
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Eivind Baltzersen

Performance prediction with a
hierarchical poisson model using
Template Model Builder

Master’s thesis in Applied Physics and Mathematics

Supervisor: Jarle Tufto

July 2020





Eivind Baltzersen

Performance prediction with a
hierarchical poisson model using
Template Model Builder

Master’s thesis in Applied Physics and Mathematics
Supervisor: Jarle Tufto
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





This document was written for the web, and has been exported to a tree unfriendly format at a loss of quality.
The web version can be found in the attachments; JavaScript may be required if not using Firefox or Safari.

Sammendrag

I dette prosjektet bruker vi en hierariske poisson�log-normal angreps- og forsvars-modell for Eliteserien
2019 til å �nne forventet sluttresultat i tabellen. Vi bruker forskjellige autoregressive tidsrekkemodeller til å
modellere endring i angreps- og forsvars-parametrene mellom kampene. Modellene viser seg å være dårlige
til å predikere invidiuelle kamper, men bedre til å predikere lagenes sluttposisjon i tabellen. Modellene er
implementert i TMB, et R/C++-bibliotek, og plottet i Python. Vi ser på noen svakheter ved modellene, og
til slutt foreslår vi noen endringer som kan forbedre dem.

Abstract

In this project we use a hierarchical poisson�log-normal attack and defence model for Eliteserien 2019
(The Norwegian primary football competition) in order to predict the expected �nal results in the standings.
We use di�erent autoregressive time series models to model change in attack and defence parameters. We
show the models to be unsuitable for predicting individual matches, but better at predicting a teams position
in the �nal standings. The models are implemented using TMB, an R/C++ library, and are plotted in
Python. We look at weaknesses of the models, and �nally we suggest changes to improve the models.
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Notation and terms

e The inverse of e, e−1 or 1/e.

cosh(x) The hyperbolic cosine function, e
x−e−x

2
[a..b] Discrete closed interval, a, a+ 1, . . . , b− 1, b

`(x), L(x) (log-)likelihood function
τ 2π

positive/negative numbers includes zero
strictly positive/negative numbers excludes zero

1 Introduction

Ranking is a way to compare di�erent objects given their properties. It is ideally transitive, meaning that for
n objects, we may label them with i ∈ [1..n] to order them. An important aspect of competitive sports and
games is to rank teams and players in order to su�ciently determine who is to be labeled 1, (also known as the
winner).

In a sports context, the ranking often depends on a score, which is determined based on the performance of the
team or player against another team or player. This is achieved through each team or player playing against
other teams and players, for instance through a knockout or a knockout tournament. Examples from football1

in Norway include the knockout cup NM i fotball, and the top level round robin tournament is called Eliteserien.

To determine the winner of a football match, we simply look at the team with the most goals within two
45 minute halves of a 90 minute match. Some tournaments also have overtime if the teams are tied after 90
minutes, but we will mainly study Eliteserien, which doesn't include overtimes. The winner of a match gets
three points, the loser none. A tie awards both teams with one point. The winner of the league is the team
with the most points.

We make note of earlier work, such as [3], which attempts an attack-defence model that we will propose here,
but with a di�erent hierarchical model. A simple bivariate poisson model (non-hierarchical) has also been
attempted in [15]. A model using the skellam distribution has also been attempted in [16]. A comparison of a
poisson scoring models with a goal shots model is compared in [24]. There are many other papers for similar
models, both in football and other sports and games competitions.

The ideas in this paper are mostly based on earlier works. The novel methods is applying TMB as a tool to
implement the models, and comparing di�erent time series models.

As a small disclaimer, I will mention that I have little understanding of football, and have not watched a single
football match during the writing of this thesis. So any statements about football may be incorrect.

1.1 Tools

The main programming languages have been R and C++, with the TMB library. Results were stored in json
format. Plots have been made using Python, with matplotlib, NumPy and SciPy. For more details

2 Theory

We will go through several statistical concepts; it will be assumed that the reader has some knowledge of linear
algebra. We will not go through each theorem in depth, nor the derivation of them. For a comprehensive
explanation, a textbook should be consulted.

� Distributions

� Models

� Ranking

� Template model builder (TMB)

� Prediction

� Quality measures

1Also referred to as association football or soccer.
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2.1 Distributions

2.1.1 Normal and log-normal distribution

The normal2 distribution is a normal distribution, and is described by the density function in equation (1)

(1) X ∼ f(x;µ, σ2) = N (µ, σ2) =
√
σ2τ exp

(
−1

2

(
x− µ
σ

)2
)

dx

4 3 2 1 0 1 2 3 4
x

0.00
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0.10
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Figure 1: The standard normal distribution N (0, 1) in [−4, 4].

The normal distribution is fully parameterised by its mean and variance:

E(X) = µ(2)

Var(X) = σ2(3)

With the (unbiased) estimators

µ̂ =

n∑
i=1

Xi

n
(4)

σ̂2 = s2 =

n∑
i=1

Xi − µ̂
n− 1

(5)

σ̂ = c(n)

√√√√ n∑
i=1

Xi − µ̂
n− 1

(6)

where c(n) is a bias-correction factor, because E(s) < σ. For large samples this is close to one, so this factor is
typically ignored, but exact and approximate values for the normal distribution can be found. [12] [31] [6]

2Also known as gaussian distribution, gauss distribution, laplace�gauss distribution, normal distribution, bell curve. It can more
accurately be called a quadratic-normal distribution.
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The log-normal distribution is similar, with a change of variables x→ log(x):

(7) Y = exp(X) ∼ f(x;µ, σ2) = Lognormal(µ, σ2) = x
√
σ2τ exp

(
−1

2

(
log(x)− µ

σ

)2
)

dy

We note that log(Y ) is normal distributed, which we will make use of later, as the normal distribution is simpler.

The multivariate form of the normal distribution, often abbreviated to MVN, is

(8) X ∼ f(x;µ,Σ) = N (µ,Σ) =
√
|Σ|τk exp(−1

2
(x− µ)

>
Σ(x− µ)) dx

with the parameters

E(X) = µ(9)

Var(X) = Σ(10)

Σ is usually referred to as a covariance matrix.

We will consider a special parametrisation of the covariance matrix. The motivation is to removed restrictions
on the entries. First of all, the covariance matrix is symmetric, so almost half of the entries are redundant when
specifying the matrix. A more complex restriction, is that it must also be positive de�nite, i.e. (x− µ)

>
Σ(x−

µ) ≥ 0 and its diagonal entries are strictly positive.

First we consider the relation between the covariance matrix and the correlation matrix:

(11) P = diag(Σ)
1/2

Σdiag(Σ)
1/2

where P is the correlation matrix, which have the nice property that its diagonal consists of units. We can �nd
a lower-triangular square root L, such that P = LL>. However, L does not have a unit diagonal, for this we
multiply by the inverse of its diagonal to obtain Θ = diag(L)L, as shown in equation (12)

(12) Θ =



1 0 0 · · · 0
θ1 1 0 · · · 0

θ2 θ3 1 · · ·
...

...
...

...
. . . 0

θk θk+1 · · · θk+n 1


We let θ be the vectorisation of the lower triangular matrix, i.e. θ = (θ1, θ2, . . . , θk+n).

We may also consider the elementwise root-log transform of the diagonal of Σ:

(13) log(σ) = (log(
√
σ2

1), log(
√
σ2

2), . . . , log(
√
σ2
k )) = (log(σ1), log(σ2), . . . , log(σk ))

Thus, we may parametricise Σ as from the vector θ⊕ log(σ) ∈ RT (k), where T (k) is the k -th triangular number
by reversing the above steps. [17]

2.1.2 Binomial distribution and the fundamental theorem of statistics

In determining the outcome of a match, we are either right or wrong. If we have a rule determining the correct
outcome of a match with probability p, we have a binary distribution3.

Repeated determination of n matches, results in a binomial distribution, where we expect the number of the
correct guessed outcomes m, such that m/n ≈ p.

(14) f(n, k |p) = (
n

k
)pk (1− p)n−k

3Also referred to as the bernoulli distribution
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The limiting distribution of a binomial variable Xn as n→∞, can be approximated by a normal distribution.
This theorem is sometimes referred to as the de moivre�laplace theorem, which is a special case of the central
limit theorem4.

(15)
Xn − np√
np(1− p)

lim∼ N(np, np(1− p))

Typically, this approximation is practical for n greater than 30.

The estimator for p, p̂, is simply the number of correct guessed m over the total outcomes. m/n = p̂. So the
con�dence interval, assuming normality, is of the form

(16) p ∈ [p̂− zαc(n)
√
p̂(1− p̂)/n, p̂+ zαc(n)

√
p̂(1− p̂)/n]

We reiterate that this is unreliable for a small sample size, and other con�dence intervals also exist. A list of
other methods can be found in [36].

2.1.3 Poisson distribution

The poisson distribution is de�ned as the number of events occuring a �xed interval. It's described by the mass
function in equation (17)

(17) Y ∼ f(y;λ) = Pois(λ) =
λye−λ

y!

0 1 2 3 4 5 6 7
score

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ilit

y

Figure 2: The left solid blue poles with round hats make up the score distribution of Eliteserien 2019. The right
orange dashed poles with diamond hats are a �tted poisson distribution with λ ≈ 1.46.

A remarkable property of the poisson distribution, is the simple relation between the mean and variance:

(18) E(Y ) = Var(Y ) = λ
4The central limit theorem is sometimes referred to as the fundamental theorem of statistics, though the law of large numbers

also called by this name.
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2.1.4 Skellam distribution

The di�erence between two independent poisson distributed variables is distributed by the skellam distribution.
[32] The skellam distribution is of the form show in equation (19)

(19) p(k |λ1, λ2) = e−(λ1+λ2)

(
λ1

λ2

)k/2

I|k |(2
√
λ1λ2)

where Ik is the modi�ed bessel function of the �rst kind. The formula is complicated, but is shown below [1,
page 375]

(20) Iα(x) = i−αJα(ix) =

∞∑
m=0

m!Γ(m+ α)!
(x

2

)2m+α

2.1.5 Discrete VAR(1) model

The VAR(1) series is the multivariate generalization of the one-dimensional AR(1) series, which is a special case
of the AR(p) series:

(21) xt = c+ φ1xt−1 + · · ·+ φpxt−p + εt

where εt ∼ WN(0,Σε). [5, page 84] In our case, we consider p = 1. We will also be assuming that c = 0. The
distribution is stable as long as |φ1| < 1.

0 2 4 6 8 10
time

4

2

0

2

4

po
sit

io
n

Figure 3: The conditional expectation and con�dence interval of a Var(1) process, with φ = 0.7, Σε ≈ 0.71 and
X0 = 2. Each interval at each point represents one, two and three standard deviations from the expected mean.

The unconditional expectation and covariance are given by [10]

E(xt) =
c

1− φ
= µ(22)

Var(xt) =
Σε

1− φ2
(23)

8



and the unconditional distribution of xt is

(24) xt ∼ N (µ,
Σε

1− φ2
)

The conditional expectation and covariance are given by

E(xt|xt−1) = c+ φxt−1(25)

Var(xt|xt−1) = Σw(26)

and the conditional distribution of xt on xt−1 is given by

(27) xt|xt−1 ∼ N (c+ φxt−1,Σw)

The multivariate version of the unconditional and conditional distribution is: [14]

(28) xt ∼ N (µ, vec(I − φ1 ⊗ φ1vec(Σw)))

(29) xt|xt−1 ∼ N (c+ φxt−1,Σw)

We will later be using equation (28) and equation (29), with zero-shifted mean.

2.1.6 Continuous VAR model

The continuous version5 is often attributed to Ornstein, Uhlenbeck and Va²í£ek. [35] [28] The di�erential form
and the formal solutions are shown in equation (30).

dxt = θ(µ− xt)dt+ σwdW(30)

xt = x0e
−θt + µ(1− e−θt) + σw

∫ t

s=0

e−θ(t−s)dWs(31)

where the absolute value of the eigenvalues of θ should be strictly positive in the real part to be stable. [4, page
11] The relation between these two form can be found in the appendix, in equation (120)

The unconditional expectation and covariance are given by [10]

E(xt) = µ(32)

Var(xt) =
σ2
w

2θ
(33)

We will be assuming µ = 0, but we state the general forms for completeness.

and the unconditional distribution of xt is [9]

(34) xt ∼ N (µ,
σ2
w

2θ
)

The conditional expectation and covariance are given by [10]

E(xt|xt−1) = e−θ∆tx0 + µ(1− e−θ∆t)(35)

Var(xt|xt−1) =
σ2
w

2θ
(1− e−2θ∆t)(36)

and the conditional distribution of xt on xt−1 is given by [33, page 11]

(37) xt|xt−1 ∼ N (e−θ∆txt−1 + µ(1− e−θ∆t), σ
2
w

2θ
(1− e−2θ∆t))

5Often referred to as the Ornstein�Uhlenbeck process in literature.
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Figure 4: The conditional expectation and con�dence interval of a Var(1) process, with θ = −log(0.7) ≈ 0.35,
Σε = 1 and x0 = 2. Each band represents one, two and three standard deviations from the expected mean.
This is the continuous extension of �gure 3.

The multivariate version of the unconditional and conditional distribution is: [37]

(38) xt ∼ N (µ, vec(θ ⊕ θvec(σwσ
>
w )))

(39) xt|xt−1 ∼ N (e−θ∆txt−1 + µ(I − e−θ∆t), vec(θ ⊕ θ(I − e−θ⊕θ∆t)vec(σwσ
>
w )))

As with the VAR(1) process, we will later be using equation (38) and equation (39), with zero-shifted mean.

The relation to the VAR(1) model is not immediately obvious, but equality can be shown with the following
substitutions: [25][11, page 8]

X0 = x0(40)

ϕ = e−θ∆t(41)

εt ∼ N (0,
1

2θ
σ2
w(1− e−2θ∆t))(42)

so the following two equations are equivalent

xt = e−θ∆txt−1 + σw

∫ t

s=0

e−θ(t−s)dWs(43)

Xt = ϕXt−1 + εt(44)

2.2 Change of variables in a density function

In some cases it may be useful to transform the variables, such as Y = g(X), because we may have more
tools available for the transformed density. Such as log-transforming a log-normal variable, to obtain a normal

10



variable.

(45) fY (y) dy = fg(Y )(g(y))d(g(y)) = fX(x) dx

To be precise, this is only valid as long as g is a strictly increasing function. For the decreasing case we add a
sign to either side; the two cases can be uni�ed by applying the absolute value to both sides. [26]

and the relation between fY and fX is given by

(46) fY (y) = fX(g(y))
d

dy
g(y)

If we let Y = exp(X) ∼ Lognormal(µ, σ2), then

fY (y) =
d

dy
log(y)σ

√
τ exp

(
−1

2

(
log(y)− µ

σ

)2
)

dy(47)

=
1

y
σ
√
τ exp

(
−1

2

(
log(y)− µ

σ

)2
)

dy(48)

And for the opposite case, X = log(Y ) ∼ N (µ, σ2), then

fX(x) =
d

dx
exp(x)

1

exp
(x)σ
√
τ exp

(
−1

2

(
log(exp(x))− µ

σ

)2
)

dx(49)

=
�
�
��exp(x)

exp(x)
σ
√
τ exp

(
−1

2

(
x− µ
σ

)2
)

dx(50)

= σ
√
τ exp

(
−1

2

(
x− µ
σ

)2
)

dx(51)

2.3 Likelihood function

The most general form of the likelihood function is de�ned as a mass/density function of a parameter θ given
an outcome x

(52) L(θ|x) = pθ(x)

In many cases, x is a tuple of i.i.d. variables, and pθ(x) is a joint probability distribution of independent
variables, and can be written as a product. So if x is a vector of size n, we have:

(53) L(θ|x) =

n∏
i=1

pθ(xi)

2.3.1 Maximization and log-likelihood

The likelihood function represents the probability of obtaining x for a given θ. A reasonable assumption is then
that x is realized from a distribution where it has a high likelihood to be observed. So the θ that yields the
highest likelihood is a natural candidate for determining the distribution of x. We seek to determine

(54) θ̂ = argmax
θ∈Θ

L(θ|x) = argmax
θ∈Θ

n∏
i=1

pθ(xi)

Product are often cumbersome, and to simplify the above computation, we can apply the logarithm to L to
obtain a sum. Because the logarithm is a strictly increasing function, the maximum of L is also the maximum
of log(L). We denote this logarithm by `:

(55) θ̂ = argmax
θ∈Θ

`(θ|x) = argmax
θ∈Θ

n∑
i=1

pθ(xi)

From which we conclude that x most likely derived from the distribution p(x|θ̂).
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2.4 Hierarchical modelling and empirical bayes method

Bayesian6 hierarchical modelling is a way to describe a hierarchy of distributions, where the parameters of the
upper layers are dependent on the distributions of lower layers.

The simplest such model is the two-stage hierarchical model, as shown in equation (56)

Y |θ, φ ∼ p(Y |θ, φ)(56)

θ|φ ∼ p(θ|φ)(57)

φ ∼ p(φ)(58)

where Y is the observed data, θ is a parameter, and φ is a hyperparameter. p(θ, φ) is the prior distribution. In
bayesian hierarchical modelling the hyperparameter is given a hyperprior, a distribution on the parameter, or
p(φ).

In Empirical Bayes the hyperparameter is a �xed value. The estimation of this hyperparameter will be found
using MLE.

The posterior theorem or bayes theorem is shown below in equation (59)

(59) f(θ|x) =
f(x|θ)f(θ)

f(x)
=

f(x|θ)f(θ)∑
if(x|θi)f(θi)

The distribution for Y can then be found by marginalization7 over the parameters, or random e�ects.

(60) p(Y |φ) =

∫
R
p(Y |θ, φ)p(θ|φ)dθ =

∫
R

p(θ|Y, φ)p(Y |φ)∑
ip(θ|Yi , φ)p(Yi)

p(θ|φ)dθ

2.5 Bradley�terry model

The bradley�terry model [29] is used to make paired comparisons of individuals in a transitive way, using a
single parameter.

(61) P (i > j ) =
pi

pi + pj
= σ(βi − βj )

Where pi = eβi and σ(x) = 1− exp(x) is the logistic function (a sigmoid function). The relation between the
logit(x) = log( x

1−x ) logit function with the logistic function is that they are inverses, i.e. logit(x) = σ(x), so we
also have the identity:

(62) logitP (i < j ) = logit(σ(βi − βj )) = βi − βj

An example where this model is used, is in elo ranking, most commonly known from chess. A player's rating
is given by a number ri , which is related to βj by βi = log(10)/400 � ri . So a player with r1 = 1700 playing
against a player with r2 = 1900 will yield the following probabilities:

P (1 > 2) = 1− 10(1900−1700)/400 ≈ 25%(63)

P (1 < 2) = 1− 10(1700−1900)/400 ≈ 75%(64)

A win or a loss updates the elo rating of each player, but the bradley�terry model has no mechanism for
updating. Nor does it tell us how to initially calculate ratings, which must be found with inference.

We also note that the bradley�terry model does not handle ties, only binary win/loss outcomes.

The winner is the team with the highest score in a match. If the score is poisson distribution, we can determine
the result by checking the value of yHome

ij −yAway
ij , and checking if it is strictly positive, zero or strictly negative.

2.5.1 Skellam distribution and the bradley�terry model

By de�ning the best team as having the score pM = 1, we could use this to solve

(65) P (i < j ) =
pi

pi + pM

for any pi to obtain a ranking score for all teams. Instead we will use the point system.

6The naming is unfortunate, but refers to Thomas Bayes. It may be more intuitive to think of it as evidence-based.
7Integrating out the distributions of variables.
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2.6 Template model builder (TMB, R library)

Template model builder is an R/Cpp-library which greatly simpli�es the means of estimating hierarchical models.
[23][22][18]. It makes use of three key concepts: automatic di�erentiation, laplace method and the (generalized)
delta method.

Understanding these concepts are not necessary to make use of the program, but they can be helpful.

2.6.1 Automatic di�erentiation and dual numbers

Dual numbers are 2-dimensional vectors with the unit vectors 1 and ε denoted by (a, b) or a+bε, with the added
property that the square of the second component is identi�ed with 0. [38, page 41-43]

(66) ε2 = 0

This has applications for di�erentiation, where it can be used to �nd derivatives without di�erentiating. We
de�ne two dual vectors8 u = (u, u′) and v = (v, v′).

u + v = (u, u′) + (v, v′) = (u+ v, u′ + v′)(67)

u− v = (u, u′)− (v, v′) = (u− v, u′ − v′)(68)

uv = (u, u′)(v, v′) = (uv, u′v + uv′)(69)

u

v
=

(u, u′)

(v, v′)
=

(
u

v
,
u′v − uv′

v2

)
(70)

f(u) = f(u, u′) = (f(u), f ′(u)u′)(71)

We note the similarity between the second component and the rules from di�erentiation. While the �rst four
rules are trivial, the last requires an explanation. This is found by the tangent expansion9 of the function:

(72) f(u) = f(u+ u′ε) =

∞∑
i=0

f (n)(u)(u′ε)
n

n!
= f(u) + f ′(u)u′ε

The chain rule is also applicable:

(73) f(g(u)) = f(g((u, u′))) = f((g(u), g′(u)u′)) = (f(g(u)), f ′(g(u))g′(u)u′)

By mapping a variable to x → (x0, 1) and a constant to c → (c, 0), any10 function can be di�erentiated by
applying the chain rule until su�ciently elementary functions can be computed in order.

For a thorough introduction to the automatic di�erentiation, we refer to the paper of the stan math library.
[7] However, this is only useful for understanding the underlying math of TMB, not for using TMB, so it can
safely be ignored.

2.6.2 Laplace method

The second tool is the laplace method, which helps us approximate the marginal distribution and estimate the
mean of the �xed parameters and random e�ects.

The laplace method is based o� the tangent series and a quadratic-exponential integral identity11.

(74)

∫ ∞
−∞

e−a(x+b)2 dθ =

√
π

a

We also assume that f(θ, u) achieves its maximum at û, i.e. ∂uf(θ, û) = 0, and that a = b = ∞ (or that the

function decays su�ciently fast from θ̂). And last, we assume that it achieves it's peak at û, i.e. ∂2
uuf(θ, û) < 0.

8Note that this is unrelated to the concept of dual spaces.
9More commonly known as a taylor series.

10Any, meaning suitably nice.
11More commonly known as the gaussian integral, or the euler�poisson integral
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Figure 5: A normal approximation of a Lognormal(0, 0.12) distribution. The blue dashed area is the log-normal
distribution, and the red plain area is the normal approximation. This was not computed using the method in
this section, but the idea is similar.

The proof then follows.

L(θ) =

∫ b

x=a

L(θ|u) du(75)

=

∫ b

x=a

exp(M(Mexp(L(θ|u)))) du(76)

=

∫ b

x=a

exp(Mf(θ, u)) du(77)

≈
∫ b

x=a

exp(M(f(θ, û) +((((
((((∂uf(θ, û)(u− û) +

1

2
∂2
uuf(θ, û)(u− û)

2
)) du(78)

=

∫ b

x=a

exp(M(f(θ, û) +
1

2
∂2
uuf(θ, û)(u− û)

2
)) du(79)

= exp(Mf(θ, û))

∫ b

x=a

exp(
1

2
M∂2

uuf(θ, û)(u− û)
2
) du(80)

= exp(Mf(θ, û))

∫ b

x=a

exp(−1

2
M |∂2

uuf(θ, û)|(u− û)
2
) du(81)

lim
= exp(Mf(θ, û))

∫ ∞
−∞

exp(−1

2
M |∂2

uuf(θ, û)|(u− û)
2
) du(82)

= exp(Mf(θ, û))

√
π

1
2M |∂2

uuf(θ, û)|
(83)

= exp(Mf(θ, û))

√
2π

M |∂2
uuf(θ, û)|

(84)

= exp(Mf(θ, û))

√
τ

−M∂2
uuf(θ, û)

(85)
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We will use the special case of M = −1, thus f(θ, u) = −log(L(θ, u)) and

(86) −log(L(θ)) ≈ −log(L∗(θ)) = −log(
√
τ) +

1

2
log(∂2

uuf(θ, û)) + f(θ, û)

The multivariate form is slightly di�erent. [23, equation 4] TMB uses this to approximate the posterior distri-
bution.

A related result is the posterior central limit theorem12. We leave out the details and the assumptions, but
state the result, often attributed to Bernstein and Von Mises: [34] [20]

(87) p(u|θ) ≈ N (û,−nI (û))

where I (û) = n∂2
uulog(p(u|θ)) is the observed information13 (i.e. E(I ) = I, where I is called the information)

and n is the number of observations.

2.6.3 Delta method

The third tool is the (generalized) delta method,[8, page 240-243] which helps us estimate the standard deviation
of the �xed parameters and random e�ects.

The regular delta method states that if there exists a sequence of random variables Xn such that

(88)
√
n(Xn − θ)

D→ N (0, σ2)

where
D→ denotes convergence in distribution, then for a di�erentiable function g, then

(89)
√
n(g(Xn)− g(θ))

D→ N (0, g′(θ)
2
σ2)

The method used in TMB is a variant that approximates the distribution using the laplace method.

If the posterior distribution of λ|y is asymptotically normal with mode λ̃, then

E(g(λ)) = g(λ̃) +O(n−1)(90)

Var(g(λ)) = g′(λ̃)Σg′(λ̃)
>

+O(n−2)(91)

where n is the number of observations and Var(λ) ≈ Σ = −∂2
λlog(p(λ = λ̃|y)) is the �inverse of the negative

hessian of the log posterior�. Instead of the posterior, one may substitute this for L(λ|y) × p(λ), as the factor
p(y) is constant (and thus its derivative zero). [19]

The more general form where g(θ, u) also depends on the random e�ects u, TMB uses a more general estimate:

(92) Var(g(θ̂, û)) ≈ g′(θ̂, û)

((
H 0
0 0

)
+ JVar(θ̂)J>

)
g′(θ̂, û)

>

where H = ∂2
uuf(û(θ), θ), the random e�ects part of the hessian of the objective function, and J = Dθ(û(θ), θ),

the jacobian of (u(θ), θ) wrt. θ. [21]

2.6.4 Bugs

TMB does have some quirks and unexpected behaviour. We list some of those here:

� Bad naming: The negative log-distributions are just called distributions. So evaluating MVNORM yields
the negative logarithm of a normal distribution, not the normal distribution.

� Mismatched interfaces: The vectors and matrixes are based o� the Eigen library [13], but the arrays are
custom made for TMB, and have an incomplete interface compared to vectors and matrixes.

� Unused data and parameter values are silently ignored.

These are practically non-issues, which have simple workarounds, but which one should be aware of. TMB is
mature enough to have practical applications, as we demonstrate.

12Referred to as the bayesian central limit theorem or the bernstein�von mises theorem in literature.
13The observed (�sher) information is typically denoted with a chancery/ca(l)ligraphic J , the use of a spencerian/script I here

is just to inconvenience Unicode, which (still) con�ates the two fonts.
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2.7 Attack and defence model

The model we will be using will be a two-stage empirical poisson-log-prior hierarchical distribution. Read that
twice. We will be using di�erent distributions on the priors, but they will look similar.

The hierarchical model is shown below

yij t ∼ Poisson(λij t)(93)

log(λij t) = αit − βit + γxij + µ(94)

� i and j are team indexes.

� t is the round index.

� yij t is the number of goals team i scores against j in round j .

� λij t is the score parameter for the score.

� µ is the log-average number of goals overall.

� γ is the home advantage. µ and γ are also called �xed e�ects.14

� α and β are the attack and defence parameters, respectively. We also refer to these as random e�ects or
latent random variables.15 They attempt to model how each team perform against each other.

Before we describe the priors for the di�erent models, it's important to note the strengths and weaknesses of
this model, so we can set realistic expectations of the model performance.

� The model is simple and intuitive to understand.

� It captures the performance of each team individually for every match.

� There isn't a trend parameter; one might expect a team to improve over a season.

� The average and advantage parameters are shared between all teams over all seasons. One would prerably
wnat to model each team/season with their separate parameters.

Some of these issues may be resolved by modifying the model, but with a limited data set, and no way to
produce more, it's important to keep the model simple to prevent too much over�tting.

Now, for the priors, we make the assumption that these are discretely Var(1) distributed, or continuously VAR
distributed.

2.7.1 Time independent model

The simplest model is letting the team parameters be constant throughout the season. We will not study this
model in detail, but we mention it.

(95)

(
ai
bi

)
= wi

where wi ∼ N(0,Σ).

2.7.2 Discrete models

In the discrete case we can write the general function

(96)

(
ai
bi

)
t

= Φ

(
ai
bi

)
t−1

+ wt

where the absolute value of the eigenvalues of Φ are smaller or equal than 1, and wt ∼WN(0,Σ). In the initial
case (unconditional case), we have

(97)

(
ai
bi

)
0

= w∗0

where w∗0 = N (0,Σ∗), with Σ∗ = vec(I − φ1 ⊗ φ1vec(Σw)) in equation (28).

We consider three cases for conditions of φ:

14The term vary between bayesian/evidential and frequenist statistics.
15See the previous footnote.
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� Φ = 0: The terms in the sequence are independent. This is known as a white noise process, or more
speci�cally a gaussian white noise, as ε are normal distributed. SO this case degenerates to a multivariate
normal distribution.

� Φ = 1: The next term is the previous term plus a random step. This is known as a random walk.

� Unrestricted. This is a general VAR(1) model. We consider it to be stable as long as the eigenvalues of Φ
are strictly smaller than 1.

2.7.3 Continuous models

In the continuous case we can write the general function

(98)

(
ai
bi

)
t

= e−θ∆tΦ

(
ai
bi

)
t−1

+ σw

∫ t

s=0

e−θ(t−s)dWs

where the absolute value of the eigenvalues of θ should be strictly positive in the real part to be stable. In the
initial case (unconditional case), we have

(99)

(
ai
bi

)
0

= σw

∫ 0

s=−∞
e−θ(−s)dWs

where the random integral has the distribution of N (0,Σ∗), with Σ∗ = vec(θ ⊕ θvec(σwσ
>
w )) as in equation (38).

We consider two cases for conditions of θ:

� θ = 0: The next term is the previous term plus a random step of a given length. This is known as a wiener
process, which is a continuous extension of a random walk, so we refer to this as a continuous random
walk.

� Unrestricted. This is a general VAR(1) model. We consider it to be stable as long as the eigenvalues of θ
should be strictly positive in the real part to be stable.

� θ →∞ degenerates to a white noise process as in the discrete case, so we ignore this one.

2.8 Result score

2.8.1 Match

While the model itself describse the distribution of the score of a single team, that alone won't help us decide
the match winner. For each match we sample from two poisson distributions, or from one skellam distribution.

As usual, the winner is the team with the highest score. If the score of each team is drawn from two poisson
distributions, we get yti and ytj . It is then a simple matter of comparing the two, i.e. check which condition
holds in yti R ytj .

The equivalent condition in terms of the skellam distribution, is to de�ne ktij = yti − ytj and check ktij R 0. So
either of these may be used to determine the winner.

Winning a match gives the winning team three points, and the loser none. A tie gives each team one point.
This system is known as three points for a win, and is common in football.

2.8.2 Season

Each team plays against every other team twice, in a double round robin system. If there are n teams, then
each team plays 2(n− 1) matches. The score for each match is added up to a �nal score, from which the overall
seasonal winner is determined.

17



2.9 Likelihood function

After setting up the model, we want to �nd the optimal parameters

L(γ, µ,Σ|Y, λ, α, β) = P (Y, λ, α, β|γ, µ,Σ)(100)

= P (Y |λ, α, β, γ, µ,Σ)P (λ, α, β|Σ)(101)

= P (Y |λ, α, β, γ, µ,Σ)P (α, β|Σ)(102)

=

n∏
i=0

P (yi |λ, α, β, γ, µ,Σ)P (α0, β0,Σ
∗)

m∏
j=1

P (αj , βj |αj−1, βj−1,Σ)(103)

=

n∏
i=0

P (yi |λi , αi , βi , γ, µ,Σ)φΣ∗(α0, β0)

m∏
j=1

φΣ(αj , βj |αj−1, βj−1)(104)

In the independent case the product of the priors reduce to
∏m

j=0 P (αj , βj |Σ).

With the accompanying log-likelihood:

`Poisson(λ, γ, µ,Σ|Y, α, β) = log(P (Y, α, β|λ, γ, µ,Σ))(105)

=

n∑
i=1

log(P (yi |λi , αi , βi , γ, µ,Σ)) +

m∑
j=1

log(φΣ(αj , βj ))(106)

By using TMB to apply the laplace approximation to the log-likelihood of the model, we obtain a function of
(µ, σ, φ,Σ) (or θ in the continuous case), which we can maximize16. By maximization we obtain (µ̂, σ̂, φ̂, Σ̂), the

arguments maximizing the likelihood, and (α̂, β̂), the mode of the posterior, which we use to �nd the expected
value for λi for team i .

2.10 Measuring model quality

2.10.1 Average score parameter

The average of the score parameters for the matches given time-independent parameters is given by

avg(λj ) =
1

n− 1

n∑
i=1,i 6=j

λi(107)

=
1

n− 1

n∑
i=1,i 6=j

exp(log(λi))(108)

=
1

n− 1

n∑
i=1,i 6=j

exp(µ+ xiγ + αi + βi)(109)

=
1

n− 1
exp(µ+ αj )cosh(γ)(

n∑
i=1

exp(βi)− exp(βj ))(110)

with E(avg(λj )) ≈ eµ and Var(avg(λj )) ≈ exp(2 � 0)(Σ11 + Σ22) = trace(Σ). We remark that E(f(X)) 6=
f(E(X)), so this is only an approximation, nor does it account for dependencies.

This value is not very interesting, as it doesn't help us determine the better team; all lamda-values are equal
here. To get comparable lamdas, we instead look at λj |y. They don't have any nice looking expressions, so we
instead use numeric methods to approximate the mean and the variance.

2.10.2 Model selection and �tting

Under�tting means to have a model that isn't su�ciently complex to model the target, i.e. the assumed model
is too simple to accurately describe the target.

Over�tting is the opposite: having a model too complex for the target. This often tends to model the noise
instead of the underlying distribution.

In both cases the �tted models fail to predict new data points. The aim in model selection is to �nd an optimal
model that neither too strict or too �exible.

16Or rather minimize, as TMB works with the negative log-likelihood.
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In �gure 6 we have an example of a target distribution that is modelled by three di�erent polynomials of di�erent
orders.

Figure 6: The orange solid line is the true underlying third order polynomial curve. The shaded orange area
is 1, 2, and 3 standard deviations o� the mean. The orange dots are the observations, or data, on which we
perform polynomial regression. The light blue dotted line is an under�tted model, and is too simple. The blue
dashed third order curve is a good model, and follows a similar trajectory to the true curve. The dark blue
dash-dotted eighth order curve is an over�tted model, as it assumes a too complex model, and is biased towards
obervations rather than the true curve.

Visually, we can see that the dashed blue model is "best". To �nd this mathematically we use information
criterion values, such as AIC.

2.10.3 Akaike information criterion

AIC is a goodness-of-�t value, giving a lower value for better models. [2] A related value, which we call AIC
star, is shown in the below equation:

(111) AIC∗ = log(L̂)− k

For small samples, one may subtract a correction term k(k+1)
n−k−1 to obtain the corrected criterion AICc∗, but as

this is approximately zero for large samples (assuming k is small), we may ignore this.

The theoretical derivation of AIC includes the quantity −2log(L̂), known as the deviance. So the usual de�nition
of AIC is AIC = −2 � AIC∗. Because the right hand side of the expression becomes easier to interpret, and it
doesn't a�ect the ranking of the models, we omit the factor −2.

For the model in �gure 6, we have information criterions for the three �tted models, and for �ve other polynomial
models in �gure 7.

Using the AICc∗, we would correctly select the model with the same order as the target, but the coe�cients
would be di�erent. The AIC would choose a fourth order curve, which is also close to the true order. Simply
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Figure 7: The values for log(L̂) (light green circles), AIC∗ (green triangles) and AICc∗ (dark green diamonds).
They have a peak at 8, 4 and 3, respectively, in [1, 8]. The blue lines correspond to the �tted polynomials in
�gure 6 with the same pattern, indicating their �tness value.

relying on the likelihood would have selected an over�tted model; this is the reason for introducing penalizing
terms.

The usefulness of AIC comes from its simple assumptions. It doesn't assume anything about the model; as long
as we know the likelihood and the number of parameters, we can calculate the criterion value.

2.10.4 Numerical simulation and estimation of parameters

Using the normal posterior distribution for the attack and defence parameters, we can simulate new values by
drawing from the distributions. This can be used to numerically estimate the mean and deviations of the λs,
and the scores.

From repeated sampling of a season's result, we may obtain a distribution for a team's score for the given
attack/defence parameters.

de f s eason_resu l t (A, gamma, mu) :
s c o r e s = np . z e r o s ( shape=teams )

re su l t_po int = {
=1 : 0 ,
0 : 1 ,
1 : 3 ,

}

f o r home , away , hround , around in matches :
hlamda = np . exp (A[ hround , home , 0 ] = A[ around , away , 1 ] + gamma + mu)
alamda = np . exp (A[ around , away , 0 ] = A[ hround , home , 1 ] = gamma + mu)

hscore = np . random . po i s son ( lam=hlamda )
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asco r e = np . random . po i s son ( lam=alamda )

r e s u l t = np . s i gn ( hscore = asco r e )

s c o r e s [ home ] += resu l t_po int [ r e s u l t ]
s c o r e s [ away ] += resu l t_po int [= r e s u l t ]

r e turn s c o r e s

Listing 1: Example code using Python to simulate the result of a season.

2.11 Prediction

2.11.1 Naive prediction

While not unexpected, home teams usually have an advantage in matches, often referred to as the home

advantage. We model this by the γ parameter in our models. Statistically, the home team wins roughly 45 %
of the matches in football. [30] In comparison, the home team won 47 % of matches in Eliteserien 2019. [27],
so without any knowledge about the teams, a good strategy would be to just bet on the home team. This will
be correct almost half the time.

2.11.2 Most likely result outcome

The match result is either a win, tie or a loss.

Using the estimated values λi for each team in a given match, we can calculate the loss probability PL = P (k >
0|λi1, λi2), the tie probability PT = P (k = 0|λi1, λi2), and the win probability PW = P (k < 0|λi1, λi2), using
the skellam distribution. We then select the most likely result as our guess.

This method has a �aw in that PT will always be smaller than either PL or PW , as long as λi1, λi2 ≥ 1 so it
will never guess a tie. The proof is simple: PT (λi1 = 1, λi2 = 1) < 1

3 , and is a maximum. I.e. increasing either
λi1 or λi2 will make this value smaller. So either PL or PW must be greater than 1

3 , and be our guess.

However, around a third of matches result in a tie, [30], but �gure 2 shows the average of λi to be around 1.5,
so unless the model is really accurate and can estimates below 1, this method will be wrong approximately one
third of the time.

2.11.3 Most likely score outcome

The match score is a pair of number, e.g. 1− 4, 2− 2 or 7− 1.

To make tie guesses more likely, we may want to use the mode instead. The mode represents the most likely
score outcome, so instead of looking at what's most likely of a win, tie or loss, we look at each score outcome
individually.

This makes sense because we �t the model to score, not the result of a match. However, it should more heavily
favour ties, even when winning results combined would be more likely.

2.11.4 Weighted outcome

Another method that tries to correct the win bias, is to apply weights to the win, tie and loss probabilities. We
then select the result with the highest weighted probability.

(nW pW , nT pT , nLpL)(112)

nW + nT + nL = 1(113)

(nW , nT , nL) ≥ 0(114)

3 Data analysis

3.1 Eliteserien 2019

The resulting scores from 2019 are taken from [27]. The scores are displayed in table 1.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 Bodø/Glimt 1-2 2-2 3-0 4-0 0-0 3-2 3-0 5-1 2-0 1-1 3-3 2-0 4-0 2-1 4-0

2 Brann 1-1 0-0 2-1 1-0 0-0 0-0 1-0 0-1 0-1 2-1 2-1 1-1 2-3 1-5 1-1
3 Haugesund 1-1 1-1 0-0 0-2 0-0 1-2 4-1 0-1 2-1 1-1 3-0 2-2 5-1 1-0 1-4
4 Kristiansund 1-2 1-0 2-2 5-2 4-0 3-2 1-1 0-0 2-2 4-0 0-1 1-2 1-0 4-2 2-0
5 Lillestrøm 0-0 1-3 1-0 1-1 3-2 0-2 0-3 2-1 1-1 0-0 1-3 2-1 4-0 0-2 0-0
6 Mjøndalen 4-5 2-1 1-4 1-1 2-2 1-3 2-0 3-1 1-2 0-0 1-0 1-1 1-1 1-1 1-0
7 Molde 4-2 1-1 3-1 2-0 2-1 1-0 2-2 2-0 3-0 2-1 3-0 4-0 3-0 5-1 4-1
8 Odd 3-1 3-2 3-1 2-0 2-1 3-2 2-2 1-0 1-1 3-0 2-1 2-1 2-1 1-0 1-1

9 Ranheim TF 1-1 0-3 0-2 1-2 2-1 1-1 2-3 4-1 2-3 0-2 0-2 1-0 1-2 5-2 1-5
10 Rosenborg 3-2 0-0 0-2 1-0 3-1 3-2 3-1 1-1 3-2 1-0 3-2 0-0 5-2 5-1 3-0

11 Sarpsborg 08 1-1 1-1 1-1 0-1 1-0 1-1 1-1 2-0 1-3 1-1 0-0 2-2 3-2 2-2 1-0
12 Stabæk 2-0 0-1 1-1 2-0 1-1 4-2 1-2 0-0 0-0 3-1 3-3 2-1 0-1 0-0 1-1

13 Strømsgodset 1-3 6-0 3-2 2-3 1-1 2-3 0-4 2-3 1-0 3-3 2-1 0-2 3-1 0-0 3-2
14 Tromsø 1-2 1-2 2-2 5-0 1-1 2-2 2-1 1-2 4-2 1-0 2-0 1-1 0-1 0-2 0-0
15 Viking 3-4 2-1 0-0 2-0 3-0 4-1 0-2 2-0 2-2 2-2 2-1 3-0 4-0 2-1 1-1

16 Vålerenga 6-0 1-0 1-2 1-1 0-3 2-0 2-4 1-0 1-1 1-1 1-1 0-2 2-0 4-1 0-4
Table 1: The result from 2019. The left number represents the home team score (row), the right number
represents the away team score (column). The numbers in the column header correspond to the teams with the
same number in the row header.

3.1.1 Data quirks

After using the data, a minor inconsistency was found: Rounds are not in order, so the number of games each
team have played up until a match may di�er. This is due to scheduling issues, so "round 2" may be moved to
after "round 12", but round numbering is not renamed to account for this.17

4 Results

We �rst look at the estimated results for the rankings. These are summary statistics of the predictions of each
match, which we will go through next.

4.1 Ranking

The estimated ranks are shown below. The �rst table is the time-independent model, shown in �gure 8. The
next three are the discrete models, shown in �gure 9, �gure 10 and �gure 11. The last two are the continuous
models, shown in �gure 12 and �gure 13.

We note that most estimated medians are drawn to around 45 points, away from the extremes.

4.1.1 Discrete models

4.1.2 Continuous models

4.1.3 Comparison of models

In table 2 we see the estimated parameter values for each model. In table 3 we have the AIC values for each
model. By this measure, we see that the discrete random walk model to be the better one.

4.1.4 Ranking

Using the discrete random walk model, we can obtain the expected �nal standings, as shown in table 4. Only
the top three teams were correctly predicted, however, most other scores weren't statistically di�erent. With
three teams with 40 points and four teams with 30 points, discrepencies ought to be expected.

4.2 Predicting the past

There are two ways to estimate results. One way is to use data from the entire season, and "predict the past".
Or we can use all matches up to a certain date and predict the following match(es), and "predict the future".
We �rst present the past predictions.

17I attribute this to my lack of football expertise, as this may be common knowledge among football fanatics.
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Figure 8: Box plot of the estimated points from 100K simulated seasons. The orange line is the median, and
the blue cross is the actual points the team got in the season.

For these predictions we have used the continuous VAR model, for no particular reason; the discrete random
walk model might have been a better choice.

For the most likely result rule, we can see the predicted result of each match in table 5. The table is very
information dense, so we have the confusion matrixes below.

We see the confusion matrixes of the past predictions below in table 6, table 7 and table 8. For the weighted
rule, we found the weights (0.5, 0.3, 0.2), so this weighs loss probabilites more.

The weighted score outperformed the two other rules, but the weights are likely to be biased, and may not
apply to other datasets.

4.3 Predicting the future

The future predictions involved �tting the model to all matches before a certain date, and make a prediction
for the next match using the �tted model. So the model parameters change for each prediction.

As with the past predidction, we have the predicted result of each match in table 9 using the most likely result
rule. Most of this table is uninteresting, but we note the �rst two matches between Odd-Brann and Vålerenga-
Mjøndalen. Because we have no prior knowledge of their performance, we are unable to make predictions for
these matches, so we only predict 238 matches.

While we are mostly interested in the proportion of correct guesses at the end of the season, it's also interesting
to see how this evolves during the season, as shown in �gure 14. It's relatively stable, but weaker than the past
prediction methods.

We see the confusion matrixes of the future predictions below in table 10, table 11 and table 12. We use the
same weights for the weighted rule as we did for past predictions, i.e. (0.5, 0.3, 0.2); this introduces some bias.
This can be remedied by updating these weights for each round as well.

We note that all the results of the future predictions are worse than the result of past predictions. This is
expected, as we have less data to rely on.
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Figure 9: Box plot of the estimated points from 100K simulated seasons. The orange line is the median, and
the blue cross is the actual points the team got in the season. Apparently this model were ill-de�ned, as the
deviation was unde�ned.

5 Discussion & conclusion

We have seen that football matches are hard to predict, but that TMB is a useful tool in determining this.
TMB made it easy to create and �t multiple models, without prior knowledge of dual numbers or laplace
approximation, but simply through the likelihood function.

While the time series model had some issues, and most not better than a time independent model (as shown in
table 3), they were interesting to study and model.

5.1 Further work

This paper has mostly been exploratory, and points to several directions that can be explored. We go through
a few paths one may use for continued study.

We can change the values we �t the model to. A drawback of the points system in football is that wins are given
extra weight with three points. So a single goal may add two points. When �tting, we tuned our parameters to
the goal counts, not the result (win, tie, loss). One could instead use the result for �tting.

The model can be extended to include multiple seasons. This may improve the prediction precision, and get
more accurate parameter estimates. Though, this may be di�cult as some teams are removed and new ones
added every season.

While predicting match and standing results is interesting, there are other results which would be interesting to
predict, such the odds. These are usually also available from betting sites, and could be interesting to compare.

On the other end, it may be "obvious" to include more data to �t the model, such as player age, or match
length, travel distance between matches, they may also be be redundant, and lead to over�tting.

Variables such as seasonal change were unaccounted for; while this falls under the same category as being prone
to over�tting, it's possible for a team to progressively become better or worse during a season.
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Figure 10: Box plot of the estimated points from 100K simulated seasons. The orange line is the median, and
the blue cross is the actual points the team got in the season.

During the idea stage of the paper, the idea of intransitive ordering between teams came up. This would have
been interesting to study further.

6 Appendix

6.1 Kronecker product and sum

The kronecker product and sum are useful for solving matrix equations. The product has a simple de�nition,
but the sum is more complicated, and is related to the product by the matrix exponential.

(115) A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB



(116)

(
a b
c d

)
⊗
(
e f
g h

)
=

a
(
e f
g h

)
b

(
e f
g h

)
c

(
e f
g h

)
d

(
e f
g h

)
 =


ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh
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Figure 11: Box plot of the estimated points from 100K simulated seasons. The orange line is the median, and
the blue cross is the actual points the team got in the season.

Before we de�ne the sum, we will give two more examples to show that kronecker product is not commutative:

(
a b
c d

)
⊗ I =


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

(117)

I ⊗
(
e f
g h

)
=


e f 0 0
g h 0 0
0 0 e f
0 0 g h

(118)

While the left hand sides are di�erent in the two equations, the structure of the resulting matrix is clearly
di�erent.

The kronecker sum is de�ned as A⊕B = A⊗ I + I ⊗B.

(119)

(
a b
c d

)
⊕
(
e f
g h

)
=


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

+


e f 0 0
g h 0 0
0 0 e f
0 0 g h

 =


a+ e f b 0
g a+ h 0 b
c 0 d+ e f
0 c g d+ h


This is notably not commutative either, which is unexpected for something called a sum.

The relation to the matrix exponential is given by exp(A)⊗ exp(B) = exp(A⊕B).
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Figure 12: Box plot of the estimated points from 100K simulated seasons. The orange line is the median, and
the blue cross is the actual points the team got in the season.

6.2 Solving the continuous VAR(1) di�erential

d(xte
θt) = θxte

θtdt+ eθtdxt(120)

= θxte
θtdt+ eθt(θ(µ− xt)dt+ σdWt)(121)

=��
��θxte
θtdt+ θµeθtdt−���

�
θxte

θtdt+ σeθtdWt(122)

= θµeθtdt+ σeθtdWt(123) ∫ t

s=0

d(xse
θs) =

∫ t

s=0

(θµeθsds+ σeθsdWs)(124)

=

∫ t

s=0

θµeθsds+

∫ t

s=0

σeθsdWs(125)

= µ

∫ t

s=0

d(eθs) + σ

∫ t

s=0

eθsdWs(126)

[xse
θs]

t

s=0 = µ[eθs]
t

s=0 + σ

∫ t

s=0

eθsdWs(127)

xte
θt − x0 = µ(eθt − 1) + σ

∫ t

s=0

eθsdWs(128)

xte
θt = x0 + µ(eθt − 1) + σ

∫ t

s=0

eθsdWs(129)

xt = x0e
−θt + µ(1− e−θt) + σ

∫ t

s=0

e−θ(t−s)dWs(130)

6.3 TMB work�ow

# Data va lues
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Figure 13: Box plot of the estimated points from 100K simulated seasons. The orange line is the median, and
the blue cross is the actual points the team got in the season.

data <= l i s t ( . . . )

# Random & f i x ed e f f e c t s
parameters <= l i s t ( . . . )

# Object ive func t i on
MODEL = "discrete_rw"

# Compile and l i n k the template
. <= TMB: : compi le ( paste0 ("models=tmb/" , MODEL, " . cpp ") )
dyn . load (TMB: : dyn l ib ( paste0 ("models=tmb/" , MODEL) ) )

# Make Automatic D i f f e r e n t i a t i o n Function
obj <= TMB: :MakeADFun( data , parameters , random=c ("A") , DLL=MODEL, s i l e n t=TRUE)

# NonLinear MINimization sub j e c t to Box c on s t r a i n t s
system . time ( opt <= nlminb ( obj$par , obj$fn , ob j$gr ) )

# Result summary
repor t <= TMB: : sdrepor t ( obj )

Listing 2: Excerpt of a TMB program. The ellipsis would be replaced with the model values and parameters.
A complete example may be found in the TMB paper , its documentation . For the program used in this thesis,
we refer to its github repository, .
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T
.I
.

Model Parameter Estimate Standard error

Noise
µ 3.349e− 01 5.138e− 02
γ 1.926e− 01 3.852e− 02

Σw

(
3.759e− 02 1.313e− 02
1.313e− 02 5.694e− 03

) (
2.067e− 02 1.138e− 02
1.138e− 02 1.031e− 02

)

D
is
cr
et
e

Model Parameter Estimate Standard error

White noise

µ 3.181e− 01 5.348e− 02
γ 1.927e− 01 3.863e− 02
φ 0 0

Σw

(
2.083e− 02 1.709e− 03
1.709e− 03 2.988e− 02

) (
NaN 2.446e− 02

2.446e− 02 NaN

)

Vector autoregressive

µ 3.285e− 01 5.393e− 02
γ 1.925e− 01 3.857e− 02

φ

(
1.025e+ 00 5.838e− 02
−1.401e− 01 8.442e− 01

) (
1.058e− 01 9.009e− 02
2.460e− 01 2.085e− 01

)
Σw

(
1.274e− 03 −4.291e− 04
−4.291e− 04 1.445e− 04

) (
2.802e− 03 8.156e− 04
8.156e− 04 5.687e− 04

)

Random walk

µ 3.181e− 01 5.319e− 02
γ 1.927e− 01 3.863e− 02
φ 1 0

Σw

(
3.484e− 03 8.236e− 04
8.236e− 04 1.947e− 04

) (
1.780e− 03 4.143e− 04
4.143e− 04 9.643e− 05

)

C
o
n
ti
n
u
ou
s

Model Parameter Estimate Standard error

Vector autoregressive

µ 3.181e− 01 5.348e− 02
γ 1.927e− 01 3.863e− 02

θ

(
2.302e− 06 −9.381e− 06
−9.381e− 06 3.975e− 05

) (
1.043e− 03 4.286e− 03
4.286e− 03 1.815e− 02

)
D

(
5.889e− 10 1.274e− 10
1.274e− 10 3.029e− 11

) (
2.380e− 07 5.144e− 08
5.144e− 08 1.234e− 08

)

Random walk

µ 3.215e− 01 5.134e− 02
γ 1.923e− 01 3.863e− 02
θ 0 0

Σw

(
4.459e− 04 1.081e− 04
1.081e− 04 2.620e− 05

) (
2.289e− 04 5.465e− 05
5.465e− 05 1.230e− 05

)
Table 2: T.I. is the time independent model. These are the estimated parameters for each model. We have
omitted the hundreds of values of α and β, but they were of similar order of magnitude as µ and γ. While µ
and γ are signi�cantly di�erent from 0, the same cannot be said for the parameters of the time series.

T
.I
. Model AIC

Noise 1462.915

D
is
cr
et
e Model AIC

White noise 1476.872
Vector autoregressive 1469.526

Random walk 1461.973

C
o
n
t.

Model AIC
Vector autoregressive 1467.973

Random walk 1462.855
Table 3: T.I. is the time independent model. Cont. are the continuous models. The best model, according to
the calculated values of AIC, is discrete random walk model.
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Rank 2019 result TMB RW prediction
1 Molde (68) Molde (54.707) v
2 Bodø/Glimt (54) Bodø/Glimt (49.680) v
3 Rosenborg (52) Rosenborg (48.989) v
4 Odd (52) Viking (47.537) x
5 Viking (47) Stabæk (42.080) x
6 Kristiansund (41) Haugesund (41.905) x
7 Haugesund (40) Odd (41.779) x
8 Stabæk (40) Kristiansund (40.890) x
9 Brann (40) Strømsgodset (39.674) x
10 Vålerenga (34) Tromsø (38.654) x
11 Strømsgodset (32) Mjøndalen (37.138) x
12 Sarpsborg 08 (30) Vålerenga (37.105) x
13 Mjøndalen (30) Ranheim TF (36.674) x
14 Lillestrøm (30) Sarpsborg 08 (35.836) x
15 Tromsø (30) Lillestrøm (35.748) x
16 Ranheim TF (27) Brann (35.538) x

Table 4: Because most teams almost got the same number of points, they wouldn't be statistically di�erent.
There are also special rules for deciding the ranking of tied point scores, but we ignore this as we use real-valued
points, truncated to three decimals.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 Bodø/Glimt H x H x H v H v H x H v H v H v H v H x H x H v H v H v H v

2 Brann A x H x H v H v H x A x H v H x H x H v H v H x H x A v H x
3 Haugesund H x H x H x H x H x H x H v H x H v H x H v H x H v H v H x
4 Kristiansund H x H v H x H v H v A x H x H x H x H v H x H x H v H v H v
5 Lillestrøm A x H x H v H x H v A v H x H v H x H x H x H v H v A v H x
6 Mjøndalen H x H v H x H x H x A v H v H v A v H x H v H x H x H x H v
7 Molde H v H x H v H v H v H v H x H v H v H v H v H v H v H v H v
8 Odd H v H v H v H v H v H v A x H v H x H v H v H v H v H v H x

9 Ranheim TF A x H x H x H x H v H x A v H v A v H x H x H v H x H v H x
10 Rosenborg H v H x H x H v H v H v H v H x H v H v H v H x H v H v H v

11 Sarpsborg 08 A x H x H x H x H v H x A x H v H x A x H x H x H v A x H v
12 Stabæk H v H x H x H v H x H v A v H x H x H v H x H v H x H x H x

13 Strømsgodset A v H v H v H x H x H x A v H x H v H x H v H x H v H x H v
14 Tromsø A v H x H x H v H x H x A x H x H v H v H v H x H x H x H x
15 Viking H x H v H x H v H v H v H x H v H x H x H v H v H v H v H x

16 Vålerenga A x H v H x H x H x H v A v H v H x A x H x H x H v H v A v
Table 5: The predicted result given by the most likely result rule. Correct prediction are marked with a green
cell (same shade as the top-right corner) on the web or with a v in the printed version. Incorrect predictions
are orange or marked with an x.

Predicted
Away Tie Home

A
ct
u
a
l Away 13 0 41

Tie 10 0 63
Home 3 0 110

Table 6: The confusion matrix using the entire dataset to to model and predict the matches using the most
likely result rule. (e.g. win or lose.) The diagonal are the correct guesses; around 51 % were correct.

Predicted
Away Tie Home

A
ct
u
a
l Away 1 46 7

Tie 1 49 23
Home 0 50 63

Table 7: The confusion matrix using the entire dataset to to model and predict the matches using the most
likely score rule. (e.g. 1-1 or 3-2.) The diagonal are the correct guesses; around 47 % were correct.
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Predicted
Away Tie Home

A
ct
u
a
l Away 30 0 24

Tie 24 0 49
Home 17 0 96

Table 8: The confusion matrix using the entire dataset to to model and predict the matches using a weighted

result rule. The diagonal are the correct guesses; 52 % of the total were correct.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 Bodø/Glimt H x H x H v H v H x H v H v H v H v H x H x H v H v H v H v

2 Brann H x H x H v H v H x A x H v H x H x H v H v H x H x A v H x
3 Haugesund H x H x H x H x H x H x H v H x A x H x H v H x H v H v H x
4 Kristiansund H x H v H x A x H v H v H x H x H x H v H x H x H v H v H v
5 Lillestrøm A x H x H v H x H v H x H x H v H x H x H x H v H v H x H x
6 Mjøndalen H x H v H x H x H x A v H v H v A v H x H v H x H x H x H v
7 Molde H v H x H v H v H v H v H x H v H v H v H v H v H v H v H v
8 Odd H v NA H v H v H v H v H x H v H x H v H v H v H v H v H x

9 Ranheim TF A x H x H x H x H v H x H x A x H x H x H x H v H x H v H x
10 Rosenborg H v H x H x H v H v H v H v H x H v H v H v H x H v H v H v

11 Sarpsborg 08 H x H x H x H x H v H x H x H v H x H x H x H x H v H x H v
12 Stabæk H v H x H x H v H x H v A v H x H x H v H x H v H x A x H x

13 Strømsgodset H x H v H v H x H x H x H x A v H v H x H v H x H v H x H v
14 Tromsø H x H x H x A x H x H x H v H x H v H v H v H x H x H x H x
15 Viking H x H v H x H v H v H v H x H v H x H x H v H v H v H v H x

16 Vålerenga H v H v H x H x H x NA A v H v H x H x H x H x H v H v H x
Table 9: The predicted result given by the most likely result rule. Correct prediction are marked with a green
cell (same shade as the top-right corner) on the web or with a v in the printed version. Incorrect predictions
are orange or marked with an x.
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Figure 14: Precision over time. The normality assumption is violated near the �rst day, as the interval extends
beyond 1, and p must be contained in [0, 1]. The con�dence interval shrinks with more observations (matches).
The intervals are four standard errors long.
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Predicted
Away Tie Home

A
ct
u
a
l Away 6 0 48

Tie 4 0 69
Home 4 0 107

Table 10: The confusion matrix using the entire dataset to to model and predict the matches using the most
likely result rule. (e.g. win or lose.) The diagonal are the correct guesses; around 47 % were correct.

Predicted
Away Tie Home

A
ct
u
a
l Away 0 41 13

Tie 0 48 25
Home 0 68 43

Table 11: The confusion matrix using the entire dataset to to model and predict the matches using the most
likely score rule. (e.g. 1-1 or 3-2.) The diagonal are the correct guesses; around 38 % were correct.

Predicted
Away Tie Home

A
ct
u
a
l Away 9 0 45

Tie 15 0 58
Home 16 0 95

Table 12: The confusion matrix using the entire dataset to to model and predict the matches using a weighted
result rule. The diagonal are the correct guesses; 43 % of the total were correct.
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