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1 Introduction

Are you ready to rumble?

—Mahdi

The recent years have seen a profusion in the research on cluster-tilting modules
— and, more generally, cluster-tilting subcategories. Of interest is both which alge-
bras possess cluster-tilting modules, and what are the ramifications, so to speak, for
an algebra having a cluster-tilting module?

In this thesis we look at both questions. We recall and prove in section 4 a re-
sult by Erdmann and Holm stating that if a self-injective algebra possess a non-trivial
cluster-tilting module, then it has complexity 0 or 1 (which is to say that projective
resolutions are either finite or of bounded dimensions). For the other question, we
classify the cluster-tilting modules of finite-dimensional symmetric Nakayama alge-
bras in section 3 and those — with the exception of d = 4 — for trivial extensions of
quiver algebras of Dynkin typeD, another class of symmetric algebras, in section 5. Of
particular interest is the latter case as we reduce the problem of looking for cluster-
tilting modules in the module category to that of looking for cluster-tilting subcate-
gories of a certain factor category T(Dn) of the repetitive quiver of Dn. This allows
the search to be performed combinatorially.

In section 2 we recall some basic definitions and results about symmetric algebras
and repetitive algebras as well as about cluster-tilting modules. In the first part of
section 5, we recall some definitions and results about translation quivers and derived
categories, which we need in the sequel.

We assume basic knowledge of homological algebra and representation theory of
algebras as prerequisites. Moreover, we do on several occasions refer to some well-
known results and definitions within the framework we are working, without giving
explicit reference. In these cases, we refer the meticulous reader to Happel’s book
[14], in which most of these results appear.

By ‘algebra’ we shall mean ‘associative algebra with identity,’ and we fix an alge-
braically closed field k and assume all algebras to be k-algebras.
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2 Background theory

Yeah, this one is cheaper

—Athit

2.1 Symmetric algebras

In this section we recall some basic definitions results regarding symmetric algebras.
Definition 1 An algebraA is symmetric if it is isomorphic to its dual,

A ' D(A),

as anA-A-bimodule, whereD(A) := Homk(A, k). 2

Definition 2 An algebra A is weakly symmetric if for each indecomposable projec-
tive module P ofA,

topP ' socP 2

Proposition 1 If A is representation-finite, then weakly symmetric is equivalent symmet-
ric. 2

Proof See, e.g., [22, Folgerung 2]. �

Proposition 2 IfA is a self-injective algebra andM is anA-module, then

τM ' Ω2νM 2

Proof See, e.g., [24, p. 161]. �

An important construction in section 5 will be that of trivial extensions, which we
now define.
Definition 3 The trivial extension of the algebraA is the algebraT (A), whose additive
structure is given by T (A) = A ⊕ D(A), where D(A) is the dual of A, and whose
multiplicative structure is given by

(a, φ) · (a′, φ′) = (aa′, aφ′ + φa′),

where (aφ)(b) := φ(ba) and (φa)(b) := φ(ab). 2

In particular, we have the following
Proposition 3 The trivial extension algebra T (A) is symmetric. 2

Proof See, e.g., [24, p. 162]. �

Lastly, wemention awell-known fact about triangle automorphismsof stabilisedmod-
ule categories.
Proposition 4 IfA is a symmetric algebra, the functors ν and [1] commute with all triangle
automorphisms ofmodA—in particular, they commute with each other. 2
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2.2 Translation quivers and mesh categories

References for this section are [1] and [24], [14] and [13].
In this section we recall some basic definitions and results on quivers and quiver

algebras, mostly to fix notation. In section 2.2, we do the same for translation quivers
and mesh categories.

By a quiver we mean a tuple Q = (Q0, Q1, s, t) where Q0 is the set of vertices
andQ1 the set of directed arrows between vertices inQ0. For a given arrow α ∈ Q1,
s(α) ∈ Q0 is the source of α and t (α) ∈ Q0 is the terminus of α.

For a vertex x ∈ Q0, x− ⊆ Q0 denotes the set of predecessors of x. That is,
vertices y such that there is an error α ∈ Q1 with s (α) = y and s (α) = x.
Definition 4 A translation quiver is a tuple (Q, τ) whereQ is a quiver and τ is a bijec-
tion between two subsets ofQ0 such that for each x ∈ Q0 such that τx is defined and
each y ∈ x−, there is an equal amount of arrows from y to x as from τx to y. In case
τ is defined on all ofQ0, (Q, τ) is a full translation quiver. 2

Example 1 The prototypical example is the Auslander–Reiten quiver of an algebra
along with the Auslander–Reiten translate. 2

Definition 5 Let Q be a connected, acyclic quiver. We define the stable translation
quiver (also infinite translation quiver) ZQ of Q as follows. The set of vertices is given
as (ZQ)0 = Z×Q0 and for each arrow α : x→ y inQ1 and each n ∈ Z two arrows
(n, α) : (n, x)→ (n, y) and (n, α̃) : (n, y)→ (n+ 1, x). The translation τ is full and
defined as τ(n, x) = (n− 1, x). This makes (ZQ, τ) into a translation quiver.

We define a bijection σ on (ZQ)1 given by σ(n, α) = (n − 1, α̃) and σ(n, α̃) =
(n, α).

Now consider ZQ as a category whose objects are the vertices and whose mor-
phisms are paths (as well as the identity morphisms). In this category we consider
the mesh ideal generated by the mesh relations

mx =
∑
α:y→x

α ◦ σ(α),

for each x ∈ ZQ and for arrows α ending in x. Let us denote the quotient category
by T (Q); it will be of importance in section 5. 2

2.3 Cluster-tilting modules and subcategories

Cluster-tilting modules were first introduced by Osamu Iyama in [18] and [19] as a
generalisation of the famous Auslander correspondence given by Maurice Auslander
in [2]. We recall, the Auslander correspondence gives a bijection between the set of
finite-dimensional algebras of finite representation type A and so-called Auslander
algebrasB. These are the algebras satisfying

gl.dimB ≤ 2 ≤ dom.dimB,
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and the bijection is given by A 7→ EndA(M), where M ∈ modA is an additive
generator, add(M) = modA. Iyama considers in [18] finite-dimensional algebrasB
such that

gl.dimB ≤ n+ 1 ≤ dom.dimB,

and proves that the Morita equivalence class of these are in bijection with finite-
dimensional algebrasA with a so-called n-cluster-tilting moduleM .

A subcategory C of a category D in which extensions are defined, is n-cluster-
tilting ofA precisely if

C = {X ∈ modD : ExtkD(X,M) = 0, for k = 1, 2, . . . , n− 1}
= {X ∈ modD : ExtkD(M,X) = 0, for k = 1, 2, . . . , n− 1}.

The bijection is given by sending a pair (A,M), for M a n-cluster-tilting module,
to EndA(M), which will be a n-Auslander algebra. Note that the above definition
readily generalises to other categories where extensions are defined.

Now we come to an important invariant for cluster-tilting subcategories. Define
Definition 6

νd := ν ◦ [−d]

in a triangulated category, where d is a positive integer and ν is a Serre functor. 2

From this we have an important invariant on cluster-tilting subcategories.
Proposition 5 Suppose X is a d-cluster-tilting subcategory of a derived category Db (Λ).
Then

νd(X) = X.

Proof See, e.g., [21, Proposition 3.4]. �

8



3 d-cluster-tiltingmodules of symmetric Nakayama al-
gebras

. . .with my Duke!

—Ken
In this section we explicitly classify all d-cluster-tilting modules of symmetric

Nakayama algebras. In [6], Darpö and Iyama proves a numerical criterion for a self-
injective Nakayama algebra to have a d-cluster-tilting module. Though a full clas-
sification of d-cluster-tilting modules of self-injective Nakayama algebras from this
criterion is intractable, we may obtain a complete classification if we restrict our-
selves to symmetric Nakayama algebras. We leverage the numerical criterion along
with a result we prove on theΩ-periodicity of a putative cluster-tilting module to ob-
tain a countable one-parameter family of symmetric Nakayama algebras possessing
a non-trivial d-cluster-tilting module as well as three possibilities outside this family.
Moreover, we prove that this list is exhaustive.

It is known (see, e.g., [1, p. 171]) that a basic, connectedfinite-dimensionalNakayama
algebra Λ that is not isomorphic to the base field k is self-injective if and only if it is
isomorphic to an algebra of the form kQn/R

h for h ≥ 2 where Qn is the quiver of
n vertices 1, 2 . . . , n with arrows i → (i + 1) for i = 1, 2 . . . , n − 1 and an arrow
n→ 1. It is well-known that any self-injective finite-dimensional Nakayama algebra
is Morita equivalent to one of this one, so we do not lose generality by restricting our
attention to algebras of this form.

Now considerΛ = kQn/R
h. Recall from proposition 1 thatΛ is symmetric if and

only if socPi = Si = topPi for each i = 1, 2, . . . , n. By symmetry, it is sufficient to
consider the case i = 1. Notice that this is true precisely when h = an+ 1 for some
a ≥ 1. We thus have the following
Theorem 1 Let Λ finite-dimensional symmetric Nakayama algebra that is basic, connected
and not isomorphic to the base field k. Then

Λ ' kQn/Ran+1

for some a andn. Moreover, any algebra of the above form is a symmetric Nakayama algebra.2

It is a well-known fact that a finite-dimensional algebra is Morita equivalent to its ba-
sic algebra; consequently the existence of a cluster-tiltingmodule of the basic algebra
is equivalent to the existence of a cluster-tilting module for said algebra.

Let us now fixΛ = kQn/R
an+1 and proceed to find the d-cluster-tilting modules

for Λ. We start by proving two numerical lemmas that will be key to proving the
classification theorem.
Lemma 1 Let d, a, n be positive integers, with d ≥ 2 and n ≥ 3. If

((an+ 1)(d− 1) + 2) | 2n, (1)
then (d, a, n) = (2, 1, 3) 2
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Proof If a ≥ 2, then
(an+ 1)(d− 1) + 2 ≥ (2n+ 1)(d− 1) + 2 > 2n+ 1

which contradicts the assumption, so a = 1. If d ≥ 3, then
(n+ 1)(d− 1) + 2 > (n+ 1)(d− 1) ≥ 2(n+ 1) > 2n

which also contradicts eq. (1), so d = 2. Then eq. (1) is reduced to
(n+ 3) | 2n

Clearly, this is true only if n+ 3 = 2n. In this case, n = 3 and we are done. �

Lemma 2 Let d, a, n be positive integers, with d ≥ 2 and n ≥ 3. Then

((an+ 1)(d− 1) + 2) | (d+ 1)n, (2)
2

if and only if (d, a, n) is one of

• (2, 1, 6);

• (2, 2, 3); or

• (2n− 1, 1, n).

Proof Suppose a ≥ 3. Then
(an+ 1)(d− 1) + 2 > 3n(d− 1) ≥ n(d− 1) + 2n(d− 1)

≥ n(d− 1) + 2n = (d+ 1)n

which contradicts eq. (2). Now let a = 2. Then we have
((2n+ 1)(d− 1) + 2) | (d+ 1)n

Clearly, the lhs grows faster than the rhs as functions of d. Thus if the lhs is larger
than the rhs for some fixed d, it will be larger for larger values of d. To this end, fix
d = 4. Then

(2n+ 1)(d− 1) + 2 = (2n+ 1)(3) + 2 = 6n+ 7 > 5n = (d+ 1)n

which contradicts eq. (2). It remains to check d = 2 and d = 3. In the former case,
(2n+ 5) | 3n

Then there must exist an integer r ≥ 1 such that
r(2n+ 5) = 3n

5r = n(3− 2r)
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Then clearly r = 1 is the only possibility and n = 5. We have thus exhausted the
options for a = 2. Now let a = 1. Then eq. (2) becomes

((n+ 1)(d− 1) + 2) | (d+ 1)n

In the first place, set d = 2. Then
(n+ 3) | 3n

Then there must be some integer r ≥ 1 such that
(n+ 3)r = 3n

3r = n(3− r)

Clearly r = 2 is the only possibility. In that case, n = 6. Finally suppose d ≥ 3. There
must exist an integer r ≥ 1 such that

r((n+ 1)(d− 1) + 2) = (d+ 1)n (3)
If r ≥ 2, then

r((n+ 1)(d− 1) + 2) > 2(n+ 1)(d− 1)

= 2((d− 1)n+ (d− 1))

> (d− 1)n+ (d− 1)n

≥ (d− 1)n+ 2n

= (d+ 1)n,

a contradiction. Rearranging eq. (3), we obtain
d = 2n− 1,

and the proof is complete. �

Further, we need the following result about theΩ-periodicity of modules in the stable
module category.
Lemma 3 If for someΛ-moduleM ,

ΩaM ' ΩbM 'M

in the stable module category, for some positive integers a and b, then

Ωgcd(a,b)M 'M

in the stable module category. 2

Proof The functor
Ω : mod Λ→ mod Λ

is an auto-equivalence of the stable module category of Λ. Thus Ω−1 and Ω are in-
verses. The lemma then follows from a simple algebraic manipulation. �
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We will also need the following useful lemma.
Lemma 4 LetΛ be a self-injective finite-dimensional algebra. Then for all finitely-generated
Λ-modulesM andN and positive integers i,

ExtiΛ(M,N) ' HomΛ(ΩiM,N) ' HomΛ(M,Ω−iN) 2

Proof See, e.g., [26, p. 409]. �

We can now prove our result, which combined with Darpö and Iyama’s result theo-
rem 2 below gives us enough restrictions on d and n to permit a classification of the
d-cluster-tilting modules.
Proposition 6 IfΛ has a d-cluster-tilting moduleX , then (d+ 1) | 2n. 2

Proof Let r := gcd (d+ 1, 2n). Combining theorem 5 from section 3.1 and lemma 3
above,

Ωd+1X ' Ω2nX ' X;

whence
ΩrX ' X.

Clearly, r ≥ d, for if r < d, then by lemma 4
ExtrΛ(X,X) ' HomΛ(ΩrX,X) ' HomΛ(X,X) 6= 0

whichwould contradictX being ad-cluster-tiltingmodule. Now suppose r = d. Then
ΩdX ' Ωd+1X ' X

and thus by lemma 3,
Ωgcd(d,d+1)X = Ω1X ' X

but this contradicts with X being a d-cluster-tilting module, d ≥ 2. We may then
conclude that

gcd (d+ 1, 2n) = d+ 1,

which implies that (d+ 1) | 2n. �

We now state the result obtained by Darpö and Iyama in [6, Proposition 5.4] and then
proceed to stating and proving our classification theorem.
Theorem 2 Let Λ ' kQn/R

` for some integer ` ≥ 2. Then there is a d-cluster-tilting
module ofΛ if and only if at least one of the following two conditions are satisfied.

• (`(d− 1) + 2) | (2n)

• (`(d− 1) + 2) | (tn)

where t = gcd (d+ 1, 2 (`− 1)). 2

Theorem 3 Let Λ ' kQn/R
an+1 be a symmetric Nakayama algebra. Then there exists a

d-cluster-tilting module ofΛ if and only if (d, a, n) is one of the following triples:
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• (2, 1, 3)

• (2, 1, 6)

• (2, 2, 3)

• (2n− 1, 1, n)

That is, there are three special cases and one countable family. In particular, every symmetric
Nakayama algebra (n ≥ 2) has at least one non-trivial d-cluster-tilting module, namely a
(2n− 1)-cluster-tilting module. 2

Proof By theorem 2, there are two possibilities on (d, a, n) that are equivalent to the
existence of a d-cluster-tilting module. The first is

((an+ 1)(d− 1) + 2) | (2n)

By lemma 1, (d, a, n) = (2, 1, 3) is the only possibility in this case. The second case is

((an+ 1)(d− 1) + 2) | (tn)

where t = gcd (d+ 1, 2an). By proposition 6, t = d+1 and this yields the remaining
three cases by lemma 2. �

Example 2 The two special cases (a, n) = (1, 3) and (a, n) = (1, 6) have two dis-
tinct non-trivial cluster-tilting modules for different values of d. Namely, the former
has a 2-cluster-tilting module and a 5-cluster-tilting module, while the latter has a
2-cluster-tilting module and a 11-cluster-tilting module. Up to isomorphism these
are the only two symmetric Nakayama algebras possessing two distinct cluster-tilting
modules. 2

3.1 Periodicity of modules of symmetric Nakayama algebras

In this section we will prove the result we used in our proof that any indecomposable
module of a symmetric Nakayama algebra has Ω-periodicity (at most) 2n. As before,
fix Λ = kQn/R

an+1.
We denote by `` (Λ) is the Loewy length ofΛ; that is, the length of the radical series

of Λ. In our case, ` (P ) = `` (Λ) = an + 1, for any indecomposable projective Λ-
module P .
Theorem 4 LetM ∈ ind Λ with `` (M) = t. Then

M ' Pi/ radt Pi

for the indecomposable projectivemodulePi corresponding to some vertex i. Consequently,M
is uniquely determined by its length and topM ' Si, the simple module corresponding to
vertex i. 2

Proof See, e.g., [1, p. 169] and [4, p. 113]. �
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Corollary 1 For a given t ∈ {1, 2, . . . , `` (Λ)}, there are n indecomposable modules of
length t, up to isomorphism. 2

Lemma 5 Let t ∈ {1, . . . , `` (Λ)− 1} and letXt be the set of isomorphism classes of non-
projective indecomposable modules of length t. ThenΩ2 induces a permutation onXt. 2

Proof Let us remarkfirst that the indecomposable projectivemodulesP ofΛ all have
the same length; we denote this length by l.

Note that sinceΛ is symmetric, τ ' Ω2 and consequentlyM,N ∈ Xt are isomor-
phic if and only ifΩ2M andΩ2N are isomorphic. Moreover,Ω2M is indecomposable
wheneverM is andXt has cardinality n by corollary 1.

In fact, Ω2M ∈ Xt. To see this, take the canonical projective cover P ofM . We
then have a short exact sequence

0→ ΩM → P →M → 0

and ` (ΩM) = ` (P ) − ` (M) = l − t. Now take a projective cover P ′ of ΩM . We
then get a short exact sequence

0→ Ω2M → P ′ → ΩM → 0

and consequently

`
(
Ω2M

)
= ` (P ′)− ` (ΩM) = l − (l − t) = t �

Now we can state and prove the main theorem for this subsection.
Theorem 5 LetM ∈ ind Λ be non-projective. Then

Ω2nM 'M 2

Proof By lemma 5, Ω2 induces a permutation on the setXt of isomorphism classes
of the non-projective indecomposable modules of fixed length t. Moreover by corol-
lary 1 the cardinality ofXt is n. Consequently,

Ω2nM 'M

for anyM ∈ Xt. Finally by theorem 4, anyM ∈ ind Λ belong, up to isomorphism,
toXt for some t. �
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4 On a paper by Erdmann and Holm

I love it!

—Jay
In this section we prove a well-known result on the complexity of a self-injective

algebra possessing a cluster-tilting module due to Erdmann and Holm [8]. We mostly
follow the arguments they gave in their paper.

Throughout this section we fix a finite-dimensional algebraΛ. By ν in this section
we refer both to the Nakayama automorphism of Λ to the Nakayama functor of the
module categorymod Λ— context will make the distinction clear.

To begin, we first need a rather technical result that plays a central role in the
proof of the main theorem.
Theorem 6 LetΛbe afinite-dimensional algebra and letX be anΛ-modulewithwithExt1

Λ(X,X) =
0. Moreover, let V be an Λ-module such that Ext1

Λ(X,V ) 6= 0; let n = dim Ext1
Λ(X,V ).

Then there exists anΛ-moduleU withExt1
Λ(X,U) = 0, along with a short exact sequence

0→ V → U → Xn → 0. 2

Proof See [8, p. 6] or [5, p. 33]. �

Recall that the complexity of a moduleM is a measure of the size of a minimal pro-
jective resolution ofM . Concretely, if · · · → P1 → P0 → 0 is a minimal projective
resolution ofM , the complexity ofM is defined as

cx(M) := inf
{
b ∈ N | ∃C > 0 : dimPn ≤ Cnb−1 ∀n ∈ N

}
,

wheredimPn is the dimensionofPn as a vector space. Note inparticular that cx(M) =
0 iff the minimal projective resolution ofM is finite (that is, there is some positive
integer N such that Pn = 0 for all n ≥ N ) and that cx(M) = 1 iff the minimal
projective resolution ofM is bounded (that is, there is a constant D > 0 such that
dimPn < D for each n ∈ N).

We will need the following well-known lemma from homological algebra for the
proof of the next lemma.
Lemma 6 (Horseshoe lemma) LetM ,M ′ andM ′′ be finitely-generated modules over a
ringR. Suppose . . . → P ′1 → P ′0 → 0 is a projective resolution ofM ′ and . . . → P ′′1 →
P ′′0 → 0 is a projective resolution ofM ′′ and let Pi = P ′i ⊕ P ′′i . Then there is a projective
resolution . . .→ P1 → P0 → 0 ofM . 2

First, give a lemma relating the complexity of a module and short exact sequences.
Lemma 7 SupposeM ,N andL are finite-dimensional modules of a finite-dimensional, self-
injective algebraΛ and that we have a short exact sequence

0→ L→M → N → 0

If two ofM ,N ,L have complexity 0 or 1, then so does the third. 2
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Proof Suppose thatL andN have finite (resp. bounded) projective resolutions. Con-
struct minimal projective resolutions. By the horseshoe lemma the direct sum of
these two resolutions is a projective resolution for M . It follows that this is finite
(resp. bounded).

Alternatively, supposeL andM have finite (resp. bounded) projective resolutions.
Construct minimal projective resolutions for L andN . Then the direct sum of these
will be a projective resolution ofM and thus finite (resp. bounded). This implies that
the projective resolution forN is finite (resp. bounded). The same follows for the case
withM andN having finite (resp. bounded) projective resolutions. �

The next lemma concerns the complexity of a module that is Ωk+2ν-periodic.
Lemma 8 Suppose aΛ-moduleM isΩk+2ν-periodic, for some nonzero integer k ≥ 1, then
M has complexity 0 or 1. 2

Proof Here, ν = ν∗ : mod Λ → mod Λ is the Nakayama functor induced from the
Nakayama automorphism (also refered to as ν) of Λ.

Now, it is well-known that the Nakayama functor ν is right exact [1, p. 83] and that
ν(M) = M as vector spaces, when Λ is self-injective. Moreover, ν induces a twisted
ation on M ; it is well-known that a module M with a twisted action has the same
complexity asM with the untwisted action [8, p. 6]. Combining these facts, we get
that ν(M) andM have the same complexity, given cx(M) ≤ 1.

Suppose thatM ∈ mod Λ isΩk+2ν-periodic. If cx(M) 6= 0, construct a minimal
projective resolution ofM :

· · · → Pn → Pn−1 → · · · → P0 →M → 0. (4)

Let 1 ≤ ` <∞ be the Ωk+2ν-period ofM . Then

(Ωk+2ν)`(M) ' Ω`(k+2)ν`(M)

= Ω`(k+2)(M̃)

'M,

where the first isomorphisms follows from the fact that Ω and ν commute, since Λ

is self-injective, and where we define M̃ := ν`(M). By our previous discussion,M
and M̃ have the same complexity, given cx(M̃) ≤ 1. Thus it is sufficient to show that
cx(M̃) = 1.

But this is clear. Since Ω`(k+2)(M̃) 'M and M̃ andM are isomorphic as vector
spaces, only finitely many projective modules will appear in eq. (4). Then the supre-
mum of the dimension of these (which is necessarily finite), will be an upper bound,
which shows that cx(M̃) = cx(M) = 1. �

We now come to the main theorem of [8].
Theorem 7 SupposeΛ is a self-injective algebra with ann-cluster-tilting moduleX , n ≥ 2.
Then allΛmodules have complexity 0 or 1. 2
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Proof Let X be a n-cluster-tilting module of Λ. Suppose U0 is a Λ-module with
cx(M) ≥ 2. Construct modules U1, . . . , Un inductively as follows.

If Ext1
Λ(Ωn−iX,Ui−1) = 0 for i ≥ 1, define Ui = Ui−1 ⊕ Ωn−iX . Otherwise we

can apply theorem 6 with V = Ui−1 to construct an universal extension

0→ Ui−1 → Ui → (Ωn−iX)ri → 0 (5)

withExt1
Λ(Ωn−iX,Ui) = 0 and ri defined implicitly. Wewant to show thatExt1

Λ(ΩjX,Ui) =
0 for n − i ≤ j ≤ n − 1. Clearly, this is true for i = 1. For the inductive step, note
first that

Ext1
Λ(ΩjX,Ωn−iX) = Ext1

Λ(Ωi+j−nX,X) = Exti+j+1−n
Λ (X,X) = 0

The last equality follows sinceX isn-cluster-tilting. By induction,Ext1
Λ(ΩjX,Ui−1) =

0. By applying HomΛ(ΩjX,−) to eq. (5) and writing down the long exact sequence
in homology, we conclude that Ext1

Λ(ΩjX,Ui) = 0 for n− i ≤ j ≤ n− 1.
Particularly for Un, we have

ExtjΛ(X,Un) = Ext1
Λ(Ωj−1X,Un) = 0

for 1 ≤ j ≤ n. As X is n-cluster-tilting, this implies that Un ∈ add(X). Subse-
quently, Un is then Ω2ν-periodic and, by lemma 8, has complexity 0 or 1. Now sup-
pose Un, . . . , Un−i, 0 ≤ i ≤ n− 1 all have complexity 0 or 1. There is by assumption
the short exact sequence

0→ Un−i → Un−i−1 → (Ωi+1X)ri+1 → 0

in which the middle two terms have complexity 0 or 1; by lemma 7, Un−i−1 has the
same complexity. By downward induction, we conclude thatU0 has either complexity
0 or 1. This shows that every Λ-module has complexity at most 1. �
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5 Cluster-tiltingmodules of trivial extensions algebras
of Dynkin type

That guy doesn’t have green!

—Lewis

5.1 Derived categories

References for this section are [11] and [28].
We begin by recalling the definition of the derived category and recall some re-

sults on the derived category of an algebra of Dynkin type Dn.
Intuitively, onemay think of the (bounded) derived categoryDb (Λ) as identifying

Λ-modulesM their resolutions — that is, with complexes of homologyM in the ze-
roth position and 0 elsewhere. In particular, we consider the category of complexes of
Λ-modules with bounded homology. We then identify two complexes if their homolo-
gies are isomorphic, in a process reminiscent of localization of rings at, say, prime
ideals. For instance, if the Λ-moduleM has a projective resolution

· · · → P1 → P0 → 0→ 0→ · · · ,

which is exact at every point except at P0 → 0, then this complex — this resolution
ofM — has the same homology as the complex consisting only ofM in the zeroth
position:

· · · → 0→M → 0→ · · · .

The exact details of the localization procedure and more arguments for why derived
categories are interesting, although interesting, are beyond the scope of this thesis.
Thuswewill confineourselves to recalling some results onderived categories relevant
to our needs. The following result is well known and true inmore generality, although
we will confine us to the one specific case relevant to us.
Proposition 7 Let A and A′ be two algebras of Dynkin quivers of the same type (say, Dn),
but with different orientations. ThenA andA′ are derived equivalent.

That is, ifDb (A) is the bounded derived category ofA andDb (A′) is the derived category
ofA′, there is an equivalence of categories

Db (A) ' Db (A′) . 2

Proof This follows from theorem 9 in section 5.3. �

As all of our results in the sequel will depend only on derived categories (and not
module categories directly) related to kDn, wemay safely pick any orientation onDn
and be sure that our results will be true for any other orientation.

We recall also that for any algebraA, the stabilised module categorymodA has a
triangulated structure with shift or suspension funtor [1] := Ω−1.

Finally, we recall the definition of a Serre functor.
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Definition 7 Let C be a triangulated category with suspension functor [1]. An addi-
tive equivalence S of C is said to be a Serre functor if

[1] ◦ S ' S ◦ [1]

and for each pairA,B ∈ C, there is an equivalence

HomC(A,B) ' DHomC(B, SA). 2

We remark that the Nakayama autofunctor ν onDb (A), induced from the Nakayama
automorphism onmodA for an algebraA, is a Serre functor.

5.2 Notation and Calabi–Yau property

This section serves to introduce and clarify some notation as well as introducing the
fractional Calabi–Yau property for derived categories of quiver algebras of type Dn.
Further, we prove some results following from the fractional Calabi–Yau property,
which we will need in the sequel.

Our reference for this section is [16], to which we refer to reader for more on the
fractional Calabi–Yau property.

Throughout this section, we are working in the derived category Db (kDn); [1]
is the shift functor in this category and ν is the Nakayama functor in this category,
which is induced by the Nakayama automorphism of kDn. We mention that ν is a
Serre functor onDb (kDn).
Definition 8 An algebraA is twisted fractionally ab -Calabi–Yau (abbreviated ab -CY)if

νb ' [a] ◦ φ∗

as functors for some integers a and b, where a 6= 0 and φ∗ is the functor induced by
an endomorphism φ ofA.

In the special case φ = 1A,A is fractionally a
b -Calabi–Yau (abbreviated twisted

a
b -CY). 2

By [16, Proposition 3.1], kDn is fractionally n−2
n−1 -CY ifn is even and fractionally 2n−4

2n−2 -CY if n is odd, so we have the following
Proposition 8 If n is even then,

νn−1 ' [n− 2],

and if n is odd then,

ν2n−2 ' [2n− 4]. 2

Also, by [16, Proposition 3.2], if n is odd, then kDn is twisted n−2
n−1 -CY where σ := φ∗

is induced by the involution ofDn, given by (n−1) 7→ n, n 7→ (n−1) and otherwise
i 7→ i, so we have the following
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Proposition 9 If n is odd, then

νn−1 ' [n− 2] ◦ σ,

where σ is the aforementioned involution. 2

The following proposition on the characterization of the Auslander–Reiten transla-
tion in the derived category is well known; see [14, p. 37].
Proposition 10

τ ' ν ◦ [−1]. 2

From the above two propositions, we have the following corollaries.
Corollary 2

[2] ' τ2−2n
2

Proof By the fractional Calabi–Yau property and proposition 10,
τ2−2n ' ν2−2n ◦ [2n− 2]

' [−(2n− 4)] ◦ [2n− 2]

' [2]. �

Corollary 3
τ3−2n ' ν ◦ [1] 2

Proof By proposition 10 and corollary 2 above,
ν ◦ [1] ' τ ◦ [2]

' τ ◦ τ2−2n

' τ3−2n. �

5.3 Repetitive algebras and Happel’s theorem

Before we state Happel’s theorem, we need to introduce the notion of the repetitive
algebra of an algebra.
Definition 9 Let A be an algebra. We define its repetitive algebra Â as follows. The
additive structure of Â is

Â :=
⊕
i∈Z

(A⊕D(A)) ,

whereD(A) is the dual ofA; the multiplicative structure is given by
(ai, φi)i · (a′i, φ′i) = (aia

′
i, aiφ

′
i + φia

′
i).

where D(A) is given the same A-Aop-bimodule structure as the one defined in sec-
tion 2.1. 2
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Note how both the additive and multiplicative structures of Â mimic those of the
trivial extension algebra T (A) of A (defined in section 2.1), only componentwise. In
fact, we note in passing, it is possible to show thatmod Â is equivalent to the algebra
of Z-graded T (A)-modules. (See [14, p. 64].)

Repetitive categories were first introduced in [17]; also see [14].
Endowed with the repetitive algebra, we now state Happel’s theorem.

Theorem 8 Let A be an algebra of finite global dimension. Then there is a triangle equiva-
lence of categories

Db (A) ' mod Â. 2

Proof See [14, p. 88]. �

Moreover, we have the following theorem, also due to Happel.
Theorem 9 LetQ be a quiver of Dynkin type and let T (Q) be its mesh category, as defined
in section 2.2. There is an equivalence

T (Q) ' indDb (kQ) ,

where the latter is the category of indecomposable objects inDb (kQ). Moreover, the τ -functors
in the two categories correspond to each other. 2

Proof See [14, p. 55]. �

5.4 Last step of the equivalence

Throughout this section, letQ be of Dynkin type type E6, E7, E8, Dn or An, n ≥ 3.
In the previous section we considered two now classical equivalences due to Hap-

pel. If we limit our attention to kQ — which we will in the sequel — the two equiva-
lences can be stated as

Db (kQ) ' mod k̂Q

and
T (Q) ' indDb (kQ) .

Our goal in this subsection is to prove that finding a d-cluster-tiltingmodule ofT (kQ)
is equivalent to finding a d-cluster-tilting subcategory of a certain factor category T
(defined in the end of this subsection) of the mesh category T (Q), defined in sec-
tion 2.2.

To do so, we will need a few more recent results by Darpö and Iyama, given in [6],
as well as one result by Gabriel given in [10]. In the former paper, the authors prove
their results in greater generality than what is needed here: we will confine us to k̂Q.
Lemma 9 LetG be a group acting on k̂Q.

The push-down functor F∗ : mod k̂Q→ mod(k̂Q/G) induces an equivalence

(mod k̂Q)/G ' mod(k̂Q/G) 2
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Proof Combine [6, Lemma 3.5(c)] to get that the induced functor is full and faithul
and [10, Theorem 3.6] to get that it is dense. �

The following lemma is adopted from [6, Corollary 2.5]. Given an autoequivalence φ
of k̂Q, we define the autofunctor φ∗ : mod k̂Q → k̂Q by φ∗(M) = M ◦ φ−1. A
subcategory U is said to beG-equivariant for a groupG if g∗(U) = U for each g ∈ G.
Lemma 10 Let k be an algebraically closed field andG = 〈φ〉 be the group generated by an
admissible automorphism φ of k̂Q. Then the push-down functor

F∗ : mod k̂Q→ mod(k̂Q/G)

induces a bijection from the class ofG-equivariant d-cluster-tilting subcategories ofmod k̂Q

to the class of d-cluster-tilting modules ofmod(k̂Q/G). 2

Proposition 11 (Proposition 2.17) Let ν be the Nakayama functor of k̂Q. mod k̂Q has
a Serre functor ν∗ ◦ Ω. 2

With the help of the above results, we can prove the following results.
Lemma 11

modT (A) ' mod k̂Q/ν̂,

where ν̂ is the Nakayama automorphisms of k̂Q. 2

Proof The repetitive category k̂Q is self-injective and its Nakayama automorphism
ν̂ = ν

k̂Q
is given by degree-one shift (see [6, p. 11]). Thus the functor

F : modT (kQ)→ mod k̂Q/ν̂,

given by inclusion into the first factor,

F (a, f) = (0, . . . , 0, a, f, 0, . . . , 0) ,

is clearly an equivalence. �

Lemma 12 There is an equivalence

ν∗ ' ν ◦ [1],

where ν is the Nakayama functor induced by the Nakayama automorphism of k̂Q and ν∗ is
the functor defined in proposition 11 above. 2

Proof By proposition 11, ν∗ ◦ Ω is a Serre functor for mod k̂Q. Moreover, it is well
known that if a Serre functor exists, then it is unique up to equivalence. In particular,
ν is also a Serre functor onmod k̂Q, and so

ν∗ ◦ Ω ' ν.
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Now note that Ω−1 = [1] is the shift functor with the triangulated structure on
mod Â, so

ν∗ ◦ [−1] ' ν,

and since [1] an autoequivalence, we have
ν∗ ' ν ◦ [1]. �

Now let T := T(Q) := T (Q) /(τ3−2n). To summarise, we have the following
Theorem 10 There is a triangle equivalence

modT (kQ) ' Db (kQ) /(ν ◦ [1])

and a triangle equivalence

T(Q) ' indDb (kQ) /(ν ◦ [1]). 2

Proof For the first triangle equivalence, combine lemma 11, lemma 9, lemma 12 and
finally theorem 8.

For the second triangle equivalence, combine theorem 9 and corollary 3. �

Since by takingfinite direct summands of indDb (kQ) /(ν◦[1]), we obtainDb (kQ) /(ν◦
[1]), the existence of a d-cluster-tilting module in modT (kQ) is equivalent to the
existence of a d-cluster-tilting subcategory of T by theorem 10. Since any d-cluster-
tilting module in modT (kQ) is also a d-cluster-tilting module considered as an ob-
ject ofmodT (kQ) and—by possibly adding the indecomposable projectives as direct
summands — vice versa, we have the following
Theorem 11 There exists a d-cluster-tilting module of T (kQ) if and only if there exists a
d-cluster-tilting subcategory ofT(Q). 2

Our strategy in the sequel will be to leverage theorem 11 to obtain results on the ex-
istence or non-existence of cluster-tilting modules of T (kQ), by working in T. Given
that T has only a finite number of objects and morphisms of objects, this allows us to
work combinatorially.

5.5 Looking for cluster-tilting subcategories of T(Dn)

For this subsection, we will be working exclusively in the category T = T(Dn). By
proposition 7, results proved inTwith one specific orientation onDn will remain true
for other orientations on Dn (since these categories are all equivalent). Thus we fix
the following orientation onDn throughout this section: there are arrows i→ (i+1)
for i = 1, 2 . . . , n−2 aswell as an arrow (n−2)→ n. The orientationon the repetitive
quiver T (Dn) follows that of definition 5. In this section, τ denotes the translation
in T.

InT, the translation functor [1] is induced from the syzygy functorΩ−1 inmodT (kQ)
by the triangle equivalence in theorem 10 and ν in T is defined by ν = τ ◦ [1], as
τ = ν ◦ [−1] inDb (kQ).
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We note that since ν ◦ [1] ' 1T and ν and [1] are equivalences, we have ν ' [−1].
Since ν is a Serre functor, then so is [−1].

Whenever we mention a nonzero path (or simply a path) in T(Dn), we refer to
a nonzero morphism in T(Dn). That is, one that is out canceled out by the relations
mx in T(Dn) (see definition 5).

5.5.1 Some results in T

In this subsection, we mention several results that we will need in the sequel. These
results may be referred to without reference.
Lemma 13 If n is even, then

[2n− 3] ' 1T

and if n is odd, then
[4n− 6] ' 1T. 2

Proof By proposition 8, if n is even, then

1T ' (ν ◦ [1])
n−1

' νn−1 ◦ [n− 1]

' [n− 2] ◦ [n− 1]

' [2n− 3].

Otherwise, if n is odd, we have

1T ' (ν ◦ [1])
2n−2

' ν2n−2 ◦ [2n− 2]

' [2n− 4] ◦ [2n− 2]

' [4n− 6]. �

Lemma 14
τ2n−3 ' 1T 2

Proof By lemma 13 above and the facts that τ = ν ◦ [−1] and ν ' [−1], we have

τ2n−3 ' (ν ◦ [−1])2n−3

' ([−2])2n−3

' [−2(2n− 3)]

' ([4n− 6])−1

' 1T. �
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Lemma 15 If n is even, then
[1] ' τ1−n,

and if n is odd, then
[1] ◦ σ ' τ1−n,

where σ is the involution given in definition 8. 2

Proof By the fractional Calabi–Yau property definition 8, we have the following if n
is even:

τ1−n ' ([−2])1−n

' [2n− 2]

' [2n− 3] ◦ [1]

' [1].

By the twisted fractional Calabi–Yau property definition 8, we have the following if n
is odd:

τ1−n ' ([−2])1−n

' [2n− 2]

' [2n− 3] ◦ [1] ◦ σ
' [1] ◦ σ. �

In particular, we have a useful characterisation for suspensions of vertices by even
integers.
Lemma 16 Let k ∈ Z and (i, j) ∈ T(Dn). Then

(i, j)[2k] = (i+ k, j). 2

Proof Since σ has order two, we have the following by lemma 15, regardless of the
parity of n.

(i, j)[2] ' τ2(1−n)(i, j)

' (τ2−2n ◦ τ2n−3)(i, j)

' τ−1(i, j)

' (i+ 1, j).

Hence

(i, j)[2k] ' τ−k(i, j)

' (i+ k, j). �

The following proposition is well-known, and will reduce the work on showing if a
subcategory U of T(Dn) is d-cluster-tilting or not.
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Proposition 12 A subcategory U is a d-cluster-tilting subcategory ofT(Dn) if and only if

U =
{
x ∈ T(Dn) : Ext1,2,...,d−1

T (x,U) = 0
}
,

which is true if and only if

U =
{
x ∈ T(Dn) : Ext1,2,...,d−1

T (U , x) = 0
}
, 2

5.5.2 Restrictions on d and n

Using the results in the previous subsection, we obtain some restrictions on d and
n the existence of a d-cluster-tilting subcategory of T(Dn) would imply. Let U be a
putative d-cluster-tilting subcategory of T(Dn). By proposition 5, then

νd(U) = ν (U [−d]) = U

Since ν ' [−1] in T, this is equivalent to

U [−(d+ 1)] = U = U [d+ 1].

Assuming for the moment that n is even, by lemma 13 we have

1T ' [2n− 3],

from which it follows that
U [2n− 3] ' U

also; whence,

U ' U [2n− 3]

' U [2n− 3− (d+ 1)]

' · · ·
' U [2n− 3− r(d+ 1)]

' U [a],

where a is 2n − 3 modulo (d + 1). Now if (d + 1) does not divide (2n − 3), then
1 ≤ a ≤ d, and so

0 = ExtaT(U ,U)

' HomT(U ,U [a])

' HomT(U ,U)

6= 0,

26



as long as a 6= d. If a = d, then

0 = Ext1
T(U ,U)

' HomT(U [−1],U)

' HomT(U [−1],U [d])

' HomT(U [−(d+ 1)],U)

' HomT(U ,U)

6= 0.

Either case yields self-extensions of U , which contradicts it being a d-cluster-tilting
subcategory of T(Dn). Thus, we have proved the following
Theorem 12 If n is even and there is a d-cluster-tilting subcategory ofT(Dn), then

(d+ 1) | (2n− 3). 2

Corollary 4 If d is odd and n is even, there is no d-cluster-tilting subcategory ofT(Dn). 2

If on the other hand n is odd, we can repeat a similar argument to the one above,
noting that

U [4n− 6] ' U

by lemma 13, to obtain the following
Theorem 13 If n is odd and there is a d-cluster-tilting subcategory, then

(d+ 1) | 2(2n− 3). 2

Lemma 17 Suppose, for d ≥ 2 and n odd, that there is a d-cluster-tilting subcategory U of
T(Dn) that is invariant under the functor σ from proposition 9. Then

(d+ 1) | (2n− 3). 2

Proof If n is odd, we have
νn−1 ' [n− 2] ◦ σ

by proposition 9, and since
σ(U) = U ,

where σ is the functor described in proposition 9, we get

U [2n− 3] = U .

Now apply the proof of theorem 12. �
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5.5.3 Restrictions on d

Suppose d ≥ 3. For what values of 1 ≤ j ≤ n can the vertex (i, j) be part of a
d-cluster-tilting subcategory of T(Dn)? In general,

0 = Ext2
T[(i, j), (i, j)]

' HomT[(i, j), (i, j)[2]]

' HomT[(i, j), τ−1(i, j)]

' HomT[(i, j), (i+ 1, j)],

and if 2 ≤ j ≤ n− 2, then there is a nonzero path
(i, j)→ (i, j + 1)→ (i+ 1, j),

which implies that HomT[(i, j), (i+ 1, j)] 6= 0. Thus if (i, j) was part of a d-cluster-
tilting subcategory ofT(Dn), said subcategory would have a self-extension, a contra-
diction. Whence we have proved the following
Lemma 18 If d ≥ 3 and (i, j) ∈ U for a d-cluster-tilting subcategory U of T(Dn), then
j = 1, j = n− 1 or j = n. 2

If we moreover assume that d ≥ 5 and j = n− 1 or j = n, we necessarily need that
the following be zero

Ext4
T[(i, j), (i, j)] ' HomT[(i, j), (i, j)[4]]

' HomT[(i, j), τ−2(i, j)]

' HomT[(i, j), (i+ 2, j)].

But if j = n− 1, there is a nonzero path
(i, n− 1)→ (i+ 1, n− 2)→ (i+ 1, n)→ (i+ 2, n− 1),

contradicting HomT[(i, n − 1), (i + 2, n − 1)] = 0. Similarly, if j = n, there is a
nonzero path

(i, n)→ (i+ 1, n− 2)→ (i+ 1, n)→ (i+ 2, n),

contradictingHomT[(i, n), (i+ 2, n)] = 0. Whence we have proved the following
Lemma 19 If d ≥ 5 and (i, j) ∈ U for a d-cluster-tilting subcategory U of T(Dn), then
j = 1. 2

Lemmas 18 and 19 hint at dividing the classification problem into four parts: d ≥ 5,
d = 4, d = 3 and finally d = 2. In the next four subsections, we consider each of
these cases. Combined, these sections prove the following
Theorem 14 Let d ≥ 2. If d 6= 4, there is no d-cluster-tilting subcategory of T(Dn). If
n = 4, there is a 4-cluster-tilting subcategory ofT(Dn). 2
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Combining the above theorem with theorem 11, we arrive at our main theorem for
this section.
Theorem 15 LetA = T (kDn) be the trivial extension of the algebra kDn, for some orien-
tation onDn, and let d ≥ 2. If d 6= 4, there is no d-cluster-tilting module ofA; if n = 4, then
there is a 4-cluster-tilting module ofA. 2

5.5.4 d ≥ 5

We begin by considering the case d ≥ 5. First, we have the following
Lemma 20 If d ≥ 4, there is no subcategory U of T(Dn) consisting only of vertices of the
form (i, 1) that is 4-cluster-tilting. 2

Proof We may assume without loss of generality that
U =

{
ν`d(0, 1) : ` ∈ Z

}
by symmetry and since otherwise, if there were a vertex (i, 1) ∈ U , it would clearly
have extensions with the above. Now suppose that for some vertex (i, 1) ∈ T(Dn)we
have

ExtkT((i, 1), (0, n)) 6= 0,

where 1 ≤ k ≤ d− 1. Then
ExtkT((i, 1), (0, n)) ' HomT((i, 1)[−k], (0, n)) 6= 0,

which implies that (i, 1)[−k] = (0, 1). Consequently,
ExtkT((i, 1), (0, 1)) ' HomT((i, 1)[−k], (0, 1)) 6= 0,

so (i, 1) 6∈ U . But then
ExtkT(U , (0, n)) = 0,

which implies (0, n) ∈ U , contradicting the hypothesis. �

The above lemma yields a short proof to the following
Theorem 16 If d ≥ 5, there is no d-cluster-tilting subcategories ofT(Dn). 2

Proof By lemma 19, a putative d-cluster-tilting subcategory U would consist only of
vertices of the form (i, 1). By lemma 20, this is not possible. �

5.5.5 d = 4

Nowwe investigate the case d = 4. Since then d+ 1 = 5, the existence of a 4-cluster-
tilting subcategory of T(Dn) implies that

5 | (2n− 3) (6)
by theorems 12 and 13. A simple modulo calculation shows that eq. (6) is equivalent
to

5 | (n+ 1). (7)
Now let U be a putative 4-cluster-tilting subcategory of T(Dn). If (i, j) ∈ U , then
j ∈ {1, n− 1, n} by lemma 18. Moreover, if n is odd we have the following
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Lemma 21 If n is odd and (i, j) ∈ U , then j = 1. 2

Proof Without loss of generality, we may assume that i = 0. By definition 8,,

[1] ' τ1−n ◦ σ,

where σ(0, n − 1) = (0, n), σ(0, n) = (0, n − 1) and σ(0, 1) = (0, 1). If (0, j) ∈ U ,
then (0, j)[2n− 3] ∈ U . Now

(0, j)[2n− 3] = σ((2n− 3)(n− 1), j) = σ(0, j).

If j = n− 1, then
(0, n− 1)[2n− 3] = (0, n) ∈ U ,

since 5 | 2n − 3 and U is invariant under νd = [5] by proposition 5. Now note that
there is a path

(0, n)→ (1, n− 1) = (0, n− 1)[2],

which gives U a self-extension:

Ext2
T((0, n), (0, n− 1)) ' HomT((0, n), (0, n− 1)[2]) 6= 0,

contradicting U being a 4-cluster-tilting subcategory of T(Dn). Conversely, suppose
that j = n. Then

(0, n)[2n− 3] = (0, n− 1) ∈ U ,

and there is a path
(0, n− 1)→ (1, n) = (0, n)[2],

which again implies that U has a self-extension. Hence only j = 1 is possible. �

If n is odd still, then U must consist only of vertices of the form (i, 1) (by lemma 21,
this is the only possibility). But this is not possible by lemma 20. Thus we have proven
the following
Lemma 22 If n is odd, then there is no 4-cluster-tilting subcategories ofT(Dn). 2

Combined with eq. (7), lemma 22 gives that

5 | (n+ 1)

and
2 | n,

whence
n = 4 + 10k

for some k ∈ N are the only possible values for n, given the existence of a 4-cluster-
tilting subcategory of T(Dn). If k = 0, we have an explicit example.
Example 3 U = {(0, 1), (0, 4)} defines a 4-cluster-tilting subcategory of T(D4). 2
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Figure 1: Repetitive quiver T(D4) for D4

The verification of example 3 is easy and left to the reader; see fig. 1.
Our conjecture is thatn = 4 is the only example whereT(Dn) possess a 4-cluster-

tilting subcategory (hence, any d-cluster-tilting subcategory, for d ≥ 2). However, we
have not succeeded in proving this yet. Collecting our results for this subsection,
however, we have obtained a partial result.
Proposition 13 Suppose there is a 4-cluster-tilting subcategory of T(Dn). Then n = 4 +
10k for some k ∈ N and if (i, j) ∈ U , then j = 1, j = n− 1 or j = n. 2

5.5.6 d = 3

In this subsection, we investigate the case d = 3. By corollary 4, there can be no 3-
cluster-tilting subcategories of T if n is even, so we may limit ourselves to the case
where n is odd. In this case, theorem 13 gives

4 | 2(2n− 3),

from which we get
2 | (2n− 3),

which is a contradiction since 2n−3 is always odd. Thuswe have proven the following
Theorem 17 There are no 3-cluster-tilting subcategories ofT(Dn). 2

5.5.7 d = 2

In [12], Grimeland classifies all2-cluster-tilting subcategories of the categoryDb (kDn) /F ,
for n ≥ 4. Her result is that said category has a 2-cluster-tilting subcategory iff F is
one of the following.

• τ tn for n ≥ 5 odd
• τ tn−1[1] for n ≥ 5 odd
• τ2t for n ≥ 4

• τ2t−1[1] for n ≥ 5 odd
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where t ∈ Z. We leverage this result to immediately obtain a full classification of the
2-cluster-tilting subcategories of T(Dn).

Suppose first that n ≥ 4 is even. Then F = τ2n−3, but 2n − 3 is not even, so by
the above result there cannot be a 2-cluster-tilting subcategory of T(Dn).

Now suppose that n ≥ 5 is odd. Then still F = τ2n−3, but we have more options.
Note first that 2n − 3 = tn is clearly never possible for n ≥ 5. The other two cases
involve [1]. From lemma 15, we know that

[1] ' τ1−n ◦ σ,

but then F = τ2n−3 cannot involve a term with [1]. This takes care of the two re-
maining cases and shows that no 2-cluster-tilting subcategory of T(Dn) exists for
any n ≥ 4. We write up our discussion as a
Theorem 18 If n ≥ 4, then there is no 2-cluster-tilting subcategory ofT(Dn). 2

5.6 Looking for cluster-tilting categories of T(An) and T(En)

We mention briefly that the machinery developed in section 5.4 can be applied also
to trivial extensions of algebras of Dynkin type A or E.

Trivial extensions of algebras of Dynkin typeA are known tobe symmetricNakyama
algebras; these are already classified in section 3.

However, the author — that is, I — am not sure if trivial extensions of algebras of
typeE6,E7 orE8 are classified, yet. We do not provide a classification here, but show
that we can use the machinery already developed to get only one possible value for d
in each. That is, we have the following
Proposition 14 Let d ≥ 2 and suppose that there is a d-cluster-tilting subcategory of E6,
E7 or E8, respectively. Then d is 10, 16 or 28, respectively. 2

Proof It is known (see [16]) that E6 is E6 is fractional 10
12 -Calabi–Yau, while E7 is

fractional 8
9 -Calabi–Yau and E8 is fractional 14

15 -Calabi–Yau.Carrying out a similar argument to the onewe gave in the proof of theorem 12 and
applying proposition 5, yields the result. �

The above proposition is not conclusive, so further research could look at this case or
expand the machinery to other algebras that have a similar representation in terms
of truncated repetitive quivers.
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