribution for the parameter of interest ξ.

It should be noted that the distance measure given by equation (3.14) is not symmet-

ric, since the Kullback–Leibler divergence is not symmetric, and hence is not a distance

in the normal way.

In order to derive the prior distribution, we need one further assumption. It will be

assumed that the penalisation of the distance d > 0 from the base model is given by rd

for r ∈ (0, 1). This implies that increasing the distance from d to d+ δ for some δ > 0 is

independent of d, which can be written as

πd(d+ δ)

πd(d)
= rδ. (3.15)

The implication of such an assumption is that the prior distribution for d is exponentially

distributed (see Simpson et al., 2017), which we prove in the following theorem.

Theorem 3.5.1. The prior distribution for the distance d, defined by equations (3.14)

and (3.15), follows an exponential distribution.

Proof. We first note, using equation (3.15), that

∫ ∞
s

π(x) dx = rs
∫ ∞

0
π(x) dx = rs. (3.16)
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Further, we have that

∫ ∞
s+t

π(x) dx = rs
∫ ∞
t

π(x) dx =

∫ ∞
s

π(x) dx ·
∫ ∞
t

π(x) dx. (3.17)

Letting f(s) =
∫∞
s π(x) dx, we get

f(s+ t) = f(s)f(t), (3.18)

and we have that f(a) = f(a/2)2 = f(a/4)4 = ... = f(1)a. The only continuous function

satisfying this equation is

f(a) = e− ln(f(1))a = e− ln(r)a. (3.19)

We now note that, letting λ = − ln(r), we have the equality

∫ a

0
π(x) dx = 1− e−λa, (3.20)

which is the cumulative distribution function for an exponential distribution. Hence, the

prior π(d) has to be exponentially distributed, and we are done.

For the parameter ξ of interest, of which d = d(ξ) is a function, we hence get

π(ξ) = λe−λd(ξ)

∣∣∣∣∂d(ξ)

∂ξ

∣∣∣∣ , (3.21)

by using the transformation of variables formula, assuming a one-to-one correspondence.

One last item remains before the univariate PC priors are fully specified; the value of

the parameter λ must be chosen. This is, in some sense, where the prior becomes weakly

informative, as the choice of value for this parameter might be used to control the mass

in the tail of the prior, and hence decide how much prior information should be inserted.

The value of λ might be chosen in the following way. Suppose we define a trans-

formation Q(·) of ξ (this might be the identity function) and a threshold U such that

Q(ξ) > U is considered a tail event. Let α denote the probability of being in the tail.

Then we need to choose the value of λ for the PC prior in such a way that

P (Q(ξ) > U) = α. (3.22)

Note that λ will be a function of U and α, given the choice of Q, and hence what we
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need to decide is the value of these two parameters. That is, we need to establish what

we mean by a tail event, and how much weight we would like to place on such an event.

Another approach, which is not a part of the definition of PC priors given by Simpson

et al., 2017, would be to place a prior distribution on λ. Since λ is just the rate of an

exponential distribution, one natural choice is the prior π(λ) = 1/λ. While investigating

this further does seem worthwhile, we have not done so in this thesis.





Chapter 4

Bivariate Normal with Unknown

Correlation

This chapter will introduce the bivariate normal distribution, assuming only the cor-

relation coefficient to be unknown. First we will supply a section giving an overview of

the content. Then, we take a look at the frequentist approach to the problem of esti-

mating the correlation. After this, we turn to the main theme of this thesis, namely

the derivation and subsequent discussion of possible prior distributions for the unknown

parameter. Then, we derive expressions for the Bayes estimators when using Kullback–

Leibler divergence and the Fisher information metric as loss functions. Lastly, we include

some other approaches to estimating the correlation.

4.1 Overview

This section is meant to give an overview of the example model and the results of this

chapter.

4.1.1 The model

Assume that we are given a bivariate normal distribution with mean equal to µ =

(µ1, µ2)> = (0, 0)> and covariance matrix given by

Σ =

1 ρ

ρ 1

 . (4.1)

From Σ we see that the variances are both equal to 1, that is σ1 = σ2 = 1, and we are

left with a single parameter ρ which denotes the correlation between the two components

of the random vector. Note that we assume ρ ∈ (−1, 1), since ρ = ±1 would make

this a degenerate distribution (see Mathematics, n.d.(c)) and essentially reduce it to the

univariate case. This is the same approach as that taken in J. O. Berger and Sun, 2008.
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The probability density function is given by

p(x | ρ) =
1

2π
√

1− ρ2
exp

(
−x

2
1 + x2

2 − 2ρx1x2

2(1− ρ2)

)
. (4.2)

When talking about a sample of size n, we will in the remainder of this section let

x = (x1, ..., xn) denote the data, with each xi = (xi1, xi2) being a single realisation from

the bivariate normal distribution, for i ∈ {1, ..., n}, with some specified correlation ρ.

Note that when deriving prior distributions, we will use the model p(x | ρ), in which

x = (x1, x2) is just one single realisation of the bivariate normal. The distinction should

be clear both from context, and from the bold (i.e. x) vs. normal (i.e. x) notation for the

data.

4.1.2 Frequentist results

In section 4.2 we show that there exists a two-dimensional minimal sufficient statistic for

ρ given by equation (4.5). Further, the maximum likelihood estimator is shown to be

the solution to the cubic equation given by equation (4.13). In addition to the MLE, the

empirical correlation is introduced in equation (4.8). Since we assume the means and

variances to be known, variants of the empirical correlation incorporating some or all of

this information are given in equations (4.9) and (4.10). Both the MLE and (the variants

of) the empirical correlation might be used as an estimator for the correlation coefficient.

In order to limit the number of estimators used in the simulation studies, we will only

use the MLE and the version of the empirical correlation given by (4.9) in chapter 5.

4.1.3 The prior distributions

Table 4.1 lists the priors that will be derived and tested in sections 4.3 (the flat prior),

4.4 (the Jeffreys prior), 4.5 (the reference prior) and 4.6 (the PC prior). Note that the

flat prior and the PC prior are proper priors, and have hence been normalised. Figure 4.1

shows the five priors that will be derived and tested in this thesis, including three versions

of the PC prior, having value of λ equal to 0.0818, 1.249 and 5.360. The reasoning being

using these seemingly quite arbitrary values will be provided in section 4.6.3.
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Table 4.1: Summary of the priors that will be derived in this section. The
proper priors have been normalised, as indicated by the inclusion of an equality
sign, whereas the improper priors (for obvious reasons) have not.

Symbol Name Formula

πflat Flat prior = 1/2

πJ Jeffreys prior ∝
√

1 + ρ2/(1− ρ2)

πR Reference prior ∝ πJ
πPC PC prior = λρ·sgn(ρ)

2(1−ρ2)
√
− ln(1−ρ2)

e−λ
√
− ln(1−ρ2)

Figure 4.1: The densities of the prior distributions from table 4.1 is shown. The
PC prior is shown for values of λ equal to 0.0818, 1.249 and 5.360. Note that the
Jeffreys prior has been scaled by a factor 1/2.

In order to get an indication of how the priors behave, we also include a plot of the

posteriors using one common sample of size 3 for all five priors, and with ρ = 0.5. The

results are shown in figure 4.2. We see that the PC prior with λ = 5.360 gives a posterior

that behaves quite differently from the other. More detailed analysis of the posteriors

and estimators derived therefrom will be given later in this section, and in section 5.

4.1.4 Bayes estimators

Different variants of the Bayes estimator will be used together with the prior distributions

listed in table 4.1 and displayed in figure 4.1 to estimate the value of the correlation
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Figure 4.2: The densities of the posterior distributions with corresponding priors
given in table 4.1 is shown. The posterior has been calculated using one random
sample of size 3 from the bivariate normal distribution using ρ = 0.5.

coefficient. The concept of a Bayes estimator was introduced in section 2.2.2, and we will

here make use of three variants in order to estimate the correlation coefficient.

• Using mean square error as loss function, the estimator becomes

ρ̂MSE =

∫ 1

−1
ρ π(ρ |x) dρ, (4.3)

which is simply the expected value of the posterior distribution.

• Using Kullback–Leibler divergence as loss function, the estimator is given by equa-

tion (4.42).

• Using the Fisher information metric as loss function, the estimator is given by

equation (4.47).

4.1.5 Other approaches to parameter estimation

In order to get a better understanding of how the Bayes estimators perform, we will

test a fiducial approach, in which we approximate the fiducial (see section 4.8) and use

the resulting distribution together with the Bayes estimators – that is, with the fiducial

taking the place of the posterior.
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4.2 Frequentist approach

In order to thoroughly compare and evaluate the prior distributions derived in this chap-

ter, a look at the frequentist approach to parameter inference is appropriate.

4.2.1 Sufficient statistic

In order to derive a sufficient statistic for ρ, we must find T (x) such that p(x | ρ) =

h(x)g(T (x) | ρ) with h and g non-negative functions (see theorem 6.2.6 in Casella and

R. L. Berger, 2002, p. 276). Looking at the likelihood, we get

L(ρ) =

n∏
i=1

1

2π
√

1− ρ2
exp

(
−x

2
i1 + x2

i2 − 2ρxi1xi2
2(1− ρ2)

)

=
1

(2π)n(1− ρ2)n/2
exp

(
−
∑n

i=1

(
x2
i1 + x2

i2

)
2(1− ρ2)

+
ρ
∑n

i=1 xi1xi2
(1− ρ2)

)
,

(4.4)

and, setting h(x) = 1, we have a two-dimensional sufficient statistic given by

T (x) =
(
T1(x), T2(x)

)
=

(
n∑
i=1

(
x2
i1 + x2

i2

)
,

n∑
i=1

xi1xi2

)
. (4.5)

In the following, we will usually refer to the components of the statistic given by equation

(4.5) leaving x implicit, as long as the data in question is clear from the context. That

is, we will simply write Ti = Ti(x) for i ∈ {1, 2}.

Theorem 4.2.1. The sufficient statistic for ρ given by equation (4.5) is minimal.

Proof. In order to show that the sufficient statistic T (x) is minimal, we need to prove that

for random samples x and y, we have that T (x) = T (y) if and only if p(x | ρ) / p(y | ρ)

is independent of ρ (see theorem 6.2.13 in Casella and R. L. Berger, 2002, p. 281). If

T (x) = T (y), we immediately see that the fraction is independent of ρ, by noting that

p(x | ρ)

p(y | ρ)
= exp

(∑n
i=1

(
y2
i1 + y2

i2

)
−
∑n

j=1

(
x2
j1 + x2

j2

)
2(1− ρ2)

+

ρ
(∑n

i=1 xi1xi2 −
∑n

j=1 yj1yj2

)
(1− ρ2)

) (4.6)

becomes equal to 1. If we assume that the fraction is independent of ρ, we need both
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∑n
i=1

(
y2
i1 + y2

i2

)
−
∑n

j=1

(
x2
j1 + x2

j2

)
= 0 and

∑n
i=1 xi1xi2 −

∑n
j=1 yj1yj2 = 0, which

implies T (x) = T (y), and the statistic is minimal sufficient.

Note that, since we have

0 ≤
n∑
i=1

(xi1 − xi2)2 =
n∑
i=1

(
x2
i1 − 2xi1xi2 + x2

i2

)
=⇒

n∑
i=1

(
x2
i1 + x2

i2

)
≥ 2

n∑
i=1

xi1xi2,

(4.7)

the equality T1 ≥ 2T2 always holds.

4.2.2 Empirical correlation

The empirical correlation coefficient between samples of size n from two random variables

Y and Z, denoted y = (y1, ..., yn) and z = (z1, ..., zn), is in general given by

ρ̂1 =

∑n
i=1(yi − ȳ)(zi − z̄)√

(
∑n

i=1(yi − ȳ)2) (
∑n

i=1(zi − z̄)2)
, (4.8)

with ȳ = 1
n

∑n
i=1 yi and z̄ = 1

n

∑n
i=1 zi the empirical means.

In our example with the bivariate normal distribution, the means and variances are

known, and hence we can find alternative versions based on this extra knowledge. Firstly,

we assume only the means to be known, for which we get

ρ̂2 =

∑n
i=1 yizi√(∑n

i=1 y
2
i

) (∑n
i=1 z

2
i

) . (4.9)

The denominator of the empirical correlation coefficient is the product of the empirical

standard deviations for the two random variables multiplied by n. Hence, we can replace

the denominator of equation (4.9) by n times the known standard deviations (which are

just equal to 1), and we get

ρ̂3 =
1

n

n∑
i=1

yizi. (4.10)

Note that this last version will not give values restricted to the interval [−1, 1], and

hence a truncated version is sometimes used (see e.g. Fosdick and Raftery, 2012), in

which values above 1 is set to 1, and values below −1 is set to −1. For a sample x from
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the bivariate normal distribution, equation (4.10) will be equal to T2/n, with T2 being

the second component of the sufficient statistic given in equation (4.5). Note that neither

equation (4.8) nor equation (4.9) can be written only in terms of the sufficient statistic.

Some simple tests shows that ρ̂1 performs very poorly for small sample sizes, and

that using ρ̂2 leads to markedly better results. We also find that while ρ̂3 does perform

better than ρ̂1, a lot of estimates fall outside of the interval (−1, 1). Hence, when using

the truncated version of the estimator, the density of ρ̂3 places a lot of weight on the

extreme cases −1 and 1, regardless of the true value of ρ. From these considerations,

and in order to limit the number of estimators used in the simulation studies of chapter

5, we will only use the estimator ρ̂2.

4.2.3 Maximum likelihood estimator

The likelihood, given by equation (4.4), can be used to derive the maximum likelihood

estimator (MLE) for ρ. Taking logarithms, and using the statistic given by equation

(4.5) to simplify the expression, we get the log-likelihood

`(ρ) = −n log(2π)− n

2
log
(
1− ρ2

)
− T1

2(1− ρ2)
+

ρT2

1− ρ2
. (4.11)

Further, differentiating with respect to ρ gives

d

dρ
`(ρ) =

nρ

1− ρ2
− ρT1

(1− ρ2)2
+

T2

1− ρ2
+

2ρ2T2

(1− ρ2)2
. (4.12)

Finally, setting the resulting expression equal to zero yields the qubic equation

ρ(1− ρ2) + (1 + ρ2)
T2

n
− ρT1

n
= 0

=⇒ ρ3 − T2

n
ρ2 +

(
T1

n
− 1

)
ρ− T2

n
= 0.

(4.13)

The explicit form for the solutions to equation (4.13) can be found in both Fosdick

and Raftery, 2012 and MathWorld, n.d.(a). The formulas are quite involved, but may

nontheless be used to locate the MLE. It can be shown (see references in Fosdick and

Raftery, 2012) that at least one solution to this cubic equation falls in the interval (−1, 1),

guaranteeing that we always have an MLE. However, there might be three real solutions

in the aforementioned interval, two of which might be local maxima. In this case, the

largest of these gives us the MLE.
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4.3 Flat prior

A flat prior for the correlation coefficient is simply given by

πflat = 1/2. (4.14)

This is a proper prior, and hence the posterior will also be proper. For a parameter

space like the one we are dealing with, a flat prior does intuitively seem like a good choice;

giving equal weight to all possible parameter values, without getting a prior with infinite

measure, seems reasonable. Whether or not this prior does work well will be investigated

in chapter 5.

4.3.1 Corresponding posterior

The posterior distribution when using a flat prior is given by

πflat(ρ |x) ∝ p(x | ρ)πflat(ρ)

=
1

2n+1πn(1− ρ2)n/2
exp

(
− T1

2(1− ρ2)
+

ρT2

(1− ρ2)

)
.

(4.15)

By plotting the posterior distribution, we can see how it behaves for different sample

sizes. In order to get an indication both of how it performs for small samples, and of

how increasing the sample size affects the posterior, we use samples of size 3, 10 and 100.

(Note that this will also be the preferred sample sizes in chapter 5.) The posterior is

calculated for 1000 different samples with ρ = 0.5, and the average of these are displayed

in figure 4.3.

For a sample size of 3, the posterior density still retains some of the features from the

prior, in that it puts a relatively high weight on values close to -1 and 1. Increasing the

sample size to 10 and 100 gradually focuses the densities around the true value of ρ, as

we would expect. Indeed, for a sample size of 100 the density seems to be close to that

of a univariate normal distribution with mean close to 0.5.

4.4 Jeffreys prior

In this section we will first find the Fisher information and use it to derive the Jeffreys

prior, and then look at the properties of the prior and corresponding posterior densities.
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Figure 4.3: Using the flat prior, an average over 1000 posterior densities using
equation (4.15) is shown. The densities have been calculated for sample sizes 3, 10
and 100, and with ρ = 0.5. Note that the number above each plot indicates the
sample size for that averaged posterior.

4.4.1 Finding the Fisher information

In order to derive the Jeffreys prior, we first need to find the Fisher information. The

square of the score becomes

(
d

dρ
log (p(x | ρ))

)2

=

(
d

dρ

(
− log(2π)− 1

2
log
(
1− ρ2

)
− x2

1 + x2
2

2(1− ρ2)
+

ρx1x2

(1− ρ2)

))2

=

(
ρ

1− ρ2
− (x2

1 + x2
2)ρ

(1− ρ2)2
+
x1x2(1− ρ2) + 2ρ2x1x2

(1− ρ2)2

)2

=

(
ρ− ρ3 − ρx2

1 − ρx2
2 + ρ2x1x2 + x1x2

(1− ρ2)2

)2

=
1

(1− ρ2)4

(
ρ2 − 2ρ4 + ρ6 + (−2ρ2 + 2ρ4)x2

1 + (−2ρ2 + 2ρ4)x2
2

+ (2ρ− 2ρ5)x1x2 + ρ2x4
1 + ρ2x4

2 + (1 + 4ρ2 + ρ4)x2
1x

2
2

+ (−2ρ− 2ρ3)x3
1x2 + (−2ρ− 2ρ3)x1x

3
2

)
.

(4.16)

We proceed by taking the expectation of the expression derived in equation (4.16), as-
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suming ρ to be known. Due to the linearity of integration and the fact that we integrate

over x1 and x2 while keeping ρ constant, we need solutions to the integrals

∫ ∞
−∞

∫ ∞
−∞

xi1x
j
2 exp

(
−x

2
1 + x2

2 − 2ρx1x2

2(1− ρ2)

)
dx1dx2 (4.17)

for i, j ∈ {0, 1, 2, 3} satisfying either i + j = 2 or i + j = 4. Calculating these integrals

is admittedly quite tedious. In order to provide an indication of the necessary steps, we

solve the integral for the combination (i, j) = (4, 0), which gives

∫ ∞
−∞

e
− x2

2
2(1−ρ2)

∫ ∞
−∞

x4
1e
− x2

1
2(1−ρ2)

+
ρx2

1−ρ2
x1
dx1dx2

=

∫ ∞
−∞

e
− x2

2
2(1−ρ2) e

ρ2x2
2

2(1−ρ2)

∫ ∞
−∞

x4
1e
−x

2
1−ρx2x1+ρ2x2

2
2(1−ρ2) dx1dx2

=

∫ ∞
−∞

e−
x2
2
2

∫ ∞
−∞

x4
1e
− (x1−ρx2)2

2(1−ρ2) dx1dx2

=

∫ ∞
−∞

e−
x2
2
2

∫ ∞
−∞

(1− ρ2)1/2
(

(1− ρ2)1/2u+ ρx2

)4
e−

u2

2 du dx2

=

∫ ∞
−∞

e−
x2
2
2

∫ ∞
−∞

(
(1− ρ2)5/2u4 + 4(1− ρ2)2ρx2u

3

+ 6(1− ρ2)3/2ρ2x2
2u

2 + 4(1− ρ2)ρ3x3
2u

+ (1− ρ2)1/2ρ4x4
2

)
e−

u2

2 du dx2

=

∫ ∞
−∞

e−
x2
2
2

(
3
√

2π(1− ρ2)5/2 + 6
√

2πρ2(1− ρ2)3/2x2
2

+
√

2πρ4(1− ρ2)1/2x4
2

)
dx2

=
(

6π(1− ρ2)5/2 + 12πρ2(1− ρ2)3/2 + 6πρ4(1− ρ2)1/2
)

(4.18)

where we used the substitution u = (x1 − ρx2)/
√

1− ρ2, as well as the results that∫∞
−∞ e

−x2/2 dx =
√

2π (see Rottmann, 2014/2003, p. 155, eq. 49), and

∫ ∞
−∞

x2e−
x2

2 dx =

[
−xe−

x2

2

]∞
−∞

+

∫ ∞
−∞

e−
x2

2 dx =
√

2π,

and
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∫ ∞
−∞

x4e−
x2

2 dx =

[
−x3e−

x2

2

]∞
−∞

+

∫ ∞
−∞

3x2e−
x2

2 dx

=

[
−3xe−

x2

2

]∞
−∞

+

∫ ∞
−∞

3e−
x2

2 dx = 3
√

2π.

The integrals
∫∞
−∞ xe

−x
2

2 dx and
∫∞
−∞ x

3e−
x2

2 dx are both equal to zero, since the inte-

grands are odd functions.

The remaining integrals are solved in a similar fashion. A summary of the solutions is

provided in table 4.2. Note that, due to the symmetry of the bivariate normal distribution

(assuming, as we have, equal means and variances), we need only consider (i, j) = (0, 2)

or (i, j) = (2, 0), not both.

Table 4.2: Solutions to the integral
∫∞
−∞ xi1x

j
2 exp

(
−x

2
1+x

2
2−2ρx1x2

2(1−ρ2)

)
dx1dx2 for dif-

ferent values of i and j.

i j Solutions to equation (4.17)

0 2 2π(1− ρ2)3/2 + 2πρ2(1− ρ2)1/2

1 1 2πρ(1− ρ2)1/2

0 4 6π(1− ρ2)5/2 + 12πρ2(1− ρ2)3/2 + 6πρ4(1− ρ2)1/2

1 3 6πρ(1− ρ2)3/2 + 6πρ3(1− ρ2)1/2

2 2 2π(1− ρ2)3/2 + 6πρ2(1− ρ2)1/2

Using the results from table 4.2 together with equation (4.16), cancelling equal terms,
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we get

I(ρ) = E

[(
d

dρ
log (p(x | ρ))

)2
∣∣∣∣∣ ρ
]

=
ρ2 − 2ρ4 + ρ6

(1− ρ2)4
+

4ρ4 − 4ρ2

(1− ρ2)3
+

4ρ6 − 4ρ4

(1− ρ2)4
+

2ρ2 − 2ρ6

(1− ρ2)4

+
6ρ2

(1− ρ2)2
+

12ρ4

(1− ρ2)3
+

6ρ6

(1− ρ2)4
− 12ρ2 + 12ρ4

(1− ρ2)3

− 12ρ4 + 12ρ6

(1− ρ2)4
+

1 + 4ρ2 + ρ4

(1− ρ2)3
+

3ρ2 + 12ρ4 + 3ρ6

(1− ρ2)4

=
6ρ2

(1− ρ2)2
+

1− 12ρ2 + 5ρ4

(1− ρ2)3
+

6ρ2 − 6ρ4

(1− ρ2)4

=
6ρ2 − 6ρ4 + 1− 12ρ2 + 5ρ4 + 6ρ2

(1− ρ2)3

=
1− ρ4

(1− ρ2)3

=
1 + ρ2

(1− ρ2)2
.

(4.19)

4.4.2 Deriving the prior

The Fisher information given by equation (4.19), in turn, implies that the Jeffreys prior

becomes

πJ(ρ) ∝
√

1 + ρ2

1− ρ2
, (4.20)

which is the same result as can be found in Fosdick and Raftery, 2012. The integral of

equation (4.20) with respect to ρ does not converge, from which we conclude that the

Jeffreys prior is improper. To see this, we can write

∫ 1

−1

√
1 + ρ2

1− ρ2
dρ = 2

∫ 1

0

√
1 + ρ2

1− ρ2
dρ

≥ 2

∫ 1

0

1

1− ρ2
dρ = 2

∫ 1

0

1

(1 + ρ)(1− ρ)
dρ

≥
∫ 1

0

1

1− ρ
dρ =

∫ 1

0

1

x
dx =

[
ln(x)

]1

0
=∞,

(4.21)

which proves the above statement.

Figure 4.4 shows a plot of the Jeffreys prior with an arbitrary scaling. It can be
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readily seen that the prior gives a lot of weight to extreme cases – that is, a correlation

close to -1 or 1 – and much less weight to correlations closer to 0.

Figure 4.4: The density of the Jeffreys prior is shown. Note that it has been
scaled more or less arbitrarily, but in a way that makes it easier to see the important
features of the prior.

4.4.3 Corresponding posterior

Letting x = (x1, ..., xn) be the data, and using the statistic of equation (4.5) to sim-

plify the expression, the posterior distribution using the Jeffreys prior in equation (4.20)

becomes

πJ(ρ |x) ∝ p(x | ρ)πJ(ρ)

=

√
1 + ρ2

(2π)n(1− ρ2)n/2+1
exp

(
− T1

2(1− ρ2)
+

ρT2

(1− ρ2)

)
.

(4.22)

Similarly to what we did for the flat posterior, we plot the posterior distribution in

order to see how they behave for the sample sizes 3, 10 and 100. The posteriors are

again calculated for 1000 different samples with ρ = 0.5, and the averages of these are

displayed in figure 4.5.

We see that the behaviour of the posterior for the three chosen sample sizes is quite
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similar to that of the flat posterior. However, for sample sizes 3 and 10, the density is

shifted slightly towards the extremes (that is, ρ → ±1). This seems reasonable, since

the Jeffreys prior diverges in this situation (and hence a lot of weight is placed near ±1),

whereas the flat prior does not.

Figure 4.5: Using the Jeffreys prior, an average over 1000 posterior densities
using equation (4.22) is shown. The densities have been calculated for sample sizes
3, 10 and 100, and with ρ = 0.5. Note that the number above each plot indicates
the sample size for that averaged posterior.

4.4.4 The posterior is proper

In order to be sure that the posterior density in equation (4.22) can be applied safely, we

should prove that it is a proper probability distribution.

Theorem 4.4.1. The integral of the posterior density in equation (4.22) over ρ is finite,

and hence the posterior distribution corresponding to the Jeffreys prior in equation (4.20)

is proper.

Proof. The theorem will be proved by finding a finite upper bound on the integral of the

posterior. We ignore the constant 1/(2π)n throughout this section. We also note that,

since the integrand is always positive, replacing
√

1 + ρ2 by
√

2 in the numerator will

only make the value of the integral larger, and since this is a finite constant we simply
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ignore it. We therefore want to show that

∫ 1

−1

1

(1− ρ2)n/2+1
exp

(
−T1 − 2ρT2

2(1− ρ2)

)
dρ <∞. (4.23)

We will make the assumption that T2 > 0 and prove that the integral in equation (4.23)

is finite. The case where T2 < 0 can be proved in a similar fashion. The case T2 = 0

then follows easily by reusing arguments from the other cases. We will also utilise the

fact that T1 ≥ 2T2, shown in section 4.2.1.

By integrating from −1 to 0 and from 0 to 1 separately, we can make use of different

arguments to show that they are both finite. For ρ ≥ 0 we have that T1 − 2ρT2 ≥

T1 − 2T2 ≥ 0, giving exp (−(T1 − 2ρT2)) ≤ exp (−(T1 − 2T2)). For ρ ≤ 0 we can simply

use that exp (−(T1 − 2ρT2)) ≤ exp (−T1). Hence, we get that the expression in (4.23) is

smaller than

≤
∫ 1

0

1

(1− ρ2)n/2+1
exp

(
− T1 − 2T2

2(1− ρ2)

)
dρ

+

∫ 0

−1

1

(1− ρ2)n/2+1
exp

(
− T1

2(1− ρ2)

)
dρ,

(4.24)

Using the substitution u = 1/(1− ρ2), we get

≤ 1

2

∫ ∞
1

un/2−1 exp

(
−T1 − 2T2

2
u

)
du

+
1

2

∫ ∞
1

un/2−1 exp

(
−T1

2
u

)
du,

(4.25)

where we have replaced 1/ρ by 1 in the first integral and -1 in the second, since this will

give us something larger or equal. By substituting v = (T1− 2T2)u/2 in the first integral

and v = T1u/2 in the second, we simply get

=
1

2

(
2

T1 − 2T2

)−n/2
Γ

(
n

2
,
T1 − 2T2

2

)
+

1

2

(
2

T1

)−n/2
Γ

(
n

2
,
T1

2

)
,

(4.26)

with Γ(·, ·) the upper incomplete Gamma function (see MathWorld, n.d.(b)). This result

is finite, and hence our posterior density is proper.
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4.5 Reference prior

In order to derive the exact reference prior, we should apply theorem 3.4.4. In lack of any

obvious statistic to use in the calculations, we try using the (obviously sufficient) statistic

given by the whole sample x = (x1, ..., xn). Since the data is assumed to be independent

and identically distributed, the density p(tn | θ) in equation (3.11) is simply given by the

likelihood function of equation (4.4). By letting π∗(θ) = 1 in equation (3.12), we can

derive π∗(θ | tn) by calculating

∫ 1

−1
L(ρ) dρ =

1

(2π)n

∫ 1

−1

1

(1− ρ2)n/2

· exp

(
− T1

2(1− ρ2)
+

ρT2

1− ρ2

)
dρ.

(4.27)

We have not, however, been able to find an analytic solution to this integral, and hence

we are forced to rely on other methods of derivation.

4.5.1 Jeffreys prior equals reference prior

In some situations the one-parameter reference prior is simply given by the Jeffreys prior.

Indeed, Wikipedia, n.d. provides a proof indicating that this is always the case. However,

there seems to be an assumption that there exists an asymptotically normal estimator

for the parameter, which allows for the use of Bernstein-von Mises theorem (see e.g.

Mathematics, n.d.(b)). Hence, there are conditions that need to be satisfied before we

can conclude that the priors are identical. Despite some efforts to show equality, we

have not been able to produce anything conclusive. Hence, we move on to a numerical

approximation of the reference prior, which gives an indication that the priors are in fact

equal. We will therefore assume equality and work only with the Jeffreys prior in what

follows.

4.5.2 Numerical approximation

A numerical scheme as presented in algorithm 1 lets us approximate the true reference

prior. Figure 4.6 shows the numerical approximation to the density. The number of

values of ρ was set to 1000, and they have been placed uniformly on the interval (0, 1).

For each value, 10 000 iterations were performed. The sample size for each iteration was

set to 100. The Jeffreys prior given by equation (4.20) is displayed together with the
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numerically approximated reference prior, showing that the similarity is indeed striking.

Note that the Jeffreys prior has been scaled by a factor of 2.45 – chosen to make it align

well with the approximated reference prior.

Figure 4.6: The numerical approximation to the density of the reference prior is
shown. The prior was calculated for 1000 values of ρ placed uniformly on the interval
(0, 1), with 10 000 iterations for each value. The sample size for each iteration was
set to 100. Together with the approximated reference prior, the Jeffreys priors given
by equation (4.20) – scaled by a factor of 2.45 – is shown as a solid line, showing
that they do indeed look very similar.

4.6 Penalised Complexity prior

A natural choice for the base model is to set ρ = 0, that is, the two components of the

bivariate normal are independent. We will denote the full model – that is, the bivariate

normal with ρ ∈ (−1, 1) unknown – by Nf , and the base model by Nb.
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4.6.1 Kullback–Leibler divergence

We will first find the Kullback–Leibler divergence between two bivariate normal distri-

butions with parameters ρ1 and ρ2.

κ (p(x | ρ2) | p(x | ρ1))

= −
∫ ∞
−∞

∫ ∞
−∞

1

2π
√

1− ρ2
1

e
−x

2
1+x2

2−2ρ1x1x2)

2(1−ρ21)

· ln


1

2π
√

1−ρ2
2

e
−x

2
1+x2

2−2ρ2x1x2

2(1−ρ22)

1

2π
√

1−ρ2
1

e
−
x2
1+x2

2−2ρ1x1x2

2(1−ρ21)

 dx1dx2

= −
∫ ∞
−∞

∫ ∞
−∞

1

2π
√

1− ρ2
1

e
−x

2
1+x2

2−2ρ1x1x2

2(1−ρ21)

(
1

2
ln

(
1− ρ2

1

1− ρ2
2

)
− x2

1 + x2
2 − 2ρ2x1x2

2(1− ρ2
2)

+
x2

1 + x2
2 − 2ρ1x1x2

2(1− ρ2
1)

)
dx1dx2

= −1

2
ln

(
1− ρ2

1

1− ρ2
2

)
+

1

2π
√

1− ρ2
1

·
∫ ∞
−∞

∫ ∞
−∞

((
1

2(1− ρ2
2)
− 1

2(1− ρ2
1)

)
(x2

1 + x2
2)

−
(

ρ2

(1− ρ2
2)
− ρ1

(1− ρ2
1)

)
x1x2

)
e
−x

2
1+x2

2−2ρ1x1x2

2(1−ρ21) dx1dx2.

(4.28)

Using the results summarised in table 4.2, we can find the solution to the integrals, and

get

κ (p(x | ρ2) | p(x | ρ1))

= −1

2
ln

(
1− ρ2

1

1− ρ2
2

)
+

1− ρ2
1

(1− ρ2
2)
− 1 +

ρ2
1

(1− ρ2
2)
− ρ2

1

(1− ρ2
1)

− ρ1ρ2

(1− ρ2
2)

+
ρ2

1

(1− ρ2
1)

= −1

2
ln

(
1− ρ2

1

1− ρ2
2

)
+

1− ρ1ρ2

(1− ρ2
2)
− 1.

(4.29)

Now, the Kullback–Leibler divergence between the model and the base model becomes

κ (Nb |Nf ) = −1

2
ln(1− ρ2), (4.30)
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by setting ρ1 = ρ and ρ2 = 0.

4.6.2 Deriving the prior

From equations (3.14) and (4.30), we get

d(ρ) =
√
− ln(1− ρ2). (4.31)

Therefore, we have that

∣∣∣∣ ddρd(ρ)

∣∣∣∣ =

∣∣∣∣∣ ρ

(1− ρ2)
√
− ln(1− ρ2)

∣∣∣∣∣ =
ρ · sgn(ρ)

(1− ρ2)
√
− ln(1− ρ2)

, (4.32)

which yields the prior

πPC(ρ) ∝ λρ · sgn(ρ)

(1− ρ2)
√
− ln(1− ρ2)

e−λ
√
− ln(1−ρ2). (4.33)

with λ > 0.

Now, the PC prior in equation (4.33) does indeed look rather complicated as compared

to a flat prior or the Jeffreys prior of equation (4.20), and it is difficult to imagine someone

formulating such a prior without going through the above calculation using the definition

of the PC prior. Hence, it would be interesting to see if this added complexity does

actually improve the performance of the subsequent analysis.

Before we can start applying the prior in our analysis, however, we should look more

closely at its behaviour at the point ρ = 0, since at this point we seem to get 0/0. Our

first observation is that the prior is symmetric around ρ = 0, due to the sign function

counteracting the negative sign of ρ in the numerator. For ρ = 0, both the exponential

function and the factor (1 − ρ2) in the numerator becomes 1. Using the result that

ln(1− x) ≈ x for |x| � 1, we get
√
− ln(1− ρ2) ≈

√
−(−ρ2) = ρ · sgn(ρ), and hence the

square root in the denominator cancels the terms ρ and sgn(ρ) in the numerator. What

we are left with, then, is the conclusion that πPC(0) ∝ λ.

Now, if the prior is proper we would like to integrate over the whole parameter space

to find the normalising constant. Using the substitution u =
√
− ln(1− ρ2), we get

∫ 1

−1

λρ · sgn(ρ)

(1− ρ2)
√
− ln(1− ρ2)

e−λ
√
− ln(1−ρ2) dρ

= 2

∫ ∞
0

λe−λu du =
[
2λe−λu

]∞
0

= 2,

(4.34)
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implying that the prior is indeed proper, and that the normalising constant is independent

of λ and equal to 2. In conclusion, the PC prior becomes

πPC(ρ) =
λρ · sgn(ρ)

2(1− ρ2)
√
− ln(1− ρ2)

e−λ
√
− ln(1−ρ2), (4.35)

and we have that πPC(0) = λ/2.

4.6.3 User-defined scaling

Before the prior is fully defined, the choice of user-defined scaling, that is the value of

λ, must be made. Looking at equation (3.22), we choose Q equal to the absolute value

function, U = ρ0 ∈ (0, 1), and α ∈ (0, 1). From this, we need to solve the equation

P (|ρ| > ρ0) = α with respect to λ, which becomes

(∫ −ρ0

−1
+

∫ 1

ρ0

)
πPC(ρ) dρ = α

2

∫ 1

ρ0

πPC(ρ) du = α∫ 1

ρ0

λe−λu du = α[
−e−λu

]1

ρ0

= α

e−λ
√
− ln(1−ρ2

0) = α,

(4.36)

using the same substitution as in equation (4.34). Equation (4.36) gives

λ =
− ln(α)√
− ln(1− ρ2

0)
. (4.37)

Now, how do we actually choose α and ρ0? Keeping ρ0 constant, a larger value of α

would mean more weight given to extreme values of ρ. At the same time, keeping α

constant, a larger value of ρ0 would have a similar effect, shifting the weight defined by α

to a smaller interval of ρ in the vicinity of ±1. Increasing α or increasing ρ0 both result

in a smaller value of λ, whereas doing the opposite results in larger values of λ, and

hence we conclude that setting λ relatively close to 0 would give large weight to extreme

values of ρ, whereas setting λ equal to a large positive number would focus the density

around ρ = 0, which is our base model. In other words, large values of λ would force the

resulting estimates of ρ closer to the value of the base model.
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It is not immediately evident which values of α and ρ0, and hence which value of

λ, is most suitable. We will therefore choose three combinations aiming to capture the

differences in the PC prior in order to gauge the effects and try to deduce which values

of λ seem to perform better. The combinations chosen can be seen in 4.3.

Table 4.3: The chosen values of α and ρ0 for the user-defined scaling of the PC
prior. The values of λ have been calculated using equation (4.37).

α ρ0 λ (approx.)

0.9 0.9 0.0818

0.2 0.9 1.249

0.001 0.9 5.360

Figure 4.7 shows the PC prior of equation (4.33) for the three λ values displayed in table

4.3. We immediately see that our analysis above is confirmed, as smaller values of λ leads

to a flatter prior around ρ = 0 (see the solid line), whereas a higher value of λ focuses

the prior around ρ = 0 and gives little weight to ρ → ±1 (see the dotted line). A value

of λ close to 1 (see the dash-dotted line) seems to balance these two tendencies, and does

in fact cause the prior to closely follow a flat prior for ρ ∈ (−0.8, 0.8).

Figure 4.7: The densities of the PC prior from equation (4.35) with λ = 0.0818,
1.249 and 5.360 (as summarised in table 4.3) are shown.
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4.6.4 Limiting behaviour of user-defined scaling

Letting λ approach zero, we get that

lim
λ→0

πPC(ρ) = 0 (4.38)

for ρ ∈ (0, 1). Hence, in the limit, all weight seems to be located at the extreme values

ρ = ±1. Figure 4.8 indicates that this is indeed the case, showing the prior for λ = 0.01,

0.001 and 0.0001 zoomed in on the interval [0.999, 1]. In other words, the density seems

to be approaching

1

2
δ(ρ+ 1) +

1

2
δ(ρ− 1), (4.39)

with δ(ρ−a) the Dirac delta function with value infinity at point ρ = a and zero elsewhere.

Figure 4.8: The densities of the PC prior from equation (4.35) with λ = 0.01,
0.001 and 0.0001, zoomed in on the interval [0.999, 1], are shown.

If λ→∞, all mass will be located at ρ = 0, that is

lim
λ→∞

πPC(ρ) = δ(ρ), (4.40)

which means that the model will be forced towards the base model regardless of the data.

Any prior distribution that gives zero weight to some region of the parameter space

will yield bad results for some parameter values, even when using vast amounts of data,

conflicting with our goal of finding a prior that performs well for most or all situations.

The limits of the PC prior will force the posterior towards ±1 or 0 regardless of the true
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parameter value, and hence, in the limits λ→ 0 and λ→∞, the PC prior should not be

used.

It should, however, be noted that this by no means disqualifies the PC prior for values

of λ between 0 and infinity, for which the prior will be strictly positive for all possible

values of ρ.

4.6.5 Corresponding posterior

The posterior distribution, using the statistic given by equation (4.5), becomes

πPC(ρ |x) ∝ p(x | ρ)πPC(ρ)

=
λρ · sgn(ρ)

2n+1πn(1− ρ2)n/2+1
√
− ln(1− ρ2)

· exp

(
− T1

2(1− ρ2)
+

ρT2

(1− ρ2)
− λ

√
− ln(1− ρ2)

)
,

(4.41)

which, since πPC(ρ) is proper, is guaranteed to be a proper posterior.

Similarly to what we did for the flat and Jeffreys posteriors, we plot the posterior

distributions in order to see how they behave for the sample sizes 3, 10 and 100. The

posteriors are again calculated for 1000 different samples with ρ = 0.5, and the averages

of these are displayed in figure 4.9.

For a sample size of 3, all three posterior densities clearly retain some of the features

from their corresponding priors. Both for λ = 0.0818 and λ = 1.249, the posterior places

much weight on values close to -1 and 1. This effect is much less prominent for a sample

size of 10. For λ = 1.249 and especially λ = 5.360, the local maximum seen in the priors

at ρ = 0 continues to be visible in the form of a notch in the density both for samples

of size 3 and 10. For a sample size of 100, the posterior densities are very close to those

seen for the Jeffreys posterior in figure 4.5 – that is, seemingly close to univariate normal

distributions with mean 0.5.

4.7 Bayes estimators

In this section, we will find formulas for the Bayes estimator when using Kullback–Leibler

divergence and the Fisher information metric as loss functions, as discussed in section

2.2.2.
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Figure 4.9: Using the PC prior, an average over 1000 posterior densities using
equation (4.41) is shown. The densities have been calculated for sample sizes 3, 10
and 100, and for λ = 0.0818, 1.249 and 5.360, with ρ = 0.5. Note that the number
above each plot indicates the sample size for those averaged posteriors.

4.7.1 Kullback–Leibler divergence

Using the result from equation (4.29) with ρ1 = ρ and ρ2 = ρ̂, the Bayes estimator

becomes

ρ̂KL = argmin
ρ̂

∫ 1

−1

(
−1

2
ln

(
1− ρ2

1− ρ̂2

)
+

1− ρ̂ρ
(1− ρ̂2)

− 1

)
π(ρ |x) dρ. (4.42)

Since we can ignore any part of equation (4.42) that is constant with respect to ρ̂, we

can simplify the expression to get

ρ̂KL = argmin
ρ̂

(
1

2
ln
(
1− ρ̂2

)
+

1− ρ̂
(1− ρ̂2)

Eπ [ρ |x]

)
, (4.43)

with Eπ [ρ |x] =
∫ 1
−1 ρ π(ρ |x) dρ. Interestingly, it turns out that the Bayes estimator with

Kullback–Leibler divergence as loss function is a function of ρ only through the Bayes

estimator with MSE as loss function – which is just the expected value of the posterior

density (as seen in section 2.2.2).
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4.7.2 Fisher information metric

In order to find the Bayes estimator with the Fisher information metric as loss function,

we first need to find the integral of the square root of the fisher information. Using the

result from equation (4.19), we first note that

√
1 + x2

1− x2
=

1 + x2

(1− x2)
√

1 + x2

=
2

(1− x2)
√

1 + x2
− 1− x2

(1− x2)
√

1 + x2
=

2

(1− x2)
√

1 + x2
− 1√

1 + x2
.

(4.44)

The integral of the second term in the last expression of equation (4.44) is equal to

arcsinh(x) plus a constant. Using the, perhaps not immediately obvious, substitution

u =
√

2x/
√

1 + x2 for the first term, we get

∫
2

(1− x2)
√

1 + x2
dx =

√
2

∫
1 + u2

2−u2

1− u2

2−u2

du

=
√

2

∫
1

1− u2
du =

√
2 arctanh(u) + c =

√
2 arctanh

( √
2x√

1 + x2

)
+ c,

(4.45)

with c ∈ R some constant. Consequently, the loss function is given by

L(ρ, ρ̂) =

∣∣∣∣∣
∫ ρ̂

ρ

√
1 + x2

1− x2
dx

∣∣∣∣∣
=

∣∣∣∣∣∣
[
√

2 arctanh

( √
2x√

1 + x2

)
− arcsinh(x)

]ρ̂
ρ

∣∣∣∣∣∣ .
(4.46)

The Bayes estimator then becomes

ρ̂I = argmin
ρ̂

∫ 1

−1

∣∣∣∣∣√2 arctanh

( √
2ρ̂√

1 + ρ̂2

)
− arcsinh(ρ̂)

−
√

2 arctanh

( √
2ρ√

1 + ρ2

)
+ arcsinh(ρ)

∣∣∣∣∣π(ρ |x) dρ.

(4.47)

Fixing ρ̂ and looking at the loss function as a function of ρ only, we have that L(ρ, ρ̂) ≥ 0,

and is equal to zero if and only if ρ = ρ̂. This is as expected, since equation (4.46) should
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define a metric. Further, since the value of L(ρ, ρ̂)→∞ as ρ→ ±1, and π(ρ |x) ≥ 0 and

bounded, the minimum does exist. Note, however, that the value of the estimator, as

was the case with the Bayes estimator using Kullback–Leibler divergence as loss function,

has to be found numerically.

4.8 Fiducial approach

In Taraldsen and Lindqvist, 2018, a method for sampling from the fiducial of ρ is dis-

cussed. We will not show the correctness of the method here, but simply apply the

resulting sampling procedure in good faith. As discussed in section 2.3, such a sampling

procedure might be used to approximate the fiducial, which in turn can be viewed as a

posterior distribution that does not correspond to any prior distribution.

Let r denote the empirical correlation introduced in section 4.2.2, and calculate

x =
r√

1− r2
. (4.48)

Next, sample u1 ∼ χ2
n−1, u2 ∼ χ2

n−2 and u3 ∼ N(0, 1), and calculate

θ =
xu2 − u3

u1
. (4.49)

The sample from the fiducial is then given by

ρ =
θ√

1 + θ2
. (4.50)

The obvious choice of r would be the empirical correlation given in equation (4.8). How-

ever, knowing that the means of our bivariate normal model are both 0, it might make

sense to use equation (4.9) instead. We will here make use of both, in order to see which

choice is better for our model. Note that, since the empirical correlation given by equa-

tion (4.10) would give values of r outside the interval (−1, 1), which would subsequently

give the square root of a negative number in equation (4.48), it does not make sense to

use this quantity in the fiducial setting.

In order to see how the fiducial behaves, we can sample several times from the bi-

variate normal for a given ρ, and for each sample calculate the sample value from the

fiducial by using the procedure above. This, in effect, gives us an empirical distribution

approximating the true fiducial. By applying a kernel density estimator, we can get a

continuous approximation to the fiducial. In figure 4.10 we have done this for ρ = 0.5,



Chapter 4. Bivariate Normal with Unknown Correlation 59

bivariate sample sizes 3, 10 and 100, and fiducial sample size 10 000. The fiducial has

been calculated using both the standard empirical correlation and the one where we as-

sume known means. For each bivariate sample size, the fiducial was approximated 100

times, and the average of these is displayed in the figure.

Figure 4.10: An average over 100 approximated fiducials calculated for sample
sizes 3, 10 and 100, with ρ = 0.5. The fiducials were approximated with 10 000
sample points, before using a kernel density estimator. Note that the number above
each plot indicates the sample size for those averaged fiducials, whereas the labels
on the right indicate whether or not known means were assumed.

First of all, we see that the two versions of the fiducial behave quite similarly, but

that there are some differences. For a sample size of 3 we seem to get some features

similar to that of the PC priors, and some features closer to the flat and Jeffreys priors.

More concretely, the distribution places a lot of weight on ρ→ 1, while at the same time

having a local maximum close to ρ = 0.

For a sample size of 10, the weight of the distribution is shifted towards the true

value of the parameter. Using known means we have a larger weight on values between

ρ = 0 and 0.5 than is seen for the priors (except for the PC priors with λ = 5.360 which

behaves rather strangely), whereas the fiducial is more balanced around ρ = 0.5 for the

regular empirical correlation.

When the sample size is increased to 100, the distribution seems to approach a uni-

variate normal distribution with mean 0.5, as was the case for all the priors as well, and

there are no clear distinctions between the two versions of the fiducial.





Chapter 5

Simulations

If we are to make any statements about the suitability of the various methods of

estimation discussed in the previous chapters, we need to perform experiments in which

we compare the performance of the estimators on simulated data. This chapter includes

such experiments, and subsequent discussion of their results. We will start out by looking

at the suitability of the posterior distributions as tools to construct confidence intervals.

Then, we will compare the point estimators using the empirical distribution of the es-

timators themselves, as well as the distance between the point estimates and the true

value of the correlation. The distance measures used will be Kullback–Leibler divergence

and the Fisher information metric. Lastly, we will compare the different methods for

constructing confidence intervals.

The code used in this section can be found in an open repository in Github, by fol-

lowing the link https://github.com/erikhide/TMA4900. Note that the code is not written

to be easy to read, and there are no comments. However, it serves as documentation for

the simulations performed in this thesis.

Throughout this section, the number of iterations are relatively low. The reason for

this was a combination of too little time and too high computational complexity. Some

results might therefore be unreliable, and the conclusions should be viewed in light of

this. In order to improve upon the work done in this thesis, a similar simulation study

should be carried out with more iterations and hence a higher accuracy.

5.1 Frequentist coverage

Credible intervals derived from posteriors (as explained in section 2.2.3) might not ac-

tually deliver the promised degree of certainty concerning the parameter value, when

viewed as confidence intervals. That is, for a 1 − α credible interval, the probability of

covering the actual parameter value might not be 1 − α. By simulating a large number

of random samples from the bivariate normal distribution, and for each sample calculate

https://github.com/erikhide/TMA4900
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the credible interval in order to check whether or not the (now known) value of ρ is

actually inside the interval, we can approximate the frequentist coverage. Specifically,

the approximation to the frequentist coverage becomes equal to the number of times the

interval actually covers ρ divided by the number of iterations performed. Mathematically,

using the definition of C(x) from section 2.2.3, we use the following approximation

P
[
ρ ∈ C(x) | ρ

]
≈ 1

m

m∑
i=1

[
ρ ∈ C(xi)

]
, (5.1)

with m equal to the number of iterations, and xi = (xi1, ..., xin) with n equal to the

sample size and xij being one realisation from the bivariate normal distribution. The

square bracket notation [·] surrounding ρ ∈ C(xi) denotes the Iverson bracket (see Knuth,

1992), which returns 1 if the logical statement inside is true, and 0 otherwise.

In the following simulations, we will consistently use 10 000 iterations per value

of ρ in an attempt to strike a balance between accuracy in the estimates on the one

hand and computational complexity on the other. In order to test the prior distri-

butions on the most extreme case, and also see how they perform as the sample size

increases, simulations will be done for samples of size 3, 10 and 100. For each combina-

tion of sample size and prior distribution, the frequentist coverage will be estimated for

ρ ∈ {−0.9,−0.8, ..., 0.8, 0.9}. Due to the approximate nature of the estimation method,

we would expect some variation in the computed frequentist coverages. Hence, some

deviation from the desired 0.95 coverage probability is natural. However, due to the rel-

atively high number of iterations, larger deviations will likely be caused by a systematic

difference between the promised and actual coverage probabilities. Even though the cov-

erage probabilities should theoretically be symmetric around ρ = 0, the relatively small

number of iterations results in some deviations from this.

5.1.1 Flat prior

Figure 5.1 shows the estimated coverage probabilities when using a flat prior. An imme-

diate observation is that the coverage probabilities are consistently quite close to 0.95.

For a sample size of 3 the coverage probabilities are a bit too low, fluctuating around

0.945, whereas for sample sizes of 10 and 100 the coverage probabilities fluctuate around

0.95, as promised.
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Figure 5.1: The estimated coverage probabilities for the flat prior is shown for
sample sizes 3, 10 and 100, and for ρ values between −0.9 and 0.9 with step size 0.1.
A total of 10 000 iterations was performed per value of ρ. Note that the number
above each plot indicates the sample size.

5.1.2 Jeffreys prior

Figure 5.2 shows the estimated coverage probabilities when using the Jeffreys prior.

For sample size 3 the coverage probabilities are all close to 0.85, which is quite low as

compared to the promised 0.95. Increasing the sample size to 10 shifts the coverage

probabilities to 0.92, which is closer to 0.95 but still quite a lot off. For a sample size of

100, the coverage probabilities are all close to 0.95.

5.1.3 Penalised Complexity prior

Figure 5.3 shows the estimated coverage probabilities when using the PC prior with λ

equal to 0.0818, 1.249 and 5.360. One of the most striking features common for all λs

is how the behaviour of the coverage probabilities changes significantly close to -1 and

1. Further, both for λ = 1.249 and λ = 5.360, the coverage probability is growing as we

move closer to ρ = 0.

Both for λ = 0.0818 and λ = 1.249, the coverage probabilities fairly close to the goal

of 0.95, especially as the sample size grows. However, the coverage probability is not

stable for different values of ρ, but rather it varies quite a lot from values well above 0.95

to values a great deal lower than what we were hoping for.

For λ = 5.360, the coverage probability estimates are behaving very strangely, and
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Figure 5.2: The estimated coverage probabilities for the Jeffreys prior is shown
for sample sizes 3, 10 and 100, and for ρ values between −0.9 and 0.9 with step size
0.1. A total of 10 000 iterations was performed per value of ρ. Note that the number
above each plot indicates the sample size.

the sample size has to reach 100 before they can be said to be anywhere close to 0.95.

5.1.4 Fiducial approach

Since the fiducial might be viewed as a posterior distribution, it would be interesting

to see how well it performs with regards to frequentist coverage. For computational

reasons, the number of iterations was restricted to 1000 for each value of ρ, and each

fiducial distribution was approximated using just 1000 samples.

First of all, figure 5.4, which shows the estimated coverage probabilities using both

versions of the empirical correlation, shows that there are no discernible differences be-

tween the two. We then note that for samples of size 3, the coverage probability is close

to or equal to 1 for all values of ρ. For samples of size 10, the coverage probability falls

towards 0.75 as ρ approaches 0, but stays close to 1 at the extreme ends. Then, for

samples of size 100, the tendencies we say for samples of size 10 are reinforced, with the

coverage probability being as low as 0.20 for ρ = 0.

5.1.5 Summary of the coverage probabilities

In conclusion, it seems as though the only posterior (including the fiducials) able to

achieve something resembling exact frequentist matching for samples of sizes 3, 10 and
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100, is the posterior given by a flat prior. Jeffreys prior does give almost the same

coverage probability for all values of ρ, but the values are close to 0.85 for samples of

size 3, close to 0.92 for samples of size 10, and only for samples of size 100 do the values

approach 0.95. This result is a bit surprising, since one would assume that the Jeffreys

prior would outperform the flat prior when comparing the frequentist coverage results.

For the PC priors, the version with λ = 5.360 behaves very strangely for all sample

sizes, whereas the other two have problems for extreme values of ρ. The best choice out

of the three PC priors seem to be λ = 1.249, which lies close to 0.95 for all values of ρ

and all sample sizes. The fiducials do not seem to be appropriate for interval estimation

at all, displaying some very strange behaviour.

When looking closely at the coverage probability plots, there seems to be a lack of

symmetry especially for the flat and Jeffreys priors. This is most likely caused by having

relatively few iterations when calculating the coverage probabilities.

5.2 Evaluating point estimators

There are several approaches to evaluating point estimators. We might for example run

a simulation in which we calculate the estimator a large number of times, and view the

resulting list of values as a sample from the distribution of the estimator. Using this

empirical distribution, we can either calculate the mean and variance directly, or we can

apply kernel density estimation to get an approximate density for the estimator and use

this to find the same quantities. In the end, we would like the mean of the distribution

to be close to the actual value of the parameter, while keeping the variance as low as

possible. A biased estimator – that is, one that in expectation gives a too low or too

high estimate – is undesirable.

Another, possibly simpler, approach is to subtract the true value from the estimated

value and square the result. We then do this a large number of times before finding the

average. This is the mean square error (MSE), and it is commonly used in the evaluation

of estimates.

If we would like to be a bit more clever, we might want to measure distances be-

tween distributions, instead of just the difference between the estimated and true value

the parameter. Indeed, one could argue that the goal of estimating the parameter is to

get an estimate of the true underlying model, and in this sense, comparing the models

seems more correct than simply comparing the values of the parameters. In section 2.2.2
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we discussed distances between distributions in relation to the Bayes estimator, and two

distance measures were introduced. The expression for the Kullback–Leibler divergence

was derived in equation (4.29), whereas the Fisher information metric is given in equa-

tion (4.46). For both of these measures of deviation between the true and estimated

distributions, we would like the value to be as close to 0 as possible.

In this section we will look closer at how our estimators perform both when look-

ing at the mean and variances of their distributions, and when using Kullback–Leibler

divergence and the Fisher information metric to calculate the distance between the esti-

mated and true models. Due to symmetry, we will only look at values of ρ in the interval

[0, 1). Note that the approximative nature of the numerical methods used to estimate

the parameters, as well as the finite sample size used to get the empirical distribution

of the estimators, there would have been some deviation between the results for ρ and

−ρ. Theoretically, however, the results should be the same, and indeed, when performing

some tests, they were quite similar even for modestly large samples.

5.2.1 The distribution of the estimators

Figure 5.5 shows the approximated densities of the point estimators when using prior

distributions and Bayes esimators. One apparent feature of these plots is the strange

behaviour of the PC prior with λ = 5.360. No matter the true value of ρ, the distribution

of the estimators all seem to be quite close to 0, which reflects the fact that the prior gives

a lot of weight to values close to this point. Due to this, we will focus on the four other

prior choices. Another important point is that using Kullback–Leibler divergence and

mean square error as loss functions produce very similar estimator densities. It therefore

makes sense to compare these two taken together against the estimator distributions

when using the Fisher information metric as loss function.

Looking first at ρ = 0 (i.e. the first row), we wee that all distributions are close to

symmetric around 0, and hence are likely to provide good estimates in expectation for

true values of ρ close to 0. It seems that the Fisher information metric gives a flatter

distribution than the other two, with especially Jeffreys prior and the PC prior with

λ = 0.0818 displaying local maxima close to ±0.9. Overall, the flat prior and the PC

prior with λ = 1.249 using Kullback–Leibler divergence or mean square error as loss

function are the ones that seem to give the estimator distributions with most weight

located close to 0, and hence the ones that will likely perform best in this case.

Moving on to ρ = 0.4 (i.e. the second row), we see that also in this case do the Jeffreys
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prior and PC prior with λ = 0.0818 give more weight to values close to ±1. The both

have a small bump around −0.9 with the Fisher information metric as loss function, and

a lot of weight focused between 0.3 and 0.9 for all loss functions. The flat prior seems to

give a density with a maximum close to the true value of ρ, with the Fisher information

metric case giving a distribution that is farther away from 0 than the other two. The PC

prior with λ = 1.249 is again quite close to the flat prior, but now slightly closer to 0,

especially in the Fisher information metric case, where there is a clear difference between

the two. Based on just looking at the plots, it seems a flat prior with loss function given

by the Fisher information metric is a good choice for true values of ρ close to 0.4.

For ρ = 0.8 (i.e. the third row), we again see that using the Fisher information metric

as loss function gives more weight closer to the extremes. Further, it seems to give more

weight close to the true value of ρ, whereas the other two loss functions tend to be drawn

towards 0. For this case, the Jeffreys prior and PC prior with λ = 0.0818 seem to be the

best choices. Which loss function is better is not readily apparent.

Figure 5.6 shows the approximated densities of the point estimators when using fidu-

cials and Bayes esimators. These results are indeed quite strange, and after approximat-

ing the distributions a few times it becomes clear that the behaviour changes from one

simulation to the next. One likely explanation for this strange behaviour is the fact that

we have to sample from and then approximate the fiducial, whereas for the priors we

had a closed form expression. The approximations of the fiducials would improve with a

larger sample, but due to time constraints, a relatively small sample size (i.e. 1000) was

used for this part of the simulation.

Figure 5.7 shows the approximated densities of the point estimators when using the

empirical correlation with known mean and the maximum likelihood estimator. For

ρ = 0, we again have the symmetry around the true value. However, both densities give

a lot of weight to more extreme values. Indeed, the MLE resembles the behaviour seen

when using Jeffreys prior with the Fisher information metric as loss function, with local

maxima close to ±0.8.

For ρ = 0.4, we se that more weight is placed on the interval (0, 1), but that both

densities still exhibit much of the same behaviour as for the case ρ = 0. For ρ = 0.8,

however, both densities place much weight on values close to the true parameter value.

Note that the MLE still places some weight on values of ρ between −1 and −0.8, but

almost no weight on values between −0.8 and 0.5. Especially for high values of 0.9,

the two estimators considered in this last figure showed a lesser tendency than the prior
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approaches for the estimates to lie closer to 0 than the true value.

5.2.2 Mean and variance

In order to find the mean and variance of the estimator distributions, we sample 10

000 values from each estimator, and use these empirical distributions to approximate a

density using kernel density estimation. The mean and variance are then found through

integration. Table 5.1 shows the results of such an experiment for all the estimators used

in this chapter, with values calculated for ρ = 0.1, 0.3, 0.5, 0.7 and 0.9.

A comment about the fiducials: The results here seem to be all over the place, and

it is not immediately evident that they are of any value. There might be several reasons

for this, but one likely explanation is the approximative nature of the fiducials used in

the calculations, as mentioned in section 5.2.1. In other words, using a larger number of

samples to approximate each fiducial might result in a significant improvement. However,

due to time constraints, tests to verify this claim were not performed.

A general observation is that all estimated means (ignoring the fiducials) are below

the true value of ρ. Hence, all estimators seem to be biased towards the centre of the

parameter domain. Ideally, we would like to have unbiased estimators, but in the absence

of such an estimator, the best choice seems to be the one with lowest bias. However, we

should still consider the variance before concluding.

If we shift our attention towards the last two rows, containing the results for the

maximum likelihood estimator and the empirical correlation with known mean, the MLE

is the least unbiased estimator, with an estimated mean between 0.58 and 0.12 below

the true value of ρ. In fact, the only value for which the empirical correlation performs

better is ρ = 0.1, and here the difference is tiny. However, if we look at the estimated

variance, there is a huge difference between the estimators, with the empirical correlation

performing much better. The difference is not that large for ρ = 0.9, but for the other

values the difference ranges between 0.75 and 1.12. In conclusion, it is not immediately

apparent which estimator is better.

Moving on to the estimators we get when using priors together with Bayes estimators,

we have emphasised the three least biased estimators for each value of ρ by showing their

estimated means in bold. First, we see that we can probably ignore the PC prior with

λ = 5.360, since the estimated means are so far off. Two estimators that clearly stand

out are the Jeffreys prior and PC prior with λ = 0.0818 using the Fisher information

metric as loss function. In fact, it seems that the Fisher information metric should be
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the preferred loss function if only the estimated means are taken into account.

If we look closely at the variances, however, using either mean square error or

Kullback–Leibler divergence as loss function seems to give much lower estimated vari-

ances for all values of ρ. Hence, there appears to be a bias–variance tradeoff between the

Fisher information metric on one side and the MSE and Kullback–Leibler divergence on

the other.

Anther bias–variance tradeoff is between the Jeffreys prior and PC prior with λ =

0.0818 on one side and the flat prior and PC prior with λ = 1.249 on the other. This

was also seen and discussed in relation to figure 5.5 in section 5.2.1. In the end, one

might prefer a heavily biased estimator with low variance, in which case a flat prior or a

PC prior with λ = 1.249 with loss function given by either the MSE or Kullback–Leibler

divergence seems appropriate, or one might prefer a less biased estimator with a higher

variance, in which case choosing Jeffreys prior or the PC prior with λ = 0.0818 with loss

function given by the Fisher information metric seems reasonable. One might also prefer

something in between, in which case using Jeffreys prior together with Kullback–Leibler

divergence as loss function seems to be a good choice.
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Figure 5.3: The estimated coverage probabilities for the PC prior with λ =
0.0818, 1.249 and 5.360 is shown for sample sizes 3, 10 and 100, and for values of ρ
between −0.9 and 0.9 with step size 0.1. A total of 10 000 iterations was performed
per value of ρ. Note that the number on top of each column indicates the sample
size, whereas the number to the far right of each row indicates the value of λ.



Chapter 5. Simulations 71

Figure 5.4: The estimated coverage probabilities for the fiducial is shown for
sample sizes 3, 10 and 100, and for values of ρ between −0.9 and 0.9 with step size
0.1. A total of 1000 iterations was performed per value of ρ, and the fiducials were
approximated using 1000 samples. Note that the number on top of each column
indicates the sample size, whereas the number to the far right of each row indicates
whether the empirical correlation with known or unknown means was used.
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Figure 5.5: Approximations of the distributions of point estimators using prior
distributions and Bayes estimators are shown, using samples of size 3. 10 000
values of each estimator were found, before approximating the resulting empirical
distribution with kernel density estimation. Note that the values to the right of the
plots indicate the value of ρ used, whereas the information on top indicate which
loss function was used in the Bayes estimator.
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Figure 5.6: Approximations of the distributions of point estimators using the fidu-
cials and Bayes estimators are shown, using samples of size 3. The fiducials were
approximated using 1000 samples and a kernel density estimation, before calculating
the estimator. 10 000 values of each estimator were found, before approximating the
resulting empirical distribution with yet another kernel density estimation. Note
that the values to the right of the plots indicate the value of ρ used, whereas the
information on top indicate which loss function was used in the Bayes estimator.
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Figure 5.7: Approximations of the distributions of point estimators using empir-
ical correlation with known mean and the maximum likelihood estimator are
shown, using samples of size 3. 10 000 values of each estimator were found, before
approximating the resulting empirical distribution with kernel density estimation.
Note that the values on top of the plots indicate the value of ρ used.
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Table 5.1: Estimated means and variances of the distribution of point estimators are shown in the form (µ̂, σ̂2). The point estimators
were calculated using samples of size 3. The means and variances were then found by first sampling 10 000 values of each estimator, before
approximating this empirical distribution with kernel density estimation. The resulting function was then used to derive the values in the
table. For each ρ value, the three estimates among the Bayes estimators closest to the true value of the mean are shown in bold.

Estimator ρ value

Bayesian
Prior Loss function 0.1 0.3 0.5 0.7 0.9
Flat MSE (0.058, 0.160) (0.178, 0.154) (0.307, 0.142) (0.473, 0.115) (0.727, 0.056)

Jeffreys MSE (0.064, 0.254) (0.209, 0.236) (0.370, 0.205) (0.558, 0.153) (0.822, 0.053)
PC (0.0818) MSE (0.065, 0.215) (0.196, 0.205) (0.344, 0.183) (0.527, 0.138) (0.795, 0.054)
PC (1.249) MSE (0.051, 0.154) (0.174, 0.148) (0.298, 0.141) (0.461, 0.116) (0.728, 0.059)
PC (5.360) MSE (0.020, 0.014) (0.057, 0.016) (0.100, 0.017) (0.159, 0.021) (0.269, 0.034)

Flat KL div. (0.058, 0.163) (0.167, 0.156) (0.308, 0.141) (0.471, 0.112) (0.727, 0.054)
Jeffreys KL div. (0.063, 0.248) (0.203, 0.235) (0.359, 0.210) (0.561, 0.146) (0.823, 0.051)

PC (0.0818) KL div. (0.068, 0.214) (0.200, 0.206) (0.339, 0.187) (0.527, 0.141) (0.795, 0.053)
PC (1.249) KL div. (0.048, 0.154) (0.161, 0.150) (0.288, 0.142) (0.455, 0.121) (0.727, 0.061)
PC (5.360) KL div. (0.019, 0.014) (0.058, 0.015) (0.100, 0.017) (0.159, 0.022) (0.274, 0.033)

Flat FI metric (0.059, 0.226) (0.204, 0.214) (0.346, 0.197) (0.528, 0.156) (0.802, 0.062)
Jeffreys FI metric (0.069, 0.334) (0.228, 0.316) (0.395, 0.275) (0.614, 0.198) (0.871, 0.059)

PC (0.0818) FI metric (0.063, 0.293) (0.224, 0.276) (0.380, 0.246) (0.575, 0.190) (0.857, 0.063)
PC (1.249) FI metric (0.057, 0.207) (0.178, 0.203) (0.332, 0.183) (0.515, 0.149) (0.807, 0.063)
PC (5.360) FI metric (0.015, 0.009) (0.045, 0.010) (0.076, 0.014) (0.126, 0.021) (0.229, 0.047)

Fiducial
Known mean? Loss function

No MSE (0.223, 0.001) (0.216, 0.001) (-0.119, 0.000) (0.252, 0.001) (0.302, 0.002)
No KL div. (0.031, 0.071) (0.086, 0.069) (0.149, 0.061) (0.225, 0.048) (0.327, 0.028)
No FI metric (0.041, 0.186) (0.125, 0.182) (0.220, 0.167) (0.340, 0.152) (0.529, 0.090)
Yes MSE (0.257, 0.001) (0.211, 0.001) (0.299, 0.002) (0.236, 0.001) (-0.185, 0.001)
Yes KL div. (0.032, 0.040) (0.086, 0.037) (0.151, 0.031) (0.219, 0.023) (0.320, 0.011)
Yes FI metric (0.029, 0.087) (0.132, 0.094) (0.224, 0.089) (0.356, 0.065) (0.529, 0.046)

Other approaches
Maximum likelihood (0.077, 0.410) (0.243, 0.379) (0.442, 0.333) (0.649, 0.235) (0.888, 0.064)

Empirical correlation w/known mean (0.078, 0.298) (0.234, 0.275) (0.387, 0.231) (0.567, 0.160) (0.786, 0.059)
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5.2.3 Error using Kullback–Leibler divergence

In order to get more information concerning which estimators should be preferred, we

have estimated the Kullback–Leibler divergence between the model using the true pa-

rameter value and the estimated value. For each estimator, and for the same values

of ρ as in section 5.2.2, 10 000 estimated values were found and used to calculate the

Kullback–Leibler divergence. The averaged results multiplied by a factor of 1000 are

shown in table 5.2.

Since we do not know the value of ρ, we would, ideally, like the error to be as small

as possible for all possible values of ρ. For our simple experiment, this entails choosing

an estimator that gives relatively low errors for all five values of ρ used.

An interesting point is that the Kullback–Leibler divergence penalises deviations that

are too extreme more than deviations that are too close to 0. Hence, an estimator whos

distribution places most weight near the centre of the domain will give smaller values

than one which e.g. places half the weight above the true parameter value, even though

the latter should usually be preferred. Hence, we need to be careful when looking at the

errors in table 5.2, and make sure to analyse them in relation to other results such as the

mean and variance approximations discussed in section 5.2.2.

Due to the preference for small absolute values of ρ on the part of the error using

Kullback–Leibler divergence, the PC prior with λ = 5.360 performs very well, especially

for values of ρ up to 0.7. However, there is a sharp increase in the error from 11 to 48

for ρ = 0.1, up to 607 to 735 for ρ = 0.9. This indicates that, even though the estimator

seemingly performs quite well for low values of ρ, it does not work well for all values of

ρ, and it gets consistently worse as the absolute value of ρ increases. Indeed, this aligns

well with the results from sections 5.2.1 and 5.2.2.

Shifting attention to the fiducials, we see a similar pattern as for the PC prior with

λ = 5.360, with the error being quite small for small absolute values of ρ, but increasing

by a lot as ρ approaches 1. Due to the quite strange performance of these estimators, as

seen in section 5.2.1, it is difficult to draw conclusions, but it does seem like the estimators

return values close to 0, in the same way that the PC prior with λ = 5.360 does. One

exception is the fiducial estimator found when using the full empirical correlation with

the Fisher information metric as loss function, where the values are much higher, and

do not follow the same pattern with higher values for ρ closer to 1. We have not been

able to find any reasonable explanations for this behaviour, but the same results are seen
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when rerunning the simulation.

Looking at the two last rows of table 5.2, we see that both the maximum likelihood

estimator and the empirical correlation with known mean produces very large errors,

with the latter giving errors about twice as large as the former. One might have thought

that with the MLE being less biased (i.e. further away from 0 in expectation) and having

a higher variance, would have caused it to have higher error when using Kullback–Leibler

divergence as well. This, however, does not seem to be the case.

Moving on to the Bayes estimators (excluding the PC prior with λ = 5.360), we see

that the less biased estimators, namely Jeffreys prior and the PC prior with λ = 0.0818,

give higher errors than the more biased estimators, namely the flat prior and PC prior

with λ = 1.249. Since the Kullback–Leibler divergence is larger for deviations closer to

the extremes, this result should be expected; the more biased estimators have a lot of

weight between 0 and the true value of ρ, whereas the less biased estimators place more

weight on values above the true value of ρ.

The differences between using mean square error or the Kullback–Leibler divergence

as loss functions are mostly quite small, and it is difficult to say anything conclusive

about differences in performance. However, as was the case in section 5.2.2, there are

clear differences between these two loss functions on one side, and the Fisher information

metric on the other. The latter did produce less biased estimators with higher variance,

and it also gives a sharp increase in the Kullback–Leibler divergence. In short, it seems

that the Kullback–Leibler divergence penalises estimators that give frequent and large

deviations from 0, but gives low errors to estimators that frequently returns estimates

close to 0, no matter the true value of ρ.

How do we pick the best estimator based solely on the error using Kullback–Leibler

divergence? One way to do this, is by looking at the largest error produced by each

estimator, and pick the estimtor whose largest error is smallest. In such a case, the flat

prior with mean square error as loss function would be the preferred choice. However, it

is not at all clear that this is the best approach, and in fact it does not fit the conclusions

when considering means and variances of the estimator distributions, and preferring a

less biased estimator, as we did in section 5.2.2. The result does fit with the desire to

minimise the variance, at the cost of getting a larger bias. Note also that it does not

pick the PC prior with λ = 5.360 (or any of the fiducials) even though their variances

are very small, which is good, since all of these seem to be useless.
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Table 5.2: The error using Kullback–Leibler divergence as measure of error
for the point estimators are shown. The point estimators were calculated using sam-
ples of size 3. The error was found by sampling 10 000 values of each estimator, and
calculating the Kullback–Leibler divergence between the model using the estimator
and the true value. The values shown are the average of these errors multiplied by
a factor of 1000.

Estimator ρ value

Prior Loss function 0.1 0.3 0.5 0.7 0.9
Bayesian

Flat MSE 312 307 323 292 367
Jeffreys MSE 1154 1197 1099 1226 888

PC (0.0818) MSE 946 937 935 721 795
PC (1.249) MSE 472 447 524 538 715
PC (5.360) MSE 12 40 105 243 607

Flat KL div. 318 308 370 341 509
Jeffreys KL div. 1180 1030 1100 1022 1049

PC (0.0818) KL div. 964 881 806 818 869
PC (1.249) KL div. 484 425 601 530 788
PC (5.360) KL div. 11 42 107 611 729

Flat FI metric 1052 1127 955 900 682
Jeffreys FI metric 1886 2029 2202 2093 1516

PC (0.0818) FI metric 1796 1706 1682 2105 1491
PC (1.249) FI metric 1231 1190 1211 1296 1102
PC (5.360) FI metric 48 153 137 297 735

Fiducial
Known mean? Loss function

No MSE 68 364 113 159 503
No KL div. 45 65 110 215 565
No FI metric 2278 1048 1913 2201 2329
Yes MSE 31 68 52 205 536
Yes KL div. 25 43 92 207 572
Yes FI metric 69 79 100 174 435

Other approaches
Maximum likelihood 2512 2691 2408 2384 2145

Empirical correlation w/known mean 4870 6498 4083 4014 5225

5.2.4 Error using the Fisher information metric

In addition to estimating errors using Kullback–Leibler divergence, we have used the

Fisher information metric to estimate the distance between the model using the true

parameter value and the estimated value. For each estimator, and for the same values of

ρ as in sections 5.2.2 and 5.2.3, 10 000 estimated values were found and used to calculate

the Fisher information metric. The averaged results multiplied by a factor of 1000 are

shown in table 5.2.

Again, the PC prior with λ = 5.360 and the fiducials give very low errors for small

values of ρ, but shows a large increase in error as ρ increases towards 1. The only difference

from section 5.2.3 is that the fiducial estimator using the full empirical correlation and
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the Fisher information as loss function does not behave differently from the other fiducial

estimators.

The maximum likelihood estimator and empirical correlation with known mean do

still give quite large errors. However, the latter is not double the size of the former, as was

the case when using Kullback–Leibler divergence. Rather, the MLE has a larger error

for small values of ρ, whereas the empirical correlation gives a larger error for values of

ρ closer to 1. Also, the error for the empirical correlation seems to be more stable across

different values of ρ.

The priors (excluding the PC prior with λ = 5.360) show a similar behaviour as

in section 5.2.3, with the mean square error and Kullback–Leibler divergence as loss

functions giving more or less the same results, and the Fisher information metric giving

larger errors. However, if we again choose the estimator with the smallest maximum

value over all values of ρ tested, we would now choose the flat prior with the Fisher

information metric as loss function.
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Table 5.3: The error using the Fisher information metric as measure of
error for the point estimators are shown. The point estimators were calculated
using samples of size 3. The error was found by sampling 10 000 values of each
estimator, and calculating the Kullback–Leibler divergence between the model using
the estimator and the true value. The values shown are the average of these errors
multiplied by a factor of 1000.

Estimator ρ value
Prior Loss function 0.1 0.3 0.5 0.7 0.9
Flat MSE 406 416 450 517 655

Jeffreys MSE 605 619 619 632 618
PC (0.0818) MSE 544 546 564 605 633
PC (1.249) MSE 396 427 482 570 687
PC (5.360) MSE 116 264 471 779 1427

Flat KL div. 410 419 455 528 647
Jeffreys KL div. 611 605 614 633 619

PC (0.0818) KL div. 532 544 579 607 627
PC (1.249) KL div. 393 426 484 565 699
PC (5.360) KL div. 116 265 472 779 1423

Flat FI metric 561 559 598 608 597
Jeffreys FI metric 831 837 818 794 700

PC (0.0818) FI metric 733 747 752 746 670
PC (1.249) FI metric 535 564 623 674 678
PC (5.360) FI metric 107 280 501 817 1469

Fiducial
Known mean? Loss function

No MSE 354 822 508 633 1289
No KL div. 242 274 417 703 1367
No FI metric 473 459 541 695 1089
Yes MSE 248 377 340 728 1339
Yes KL div. 180 237 416 712 1387
Yes FI metric 257 292 384 588 1097

Other approaches
Maximum likelihood 1015 999 963 892 776

Empirical correlation w/known mean 785 793 805 849 891
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Discussion

In this thesis we have seen that different approaches to statistical analysis might be

taken, and that this to some extent affects the point and interval estimators that we use

to make statements about unknown parameters of our model. We have introduced some

ways to perform parameter estimation for the frequentist and Bayesian schools, and also

looked briefly at fiducial analysis.

With a particular focus on Bayesian methods, the choice of prior distribution for

our parameter was discussed, and the need for default objective priors was explained.

After a discussion around objectivity in Bayesian analysis, three frameworks for find-

ing an objective prior were presented. Jeffreys prior focuses on invariance, and works

well in one-parameter cases (but is not recommended for any multi-parameter distribu-

tions). Reference priors might be seen as an extension to Jeffreys prior, with a more

complete mathematical foundation. The concept of Penalised Complexity priors is a

more pragmatic approach, in which parsimonious models and computational tractability

are central.

In order to apply the theory, the bivariate normal distribution with known zero means

and unit variances was chosen. The priors and estimators introduced in previous chapters

were then applied to this one-parameter model. Simulations were then performed to

investigate the performance of the estimators for the chosen model.

The simulations show that there are huge differences in the behaviour and perfor-

mance of the estimators, but also that some estimators perform similarly and are essen-

tially indistinguishable based on the test performed. Some estimators were very likely

to give estimates close to 0, regardless of the true value of ρ, whereas others were much

closer to the true parameter value when ρ approached ±1.

It seems clear that a tradeoff exists between low bias and low variance, both of which

are desirable features of an estimator. Also, in order to choose an estimator that works

well for most or all possible values of ρ, it is important to consider the behaviour of the

estimator for ρ values that are both close to 0 and close to the extremes, as well as the
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possible values in between. Hence, an estimator that works well either for large or small

values of ρ, might not be preferred, if it works badly for the other case. In the end, the

best choice seems to be an estimator that manages to strike a balance between bias and

variance, and that works well enough for all values of ρ.

Moving forward, there are a lot of things one might want to investigate further. First

of all, running larger experiments with more iterations would provide more accurate

results, and perhaps indicate which effects, if any, were merely caused by noise. In

particular, increasing the sample size used to approximate the fiducials would, most likely,

improve the performance of estimators based on this approach. Indeed, the fiducials

proved almost useless in our simulations, and it would be interesting to look into why

this was the case.

With regards to the Bayes estimators, one could use the square root of the Kullback–

Leibler divergence and the Fisher information metric, or the square of these. It would

be interesting to see how the results from such loss functions would differ from the ones

obtained in this thesis.

Even though it is not part of the definition of the PC priors, one could try to place

a prior distribution on the user-defined scaling λ (e.g. 1/λ, as suggested in section 3.5).

This would at least eliminate the need to define a tail event and its weight, in order to

get a numerical value for λ.

Fosdick and Raftery, 2012 uses a prior which they call the arc–sine prior, which does

give quite good results for the model we have used in this thesis. They do not, however,

use Bayes estimator with Kullback–Leibler divergence and the Fisher information metric

as loss functions. Comparing this prior using these Bayes estimators to the Jeffreys, flat

and PC priors that we have looked at here seems reasonable.

One further possible estimation procedure comes from viewing the problem as one of

regression. This approach was taken in Castro and Vidal, 2019, and adapting this to our

model could provide us with yet another possible estimator.

Lastly, when considering interval estimation using posteriors and the fiducials, future

studies should look into the lengths of the intervals produced (which we would like to

be as small as possible). Also, estimating the power of hypothesis tests when using the

different estimators, as is done in Fosdick and Raftery, 2012, would be appropriate.
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