
0 2 4 6 8 10

−25

−20

−15

−10

−5

0

5

10

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Oscar Christian Ameln

Deep Learning Algorithms for Solving
PDEs

Presentation and Implementation of Deep Learning
Algorithms for Solving Semi-Linear Parabolic PDEs
with an Extension to the Fractional Laplace
Operator

Master’s thesis in Applied Physics and Mathematics

Supervisor: Espen Robstad Jakobsen

July 2020

Oscar Christian Ameln

Deep Learning Algorithms for Solving
PDEs

Presentation and Implementation of Deep Learning
Algorithms for Solving Semi-Linear Parabolic PDEs
with an Extension to the Fractional Laplace Operator

Master’s thesis in Applied Physics and Mathematics
Supervisor: Espen Robstad Jakobsen
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Summary

In June 2017 Weinan E, Jiequn Han and Arnulf Jentzen present a pioneering algo-
rithm, Deep Backward Stochastic Differential Equation (Deep BSDE), to solve partial
differential equations (PDEs) using deep learning. In February 2019 Côme Huré, Huyên
Pham and Xavier Warin introduce a modification of Deep BSDE, Deep Backward Dy-
namic Programming (DBDP). Furthermore, DBDP has two different variants. The goal of
the algorithms is to avoid the curse of dimensionality. This is done by reformulating the
PDEs to learning problems.

A thorough description is given of the theoretical foundation behind the algorithms.
We need stochastic calculus to understand how the PDE is reformulated to a pair of
stochastic differential equations. Neural networks act as approximators for unknowns in
the stochastic differential equations.

The source code for DBDP is not publicly available. Hence, the two variants of DBDP
are implemented in Python using the TensorFlow 2.0 framework. Deep BSDE and DBDP
are tested on a wide range of problems within different fields of science. The numerical
results verify that both Deep BSDE and the two variants of DBDP successfully solves 100-
dimensional semi-linear parabolic PDEs in most cases. Both variants of DBDP converges
to the wrong value for only one of the test examples. Although the relative approximation
error is somewhat high, of the order 1%, for most of the cases, being able to solve such
high dimensional PDEs is in practice not possible for traditional methods.

At last, an algorithm which solves fractional Laplace equations is developed. The al-
gorithm is inspired by the deep learning algorithms for solving PDEs, in particular DBDP.
The algorithm is implemented in TensorFlow 2.0. Some numerical results are provided
and shows that the algorithm suffer from instability, but still produces meaningful results
for some cases in one dimension.

i

ii

Sammendrag

I juni 2017 presenterer Weinan E, Jiequn Han og Arnulf Jentzen en banebrytende algo-
ritme, Deep Backward Stochastic Differential Equation (Deep BSDE), for å løse partielle
differensiallikninger (PDEer) ved bruk av dyp læring. I februar 2019 introduserer Côme
Huré, Huyên Pham og Xavier Warin en modifikasjon av Deep BSDE, Deep Backward
Dynamic Programming (DBDP). DBDP kommer i to varianter. Målet til algoritmene er å
unngå dimensjonenes forbannelse. Dette gjøres ved å reformulere PDEene til læringsprob-
lemer.

En grundig beskrivelse av det teoretiske fundamentet bak algoritmene er gitt. Vi
trenger innsikt i stokastisk analyse for å forstå hvordan PDEer reformuleres til et par
stokastiske differensiallikninger. Nevrale nettverk introduseres slik at de kan brukes til
å tilnærme ukjente i de stokastiske differensiallikningene.

Kildekoden til DBDP er ikke offentliggjort. Derfor har de to variantene av DBDP
blitt implementert i Python ved bruk av TensorFlow 2.0-rammeverket. Deep BSDE og
DBDP er testet på et utvalg av problemer innen forskjellige vitenskapsgrener. Numeriske
resultater viser at både Deep BSDE og de to variantene av DBDP løser 100-dimensjonale
semilineære parabolske PDEer i de fleste tilfeller. Begge variantene av DBDP konvergerer
til en feil verdi for kun ett av testeksemplene. Selv om den relative approksimasjonsfeilen
er noe høy, av orden 1%, i de fleste tilfeller, vil slike høydimensjonale likninger ikke være
mulig å løse ved tradisjonelle metoder.

Til slutt utledes en algoritme som kan løse likninger som inneholder den fraksjonelle
Laplace-operatoren. Algoritmen er inspirert av de dype læringsalgoritmene for å løse
PDEer, i særdeleshet DBDP. Algoritmen er implementert i Python ved bruk av TensorFlow
2.0-rammeverket. Noen numeriske resultater er presentert og viser at algoritmen lider
av ustabilitet, men at den likevel klarer å produsere meningsfulle resultater i noen en-
dimensjonale tilfeller.

i

ii

Preface

This thesis concludes the degree of Master of Science (M.Sc.) in Applied Physics and
Mathematics with specialization in Industrial Mathematics. The degree is accomplished
at the Department of Mathematical Sciences (IMF) at the Norwegian University of Sci-
ence and Technology (NTNU) in Trondheim. The work was carried out in the spring of
2020 under the supervision of Professor Espen Robstad Jakobsen at the Department of
Mathematical Sciences.

I would like to thank him for his commitment, our weekly discussions and for sup-
porting me way more than I would expect. Further I am grateful that he introduced me to
a new field of mathematics which I find really interesting, but also quite challenging. A
huge thanks to Bergitte Viste for pulling me across the finish line.

Oscar Christian Ameln
NTNU, Trondheim

July 20, 2020

iii

iv

Table of Contents

Summary i

Sammendrag i

Preface iii

Table of Contents vi

List of Tables vii

List of Figures ix

List of Algorithms xi

1 Introduction 1
1.1 Problem and Motivation . 1
1.2 Outline . 2

2 Stochastic Calculus 3
2.1 Probability Theory and Itô Calculus for Brownian Motions 3

2.1.1 Probability Theory . 3
2.1.2 Itô Calculus for Brownian Motions 5

2.2 Lévy Processes . 11
2.2.1 Introduction and Definition . 11
2.2.2 Finite Activity Lévy Processes 12
2.2.3 Infinite Activity Lévy Processes 15
2.2.4 Generating Lévy Processes . 19

3 Neural Networks 25
3.1 Learning Theoretical Framework . 25
3.2 Feedforward Neural Networks . 26
3.3 Activation Functions . 27
3.4 Optimization . 29
3.5 Universal Approximation . 31

v

4 Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs 35
4.1 Presentation of Algorithms . 35

4.1.1 Deep BSDE . 35
4.1.2 Deep Backward Dynamic Programming 37

4.2 Numerical Results . 38
4.2.1 Test Cases . 38
4.2.2 Discussion . 50

5 A Deep Learning Algorithm for Solving Fractional Laplace Equations 51
5.1 Presentation of Algorithm . 51
5.2 Numerical Results . 55

5.2.1 Test Case: An Equation with Sinusoidal Solution 55
5.2.2 Discussion . 59

6 Concluding Remarks 61

Bibliography 63

vi

List of Tables

3.1 Activation functions and their derivative. 27

4.1 Hamilton-Jacobi-Bellman linear quadratic controller. 39
4.2 Allen-Cahn. 41
4.3 Black-Scholes equation with default risk. 43
4.4 Black-Scholes eqution with different interest rates. 45
4.5 PDE with quadratically growing derivative. 47
4.6 Time-dependent reaction-diffusion-type PDE. 49

5.1 Numerical results for fractional Laplace algorithm with α = 0.7. 56
5.2 Numerical results for fractional Laplace algorithm with α = 1.3. 57
5.3 Numerical results for fractional Laplace algorithm with α = 1.8. 58

vii

viii

List of Figures

2.1 Brownian motions with drift and volatility parameters. 6
2.2 Poisson processes. 12
2.3 Compound Poisson processes. 13
2.4 Comparison of uncompensated and compensated processes. 14
2.5 Lévy process with and without Brownian motion component. 17
2.6 Histogram of α-stable process at t = 1 with α = 0.5. 23
2.7 Histogram of α-stable process at t = 1 with α = 1.5. 23

3.1 Fully connected feed forward neural network. 27
3.2 Activation functions and their derivative. 28
3.3 Neural network approximation of sin using sigmoid. 32
3.4 Neural network approximation of sin using ReLU. 33

4.1 Hamilton-Jacobi-Bellman linear quadratic controller. 39
4.2 Allen-Cahn. 41
4.3 Black-Scholes equation with default risk. 43
4.4 Black-Scholes equation with different interest rates. 45
4.5 PDE with quadratically growing derivative. 47
4.6 Time-dependent reaction-diffusion-type PDE. 49

5.1 Validation loss for training of fractional Laplace algorithm with α = 0.7. . 56
5.2 Validation loss for training of fractional Laplace algorithm with α = 1.3. . 57
5.3 Validation loss for training of fractional Laplace algorithm with α = 1.8. . 58

ix

x

List of Algorithms

2.1 Sampling a compound Poisson processes. 19

4.1 Deep Backward Stochastic Differential Equation (Deep BSDE). 36
4.2 Deep Backward Dynamic Programming 1 (DBDP1) 37

5.1 Solving fractional Laplace equations. 54

xi

xii

Chapter 1

Introduction

Partial differential equations (PDEs) are used to model a wide range of phenomena within
all fields of science. However, only a few PDEs have a closed form solutions. Hence, a
numerical approximation must be done in most cases. The time complexity of traditional
methods, e.g. the finite element method and the finite difference method, scale exponen-
tially. In practice, such methods are not able to solve high dimensional PDEs. These
methods are said to suffer from the curse of dimensionality. The goal of the methods pre-
sented in this thesis is to avoid the curse of dimensionality by reformulating the PDEs to
learning problems.

1.1 Problem and Motivation
In recent years, pioneering research have been carried out, reformulating the PDE to a pair
of stochastic differential equations (SDE). One of the SDEs have an initial condition, a
so-called forward stochastic differential equation . The other SDE depends on the solu-
tion of the first SDE and are equipped with a terminal condition. This SDE is a backward
stochastic differential equation (BSDE). The solution of the BSDE at the initial time eval-
uated at the initial condition of the forward SDE, is the solution of the PDE at that point.
However, one problem remains. Some of the components of the BSDE is still unknown.
The unknown components are approximated by neural networks. This reformulation and
neural network parametrization turns the PDE to a learning problem, avoiding the curse of
dimensionality. The focus in this thesis will mainly be on the algorithms presented in Han
et al. (2017) and Huré et al. (2019).

The former article considers a semi-linear parabolic PDE reformulated to a decoupled
pair of SDEs. The SDEs are approximated numerically by Euler-Maruyama schemes and
the unknown gradient of the solution is approximated by a neural network. The problem
now resemble a deep reinforcement learning problem, where the gradient acts like a policy
function. The full set of neural networks are optimized simultaneously , or trained in the
machine learning jargon, by a stochastic gradient descent-like method. The algorithm is
called the Deep BSDE.

The latter article presents two variants of the first algorithm. Both variants reformu-

1

Chapter 1. Introduction

late a semi-linear parabolic PDE to a decoupled pair of SDEs and use Euler-Maruyama
schemes to approximate the SDEs. The first variant approximates the gradient of the so-
lution, as well as the solution itself as a neural network. The second variant approximates
only the solution as a neural network, and applies numerical- or automatic differentia-
tion to compute the gradient. Contrary to the Deep BSDE algorithm, which trains all the
neural networks simultaneously, these variants employ an iterative procedure. They iter-
ate through the time steps, backwards in time, and for each time step the neural network
parametrization(s) at the current time step are trained.

1.2 Outline
Necessary theory to understand the PDE solving algorithms is presented in chapter 2 and
chapter 3. Chapter 2 presents stochastic calculus which is key to understand the reformu-
lation from the PDE to the forward and backward stochastic differential equation. Chapter
3 presents the role of neural networks in learning theory. Chapter 4 introduces the PDE
solving algorithms and presents some numerical results. Chapter 5 presents an extension
to equations involving the fractional Laplace operator. The thesis is wrapped up in chapter
6 by some concluding remarks.

2

Chapter 2

Stochastic Calculus

The concepts behind the deep learning based algorithms for solving PDEs/PIDEs are based
on some fundamental theory, such as basic stochastic calculus, to be covered in this chap-
ter. Stochastic calculus is an important part of the deep learning based algorithms as it
is used to turn the deterministic differential equation to a pair of stochastic differential
equations.

In the first section, some formal probability theoretical concepts and Itô calculus for
Brownian motions are introduced. The theory are mostly based on Øksendal (2013). The
second section covers a larger class of stochastic processes, Lévy processes, and follows
Cont and Tankov (2004) closely.

2.1 Probability Theory and Itô Calculus for Brownian Mo-
tions

The formal probability theoretical consepts are introduced such that the preceding con-
cepts can be rigorously presented. We introduce the Itô calculus for stochastic processes
driven by Brownian motions and Itô’s lemma. As well, the connections between semi-
linear parabolic PDEs and forward backward stochastic differential equations are looked
into.

2.1.1 Probability Theory
The rigorous probability theory poses a theoretical basis for some concepts within stochas-
tic calculus. The relevant probability theoretical concepts now follows.

σ-Algebra

Given a set Ω, then a σ-algebra, F , on Ω is a family of subsets of Ω with the following
properties

• ∅ ∈ F

3

Chapter 2. Stochastic Calculus

• F ∈ F =⇒ Ω \ F = FC ∈ F

• A1, A2, · · · ∈ F =⇒ A = ∪∞i=1Ai ∈ F

The pair (Ω,F) is called a measurable space. An important example is the Borel σ-algebra
which is the smallest σ-algebra containing all open sets.

Probability Space

A probability measure P : F → [0, 1] on a measurably space satisfy:

• P (∅) = 0

• P (Ω) = 1

• P (∪∞i=1Ai) =
∑∞
i=1 P (Ai)

for A1, A2, · · · ∈ F disjoint. The triplet (Ω,F , P) is called a probability space.

Measurable Function

Given a probability space (Ω,F , P), a function Y : Ω→ Rn is called measurable if

Y −1(U) := {ω ∈ Ω : Y (ω) ∈ U} ∈ F

for all open sets U ∈ Rn.

Filtration

We consider the measurable space (Ω,F). A filtration on (Ω,F) is a family {Mt}t≥0 of
σ-algebrasM⊂ F such that

0 ≤ s < t =⇒ Ms ⊂Mt.

Martingale

A stochastic process {Xt}t≥0 is called a martingale with respect to a filtration {M}t≥0 if

• Xt isMt-measurable for all t

• E[|Xt|] <∞ for all t

• E[Xs|Mt] = Xt for all s ≥ t

Adapted Process

Let {Nt}t≥0 be an increasing family of σ-algebras of subsets of Ω. A process g(t, ω) :
[0,∞)× Ω→ R is called Nt-adapted if for each t ≥ 0 the function

ω 7→ g(t, ω)

is Nt-measurable.

4

2.1 Probability Theory and Itô Calculus for Brownian Motions

Lp-norm

Let X : Ω → Rd be a random variable and p ∈ [1,∞) be a constant. Then the Lp-norm
of X is

||X||p = ||X||Lp =
(∫

Ω

|X(ω)|pdP (ω)
) 1
p

=
(

E[|X(ω)|p]
) 1
p

. (2.1)

2.1.2 Itô Calculus for Brownian Motions
One of the most well known stochastic processes is the Brownian motion. It occurs fre-
quently in mathematics, finance and physics. It is named after the botanist Robert Brown
which in 1828 used the Brownian motion to model the collision of pollen grains and
molecules of a liquid. The Brownian motion is defined in the following.

Brownian Motion

A stochastic process, {Bt}t≥0, is an n-dimensional Brownian motion if it satisfies the
following 3 properties:

1. B0 = 0 almost surely.

2. Bt −Bs ∼ N (0, (t− s)I) for 0 ≤ s < t.

3. Bt1 , Bt2−Bt1 , . . . , BtN −BtN−1
is independent for 0 = t0 < t1 < t2 < · · · < tN .

Here I is the identity matrix and N (µ,Σ) denotes the normal distribution with mean µ
and covariance matrix Σ.

Several methods to simulate the Brownian motions exists. Glasserman (2003) de-
scribes the random walk construction, Brownian bridge construction and principal com-
ponent construction. The random walk construction consists of fixing a grid 0 = t0 <
t1 < · · · < tN and set B0 = 0. Next step is to use the independent increments property,
the third part of the definition, to simulate the Brownian motion based on the increment.
We now use the fact that the increments are normally distributed

∆Btn = Btn+1
−Btn ∼ N (0, (tn+1 − tn)I), for n = 0, . . . , N − 1

and it is now possible to compute

Btn =
n−1∑
i=0

∆Bti , for n = 1, . . . N

which will be an approximated Brownian motion. It is approximate in the sense that the
joint distribution of the simulated values, (Bt0 , . . . , Btn) coincides with the joint distri-
bution of the Brownian motion, however the simulated values say nothing about how the
Brownian motion behave between the grid points.

The Brownian motion can be extended to have drift, µ, and covariance, Σ, as follows:

Xt = µt+ Σ
1
2Bt. (2.2)

5

Chapter 2. Stochastic Calculus

Here Bt is a Brownian motion in Rn, µ ∈ Rn and Σ
1
2 ∈ Rn×n is the principal square

root of the desired covariance matrix, Σ. Consider the Brownian motion with constant (not
time dependent) µ and Σ. The expression (2.2) can be rearranged to get:

Σ−
1
2 (Xt − µt) = Bt.

Now,Bt can be sample as for the standard case and finally solving forXt gives the desired
properties.

Figure 2.1 displays sample paths for one dimensional Brownian motions for a few
combinations of drift, µ, and volatility, σ = Σ

1
2 parameters. Figure 2.1(b) displays the

standard case with µ = 0 and σ = 1. The sample paths have been generated by the random
walk construction.

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

(a) µ = 0, σ = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

(b) µ = 0, σ = 1.

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

(c) µ = 1, σ = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

(d) µ = 1, σ = 1.

Figure 2.1: Brownian motions with drift and volatility parameters.

Itô Integral

We introduce a class of functions, which we denote L2
(S,T), to help us define the Itô inte-

gral. These functions, f(t, ω) : [0,∞)× Ω→ R, satisfy

• (t, ω)→ f(t, ω) is B × F-measurable, where B is the Borel σ-algebra on [0,∞).

6

2.1 Probability Theory and Itô Calculus for Brownian Motions

• f(t, ω) is Ft-adapted.

• E[
∫ T
S
f(t, ω)2dt] < ∞.

Next step is to define the Itô integral for elementary functions, φ ∈ L2. It is called
elementary if it is on the form

φ(t, ω) =
∑
j

ej(ω)χ[tj ,tj+1)(t)

where each ej must be Ftj -measurable. Let now φ ∈ L2
(S,T) be an elementary function.

We then define the Itô integral to be:∫ T

S

φ(t, ω)dBt =
∑
j

ej(ω)[Btj+1
−Btj]

where Bt is a Brownian motion.
We now proceed to define the Itô integral for f ∈ L2

(S,T) (not necessarily elementary
function). Then ∫ T

S

f(t, ω)dBt = lim
n→∞

∫ T

S

φn(t, ω)dBt

where {φn} is a sequence of elementary functions such that

E
[∫ T

S

(f(t, ω)− φn(t, ω))2dt
]
→ 0 as n→∞

Forward Stochastic Differential Equations

A forward stochastic differential equation is a noisy differential equation where one or
more of the terms are stochastic processes. A typical equation is on the form

Xt = Xs +

∫ t

s

µ(r,Xr)dr +

∫ t

s

σ(r,Xr)dBr, 0 ≤ s < t ≤ T, (2.3)

with some initial condition X0 = ξ : Ω → Rn. Here {Br}r∈[0,T] is an d-dimensional
Brownian motion, where

• µ : Ω× [0, T]× Rn → Rn

• σ : Ω× [0, T]× Rn → Rn×d

The expression in (2.3) is rarely seen, as the short-hand notation

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt, t ∈ (0, T] (2.4)

is more frequently used.
We assume the initial value, ξ to be independent of the Brownian motion and have

finite second moment, that is E[|ξ|2] < ∞. Secondly, not µ(t, x) nor σ(t, x) must exceed
linear growth in x. That is,

|µ(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), x ∈ Rn, t ∈ [0, T], (2.5)

7

Chapter 2. Stochastic Calculus

where |σ(t, x)|2 =
∑
i,j |σij(t, x)|2 and C is some constant. Finally, the µ(t, x) and

σ(t, x) must be Lipschitz continuous in x,

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y| (2.6)

for some constant D. If these three conditions are satisfied, then the solution exists almost
surely and is unique.

Itô’s Lemma

Itô’s lemma is the stochastic calculus counterpart of the chain rule known from calcu-
lus. We consider an n-dimensional stochastic process {Xt}t≥0 which satisfies dXt =
u(t,Xt)dt + v(t,Xt)dBt and Yt = g(t, x) = (g1(t, x), ..., gp(t, x)) ∈ C2([0,∞) ×
Rn,Rp). Then,

dY
(k)
t =

∂gk
∂t

(t,Xt)dt+

n∑
i=1

∂gk
∂xi

(t,Xt)dX
(i)
t +

1

2

n∑
i=1

n∑
j=1

∂2gk
∂xi∂xj

(t,Xt)dX
(i)
t dX

(j)
t .

By using (dt)2 = dtdB
(i)
t = 0 and dB(i)

t dB
(j)
t = δijdt we get:

dY
(k)
t =

[∂gk
∂t

(t,Xt) +

n∑
i=1

ui
∂gk
∂xi

(t,Xt) +
1

2

n∑
i=1

n∑
j=1

vivj
∂2gk
∂xi∂xj

(t,Xt)
]
dt

+

n∑
i=1

ui
∂gk
∂xi

(t,Xt)dB
(i)
t .

We observe that the term involving the second derivative does not appear in the chain rule
known from calculus.

An Example: Geometric Brownian Motion

The preceding concepts will be wrapped up by a motivating example. We consider one of
the most fundamental examples of an SDE, which in one dimension is on the form:

dXt = Xtµdt+XtσdBt, X0 = x0 (2.7)

where µ, σ and x0 are constants. The equation often appears in finance, where the interpre-
tation is that the rate of return in a market at time t, dXt/Xt, consists of a drift component
µdt and a stochastic noise component, σdBt. The tool used to solve (2.7) will be Itô’s
lemma, which will be applied to g(t, x) = lnx:

d lnXt =
1

Xt
dXt −

1

2

1

X2
t

dX2
t =

(
µ− σ2

2

)
dt+ σdBt

Xt = x0 exp
((
µ− σ2

2

)
t+ σBt

)
. (2.8)

The differential equations satisfies the criteria for uniqueness and existence, by C = D =
|µ| + |σ| in (2.5) and (2.6) and x0 is a constant. Hence it satisfies independence of the
Brownian motion and finite variation trivially. The stochastic process in (2.8) is called a
geometric Brownian motion.

8

2.1 Probability Theory and Itô Calculus for Brownian Motions

Backward Stochastic Differential Equation

The backward SDEs (BSDEs) have a specified terminal condition contrary to the forward
SDES, where the initial condition is specified. We could try to consider an equation on the
same form as (2.3), this would yield

Xt = ξ −
∫ T

t

µ(s,Xs)ds−
∫ T

t

σ(s,Xs)dBs. (2.9)

For the non-stochastic case, such terminal condition problems could under certain regular-
ity assumptions be transformed to an initial value problem by a time change t 7→ T − t.
An example will show why (2.9) in general is not well-posed.

We consider (2.9) in one dimension. Let ξ = 1, µ = 0 and σ = 1, i.e.,

Xt = 1−
∫ T

t

dBs = 1 +Bt −BT . (2.10)

The issue with (2.10) is that it is not adapted. We want solutions that are adapted, i.e. does
not see the future. Since Xt depends on BT for t < T , (2.9) is in general not well-posed.

Instead consider equations on the form

Yt = ξ +

∫ T

t

F (s, Ys, Zs)ds−
∫ T

t

Z>s dBs, (2.11)

where the pair {(Yt, Zt)}t≥0 is the solution. Here ξ is the terminal condition, f is called
the generator and the pair (ξ, F) is called the data and satisfy regularity conditions as in
Pardoux (1995).

Forward Backward Stochastic Differential Equation

A forward backward stochastic differential equation (FBSDE) is a pair of stochastic dif-
ferential equations:

Xt = ξ +

∫ t

0

µ(s,Xs, Ys, Zs)ds+

∫ t

0

σ(s,Xs, Ys, Zs)dBs (2.12)

Yt = g(XT) +

∫ T

t

F (s,Xs, Ys, Zs)ds−
∫ T

t

Z>s dBs

for t ∈ [0, T] where {Bt}t∈[0,T] is a d-dimensional Brownian motion,

• f : Ω× [0, T]× Rn × Rm × Rm×d → Rn,

• F : Ω× [0, T]× Rn × Rm × Rm×d → Rm,

• σ : Ω× [0, T]× Rd × Rm × Rm×d → Rn×d,

• g : Ω× Rd → Rm.

9

Chapter 2. Stochastic Calculus

are continuous with respect to (x, y, z) ∈ Rn × Rm × Rm×d. Under certain regularity
conditions which are stated in Pardoux and Tang (1999), there exists a unique adapted
solution {(Xt, Yt, Zt)}t∈[0,T] with values in Rn × Rm × Rm×d.

When the forward equation does not depend on the solution of the backward equations
{(Yt, Zt)}t∈[0,T], or the backward equation does not depend on the solution of the forward
equation, {Xt}t∈[0,T], the equations are said to be decoupled. Decoupled equations are
rather easy to solve. Consider the case where the forward equation is not depending on the
solution of the backward equation. That is,

Xt = ξ +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs (2.13)

Yt = g(Xt) +

∫ T

t

F (s,Xs, Ys, Zs)ds−
∫ T

t

Z>s dBs (2.14)

Such FBSDEs can be solved by first solving the forward equation (2.13) to determine the
process {Xt}t∈[0,T] and then solve the backward equation (2.14) by inserting the solution
of the forward process.

Semi-Linear Parabolic PDEs and Their Connections to FBSDEs

The connection between parabolic PDEs and Forward Backward Stochastic Differential
Equations, FBSDEs, are studied exhaustively in Pardoux and Răşcanu (2014). A brief
summary is now given.

We look at a family of PDEs, namely semi-linear parabolic PDEs, which can be repre-
sented as

∂u

∂t
(t, x) +

1

2
Tr
(
σ(t, x)σ(t, x)>∇2u(t, x)

)
+ µ(t, x)>∇u(t, x) (2.15)

+ f
(
t, x, u(t, x), σ(t, x)>∇u(t, x)

)
= 0

with some specified terminal condition u(T, x) = g(x). The following functions,

• σ : [0, T]× Rd → Rd×d,

• µ : [0, T]× Rd → Rd,

• f : [0, T]× Rd × R× Rd → R.

are all known. We seek the solution at t = 0 for some x = ξ ∈ Rd.
We consider a n-dimensional stochastic process, {Xt}t∈[0,T], that satisfies (2.12). By

using Itô’s lemma on Yt = u(t,Xt), where u ∈ C2([0, T]× Rn,R) we obtain:

dYt =
∂u

∂t
(t,Xt)dt+∇u(t,Xt)

>dXt +
1

2
dX>t ∇2u(t,Xt)dXt

=
[∂u
∂t

(t,Xt) +∇u(x, t)>µ(t,Xt) +
1

2
Tr
(
σ(t,Xt)

>σ(t,Xt)∇2u(t,Xt)
)]
dt

+∇u(t,Xt)
>σ(t,Xt)dBt. (2.16)

10

2.2 Lévy Processes

By inserting (2.15) into (2.16) we get

dYt = −f
(
t,Xt, u(t,Xt), σ(t,Xt)

>∇u(t,Xt)
)
dt+∇u(t,Xt)

>σ(t,Xt)dBt. (2.17)

In other words, under certain regularity conditions on σ, µ, f , see Pardoux and Răşcanu
(2014), we can find the solution of the (deterministic) partial differential equation in (2.15)
at t = 0, by solving a pair of stochastic differential equations. The solution at u(0, ξ) = Y0

corresponds to solving (Yt, Zt) = (u(t,Xt), σ(t,Xt)
>∇u(t,Xt)) of the forward back-

ward stochastic differential equations

Xt = ξ +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs (2.18)

Yt = g(XT) +

∫ T

t

f
(
s,Xs, u(s,Xs), σ(s,Xs)

>∇u(s,Xs)
)
ds (2.19)

−
∫ T

t

∇u(s,Xs)
>σ(s,Xs)dBs.

2.2 Lévy Processes

Lévy processes are introduced, starting gently with the finite activity processes and pro-
ceeding to the infinite activity processes. Stochastic differential equations driven by Lévy
processes are presented. At last, the numerical simulation of Lévy processes is discussed.

2.2.1 Introduction and Definition

Lévy processes are a natural extension from the Brownian motions. The Brownian mo-
tions, already discussed, are almost surely continuous, while Lévy processes may violate
this property and have discontinuities. The possibility to model jumps allow us to model a
greater range of phenomena. The Lévy processes appear frequently in quantitative finance,
where empirical results show that the distribution of returns tend to have ”fatter tails” than
the normal distribution, which appears when a Brownian motion is used to model returns.
Lévy processes can be used to model such fat tailed distribution.

Lévy Process

A stochastic process {Xt}t≥0 with values in Rd and X0 = 0 (almost surely) is a Lévy
process if it satisfies the following three properties:

1. Independence of increments: For any 0 ≤ t0 ≤ · · · ≤ tn <∞, Xt1 −Xt0 , Xt2 −
Xt1 , . . . , Xtn −Xtn−1 are independent.

2. Stationary increments: Xt −Xs is equal in distribution to Xt−s ∀s ≤ t.

3. Stochastic continuity: limh→0 P[|Xt+h −Xt| > ε] = 0 for all ε > 0.

11

Chapter 2. Stochastic Calculus

The first condition is the same as the Brownian motion, while the second condition does
not necessarily restrict the increments to have normally distributed increments, like the
Brownian motion. The third condition does not necessarily mean that the sample paths of
the processes are continuous, but it excludes processes that exhibit jumps at non-random
times.

Both the standard Brownian motion and Brownian motions with drift and variance
parameters are Lévy processes, in fact, they are the only Lévy process with continuous
paths according to Lawler (2014).

2.2.2 Finite Activity Lévy Processes
The Poisson process and the compound Poisson process are two fundamental Lévy pro-
cesses. They are both said to have finite activity in the sense that in every finitely sized
time interval they will exhibit a finite number of jumps. There exists Lévy processes that
can exhibit an infinite number of jumps on each proper time interval , which are introduced
later.

Poisson Process

Let τ1, τ2, . . . be independent exponential random variables with parameter λ, that is, they
have probability density function

f(τ) = λe−λτ , τ ≥ 0.

We further denote Tn =
∑n
i=1 τi. Then

Nt = #{n ∈ N : t ≥ Tn},

is a Poisson process with rate λ. The Poisson process has probability mass function

f(n) =
(λt)n

n!
e−λ

and E[Nt] = Var[Nt] = λt.

0 2 4 6 8 10

0

5

10

15

20

(a) λ = 1.

0 2 4 6 8 10

0

20

40

60

80

100

120

(b) λ = 10.

0 2 4 6 8 10

0

100

200

300

400

500

(c) λ = 50.

Figure 2.2: Poisson processes.

The Poisson process is a counting process. {Nt}t≥0 counts the number of random
times, Tn, which occur between 0 and t. It is the only counting process with stationary
independent increments. Figure 2.2 displays 10 sample paths for 3 different rates.

12

2.2 Lévy Processes

Compound Poisson Process

A compound Poison process with intensity λ > 0 and jump size distribution f is the
stochastic process Xt defined by

Xt =

Nt∑
i=0

Yi,

where Nt is a Poisson process with rate λ independent from Y1, Y2, . . . which are inde-
pendent identically distributed with distribution f .

The following properties of the compound Poisson process can be deduced by using
the law of total expectation:

E[Xt] = λtE[Yi] and Var[Xt] = λt(Var[Yi] + E[Yi]
2) (2.20)

0 2 4 6 8 10

−4

−2

0

2

4

6

(a) N (0, 1) and λ = 1.

0 2 4 6 8 10

−25

−20

−15

−10

−5

0

5

10

(b) N (0, 1) and λ = 10.

0 2 4 6 8 10

−40

−30

−20

−10

0

10

20

30

(c) N (0, 1) and λ = 50.

0 2 4 6 8 10

−3

−2

−1

0

1

2

3

4

(d) U(−1, 1) and λ = 1.

0 2 4 6 8 10

−15

−10

−5

0

5

10

15

(e) U(−1, 1) and λ = 10.

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

20

(f) U(−1, 1) and λ = 50.

0 2 4 6 8 10

−8

−6

−4

−2

0

2

4

6

(g) U{−1, 1} and λ = 1.

0 2 4 6 8 10

−20

−15

−10

−5

0

5

10

(h) U{−1, 1} and λ = 10.

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

40

(i) U{−1, 1} and λ = 50.

Figure 2.3: Compound Poisson processes.

Figure 2.3 displays a few combinations of jump size distributions and intensities. Note
the distinction between U(−1, 1) and U{−1, 1}. U(−1, 1) is the continuous uniform dis-

13

Chapter 2. Stochastic Calculus

tribution on (−1, 1), and U{−1, 1} is the discrete uniform distribution that takes values in
{−1, 0, 1} each with probability 1/3.

Compensated Processes

The compensated processes is a centred version of the process. We subtract a deterministic
quantity from the process, such that the new process is a martingale. The quantity we
subtract are the so-called compensator. For a Poisson process, {Nt}t≥0, with parameter
λ, the compensated Poisson process is then

Ñt = Nt − λt. (2.21)

We can also introduce the concept of compensated compound Poisson processes. Con-
sider a d-dimensional compound Poisson process, {Xt}t≥0 with intensity λ and jump size
distribution f . Then, by (2.20),

X̃t = Xt − µλt. (2.22)

0 2 4 6 8 10

0

2

4

6

8

10

(a) Poisson process with λ = 1.

0 2 4 6 8 10

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(b) Compensated Poisson process with λ = 1.

0 2 4 6 8 10

0

5

10

15

20

(c) Compound Poisson process with λ = 1 and
Pareto distributed jump sizes with α = 2.

0 2 4 6 8 10

0

2

4

6

8

10

(d) Compensated compound Poisson process with
λ = 1 and Pareto distributed jump sizes with α = 2.

Figure 2.4: Comparison of uncompensated and compensated processes.

14

2.2 Lévy Processes

Figure 2.4 displays the effect of the compensator. The left column shows a Poisson
process, Figure 2.4(a), and a compound Poisson process, Figure 2.4(b), with Pareto dis-
tributed jump sizes with α = 2. Both processes have intensity λ = 1. The right column
shows the compensated version of the process to the left.

2.2.3 Infinite Activity Lévy Processes
Infinite Activity Lévy processes are a more general type of Lévy processes. We establish
some notation and introduce some new concepts.

Jump Measure

The Poisson process and compound Poisson processes we have discussed so far can be
expressed as

Xt =

∫
[0,t]×Rd

xJX(ds× dx). (2.23)

This is a so-called Poisson integral, where JX is the jump measure which describes the
jumps of Xt. JX is defined to be

JX([t1, t2]×A) = #{(t,∆Xt) ∈ [t1, t2]×A},

for every measurable set A ⊂ Rd. In other words, JX([t1, t2] × A) counts the number
of jumps of X between t1 and t2 which size, ∆Xt, belong to A. It should be noted that
JX(ω, .) is a random measure, in the sense that it depends on ω. However, the dependence
of ω is often omitted, as with random variables.

Lévy Measure

A jump measure is described by its intensity measure µ(dx × dt) such that E[JX(.)] =
µ(.). For a Lévy process, we have that µ(dt × dx) = ν(dx)dt, where ν is the so-called
Lévy measure and is a key concept when dealing with Lévy processes. For a d-dimensional
Lévy process {Xt}t≥0, the Lévy measure is

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}]

where A ⊂ Rd. In other words the expected number of jumps of size which belongs to A
per unit time. The Poisson process and compound Poisson process both satisfy∫

Rd
ν(dx) <∞

which is the criterion for finite activity.

Regularity Conditions

The finite activity processes have a finite number of jumps in each finite time interval.
However, we can still allow the Lévy measure be infinite as long as ν(A) is finite for any

15

Chapter 2. Stochastic Calculus

compact set A such that 0 /∈ A. In other words, we allow ν to blow up close to 0 such that
the process have an infinite number of small jumps, where the convergence of the series of
jumps relies on the following conditions:

ν({0}) = 0,

∫
|x|>1

ν(dx) <∞,
∫
|x|≤1

|x|2ν(dx) <∞. (2.24)

Poisson Integral

We are not limited to have x as integrand in (2.23), we can define a stochastic process,
{Xt(f)}t≥0, with a more general integrand as

Xt(f) =

∫
[0,t]×Rd\{0}

f(s, x)JX(ds× dx)

if ∫
[0,t]× Rd\{0}

|f(s, x)|ν(ds)dx <∞.

Compensated Measures

Similar to the finite activity compensated processes defined in (2.21) and (2.22), we can
define a compensated jump measure for Lévy processes. For a jump measure JX with
intensity ν(dx)dt, the compensated jump measure is

J̃X([t1, t2]×A) = JX([t1, t2]×A)− ν(A)(t2 − t1).

This allows us to express compensated Lévy processes as Poisson integrals,

X̃t =

∫
[0,t]×Rd

xJ̃X(ds× dx).

Note that {X̃t}t≥0 is a martingale.

Itô Isometry for Lévy Processes

An important property of the compensated Lévy processes is the Itô isometry. Let {Xt}t≥0

be a d-dimensional Lévy process with jump measure JX , which has intensity ν(dx)ds.
Then, if F satisfy ∫

[0,T]×A
E
∣∣F (ω, t, x)

∣∣2ν(dx)ds <∞,

for A ⊂ Rd, then

E

[∣∣∣ ∫
[0,T]×A

F (ω, s, x)JX(ds× dx)
∣∣∣2] =

∫
[0,T]×A

E
∣∣F (ω, s, x)

∣∣2ν(dx)ds.

16

2.2 Lévy Processes

Lévy-Itô Decomposition

The sum of a Lévy process

X ′t =

∫
[0,t]×Rd

xJX(ds× dx)

with intensity measure ν(dx)dt and a Brownian motion with drift and variance, {µt +
ABt}t≥0, independent from {X ′t}t≥0 defines another Lévy process

Xt = µt+ABt +X ′t = µt+ABt +

∫
[0,t]×Rd

xJX(ds× dx) (2.25)

where JX has intensity ν(dx)dt. Figure 2.5(a) displays a sample path of a compound
Poisson process with λ = 1 and U{−1, 1} jump size distribution. Figure 2.5(b) shows
the same sample path, but it is superpositioned with a sample path of a Brownian motion
with µ = −1 and σ = 3.

0 2 4 6 8 10

−1

0

1

2

3

4

5

(a) Compound Poisson process with λ = 1 and
U{−1, 1} jump size distribution.

0 2 4 6 8 10

−6

−5

−4

−3

−2

−1

0

1

2

(b) Superposition of compound Poisson process with
λ = 1 and U{−1, 1} jump size distribution and
Brownian motion with µ = −1 and σ = 3.

Figure 2.5: Lévy process with and without Brownian motion component.

It turns out that every Lévy process can be expressed on a similar form as (2.25).
Let {Xt}t≥0 be a d-dimensional Lévy process. Then there exists a ν satisfying (2.24), a
positive definite matrix A ∈ Rd×d and a vector γ ∈ Rd such that

Xt = γt+ABt+

∫
|x|∈[1,∞),s∈[0,t]

xJX(ds×dx)+

∫
|x|∈(0,1),s∈[0,t]

xJ̃X(ds×dx). (2.26)

Actually, the distribution of a Lévy process is uniquely determined by the triplet (A, ν, γ).
This triplet is called the characteristic triplet or Lévy triplet.

This result implies that every Lévy process can be decomposed into a Brownian mo-
tion with drift, a compound Poisson process and an infinite superposition of independent
compensated compound Poisson process.

17

Chapter 2. Stochastic Calculus

Itô’s formula for Lévy Driven Processes

Let {Xt}t≥0 be a n-dimensional stochastic process driven by a Lévy process, which satisfy

Xt = ξ +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs +

∫
[0,t]×E

β(Xs−, e)J̃X(ds× de) (2.27)

where E = Rd \ {0} and JX has intensity ν(dx)ds.
Then, for a function u : [0, T]× Rd → R in C1,2, we have that

u(t,Xt) =u(T,XT)−
∫ T

t

∇u(s,Xs)
>σ(s,Xs)dBs (2.28)

−
∫

[t,T]×E
[u(s,Xs− + β(Xs−, e))− u(s,Xs−)]J̃X(ds× de)

−
∫ t

0

[∂u
∂t

(s,Xs) +
1

2
Tr(σ(s,Xs)σ(s,Xs)

>∇2u(s,Xs))

+

∫
E

[u(s,Xs + β(Xs, e))− u(s,Xs)−∇u(s,Xs)
>β(Xs, e)]ν(de)

]
ds

under certain regularity conditions as stated in Barles et al. (1997). Note that contrary
to Itô ’s lemma for drift-diffusion processes, we additionally have the compensated jump
term on the last line of (2.28).

FBSDE for Lévy Driven Processes

Consider partial integro-differential equations (PIDEs) on the form

∂u

∂t
(t, x) + Lu(t, x) + f(t, x, u, σ(t, x)>∇u(t, x)) = 0 (2.29)

for (t, x) ∈ [0, T)× Rn with terminal condition u(T, x) = g(x). Here

Lu(t, x) = µ(t, x)>∇u(t, x) +
1

2
Tr(σ(t, x)σ(t, x)>∇2u(t, x))

+

∫
E

[u(t, x+ β(x, e))− u(t, x)−∇u(t, x)>β(x, e))]ν(de)

There exists link between PIDEs as in (2.29) and Lévy driven stochastic processes,
similar to the link between the semi-linear parabolic PDEs and Brownian motion driven
FBSDEs. We apply Itô’s lemma on (2.27) to get (2.28). We now have a set of forward and
backward stochastic differential equations. Next step is to insert (2.29) and the terminal
condition u(T, x) = g(x) into (2.28) to get

u(t,Xt) = g(XT)−
∫ T

t

∇u(s,Xs)
>σ(s,Xs)dBs (2.30)

+

∫ T

t

f(s,Xs, u(s,Xs), σ(s,Xs)
>∇u(s,Xs))ds

−
∫

[t,T]×E
[u(s,Xs− + β(Xs−, e))− u(s,Xs−)]J̃X(ds× de)

18

2.2 Lévy Processes

and we can now solve (2.29) by solving the decoupled pair of equations (2.27) and (2.30).
The solution at u(0, ξ) = Y0 corresponds to solving (Yt, Zt, Ut) where

Yt = u(t,Xt), Zt = σ(t,Xt)
>∇u(t,Xt), Ut = u(t,Xt + β(Xt−, e))− u(t,Xt).

2.2.4 Generating Lévy Processes

The Lévy processes are numerically simulated for some cases in the following. The drift
and the Brownian motion part in (2.26) are already covered. Our focus is limited to the
jump component.

Finite Activity

We first consider the finite activity case, where

Xt =

∫
[0,t]×Rn

xJX(ds× dx) (2.31)

is a n-dimensional Lévy process with intensity ν(dx)dt and finite activity. We can rewrite
(2.31) as a compound Poisson process

Xt =

Nt∑
i=0

Yi,

where {Nt}t≥0 is a Poisson process with parameter
∫
Rn ν(dx) <∞ and Yi are iid random

variables with probability density function ν/λ.

Algorithm 2.1: Sampling a compound Poisson processes.
Input : T : The upper boundary of the desired time interval.

λ: The intensity of the compound Poisson Process.
f : The jump size distribution.

Output: Xt(ω1): One sample path of the compound Poisson process on [0, T].
i← 0 /* Jump counter. */
ti ← 0 /* Cumulative arrival times. */
/* Run while cumulative arrival times does not exceed

max time. */
while ti < T do

i← i+ 1
u ∼ U(0, 1) /* Sample uniform random variable. */
τi ← − 1

λ ln(1− u) /* Compute exponential random
variable. */

ti ← ti−1 + τi /* Compute cumulative arrival time. */
Yi ∼ f /* Sample jump size. */

return Xt =
∑
{i:ti≤t} Yi

19

Chapter 2. Stochastic Calculus

Algorithm 2.1 describes how to generate sample paths of a compound Poisson pro-
cess. We see that the difficulty of simulating such processes rely on the difficulty of simu-
lating the jump sizes. In some cases, this is really straight forward and there exists numer-
ous of numerical libraries capable to do this efficiently.

Infinite Activity

Since
∫
Rd ν(dx) =∞ in the infinite activity case, we can not proceed directly as above by

reformulating the process to a compound Poisson process. We consider a Lévy process,
{Xt}t≥0 with the Lévy triplet (0, ν, 0), for a ν that satisfy

∫
Rd ν(dx) =∞ and (2.24), the

process can be expressed as

Xt =

∫
|x|∈[1,∞),s∈[0,t]

xJX(ds×dx)+

∫
|x|∈(0,1),s∈[0,t]

xJ̃X(ds×dx) := X
[1,∞)
t +X̃

(0,1)
t .

(2.32)
The two terms in (2.32) are independent and can therefore be handled separately. The first
term, X [1,∞)

t , consists of jump sizes with magnitude greater than 1 and has finite activity.
It can therefore be turned into a compound Poisson process with intensity

λ[1,∞) =

∫
|x|∈[1,∞)

ν(dx)

and jump size distribution ν1|x|∈[1,∞)/λ[1,∞).
The second term in (2.32) has infinite activity and therefore require some extra work.

Asmussen and Glynn (2007) cover some alternatives on dealing with infinite activity pro-
cesses. As previously stated, the compensated infinite activity process can be approxi-
mated arbitrarily well by a compensated finite activity process. The mean square error can
be written as

E
[
|X̃(0,1)

t − X̃ [r,1)
t |2

]
= E

[∣∣ ∫
|x|∈(0,r),s∈[0,t]

xJ̃X(ds× dx)
∣∣2]

=

∫
|x|∈(0,r),s∈[0,t]

x>xν(dx)ds

= t

∫
|x|∈(0,1)

1|x|∈(0,r)(x)x>x︸ ︷︷ ︸
Fr(x)

ν(dx).

Since |Fr(x)| ≤ cx>x for some constant c, where∫
|x|∈(0,1)

|cx>x|ν(dx) = |c|
∫
|x|∈(0,1)

x>xν(dx) <∞

for all x satisfying |x| ∈ (0, 1) and Fr(x)→ 0 as r → 0 we can use Lebesgue dominated
convergence theorem, and conclude that

E
[
|X̃(0,1)

t − X̃ [r,1)
t |2

]
→ 0

as r → 0.

20

2.2 Lévy Processes

Ignore Small Jumps

The first strategy relies on simply ignoring the small jumps. That is, the infinite activity
process is further decomposed into two independent parts,

X̃
(0,1)
t = X̃

(0,r)
t + X̃

[r,1)
t , r ∈ (0, 1). (2.33)

For a sufficiently small r > 0, X̃(0,r)
t is negligible and can be ignored. Then

X̃
(0,1)
t ≈ X̃ [r,1)

t = X
[r,1)
t − t

∫
|x|∈[r,1)

xν(dx)

which is a sum of a compound Poisson process, X [r,1)
t , and a drift term. The compound

Poisson process can be simulated by Algorithm 2.1.

Brownian Motion Approximation

A more refined strategy is rigorously covered in Asmussen and Rosiński (2001) and the
multivariate case is covered in Cohen and Rosiński (2007). We again decompose as in
(2.33), for the compensated process we have E[X̃

(0,r)
t] = 0 and

Σr = Var[X̃(0,r)
1] = E[X̃

(0,r)
1 X̃

(0,r)>

1] =

∫
|x|∈(0,r)

xx>ν(dx).

The isometry property has been used to compute Σr.
According to Cohen and Rosiński (2007), if Σr is non-singular and∫

x>Σ−1
r x>k

x>Σ−1
r x1|x|<r(x)ν(dx)→ 0 (2.34)

for all k > 0 when r → 0, then

Σ
− 1

2
r X̃

(0,r)
t

d−→ Bt

as r → 0. Here Σ
− 1

2
r is the principal square root of Σ−1

r and d−→ denotes convergence in
distribution.

An important class of Lévy processes are the processes where ν(dx) can be decom-
posed into a radial and angular component, ν(dx) = φ(dρ|u)λ(du) where λ is a finite
measure on the (d− 1)-dimensional unit sphere. For such processes the condition

lim
ε→0

1

ε2

∫ ε

0

ρ2φ(dρ|u) =∞

implies that Σr is non-singular and (2.34) are satisfied.
This result is of importance since it allows us to approximate X̃(0,r)

t by a Brownian
motion which requires small computational effort to simulate. This approximation for a
Lévy process with characteristic triplet (A, ν, γ) would be on the form

21

Chapter 2. Stochastic Calculus

Xt ≈
(
γ −

∫
|x|∈[r,1)

ν(dx)
)
t+ABt + Σ

1
2
r B̂t +

Nt∑
i=1

Yi

where Bt and B̂t are independent Brownian motions, Nt is a Poisson process with rate
λ[r,∞) =

∫
|x|∈[r,∞)

ν(dx) and Yi has distribution ν1|x|∈[r,∞)/λ[r,∞). Alternatively, the
two sum of the two Brownian motions can be written as

ABt + Σ
1
2
r B̃t = (AA> + Σr)

1
2B?t

where B?t is a Brownian motion independent of Bt and B̃t
Since λ[r,∞) → ∞ when r → 0, the computational complexity for simulating the

compound Poisson component is high when a small cut-off value r is chosen. The ad-
vantage of the Brownian motion approximation compared to ignoring small jumps, is that
a higher cut-off value r can be chosen to achieve similar accuracy and hence reduce the
computational complexity.

An Example: Simulating α-Stable Process

We consider the symmetric α-stable processes. That is, processes where the characteristic
triplet is (0, ν, 0), where ν(dx) = c|x|−d−αdx. Here d is the dimension of the process,
c > 0 is a constant and α ∈ (0, 2). We simulate 106 realizations ofX1 for the two different
strategies presented, either ignore jumps smaller than r, or approximate the small jumps as
a Brownian motion (BM). The results are given in Figure 2.6 for α = 0.5 and in Figure
2.7 for α = 1.5. The solid line is the true probability density functions. The bars are
normalized histograms of the simulated values. Note that the plots are log scaled.

22

2.2 Lévy Processes

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(a) Ignore. r = 1.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(b) Ignore. r = 0.1.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(c) Ignore. r = 0.01.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(d) BM. r = 1.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(e) BM. r = 0.1.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(f) BM. r = 0.01.

Figure 2.6: Histogram of α-stable process at t = 1 with α = 0.5.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(a) Ignore. r = 1.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(b) Ignore. r = 0.1.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(c) Ignore. r = 0.01.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(d) BM. r = 1.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(e) BM. r = 0.1.

20 15 10 5 0 5 10 15 20
10 4

10 3

10 2

10 1

100

101

(f) BM. r = 0.01.

Figure 2.7: Histogram of α-stable process at t = 1 with α = 1.5.

23

Chapter 2. Stochastic Calculus

24

Chapter 3

Neural Networks

Neural networks play a key role as function approximators in the algorithms for solving
PDEs to be presented. This chapter gives a brief introduction to neural networks mainly
based on Goodfellow et al. (2016), which is a great, if not the best, introduction to deep
learning.

The first section introduces a learning theoretical framework followed by an introduc-
tion to feedforward neural networks and activation functions. We then look into some ba-
sic concepts of optimization theory and lastly universal approximation theorems for neural
networks are discussed.

3.1 Learning Theoretical Framework
In the general setting of supervised learning problems we have an input space X and an
output space Y . We assume that there is an unknown probability distribution P (x, y)
defined over X × Y . The aim is to learn a function, often called hypothesis, h : X → Y
based on independent samples from P (x, y).

To be able to assess the goodness-of-fit of a hypothesis we need a loss function. A
loss/cost function is a non-negative function, Y × Y → R≥0 where Y is the output space,
such that

`(y, y) = 0 and `(y, ŷ) > 0 ∀ŷ 6= y.

One of the most common loss functions is the quadratic loss, (ŷ − y)2 which arises in the
ordinary linear regression problem.

The risk associated by the hypothesis h is defined as the expected value of a loss
function

R(h) = E[`(y, h(x))] =

∫
X×Y

`(y, h(x))dP (x, y). (3.1)

The goal is to minimize the risk, that is, make h be the best possible representation of
xi 7→ yi. We restrict ourselves to a fixed class of functions,H and solve

h? = arg min
h∈H
R(h).

25

Chapter 3. Neural Networks

In practice p(x, y) is rarely known and in some cases where p(x, y) is known, the integral
in (3.1) might not be possible to evaluate, so we typically estimate R(d) by Monte Carlo.
Let SN denote a random sample of N input-output pairs,

SN = {(xi, yi) ∼ P : i = 1, . . . , N}.

SN is the so-called training set. We build a Monte-Carlo estimate of (3.1) based on the
training set

R̂(h;SN) =
1

N

N∑
i=1

`(yi, h(xi)))

to achieve the empirical risk. The process of finding the minimizer of the empirical risk,
i.e. solving

ĥ = arg min
h∈H

R̂(h;SN).

is referred to as empirical risk minizimation in litterature.

3.2 Feedforward Neural Networks
Feedforward neural networks or multilayer perceptions aim to approximate some mapping
y = f?(x) by defining a mapping y = f(x; θ) and then learning the value of the parameter
θ that gives the best function approximation. Such models are called feedforward because
there is no feedback connection. That is, there is no connections that let the output of a
model be fed back to itself. Extensions which allow for feedback connections are called
recurrent neural networks.

Figure 3.1 gives an illustration of a fully connected neural network. This illustration
consists of the input layer, one hidden layer and the output layer. The term depth refers to
the amount of layers in the network, not including the input layer. In this case, the depth is
2. The term ”deep learning” arises from the deep neural networks, where most literature
consider neural networks with a depth larger than 3 to bee deep. Each layer consists of
neurons, or nodes. The width of each layer is the amount of nodes in that layer. The
illustrated network has a hidden layer with width p.

Further, each layer consists of an affine transformation and a non-linear function ap-
plied element-wise. The parameter θ consists of two components, W and b. Firstly, W ,
which is the linear transformation matrix, is called weight or kernel. Secondly, b is the
translation term of the affine transformation. It is most frequently referred to as bias, but
intercept is also common. In Figure 3.1 we have x ∈ Rn, W (1) ∈ Rp×n and b(1) ∈ Rp.
This gives the affine transformation

u = W (1)x+ b(1)

where u ∈ Rp. Further, a non-linear function is applied elementwise u,

hi = φ(1)(ui) for i = 1, . . . , p.

This process is repeated as many times as the network is deep.

26

3.3 Activation Functions

Figure 3.1: Fully connected feed forward neural network.

3.3 Activation Functions

φ(x) φ′(x)

Rectified Linear Unit (ReLU) max(0, x)

{
0, x < 0

1 x > 0

Exponential Linear Unit (ELU)

{
α(ex − 1) x < 0

x x > 0

{
αex x < 0

1 x > 0

Hyperbolic Tangent tanh(x) 1
cosh2(x)

Sigmoid 1
1+e−x

1
1+e−x

(
1− 1

1+e−x

)
Table 3.1: Activation functions and their derivative.

As mentioned the neural networks consist of a non-linear activation function at each
layer. If the activation function is linear, the network is not able to represent even simple
functions as XOR, see Goodfellow et al. (2016). Common activation functions and their
derivatives are given on Table 3.1 and plotted on Figure 3.2. The activation function itself
are the solid line, whereas the derivative is the dotted line.

Sigmoid, and to some degree hyperbolic tangent, has traditionally been the most pop-
ular choice for hidden layers, but in recent years ReLU has gained popularity. There are
mainly two reasons that ReLU has gained popularity. Firstly because both ReLU and the
derivative of ReLU is extremely simple to compute. But most importantly, because of
the phenomenon called vanishing gradient, discussed in Hochreiter (1991). The vanishing
gradient problem causes the gradient to decrease exponentially as a function of the depth
of the network and therefore slows down the training of the shallow layers.

27

Chapter 3. Neural Networks

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

(a) Rectified linear unit.

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

(b) Exponential linear unit.

−4 −3 −2 −1 0 1 2 3 4

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) Hyperbolic tangent.

−4 −3 −2 −1 0 1 2 3 4
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(d) Sigmoid.

Figure 3.2: Activation functions and their derivative.

The choice of activation function on the output layer depends on the problem. If out-
puts on Rn is desired, the identity function could be used, whereas if outputs in Rn+ are
desired, ReLU is a good choice. If the neural network approximates some classification
task of two classes, it should produce the probability that the input is an instance of the
classes. To satisfy Kolmogorovs axioms, the sigmoid should be used. For classification of
more than two classes, the softmax is used. The softmax for N classes is defined as

σi(x) =
exi∑N
j=1 e

xj
, for i = 1, . . . , n

28

3.4 Optimization

3.4 Optimization
The optimization theory in the following is based on the lecture series of the ”Deep Learn-
ing” course held at ETH Zürich, Pérez-Cruz (2018).

Gradient Descent

Gradient descent is the most basic minimization algorithm. We iteratively update R̂(Fθ;SN)
based on the direction it is decreasing fastest as a function of θ. The direction of fastest
decrease, is the direction of the negative gradient, so the algorithm is

θn+1 = θn − η∇θR̂(Fθn ;SN).

Here η is called the step size, or in the machine learning community, learning rate. θ0 are
set to a random value or set to a sensible value based on domain knowledge. The itera-
tive updates are typically carried out until the updates ∇θR̂(Fθ;SN)n are small, having
reached a local minimum. Choosing the correct step size is important. A too small step
size will make the algorithm converge slowly, and a too large step size will make the algo-
rithm never converge. There exists conditions, such as the Wolfe conditions (see Nocedal
and Wright (2006)) to select step size. Typically a binary search is carried out until a step
size that satisfies the Wolfe conditions are found. This search requires several gradient and
function evaluations, and are therefore expensive and rarely used in neural networks.

Stochastic Gradient Descent

As mentioned, computing the gradient of the risk is an expensive operation. We therefore
resort to randomly splitting the full data set, SN intoN/K smaller batches of equal sizeK.
We denote these smaller batches as SK,i. The size of the batches are frequently referred
to as batch size. The stochastic term of stochastic gradient descent originates from the fact
that the full data set is randomly partitioned. After partitioning, we proceed to update θ as
follows:

θn+1 = θn − η∇θR̂(Fθn ;SK,i),

which is equal to the non-stochastic gradient descent except that the gradient risk is only
evaluated at the data pairs of SK,i. This process is executed for i = 1, . . . , N/K, and we
denote such a sweep through the full data set as one epoch. After the epoch is completed,
the data is repartitioned into new randomly selected batches.

The notion behind stochastic gradient descent, is the fact that

ER̂(Fθ;SK) = R̂(Fθ;SN)

allows us to update θ based on an unbiased estimate, without having to evaluate the deriva-
tive of the loss on the entire dataset.

(Stochastic) Gradient Descent with Momentum

The (stochastic) gradient descent algorithm can be extended to include momentum. The
following algorithms will be described using the full data set SN , but could also be (and

29

Chapter 3. Neural Networks

are most frequently) executed by splitting the data set into batches. The notion behind
introducing momentum is to avoid getting stuck in local minimums. We update the mo-
mentum:

mn+1 = αmn − (1− α)∇θR̂(Fθn ;SN)

with α ∈ [0, 1) and m0 = 0. Then a correction for bias is performed:

m̂n+1 =
mn+1

1− αn+1
.

Finally we update θ,
θn+1 = θn + ηm̂n+1.

AdaGrad

The adaptive gradient algorithm, or AdaGrad, was proposed in Duchi et al. (2011) and ”...
dynamically incorporate knowledge of the geometry of the data observed in earlier itera-
tions to perform more informative gradient-based learning”. The algorithm is executed as
follows:

gin =
∂R̂(Fθn ;SN)

∂θi

∣∣∣
θ=θn

and update
θi,n+1 = θi,n −

η

δ +
√∑n

s=1 g
2
is

∇θR̂(Fθn ;SN)

where δ > 0 is small.

ADAM

Adaptive moment estimation, or ADAM was proposed in Kingma and Ba (2014). ADAM
aims to combine AdaGrad and the gradient descent with momentum. At first, we compute
and store the gradient

gn+1 = ∇θR̂(Fθn ;SN)

and update the biased first and second raw moment estimate

mn+1 = β1mn + (1− β1)gn+1

vn+1 = β2vn + (1− β2)gn+1 � gn+1

where � denotes the elementwise multiplication. Further we correct both the moment
estimates for bias

m̂n+1 =
mn+1

1− βn+1
1

v̂n+1 =
vn+1

1− βn+1
2

where m0 = v0 = 0 and finally we update the parameters

θn+1 = θn + η
m̂n+1√
v̂n+1 + ε

.

Here β1, β2 ∈ [0, 1) and ε > 0. Typical values are β1 = 0.9, β2 = 0.999 and ε = 10−8.

30

3.5 Universal Approximation

3.5 Universal Approximation
The universal approximation theorem states that a feedforward neural network with a finite
width can approximate continuous functions on a compact subset of Rn, under some,
relatively mild, assumptions on the activation function.

Classical results, such as Cybenko (1989), states that neural networks with sigmoidal
activation functions and depth 2 are universal approximators on the unit hypercube. Hornik
(1991) further extends the class of activation functions. Contrary to the depth-bounded
universal approximation theorems, Lu et al. (2017) considers the ReLU activation function
and provide a width-bounded universal approximation theorem.

For any Lebesgue-integrable function f : Rn → R and any ε > 0, there exists a fully-
connected ReLU network with width dm ≤ n + 4, such that the function Fθ represented
by this network satisfies ∫

Rn
|f(x)− Fθ(x)|dx < ε

Figure 3.3 and Figure 3.4 shows approximation of the sine wave for a few combi-
nations of widths and depths. Hidden layer activation functions are sigmoid and ReLU
respectively, whereas the identity function is used at the output layer. The dotted line is
the neural net approximation whereas the solid line is the true value. The neural networks
are trained using

`(y, ŷ) = |y − ŷ|2 = | sin(x)− Fθ(x)|2

as the loss function with ADAM optimizer. The networks are trained in 105 iterations
(which should be way more than sufficient), using a equidistant grid at [−2π, 2π] with
105 points. It is evident that the shallow ReLU networks struggles to approximate the
sinusoidal wave regardless of width, whereas it does a great job for a wide network width
depth 3.

31

Chapter 3. Neural Networks

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Depth 2, width 2.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Depth 3, width 2.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) Depth 2, width 8.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(d) Depth 3, width 8.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(e) Depth 2, width 128.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(f) Depth 3, width 128.

Figure 3.3: Neural network approximation of sin using sigmoid.

32

3.5 Universal Approximation

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Depth 2, width 2.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Depth 3, width 2.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) Depth 2, width 8.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(d) Depth 3, width 8.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(e) Depth 2, width 128.

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(f) Depth 3, width 128.

Figure 3.4: Neural network approximation of sin using ReLU.

33

Chapter 3. Neural Networks

34

Chapter 4

Deep Learning Algorithms for
Solving Semi-Linear Parabolic
PDEs

Recently, large developments have been made on solving semi-linear parabolic PDEs with
deep learning, overcoming the curse of dimensionality. This chapter presents two of the
pioneering approaches: The deep backward stochastic differential equation and the deep
backward dynamic programming. The latter comes in two different versions. Additionally,
the approaches are simulated and compared to each other.

The first section explains and presents each of the algorithms while the second section
presents som numerical results for a selection of examples.

4.1 Presentation of Algorithms

Jiequn Han, Arnulf Jentzen and Weinan E present a pioneering algorithm to solve equa-
tions on the form (2.15) in E et al. (2017a), and in a more compact easier to read format
in Han et al. (2017). The algorithm is named Deep BSDE. Huré et al. (2019) presents
an approach similar to the Deep BSDE, called Deep Backward Dynamic Programming
(DBDP). In this section, Deep BSDE will be presented as a brief summary of Han et al.
(2017), followed by a presentation of two versions of the DBDP.

4.1.1 Deep BSDE

The aim is to compute u(0, X0) for some given X0 ∈ Rd of (2.15). We discretize the
time domain [0, T] : 0 = t0 < t1 < ... < tN = T , and define Xt and u(t,Xt) through
Euler-Maruyama schemes based on (2.18) and (2.19) for n = 0, . . . , N − 1:

Xtn+1 ≈ Xtn + µ(tn, Xtn)∆tn + σ(tn, Xtn)∆Bn (4.1)

35

Chapter 4. Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs

and

u(tn+1, Xtn+1) ≈ u(tn, Xtn)− f
(
tn, Xtn , u(tn, Xtn), σ(tn, Xtn)>∇u(tn, Xtn)

)
∆tn

+∇u(tn, Xtn)>σ(tn, Xtn)∆Bn (4.2)

where
∆tn = tn+1 − tn and ∆Bn = Btt+1

−Btn ∼ N (0,∆tn).

The core of this algorithm is to turn the FBSDEs to a learning problem. This is done
by parametrizing x 7→ ∇u(tn, x)>σ(tn, x) for n = 1, . . . , N − 1 as neural networks

∇u(tn, Xtn)>σ(tn, Xtn) = (∇u>σ)(tn, Xtn) ≈ Z(Xtn ; θn).

Here, θn denotes the parameters of the neural network. These subnetworks, Z(.; θn), are
stacked based on (4.2) to form a deep neural network taking the sample paths {Xtn}Nn=0

and {Btn}Nn=0 as input data and producing the final output û({Xtn}Nn=0, {Btn}Nn=0) as
an approximation of u(tN , XtN). Further, u(0, X0) ≈ θu0 and ∇u(0, X0) ≈ θ∇u0 are
treated as parameters in the model. The total set of parameters is thus

θ = {θu0 , θ∇u0 , θ1, . . . , θN−1}.

We use the terminal condition evaluated at the last time step in (4.1) as our true out-
come and use the quadratic loss. The risk, which we aim to minimize is then

R(û) = E
[
|g(XtN)− û({Xtn}Nn=0, {Btn}Nn=0)|2

]
. (4.3)

The algorithm is presented in Algorithm 4.1. In practice, (4.3) is minimized by a stochas-
tic gradient descent-like algorithm.

Algorithm 4.1: Deep Backward Stochastic Differential Equation (Deep BSDE).
Input : X0: Desired spatial point that the solution should be found at.
Output: Estimate of u(t0, X0).
U0 ← θu0

Z(X0; θ0)← θ∇u0

for n = 0, ..., N − 1 do
∆Bn ∼ N (0,∆tnI)
Xtn+1 ← Xtn + µ(tn, Xtn)∆tn + σ(tn, Xtn)∆Bn
Un+1 ← Un + Z(Xtn ; θn)∆Bn − f(tn, Xtn ,Un,Z(Xtn ; θn))∆tn

θ? ∈ arg minθ E
[
|UN − g(XtN)|2

]
return θ?u0

The algorithm can easily be extended to compute u(t,X0) for X0 in some domain D.
We let u(t0, .) = U(.; η0) be a neural network, and instead of considering a fixed X0, we
sample X0 from some distribution in D and execute the rest of the algorithm as normal.

36

4.1 Presentation of Algorithms

4.1.2 Deep Backward Dynamic Programming
Huré et al. (2019) presents two versions of an algorithm similar to the deep BSDE. The
algorithm is called Deep Backward Dynamic Programming (DBDP).

Deep Backward Dynamic Programming 1

The first variant of the algorithms parametrizes x 7→ u(tn, x) as a neural network U(x; ξn)
for n = 0, . . . , N−1, in addition to the parametrization of∇u(tn, x)>σ(tn, x) asZ(x; θn)
familiar from Deep BSDE. Instead of optimizing the full set of neural network parameters
simultaneously, the optimization problem is divided into easier to solve subproblems in a
dynamic programming-like approach.

The algorithm iterates through the time steps backwards in time. Initially, we let
U(.; η?N) := g(.) and for each time step we minimize the L2-norm, as in (2.1), of the
Euler-Maruyama update:

Rn(ηn, θn) = E
[
|U(Xtn+1

; η?n+1)− U(Xtn ; ηn)−Z(Xtn ; θn)∆Bn

+ f(tn, Xtn ,U(Xtn ; ηn),Z(Xtn ; θn))∆tn|2
]
.

with training data (Xtn , Xtn+1
,∆Bn). The algorithm is presented in Algorithm 4.2.

Algorithm 4.2: Deep Backward Dynamic Programming 1 (DBDP1)
Input : X0: Desired spatial point that the solution should be found at.
Output: Estimate of u(t0, X0).
UN (.; η?N)← g(.)
for n = N − 1, . . . , 0 do

for i = 0, . . . , n do
∆Bi ∼ N (0,∆tiI)
Xti+1 ← Xti + µ(ti, Xti)∆ti + σ(ti, Xti)∆Bi

Rn(ηn, θn)← E
[
|U(Xtn+1 ; η?n+1)− U(Xtn ; ηn)−Z(Xtn ; θn)∆Bn +

f(tn, Xtn ,U(Xtn ; ηn),Z(Xtn ; θn)) ∆tn|2
]

(η?n, θ
?
n) ∈ arg min(ηn,θn)Rn(ηn, θn)

return U(X0; η?0)

Deep Backward Dynamic Programming 2

The next variant, DBDP2, is similar to DBDP1. The only difference is that σ(tn, x)>∇u(tn, x)
is no longer parametrized as a neural network, but as σ(tn, x)>∇̂U(x; ηn) where ∇̂ sym-
bolizes numerical- or automatic differentiation.

37

Chapter 4. Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs

4.2 Numerical Results
The implementation of Deep BSDE is available on GitHub, see Han (2019). The code for
DBDP is not publicly available, so it has been implemented in Python using the Tensor-
Flow 2.0 framework. All the numerical results have been produced on a MacBook Pro 2.2
GHz Intel Quad-Core i7 processor and 16GB of memory. This section presents the exam-
ples provided in Han et al. (2017) and E et al. (2017b) to show the diversity of equations
that can be solved using the previously presented methods.

4.2.1 Test Cases
All the following results have a ReLU activation function and use the hyperparameters as
provided in Han (2019) for the Deep BSDE method. A couple of days have been spent
tweaking the hyperparameters of the two variants of DBDP to ensure a decent fit. Unless
otherwise specified, the equations are solved in 100 spatial dimensions and the neural
networks have two hidden layers, both with a width of 110. Further, the training batch
is of size 64 and the validation batch sizes are 256. For all the results provided in the
following, five independent runs are performed and the metrics are averaged over these
five runs.

Hamilton-Jacobi-Bellman Linear Quadratic Control

The Hamilton-Jacobi-Bellmann (HJB) equations occurs in control theory, where the so-
lution is the value function. By applying the general HJB equation for a classical linear-
quadratic Gaussian control problem we get:

∂u

∂t
(t, x) + ∆u(t, x)− λ|∇u(t, x)|2 = 0,

with some terminal condition u(T, x) = g(x) and λ > 0. The explicit solution can be
derived using Itô’s formula,

u(t, x) = − 1

λ
ln
(

E
[

exp(−λg(x+
√

2BT−t)
])
,

where {Bt}t∈[0,T] is a Brownian motion. Consider now the terminal condition

g(x) = ln
(1 + |x|2

2

)
,

λ = 1 and T = 1. Then

u(0, 0) = − ln
(

2E
[1

1 + 2|B1|2
])
≈ 4.5901,

according to E et al. (2017a).
Numerical results are provided for a time discretization consisting of 20 time intervals.

The results are shown in Table 4.1 and Figure 4.1. Deep DBSE are trained using a learning
rate of 0.01 over 2000 iterations. Both variants of DBDP are trained using 500 iterations

38

4.2 Numerical Results

on the first and last time step and 200 iterations on the intermediate time steps. A decaying
learning rate, starting as 10 and decreasing to 0.1 after 300 iterations is used. The vertical
dotted lines in Figure 4.1(d) and Figure 4.1(e) display when a transition to a new time
step is performed.

0 250 500 750 1000 1250 1500 1750 2000
10 2

10 1

100

101

(a) Deep BSDE.
Average loss ± standard error.

0 250 500 750 1000 1250 1500 1750 2000

10 3

10 2

10 1

100

(b) Deep BSDE.
Average relative approximation er-
ror.

0 250 500 750 1000 1250 1500 1750 2000

1

2

3

4

(c) Deep BSDE.
Average estimate of u(0, X0) ±
standard error.

0 1000 2000 3000 4000

10 5

10 3

10 1

101

103

105

107

(d) DBDP1. Average loss.

0 1000 2000 3000 4000

10 5

10 4

10 3

10 2

10 1

100

101

102

(e) DBDP2. Average loss.

Figure 4.1: Hamilton-Jacobi-Bellman linear quadratic controller.

Algorithm Estimate Standard error Relative error Time trained (s)

Deep BSDE 4.59859 1.57 · 10−3 1.85 · 10−3 90.2
DBDP1 4.59568 3.97 · 10−3 1.39 · 10−3 296.2
DBDP2 4.60017 1.91 · 10−3 2.20 · 10−3 244.2

Table 4.1: Hamilton-Jacobi-Bellman linear quadratic controller.

39

Chapter 4. Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs

Allen-Cahn

We consider the Allen-Cahn equation. The Allen-Cahn equation is a reaction-diffusion
equation that is used in physics to model phase separation. The Allen-Cahn equation with
the double-well potential is on the form

∂u

∂t
(t, x)−∆u(t, x)− u(t, x) + [u(t, x)]3 = 0, t ∈ (0, T]. (4.4)

It is actually an initial value problem with u(x, 0) = g(x), but by applying a time trans-
formation t 7→ T − t, we are able to turn it to a terminal value problem and can use the
deep learning algorithms to solve it. After the time transformation, (4.4) reads

∂u

∂t
(t, x)−∆u(t, x) + u(t, x)− [u(t, x)]3, t ∈ [0, T)

and u(x, T) = g(x). We use

g(x) =
1

2 + 2
5 |x|2

,

T = 0.3 and x ∈ R100. Then, u(0, 0) ≈ 0.052802 which is computed by the Branching
diffusion method in E et al. (2017a).

We consider a discretization of 20 time intervals. For Deep BSDE the learning rate is
set to 5 ·10−3 and the model is trained for 4000 iterations. For both variants of DBDP, 500
iterations are used to train on the (N − 1)’th timestep, 400 iterations are used on the 0’th
timestep and 200 iterations are used on the other time steps. A decaying learning rate is
used, initially setting it to 1, reducing it to 0.1 after 200 iterations, then 0.01 after a total of
500 iterations and finally to 0.001 after a total of 1000 iterations. The results are displayed
in Table 4.2 and Figure 4.2.

40

4.2 Numerical Results

0 500 1000 1500 2000 2500 3000 3500 4000
10 4

10 3

10 2

10 1

(a) Deep BSDE.
Average loss ± standard error.

0 500 1000 1500 2000 2500 3000 3500 4000

10 3

10 2

10 1

100

101

(b) Deep BSDE.
Average relative approximation er-
ror.

0 500 1000 1500 2000 2500 3000 3500 4000

0.1

0.2

0.3

0.4

(c) Deep BSDE.
Average estimate of u(0, X0) ±
standard error.

0 1000 2000 3000 4000

10 8

10 6

10 4

10 2

100

(d) DBDP1. Average loss.

0 1000 2000 3000 4000

10 8

10 6

10 4

10 2

(e) DBDP2. Average loss.

Figure 4.2: Allen-Cahn.

Algorithm Estimate Standard error Relative error Time trained (s)

Deep BSDE 0.05275988 2.45 · 10−4 3.40 · 10−3 171.6
DBDP1 0.05283268 2.38 · 10−4 4.45 · 10−3 274.4
DBDP2 0.05292996 2.61 · 10−4 4.82 · 10−3 239.6

Table 4.2: Allen-Cahn.

41

Chapter 4. Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs

Black-Scholes Equation with Default Risk

The Black-Scholes equation is used to price European options. We consider a variant of
the Black-Scholes equation where the default risk is taken into account:

∂u

∂t
(t, x)+µ̄x>∇u(t, x)+

σ̄2

2

n∑
i=1

x2
i

∂2u

∂x2
i

(t, x)−(1−δ)Q(u(t, x))u(t, x)−Ru(t, x) = 0,

where δ ∈ [0, 1), µ̄ ∈ R, σ̄2 ∈ (0,∞) and R ∈ R. Further,

Q(y) =

γh, −∞ < y < vh

γh−γl
vh−vl (y − v

h) + γh, vh ≤ y < vl

γl, vl ≤ y <∞

where vh < vl and γh > γl. The terminal condition is g(x) = min{x1, . . . , xn}.
We perform numerical tests with T = 1, X0 = (100, . . . , 100), δ = 2/3, R = 0.02,

µ̄ = 0.02, σ̄ = 0.2, vh = 50, vl = 70, γh = 0.2, γl = 0.02 and a discretization of 40
time intervals. According to Han et al. (2017), u(0, X0) ≈ 57.300 Deep BSDE is trained
with learning rate 0.008 for 6000 iterations. Both variants of DBDP are trained for 400
iterations on the last time step, 500 iterations on the first time step and 200 iterations on
the intermediate time steps. A decaying learning rate is used, starting off with a learning
rate of 100 and then decaying to 1 after 200 iterations. The results are displayed in Table
4.3 and Figure 4.3.

42

4.2 Numerical Results

0 1000 2000 3000 4000 5000 6000

102

(a) Deep BSDE.
Average loss ± standard error.

0 1000 2000 3000 4000 5000 6000

10 2

10 1

(b) Deep BSDE.
Average relative approximation er-
ror.

0 1000 2000 3000 4000 5000 6000

44

46

48

50

52

54

56

(c) Deep BSDE.
Average estimate of u(0, X0) ±
standard error.

0 2000 4000 6000 8000

10 2

100

102

104

106

(d) DBDP1. Average loss.

0 2000 4000 6000 8000

10 3

10 1

101

103

105

(e) DBDP2. Average loss.

Figure 4.3: Black-Scholes equation with default risk.

Algorithm Estimate Standard error Relative error Time trained (s)

Deep BSDE 57.03612 5.21 · 10−2 5.61 · 10−3 508.8
DBDP1 57.09136 10.51 · 10−2 3.64 · 10−3 2779.8
DBDP2 57.04286 12.05 · 10−2 4.49 · 10−3 1448.8

Table 4.3: Black-Scholes equation with default risk.

43

Chapter 4. Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs

Black-Scholes with Different Interest Rates for Borrowing and Lending

The standard variant of Black-Scholes assumes that the interest rate for borrowing and
lending are equal. This is rarely the case. A variant which incorporates different interest
rates for borrowing and lending is

∂u

∂t
(t, x) + µ̄x>∇u(t, x) +

σ̄2

2

n∑
i=1

x2
i

∂2u

∂x2
i

(t, x)− (µ̄−Rl)
n∑
i=1

xi
∂u

∂xi
(t, x)

−Rlu(t, x) + (Rb −Rl) max
{

0,

n∑
i=1

xi
∂u

∂xi
(t, x)− u(t, x)

}
= 0

with terminal condition

g(x) = max{ max
1≤i≤n

xi − 120, 0} − 2 max{ max
1≤i≤n

xi − 150, 0}.

Numerical results are displayed in Table 4.4 and Figure 4.4 for X0 = (100, . . . , 100),
T = 0.5 and a discretization in time with 20 intervals. The results of Deep BSDE is
produced by training for 4000 iterations with a learning rate of 0.005. DBDP is trained for
500 iterations on the first and the last time step and 200 iterations in the intermediate time
steps. A decaying learning rate is used, initially 10, then decaying to 1 after 300 iterations
and lastly decaying to 0.1 after a total of 750 iterations. According to E et al. (2017a),
an approximate solution for u(0, X0) using multilevel Picard approximation methods is
21.299.

An important observation here is that both variants of DBDP performs really poor.
Extensive tweaking of hyperparameters were performed, but DBDP still kept converging
to the same, wrong, value.

44

4.2 Numerical Results

0 500 1000 1500 2000 2500 3000 3500 4000

3 × 101

4 × 101

5 × 101

6 × 101

(a) Deep BSDE.
Average loss ± standard error.

0 500 1000 1500 2000 2500 3000 3500 4000

10 3

10 2

10 1

(b) Deep BSDE.
Average relative approximation er-
ror.

0 500 1000 1500 2000 2500 3000 3500 4000

16

17

18

19

20

21

(c) Deep BSDE.
Average estimate of u(0, X0) ±
standard error.

0 1000 2000 3000 4000

10 2

100

102

104

(d) DBDP1. Average loss.

0 1000 2000 3000 4000

10 2

100

102

104

(e) DBDP2. Average loss.

Figure 4.4: Black-Scholes equation with different interest rates.

Algorithm Estimate Standard error Relative error Time trained (s)

Deep BSDE 21.2518 5.0 · 10−2 2.50 · 10−3 188.6
DBDP1 19.0905 2.9 · 10−2 104 · 10−3 297.4
DBDP2 19.2671 3.04 · 10−2 95 · 10−3 284.6

Table 4.4: Black-Scholes eqution with different interest rates.

45

Chapter 4. Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs

A PDE with Quadratically Growing Derivatives

We let
ψ(t, x) = sin

(
[T − t+

1

n
|x|n]0.4

)
and consider the equation

∂u

∂t
(t, x) + |∇u(t, x)|2 +

1

2
∆u(t, x)− ∂φ

∂t
(t, x) + |∇ψ(t, x)|2 +

1

2
∆ψ(t, x) = 0 (4.5)

with g(x) = ψ(x, T). Naturally, the analytical solution of (4.5) is u(x, t) = ψ(x, t).
Numerical results are provided in Table 4.5 and Figure 4.5 for X0 = (0, . . . , 0),

T = 1 and a discretization of 30 intervals in time. Deep BSDE is trained using a learning
rate of 0.005 over 4000 iterations. Both variants of DBDP use 500 iterations in the last
time step, 300 iterations in the intermediate time steps and 700 iterations in the last time
step. A decaying learning rate is used, initially at 10, then decaying to 1 after 300 iterations
and to 0.1 after a total of 600 iterations.

46

4.2 Numerical Results

0 500 1000 1500 2000 2500 3000 3500 4000

10 4

10 3

10 2

10 1

100

101

(a) Deep BSDE.
Average loss ± standard error.

0 500 1000 1500 2000 2500 3000 3500 4000
10 4

10 3

10 2

10 1

100

(b) Deep BSDE.
Average relative approximation er-
ror.

0 500 1000 1500 2000 2500 3000 3500 4000

1.0

1.5

2.0

2.5

3.0

3.5

(c) Deep BSDE.
Average estimate of u(0, X0) ±
standard error.

0 2000 4000 6000 8000 10000

10 7

10 5

10 3

10 1

101

103

105

(d) DBDP1. Average loss.

0 2000 4000 6000 8000 10000

10 7

10 5

10 3

10 1

101

103

(e) DBDP2. Average loss.

Figure 4.5: PDE with quadratically growing derivative.

Algorithm Estimate Standard error Relative error Time trained (s)

Deep BSDE 0.8409392 7.25 · 10−4 9.89 · 10−4 268.6
DBDP1 0.8402152 9.31 · 10−4 14.96 · 10−4 985.8
DBDP2 0.8411672 7.20 · 10−4 7.19 · 10−4 608.2

Table 4.5: PDE with quadratically growing derivative.

47

Chapter 4. Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs

A Time-Dependent Reaction-Diffusion-Type PDE with an Oscillating Solution

The equation

∂u

∂t
(t, x)+

1

2
∆u(t, x)+min

{
1, u(t, x)−

[
κ−1−sin

(
λ

n∑
i=1

xi

)
exp

(λ2n(t− T)

2

)]2}
= 0

with terminal condition

g(x) = 1 + κ+ sin
(
λ

n∑
i=1

xi

)
has explicit solution

u(t, x) = 1 + κ+ sin
(
λ

n∑
i=1

xi

)
exp

(λ2n(t− T)

2

)
.

We run numerical test with λ = 1/
√
n, T = 1 and a time discretization of 30 intervals.

Deep BSDE is trained for 2400 iterations with a learning rate of 0.01. Both variants of
DBDP is trained for 1000 iterations on the last time step, 200 for the intermediate time
steps and 400 iterations on the first time step. A decaying learning rate is used, starting
with 10, then decaying to 1 after 100 iterations, to 0.1 after a total of 400 iterations and to
0.02 after a total of 700 iterations. The results are shown in Table 4.6 and Figure 4.6.

48

4.2 Numerical Results

0 5000 10000 15000 20000 25000

10 2

10 1

100

(a) Deep BSDE.
Average loss ± standard error.

0 5000 10000 15000 20000 25000

10 2

10 1

100

(b) Deep BSDE.
Average relative approximation er-
ror.

0 5000 10000 15000 20000 25000

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(c) Deep BSDE.
Average estimate of u(0, X0) ±
standard error.

0 1000 2000 3000 4000 5000 6000 7000

10 3

10 1

101

103

(d) DBDP1. Average loss.

0 1000 2000 3000 4000 5000 6000 7000
10 4

10 3

10 2

10 1

100

101

102

103

(e) DBDP2. Average loss.

Figure 4.6: Time-dependent reaction-diffusion-type PDE.

Algorithm Estimate Standard error Relative error Time trained (s)

Deep BSDE 1.61235 4.92 · 10−3 7.72 · 10−3 1510.2
DBDP1 1.61494 10.65 · 10−3 9.34 · 10−3 644.6
DBDP2 1.60723 14.29 · 10−3 8.04 · 10−3 477.6

Table 4.6: Time-dependent reaction-diffusion-type PDE.

49

Chapter 4. Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs

4.2.2 Discussion
The authors of DBDP claim that the two variants are less prone to be trapped in local
minima, contrary to Deep BSDE. While this might be true for some cases, the opposite
can also occur, as seen in Table 4.4. The examples above might be unfair in favour of
DBDP, since they have all been picked from articles discussing Deep BSDE.

A benefit of the DBDP method is that it enables the networks to be pre-trained; to
initialize the neural networks with the same parameters as the preceding neural network. In
theory, this trick allows more efficient training. Remember that we are iterating backwards
in time. The neural networks of the last time step, N − 1, should be trained for many
iterations. Then, by using the pre-training trick, the preceding neural networks can be
trained for way less iterations. This is displayed on the average loss plots in the previous
section. The first time step, if u(t0, X0) is not a neural network, but a parameter with X0

constant, must however be trained for more iterations as shown in the previous section.
In the case where X0 in some region D is considered and u(t0, X0) is approximated as a
neural network, the issue with the 0’th step is not present. In practice having a different
amount of iterations for the various time steps, adds more degrees of freedoms to the
hyperparameters, making it increasingly difficult to tune.

Another advantage of the DBDP is the fact that it enables a finer discretization on the
Euler-Maruyama schemes. Too many time steps in the Deep BSDE algorithm would cause
memory issues since there would be too many neural network parameters to be trained
simultaneously. DBDP on the other hand, would not run into the same issues, since the
parameters of the neural network(s) of only one time step is optimized simultaneously.
However, Deep BSDE have been able to solve Allen-Cahn with 200 time steps without
issues.

50

Chapter 5

A Deep Learning Algorithm for
Solving Fractional Laplace
Equations

We turn our focus to an equation on the form (2.29), namely equations involving the frac-
tional Laplace operator. This chapter proposes a numerical scheme to solve the equation.

The first section derives an approximation of the fractional Laplace operator and presents
a numerical scheme similar to DBDP to solve such equations. The second section provides
numerical results on a test example.

5.1 Presentation of Algorithm
We develop an algorithm that is mainly inspired by DBDP, in particular the second vari-
ant. The algorithm extends the ideas of DBDP to an algorithm that is capable of solving
equations involving the fractional Laplace operator.

Fractional Laplace Operator

The fractional Laplace operator, −(−∆)α/2, in Rd with α ∈ (0, 2), can be written by a
variant of the singular integral definition, by Kwaśnicki (2015):

−(−∆)α/2u(t, x) =

∫
Rd\{0}

[
u(t, x+ z)− u(t, x)− z>∇u(t, x)1|z|<1

]
να(z)dz

where

να(dx) =
2αΓ(d+α

2)

πd/2|Γ(−α2)|︸ ︷︷ ︸
cα,d

1

|x|d+α
dx, α ∈ (0, 2). (5.1)

51

Chapter 5. A Deep Learning Algorithm for Solving Fractional Laplace Equations

We have that

−(−∆)α/2u(t, x) =

∫
|z|<r

[
u(t, x+ z)− u(t, x)− z>∇u(t, x)1|z|<1

]
να(dx)

+

∫
|z|>r

[
u(t, x+ z)− u(t, x)− z>∇u(t, x)1|z|<1

]
να(dz) (5.2)

for some r ∈ R. By assuming r < 1 we Taylor expand in u(t, x+ z) around x:

u(t, x+ z) = u(t, x) + z>∇u(x) +

∫ x+z

x

(x+ z − y)>∇2u(t, y)dy

= u(t, x) + z>∇u(t, x) +
1

2
z>∇2u(t, ξ)z, ξ ∈ (x, x+ z). (5.3)

We now insert (5.3) in (5.2), and get∫
|z|<r

[
u(t, x)− u(t, x)− z>∇u(t, x)1|z|<1

]
να(dz) =

1

2

∫
|z|<r

z>∇2u(t, ξ)zνα(dz),

(5.4)

for ξ ∈ (x, x + z). We further assume r � 1 and hence ∇2u(t, ξ) ≈ ∇2u(t, x). We
therefore approximate (5.4) as

1

2

∫
|z|<r

z>∇2u(t, x)zνα(dz) =
1

2

∫
|z|<r

Tr
(
z>∇2u(t, x)z

)
να(dz)

=
1

2
Tr
(
∇2u(t, x)

∫
|z|<r

zz>

|z|d+α
dz
)

=
1

2
cα,d

πd/2

Γ(d2 + 1)

r2−α

2− α︸ ︷︷ ︸
kα,d,r

∆u(t, x).

Since να is even, we have that∫
|z|>r

z>∇u(t, x)1|z|<1να(dz) = 0

such that the Fractional Laplace operator is approximated as

−(−∆)α/2u(t, x) ≈
∫
|z|>r

[
u(t, x+ z)− u(t, x)

]
να(dx) +

1

2
cα,dkα,d,r∆u(t, x).

where we recognize the latter term as

1

2
Tr
(
σ(t, x)>σ(t, x)∇2u(t, x)

)
for σ(t, x) =

√
cα,dkα,d,rI .

52

5.1 Presentation of Algorithm

Numerical Scheme

We aim to find the solution u(0, X0), for some X0 ∈ Rd, for equations on the form

∂u

∂t
(t, x)− (−∆)α/2u(t, x) = f(t, x, u(t, x)), (5.5)

with some specified terminal condition u(T, x) = g(x).
We develop a forward Euler-Maruyama-like scheme based on (2.27) on the time do-

main [0, T], where 0 = t0 < t1 < · · · < tN < T , by using the Brownian motion
approximation on the small jumps:

Xtn+1
≈ Xtn +

√
cα,dkα,d,r∆Bn +

∑
s∈[tn,tn+1)

∆Xs, (5.6)

where the sum is over all the arrival times, s, in the interval [tn, tn+1) of the Poisson
process with intensity λ[r,∞) =

∫
|x|∈[r,∞)

ν(dx). ∆Xi are the jump sizes which are
sampled from ν(dx)1|x|>r/λ|x|>r. The scheme for the corresponding BSDE reads:

u(tn+1, Xtn+1
) ≈ u(tn, Xtn)− f(tn, Xtn , u(tn, Xtn))∆tn

+
√
cα,dkα,d,r∇u(tn, Xtn)>∆Bn

+
∑

s∈[tn,tn+1)

[
u(s,Xs− + ∆Xs)− u(s,Xs−)

]
(5.7)

Let u(tn, x) be approximated as a neural network U(x; ηn) as in DBDP. Further, automatic-
or numerical differentiation applied to U(x; ηn), ∇̂U(x, ηn), is used to approximate∇u(tn, x).
An issue with (5.7) is that we do not have a parametrization of u(s, x) for s ∈ (tn, tn+1).
We could therefore simply approximate u(s, x) for s ∈ (tn, tn+1) as U(x, ηn) or U(x, ηn+1).
It is also possible to use a linear interpolation:

u(s, x) ≈ s− tn
tn+1 − tn

U(x, ηn+1) +
tn+1 − s
tn+1 − tn

U(x, ηn).

The proposed algorithm is presented in Algorithm 5.1.

53

Chapter 5. A Deep Learning Algorithm for Solving Fractional Laplace Equations

Algorithm 5.1: Solving fractional Laplace equations.
Input : X0: Desired spatial point that the solution should be found at.

α: Index of fractional Laplace operator.
r: Cut-off value for the Brownian motion approximation.

Output: Estimate of u(t0, X0).
λ[r,∞) ←

∫
|x|∈[r,∞)

να(dx)

U(.; η?N)← g(.)
for n = N − 1, . . . , 0 do

/* Sample the forward process at time tn. */
Bn ∼ N (0, tnI)
Xtn ←

√
cα,dkα,d,rBn

Pn ∼ Poiss(tnλ[r,∞))
for i = 0, . . . , Pn do

J ∼ ν1|x|>r/λ[r,∞)

Xtn ← Xtn + J

∆Bn ∼ N (0,∆tnI)
Xtn+1 ← Xtn +

√
cα,dkα,d,r∆Bn

/* Sample the jumps and process in the interval
[tn, tn+1). */

j ← 0
s0 ← tn
repeat

τ ∼ exp(λ[r,∞))
∆Xj ∼ ν1|x|>r/λ[r,∞)

sj+1 ← sj + τ
∆Bj ∼ N (0, τI)
Xsj+1 ← Xsj + ∆Xj +

√
cα,dkα,d,r∆Bj

j ← j + 1
until sj < tn+1;
∆B′ ∼ N (0, (tn − sj−1)I)
Xtn+1

← Xsj−1
+
√
cα,dkα,d,r∆B

′

/* Compute the risk and optimize. */

Rn(ηn)← E
[
|U(Xtn+1 ; η?n+1)− U(Xtn ; ηn)

−
∑j−1
m=1

(
U(Xsm− + ∆Xm; ηn)− U(Xsm−; ηn)

)
−
√
cα,dkα,d,r∇̂U(Xtn ; ηn)∆Bn

+f(tn, Xtn , u(tn, Xtn)) ∆tn|2
]

η?n ∈ arg minηn Rn(ηn)

return U(X0; η?0)

54

5.2 Numerical Results

5.2 Numerical Results
The numerical scheme in Algorithm 5.1 is implemented in Python using the TensorFlow
2.0 framework. All numerical results is produced on a MacBook Pro 2.2 GHz Intel Quad-
Core i7 processor and 16GB of memory. The algorithm is carried out for a test case to
solve the equation on the form (5.5). A discussion is included.

5.2.1 Test Case: An Equation with Sinusoidal Solution
We consider

∂u

∂t
(t, x)− (−∆)α/2u(t, x)− sin(x)F ′(t)− u(x, t)

∫ ∞
−∞

(cos(z)− 1)να(dz) = 0

with g(x) = sin(x)F (T) for some F (t) in one dimension. The equation have the solution

u(x, t) = sin(x)F (t).

Let F (t) = exp(−t2), T = 0.1 and X0 = −0.5 such that the true solution is
u(0,−0.5) = sin(−0.5) ≈ −0.47942. The equation is solved using 5 time intervals,
trained for 5000 iterations on each step with a learning rate 0.001 without using pre-
training. A validation set of size 128 and training set of size 64 is used. The neural
network approximations of u have 2 hidden layers, both with a width of 10.

We consider α = 0.7, α = 1.3 and α = 1.8 as test cases. For each of the three test
cases, the algorithm is executed with three different cut-off values for the Brownian motion
approximation. We let r = 1/2, r = 1/20 and r = 1/200. Each combination is trained
5 times and average values are reported. For α = 0.7 the numerical results are provided
in Table 5.1. Figure 5.1 shows the validation loss averaged over the 5 simulations. The
same results can be found in Table 5.2 and Figure 5.2 for α = 1.3, and in Table 5.3 and
Figure 5.3 for α = 1.8.

55

Chapter 5. A Deep Learning Algorithm for Solving Fractional Laplace Equations

0 5000 10000 15000 20000 25000
10 4

10 3

10 2

10 1

100

101

102

(a) r = 1/2.

0 5000 10000 15000 20000 25000
10 4

10 3

10 2

10 1

100

101

102

(b) r = 1/20.

0 5000 10000 15000 20000 25000
10 4

10 3

10 2

10 1

100

101

102

(c) r = 1/200.

Figure 5.1: Validation loss for training of fractional Laplace algorithm with α = 0.7.

Estimate Standard error Relative error Time trained (s)

r = 1/2 −0.4765570 34.4 · 10−3 60.6 · 10−3 366.5
r = 1/20 −0.2711255 11.9 · 10−3 434 · 10−3 315.8
r = 1/200 −0.3437862 19.9 · 10−3 32.9 · 10−3 312.0

Table 5.1: Numerical results for fractional Laplace algorithm with α = 0.7.

56

5.2 Numerical Results

0 5000 10000 15000 20000 25000
10 4

10 3

10 2

10 1

100

101

102

(a) r = 1/2.

0 5000 10000 15000 20000 25000
10 4

10 3

10 2

10 1

100

101

102

(b) r = 1/20.

0 5000 10000 15000 20000 25000
10 4

10 3

10 2

10 1

100

101

102

(c) r = 1/200.

Figure 5.2: Validation loss for training of fractional Laplace algorithm with α = 1.3.

Estimate Standard error Relative error Time trained (s)

r = 1/2 −0.4854602 3.45 · 10−3 12.6 · 10−3 311.8
r = 1/20 −0.5020119 7.88 · 10−3 47.1 · 10−3 320.6
r = 1/200 −0.5059846 1.14 · 10−3 55.4 · 10−3 340.8

Table 5.2: Numerical results for fractional Laplace algorithm with α = 1.3.

57

Chapter 5. A Deep Learning Algorithm for Solving Fractional Laplace Equations

0 5000 10000 15000 20000 25000
10 4

10 3

10 2

10 1

100

101

102

(a) r = 1/2.

0 5000 10000 15000 20000 25000
10 4

10 3

10 2

10 1

100

101

102

(b) r = 1/20.

0 5000 10000 15000 20000 25000
10 4

10 3

10 2

10 1

100

101

102

(c) r = 1/200.

Figure 5.3: Validation loss for training of fractional Laplace algorithm with α = 1.8.

Estimate Standard error Relative error Time trained (s)

r = 1/2 −0.4632650 5.61 · 10−3 33.7 · 10−3 290.8
r = 1/20 −0.4795688 2.06 · 10−3 3.95 · 10−3 330.0
r = 1/200 −0.4821258 6.36 · 10−3 11.8 · 10−3 451.5

Table 5.3: Numerical results for fractional Laplace algorithm with α = 1.8.

58

5.2 Numerical Results

5.2.2 Discussion
The first observation is that some of the results suffer from instability. We see it clearly
on the validation loss plots, Figure 5.1, Figure 5.2 and Figure 5.3, which are supposed
to decay and exhibit a spike only after each 5000’th iteration, much like Figure 5.3(c).
The plots in Figure 5.1 and Figure 5.2 shows huge spikes on time steps where there
ideally should not be spikes, confirming the instability. The results of Algorithm 5.1 are
increasingly good when α increases. The results for α = 0.7 are of no worth, the results
for α = 1.3 are of very limited worth and the results for α = 1.8 are of some worth. The
decreasing stability with a decreasing α may suggest that the algorithm performs poorly
when the forward process, see (5.6), are fat tailed.

The α-stable processes are notorious for their fat tails. The marginal distribution of
the process even have an infinite mean for α ≤ 1 and an infinite variance for α < 2.
A different operator should therefore be considered for further testing. For instance, the
operator

Lu(t, x) =

∫
R\{0}

[
u(t, x+ z)− u(t, x)− z>∇u(t, x)1|z|<1

]
νC,G,M,Y (dx)

where

νC,G,M,Y (dx) =
(C exp(Gx)

|x|1+Y
1x<0 +

C exp(−Mx)

|x|1+Y
1x>0

)
dx. (5.8)

This is the so-called CGMY process, as presented in Carr et al. (2003). We see that (5.8)
decays a lot faster towards zero compared to (5.1), and it is therefore believed to be less
prone to the instability.

We also observe that the effect of the cut-off value, r, does influence the results. We
consider the case with α = 1.8 and compare the relative error, given in Table 5.3, for
the different cut-off values. The lowest relative error is attained for r = 1/20 and the
highest relative error is attained for r = 1/2. One would expect that the error would
strictly increase as a function of r. However, Figure 2.6 and Figure 2.7 shows limited
visual difference between r = 0.1 and r = 0.01. So, r = 1/20 might be a sufficiently
low cut-off for the fractional Laplace algorithm, allowing the total error to be dominated
by other sources.

59

Chapter 5. A Deep Learning Algorithm for Solving Fractional Laplace Equations

60

Chapter 6

Concluding Remarks

The thesis aims to verify the Deep BSDE and the two variants of DBDP, as well as an ex-
tension to solve equations involving the fractional Laplace. Both Deep BSDE and DBDP
successfully avoids the curse of dimensionality by reformulating PDEs to learning prob-
lems.

A thorough presentation of the background theory is performed. The theory is impor-
tant in order to understand the deep learning algorithms. Stochastic calculus is discussed,
a deep dive is made into the Lévy processes and neural networks are introduced. We focus
on two main methods for solving semi-linear parabolic PDEs, namely Deep BSDE and
the two variants of DBDP. Both variants of DBDP is implemented in Python using the
TensorFlow 2.0 framework and numerical results for several examples are provided. At
last, the extension to solve equations involving the fractional Laplace is presented. This
algorithm is also implemented using the TensorFlow 2.0 framework.

Both Deep BSDE and the two variants of DBDP successfully solves 100-dimensional
semi-linear parabolic PDEs in most cases. Both variants of DBDP converge to the wrong
value for only one of the test examples. Being able to solve such high dimensional PDEs
is in practice not possible for previous methods. Unfortunately, the results of the fractional
Laplace equation are somewhat disappointing. The algorithm gives some useful results in
one dimension for α = 1.8, but for other cases the results are of no use. The reason might
be that the tails of the α-stable processes are simply too fat, and hence stable convergence
is not possible. To confirm or discard this hypothesis, further testing should be done.
For instance, the CGMY processes which are a class of Lévy processes where the Lévy
measure decays exponentially and thus have thinner tails.

During the end of the work on this thesis Germain et al. (2020) was published. This
article presents a new multistep method which is somewhat similar to DBDP. The article
further shows that the multistep algorithm performs better, or similar to, Deep BSDE and
DBDP. In particular it would be interesting to test such an algorithm on the fractional
Laplace equation to see whether or not it would be an improvement.

61

Chapter 6. Concluding Remarks

62

Bibliography

Asmussen, S., Glynn, P.W., 2007. Stochastic Simulation: Algorithms and Analysis.
Springer. doi:https://doi.org/10.1007/978-0-387-69033-9.

Asmussen, S., Rosiński, J., 2001. Approximations of small jumps of lévy processes with
a view towards simulation. Journal of Applied Probability 38, 482–493. URL: http:
//www.jstor.org/stable/3215901.

Barles, G., Buckdahn, R., Pardoux, E., 1997. Backward stochastic dif-
ferential equations and integral-partial differential equations. Stochas-
tics and Stochastic Reports 60, 57–83. URL: https://doi.org/10.
1080/17442509708834099, doi:10.1080/17442509708834099,
arXiv:https://doi.org/10.1080/17442509708834099.

Carr, P.P., Geman, H., Madan, D.B., Yor, M., 2003. Stochastic Volatil-
ity for Levy Processes. Mathematical Finance , 345–382.URL: https:
//engineering.nyu.edu/sites/default/files/2019-03/
Carr-stochastic-volatility-levy-processes.pdf, doi:http:
//dx.doi.org/10.2139/ssrn.314979.

Cohen, S., Rosiński, J., 2007. Gaussian approximation of multivariate lévy processes with
applications to simulation of tempered stable processes. Bernoulli 13, 195–210. URL:
https://doi.org/10.3150/07-BEJ6011, doi:10.3150/07-BEJ6011.

Cont, R., Tankov, P., 2004. Financial Modelling With Jump Processes. Chapman Hal-
l/CRC: Financial MAthematics Series.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems 2, 303–314. URL: https://doi.org/10.
1007/BF02551274, doi:10.1007/BF02551274.

Duchi, J., Hazan, E., Singer, Y., 2011. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159.

E, W., Han, J., Jentzen, A., 2017a. Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential
equations. arXiv e-prints , arXiv:1706.04702arXiv:1706.04702.

63

http://dx.doi.org/https://doi.org/10.1007/978-0-387-69033-9
http://www.jstor.org/stable/3215901
http://www.jstor.org/stable/3215901
https://doi.org/10.1080/17442509708834099
https://doi.org/10.1080/17442509708834099
http://dx.doi.org/10.1080/17442509708834099
http://arxiv.org/abs/https://doi.org/10.1080/17442509708834099
https://engineering.nyu.edu/sites/default/files/2019-03/Carr-stochastic-volatility-levy-processes.pdf
https://engineering.nyu.edu/sites/default/files/2019-03/Carr-stochastic-volatility-levy-processes.pdf
https://engineering.nyu.edu/sites/default/files/2019-03/Carr-stochastic-volatility-levy-processes.pdf
http://dx.doi.org/http://dx.doi.org/10.2139/ssrn.314979
http://dx.doi.org/http://dx.doi.org/10.2139/ssrn.314979
https://doi.org/10.3150/07-BEJ6011
http://dx.doi.org/10.3150/07-BEJ6011
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://arxiv.org/abs/1706.04702

E, W., Han, J., Jentzen, A., 2017b. Deep Learning-Based Numerical Methods for
High-Dimensional Parabolic Partial Differential Equations and Backward Stochastic
Differential Equations. Communications in Mathematics and Statistics 5, 349–380.
doi:https://doi.org/10.1007/s40304-017-0117-6.

Germain, M., Pham, H., Warin, X., 2020. Deep backward multistep schemes
for nonlinear PDEs and approximation error analysis. arXiv e-prints ,
arXiv:2006.01496arXiv:2006.01496.

Glasserman, P., 2003. Monte Carlo Methods in Financial Engineering. Springer.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. The MIT Press.

Han, J., 2019. Deep BSDE Solver in TensorFlow (2.0). URL: https://github.com/
frankhan91/DeepBSDE.

Han, J., Jentzen, A., E, W., 2017. Solving high-dimensional partial differential equations
using deep learning. arXiv e-prints , arXiv:1707.02568arXiv:1707.02568.

Hochreiter, S., 1991. The vanishing gradient problem during learning recurrent neural nets
and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems .

Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks.
Neural Networks 4, 251 – 257. URL: http://www.sciencedirect.
com/science/article/pii/089360809190009T, doi:https:
//doi.org/10.1016/0893-6080(91)90009-T.

Huré, C., Pham, H., Warin, X., 2019. Deep backward schemes for high-dimensional
nonlinear PDEs. arXiv e-prints , arXiv:1902.01599arXiv:1902.01599.

Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Optimization. arXiv e-prints
, arXiv:1412.6980arXiv:1412.6980.

Kwaśnicki, M., 2015. Ten equivalent definitions of the fractional Laplace operator. arXiv
e-prints , arXiv:1507.07356arXiv:1507.07356.

Lawler, G.F., 2014. Stochastic Calculus: An Introduction with Applications.

Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L., 2017. The expressive power
of neural networks: A view from the width, in: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(Eds.), Advances in Neural Information Processing Systems 30. Curran Asso-
ciates, Inc., pp. 6231–6239. URL: http://papers.nips.cc/paper/
7203-the-expressive-power-of-neural-networks-a-view-from-the-width.
pdf.

Nocedal, J., Wright, S.J., 2006. Numerical Optimization. 2 ed., Springer.

Øksendal, B., 2013. Stochastic Differential Equations. 6 ed., Springer.

64

http://dx.doi.org/https://doi.org/10.1007/s40304-017-0117-6
http://arxiv.org/abs/2006.01496
https://github.com/frankhan91/DeepBSDE
https://github.com/frankhan91/DeepBSDE
http://arxiv.org/abs/1707.02568
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://dx.doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
http://arxiv.org/abs/1902.01599
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1507.07356
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf

Pardoux, E., 1995. Backward stochastic differential equations and applications, in:
Chatterji, S.D. (Ed.), Proceedings of the International Congress of Mathematicians,
Birkhäuser Basel, Basel. pp. 1502–1510.

Pardoux, E., Răşcanu, A., 2014. Stochastic Differential Equations, Backward SDEs, Par-
tial Differential Equations. Springer.

Pardoux, E., Tang, S., 1999. Forward-backward stochastic differential equations and
quasilinear parabolic pdes. Probability Theory and Related Fields 114, 123–150. URL:
https://doi.org/10.1007/s004409970001.

Pérez-Cruz, F., 2018. URL: http://www.da.inf.ethz.ch/teaching/2018/
DeepLearning/.

65

https://doi.org/10.1007/s004409970001
http://www.da.inf.ethz.ch/teaching/2018/DeepLearning/
http://www.da.inf.ethz.ch/teaching/2018/DeepLearning/

66

0 2 4 6 8 10

−25

−20

−15

−10

−5

0

5

10

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Oscar Christian Ameln

Deep Learning Algorithms for Solving
PDEs

Presentation and Implementation of Deep Learning
Algorithms for Solving Semi-Linear Parabolic PDEs
with an Extension to the Fractional Laplace
Operator

Master’s thesis in Applied Physics and Mathematics

Supervisor: Espen Robstad Jakobsen

July 2020

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Problem and Motivation
	Outline

	Stochastic Calculus
	Probability Theory and Itô Calculus for Brownian Motions
	Probability Theory
	Itô Calculus for Brownian Motions

	Lévy Processes
	Introduction and Definition
	Finite Activity Lévy Processes
	Infinite Activity Lévy Processes
	Generating Lévy Processes

	Neural Networks
	Learning Theoretical Framework
	Feedforward Neural Networks
	Activation Functions
	Optimization
	Universal Approximation

	Deep Learning Algorithms for Solving Semi-Linear Parabolic PDEs
	Presentation of Algorithms
	Deep BSDE
	Deep Backward Dynamic Programming

	Numerical Results
	Test Cases
	Discussion

	A Deep Learning Algorithm for Solving Fractional Laplace Equations
	Presentation of Algorithm
	Numerical Results
	Test Case: An Equation with Sinusoidal Solution
	Discussion

	Concluding Remarks
	Bibliography

