
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Petter Aarseth Moen

Bankruptcy prediction for Norwegian
enterprises using interpretable
machine learning models with a novel
timeseries problem formulation

Master’s thesis in Applied Physics and Mathematics

Supervisor: Jo Eidsvik

July 2020





Petter Aarseth Moen

Bankruptcy prediction for Norwegian
enterprises using interpretable
machine learning models with a novel
timeseries problem formulation

Master’s thesis in Applied Physics and Mathematics
Supervisor: Jo Eidsvik
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Abstract

Prediction of corporate bankruptcy is a topic of great relevance to both investors, creditors,
banks, and regulators, offering significant potential for economic gains. Using a dataset of
financial statements from more than 175000 Norwegian small and medium-sized enterprises
spanning 8 years, we implement and train three static statistical models (logistic regression,
neural networks, and CatBoost) and test their performance on a representative set of
performance metrics. New for the field is the gradient boosting framework CatBoost, which
produces an AUC score of 0.8735 on a balanced test dataset, compared to 0.8437 of the
traditionally used logistic regression model.

This performance increase is partly facilitated by the introduction of a novel categorical
feature, containing information about the industry of a company. We present and compare
several ways of integrating such categorical features into the model frameworks, and find that
a target encoding generally performs the best. We also find that more compact feature subsets
of 30 financial ratio features (as opposed to the full 156 feature set) achieve comparable
performance in all cases.

We then formulate the bankruptcy prediction problem as a timeseries prediction problem,
using subsequent years of financial ratios to construct timeseries containing 1-4 years of such
data. We implement two neural network based timeseries models, namely recurrent neural
networks and long short term memory networks, which are found to produce balanced test
set AUC scores of 0.8651 and 0.8698, respectively. While worse than the CatBoost model (and
similar to the standard neural network) for the timeseries with only 1 year of data, we find
that the timeseries models produce significantly better results for timeseries with 3 and 4
years of data, with AUC scores of 0.8827 and 0.8891 for the LSTM model, respectively.

Finally, we outline a theoretically sound model interpretation framework, named SHAP,
providing values for individual feature contributions to any model prediction. We then
demonstrate how this framework can be applied to our considered bankruptcy prediction
models, both for feature selection and analysis of learned model behaviour. The former is
found to perform comparatively to a more exhaustive feature selection search method.



Sammendrag

Prediksjon av konkurs hos selskaper er et emne som er relevant både hos investorer, kreditorer,
banker og regulatorer. I denne oppgaven bruker vi et datasett bestående av årsrapporter
fra mer enn 175000 norske små- og mellomstore bedrifter over 8 år til å trene tre statiske
statistiske modeller (logistisk regresjon, nevrale nettverk og CatBoost), og tester ytelsen på et
representativt sett ytelsesmetrikker. Nytt for området er prediksjonsrammeverket CatBoost,
som gir en AUC-score på 0.8735 på et balansert testdatasett, sammenlignet med 0.8437 hos
den mer tradisjonelle logistisk regresjonsmodellen.

Ytelsesøkningen kommer delvis av introduksjonen av en ny kategorisk variabel som in-
neholder informasjon om industrområdet til selskapet. Vi presenterer og tester også forskjel-
lige måter å integrere kategoriske variabler i modellen, og finner at target encoding gir
generelt best resultater. Vi finner også at et mer kompakt variabelsett med 30 nøkkeltal-
lvariabler (i motsetning til 156 i det fulle variabelsettet) gir sammenlignbar ytelse i alle
tilfeller.

Videre formulerer vi konkursproduksjonsproblemet som et tidsrekkeprediksjonsproblem,
og bruker følgende år med nøkkeltall til å konstruere tidsrekker med 1-4 år av denne
dataen. Vi implementerer to tidsrekkemodeller basert på nevrale nettverk, RNN og LSTM,
som produserer testsett AUC-scorer på henholdsvis 0.8651 og 0.8698. Tidsrekkemodellene
yter verre enn CatBoost-modellen (og sammenlignbart med det vanlige nevrale nettverket)
på tidsrekker med 1 år tilgjengelig data, men produserer signifikant bedre resultater på
tidsrekker med 3 og 4 år med data, med AUC-scorer på henholdsvis 0.8827 og 0.8891 for
LSTM-modellen.

Til slutt presenterer vi et teoretisk solid rammeverk for modellinterpretasjon, kalt SHAP,
som gir verdier for individuelle variabelbidrag til enhver modellprediksjon. Vi demonstrerer
så hvordan dette rammeverket kan brukes på våre konkursprediksjonsmodeller, både til
variabelseleksjon og analyse av modellens lærte oppførsel. Vi finner at førstnevnte produserer
sammenlignbare resultater som med mer komplekse variabelseleksjonsmetoder.
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Chapter 1

Introduction

In this introductory chapter, we will provide the relevant background for the study of
bankruptcy prediction, motivating and then highlighting the specific areas of focus chosen
in this thesis. In the following sections, we further give an overview of the overall thesis
structure, and detail our concrete contributions to the field.

1.1 Background and motivation for bankruptcy prediction

Corporate bankruptcy is an ever prevalent issue in the global financial world, incurring large
costs to both the company and its stakeholders, related financial institutions and even the
economical ecosystem as a whole (Alaka et al., 2017). Therefore, predicting bankruptcies
ahead of time has been of great interest to both academics and practitioners, including
investors, financial institutions and regulators. The topic has gotten increased attention
after the 2007-08 global financial crisis, which exposed major shortcomings in financial
risk management systems, resulting in reorganization and bankruptcies in many companies,
including many of the world’s largest financial institutions.

Bankruptcy prediction sits at the intersection between the fields of finance and statistics. The
latter field has seen significant developments over the past decade, specifically in the fields
of machine learning (or statistical learning), where increased computing power and data
availability combined with new algorithmic models (or improvements to existing ones) are
leveraged to give significant improvements in predictive performance.

Despite this, most financial institutions still typically deploy more traditional statistical
methods to model prediction of bankruptcies, partly due to their practical interpretability,
compared to more the complex modern models (Zhang and Thomas, 2015). In an increasingly
competitive financial industry with new alternatives to traditional bank loans (such as
crowdfunding and peer-to-peer lending) entering the markets, more accurate analysis of
companies are more important than ever, motivating the importance of better-performing
bankruptcy prediction models.

It is important to still consider the importance of practical interpretability of such models, as
most business practitioners prefer more interpretable models over complex ones, even if the
latter is outperforming the former (Jones et al., 2017). Considering the fact that even small
performance increases in bankruptcy prediction models can lead to significant economical
gains (Stein, 2005), this proves the concrete value model interpretability holds amongst
practitioners.

While small and medium-sized enterprises (SMEs) comprise the majority of global companies
(indeed, 99% of all EU enterprises in 2015 were considered SMEs (Papadopoulos et al.,
2015)), the literature of bankruptcy prediction is focused mostly on large or listed companies
(Wahlstrøm et al., 2020). This is mainly due to easier available financial data and the
possibility of using marked-based information. Despite this, the economical magnitude of
SMEs make them obvious candidates for study, as they are crucial to both national, regional

1



and global economies (Gupta et al., 2018), particularly in job creation (Neumark et al., 2008).
Furthermore, SMEs often have trouble acquiring financing due to high capital requirements
and greater economical uncertainties (especially after the EU’s new Basel III regulatory
requirements (Bank of International Settlements, 2017)), motivating studies of improved
risk modelling and prediction capabilities for this segment.

Another common problem for bankruptcy prediction studies is a lack of extensive data;
many recent studies use samples from only 400 or less companies (Kumar and Ravi 2007;
Veganzones and Séverin 2020). The data is also often susceptible of significant sample bias,
as it is typically sourced from e.g. a single set of customers from a specific bank (Veganzones
and Séverin, 2020). This does not only weaken the statistical strength and significance of
the analysis, but also limits the potential of many modern machine learning models, which
typically require both considerable and representative data in order to produce unbiased
performance gains (Pasini, 2015).

It is reasonable to believe that multiple previous years of financial data can be relevant
to predict bankruptcy. By modelling bankruptcy prediction as a timeseries problem, one
may capture information about how a company’s financial situation has developed over
time, which intuitively could be very relevant to predicting bankruptcy. Despite this, there
is little in the current literature that explore this. One reason for this may be in the in the
corresponding increase in required data, making a significant number of timeseries samples
even harder to construct.

1.2 Focus of thesis & thesis structure

The main focus of this thesis will be concerned with the application of modern machine
learning methods to the problem of bankruptcy prediction in the segment of Norwegian SMEs.
We will leverage a large and consistent dataset of financial statements for such Norwegian
SMEs, spanning from the years 2006−2014, while also considering the practical requirements
involved with potential applications of such models. Motivated by the importance of increased
model performance, there will be a general focus towards achieving good model performance
for a set of representative metrics, while also introducing and demonstrating the use of a new
model interpretability framework to help bridge the previous gap in interpretability between
the traditional and more complex models.

There are still some relevant issues that are left outside the scope of this thesis. The most
apparent are those concerned with the inherent imbalance between the number of bankrupt
and non-bankrupt companies (the unbalanced data problem, discussed in Section 2.1.3), as
well as some practical problems throughout, that would typically require more qualitative
economical analysis. We will generally not perform any such analysis, focusing instead on
quantitative and reproducible results.

In Chapter 2, we discuss all practical considerations and relevant background for bankruptcy
prediction. We will also highlight relevant previous work, and detail the Norwegian SME
financial statement dataset that will be used throughout.

In Chapter 3, we provide the theoretical foundations for all statistical methods and models
that will be considered for performing bankruptcy prediction, introducing both static (i.e.
non-time dependent) and timeseries models. We will also highlight and discuss the relevant
strengths and weaknesses associated with each of the methods, as well as address some
practical considerations to help solve the latter.

In Chapter 4, we describe the general frameworks under which we will compare and evaluate
our bankruptcy prediction models. Specifically, a set of four metrics will be introduced and
their strengths and weaknesses highlighted. We will then describe both the theoretical and
practical aspects of the SHAP model interpretability framework, which we will later use to
analyze and interpret the learned behaviours of our models.

In Chapter 5, we detail the experimental setup deployed when training and analyzing
the models. This includes practical considerations such as data preprocessing, train and
test dataset splitting, sampling methodologies and model implementations. While the
methodology was designed to adhere to the highest standards of machine learning best
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practice, any potential weaknesses or shortcomings of any of these processes will also be
highlighted.

In Chapters 6 and 7, we present the results for the conducted bankruptcy prediction exper-
iments, with a focus on comparative model performance on each of our selected metrics.
We will leverage our temporal validation split in order to analyze the temporal stability of
our models, as well a holdout test set to analyze expected out of sample performance. By
reproducing previously popular models in the field (logistic regression and neural networks),
we perform benchmark analysis on our dataset in order to demonstrate the relative gains
of the more complex gradient boosting and timeseries models. Finally, we will demonstrate
how to use SHAP values to perform model interpretation analysis for each of the considered
models. While the analysis for the static and timeseries methods are somewhat similar, we
contain them to separate chapters for clarity.

Finally, we summarize and conclude our findings in Chapter 8, and point towards some
relevant avenues for further work in the field.

1.3 Contributions

The main contributions of this work will be towards increased predictive performance for
bankruptcy prediction models, specifically in the context of SMEs, which has historically
received less attention in the literature. We will leverage both modern models and a large
dataset of more than 175000 Norwegian SMEs in order to achieve this goal, following machine
learning best practices throughout.

One major contribution towards this goal is the structuring of the bankruptcy prediction
problem as a timeseries problem, and the application of recurrent neural networks to perform
bankruptcy prediction. This is partly facilitated by our vast dataset spanning multiple years,
as limited datasets have made such analysis hard to perform in the past.

Another contribution is the introduction of the company industry as a categorical feature, by
leveraging the standardized NACE system. We also demonstrate different ways of incorporat-
ing such categorical features into both previous and newer models, and analyze the relative
performances of each of these methods.

Finally, we will demonstrate how to use the SHAP model interpretability framework to
interpret the learned behaviour of the bankruptcy prediction models in a theoretically
consistent way. This offers previously unseen insights about how the more complex models
learn and perform predictions, offering comparative levels of interpretability as the simpler
models. This may be highly relevant to practitioners, and help facilitate adoption of better
performing (although more complex) models in practical contexts, which in turn may produce
significant economical gains.
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Chapter 2

Background

2.1 Bankruptcy prediction

The problem of predicting the bankruptcy of a company is both an important and difficult
problem which has been at the intersection between the fields of finance and statistics for
multiple decades. It is of great relevance to both investors and creditors wanting to perform
credit risk management (Härdle et al., 2009), as well as by banks for estimating interest rates,
and overall adherence to regulatory frameworks such as Basel III (Bank of International
Settlements, 2017). Bankruptcy prediction models are also used by regulators to assess the
state of the financial markets, such as the SEBRA model of used by Norges Bank (Bernhardsen
and Larsen, 2007).

Stein (2005) found that even small performance increases in such models can lead to
significant economic benefits to a bank, motivating increased attention towards leveraging
both the availability of data and continuous developments in prediction models, in order to
achieve the best possible performing bankruptcy prediction models.

In this section, we will provide the relevant background and context related to bankruptcy
prediction, briefly describing the definition and data context for the problem.

2.1.1 Definition of bankruptcy

While the exact legal definition of bankruptcy is often complex and may vary across juris-
dictions and factors related to the company, the general concept is simple; a company is
bankrupt if it is illiquid (meaning that its short-term obligations exceed their liquid assets),
and that it is insufficient (essentially implying that the total liabilities exceed the total assets).
While there are many legal intricacies associated with bankruptcies, this general definition
will be sufficient for our considerations (Konkursrådet, 2020).

In this thesis and the works that are considered, bankruptcy will be considered as a binary
event, based on the date that the company filed for bankruptcy. The exact definition of the
bankruptcy variable that will serve as the prediction target often varies in the literature. Our
definition is detailed in Section 2.3.3.

2.1.2 Accounting-based input variables

A company is a complicated entity whose financial situation may be influenced by a plethora
of factors, such as macroeconomic trends, political events, popular opinion, or even pandemic
events. While all of these factors may be relevant to the probability of a company’s bankruptcy,
capturing such information in terms of data is difficult, or even impossible.

In order to apply a statistical bankruptcy prediction model to the space of all companies, it
would need to be based on a shared data source, for which all companies have both available
and consistent data. One very reliable source for such information is the publicly available
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annual financial statements of the companies. While some technical and qualitative nuances
may be left out of the yearly accounting reports, this data source provides excellent and
consistent data thaxt offers reliable insights into many of the aspects of a company which
one would find relevant to the possibility of a bankruptcy.

As is standard practice in financial analysis, one often prefers to evaluate different ratios of
accounting variables, rather than the raw account entries themselves. These transformations
help normalize the data, making companies easier to compare across size, time, and industry.
This principle is typically carried over into bankruptcy prediction models, where one generally
uses financial ratios over the raw entries (Wahlstrøm et al., 2020).

Three additional strengths of financial ratios are highlighted by Agarwal and Taffler (2008):
A single year’s accounting numbers capture an accumulation of company performance over
time, the double-entry system of accounting helps assure consistency, and finally, loan
covenants are often based on accounting numbers.

Much research has been done to determine which sets of financial ratios and accounting data
provide the most explanatory power for predicting bankruptcies. Examples of such works
include Bellovary et al. (2006), Kumar and Ravi (2007), and the seminal work of Beaver
(1966). These works are aggregated by Wahlstrøm et al. (2020) to make up a set of 155
different financial ratios and variables, which will make up the dataset which this thesis is
based on, described in Section 2.3. The complete list of features is given in Appendix A.

2.1.3 The unbalanced data problem

One inherent property of bankruptcies, is that they are relatively rare events. As we will
see in Section 2.3, only 1.514% of our considered financial statements were followed by a
bankruptcy (according to our binary event definition specified in Section 2.3.3). For learning-
based classification and prediction models, this often imposes difficulties, as the loss functions
on which the learning process is based (described in Section 3.1) often tends to become
biased. This is known as the unbalanced data problem, and is the subject of continuous
research (Somasundaram and Reddy 2016; Krawczyk 2016; Kotsiantis et al. 2005).

While this is a very relevant problem to both our application and many others, we will
generally consider detailed handling of this problem beyond the scope of this thesis. As
will be seen throughout Chapters 6 and 7, we will build on the work of Wahlstrøm et al.
(2020), focusing on improving performance on an idealized dataset, where the unbalanced
data problem is circumvented by balancing the dataset through sampling. Such sampling
obviously imposes a bias of itself, which we will study by performing tests on the unbalanced
dataset. The sampling technique deployed is detailed in Section 5.2.

2.1.4 Model interpretability

In the aforementioned contexts where bankruptcy prediction models are applied, the statis-
tical performance of the models are not necessarily the only important aspect. One would
often also want to learn why and how the model made specific predictions, known as model
interpretability, which may help guide decision making processes or reveal errors. Indeed,
practitioners often prefer simpler, more interpretable models over more complex ones, even
if they perform better (Jones et al., 2017). In the case of for instance interest rate decisions,
providing reasonable decision explanations often become a necessary requirement. Stricter
legal requirements, such as Article 13-15 of EU’s GDPR (Council of European Union, 2014),
also become a strong motivator for good model interpretability.

The importance of model interpretability has proven to be a major motivator behind particular
model choices in both finance in general and bankruptcy prediction applications specifically,
gearing preference towards simpler, although more interpretable solutions, such as linear
models (Jones et al., 2017). The ability to perform accurate model interpretability is then
important to consider before introducing more complex models, such as tree-based models
or neural networks, into this context.
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2.2 Previous work

As mentioned in Section 2.1, company bankruptcy prediction has been a historically popular
topic of analysis, dating back to FitzPatrick (1932). Over the years, the topic has been
continuously revisited in the literature along with corresponding innovations in statistical
methodologies and increased data availability. Some recent works are comprehensively
reviewed in Bellovary et al. (2006) and Kumar and Ravi (2007).

The earlier models used for bankruptcy prediction typically used discriminant analysis,
such as in Altman (1968), applied on U.S. listed companies. However, logistic regression
methods, first introduced by Martin (1977) and Ohlson (1980) (also developed on the
listed U.S. companies) quickly became the model of choice. They are often preferred due to
both less restrictive assumptions, ease of interpretation and strong predictive performances
(Wahlstrøm et al., 2020).

However, logistic regression sees a few drawbacks, namely that it is very sensitive to outliers,
missing values and multicollinearity (Balcaen, 2006). In the case of bankruptcy prediction,
the financial ratios used as features typically share numerators or denominators, making the
case of multicollinearity especially problematic. This has motivated extensive research into
feature selection methods for optimal sets of financial ratios to use as features, which is the
main focus of Wahlstrøm et al. (2020).

For later years, machine learning models such as neural networks and random forests have
become more popular (Alaka et al. 2017; Kumar and Ravi 2007). These models can capture
more complicated, non-linear relationships without making error distribution assumptions,
and was found by Alaka et al. (2017) to significantly outperform logistic regression. Even
more recently, Zięba et al. (2016) deployed the gradient boosting framework XGBoost (Chen
and Guestrin, 2016). These methods also typically leverage more input variables (often 10
or more, as opposed to less than 5 typically used by the earlier models).

For timeseries structuring of the bankruptcy prediction problem, the literature is more sparse.
Some investigations into such a formulation of the problem include Kahya and Theodossiou
(1999), who use cumulative sums (CUMSUM) model on a set of 150 U.S. listed firms, and
Arora and Saini (2013), who use an adaptive neuro-fuzzy inference system (ANFIS). The
lack of research in this area may be due to restrictions related to data availability, as longer
timeseries naturally require more data to reliably establish.

This thesis will largely be an extension of the works of Wahlstrøm et al. (2020), which use the
same extensive Norwegian SME dataset to do bankruptcy prediction, although with a focus
on feature selection methods, examining the effects of different feature subsets amongst the
155 input features. They implement logistic regression and neural network models, which are
popular throughout the literature. An interesting finding was that the model performance
generally increases in terms of number of features included, although the gain from feature
additions started decreasing after 15 features, and plateaued even more after around 25− 30
features.

An important note when comparing bankruptcy prediction works, is that the resulting
performance metrics are heavily dependent on the underlying dataset, both in terms of
historical period (some periods are more economically irregular, such as the global financial
crisis of 2007-08), sampling considerations (such as which country or economy the data
is sourced from), and other factors (such as whether the dataset was balanced or not)
(Filipe et al., 2016). This makes both previous and future works harder to compare, and
each method generally has to be implemented and tested for each new dataset, in order to
facilitate accurate comparisons of models. Motivated by this, we will focus our comparison
and reimplementations to the results of Wahlstrøm et al. (2020), as they use the same
dataset.

2.3 Dataset

In this section, we will describe in detail the dataset used throughout the thesis. We will
define both the source and span of the data, our chosen definition of the bankruptcy target
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variable, a discussion of the financial ratio features used, as well as a description of the
NACE-system and how it was used to construct a novel categorical feature, which will be
used to provide additional information about the industry of a company.

2.3.1 Norwegian accounting data

The dataset used throughout this thesis is an extensive dataset comprised of 987065 annual
financial statements from 178812 Norwegian limited liability (small and medium sized)
companies (after data exclusion, see Section 2.3.2). The data considered spans a period of
11 years, from 2006 to 2017. As our bankruptcy target variable definition involves a 3 year
window (see Section 2.3.3), this limits the financial statement data to the period 2006-2014.
The bankruptcy information is sourced from bankruptcy filing data, and combined with the
financial statements to produce the target bankruptcy variable. All of this data is publicly
available, and gathered from the Norwegian government agency Brønnøysund Register
Centre.

2.3.2 Excluded data

As was done in Wahlstrøm et al. (2020), our dataset is focused on small and medium-sized
enterprises (SMEs). They are defined as companies with turnover less than USD 50 million,
which follows the definition of Bank of International Settlements (2017). In order to exclude
inactive companies, we also require companies to have total assets of at least 500000 NOK,
as done by Wahlstrøm et al. (2020) and Bernhardsen and Larsen (2007). The dataset also
excludes all publicly traded companies and all consolidated financial statements, the latter
as we focus our study on company level.

As is also the convention in previous literature, companies in the industries of ’Financial
and insurance activities’, ’Real estate activities’, ’Electricity and gas supply’, and ’Water supply,
sewerage, waste’ (based on their NACE-code, see Section 2.3.5) are also excluded (Mansi
et al., 2010). Companies without any reported NACE-code are also excluded.

2.3.3 Bankruptcy target variable definition

As the bankruptcy prediction models would typically require a binary target variable, one has
to associate each of the financial statements with an indicator variable of whether or not the
company went bankrupt. This is not necessarily trivial, as there is often a time gap between
the economic default of a company, and the official registration of a filed bankruptcy - up to
3 years, according to the UK study of Hernandez Tinoco and Wilson (2013). Indeed, in our
dataset, 99.2%, 85.9%, and 22.7% of bankrupt companies filed for bankruptcy within one,
two, and three years from their final financial statement, respectively.

Based on this, we associate a financial statement with a bankruptcy target variable of 1 if it
is the last financial statement of the respective company, and the company (or its creditors,
through a court), has filed it for bankruptcy within three years from the date of this last
financial statement. All other financial statements are categorized as non-bankrupt, i.e. 0
in the target variable. This is the same definition used by Wahlstrøm et al. (2020), and is
consistent with e.g. the SEBRA model in Bernhardsen and Larsen (2007). The resulting
number of non-bankruptcies and bankruptcies per year following this definition can be seen
Table 2.1.

While well defined in the above sense, we note that a binary bankruptcy target variable is
an inherently noisy one. For instance, some companies may be able to continue to deliver
financial statements while they are in deep financial distress (where other companies would
file for bankruptcy), due to external factors. In our binary target variable definition, financial
statements of such essentially bankrupt companies would be considered the same as for
perfectly healthy companies, until their very last financial statement. Another source of
noise would be strategic bankruptcy, where some otherwise healthy companies may file for
bankruptcy in order to for instance break undesired contracts (Mansi et al., 2010).
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With these considerations, perfect prediction of the binary bankruptcy target variable is
evidently infeasible. Our chosen target variable definition is, however, both consistent and
well-defined.

Year Non-bankrupt Bankrupt

2006 93510 1334
2007 100744 2190
2008 103935 1918
2009 104614 1764
2010 106326 1541
2011 109006 1605
2012 113403 1395
2013 118068 1629
2014 122519 1564

Table 2.1: Breakdown of number of non-bankrupt and bankrupt financial statements per
accounting year, following the definition specified in Section 2.3.3. Note the high level of
class imbalance.

2.3.4 Financial ratios as features

As described in Section 2.1.2, financial statement ratios serve as consistent and reliable
features for bankruptcy prediction models. Wahlstrøm et al. (2020) has assembled a set
of 155 different input variables used throughout the literature, which will serve as the
foundation for our bankruptcy prediction dataset. These are listed in Appendix A.

Only four of the input variables are non-ratios. These consist of two binary variables, and
age in years and total assets. As a final note, for ratio features where the denominator is
zero, the feature is also set to zero, following Wahlstrøm et al. (2020). While potentially
somewhat problematic, we will be following this notion for consistency.

2.3.5 NACE system

The Statistical Classification of Economic Activities in the European Community, commonly
referred to as NACE (the abbreviation stemming from the French form), is the standard
industry classification system used in the EU, which has been adopted and used in Norway
(Council of European Union, 2006). The system is built on a hierarchical code of one letter
and up to up to five digits, where each additional digit refers to an additional level of
specification (i.e. the letter code is the most general one, see Table 2.2 for an example).

NACE code Name of level

F Construction
41 Construction of buildings
41.1 Development of building projects
41.10 Development of building projects
41.101 House building cooperative

Table 2.2: Example of the NACE code system for a property development company.

A breakdown of the number of bankruptcies and non-bankruptcies in our dataset for each
of the highest level NACE-codes is shown in Table 2.3. For our purposes, the NACE system
will be used to categorize companies into their respective industries, both in order to ensure
more comparative sampling, and as a feature during training (see Chapters 5 and 6).
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NACE code Non-bankrupt Bankrupt Total

A 21800 254 22054
B 7302 46 7348
C 80585 1295 81880
F 188481 3360 191841
G 254787 5414 260201
H 56759 749 57508
I 40088 1197 41285
J 51254 472 51726
M 141073 888 141961
N 50638 745 51383
O 338 0 0
P 10205 88.0 10293
Q 38360 109.0 38469
R 15865 180.0 16045
S 14590 143.0 14733

Table 2.3: Number of bankruptcies and non-bankruptcies for each of the top level NACE
codes. Note that these are numbers of individual financial statements in the dataset, rather
than unique companies.

Engineered NACE code feature

One of the contributions of this thesis is the use of the NACE code as a categorical feature,
in order to provide the model with potentially relevant information about the company’s
industry. However, the lowest level of the NACE code system is often very specific, including
only a few companies.

As we will see in Chapter 3, different ways of handling categorical features will often require
multiple samples within each category in order to work appropriately. Motivated by this, we
leverage the hierarchical nature of the NACE system in order to produce a feature nace_code
that uses the NACE level such that a sufficient amount of companies are included in each
NACE category. This ensures that maximum informativeness is kept, while still including
sufficient samples to be used.

In specific, we require at least 500 samples (a sufficient number, given heuristic experiments)
in each level for the level to be included, sequentially traversing upwards in the hierarchy
until the requirement is met. Note that this requirement is for number of samples (i.e. yearly
financial statements), rather than number of unique companies. For those companies that
does not satisfy the requirement even for the highest level, a category other is assigned
instead of the NACE code.

This procedure reduces the number of unique NACE codes from 728 to 306. Of the 178812
total companies, 2955 falls into the artificial other category.

2.3.6 Key assumptions

As mentioned in Section 2.1.2, there are multiple factors economical factors that may
effect the financial future and indeed solvency of a company. When using our temporally
distributed financial statements, we are making several assumptions regarding the data.
First and foremost, we are assuming some degree of homogeneity in time, ignoring macro
economical and other external factors. Secondly, we assume that the reported financial
data is indeed correct, which may not always be the case (in the case of for instance data
entry errors or fraud). Other assumptions regarding i.e. the bankruptcy target variable was
described in Section 2.3.3.

While the homogeneity assumption may seem unrealistic, we will take sufficient care in order
to minimize its potentially adversarial effects. This is especially important in the experimental
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designs, and our specific choices and considerations in order to mitigate these effects will be
highlighted in Chapter 5.
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Chapter 3

Methods for bankruptcy
prediction

In this chapter, we will describe the theory and methodology behind the methods we will
consider for performing bankruptcy prediction. In Section 3.1, we will first formulate the
general predictive learning problem as a function estimation problem, mainly following
the formulation of Hastie et al. (2001), and describe some general numerical optimization
techniques for estimating such functions.

In Sections 3.2-3.4, we will then specify some static (i.e. non-time dependent) model
frameworks that solve this problem. We first describe the theoretical foundation behind each
method, and then briefly discuss them in the context of bankruptcy prediction. Finally, in
section 3.5, we will propose two neural network frameworks, namely the RNN and LSTM
extension, for solving a timeseries formulation of the prediction problem.

3.1 Function estimation

In the predictive learning problem, the general goal is to estimate some mapping between a set
of random "explanatory" variables x ∈ Rp (often called features) and a corresponding random
target variable y, which we assume to be independent and identically distributed according
to some unknown distribution. Typically, we have a sample of n such pairs of "training" data
points sampled from this distribution, which comprises a dataset D = {(xi, yi), i = 1, . . . , n},
D ⊂ S, with S being the joint distribution of all possible pairs {x, y}. The desired mapping
can be formulated as a function F ∗(x) = y, for which we want to find an approximation
F̂ (x).

We then specify some loss function L(y, F ∗(x)), with the property that its expectation is
minimized by the function F ∗(x) over all (x, y) ∈ S:

F ∗ = arg min
F

E(x,y)∈SL(y, F (x)). (3.1)

The particular loss function L(y, F ) may be chosen according to the specifics of the problem
(e.g. the characteristics of y), although a desirable property is convexity and differentiability
(as we will see in Section 3.1.1). Examples of loss functions are the squared-error (y−F )2 and
absolute error |y−F | when y ∈ R, and the negative binomial log-likelihood yF − log(1 + eF )
and the binary cross entropy y log(F ) + (1 − y) log(1 − F ) when y ∈ {0, 1} (i.e. binary
classification/prediction) (Hastie et al., 2001).

To allow for a meaningful approximation of F (x), a popular procedure is to restrict it to
a class of parameterized functions F (x|P), often called a model, where P = P1, P2, . . .
is a finite set of parameters. The specific choice of model is of great importance, and
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typically encapsulates some assumptions one may have about the unknown data generating
distribution.

3.1.1 Numerical optimization

After choosing a parameterized model F (x|P), we can formulate the function optimization
(3.1) as an optimization in parameter space, seeking the optimal set of parameters P∗:

P∗ = arg min
P

E(x,y)∈SL(y, F (x|P)). (3.2)

In practice, we do not have access to the full joint distribution S, and therefore have to find
some approximation using our dataset sample D.

Depending on the choice of F (x|P), numerical optimization is often required to solve (3.2).
To allow for this, we can express the solution P∗ in an incremental form

P∗ =

I∑
i=1

pi, (3.3)

starting from an initial guess p0 with I successively estimated "steps" pi, i = 1, . . . , I. In this
setting, an additional increment pj added to the parameter set is typically an incremental
"step" towards a lower expectation of the loss function L, given the current parameter set∑j−1
i=1 pi.

Gradient descent

One simple, yet often deployed technique for computing the steps pi is gradient descent,
which makes use of the gradient of the expected loss gi, given the previous i− 1 steps:

gi = {gji} =

{[
δΘ(P)

δPj

]
P=Pi−1

}

where g = [g1, g2, . . . , gm] (with corresponding parameter vector P), j refers to the jth
component of g, and

Θ(P) = E(x,y)∈DL(y, F (x|P)).

The next step pi is then set as

pi = −αigi

for some step length αi ∈ R (often called learning rate).

Intuitively, gradient descent takes a "step" in the direction of the steepest descent of the
expected loss in parameter space, where the length of the step αi can either be some constant
for all i, or adaptively estimated at each step, via e.g. a line search for the optimal value.

For convex functions, gradient descent can be shown to converge to a global minimum. While
also applicable to non-convex functions, they are not guaranteed to converge to the global
minimum and may get "stuck" in stationary points or local minima (Hastie et al., 2001).

While adding more advanced features to the optimization process (such as second derivatives
or momentum) can improve both estimation and efficiency, the general idea of step-wise
iteration according to some gradient is often central.
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Stochastic gradient descent

The gradient update in (3.25) is computed over the whole dataset D. If the dataset becomes
large, the required computation time and memory for each iteration may become high,
potentially causing practical issues. Indeed, for very large datasets, the computations may
not even fit entirely in the memory of the computer. Another issue is that using the full
dataset often shows worse generalization on unseen data, although the underlying reasons
for this remains largely unknown (Hoffer et al., 2017).

A solution to this problem is stochastic gradient descent, where each training iteration is
instead performed on a random subset of samples, Dk ∈ D, called a minibatch. The size
(i.e number of samples) of each minibatch is a tuning parameter. This allows the dataset
to be processed in more manageable batches, and allows the process to be parallelized,
significantly speeding up computing (Sra et al., 2012).

One way to view stochastic gradient descent is as a way to increase the number of iterations
performed, at the cost of the number of samples used in each update. As the full dataset D
is just a sample from S, training using smaller, more frequent samples does not necessarily
weaken performance.

3.1.2 Function regularization

A recurring theme in predictive learning function estimation is the trade-off between optimally
fitting the function F to the data sample D (i.e. finding the optimal solution for (3.1)), while
still maintaining good predictive performance on the full data distribution S. The ability to
do the latter is often referred to as generalization (i.e. the model’s ability to generalize the
properties in the data), while the failure to do so (while having a good fit on the data in D) is
called overfitting the data in D. This often occurs when the chosen function class has too high
of a flexibility, which in the case of a parameterized function F leads to overparameterization.
To counteract this, one typically deploys some restrictions to the model function, which is
called model regularization.

The form of regularization is highly dependent on the particular model, but generally
expresses some prior belief of a certain type of smooth behaviour in the data. Regularization
is often deployed in the form of a penalty function, penalizing certain behaviours during the
numerical optimization, or by using a separate validation dataset to continuously evaluate
overfitting during training (see Section 5.3). We will detail the relevant model specific
regularization techniques in their respective model sections later in this chapter.

3.2 Logistic regression

A logistic model is a model that uses the logit, or the log-odds, to model the probability of a
binary target variable y ∈ {0, 1}. The logit is defined as the logarithm of the odds:

logit(y) = log

(
s

1− s

)
,

where s ∈ (0, 1) is the probability of y = 1, and the logarithm is the natural logarithm
(although other bases for the logarithm can be used). This can then be used to perform
binary prediction according to some prediction rule, typically classifying the target as 1 if
s > τ for some threshold τ (often set to 0.5), and classifying as 0 otherwise.

A popular logistic model is logistic regression, where we assume a linear relationship between
logit(y) and an observation vector x ∈ Rp:

logit(y) = α+ βx, (3.4)

where βᵀ ∈ Rp are the regression coefficients, and α ∈ R the bias term. To obtain the
conditional probability estimates of y, one can invert (3.4) to obtain
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P (y = 1|x) =
eα+βx

1 + eα+βx

which corresponds to the modelling function F (x|P) with regression parameters P = (α, β).

Following the process outlined in Section 3.1, we now seek a convex and differentiable loss
function L which tends to zero when F → 1 and y = 1, and when F → 0 and y = 0. The
two following functions satisfy these criteria, respectively:

− log(F (x|α, β)), y = 1

− log(1− F (x|α, β)), y = 0.

These can be combined to the log loss function

L(y, y′) = −y log(y′)− (1− y) log(1− y′).

where y′ = F (x|α, β), which is convex and differentiable. The regression parameters (α, β)
can then be estimated by (3.2) (approximated over the dataset D):

α, β = arg min
α,β

 ∑
y,x∈D

y log(F (x|α, β))− (1− y) log(1− F (x|α, β))

 . (3.5)

Specifically, maximum likelihood estimation is often deployed, using the conditional likeli-
hood P (y|x) (Hastie et al., 2001).

An important note is that logistic regression assumes little to no multicollinearity (i.e.
correlation between features). In the presence of multicollinearity, the attributed parameter
gains may be distributed arbitrarily amongst the correlated features (Hastie et al., 2001).

Regularization for logistic regression

In the context of logistic regression, the linear model hypothesis (3.4) already imposes some
regularization to the model’s flexibility. Nonetheless, overfitting may still occur. A commonly
deployed technique is then to impose some penalty on large values of parameters β, often by
introducing a penalty function φ(λ).

In practice, this modifies the optimization process (3.5) with the additional penalty function:

α, β = arg min
α,β

 ∑
y,x∈D

y log(F (x|α, β))− (1− y) log(1− F (x|α, β))− φ(λ|α, β)

 . (3.6)

There are typically three types of penalty functions φ(λ) applied to logistic regression, namely
the L1 penalty φ(λ|α, β) = λ

∑p
j=1 |βj |, the L2 penalty φ(λ|α, β) = λ

∑p
j=1 β

2
j , and the

Elastic Net φ(λ|α, β) =
∑p
j=1(λ1|βj | + λ2β

2
j ). Note that we typically do not penalize the

intercept term.

In all cases, the hyperparameter λ acts as a controllable regularization strength, where higher
values will lead to stronger regularization (and in the case of the elastic net, controls the
trade-off between the L1 and L2 components). The specifics of each of the methods varies
across applications, however in general L1 penalty (and consequently elastic net, depending
on the values of λ1 and λ2) tends to result in some or more βj = 0, thus performing an
implicit feature selection procedure, which is often desirable (such as in Wahlstrøm et al.
(2020)).
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3.3 Gradient Tree Boosting

Another popular family of function classes are the gradient boosting machines, first described
in Friedman (2000). This technique produces an ensemble of base functions ("weak learners"),
iteratively built in an stage-wise manner. The base functions most often deployed (indeed in
all the gradient boosting methods we will consider) are decision trees, and we will start this
section with a description of this prediction function.

3.3.1 Decision trees

While there are multiple variations of the decision tree model framework, we will focus on
the procedure described in Hastie et al. (2001), which builds on the methodology introduced
by Breiman et al. (1984), often referred to as Classifcation And Regression Trees (CARTs).

A decision tree is a model built by partitioning the feature space Rm into J disjoint regions
R1, R2, . . . , RJ , represented by tree nodes. The regions are obtained by sequentially consid-
ering binary splits at a single feature xk for some splitting value s, until a terminal node is
reached, for which a value is assigned to the prediction (see Figure 3.1). This results in a tree
structure, as seen in Figure 3.1. We can formulate the decision tree prediction function as

h(x|{cj , Rj}Jj=1) =

J∑
j=1

cj1{x∈Rj}, (3.7)

where J is the number of terminal regions, and cj determines the prediction value assigned
to the region Rj . The parameters cj are set to minimize the loss within each terminal node:

cj = arg min
cj

L(y, cj)|x ∈ Rj . (3.8)

In a regression context, with L a the mean-squared error, this minimization results in cj
being set as the mean of the target values y within each terminal node. Similarly, for binary
predictions with L being the log-loss, cj becomes the proportion of positive target values y
within Rj .

We then want to determine the terminal regions Rj such that the specified loss function L
is minimized for all (yi,xi) ∈ D. However, considering all possible feature space partitions
becomes infeasible (Hastie et al., 2001). Therefore, we adopt a greedy algorithm that recur-
sively builds the tree by considering the current best splitting feature xk and corresponding
best splitting value s, that produces the greatest reduction in L:

k, s = arg min
k,s

min
c1

∑
xi∈R̂1(k,s)

L(yi, c1) + min
c2

∑
xi∈R̂2(k,s)

L(yi, c2)

 (3.9)

where R̂1(k, s) and R̂2(k, s) are the half-planes such that

R̂1(k, s) = {x : xk ≤ s},
R̂2(k, s) = {x : xk > s}.

The hat indicates that the regions R̂ are not necessarily terminal regions. When the best
greedy split is found, the process is repeated on each of the regions R̂1, R̂2 in a recursive
manner, until a specified tree size is reached. We have then obtained our terminal region set
{Rj}Jj=1, and the corresponding values cj can be determined according to (3.8), completing
the parameter set {cj , Rj} in (3.7).

The question is then how many nodes the tree should have. By letting the tree grow too
large, the regions Rj may partition the feature space too finely, which results in overfitting.
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Too see this, let the number of regions J equal the number of training samples n. We may
then perfectly fit the training data, as each training sample will have its own terminal node.
Clearly, this will not generalize well on unseen data, and we thus need to restrict the size of
each tree.

On the other hand, too shallow trees may restrict the model’s flexibility too much, leaving
it unable to learn more complicated relations in the data. Following this argument, we can
control the model’s flexibility with the tree size, which is a tuning parameter.
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(a) An example decision tree built using CART.
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(b) An example oblivious decision tree; note that the same splitting criterion is
applied throughout each level.

Figure 3.1: Decision trees assigns values to a feature vector (x1, x2) by considering a series
of binary operations at each node. Here, the process goes down the left edge if the inequality
in the node holds true, and down the right if not, until a terminal node region Rj is reached.

Cost complexity pruning

Hastie et al. (2001) suggests adaptively choosing the tree size based on the data. In specific,
using a tree pruning strategy called cost complexity pruning.

First, we grow a tree T0 until some (relatively large) minimum node size is reached, likely to
overfit the data. The idea is then to sequentially prune T0 (i.e. collapsing internal nodes)
until some criterion is met. We define a subtree T ⊂ T0 to be any tree obtainable by pruning
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T0 (i.e. collapsing any number of its internal nodes). The cost-complexity criterion, which
we want to minimize, is then defined as

Cλ =

|T |∑
l=1

Ll(T ) + λ|T |, (3.10)

where Ll(T ) denotes the loss for sub-tree T in node l, |T | is the number of terminal nodes
in T and λ ≥ 0 is a tuning parameter. Conceptually, λ acts as a regularization parameter
punishing large trees (i.e. many terminal nodes): Large values of of λ results in smaller trees
Tλ, and vice versa.

Each optimal subtree Tλ is found by weakest link pruning: We successively look for which
internal node that collapsing produces the smallest per-node increase in

∑
l Ll, continuing

until the single node root tree is reached. This produces a finite sequence of subtrees, which
can be shown to always contain Tλ (Hastie et al., 2001).

Oblivious trees

As the tree building procedure described above always considers the best greedy split (3.9),
it may grow a tree of any shape, often resulting in asymmetrical trees (see Figure 3.1a).
However, imposing some constraints on the tree building process may result in some desirable
properties.

Oblivious trees are trees where we require every split that is on the same level in the tree (i.e.
equal distance to the root node in terms of number of edges) to use the same split criterion,
on the same feature. Thus, the optimization (3.9) is performed across the whole level at
once, rather than being done individually at each node. An example of such a tree is shown
in Figure 3.1b.

This results in symmetrical and balanced trees, which in turn speeds up execution at testing
time (Kohavi and Li, 1995). It has also been shown that oblivious trees may help prevent
overfitting, especially when they are used in model ensembles (Prokhorenkova et al., 2018).

Limitations of decision trees

The tree representation of a decision tree allows for an intuitive interpretation of the learned
model, as one can follow the tree’s "decision process" for each individual feature and splitting
value, as is examplified in Figure 3.1. However, a model based on a single decision tree has
several limitations. A problem stated in Hastie et al. (2001) is their high variance, caused by
the hierarchical nature of the process; an error in the top split of the tree will be propagated
downwards to all splits below it. Another issue is the lack of smoothness in the prediction
surface, caused by the disjoint regions. This problem is especially apparent in a regression
setting, where one would typically prefer the prediction surface to have local smoothness.

3.3.2 Gradient boosting machines

Gradient boosting machines are a model class built as an ensemble of multiple base pre-
dictors. As opposed to many other parameterized models (such as logistic regression), the
gradient boosting machine ensemble is obtained by optimizing in function space, rather than
parameter space. We first formulate F ∗(x) in (3.1) as

F ∗(x) =

I∑
i=0

fi(x),
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where each fi(x) are incremental weak prediction functions ("boosts"), starting from an
initial guess f0(x). Analogously to Section 3.1.1, we can estimate the consecutive functions
using the negative gradient

fi(x) = −ρigi(x) (3.11)

for some step length ρi. Now, the gradient gi(x) is defined as

gi(x) =

[
δΘ(F (x), y)

δF (x)

]
F (x)=Fi−1(x)

with

Θ(F (x), y) = Ey∈SL(y, F (x)|x).

and

Fi−1(x) =

i−1∑
j=0

fj(x) (3.12)

(note the change in the expectation compared to (3.2)).

Assuming sufficient regularity for allowing interchanging differentation and integration, one
arrives at the expression

gi(x, y) = Ey

[
δL(y, F (x))

δF (x)
|x
]
F (x)=Fi−1(x)

. (3.13)

Friedman (2000) then states that for a finite data sample D ⊂ S, this method breaks down,
as one is unable to estimate Ey[·|x] (especially so for unseen data, i.e. values of x not
in D). This can be solved by imposing smoothness on the solution ("borrowing strength
from nearby data points"), which again can be done by parameterizing the functions and
doing parameter optimization. Specifically, Friedman (2000) proposes a "greedy-stagewise"
approach, iteratively updating the parameter set with

(βm,am) = arg min
β,a

n∑
i=1

L(yi, Fm−1(xi) + βh(xi|a)), m = 1, 2, . . . ,M, (3.14)

where

F (x|{βm,am}Mm=1) =

M∑
m=1

βmh(x|am), Fm(x) = Fm−1(x) + βmh(x|am). (3.15)

Here, the function h(x|a) is the generic base ("weak") prediction function, parameterized by
the parameters a = {a1, a2, . . . } (note that these individual parameters varies for different
am), and β can be thought of as a step size (somewhat analogous to the learning rate
discussed in Section 3.1). Note the difference between this stagewise strategy and the
stepwise strategy proposed in Section 3.1.1; while the stepwise strategy additively adds
parameter terms, this strategy readjusts previously entered terms when new ones are added.

For practical choices of the loss L(y, F ) and base function h(x|a), the solution to (3.14) is
often difficult to obtain. However, we can view the function βmh(x|am) as the best greedy
step towards F ∗(x) given a current approximator Fm−1(x), similar to gradient descent in
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Section 3.1.1. In this context, we constrain our step "direction" h(x|am) to be a member of
the class of base learners h(x|a). This leads to the unconstrained negative gradient

−gm(xi) = −
[
δL(yi, F (xi))

δF (xi)
|x
]
F (x)=Fm−1(x)

(3.16)

for (xi, yi) ∈ D, analogous to (3.13), but now in our data sample spaceD. While this gradient
gives the best gradient descent direction −gm = {−gm(xi)}Ni , it cannot be generalized to
other values for x as it is only defined for data in D. We can again generalize by looking
to the parameter space of the base model h(x|am), and choosing the parameters am that
produces the hm = {h(xi|am)}ni=1 most parallel to −gm. This corresponds to the h(x|a)
most highly correlated with −gm(x) over D, and can be obtained from the solution of

am = arg min
a,β

N∑
i=1

(−gm(xi)− βh(xi|a))2. (3.17)

In other words, we circumvent the difficult optimization (3.14) by finding the parameters am
that results in the least squares approximation h(x|a) of the gradient −gm. We then use this
constrained negative gradient −h(x|am) in place of −gm(x) in the gradient descent strategy,
giving the approximation update steps

Fm(x) = Fm−1(x) + ρmh(x|am),

where ρm is the step size, as before.

Conceptually, gradient boosting adds consecutive weak learners to the ensemble by adding
the weak learner hm that best approximates the steepest descent gradient of the loss, given
the current ensemble Fm−1. In practice, this can be seen as fitting the weak learners to the
residuals of the current model. (Friedman, 2000) summarizes this in the following generic
gradient boosting algorithm:

Data: Number of trees M , (xi, yi)
n
i=1

F0(x) = arg minρ
∑n
i=1 L(yi, ρ);

for m = 1 to M do
ỹi = −

[
δL(yi,F (xi))

δF (xi)
|x
]
F (x)=Fm−1(x)

, for 1, . . . , n;

am = arg mina,β

∑N
i=1[ỹi − βh(xi|a)]2;

Set ρm;
Fm(x) = Fm−1(x) + ρmh(x|am);

end
Algorithm 1: Generic gradient boosting (Friedman, 2000)

Gradient boosting with decision trees as base predictors

When using decision trees as base learners in gradient boosting, some considerations can be
made to slightly modify Algorithm 1. Recall from Section 3.3.1 that a decision tree hm(x)
can be written as

hm(x|{cjm, Rjm}Jj=1) =

J∑
j=1

cjm1{x∈Rjm},

which inserted into the update step (3.15) may be expressed as

Fm(x) = Fm−1(x) +

J∑
j=1

φjm1{x∈Rj}
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with φjm = βmcjm. One can view this update step as adding J different basis functions to
Fm−1, which one can directly embed into the decision tree coefficient optimization (3.8) as

{φjm}Jj=1 = arg min
{φj}Jj=1

N∑
i=1

L

yi, Fm−1(xi) +

J∑
j=1

φj1{x∈Rjm}

 .

As the regions Rjm are disjoint, each xi will only have one non-zero term in the second sum
and one can simplify this to

φjm = arg min
φ

∑
xi∈Rjm

L (yi, Fm−1(xi) + φ) .

This is the optimal update in each terminal rode region, given the current Fm−1(x) (Friedman,
2000).
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Figure 3.2: A simplified representation of the gradient boosting algorithm (with decision
trees as weak learners). In a simplified sense, the ensemble Fm is built by sequentially adding
weak learners fm, which can be thought of to fit the residuals of the previous ensemble,
Fm−1. The tilde indicates what data the function fi is based on.

Regularization for gradient boosting trees

Due to the large number potential of parameters and weak learners in the ensemble, gradient
boosting trees has a large amount of inherent model flexibility, and thus, potential to overfit.
A natural regularization parameter then becomes the maximum number of allowed learners
in the ensemble, where a lower number of trees results in reduced model flexibility and thus
lowers the risk of overfitting.

Another regularization method involves controlling the contribution of each tree, by scaling
the β parameter in (3.15) by an additional factor 0 < ν < 1 - often referred to as shrinkage
(Hastie et al., 2001). This reduces the variation in the individual learners as they are added,
and consequently the risk of overfitting (Chen and Guestrin, 2016).

(Hastie et al., 2001) also suggest a regularization method called subsampling. Similarly to
the Stochastic Gradient Descent discussed in Section 3.1.1, each consecutive weak learner
is fit on a subset of the data, according to some sample fraction. While obtaining the same
computational advantages as Stochastic Gradient Descent, subsampling often results in more
accurate models (Hastie et al., 2001).

Additionally, one can also impose the L1, L2 or Elastic Net penalty functions on the parame-
ters, as discussed for logistic regression in Section 3.2.

3.3.3 CatBoost

While the gradient boosting tree methodology described above holds solid theoretical foun-
dation and flexibility, there are numerous extentions of the framework that offer different
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variations and optimizations in their implementation, such as XGBoost (Chen and Guestrin,
2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018). In this section
we will cover the latter, which has shown to outperform the others in terms of predictive
performance on many benchmark datasets (Prokhorenkova et al., 2018).

The CatBoost algorithm describes and addresses one main statistical issue with the general
gradient boosting framework (and indeed in other gradient boosting implementations as
well). Considering the optimization (3.17), Prokhorenkova et al. (2018) addresses the
following chain of shifts, dubbed a prediction shift:

1. The conditional distribution of the gradient gm(xi)|xi,x ∈ D (as defined in (3.16))
is shifted from the distribution on a test sample gm(x)|x,x ∈ S \ D.

2. This results in the base predictor h(x|am) from (3.17) to be biased from the real
solution.

3. The result is a shift in the generalization of the final ensemble F .

Conceptually, the shift occurs because each base predictor hm added to the ensemble is based
on the gradient of the same full dataset D, resulting in target leakage (i.e. target values in the
dataset being improperly available during training). With access to unlimited training data,
this problem is easy to solve: Sample independent training sets Dm ⊂ S at each iteration m
and use this sample to train the base predictor hm, resulting in it being unbiased.

In most practical applications, however, only finite training data is available. In this case, to
ensure that the model gradient gm(xk) is unshifted, the model Fm that it is based on can not
be trained on the sample xk. While this may seem intractable, Prokhorenkova et al. (2018)
propose a solution to this: By using a supporting model Mk that is never updated using the
gradient for xk, we can safely estimate the gradient on xk using Mk and use this gradient to
perform the update.

This is done by only using a data partition Dk = {xj : σ(j) < σ(k)}, where the data is
ordered according to some random data permutation σ, to train the supporting model Mk.
Thus, the supporting model Mk has only been trained on the ordered data up until k, giving
the name ordered boosting. In practice, the robustness of this algorithm is then increased
by keeping several random partitions {σr}sr=1, from which a partition is sampled at each
iteration, producing the set of supporting models Mr,j . The ordered boosting algorithm for
one such iteration is shown in Algorithm 2.

Data: Number of trees I, σr, (xi, yi)
N
i=1 ordered according to σr

Mi = 0 for i = 1, . . . , n;
for t = 1 to I do

for i = 1 to n do
ỹj = −

[
δL(yj ,a)

δa |xj
]
a=Mi(xj)

, for j = 1, . . . , i− 1;

M = FitTree((xj , ỹj) for j = 1, . . . , i− 1);
Mi = Mi +M ;

end
end

Algorithm 2: Ordered boosting (Prokhorenkova et al., 2018)

The practical implementation of CatBoost (available in the CatBoost package) also offers a
number of computational features and improvements, often using algorithmic optimization
or approximations, which we will omit in this description.

3.3.4 Categorical features

In the framework above we have assumed all features xk ∈ x to take only numerical values.
In many practical applications, however, we often encounter some categorical features xl ∈ A,
i.e. xl may take any nominal value in some discrete set A, where the elements may have
no inherent numerical relation to each other. To solve this, one typically apply some sort of
transformation g : A→ Rp, p > 0. Note that these methods are also applicable to the other
methods mentioned in this chapter.
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One-hot encoding

A popular and straight forward transformation is one-hot encoding, where one maps a
categorical feature x ∈ A to a binary vector x̂ of size l, where l is the cardinality of A.
Each component in the vector x̂ represents one element of the set A, and a value 1 in the
corresponding component represents the presence of this element. All other components are
0, giving the name "one-hot" encoding. Formally:

x̂ = [1{x=a1},1{x=a2}, . . . ,1{x=al}],

where A = {a1, a2, . . . , al}.
One-hot encoding offers a simple transformation to allow categorical variables to be used in
the function approximation frameworks. However, the approach suffers from some setbacks,
namely that for categorical sets A with large cardinalities, the encoded vectors become sparse,
making the dimensions of the input vectors grow potentially large.

Another issue with one-hot encoding is that the model will treat each category as completely
independent variables, essentially removing information about their relation to eachother
(which, in turn, has to be re-learned by the model).

Also, if one seek to perform some sort of model interpretation process (as we will describe in
Section 4.2), the model’s learned importance of the specific categorical feature may become
distributed across each component of the encoded vector, which makes interpretation more
difficult.

Target statistics

Target statistics is a method that encodes a categorical feature x ∈ A to a single numerical
feature, gts(x) : A→ R, where the encoding aims to map each category ak to an estimate of
the probability or expected value of the target value y conditioned on the category:

gts(ak) ≈ E(y|x = ak). (3.18)

A straight forward approach to estimating this expectation is using the average value of y
over the training sample, given that the corresponding x = ak. As this estimate is noisy for
low-frequency categories, Micci-Barreca (2001) suggests smoothing it by some prior s:

gts(al) =

∑n
j=1 1{x=al}yj + γs∑n
j=1 1{x=al}yj + γ

, (3.19)

where γ > 0 is a tuning parameter. Micci-Barreca (2001) also suggests using the average
target value across the whole dataset for the prior s.

An additional feature of the CatBoost framework specifically, is the concept of ordered target
encoding. While a detailed description will be left to (Prokhorenkova et al., 2018), it builds
on the same concept of ordered boosting, in that rather than computing target statistics on
the whole dataset (which results in the same shift discussed previously in the section), it uses
a similar ordered procedure to compute the target statistics during training.

3.4 Neural networks

Neural networks are a family of learning methods inspired by the neural circuitry of the brain,
modelled as a sequence of linear combinations of input features, with non-linear functions
applied in between. While the concept of using neural networks for function estimation was
first introduced in Rosenblatt (1958), the methods typically require both large amounts of
data and are computationally intensive, which has resulted in a surge of popularity only in
recent years, as the availability of both of these resources has greatly increased.
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In this section, we will describe a basic, although commonly used type of neural networks,
called fully connected neural networks. This will also serve as a foundation for the recurrent
neural networks we will describe in Section 3.5.

3.4.1 Fully connected neural networks

The most basic type of neural networks are fully connected, feed-forward neural networks.
These networks consist of an input layer, a sequence of M "hidden" layers, and an output
layer. Each hidden layer consists of hm nodes, each of which represents a linear combination
of every node in the previous layer, to which a nonlinear activation function fm is applied.
At the final layer (a single node if the output is one dimensional), an output function g is
applied to transform the output to the desired target form. In other words, values are "fed
forward" in the network as linear combinations. Formally, this can be represented by the
following process:

z0 = x,

zm = fm(Wm−1zm−1), m = 1, . . . ,M

ŷ := F (x) = g(WMzM ),

(3.20)

which can be written in a compact composite form,:

F (x) = g(WMfM (WM−1fM−1(WM−2fM−2(· · ·W1f1(W0x)))). (3.21)

The coefficients Wm ∈ Rhm×hm−1 in the linear combinations are often referred to as weights,
and make up the trainable parameter set of the neural network. They also typically include a
bias term that is not multiplied with the previous input, which we for convenience will drop
in our description (essentially this means that we pad the zm with 1 at the first element). The
weights are typically represented as edges in the network (see Figure 3.3). The activation
functions fm, the number of hidden layers M , and the number of nodes in each layer hm are
hyperparameters, defining what we will refer to as the architecture of the network.

Intuitively, the parameters M and hm control the complexity of the model: Higher values
of these parameters allows the model to learn more complicated relationships in the data
(with M = 0, the neural network essentially becomes a regression model). At the same time,
increasing the network size both makes it harder to optimize (as we will see in Section 3.4.2),
as well as more susceptible to overfitting, due to the increased flexibility.

One way to view a neural network is as a two-part model, consisting of a feature extractor and
an estimator model (the final layer). In this sense, the feature extractor is made up of the M
hidden layers, which are optimized to find the best intermediary feature representations ZM
of the input vector x for use as inputs in the estimator model, which in the fully connected
case can be viewed as a regression model.

Activation functions

There are multiple popular choices for activation functions fm. They are required to be
differentiable (as we will see in Section 3.4.2), and simple, easy to compute functions are
often preferable due to how frequently they will be applied. They are also often nonlinear
to allow the network to model nonlinear relationships. Historically, the sigmoid f(Z) =
1/(1 + e−Z) has often been deployed (Rosenblatt, 1958). An alternative to the sigmoid is the
hyperbolic tangent f(Z) = tanh(Z), which models similar behaviour as the sigmoid, but has
range (−1, 1), as opposed to (0, 1). Other popular activation functions include the rectified
linear unit ("ReLU") f(Z) = max(0, Z) (where one sets the gradient equal to 0 at Z = 0) and
variations thereof (Maas et al., 2013).

The final transformation function g depends on the characteristics of y; in a regression setting,
one typically deploys the identify function h(Z) = Z. For binary prediction, the sigmoid is
often used, as the range (0, 1) allows it to be interpreted as a "probability" for y = 1.
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Figure 3.3: An illustration of a fully connected neural network with M = 3 hidden layers,
with h1 = 6, h2 = 4, h3 = 4 nodes. Note that the constant weight terms at each layer are
omitted in this illustration.

3.4.2 Back-propagation

The question then becomes how to estimate the optimal parameter set {Wm}M0 in 3.20.
These parameters are learned iteratively from the data using gradient-based numerical
optimization on a loss function L, as discussed in Section 3.1.1.

In order to update the weights Wm at each layer, we need the corresponding gradients ∇Wm

of L with respect to the weights Wm, for a sample xi. The procedure of obtaining these
gradients are split into two processes, called the forward pass and the backwards pass.

In the forward pass, the network is evaluated in the (ordinary) feed-forward manner at a
sample xi, holding the weights fixed. Let zm denote the output of layer m (as in (3.20)), and
am = Wm−1zm−1 the weighted input to layer m, both evaluated at xi.

Because of the composite form of 3.21, we can then expand the derivative of the loss function
using the chain rule from calculus, now holding the other values (computed during the
forward pass) fixed. After evaluating the forward pass, we get

∂xL = ∂zgL · ∂agzg · ∂zM
ag · ∂aM

zM · ∂zM−1
aM · · · ∂a1z1 · ∂xda1,

where L = L(y, F (xi)), and zg and ag refers to the output and input to the output function
g, respectively. The g, fm, zm and wm are as defined in (3.20). The ∂(·) denotes the partial
derivative with respect to its subscript.

As am = Wm−1zm−1 are matrix multiplications, their derivative with respect to zm−1 are
just the weights Wm−1. From the definitions in (3.20), the derivatives of zm with respect to
the input am are the derivatives of the activation function fm. We then get

∂xL = ∂zgL · h′ ·WM · f ′M ·WM−1 · · · f ′1 ·W1. (3.22)

The gradient ∇ is the transpose of the derivative of the outputs, meaning we transpose the
matrices and reverse the order of the terms to obtain the gradient:

∇xL = Wᵀ
1 · f ′1 · · · ·W

ᵀ
M−1 · f

′
M ·W

ᵀ
M · h

′ · ∇zg
L. (3.23)
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The backward pass of back-propagation then consists of sequentially evaluating this expression
from right to left, as each term in (3.23) depends on the terms to the right of it, and ∇zgL
can be readily computed after the forward pass. We introduce the quantity δm, defined as
the gradient of the input at layer m:

δm = f ′m ·W
ᵀ
m+1 · · · ·W

ᵀ
M−1 · f

′
M ·W

ᵀ
M · h

′ · ∇zg
L. (3.24)

Each δm can then be calculated recursively as

δm−1 = f ′m−1 ·Wᵀ
m · δm, m = M,M − 1, . . . , 0.

Finally, we can compute the gradient of the weights Wm at layer m as

∇Wm
= δm ·

δWmzm−1
δWm

= δm · zᵀm−1.

Intuitively, the loss gradients δm are computed and propagated in a backwards manner
through the network, giving the name back-propagation.

With the gradients available, we can make use of the gradient-based techniques described in
Section 3.1.1. An ordinary gradient descent step at iteration t+ 1 over all training samples
becomes:

Wt+1
m = Wt

m = −αt+1

n∑
i=1

δm(zt,im )ᵀ, (3.25)

where the superscript in zt,im indicates that it is evaluated at xi using parameters at iteration
t. Again, the learning rate αt is a tuning parameter, and may be fixed or chosen adaptively.

3.4.3 Categorical feature embedding

As in the other methods discussed in this chapter, neural networks require numerical inputs,
meaning transformations are required for categorical features. Again, one-hot encoding the
categorical variables as discussed in Section 3.3.4 is a popular and straight forward option,
but suffers from the same drawbacks of dimensionality increase discussed in its respective
section.

One interesting solution to categorical features exclusive to neural networks is categorical
feature embeddings. The approach is inspired by and very similar to techniques often deployed
in natural language processing, where the idea is to map a vast vocabulary of words (a
discrete "space" of words where one can view each word as a nominal value) to some
numerical vector space called an embedding space (Zhang et al., 2016). A desired property
of this space is then that words that are close to each other (typically in terms of Euclidian
distance) have semantically similar meaning.

For categorical variable embedding, the principles are the same. The categorical variables
are first encoded to a numerical vector x̂ where each category is assigned an integer, which is
then encoded to the embedding space using a set of learnable weights Wemb ∈ Rd×s, where
s is the cardinality of the categorical variable space and the embedding space dimension d
being a hyperparameter (Guo and Berkhahn, 2016).

The embedding space is then given by the matrix multiplication Wembx̂, which is then
concatenated to the numerical feature vector x in (3.20), treated as ordinary numerical
features. The weights Wemb can be trained and updated using ordinary back-propagation,
resulting in optimal embedding parameters being learned according to the specified target
values and loss.

25



In this sense, one-hot encoding can actually be viewed as an embedding where D equals
the cardinality of the category set and all categories have a fixed mapping, equally distant.
Similarly, the target encoding discussed in Section 3.3.4 can be viewed as an embedding with
D = 1, where the embedding weights maps the categories to the corresponding expectation
of the target variable y.
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Figure 3.4: An illustration of a categorical feature embedding for a categorical variable with
cardinaliy s = 4, and output dimension d = 2. The embedding layer produces a set of "new"
features x̂5, x̂6, which are concatenated with the other 4 features.

3.4.4 Issues with neural networks

While the inherent capacity of neural networks allow for approximation of almost any
underlying function, there are a number of issues related to building, training, and tuning
neural networks. In most applications they are inherently overparameterized, with a non-
convex and unstable optimization (Hastie et al., 2001). They are also notoriously data-hungry,
requiring large amounts of data to be able to generalize well (Pasini, 2015). In this section,
we will highlight some of the challenges and how they may be addressed in a qualitative
manner, referencing other sources for more details.

Vanishing/exploding gradients

Because of the composite form of the gradients and their sequential dependencies, the
training of neural networks may become unstable, especially so for deeper networks. In the
case of unbounded activation functions, the gradients may accumulate and become very
large as the depth of the network increases, resulting in exploding gradients, which in turn
makes the weight updates unstable and training infeasible. Bounded activation functions,
such as the sigmoid or hyperbolic tangent may help with this (Glorot and Bengio, 2010).

On the other hand, if the gradients are very small, they may cause all depending gradients to
shrink as well, resulting in vanishing gradients. This may occur when asymptotic activation
functions, such as the sigmoid and hyperbolic tangent, becomes saturated, resulting in near-0
gradients, which in turn results in no training (Glorot and Bengio, 2010).

Generally, the two following properties should approximately hold in order to prevent both
exploding and vanishing gradients (Goodfellow et al., 2016):
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• The mean of the activations should be zero.

• The variance of the activations should stay the same across every layer.

Both of these issues are typically addressed by tuning either the network architecture, the
activation functions or properly initializing the network’s weights (Goodfellow et al., 2016).

Weight initialization

One challenge of neural networks is generating initial values of the weight set {Wm}M0 ,
often referred to as weight initialization. Weight initialization greatly affects how the training
progresses, and badly initialized weights may induce either vanishing or exploding gradients,
described above. Glorot and Bengio (2010) shows that the outcome of different initialization
schemes depend on both the architecture of the neural network, as well as the particular
choices for activation functions fm.

Generally, equally initialized weights will result in all gradients across a layer being equal,
meaning all nodes in the layer learn the same behaviour. Typically, small (near zero) random
initializations are preferable as they avoid both of these problems.

As mentioned in the previous section, we generally want activations such that the variance of
the activations in each layer are the same. Because the activations are propagated forwards
sequentially, this means that the initialized weights should not have the same variance in
each layer (Goodfellow et al., 2016). Glorot and Bengio (2010) propose an initialization
scheme that normalizes the weights in a layer to a region where the gradient updates behave
well called glorot initialization, by ensuring the variance is scaled such that the variance of
the output is approximately equal to 1 in every layer.

Regularization

Because of the overparameterized nature of neural networks, they are very prone to overfit-
ting, motivating the application of one or more regularization methods. As before, introducing
penalizing terms are a standard approach. Hastie et al. (2001) suggests weight decay, which
analogously to L2 regularization in Section 3.2 adds a penalty term to the loss function L,
proportional to total magnitude of the weights.

Another option is dropout, where one eliminates the signal of a random subset of nodes at
each iteration, which is thought to motivate smaller dependence on individual, "stronger"
nodes which are more likely to be overfit (Srivastava et al., 2014).

A more pragmatic approach involves randomly splitting the dataset into a training set
and a validation set, where the latter is used to evaluate the model’s generalization ability
throughout the training process, where the updates happens based exclusively on the training
set. When the loss on the validation set starts to increase, the model has started to overfit
the training dataset, and the training process is stopped. This technique is often referred to
as early stopping, and is often deployed in other machine learning methods as well (such as
gradient boosting machines, described in Section 3.3.3).

Model interpretation

One of the major criticisms of neural networks is the difficulty of properly interpreting
the output of a trained model. Due to the complex and intertwined nature of the models,
their major strength in complex estimation capabilities also become a major weakness,
especially in applications where model accountability is important, as tracing what motivated
a particular decision or output quickly becomes infeasible (Gilpin et al., 2018). Neural
network explainability neural network interpretability remains an active area of research
(Gilpin et al. 2018; Ribeiro et al. 2016).
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3.5 Timeseries methods

In predictive timeseries modelling, we extend the predictive problem to account for time-
distributed data, then including another temporal dimension to the data, where we assume
some unique relationship between the data points and/or target variable.

Although many methods for modelling time dependent behaviour exist, we will limit our
focus to methods building on the ideas of neural networks. With these methods, we can
leverage the flexibility of the neural networks combined with large datasets to model complex,
time dependent behaviour. Specifically, we will consider a family of neural network called
recurrent neural networks, or RNNs.

3.5.1 Recurrent neural networks

Traditional recurrent neural networks consist of an input layer, a recurrent layer, and an
output layer. The recurrent layers can be thought of as intermediary internal states ht
("hidden" states) at each timestep, which acts as a link between the temporal elements in
the timeseries. These states are often referred to as recurrent cells in the network. States
consisting of h hidden units are given by a recurrence formula

ht = f(ht−1,xt|Wh,Wx), (3.26)

where hᵀ
t ∈ Rh, and f is some function parameterized by the weights Wt ∈ Rh×h, Wx ∈

Rh×p (with xᵀ ∈ Rp, as before). Note that f , Wx, and Wh are not dependent on t, i.e.
the weights and functions are shared across the timesteps. In the ordinary recurrent neural
network, the prediction process for an output ŷt can be described as

ht = f(Whht−1Wxxt),

ŷt := F (xt) = g(Wht
).

where Wᵀ
y ∈ Rh are the output weights.

Intuitively, this formulation allows the network to learn optimal dependence of all previous
timesteps through the recursive equation (3.26) and weights Wh, in addition to the input
vector xt as in the neural network framework in Section 3.4.

In the case of recurrent neural networks, the loss L of all time steps is simply computed as
sum of losses at every timestep:

L(ŷ, y) =

T∑
t=1

L(ŷt, yt). (3.27)

3.5.2 Back-propagation through time

For training RNNs, we can use the principles of back-propagation described in Section 3.4.2,
with some additional considerations, accommodating for the sequential dependence imposed
by the hidden states ht. This process is called back-propagation through time, or BPTT.

For our purposes, we will present a simplified description of BPPT as in Zhang et al. (2020),
where we let the functions f and g be the identify function. This simplification reduces a lot of
notational clutter, while still bringing to light the key ideas, and the following complications.
A detailed description can be found in Zhang et al. (2020).

To use the back-propagation scheme in Section 3.4.2, we need to find the derivatives of the
loss L with respect to the network weights Wy, Wh, and Wx. The first is easily obtained
from (3.27):
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Figure 3.5: A simplified illustration of a recurrent neural network, showing how the previous
hidden states are used to produce both an output yt and the next hidden state ht. The
edges represent sets of trainable weights, and the φ denotes a fully connected layer with a
corresponding activation function.

∂Wh
L =

T∑
t=1

∂ŷtL(ŷt, yt)ht,

where ∂(·) denotes the partial derivative with respect to its subscript. For the latter two
weight sets, we again use the chain rule, on (3.27):

∂Wh
L =

T∑
t=1

∂ŷtL (ŷt, yt) Wy∂Wh
ht,

∂Wx
L =

T∑
t=1

∂ŷtL (ŷt, yt) Wy∂Wx
ht.

The first two factors of these equations are simple to compute. In order to compute the last
factor, we use that from the recursive nature of the hidden states, we have that

∂ht
ht+1 = Wᵀ

h,

∂hthT = (Wᵀ
h)T−t,

using that we assume f to be the identity function. This gives the partial derivatives

∂Wh
ht =

t∑
j=1

(Wᵀ
h)t−jhj ,

∂Wx
ht =

t∑
j=1

(Wᵀ
h)t−jxj .

(3.28)

In the general case, the exponential in the sum of (3.28) is replaced with a sequential product
of the gradients, with some additional terms (Zhang et al., 2020).

While this allows for the derivatives to be computed recursively and used in weight updating,
the potentially large powers of Wh causes some problems that has to be considered. For
large values of t, if the eigenvalues of Wh are greater than one, the gradients will quickly
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explode. Similarly, if they are smaller than 1, the gradients vanish, resulting in amplified
cases of the issues described in Section 3.4.4

To counteract this, one typically approximates the gradients by truncating the sum after τ
timesteps, ignoring any terms in (3.28) after t− τ . This will, however, come at the cost of
the long term influences of inputs, making the model focus mainly on short term influences
(which may or may not be desirable) (Zhang et al., 2020).

3.5.3 LSTM network

One recurrent framework that addresses the key issues of traditional RNNs without the loss
of long-term dependencies, are the long short term memory network, or LSTM, introduced by
Hochreiter and Schmidhuber (1997). It builds on the traditional recurrent architecture, but
introduces a memory cell, which is used in addition to the hidden state to control the flow of
information across different timesteps. In this section, we will give a conceptual description
of the LSTMs, similar to that given in Zhang et al. (2020), while referring a more in-depth
description to the original work of Hochreiter and Schmidhuber (1997).

Conceptually, we want to use the memory cell ct to scale the hidden state ht, to either
increase or decrease its influence at every timestep t. The information flow into and out of
the memory cell is controlled by a set of three gates; the output gate ot, the input gate it,
and the forget gate ft.

Intuitively, the output gate controls what data is sent as output of the cell, the input gate
controls the data flow into the cell, and the forget gate controls how data is deleted from the
cell. Each gate has its own set of weights, both for the previous hidden state ht−1, and the
input vector xt.

The outputs of each of the gates at each timestep t are simply linear combinations of their
respective set of trainable weights and the previous hidden state, sent through a sigmoid
activation function, denoted by σ:

it = σ(Wxixt + Whiht−1),

ft = σ(Wxfxt + Whfht−1),

ot = σ(Wxoxt + Whoht−1),

where the weight parameters are Wxi,Wxf ,Wxo ∈ Rh×p and Whi,Whf ,Who ∈ Rn×h, for
x ∈ Rp and h hidden units. As before, we omit the bias terms in this description. The sigmoid
constrains the output to the range (0, 1), allowing them to be thought of as gates.

A candidate memory cell c̃t is also constructed based on the previous hidden state, and sent
through a hyperbolic tangent activation function:

c̃t = tanh(Wxcxt + Whcht−1),

where Wxc ∈ Rh×n and Whc ∈ Rh×h. The forget gate and input gate are then used to scale
the previous and candidate memory cells through element-wise multiplication:

ct = ft � ct−1 + it � c̃t,

producing the memory cell at timestep t. Finally, the hidden state at timestep t is computed
by scaling scaling the hyperbolic tangent of the memory cell with the output gate:

ht = ot � tanh(ct), (3.29)

which in turn is used to produce the output ŷ, as in (3.26), completing the LSTM process.
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Intuitively, the series of gates allows the memory cell to "remember" long term dependencies,
separately from ht, and allowing them to influence the output when relevant. This is all made
possible through the framework of learnable weights central to neural networks, naturally
adding more complexity compared to e.g. the traditional RNNs described in Section 3.5.1.
However, this additional complexity has proven to be effective, making LSTMs perform very
well on a number of timeseries-related tasks (Shewalkar et al., 2019).
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Figure 3.6: A simplified illustration of the interaction between the input xt, the previous
hidden state ht−1, the previous memory cell ct−1, and the set of gates that make up an LSTM
cell. The edges represent weights, and the gates are shown as rectangular boxes. These cells
are then sequentially aligned in the t dimension, as the RNN in Figure 3.5.

Back-propagation through time for LSTMs

The introduction of gates to the RNN framework helps solve the issue of vanishing and ex-
ploding gradients faced in traditional RNNs. We will leave the exact mathematical motivation
behind this to Hochreiter and Schmidhuber (1997), giving only a conceptual explanation.

In the LSTM framework, the exponential product in the gradient (3.28) contains instead
a sum of the derivatives for the weights of each of the separate gates, rather than a single
term, in addition to the hidden state. This additional flexibility allows the network to keep or
remove gradients at certain timesteps t, should it be relevant. This has been shown to greatly
help stabilize training, as well as increase performance on many tasks where both long and
short term dependence is relevant (Hochreiter and Schmidhuber, 1997), (Shewalkar et al.,
2019), (Anani and Samarabandu, 2018).

31



Chapter 4

Methods for model evaluation

In this chapter, we will define and discuss some methods that will be used for evaluating the
bankruptcy prediction models presented in Chapter 6.

In Section 4.1, we will define some key binary classification metrics that will be used to
analyze and evaluate the models, discussing their properties, strengths and weaknesses. In
Section 4.2, we then introduce a model interpretation framework that can be used to explain
and analyze many machine learning models, namely SHAP values, and then detail how it
can be applied to each of our considered models.

4.1 Binary classification evaluation metrics

In order to evaluate and compare the performance of a predictive model, one ideally wants to
formulate the overall quality of the model in terms of one or more evaluation metrics, which
encapsulates some or all of the model’s desirable properties in an intuitively appreciable
manner. This is typically formulated as a single score value, facilitating easy comparison and
ranking of models.

Because of the inherent tendency of many machine learning methods to overfit the training
dataset - discussed throughout Chapter 3 - the evaluation metrics are typically computed
on a separate test set, that has not been used during training. This allows for comparing of
separate models’ generalization ability, which is generally of most interest. Note that the
test set should also be different from the validation set discussed in Section 3.4.4, as the
validation set is used to optimally train the model.

In this section we then present and briefly discuss some popular metrics used for binary
prediction tasks, which we will apply to evaluate and compare the bankruptcy prediction
models in Chapter 6.

4.1.1 Scoring rules

In order to motivate our particular choices of metrics, we will first define the notion of scoring
rules. Assume some model producing a set of probabilistic predictions ỹi = P̂ (yi = 1) ∈ (0, 1)
for a set of binary target variable yi ∈ {0, 1} with a "true" probability P (yi = 1), i = 1, . . . , n.
A scoring rule s is then a mapping between the prediction ŷ and a numeric loss:

s : (ŷ, y)→ s(ŷ, y).

A proper scoring rule is a scoring rule that is optimized (minimized or maximized depending
on its formulation) in expectation by ỹi = P (yi = 1). It is said to be strictly proper if it is
optimized only by ỹi = P (yi = 1). These are desirable properties, as they guarantee that the
desired model behaviour (i.e. good approximation of the true probability P (yi = 1)) will be
reflected in better scores s.
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Some popular metrics, such as accuracy, require the model predictions to be binary, meaning
they are not, strictly speaking, scoring rules. In order to evaluate these metrics, we will apply
a decision threshold τ , giving the binary predictions ŷi = 1(ỹi>τ). In practice (and in all of
our future applications), this threshold is typically set to 0.5.

4.1.2 Accuracy

In a binary classification setting, the overall classification accuracy of the model is often the
most natural metric to consider. It is simply defined as the ratio of correct predictions to total
number of samples. For a set of binary predictions ŷi following from a decision threshold τ ,
it is defined as

accuracy =
1

n

n∑
i=1

1(ŷi=yi).

While perhaps the most intuitively appreciable metric, accuracy has some major drawbacks
that has to be taken into consideration. In the case of probability predictions, all infor-
mativeness of the probabilities are lost in the decision rule ŷi = 1(ỹi>τ), and accuracy is
consequently agnostic to any predictions in the range (τ, 1). One would typically prefer
a model with probability estimates (correctly) distributed closer to 0 or 1, for which the
accuracy metric provides no information. Consequently, the metric is also highly sensitive to
the particular choice of τ .

The accuracy metric also becomes harder to interpret in the case of unevenly distributed
target variables (unbalanced data). The accuracy of any naive model predicting exclusively
positive (or negative) classifications is equal to the proportion of positive targets yi, which in
the case of highly unbalanced data problems may produce a very high accuracy, for a model
with no predictive power. Therefore, it is important to consider the target data distribution
when using the accuracy score as a metric.

4.1.3 F1-score

A metric that addresses some of the issues with accuracy, while still requiring a decision
threshold τ , is the F1-score. It considers both the precision and recall of the model, providing
information about the model’s predictive power in the case of highly unbalanced data. It is
simply defined as the harmonic mean of these quantities:

F1 = 2 · precision · recall
precision + recall

,

where

precision =

∑n
i=1 1(ŷi=yi)1(yi=1)∑n

i=1 1(ŷi=1)
=

TP

TP + FP
,

recall =

∑n
i=1 1(ŷi=yi)1(yi=1)∑n

i=1 1(yi=1)
=

TP

TP + FN
.

Note that the numerator in the middle expressions are simply the number of correct positive
predictions. In the alternative formulation, TP denotes the number of true positives, FP
the number of false positives and FN the number of false negatives (see Figure 4.1).
Consequently, precision can be interpreted as the estimated probability of a randomly
selected positive prediction being correct, while recall is the probability of a random true
positive being amongst the positive predictions.

While allowing for a more balanced evaluation of a model’s performance in the case of
unbalanced data, the F1-score still suffers from the same drawbacks as accuracy in the
information loss in the decision process, and inherent sensitivity to decision threshold τ .
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Figure 4.1: An illustration of true positives, false positives, false negatives and true negatives.
The outer rectangles represent the space of all samples, with the left rectangle being all
positive labelled samples (dark green dots), the right all negative labelled samples (purple
dots). The circle represents the subset of samples predicted as positive by some model, and
an illustration of the corresponding precision and recall metrics is given below. The figure is
adapted from Wikimedia Commons (2014).

4.1.4 Brier score

A popular scoring rule that can be deployed beyond the task of binary classification is the
Brier score, first described in Brier (1950). It is most commonly formulated as

bs =
1

n

n∑
i=1

(ỹi − yi)2, (4.1)

essentially the mean-squared error of the probabilistic prediction ỹi. It can be shown to be
strictly proper, offering insight into the average quality of the probability estimates ỹi that is
lacking in both accuracy and the F1-score.

A model consistently predicting probabilities close to 0.5 (e.g. 0.49 for negative labels and
0.51 for positive labels), will receive a relatively poor Brier score, while the accuracy may be
good, if the classifications are correct according to the decision threshold. Thus, the Brier
score will give a good indication of the quality of the individual predictions of the model, i.e.
if the model is (correctly) confident in its probability estimates, independent of any decision
threshold.
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4.1.5 AUC score

A scoring metric that is often used for both evaluation and optimization, is the area under
receiver operator characteristic curve, or AUC score, for short (Cortes and Mohri, 2003). It
builds on the concepts of precision and recall discussed in Section 4.1.3, but varies the
decision threshold τ across the range [0, 1] to produce the receiver operating characteristic
curve, or ROC curve, defined by the resulting points (precision, recall). As τ = 0 implies
precision = 0 and recall = 1, and τ = 1 gives precision = 1 and recall = 0, the ROC curve
will always intercept these points, and then typically have a concave shape.

The ROC curve is visualized with 1−precision on the x-axis and recall on the y-axis, as shown
in Figure 4.2. The AUC score is then computed as the total area under this curve, and is
consequently bounded to the range [0, 1].

1 - Recall

Pr
ec

isi
on

0 1

1
ROC curve

Area under curve (AUC)

Figure 4.2: An illustration of the ROC curve with corresponding area under curve (AUC), in
this case greater than 0.5. An arbitrary model will have a a linear curve and AUC score of 0.5,
here showed as a dotted line.

The ROC curve describes the trade-off between precision and recall for different threshold
values τ , meaning it encapsulates both information of the quality of the probability predictions
ỹi , while also being somewhat robust to unbalanced data, as the F1-score. A random classifier
will on average have a linear ROC curve with slope 1, and thus an AUC score of 0.5, providing
a baseline for the score. A perfect model will have an AUC score of 1, meaning any AUC
score in the range (0.5, 1] has predictive power. The AUC score can also be shown to be
semi-proper (Cortes and Mohri, 2003).

Due to it encapsulating the total trade-off between precision and recall for all decision
thresholds τ , as well as relevance even for unbalanced data, the AUC score will be our main
metric for evaluating and comparing the bankruptcy prediction models.

4.1.6 Note on scoring metrics for bankruptcy prediction

When using metrics to evaluate models that are to be deployed in practical applications, it is
important to consider the relevant contexts and ideally incorporate them into the metrics in
some sense. For bankruptcy prediction specifically, there will often be different economical
impacts for false positive and false negative predictions. An optimal evaluation would then
incorporate such practical implications into their respective metrics, via e.g. weighting in the
F1-score (rather than using the harmonic mean), or simulation studies such as in Wahlstrøm
et al. (2020). This would also have implications for the unbalanced data problem. We will,
however, leave such considerations outside the scope of this thesis, always conforming to the
previous "fair" metrics for consistency.
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4.2 Machine learning model interpretability

A common criticism of advanced machine learning models involve the complexity of interpret-
ing a model’s output, and its learned behaviour. We will refer to this as model interpretability.
Often dubbed the "black-box" problem, the complexity of models such as neural networks
and large tree ensembles makes it difficult to dissect which features contributed to a specific
prediction, and to what extent. Furthermore, precise analysis of the overall learned behaviour
of a model may be equally complicated, which may cause problems such as data leakage and
model bias to go unnoticed (Yu and Alì, 2019).

In many real-world applications (such as those where a bankruptcy prediction model may be
applied) a key reason to apply such models may be to analyze the underlying reasons for
the predicted behaviour, in order react to them. Therefore, model interpretability becomes a
very desirable property, and often even a necessary requirement (especially in the light of
new legal requirements), for a model to be applied.

While machine learning methods have developed greatly in terms of predictive performance
capabilities, a lot is yet to be understood in terms of how they learn and perform predictions
(Yu and Alì, 2019). However, this topic has gotten increased attention, motivating works
such as Ribeiro et al. (2016) and Gilpin et al. (2018).

In this section we will focus on a framework that attempts to unify many of these ideas into
one coherent framework, built on a set of desirable properties for a model explainability
process, namely Shapley Additve Explanations - or SHAP - compiled in Lundberg and Lee
(2017).

4.2.1 Shapley values

As the name implies, SHAP builds on the concept of Shapley values, which was first introduced
as a game theoretic concept in Shapley (1951). In this context, Shapley-values address how
to fairly distribute the gains of a coalition game where a set of players cooperate (unevenly)
to achieve some outcome. The central idea is to assign each player with a value representing
the gain of their contribution, relative to the expected gain should the player not have
participated. Thus, the sum of the contribution values for all players should equal the total
value of the gain, relative to no cooperation occurring.

The analogy to a predictive model is then to consider each feature as a player and the model
prediction as the outcome, which we then want to "distribute" amongst the features. Thus,
Shapley values provide local explanations, meaning they can be used to explain individual
model predictions.

For a general prediction function F (x), let S ⊂ J denote a subset of the set of all features
J , and let FS denote a model trained only on the feature subset S. The Shapley value for a
feature j ∈ J for a particular example x is then computed as the weighted contribution of
the feature, summed over all possible feature subsets S (Lundberg and Lee, 2017):

φj(F ) =
∑

S⊂J\{j}

|S|!(p− |S| − 1)!

p!
(FS∪j(xS∪j)− FS(xS)), (4.2)

where xS denotes the feature vector x with only features in S, and p is the total number
of features. In the case of non-independent features in x, this requires training a separate
model FS for every feature subset S, which quickly becomes infeasible. One therefore often
resorts to approximate (4.2) in some sense by for instance Monte-Carlo sampling (Štrumbelj
and Kononenko, 2014), or assume feature independence (Lundberg and Lee, 2017).

4.2.2 Axiomatic properties of Shapley values

It can be shown that the Shapley value (4.2) is the only feature attribution method that satis-
fies four axiomatic properties, namely efficiency, symmetry, dummy and additivity (Lundberg
and Lee, 2017).
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Efficiency simply states that the feature contributions φj must sum to the prediction of a
particular x, less the average prediction:

p∑
j=1

φj = F (x)− Ex∈D(F (x)),

ensuring the fair distribution of the contributions amongst the features.

The symmetry property states that the contribution of two features j and k should be the
same if they contribute equally to all possible feature feature subsets. The dummy property
states that a feature j whose influence on the prediction regardless of feature subset is always
0, should have a Shapley value of 0.

Finally, the additivity property states that for a model consisting of additive submodels,
F = f1 + f2 + . . . (such as gradient boosting machines described in Section 3.3), the Shapley
value of the full model should equal the sum of the Shapley values of each of the submodels:

φj(F ) = φj(f1) + φj(f2) + . . . .

Conforming to these axiomatic properties provides a solid theoretical foundation for Shapley
values to be used for model explanation.

4.2.3 SHAP (SHapley Additive exPlanations)

SHAP (SHapley Additive exPlanations) by Lundberg and Lee (2017) provide an extension
of the Shapley values described above, connecting it to other explanation frameworks such
as LIME (Ribeiro et al., 2016), by formulating model explanation as a separate additive
explanation model g of binary variables:

g(x′) = φ0 +

p∑
j=1

φix
′
i, (4.3)

where x′ ∈ {0, 1}p is a simplified input that map to the original inputs x through a mapping
function x = hx(x′). In this context, (4.2) becomes

φj(F ) =
∑
z′⊂x′

|z′|!(p− |z′| − 1)!

p!
(Fx(z′)− Fx(z′ \ j)), (4.4)

where |z′| is the number of non-zero elements in z′, Fx(z′) = F (hx(z′)) = E(F (z|zS)), S
being the set of non-zero indices in z′, and z′ \ j denotes setting feature z′j = 0.

Note that while using the mapping hx(z′) = zS requires training of separate models for each
S, SHAP values instead approximate F (zS |zS) with the expectation E(F (z)|zS). By relaxing
the assumption of feature independence, this can be further approximated noting that

E(F (z)|zS) = EzS̄ |zS
(F (z)) ≈ EzS̄

(F (z)), (4.5)

where S̄ = J \ S (Lundberg and Lee, 2017).

4.2.4 SHAP for logistic regression

Logistic (and linear) regression models are often used for its simple interpretation of feature
attribution, simply by the coefficient weights β (following the notation in Section 3.2).
Indeed, assuming feature independence, the SHAP value for feature j for a logistic regression
model 3.4 (in logit space) becomes

φj = βj(xj − E(xj)), (4.6)
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aligning with the classical interpretation of feature attribution in logistic regression models
(Lundberg and Lee, 2017).

When multicollinearity is present, however, the estimation is not as straightforward, and
we run into the same problems estimating the expectation in (4.5) in an efficient manner.
Lundberg and Lee (2017) propose an efficient estimation of this expectation by assuming x
to be multivariate Gaussian.

The exact derivation of the method requires extensive computation, but in short, the Gaussian
assumption allows for the approximation of a transformation matrix T such that the Shapley
values φ = βTx. This transformation matrix can be precomputed using random sampling,
allowing for efficient estimation of SHAP values under multicollinearity.

4.2.5 KernelSHAP

Lundberg and Lee (2017) propose a kernel-based estimation approach for approximating
(4.5) in a model-agnostic manner, inspired by the LIME framework (Ribeiro et al., 2016). In
LIME, the explanation model g is assumed to be (locally) linear, and is found by minimizing

ε = arg min
g∈G

L(f, g, πx′) + Ω(g), (4.7)

where the loss function L, regularization term Ω, and a weighting kernel πx′ are heuristic
parameters, and G is the set of all linear functions. Lundberg and Lee (2017) then propose
the following parameters such that the solution to (4.7) recover the Shapley values (4.4),
thus adhering to the desired axioms in Section 4.2.2:

Ω(g) = 0,

πx′(z
′) =

p− 1(
p
|z′|
)
|z′|(p− |z′|)

,

L(f, g, πx′) =
∑
z′∈Z

(F (h−1x (z′))− g(z′))2πx′(z
′).

With g assumed to be linear and L being the squared loss, the Shapley values can in this
case be computed by weighted linear regression, resulting in a model-agnostic estimation of
SHAP values under these assumptions.

4.2.6 TreeSHAP

The linear assumptions of KernelSHAP restricts the flexibility of the methods, especially so
for more complex, non-linear models. Lundberg et al. (2020) propose a specialization for
tree-based methods (such as decision trees described in Section 3.3.1 or gradient boosting
trees in Section 3.3) for computing SHAP values in a computationally efficient manner.
Specifically, it allows for efficient approximation of the conditional expectation E(fx|xS)
for a single tree model f , which can then be applied to additive ensembles by the additivity
property in Section 4.2.2. We will give a conceptual description of the estimation of the
SHAP values in a tree model, leaving the description of the computational optimizations and
exact algorithmic structure to Lundberg et al. (2020).

For a decision tree structure as described in Section 3.3.1 based on a set of features J ,
let S denote a subset of features. When S = J , the set of all features, the expectation
E(fx|xS) = E(fx). When S contains only a subset of features, the expectation is computed
by ignoring the predictions that depend on nodes with splitting features not present in S
("unreachable" nodes). For the remaining terminal nodes, the predictions are weighted by
the number of training samples in each node, and the E(fx|xS) is then the recomputed (and
then weighted) value cj in (3.8) for the remaining terminal nodes.
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Feature importance in gradient boosting trees

In many gradient boosting tree implementations, such as Ke et al. (2017) and Chen and
Guestrin (2016), one can compute a global measure called feature importance, meant to
capture the overall attribution of each feature. These methods generally rely on computing
the total loss reduction for each feature (Ke et al., 2017), or the number of optimal splits
found for each feature (see (3.9)).

However, Lundberg et al. (2020) argue that these are inconsistent, meaning that the model
can be changed to rely more on a single feature, but result in a decrease in the attributed
feature importance. These methods are therefore lacking in their explainable power, and
does not adhere to the axiomatic properties of SHAP values, making SHAP values preferable
for gradient boosting tree explanation.

4.2.7 Global SHAP values analysis

While SHAP values inherently produce local explanations, Lundberg et al. (2020) suggest
simple extensions to allow for global explanations of model behaviour by using aggregated
SHAP values, as they provide consistent and theoretically sound foundations for such analysis.
The most natural extension then involves global importance of individual the individual
features, simply as the mean magnitude of the SHAP value across all training samples.
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Figure 4.3: Example SHAP summary plot showing the SHAP values and corresponding
feature values for 10 different features.

The SHAP package offers a global summary plot, which plots the n most important features
(as the features with the greatest mean SHAP value magnitude), as horizontal scatter plots
with color intensity representing the feature value. An example of a SHAP summary plot is
shown in Figure 4.3. Note that non-uniform color distributions (e.g. differences in feature
value distributions for the same SHAP value) implies that feature interactions caused the
resulting SHAP value. These plots provide an intuitive view of both the most important
features, as well as their feature value and corresponding SHAP value distributions across
the whole dataset.

From Figure 4.3, we see for instance that high feature values of the feature dividens / net inc
has a large negative impact on the model output, and vice versa. The mixed feature intensity
values for similar SHAP values for the feature public taxes payable / tot assets implies that
interaction effects are taking place.

While the SHAP package also offers views for analysis of specific interactions between feature
value pairs and their corresponding SHAP values, we will not be considering them in our
analysis, as we will focus on the more general model behaviour, rather than specific features.
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Chapter 5

Experimental setup and design

Before we present and analyze the results of our bankruptcy methods, we will thoroughly
describe how the procedures and experiments were deployed. The methodology was con-
structed to adhere to the highest standards of machine learning best practice, whenever
possible. As we are working with time-distributed data, this involves avoiding time-leakage,
meaning future data must be unavailable to a model that is considering data at a specific
time. When other considerations had to be made, they will be clearly specified.

In this chapter we will describe in detail the data preprocessing process, as well as how
the dataset was balanced, building on the dataset described in Section 2.3. We will then
specify how the dataset was split into a train and test set, and then detail the temporal k-fold
validation scheme deployed in order to reliably tune and optimize the models.

We will then briefly highlight some considerations made when performing model inter-
pretability analysis and feature selection, before describing the special considerations that
were made when formulating the problem as a timeseries problem.

Finally, the specific implementations of each of the models (and corresponding SHAP analysis)
will be described. A general note is that all methods were implemented using the Python
programming language, and that all packages used are open-source and available for free.

5.1 Data preprocessing

In statistical learning applications using large numerical datasets, one often applies some
sort of data preprocessing processes in order to allow for better and more robust training of
the algorithms. In general, we follow the same preprocessing that was applied in Wahlstrøm
et al. (2020) on the same dataset, which we will describe in this section.

5.1.1 Quantile truncation

One technique typically applied to handle numerical data outliers is quantile truncating,
where one truncates the values of each of the features to a specified quantile. For every
sample i = 1, . . . , n and feature k = 1, . . . , p, we set the corresponding value xik as

(xij)
′ =


Qα1

k , if xik < Qα1

k ,

Qα2

k , if xik > Qα2

k ,

xij , otherwise,

where Qαk denotes the sample α-quantile of feature k, α ∈ (0, 1). Such a truncating scheme
allows for protection against outliers (which are often problematic, as discussed in Chapter
3), while not discarding any data samples. This is especially advantageous when the feature
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set is large, as in our case, as this can cause many samples to be outliers in just a low number
of features.

Wahlstrøm et al. (2020) found the model performance to be little sensitive to particular
(reasonable) choices of α1 and α2. We will follow their optimal parameters, using symmetrical
quantiles given by α1 = 0.01, α2 = 0.99.

5.1.2 Feature scaling

Some of the methods described in Chapter 3 require the numerical features to be on a similar
scale, in order to avoid inherent bias or instability. For these methods - logistic regression
(Section 3.2) and neural network methods (Sections 3.4 and 3.5) - we standardize the
features by performing Z-scaling, normalizing the data based on the sample mean µk and
standard deviation σk of feature k. For every sample i and numerical feature k:

(xik)′ =
xik − µk
σk

.

Note that we perform Z-scaling after quantile truncation.

5.1.3 Log transformation

For the features company_age and total_assets, a log transformation is applied. As the
company_age may be 0, all values for this feature were added with 1 before log trans-
formation. The log transformations were applied before quantile truncation and feature
scaling.

5.1.4 Categorical encoding

For the categorical variable described in 2.3, we will analyze results both for one-hot encoding,
target statistic encoding and categorical embedding, discussed in Sections 3.3.4 and 3.4.3
(the latter only for neural networks). In the latter two cases, this involves performing some
integer encoding of categories before the models are applied, where we arbitrarily assign
each unique category with an integer.

Note that there are also two binary variables; dummy; 1ifpaid−inequityislessthantotequity
and dummy; 1 if tot liability exceeds tot assets. These will always be kept in binary form,
and not scaled and truncated.

5.2 Dataset balancing

In most real world classification or prediction applications, there will typically be an imbal-
ance in the distribution of target label classes, referred to as unbalanced data. In our binary
target case, we have a majority of positive labels (i.e. non bankruptcies), referred to as
majority samples. We will in this section refer to r as the proportion of minority samples
(meaning samples labelled with the minority target value, i.e. bankrupt companies) in the
dataset.

In the case of very unbalanced data (r < 0.1), binary machine learning models may have
trouble learning a predictive decision boundary, getting stuck in local minima as the gradient
based optimization may tend towards predicting all samples as the majority class (Soma-
sundaram and Reddy, 2016). In our case r = 0.0169, raising concerns for using a machine
learning model to learn these rare occurrences.

A simple, yet effective way to negate this is to perform one or more sampling techniques in
order to balance the distribution of target values in the training set. Note that this approach
comes with drawbacks, which we will discuss at the end of this section.
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5.2.1 Matched undersampling

We will reproduce the sampling method used by Wahlstrøm et al. (2020), which deploys a
three-step matching process of samples, aimed towards matching each minority sample with
a similar majority sample company. Although somewhat heuristic, this approach is thought
to better allow for the model to learn a more optimal decision boundary between samples,
as opposed to random undersampling, and is used throughout the bankruptcy prediction
literature (Wahlstrøm et al. 2020; Härdle et al. 2009).

The process involves imposing three requirements for which a candidate majority sample
needs to match the considered minority sample:

1. The majority sample needs to be of the same accounting year as the minority sample.
This ensures no time-leakage in the balancing process.

2. The majority sample needs to be of the same industry as the minority sample. The
industry is defined as the uppermost level (i.e. most general level) of the NACE-code,
described in Section 2.3.5.

3. The total_assets of the majority sample needs to be within ±10% of the minority
sample (before log transformation).

Note that for the timeseries methods, the average yearly total_assets over the timeseries
were used in the third requirement.

When imposing these requirements, each minority sample were found to have at least one
matching majority sample. In the case of multiple matched samples, the majority sample
used in the balanced dataset was drawn randomly from these.

As results are typically compared using one or more of the metrics discussed in Section 4.1,
and because these metrics are sensitive in various degrees to the target value distribution of
the considered dataset, results are often reported on the balanced dataset, as in Wahlstrøm
et al. (2020). We will conform to this, focusing most of the reported results on the balanced
dataset. We will, however, also do a final evaluation of the models on the full dataset, and
report the findings.

While there are more advanced sampling techniques available, such as synthetic minority
oversampling (SMOTE, Fernández et al. (2018)) or Adaptive synthetic sampling (ADASYN,
Haibo He et al. (2008)), initial experiments with these techniques showed little improvement.
As we consider the unbalanced data problem, and consequently sampling techniques, beyond
the scope of this thesis, we will only deploy the same technique as Wahlstrøm et al. (2020),
for consistency.

5.2.2 Issues with sampling

Naturally, many considerations must be made when applying such sampling schemes on the
training data. The most evident one is that of distribution shift, as one shifts the training
data distribution from the true distribution one wants to approximate when performing such
artificial sampling techniques. This will typically produce strong biases in the model, and one
would need to thoroughly investigate the model’s behaviour on the unbalanced dataset in
order to learn these biases before any practical applications of the model can be considered.
As mentioned before, we will consider any such investigation beyond the scope of this thesis.

Another apparent drawback is the inefficient usage of data, largely ignoring the majority of
the (majority class) data, which naturally should hold at least some information relevant
to the predictive power of the model. One approach alternative to dataset balancing that
may make better use of the data is to use sample weighting during training (Johnson and
Khoshgoftaar, 2019). By assigning larger weights to minority samples, the model can perform
greater iterative updates for minority samples. This forces the model to "pay more attention"
to the sparse minority samples, compared to the (numerically abundant) majority samples.

Initial experiments showed good promise for applying the sample weighting technique,
especially when combined with fractional dataset balancing (e.g. balancing the dataset such
that r = 0.1, as opposed to r = 0.5). This resulted in comparable performance on a fully
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balanced dataset, while increasing performance on the full, unbalanced dataset. However,
we will not be reporting these results as they are considered beyond the scope of this thesis,
only noting the method’s promise.

The unbalanced data problem is both evident and relevant, not only in bankruptcy prediction,
but in machine learning in general (Somasundaram and Reddy, 2016). (Krawczyk, 2016),
(Kotsiantis et al., 2005). We stress that this problem has to be handled, or at least considered,
before applying any of these models to real-world cases. However, any such considerations
should include economical or other practical factors in order to properly evaluate the trade-
offs that has to be made. Thus, we consider the problem beyond the scope of this thesis,
and while we will report results on the full, unbalanced dataset, no considerations has been
made to optimize towards this case - only for the balanced data case. We acknowledge the
limitations of this, and encourage further work to investigate how to improve upon this.

5.3 Train and test set splitting scheme

As described in Section 4.1, it is considered machine learning best practice to split the dataset
into a separate training set and test set, where the former is used to train, tune and optimize
models, and the latter exclusively to report the final results. This practice results in a realistic
estimate of the model’s expected performance on unseen data.

In the case of time dependent data, the test set should be comprised of the most recent
data observations, in order for the results to most realistically reflect the expected future
performance of the model. We will therefore use the accounting year as the index upon
which to split data intro training and test set, using only all of one accounting year’s data to
train a model, or none of it.

In specific, we will set aside the final two years of data, 2013 and 2014, to use as a test set.
The remaining years 2006-2012 will be used as either training or validation data (see Figure
5.1).

Also note that some of the preprocessing described in Section 5.1 depend on in-sample
parameters. These parameters were estimated exclusively on the training set (or training
fold, during validation), and all preprocessing used on the test set was performed using the
training set parameters, avoiding any data leakage.

5.4 Temporal k-fold training and validation scheme

In order to adjust and optimize our models, we will split the training data into a set of
folds, each consisting of one training set and one validation set. During optimization of the
models, we will cycle through these folds, adjusting models and parameters to optimize
the performance on the validation sets. This method is often referred to as k-fold cross-
validation (Geisser, 1975) (where k refers to the number of folds), which is an extension to
the leave-one-out cross-validation (Stone, 1974).

In the case of temporally distributed data, we would again prefer to avoid the problem of time
leakage. We therefore deploy a temporal 4-fold scheme, where each fold consists of 3 years of
training data, and 1 year of validation data (see Figure 5.1). By limiting each fold to always
use 3 years of training data, this scheme will also allow to analyze the temporal stability of
the models, a major topic in Wahlstrøm et al. (2020). Table 5.1 shows the resulting number
of samples in each year.

This technique was used for tuning and optimizing all static models. Note that while the
validation set performance may give an indication of the model’s performance, it is not to be
considered as expected out of sample-performance, as the sets were used during training to
optimize the models.

5.4.1 Rolling window k-fold scheme for timeseries data

As will be discussed in Section 5.7, structuring the data as timeseries results in a reduction of
the total number of samples, especially for samples with longer timeseries lengths . To ensure
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2006 2007 2008 2009 2010 2011 2012 2013 2014

Fold 1:
Fold 2:

Fold 3:
Fold 4:

validationtrain test

Figure 5.1: An illustration of temporal 4-fold validation scheme applied when training and
and tuning the static models. Each box represents an accounting year of either training or
validation data. Note that the years 2013 and 2014 are not used in this scheme, as they make
up the test set.

Accounting year Number of samples Percentage of total data

2006 2668 8.929 %
2007 4380 14.66 %
2008 3836 12.84 %
2009 3528 11.81 %
2010 3082 10.31 %
2011 3210 10.74 %
2012 2790 9.337 %
2013 3258 10.90 %
2014 3128 10.47 %

Table 5.1: Number of samples in each accounting year (after dataset balancing), used to
build training and validation sets for the fold schemes.

that we have a sufficient number of samples in each training fold for the timeseries methods,
we adapt the fixed 4-year fold scheme to instead use a rolling window to select the folds.

Here, the number of years of training data is increased for each fold, starting with only 2006
as training data (validating on 2007), and then increasing the number of training years by
one at each fold, using the following year as the validation year. At the final fold, all of the
years 2006− 2011 make up the training set, with 2012 as the validation set (see Figure 5.2).

This scheme allows us to investigate the performance increase as more data becomes available
at each fold, and we expect the performance to be worst for the first few folds, and increase
as more data becomes available. This comes at the cost of investigating the time stability of
the timeseries methods. This decision was made as we expect the fixed year fold scheme to
provide too little data in each fold for the timeseries case.

5.5 Model interpretation

In all of our implementations, we will make use of the SHAP values, obtained by the methods
described in Section 4.2. All methods are implemented in the SHAP package (Lundberg and
Lee, 2017), and the specific methods used for each model is described in their respective
implementation sections at the end of this chapter.

For the static methods, we will perform all SHAP analysis on models trained on data from
the first fold, in order to reduce data leakage when we use the SHAP analysis for feature
selection. For the timeseries methods, however, we want to to ensure that timeseries of
length 4 are present in the data (see Section 5.7), and will therefore use the fourth fold to
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Fold 2:
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Fold 6:
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Fold 5:

Figure 5.2: An illustration of the rolling k-fold scheme used for timeseries training, which
allows us to investigate the performance increase as more data becomes available at each
fold.

perform SHAP analysis, noting the potential data leakage when performing SHAP feature
selection for this fold.

Note that since SHAP is used only to analyze the learned behaviour of a model after the
model is trained, there is no inherent problem using the same training set to obtain the SHAP
values (other than the considerations mentioned above). While multiple model variations
will be analyzed in each of their respective sections, we will only select one model of each
class to perform SHAP analysis.

5.6 Feature selection

Because the features in the training set are derived as different ratios and linear combinations
of underlying accounting data, we expect a high degree of multicollinearity in at least some
of the feature data. It is therefore reasonable to expect that the properties of a company is
overrepresented by the original 156 features, and that a subset of features may be sufficient to
represent the data, resulting in more compact and perhaps even better performing models. A
lower number of features will also help practical management and quality insurance, should
the models be deployed in practical contexts.

One of the goals of Wahlstrøm et al. (2020) was to compare different techniques for feature
selection, as well as investigate after which number of features the model performance
begins to plateau (or decrease). They implement several methods for feature selection
and performed time stability analysis for each one. Extending this analysis and performing
detailed feature selection analysis is considered beyond the scope of this thesis. We will,
however, replicate one of the methods used in Wahlstrøm et al. (2020), as well as investigate
the use of SHAP values for feature selection. We will also use their general finding in that
the performance increased quickly around 15 features, and started to plateau as the number
of features approached 30. We will therefore be considering feature subsets of 15 and 30
features, which should give accurate pictures of the performance of models with different
degrees of compactness.

5.6.1 Wrapper method

The method from Wahlstrøm et al. (2020) that we will replicate is called the wrapper method
(John et al. 1994; Kohavi and John 1997), which aims to select the best possible feature
subset by sequentially considering adding (and removing) features, and then evaluating
whether this offers improvements or not by fitting models to each of the different feature
subsets. Conceptually, this method greedily adds (and removes) features in order to search
for the best possible feature subset.
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Due to its exhaustive search nature, this method is computationally expensive, requiring
multiple models to be fitted at each step (Chandrashekar and Sahin, 2014). Therefore, we
will only implement it for logistic regression, as it is the fastest model to fit.

5.6.2 SHAP importance feature selection

For the other models, we will make use of SHAP feature importance for feature selection,
described in Section 4.2.7. Here, we simply select the d most important features, ranked by
the mean of the absolute SHAP values of the features. This method has some drawbacks,
as it does not always account for multicollinearity, meaning we risk subsetting features that
may be heavily correlated. It is, however, deemed sufficient for our purposes.

As mentioned in Section 5.5, the SHAP values will be obtained on a model trained on the
first fold (years 2006− 2009) for the static methods, and the fourth fold (years 2006-2010)
for the timeseries methods. For even more robust results, one could perform separate SHAP
analysis for each of the folds and perform feature selection based on the aggregation of these.
However, using only one fold for feature selection was deemed sufficient for our purposes.

5.7 Timeseries modelling

In practical timeseries prediction applications, sufficient care has to be taken when structuring
data into timeseries, making sure to avoid problems such as data leakage and bias resulting
from the construction process of the timeseries. In this section, we will describe in detail the
considerations made when structuring the financial statement data into timeseries, as well as
highlighting the potential pitfalls.

The general objective and problem formulation remains the same as before; we are looking
to predict the bankruptcy of a company, given the historically available accounting data.
However, rather than using the only the single previous year of accounting data, we will now
be constructing timeseries of multiple years, using the same set of financial ratios as features.

Because of the terminal nature of our timeseries data (accounting data generation ends
when a company becomes bankrupt), some specific considerations has to be made when we
construct our dataset of timeseries samples, especially as the age of the company is a feature
in our dataset (an important one at that, as we will see from the SHAP analysis in Section
6.5). We will therefore want a model framework that can handle mixed timeseries lengths,
which motivates our focus towards the RNN and LSTM models.

5.7.1 Maximum length of timeseries

As our dataset covers a time span of 8 years, this is an obvious upper ceiling for the length of
the timeseries we can construct. To ensure sufficient data in both the training and test sets
for our relatively data-hungry neural network timeseries methods, we will only investigate
timeseries with a maximum length of 4, as data availability generally goes down as we
require more (connected) accounting data points in the time dimension. This also allows for
more flexibility in our temporal k-fold schemes, discussed in Section 5.4.

While greater lengths would be interesting to investigate, given both the data availability
restrictions and practical context, we deem this number sufficient for both capturing the
economic developments of companies, and investigating the gain in predictive power in
adding such information.

5.7.2 Timeseries dataset balancing considerations

While it may be tempting to structure a timeseries sample as the maximum number of
available years of accounting data for the company, this can cause problems in the training
data distribution, especially in the context of the undersampling we apply during dataset
balancing, discussed in Section 5.2.

As we will see in Section 6.5, one of the most predictive features for all models is the
log(age in years); younger companies are generally more likely to go bankrupt. When we
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then match a bankrupt company (which is more likely to have shorter available timeseries)
to a non-bankrupt one (which is likely to be older) during the undersampling process, we
would end up with a strong bias in the connection between the length of the timeseries,
the age of the company, and the target (bankrupt/non-bankrupt), induced by the artificial
sampling and timeseries structuring process.

To counteract this tendency, we deploy two techniques when structuring our dataset as
timeseries and slightly alter the dataset balancing process in Section 5.2.1:

1. When selecting which timeseries length to use for a (minority) sample, we select the
length randomly between 1 and min(4, lmax), where lmax is the maximum timeseries
length available (i.e. number of available connected years of financial statements)
for the minority sample.

2. We then select a majority timeseries sample using the same matching criterion
outlined in Section 5.2.1, while also requiring it to have the same length as the
chosen minority sample.

Other than these alterations, the balancing process is the same as in Section 5.2.1.

This process ensures both that each of the timeseries lengths are equally balanced in the
target outcome (i.e. timeseries of length 1, 2, 3, and 4 each have the same number of
bankrupt/non-bankrupt cases), and that there is no inherent bias between between the
timeseries length and target variable. The resulting number of timeseries samples for each
length within each respective account year is shown in Table 5.2.

Accounting year Length 1 Length 2 Length 3 Length 4

2006 2668.0 - - -
2007 2710.0 1670.0 - -
2008 1860.0 1140.0 836.0 -
2009 1540.0 868.0 672.0 448.0
2010 1360.0 796.0 540.0 386.0
2011 1414.0 800.0 556.0 440.0
2012 1054.0 760.0 512.0 464.0
2013 1570.0 814.0 510.0 364.0
2014 1520.0 736.0 488.0 384.0

Table 5.2: Number of samples with the different timeseries lengths in each accounting year,
after our timeseries dataset balancing. Naturally, the timeseries lengths of the first three
years are limited by the data availability.

5.8 Model implementations

In this section, we will detail all of the specific model implementations used in the experi-
ments, to produce the results in Chapters 6 and 7. For the static methods, we will detail three
different models with their respective implementations. The timeseries methods, specifically
an RNN and an LSTM neural network, will be described collectively, as their implementations
share many similarities.

5.8.1 Logistic regression implementation

All logistic regression models were implemented through the library scikit-learn (Pe-
dregosa et al., 2011). They were trained until convergence using a stopping criteria tolerance
of 0.001, using the newton-cg solver method (implementing Newton’s method with the exact
Hessian, (Hastie et al., 2001)) with a log loss function (Section 3.2).

While Wahlstrøm et al. (2020) used no regularization in most of their experiments (with
the exception of one feature selection technique), our initial experiments found that some
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L2-regularization (see Section 3.2) gave improved results, especially in the case of models
that used one-hot encoded features. This is reasonable, as regularization helps with over-
parametrization caused by increasing the dimensions of the feature space. For consistency
and to facilitate easy comparison, all of our experiments will use L2-regularization with regu-
larization parameter λ = 1, which was experimentally found to be a good value (although
the results were little sensitive to particular choices of λ).

We will fit and test logistic regression both with and without the categorical variable
nace_code, both with one-hot encoding and ordinary target encoding, as described in Section
3.3.4).

Logistic regression feature selection

For feature selection, we use the wrapper feature selection method deployed in Wahlstrøm
et al. (2020) (described briefly in Section 5.6), and fit logistic regression models on feature
subsets of 15 and 30 features. We also perform a SHAP feature importance analysis (the
SHAP analysis will be detailed in Section 6.5), and select feature subsets of the 15 and 30 top
features, ranked by SHAP feature importance. Because the feature importance of one-hot
encoded features becomes distributed across all the encoded features (in a not necessarily
representative manner), we will use the target encoded case for estimating the SHAP values.

SHAP implementation for logistic regression

As stated in Section 4.2.4, applying model explanation for linear (or logistic) regression is
simple, assuming feature independence. As we expect multicollinearity in the feature data,
we instead use the LinearExplainer of the SHAP package, using the correlation dependent
features setting (which implements the additional considerations outlined in Section 4.2.4.

5.8.2 Neural network implementation

As outlined in Section 3.4, the performance and behaviour of neural networks depend on their
architecture. For our experiments, we will replicate the general neural network architecture
of Wahlstrøm et al. (2020), which used M = 3 hidden layers, with k1 = k2 = k3 = 10 hidden
nodes in each layer, and sigmoid activation functions. While we explored more advanced
architectures, they showed no substantial improvements over the more simple architecture
of Wahlstrøm et al. (2020), indicating that this architecture is able to capture most of the
processes, given the available amount of data.

Although Wahlstrøm et al. (2020) used a linear activation in the final layer, we will use a
sigmoid activation function here as well, to ensure the output is constrained to the (0, 1)
interval. We will test this architecture with and without one-hot encoding, and target
encoding, of the nace_code feature.

We then extend the architecture by introducing a categorical feature embedding of the
nace_code feature. A good value for the embedding dimension was found experimentally to
be d = 3; higher values were found to cause overfitting (see Figure 5.3c).

All neural networks were implemented using the Keras library (Chollet et al., 2015). Unless
otherwise specified, the default parameters were used to train the network. In specific, the
network was trained using stochastic gradient descent with a learning rate of 0.00025 (see
Section 3.1.1), with a batch size of 32, which was found to be reasonable values. All weights
are initialized with a glorot uniform distribution (see Section 3.4.4).

We train the networks for a maximum of 100 epochs (where 1 epoch corresponds to the
number of batches required to go through the whole training dataset), although we monitor
the training and validation losses, stopping the training using an early stopping criterion,
described in Section 3.4.4. The criterion stops training if the validation loss has not improved
for 5 epochs. Note that this may make the results reported on the validation folds slightly
optimistic, as the validation sets are used during training.
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(a) Neural network with only the 155 numerical fea-
tures.
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(b) Neural network with one-hot encoding for
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(c) Neural network with an embedding layer for nace_code,
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Figure 5.3: The implemented neural network architectures, each consisting of 3 hidden layers
with 10 nodes and sigmoid activation functions at every layer. The edges between the layers
are represented by a single arrow. The left rectangles represent the inputs to the networks,
which consists of 155 base (numerical features), and an additional 256 (the cardinality of
nace_code) features in the case of onehot encoding. For the embedding network, these
features are embedded to just 3 embedding features. Not depicted is the target encoding,
which is essentially an embedding layer with embedding dimension 1.

SHAP implementations for neural networks

For neural networks, we obtain approximate SHAP values using the KernelExplainer of
the SHAP package, which is built on the KernelSHAP method described in Section 4.2.5. As
the method greatly increases in sample time as the number of samples over which (4.7) is
minimized, we use a sample of 1000 data points from our training set over which for every
sample, we minimize this equation.

5.8.3 CatBoost implementation

We implement the gradient tree boosting algorithm using the CatBoost package
(Prokhorenkova et al., 2018), which implements the additional concepts of ordered boosting
described in Section 3.3.3.

The CatBoost package offers a wide variety of hyperparameters used for both ensemble and
individual tree specification, and model regularization. For a set of these, we use the random
search hyperparameter optimization implemented in the package, on the temporal validation
structure. The obtained values are detailed in Table 5.3. For the parameters not listed here,
the default values were used.
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Parameter name Explanation Value

num_boost_round Maximum number of trees to fit (iterations) 10000
learning_rate See Section 3.1.1 0.005
bootstrap_type Affects tree splitting (Prokhorenkova et al., 2018) ’Bernoulli’

max_depth Maximum allowed tree depth (number of splits) 5
subsample See Section 3.3 0.93

early_stopping_rounds After which number of iterations without
validation set improvement to stop training 250

Table 5.3: Parameters used for the models trained using the CatBoost package, obtained
using the built in random search procedure. The bottom three parameters are regularization
parameters. For parameters not listed here, the default parameters were used.

SHAP implementation for CatBoost

We obtain SHAP values for the CatBoost models using the TreeExplainer of the SHAP
package, implementing the TreeSHAP method described in Section 4.2.6.

5.8.4 RNN and LSTM implementations

For the timeseries methods, we will implement and analyze the performance of both RNNs,
described in Section 3.5.1, and LSTMs, described in 3.5.3. Due to their similar implementa-
tions, we will describe them collectively in this section.

The network architectures deployed are somewhat similar to those of the neural networks
in 5.8.2, although they necessarily include RNN and LSTM layers, each with 20 nodes.
These layers are used to learn the time dependent structure of the data, with two added
layers of fully connected layers of top, each containing 10 nodes. In the context of "feature
extractors" and "estimators" discussed in Section 3.4, the RNN/LSTM layers can be though
of as timeseries feature extractors, while the two following layers combine the timeseries
features to produce the final prediction.

Interestingly, tanh activation functions were found to work better than sigmoid activation
functions, and are therefore used throughout the timeseries networks. This can perhaps
be attributed to the exploding or vanishing gradient behaviour of recurrent types of neural
networks, discussed in Section 3.5.

Rather than investigating multiple categorical feature encodings as for the static methods,
we will build on the findings from these (as will be seen in Chapter 6), and use only a target
encoding of the nace_code feature. This allows us to focus our analysis on the properties
and behaviour specific to the timeseries formulation of the problem, as we do not expect the
categorical variable behaviour to change significantly as we move to the timeseries problem.

As with the neural networks in Section 5.8.2, we implemented both the RNN and LSTM
networks using the Keras library, using the same general parameters as in described in
Section 5.8.2: We use stochastic gradient descent with a learning rate of 0.00025, a batch
size of 32, and the glorot uniform distribution weight initialization. Again, we experimented
with different values for these parameters, but as they offered little to no improvement, we
used identical parameters, for consistency.

As before, we train the networks for a maximum of 100 epochs, using the same validation
stopping criterion after 5 consecutive epochs without validation loss improvement. We note
again that this means the validation set results in Section 7.1 may be slightly overfit, referring
realistic out of sample performance to Section 7.2.
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SHAP implementation for RNNs and LSTMs

Similarly as for the static neural network, we obtain SHAP values for the RNN and LSTM
models using the KernelExplainer of the SHAP package. Again, we use a sample of 1000
points from the training set over which the expectation is minimized.
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Chapter 6

Static method experiments and
results

In this chapter, we will detail the implementations and variations of the static models we
consider, and present and discuss the results. While we will generally report all the metrics
described in Section 4.1, (using a classification threshold τ = 0.5 where relevant), our main
focus will be the AUC score, due to its desirable properties and consistent use in previous
literature (Wahlstrøm et al., 2020; Bernhardsen and Larsen, 2007; Tian et al., 2015).

In Sections 6.1, 6.2, and 6.3, we will detail and present the results each of the considered
static models separately, tested on the temporal validation fold setup described in Section
5.4, using balanced datasets (following the balancing procedure described in Section 5.2).
Note that the specific parameters and architecture of the models were tuned to optimize
performance on these validation sets, meaning the results are only indicative of the models’
performance, while not necessarily reflecting true expected performance on unseen data.

For these methods, we will compare some variations of each of the models separately. We
will mainly consider different choices of handling the novel nace_code categorical variable,
described in Section 2.3.5, and different feature subsets of 15 and 30 features. The latter
choices are motivated by the findings of Wahlstrøm et al. (2020), who generally found
plateauing performance after around 20 features. Thus, we expect the 15 feature subsets
to provide examples of more compact models, while the 30 feature subset variations can
hopefully capture most of the relevant information and perform close to the full (156) feature
versions.

For the reproduced methods (logistic regression and neural networks), we will also briefly
compare them to the results of Wahlstrøm et al. (2020). However, they only report some
specific metrics, often in the format of graphs, making exact comparisons difficult. Also note
that as they only report validation fold performance, we will not be incorporating these
results into our test set analysis in Section 6.4. As they are the only work that use the same
dataset, it is the only relevant comparison we can make.

This validation set analysis is meant to motivate our particular choices of feature subsets
and categorical variable encodings, to be used when we compare all of the model classes on
the test set (comprised of 2013 and 2014 data) in Section 6.4. Here, we will compare results
on both the balanced and unbalanced datasets, but note that as addressing the unbalanced
data problem in any detail is beyond the scope of this thesis, we will only demonstrate the
unbalanced dataset results, refraining from addressing in detail any of the issues that are
revealed.

Finally, in Section 6.5, we will demonstrate how model interpretation can be performed,
doing global SHAP value analysis of each of the models, and discuss and compare some of
their learned behaviours. While SHAP analysis allows for individual feature explanation, we
will rather focus on a global SHAP comparison of the models, described in Section 4.2.7,
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as analysis of specific features would require more qualitative considerations and are thus
considered beyond our scope.

A note on model variations

While we did perform multiple experiments for different model variations, hyperparameter
setups and model architectures, we will not go into depth in describing and analyzing the
individual experiments for each of these, as the amount of results would quickly blow up
and it is not considered the main focus of this thesis. We will rather give a parsimonious
presentation of each of the model types’ performance and general behaviour, and focus on a
comparison between feature subsets and ways of handling the novel categorical feature. We
note that the specific variations we present are generally the best that we found for each of
the respective model types.

A note on computation time

Although computation and training time are important aspects of machine learning methods,
we will not be reporting the computation time of the experiments in this (and the following)
chapter. This is partly because computation time depend heavily on the particular equipment
used to perform the experiments, as well as the implementations used for the experiments,
which may be unoptimized. Computational optimization is thus considered beyond the scope
of this thesis.

6.1 Logistic Regression results

The first method we will analyze is logistic regression, for which theoretical foundations are
detailed in Section 3.2, and implementations described in Section 5.8.1. While somewhat
simple, it has proven to be effective for bankruptcy prediction, being both quick to optimize
and easy to interpret.

The experiments in this section will consider three full feature models with variations for
the categorical variable, as well as four different feature subsets, described in Section 5.8.1.
For the latter, a target encoding was used for the categorical feature. We will then study the
temporal stability of these variations. Again note that these are results on the validation sets
in the temporal k-fold scheme, described in Section 5.4.

Accuracy score Brier score F1-score AUC score

No nace_code 0.766212 0.160905 0.766906 0.843729
One-hot encoded nace_code 0.770381 0.159070 0.770577 0.847833
Target encoded nace_code 0.777890 0.155054 0.778798 0.854344

Wrapper-15 0.778920 0.156009 0.776897 0.852774
Wrapper-30 0.782399 0.154096 0.780907 0.856015
SHAP-15 0.773927 0.158525 0.775339 0.847581
SHAP-30 0.777411 0.155894 0.777341 0.852446

Wahlstrøm et al. (2020) (15)* - - - 0.842

Table 6.1: Validation results for different implementations of logistic regression trained on
different feature subsets. The scores are computed as the average scores on the validation
sets over the 4 temporal folds. The first three models are trained on full feature subsets,
while the last four are trained on different feature subset variations (with target encodings).
For the former, using a target encoded nace_code outperforms the other full feature models,
while the Wrapper-30 model gives the best overall performance. For the results of Wahlstrøm
et al. (2020), only the AUC score (for 15 features) is available; the * indicates that is retrieved
visually from a graph, and therefore is not exact.
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6.1.1 Categorical variable encoding results

Table 6.1 shows that target encoding the nace_code feature gives comparatively better results
than one-hot encoding, while leaving it out entirely worsens performance. The differences
are, however, somewhat marginal, with the greatest relative AUC difference being 1.2581%.
However, target encoding offers a more compact and more interpretable model, making it
preferable over one-hot encoding. We also note that we see similar performance between the
no nace_code model and the 15 feature model from Wahlstrøm et al. (2020).
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(6.1a) Logistic regression models with different
categorical variable encoding. Target encoding
greatly outperforms the others in all folds.

2009 2010 2011 2012
Validation set fold

0.844

0.846

0.848

0.850

0.852

0.854

0.856

A
U

C
 s

co
re

Model
Wrapper-15
Wrapper-30
SHAP-15
SHAP-30

(6.1b) Logistic regression models with trained on
different feature subsets. Interestingly, the SHAP
methods increase their performance in the last
fold.

Figure 6.1: AUC scores for each of the folds for each of the implemented logistic regression
models. All models tend to follow the same patterns, and there are not any apparent decrease
in variation in the feature subset models.

Figure 6.1a shows the AUC score for each of the validation folds for the logistic regression
models, indicating the time stability of the methods. The models generally behave the same
across the validation folds, although the models that include the nace_code feature tend to
have higher variation between the folds. This may indicate that increasing the number of
features can result in greater variation across the folds. The variations are, however, relatively
small, with the largest relative difference between folds being 0.648% in terms of AUC.

6.1.2 Feature subset results

In Table 6.1, we see that feature subsets only offer strict performance improvements in the
case of 30 features selected by the wrapper algorithm, which gives a 0.234% increase in AUC
score compared to the full feature models. The differences between the models are, however,
marginal, and if compactness is preferable, any of the models could be considered over the
full feature subset model. This shows that more compact models are indeed comparative
to the full feature models, and that using the full feature set may make optimization more
difficult, or include more noise.

Comparing our results to the 15 feature subset results of Wahlstrøm et al. (2020), we
observe similar, although slightly higher performance. This may be attributed to the fact that
Wahlstrøm et al. (2020) does not use a categorical variable, which is shown to have strong
predictive power (see SHAP importance in Figure 6.10). Also note that this AUC score may
be inaccurate, as it is retrieved visually from a graph.
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Figure 6.1b shows the subset models’ validation set performance in terms of AUC score, on
all of the aforementioned methods. Generally, the Wrapper methods offer greater stability
across the validation folds, especially so the Wrapper-30 method, making it preferable in
terms of both performance and stability.

6.2 Neural network results

In this section, we will describe our replication and variations of the neural network models
in Wahlstrøm et al. (2020). The theoretical foundation for these models was described in
Section 3.4.

The 3-layer neural network is implemented as described in Section 5.8.2 and tested on
different categorical encoding variations and feature subsets (again, with a target encoding
used for the latter). While we explored more advanced architectures, they showed no
substantial improvements over the more simple architecture of Wahlstrøm et al. (2020), and
we will conform to this general architecture.

6.2.1 Categorical variable encoding results

Table 6.2 shows the average validation fold performance of the three different network
variations, as well as the SHAP feature subset variations. We see that including the nace_code
feature improves the performance in terms of all metrics, although the differences between
the one-hot encoding and embedding are marginal. Again, the relative differences are small,
the greatest AUC increase being only 0.5337%.

Figure 6.3a shows the time stability of the encoding variations across the different folds.
While having worse performance, the network with no nace_code is by far the most stable.
The embedding neural network tends to show the most variation, with a huge drop in
performance between 2011 and 2012, where interestingly, the target encoding variation
improves. This instability may imply that for some folds, the network is not able to properly
learn useful embeddings.

Conceptually, the embedding network has the capacity to perform at least as well as the
target encoded network. To see this, note that the target encoding can be thought of as
an embedding with dimension 1 that performs a mapping between the categories and the
corresponding mean target value in the training set. The fact that the embedding performs
worse, highlights the difficulty of learning for neural networks, indicating either that the
network converges towards other representations (that could e.g. be overfitted), or that the
data in each fold is insufficient for the network to learn this relationship by itself.

Accuracy score Brier score F1-score AUC score

No nace_code 0.771885 0.159656 0.777536 0.847455
One-hot encoded nace_code 0.773408 0.157548 0.778565 0.851275
Target encoded nace_code 0.774292 0.157200 0.779236 0.851594
Embedding nace_code 0.774955 0.158904 0.779404 0.850157

SHAP-15 0.770095 0.162182 0.773378 0.841026
SHAP-30 0.775957 0.158046 0.779595 0.849785

Wahlstrøm et al. (2020) (15)* - - - 0.843

Table 6.2: Neural network model results. The target encoded neural network outperforms
the other models in terms of AUC and Brier score, while the more compact SHAP-30 model
performs best in terms of accuracy and F1-score. For the results of Wahlstrøm et al. (2020),
only the AUC score (for 15 features) is available - the * indicates that is retrieved visually
from a graph, and therefore is not exact.
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Figure 6.2: Plots of the training and validation loss progression for each of the validation folds,
here examplified for the target encoded nace_code full feature neural network. Interestingly,
the validation loss is lower than the training loss for the first few epochs, before the validation
loss flattens out and the training is stopped as per the early stopping criterion, typically after
30-40 epochs.

6.2.2 Feature subset results

The lower part of Table 6.2 shows the performance of the feature subset neural network
models. We see that while using a feature subset of 15 results in all metrics declining, using
30 features results in marginal improvements in the F1-score and accuracy score, with slightly
worse performance on the Brier score and AUC score, comparing to the target encoding full
feature subset model. Again, this confirms the findings of Wahlstrøm et al. (2020) that using
more than 15 features holds significant value, while the improvements starts to plateau after
this point. As less complex models are generally to prefer over more complex ones, such
marginal differences could cause one to prefer the 30 feature neural network model.

Comparing these results to the neural network results of Wahlstrøm et al. (2020), we again
see similar - although slightly improved performance. Similarly as for the logistic regression,
this may be attributed to the presence of the nace_code variable, or slight differences in
architecture (for the final layer) or implementations.

Figure 6.3b shows the time stability of the neural network feature subset models. Again,
we see the same general behaviour between folds, with a decline between 2011 and 2012,
indicating some inherent differences in either the difficulty of predicting the year 2012
compared to 2011, or that perhaps the preceding training data is less representable of the
following year in some of these folds.
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(6.3a) Neural networks with different categorical
variable encoding. No nace_code has the least
variance, while target encoding performs best.
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Figure 6.3: AUC scores for each of the folds for each of the implemented neural networks.

6.3 CatBoost results

One of the novel contributions of this thesis is the application of the CatBoost algorithm to
bankruptcy predictions. While similar models such as random forests (Tian et al., 2015)
and to some extent XGBoost (Zięba et al., 2016) has been used, no previous works have
applied the more advanced gradient boosting tree models, especially so on a dataset of this
magnitude. In this section, we will detail our results using the same framework as for logistic
regression and neural networks in the preceding sections, comparing categorical variable
encodings and SHAP feature subsets, following the implementation described in Section
5.8.3.

To demonstrate the efficiency of the native ordered target encoding of the CatBoost framework
(described in Section 3.3.4), we will also include the results of an ordered target encoding in
this section. For consistency with the other models, however, the feature subset models will
still use the ordinary target encoding of the categorical feature.

6.3.1 Categorical variable encoding results

From Table 6.3, we see the same general behaviour seen in logistic regression and target
encoding in that the model performs better in the presence of nace_code, with AUC de-
creasing between 0.1763%− 0.3131%. The ordered target encoding marginally outperforms
ordinary target encoding in all metrics, indicating that the bias correction of ordered boosting
improves generalization ability, albeit just slightly. Interestingly, ordered target encoding
only outperforms one-hot encoding in AUC and Brier score, but not in accuracy and F1-score.
Again, the differences are, however, marginal.

Looking at Figure 6.4a, all models generally emit the same behaviour and show the same
level of variation across the temporal folds, although the one-hot encoded variation shows
perhaps the least variance. If temporal stability is important, this model should perhaps be
considered over the target statistics encodings.

6.3.2 Feature subset results

The results on the different feature subsets reflect the same behaviour as seen for the previous
models, with significant declines in all metrics for the 15 feature subset model. For the 30
subset model, the performance is comparable to the full model, although very slightly worse
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than the best full feature model (0.01756% decrease in AUC). Again, one may prefer the 30
feature model if a more compact model is desirable.

For temporal stability, shown in Figure 6.4b, the 30 feature subset model seems to show
slightly less variance, while the general behaviour between the models are the same. As
before, the 30 feature subset model is consistently better performing than the 15 feature
subset model.

Accuracy score Brier score F1-score AUC score

No nace_code 0.781589 0.150423 0.786080 0.862634
One-hot encoded nace_code 0.785318 0.149260 0.789093 0.864477
Target encoded nace_code 0.783126 0.149695 0.786454 0.864155
Ordered target nace_code 0.784727 0.148896 0.788601 0.865335

SHAP-15 0.779719 0.152709 0.784453 0.859022
SHAP-30 0.784196 0.149138 0.788654 0.865183

Table 6.3: Average validation fold metrics for all CatBoost model variations. Again, we see a
clear improvement for all encoding variations with introduction of the nace_code feature.
We also see comparative performance for the more compact SHAP-30 feature subset.
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(6.4a) CatBoost models with different categorical
variable encodings. As expected, ordinary and
ordered target encoding are very similar, with the
latter performing slightly better..
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(6.4b) CatBoost models with trained on different
feature subsets. As before, the SHAP-30 subset is
consistently better performing.

Figure 6.4: AUC scores for each of the validation folds for each of the implemented CatBoost
models. As before, all models generally emit the same patterns between the folds.

6.4 Static methods test set results

In this section, we will perform comparisons of each of the static methods described above,
on the previously unseen test set of data from 2013 and 2014, reporting the results on both
the balanced and unbalanced data set in respective sections. The models are trained on the
remaining years 2006− 2012, with the neural network and CatBoost methods using the year
2012 as a validation year for the early stopping criterion.
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Motivated by the findings in the previous sections, we will fit each of the models with a target
encoding of nace_code, as it generally gave the best results. The inclusion of target encoded
nace_code in the feature set will therefore be implicit in the results that follow.

As seen in the previous sections, the 30 feature subset models selected by SHAP generally
gives either the best, or close to best results, in terms of validation set performance, while
using a significantly fewer features compared to the full feature models. Motivated by this,
we will be using these models to report our test set results in the following sections, for
consistency.

6.4.1 Balanced test set results

We will first report the results on the balanced test set, for which the models are optimized.
While giving a useful comparison of the models performance, we stress again that these
results do not reflect expected out of sample performance, as the undersampling shifts the
data distribution significantly.

Evaluation metric performance

Figure 6.6 shows a comparison of the metrics for each of the models on the test set. These
results reflect the findings of the previous sections, with CatBoost consistently outperforming
the others in all metrics; CatBoost has a 2.571% and 3.532% greater AUC score than the
neural network and logistic regression models, respectively

The lower Brier score also implies that CatBoost is more (correctly) confident in its probability
predictions, meaning its probability estimates are generally more reliable (on the balanced
dataset). This is reflected in Figure 6.5, where we see that CatBoost has generally more
confident predictions (i.e. distributed close to 0 or 1) than logistic regression.

Model prediction probability distribution

While the undersampling used to obtain the balanced dataset distorts the interpretability
of the model predictions as "probabilities", well distributed predictions (i.e. (correctly)
distributed close to either 0 or 1) are generally a desirable property, as it increases the
informativeness of the models’ outputs. From Figure 6.5, we see that all models produce the
same general, U-shaped distribution. This is generally more desirable than flat or inverted
U-shaped distributions, as it implies more confident and therefore informative predictions.

We also see that the neural network and CatBoost models have even more similar prediction
distributions, both seemingly reluctant to give very confident bankrupt predictions (predic-
tions very close to 1), while having a comparatively larger amount of confident non-bankrupt
predictions (predictions close to 0). The fact that both models have learned this behaviour
may indicate that companies that are very unlikely to go bankrupt are easier to identify,
while confidently predicting companies as bankrupt is more difficult. This can perhaps be
attributed to the inherent noisiness of the bankruptcy target variable, discussed in Section
2.3.3.

The lack of this behaviour in the logistic regression model output may be attributed to its
reduced model flexibility compared to the other models, making it unable to "learn" the same
relative decrease in the highest prediction probability interval.

6.4.2 Full (unbalanced) test set results

In this section we will report each of the models’ performance on the full test set. While the
models have not been optimized or tuned for this (unbalanced) distribution of target samples,
these results will give a realistic view of the models’ expected out of sample performance.

Note that all minority (i.e. bankrupt) samples in the balanced dataset are also included in the
full set - the only difference is a significant increase in the number of majority (non-bankrupt)
samples.
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Figure 6.5: The prediction probability distributions of each of the models, with each bar
representing an interval of length 0.1. Interestingly, the neural network and CatBoost models
produce similar distributions, both confidently predicting near 0 probabilities for bankrupt
companies while avoiding the near-1 interval.
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Figure 6.6: A comparison of the metrics of each of models on the balanced dataset. While
the performance is similar, CatBoost (CB) consistently achieves better metrics, while logistic
regression (LR) performs the worst of the compared models.

Evaluation metric performance

Figure 6.8 shows the resulting metrics for each of the models. We see the same general
trend of CatBoost outperforming the other models, except for accuracy, for which logistic
regression slightly outperforms CatBoost - confirming the earlier indications of CatBoost
being the superior model of the ones considered here.

Interestingly, logistic regression now outperforms the neural network in all metrics, except
for the AUC score. This may indicate that the neural network does in fact overfit for some of
the minority samples, with logistic regression being able to better generalize these samples.
However, these results are indecisive.

Note that while the accuracies seem to have improved, a naive model predicting only non-
bankrupt samples will receive an accuracy score of 0.985. This illustrates the shortcomings of
the accuracy metric, as beating this baseline will be very difficult for any model.
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(a) Confusion matrices on the balanced test set. The predictions of all models generally behave well,
with comparable (and relatively symmetrical) number of type 1 and type 2 errors.
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(b) Confusion matrices on the full test set. The models tend to predict more non-bankrupt companies as
bankrupt (type 2 error).

Figure 6.7: Confusion matrices of each of the methods on the balanced and full test set.
We have included a color grading to amplify the differences between the two cases. In the
balanced dataset, we see expected behaviour with most samples being correctly classified. In
the unbalanced case, we see that the model tends to predict more non-bankrupt companies
as bankrupt. Note that the lower rows of the plots (actual bankrupt) are the same, as all
actual bankrupt samples in the full dataset, are also contained in the balanced dataset.

The perhaps most striking difference when comparing these results to those of the balanced
dataset in Figure 6.6, is the difference in the F1-scores, which is significantly lower for all
models. This can be attributed to the large decrease in precision for all models (following
the increase in false positive predictions, indicated by the confusion matrices in Figure
6.7b). This behaviour is somewhat expected, as the models have been trained on a dataset
where bankrupt samples are much more frequent than in the unbalanced case, making the
models more biased towards predicting bankruptcies. As the other metrics considered are
comparable to those of the balanced dataset, this emphasizes the importance of using a
nuanced and representative set of metrics to evaluate the models, as they all summarize
potentially different behaviours.

Model prediction probability distribution

Figure 6.9 shows the model prediction distributions of the full test set. Comparing to the
U-shaped distributions of Figure 6.5, all of these prediction distributions have high numbers
of near-0 predictions, with strictly decreasing numbers of higher interval predictions, and
very few predictions in the highest intervals. This is indeed the desired behaviour, and
confirms that our models are able to produce meaningful predictions even on the full set.

However, the mean of the predictions is still high relatively high - 0.1578 for logistic regression,
comparing to only the 1.514% of positive samples. This indicates that there are some bias in
the models, as one would expect unbiased models to have prediction means close to 0.01514.
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Figure 6.8: The model metric comparison on the full dataset. Most metrics give similar
results to those obtained on the balanced dataset (Figure 6.6), except for in the F1-score,
which is the only metric that reflects the increases in false positive rates on the full test set.
This emphasizes the need for a nuanced set of metrics in order to properly evaluate model
behaviour.
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Figure 6.9: Full test set model prediction distributions. All models now produce very few
predictions in the higher intervals, with the greatest bulk of predictions being close to 0, as is
expected.

As mentioned before, this is the expected behaviour, although future work should seek to
eliminate or minimize minimize this bias.

6.5 Static methods model interpretation

In this section, we will collect and compare our findings using SHAP to interpret the different
models. While in no means an exhaustive analysis, we will demonstrate how SHAP values
can be used to infer the learned behaviour of more complex models, specifically by analyzing
the summary plots, explained in Section 4.2.7. The SHAP values are obtained using the
implementations discussed in the respective model sections in Chapter 5.

The SHAP summary plot shows a vertical scatter plot with different features plotted horizon-
tally, sorted by their total SHAP magnitude. The SHAP values are displayed vertically as dots
(with similar SHAP values stacking horizontally, resulting in "thicker" scatter plots), and the
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corresponding feature values for each of the dots are indicated by the color coding. Note
that the SHAP values are shown before the final function transformation (sigmoid or logistic
transformation, depending on the model), meaning negative values contribute towards less
than model output 0.5, and positive towards greater than 0.5 model output.

We will show the summary plots for the 30 most important features trained on the first
fold of the validation scheme, meaning they correspond to the SHAP feature subsets used
throughout this chapter (the top 15 features for the SHAP-15 feature subsets). Also note that
the nace_code variable is included as a target encoding.

As mentioned before, we will refrain from doing any specific feature or feature interaction
analysis, as that would typically require more qualitative analysis of economical or other
practical implications, leaving the economical analysis outside the scope of this thesis.

6.5.1 Logistic regression summary plot

Figure 6.10 shows the summary plot for the logistic regression model. We see the feature
log(age in years) being the most important one, with increasing company age resulting in
lower bankruptcy probability estimation, and vice versa. This is perhaps not surprising, as
we expect younger companies to be less stable and to be more likely to go bankrupt.

We also see from the log(total assets) variable that companies that are large in terms of total
assets are less likely to go bankrupt (this too, being expected). Also note that both of the
dummy variables are present, and that the nace_code is 11th most important feature by the
average SHAP magnitude. For the latter, the high importance combined fact that the model
learns a strictly increasing relationship between the target encoding and the probability
output, confirms that the target encoding is appropriate and holds significant predictive
value.

An interesting example from the logistic regression summary plot is the leftmost point for
the Interest expenses / tot assets, which is both an outlier in terms of SHAP value (being by
far the most negative one), and does not seem to follow the trend of the rest of the samples
for this feature, with the SHAP value strictly increasing with increasing feature values. This
is most likely caused by feature interaction mechanisms, and would be an interesting sample
to study in a practical context.

6.5.2 Neural network summary plot

Figure 6.11 shows the neural network SHAP summary plot. Comparing with the logistic
regression model in Figure 6.10, we see a general accordance in terms of which features
are considered most important. Notably, the log(age in years) and log(total assets) are both
amongst the top features, with the same effects on model probability output. The most
important feature found by the neural network, public taxes payable / tot assets, is the
second most important in the logistic regression model. The nace_code is the 12th most
important feature in the neural network, similar to the logistic regression model.

We also see the that the outlier found for the logistic regression model in
Interest expenses / tot assets is not present for the neural network, indicating that it could
be a symptom of misfitting in the logistic regression model, or that the neural network model
was unable to identify it as a reliable outlier. Due to the general restrictiveness of the logistic
regression model, we deem the former more likely, as logistic regression is typically more
susceptible to negative effects from outliers.

6.5.3 CatBoost summary plot

Figure 6.12 shows the CatBoost SHAP summary plot. Generally, this confirms the most impor-
tant features found in Figures 6.10 and 6.11, with different permutations of log(ageinyears),
log(total assets), public taxes payable / tot assets, and accounts payable / sales being the
most important features (with the same general learned relationships).

We also see that the CatBoost model finds the nace_code feature to be even more important
than the other models, ranking it as the 6th most important feature. Interestingly, the learned
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Figure 6.10: SHAP summary plot for the 30 most important features learned by the logistic
regression model. The outlier for the Interest expenses / tot assets feature is interesting,
and could be subject for more qualitative analysis.

relationship between feature value and SHAP value is not as clear as for the logistic regression
and neural network models. The fact that it is also more important for the CatBoost model
shows that the CatBoost model has perhaps learned a more complex relationship including
other feature interactions for this feature, which in turn has resulted in more predictive
power.

Another interesting tendency in the CatBoost plot, is the apparent "grouping" of SHAP values
for some features (such as for instance the right tail of dividens / net inc or the left tail of
interest expenses / tot liab, compared to the more smooth behaviours found in Figures 6.10
and 6.11 for the other models. This can perhaps be attributed to the tree structure of the
CatBoost model, as output values are determined by (combinations of) disjoint regions. This
results in less smooth prediction surfaces than for the logistic regression and neural network

64



0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
SHAP value (impact on model output)

(non-interest expenses - salary) / tot assets

non-interest expenses / operating profit

(tot rev - sales) / tot rev

(shareholder s equity + tot revenues) / tot assets

retained earnings / tot assets

(tot equity - int assets) / (tot assets - int assets - st liq)

sales / tot assets

net inc / tot assets

dividends / net inc

inventory / sales

accounts payable / sales

EBIT / tot assets

tot equity / tot assets

inventory / current liability

tot rev / tot assets

interest inc / tot assets

share of labour costs

(sales - cost of goods sold) / sales

nace_code

operation assets / tot assets

interest expenses / tot liab

salary / tot assets

payable / current liab

interest expenses / tot assets

sales / current assets

dummy; 1 if paid-in equity is less than tot equity

accounts payable / tot assets

log(total assets)

log(age in years)

public taxes payable / tot assets

Low

High

Fe
at

ur
e 

va
lu

e

Figure 6.11: SHAP summary plot for the 30 most important features learned by the neural
network model.

models, and corresponding "grouping" of SHAP values for the CatBoost model, should a lot
of values fall in these specific regions.

65



1.0 0.5 0.0 0.5 1.0 1.5
SHAP value (impact on model output)

sales / receivables

current liab / current assets

(tot rev - sales) / tot rev

sales / st liq

st liq / current liab

net inc / sales

share of labour costs

payable / current liab

pre-tax profit / sales

pre-tax net profit / paid-in capital (ord inc / st.h equity)

cost of goods sold / inventory

operation assets / tot assets

interest expenses / tot liab

interest expenses / tot assets

retained earnings / current liab

(current liab - st liq) / tot assets

tot liab / tot assets

net inc / sh.h equity (return on sh.h equity)

interest inc / interest expenses

(tot equity - int assets) / (tot assets - int assets - st liq)

interest inc / tot assets

effective tax rate

dividends / net inc

tot equity / tot assets

nace_code

accounts payable / tot assets

log(total assets)

public taxes payable / tot assets

accounts payable / sales

log(age in years)

Low

High

Fe
at

ur
e 

va
lu

e

Figure 6.12: SHAP summary plot for the 30 most important features learned by the CatBoost
model. Note the non-uniform relationships learned for the nace_code feature.
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Chapter 7

Timeseries modelling experiments
and results

As we have seen throughout Chapter 6, the previous year’s accounting data holds significant
predictive power for bankruptcy, yielding accurate results even for the simpler logistic
regression models. However, one could assume that including multiple years of accounting
data would provide the model with even more predictive information, revealing trends in the
economical development of the company. Modelling bankruptcy prediction as a timeseries
prediction problem then becomes a natural extension, using features from sequential financial
statements to construct the timeseries.

In this chapter, we will introduce the application of modern timeseries methods to the
bankruptcy prediction problem, namely the recurrent neural networks (RNNs) and long short
term memory neural networks (LSTMs), both described in detail in Section 3.5, following a
timeseries structuring of the problem, described in Section 5.7. As this space is significantly
under-explored in the literature, this becomes a major part of the contribution of our works.

We will generally use the same experimental structure as in Chapter 5, and structure the
analysis similarly to the static methods in Chapter 6. Rather than separating the analysis
of the RNNs and LSTMs, however, we will consider both the RNN and LSTM networks
collectively, due to their similarity in implementation and architecture. Indeed, the only
difference in their implementations is the first layers in the networks.

In order to keep the analysis focused towards the contributions of the timeseries formulation
of the problem, we will not consider different categorical encodings for the nace_code feature,
rather using the general finding throughout Chapter 6 in that the target encoding performed
the best or close to best for each of the considered methods (especially for the neural network,
which is the most similar model). Another alteration to the experimental setup is that the
models in this chapter are tuned and validated using training data from the rolling k-fold
structure described in Section 5.4.1, rather than the fixed size fold structure used throughout
Chapter 6. As described in Section 5.4.1, this allows us to investigate the relative increase in
performance as the data availability increases.

We will also make comparisons with the static model results from Chapter 6 where relevant.
Note, however, the general point that the timeseries formulation necessarily adds a significant
complexity to the problem, both in terms of data requirements, model construction and other
considerations (see for instance the additional considerations we made in Section 5.7). For
deploying models in practical contexts, this may become problematic, and has to be taken
into consideration.

7.1 RNN and LSTM validation set results results

In this section we will be reporting the timeseries results on the validation folds after training
using the rolling k-fold scheme. As before, this means that the results will not be entirely
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representative of expected out of sample performance, due to the earlystopping criterion
using the validation set during training. However, the rolling k-fold scheme will allow for
interesting analysis of the performance increase when more data is available. Keep also in
mind the findings on the validation folds throughout Chapter 6, which generally showed the
same trends of varying performance between folds, implying that some years might be more
difficult to predict than others.

Analogously to Chapter 6, we will first fit LSTM and RNN models on the full feature set,
before doing feature subset analysis on 15 and 30 features based on SHAP feature importance
(the SHAP analysis will be performed in Section 7.3). We will leave the most detailed analysis
(and static model comparisons) to the test set analysis in Section 7.2, focusing on the relative
model performance and performance between folds (and feature subsets) in this section.

7.1.1 Average metrics across validation folds

Table 7.1 shows the performance for the LSTM and RNN models on the different feature
subsets, computed as the average across the validation folds, excluding the first two. As these
folds only have 1 and 2 years of training data, we expect the metrics for these folds to be
particularly bad (see Figure 7.1). Excluding them allows for more informative and consistent
comparison with the results of Chapter 6, as the amount of training data is more comparable.

Accuracy score Brier score F1-score AUC score

LSTM full feature set 0.755545 0.167128 0.748564 0.837423
RNN full feature set 0.754898 0.167261 0.746886 0.836301

LSTM SHAP-15 0.757705 0.157506 0.756738 0.855408
LSTM SHAP-30 0.776405 0.151389 0.779623 0.862721
RNN SHAP-15 0.755708 0.158869 0.754714 0.852499
RNN SHAP-30 0.763348 0.157653 0.764549 0.854838

Table 7.1: Average validation fold results for the different timeseries models. These are
computed as averages across all time folds, excluding the first two folds. We see that
the LSTM models generally outperform the RNNs, especially for the SHAP feature subsets.
Interestingly, the performance is significantly worse in the case of full feature subsets. This
may be attributed to the increased model complexity, making more features more difficult to
learn.

From Table 7.1, we see a clear trend of the LSTM outperforming the RNN, with better
performance in all metrics for each respective feature subset. This implies that the added
flexibility of the LSTM is indeed valuable, allowing it to better learn the time dependencies
of the data. We also see the same trend as in Chapter 6, with the 30 feature subset models
generally performing better than the 15 feature subset models.

An interesting observation is the large discrepancies between the full feature set models and
the SHAP feature subset ones, with 3.02% and 2.22% higher AUC scores for the SHAP-30
LSTM and RNN models, respectively. Such large discrepancies were not seen in the static
models in Chapter 6. This implies that the added complexity of the timeseries, combined
with a large number of features, may make the models harder to train, as there are many
more parameters to optimize. This emphasizes the importance of doing feature selection,
especially as the models get more complex.

We also see that the relative difference between the LSTM and RNN models become greater
for the feature subset models, especially for the SHAP-30 models. This may imply that the
added advantages of the LSTM only becomes relevant when it is able to properly learn the
data, as is the case when the feature subsets are smaller.

7.1.2 Behaviour across folds

From Figure 7.1, we generally see a trend of slightly increasing AUC scores across the folds,
as more data becomes available. This is especially apparent for the first fold, with only one
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year of training data resulting in poor performance. Surprisingly, the second fold shows
performance comparative to the other folds, especially for the full feature subset models.
This may imply that only one additional year of timeseries data holds significant value, as
the first fold will only have timeseries data of length 1.

Comparing the feature subset models in Figure 7.1b, the strengths of the LSTM models
become more apparent. While the AUC for the last two folds is very similar for all models,
the LSTM is more stable across the folds, especially so the SHAP-30 feature subset model.
This implies that the LSTM model is more efficient in terms of available data, as well as being
more robust to the variations in the data across the folds.
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(7.1a) Logistic regression models with different
categorical variable encoding. Target encoding
greatly outperforms the others in all folds.
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(7.1b) Logistic regression models with trained on
different feature subsets. Interestingly, the SHAP
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Figure 7.1: AUC scores for each of the folds for each of the implemented logistic regression
models. All models tend to follow the same patterns, and there is not any apparent decrease
in variation in the feature subset models.

Comparing Figure 7.1 to the corresponding static models in Figures 6.1b, 6.3b, and 6.4b, we
see a similar trend of decrease in the AUC score in the 2010 fold (except for the CatBoost
model, interestingly). This could imply that this fold is particularly difficult to predict, and
that the general trend of increasing performance with increasing data amount holds true.

7.2 Timeseries models test set results

In this section, we will present the results of the RNN and LSTM models on the test set,
consisting of data from years 2013 and 2014. We will structure the analysis similarly as to
that of Section 6.4 for the static models, reporting the results on both the balanced and the
full (unbalanced) test sets. For the latter, we use the same timeseries length construction
method described in Section 5.7.2. As in Chapter 6, the models will be trained on the data
from 2006-2011, and use 2012 as the validation set for the earlystopping criterion.

Motivated by the findings in Section 7.1, we will only proceed with the SHAP-30 feature
subsets for both the RNN and LSTM models, as these demonstrated the best performance.
This is also consistent with the static method test set results in Section 6.4.
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7.2.1 Balanced test set performance

As in Chapter 6, we will begin by reporting the results on the balanced test set. As well as
comparing the average performance for each of the metrics, and the prediction probability
distribution, we will also analyze the model behaviour across the different timeseries lengths,
giving insights into the performance contribution of each additional year of accounting data.

To ease comparison between the static models, we will also include in our figures the
corresponding metrics from the CatBoost model, as it was found to be the best performing of
the static models. This allows us to more easily compare the relative increases (or decreases)
in metrics which comes at the cost of the added complexity of the timeseries problem
formulation.

Evaluation metrics performance

Figure 7.2 shows a comparison of the RNN and LSTM mode performances on our set of
metrics on the balanced test set. We see the same general trend found in Section 7.1, with
the LSTM generally outperforming the RNN in all metrics, further proving that the added
flexibility of the model holds value in our bankruptcy prediction context.

Comparing these results with the static methods, we see that the LSTM ranks second in terms
of AUC (and indeed most other metrics), behind the CatBoost model. Recall that the CatBoost
significantly outperformed the static neural network, meaning that the timeseries methods
does, however, show a significant increase in all metrics over the static neural network. This
shows that the added timeseries information holds value in the context of neural network
models.
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Figure 7.2: A comparison of the metrics of the RNN and LSTM models on the balanced
dataset, along with the CatBoost (CB) model. While the performance is similar, CatBoost
performs better on all considered metrics.

Results on different timeseries length

Another interesting topic of analysis is the timeseries model performance for samples grouped
by their respective timeseries lengths. Grouping the results by the length of the timeseries
allows us to learn more about the learned model behaviour, and how important the successive
timeseries length are for predictive performance.

Figure 7.3 shows a breakdown of the AUC scores for each of the timeseries lengths, for the
RNN and LSTM models. We see a clear general trend of increasing performance as more
timeseries steps are made available, with the largest relative increase being from timeseries
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length 1 to 2 (1.877% increase for the RNN and 1.537% for the LSTM). This confirms our
suspicion of gradual increase in prediction performance as more time information becomes
available.

Furthermore, we see that the relative differences between RNN and LSTM become more
apparent as the timeseries length increases, with LSTM clearly outperforming the RNN at
timeseries length 4. This shows the strength of the LSTM network, in terms of handling
longer timeseries lengths (even a relatively short length of 4).

As could be expected, the AUC scores for both models at length 1 is similar to that of the static
neural network (see Figure 6.6). Although the CatBoost model outperforms the timeseries
methods in terms of average AUC (recall that length 1 timeseries samples dominate our
balanced test set, due to our timeseries length selection method described in Section 5.7.2,
see Table 5.2), the LSTM does produce better AUC scores at timeseries lengths 3 and 4,
implying that these frameworks hold significant predictive value when allowed to process
longer timeseries. If this inherent sampling bias was not present, timeseries lengths of 3 and
4 would be relatively more represented, making the timeseries methods outperform the static
CatBoost models. This is an important point, but not one we can further address given the
restrictions imposed by the dataset balancing.

Length 1 Length 2 Length 3 Length 4

0.1

0.3

0.5

0.7

0.9

A
U

C
 s

co
re

0.8523 0.8585 0.8683 0.8717 0.8727 0.8827 0.875 0.8891

AUC scores for different timeseries lengths

RNN
LSTM

Figure 7.3: The average AUC scores for the RNN and LSTM models, grouped by the length of
the timeseries samples. As expected, we see a general trend of increasing AUC scores as more
timeseries information becomes available, with the greatest increase coming from length 1 to
length 2.

Model prediction distribution

Figure 7.4 shows the model prediction distribution for each of the models. As for the models
in Chapter 6, we see the same general U-shape, with the same reluctance towards the
uppermost prediction interval as with the static neural network and CatBoost models. This
behaviour was discussed in Section 6.4.1, and can be attributed to the same reasons discussed
there.

An interesting difference in these distributions compared to those of Figure 6.5, is that the
timeseries distributions are generally "flatter", in the sense that they seem to have more
predictions around 0.5, and smaller spikes near the 0 prediction interval. One would perhaps
expect this to be reflected in a lower Brier score, but comparing Figures 7.2 and 6.6 shows
no clear difference. This could imply that while the timeseries predictions are generally less
confident, they are often more correct in the predictions that are indeed confident.
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Figure 7.4: The prediction probability distributions of each of the RNN and LSTM models,
with each bar representing an interval of length 0.1. Both models emit the general U-shape
(with reluctance towards the highest interval) as for the static models in Figure 6.5, but the
RNN and LSTM distributions generally has a flatter shape.

7.2.2 Full test set performance

In this section, we will analyze the test set performance on the full, unbalanced dataset. As
before, we will follow the same overall analysis as for the static models in Section 6.4, with
some additional points relevant to the timeseries problem.

Evaluation metrics performance

Figure 7.5 shows the full test set performance of both of the models, on all considered
metrics. We again see LSTM outperforming the RNN in all metrics, except for accuracy,
interestingly. As this is the first case of the RNN outperforming the LSTM in either of the
considered metrics, this can perhaps be attributed to the weakness of accuracy as a metric,
rather than the RNN model being superior (see discussion in Section 4.1.2).

Comparing these metrics with the metrics of the static models in Figure 6.8, we see generally
comparative performance between the LSTM and CatBoost models, with both the LSTM and
RNN models outperforming the other static models. The CatBoost model has slightly better
AUC score (0.8895 vs. 0.8836) and Brier score (0.1258 vs. 0.1261) than the LSTM, while the
LSTM slightly outperforms CatBoost in terms of accuracy (0.8144 vs 0.8230) and F1-score
(0.1019 vs 0.1030). While these results are indecisive, the added complexity of the timeseries
methods could make one prefer the static CatBoost models.

Results on different timeseries lengths

Figure 7.6 shows the AUC score breakdown per timeseries length for each of the models,
which shows a similar trend to that of Figure 7.3; the LSTM generally outperforms the RNN,
with strictly increasing AUC scores as more timesteps become available. We again see the
largest relative increase being from timeseries length 1 to 2, and see very good AUC scores
for timeseries of lengths 3 and 4, especially for the LSTM models. This confirms the previous
findings, in that these models perform best for longer timeseries.

The point of timeseries length bias discussed in Section 7.2.2 also still holds true, in that the
timeseries lengths are unevenly represented, creating a stronger weight towards the (worse
performing) 1 and 2 length timeseries. Again, we will not be addressing this any further,
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Figure 7.5: A comparison of the metrics of each of models on the full (unbalanced) dataset.
In this case, the results are indecisive, with CatBoost and LSTM outperforming each other in
different metrics.

simply noting its effect on the average metrics when comparing the timeseries models to the
static methods.
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Figure 7.6: The average AUC scores for the RNN and LSTM models on the full dataset,
grouped by the length of the timeseries samples. We see the same trend of increasing AUC as
seen in Figure 7.3

Model prediction probability distribution

Figure 7.7 shows the prediction probability distributions on the full test set. Similarly as
in Figure 6.9 for the static methods, the timeseries methods show heavy tails in the lowest
intervals, with sequentially decreasing number of predictions in the increasing intervals - as
is expected, given the low number of bankrupt samples in this set.
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Similarly, the mean of the predictions is still relatively high - 0.1541 for the LSTM and 0.1618
for the RNN - which shows a clear bias towards predicting bankruptcy. As before, this is
expected, and follows from the bias imposed in the dataset balancing process.
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Figure 7.7: The prediction probability distributions of the RNN and LSTM of the models on
the full test set, with each bar representing an interval of length 0.1. text.

7.3 Timeseries model interpretation

In this section, we will perform a similar global SHAP value interpretation of the RNN and
LSTM models, as was done in Section 6.5. Because of the temporal nature of the timeseries
models, however, the SHAP summary plots showed in this section cannot be analogously
produced for these models. We will instead show horizontal bar plots of the mean SHAP
magnitude for each of the features, for each of the timesteps. We would then expect a lower
SHAP magnitude for each consecutive timestep, as the most recent information is, intuitively,
the most relevant. While not as information dense as the summary plots, they still allow us
to verify the models’ learned behaviour and show the selected feature subsets.

As before, we will display the 30 most important features. In this case, they are selected
based on the total SHAP magnitude for all timesteps for the feature. Note also that these
SHAP values are computed on the fourth fold of the rolling k-fold scheme, as this is the first
fold that contains data for all timeseries lengths.

From Figures 7.8 and 7.9 for the RNN and LSTM models, respectively, we generally see the
expected behaviour of lower SHAP magnitude for consecutive timesteps. The differences are
also generally big, with the first timestep having often more than twice the average SHAP
magnitude as the second timestep. The consecutive timesteps are seemingly even smaller
fractions of the previous timestep. This confirms our general findings in that most of the
predictive power comes from the first timestep (indeed, this is confirmed by the comparative
results of the static methods in Chapter 6), while consecutive timesteps offers less and less
predictive performance increases.

While this is the general trend, there are some interesting deviations. For instance for the
LSTM model in Figure 7.9, the feature current assets/total liab (the fourth most important
feature) shows a significantly higher average magnitude for the second timestep than
for the first. This is indeed counter intuitive, and could point to the model learning a
misrepresentation, perhaps due to overfitting. Indeed, the feature is not even amongst the
top 30 features for the RNN model (Figure 7.8), providing further evidence towards this
being a misrepresentation.

Comparing the learned relationships of the LSTM and RNN models with each other, we see
that they generally conform to similar features, and also to those found for the static models.
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The novel nace_code feature is still amongst the top features for both of the models, and
features like log(age in years) and log(total assets) are also represented.
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Figure 7.8: Average SHAP magnitudes for the 30 most important features learned by the
RNN model.
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Figure 7.9: Average SHAP magnitudes for the 30 most important features learned by the
LSTM model. Interestingly, the second timestep of the feature current assets/total liab has
a greater average magnitude than the first.
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Chapter 8

Conclusion and further work

8.1 Conclusion

The goal of this thesis was to introduce modern statistical prediction models to the space of
bankruptcy prediction, in order to drive valuable performance increases for a representative
set of metrics, while also maintaining interpretability, which is often required for practical
deployment of such models. Specifically, we targeted the economically significant SMEs,
which has historically received less attention in the literature.

This was carried out by leveraging both an extensive dataset comprised of yearly financial
statements from more than 175000 Norwegian SMEs ranging from the years 2006 − 2014
(using as features different combinations and ratios of the entries), and modern machine
learning prediction models, such as gradient boosting trees and LSTM neural networks. In
order to achieve a realistic and fair picture of the expected model performances, our deployed
experiments adheres to the highest possible machine learning standards (using temporal
train, validation, and test set data splitting), analyzing the performance on a set of four
relevant metrics meant to capture different properties of the models: Accuracy, Brier score,
F1-score, and AUC score, with our main focus being on the AUC score.

As the resulting model metrics are highly dependent on the specific dataset used, we reimple-
mented two models that are popular in the bankruptcy prediction literature, namely logistic
regression and fully connected neural networks, to produce benchmark metrics. We then
implemented the CatBoost gradient boosting tree algorithm using the CatBoost package (as
well as RNNs and LSTMs, for performing timeseries bankruptcy prediction).

We also introduce the usage of a novel categorical feature, and consequent ways of integrating
such categorical features into the aforementioned models. Our feature uses the NACE
system to provide information about a company’s industry, while ensuring that each NACE
category had a sufficient number of samples (at least 500) by utilizing the hierarchical
nature of the NACE system. We examined one-hot encoding, target encoding, and for neural
networks, categorical embeddings, for integrating the categorical feature into the model
frameworks. Of these, target encoding was found to produce the most reliable results,
offering consistent relative performance increases (average validation set AUC increases
ranging from 0.497− 1.22% compared to no categorical feature), while maintaining similar
temporal stability (from visual inspection of the performance on the temporal validation
folds).

For the static (non-time dependent) models, the CatBoost model was found to convincingly
outperform both the logistic regression and neural network benchmarks, both on the balanced
(i.e. evenly distributed target variables) and full (unbalanced) datasets, achieving AUC scores
of 0.8735 and 0.8895, respectively. For the former, the CatBoost models produced AUC
scores 2.571% and 3.532% greater than the neural network and logistic regression benchmark
models, respectively. It also outperformed the benchmark models in the other considered
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metrics, demonstrating the CatBoost framework’s potential in the context of bankruptcy
prediction.

In all cases, we found that using feature subsets of 30 features (selected by average SHAP
magnitude) gave comparable or improved results to the full feature models, motivating the
use for more compact and thus often more practical models.

By analyzing the model prediction probability distributions, an interesting trend was re-
vealed: Both the neural network and CatBoost models seemed resistant towards predicting
bankruptcy probabilities in the highest probability range (0.9− 1.0), indicating that confi-
dently determining bankruptcies are comparatively harder than predicting non-bankruptcies,
perhaps attributed to the practical complications involved in the definition of a binary
bankruptcy target variable. The fact that logistic regression did not learn this relationship,
can probably be attributed to the model’s relative simplicity.

We then proposed a methodology for structuring bankruptcy prediction as a timeseries
problem, by organizing subsequent financial ratio features into timeseries containing 1 −
4 years of such data. Given the evident data restrictions, as well as potential practical
considerations, we limited the timeseries to a maximum length of 4. We then implemented
and analyzed a vanilla recurrent neural network (RNN), and the more advanced extension,
the long short term memory network (LSTM).

The average validation results for the timeseries models proved that the added flexibility of
the LSTM network made it consistently outperform the simpler RNN. Interestingly, we saw
significantly worse performance for timeseries models trained on the full feature set, with
the feature subset models resulting in performance more comparable to that of the static
CatBoost model. This highlighted the difficulty in learning the more complex time dependent
relationships.

Further analysis revealed major performance increases for the longer timeseries, with AUC
scores similar to the static neural network for the timeseries with only 1 year of available
data, and much stronger AUC scores for timeseries with 3 and 4 years of data. For the LSTM,
AUC scores for length 3 and 4 timeseries reached 0.8827 and 0.8891 on the balanced test set.
As the overall performance of the static CatBoost model and timeseries LSTM network was
comparable, one would perhaps be inclined to prefer the static method, as the timeseries
formulation involves significant added complexity. The increased performance for the longer
timeseries may, however, be desirable, and should therefore be at least considered.

Conforming to the standard practice in the literature, the above results were produced on
a dataset with an equal number of bankrupt and non-bankrupt companies. While not the
strict focus of the thesis, we also demonstrated the model’s performance on the unbalanced
test dataset. While these experiments showed that the models had indeed learned strong
predictive power even on the unbalanced set, they also revealed significant biases in the
model outputs reflected in much lower F1-scores, motivating further research into the
handling of the unbalanced data problem.

Finally, we introduced a theoretically consistent framework for model interpretation, namely
the SHAP framework, which we used to demonstrate how to analyze the learned behaviour
of each of the models. This is a valuable tool for any practitioner looking to harness the
increased performance demonstrated by the more complex models, while still maintaining
the often important interpretability.

8.2 Further work

Throughout this thesis, we have made sure to highlight any problems, approximations or
other considerations that may weaken the significance or applicability of our analysis. These
are what we would consider the most relevant topics for further work within the space of
bankruptcy prediction, or even machine learning modelling in general. We will summarize
them in this section, as well as point to some other ideas for further work in the topic.

The perhaps greatest barrier for practitioners wanting to use the models analyzed in this
thesis in practice, is concerned with the dataset balancing process used before model training
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throughout. While our test set analysis showed some degree of generalization ability, the
dataset sampling induced clear bias, which has to be addressed before deploying the models
in practical contexts. While an active area of research in machine learning in general, our
initial experiments pointed towards combinations of sample weighting and fractional dataset
balancing as promising approaches. Other options include synthetic sampling techniques or
even embedding domain specific knowledge or costs directly into the loss functions. Proper
handling of this issue would provide very valuable tools for any practitioners looking to use
these models in practice.

Having demonstrated the potential in a timeseries formulation of the bankruptcy prediction
problem, we would also hope to see further research for this application. If datasets spanning
greater periods become available, looking into the effects of longer timeseries could be
very relevant, as well as exploring different timeseries model frameworks or variations.
One could also think that the inclusion of external, time dependent data could be relevant,
as the timeseries formulation allows for including potentially valuable macro economical
developments over time, as additional features in the data.

Another potential for improvement lies in further tuning and optimization of the specific
model configurations deployed. Our experiments were in no means exhaustive, and it is
safe to assume that there is potential for at least marginal performance improvements in
either hyperparameter optimization, different neural network architectures, or more optimal
feature subsets.

Finally, we hope that our demonstration of the application of the SHAP interpretability
framework to bankruptcy prediction can help motivate more analysis and applications in the
field, and perhaps in finance in general. It is our hope that combining this framework with
more qualitative economical analysis can pave the way for many new discoveries.
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Appendix A

Financial ratio features

A.1 List of all features

Table A.1 shows all 156 features used to perform bankruptcy prediction. All but the last one,
nace_code, are obtained as combinations of financial statement features, and are sourced
from Wahlstrøm et al. (2020). The last feature is enginereed based on the NACE code,
described in Section 2.3.5.

Number Description

1 (inventory + accounts receivables) / total equity
2 (long-term liability + total equity) / fixed assets
3 account receivable / sales
4 quick assets / current liabilities
5 (quick assets / current liabilities) ×interestearnedratio
6 net income / total equity
7 EBITDA / total liabilities
8 total equity / total liabilities
9 short-term liquidity as a percentage of the capital employed

10 short-term liquidity / sales
11 short-term liquidity / current liabilities
12 short-term liquidity / total assets
13 sales / current assets
14 current assets / total equity
15 current assets / sales
16 current assets / total assets (net liquid assets / total assets)
17 current liabilities / current assets
18 current liabilities / total equity
19 current liabilities / total liabilities
20 current liabilities / sales
21 total liabilities / total assets
22 debtors / creditors (receivables/payables)
23 operating profit / (operating profit - interest expense)
24 EBIT / total assets
25 EBITDA / interest expense
26 effective tax rate
27 total equity / total assets
28 total equity / long-term liability
29 sales / total equity
30 pre-tax profit as a percentage of the capital employed
31 financial expenses / sales

Continued on next page
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Number Description

32 EBIT / sales
33 sales / fixed assets
34 fixed assets / total assets
35 fixed assets / total equity
36 intangibles / total assets
37 interest expenses / total revenues
38 interest-bearing debt / total equity
39 inventory / current liability
40 inventory / working capital
41 investment turnover (sales / (total equity + total liabilities))
42 total liabilities / total equity
43 long-term liability / current assets
44 net income / stockholders equity (return on shareholder’s equity)
45 net income / sales
46 (total revenues - sales) / total revenues
47 total equity / fixed assets
48 total equity / sales
49 no-credit interval
50 dummy; one if total liability exceeds total assets
51 operating expenses / sales
52 short-term liquidity / total liabilities
53 operating profit / total revenues
54 operating profit / paid-in capital
55 operation asset / total asset
56 personnel costs / added value
57 pre-tax net profit / paid-in capital (ordinary income / stockholder’s equity)
58 net income / total revenues
59 profits / net working capital
60 quick assets / sales
61 quick assets /total assets
62 earnings after tax and interest charge / net capital employed
63 current liabilities / earnings before tax and interest charge
64 retained earnings / sales
65 retained earnings / total assets
66 return on debt (earnings / total liabilities)
67 net income / total assets
68 total revenues / fixed assets
69 total revenues / total assets
70 total revenues / net working capital
71 sales / total assets
72 total assets / total revenues
73 total expenses / assets
74 total revenues / total expenses
75 working capital / current liabilities
76 working capital / sales
77 working capital / total assets
78 working capital / total equity
79 dummy; one if paid-in equity is less than total equity
80 working capital / total revenues
81 accounts payable / total assets
82 public taxes payable / total assets
83 EBIT / total liabilities
84 (non-interest expenses - salary) / total assets
85 (shareholder’s equity + total revenues) / total assets
86 sales / working capital

Continued on next page
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Number Description

87 short-term liquidity / current assets
88 cost of goods sold / inventory
89 cost of goods sold / sales
90 (current assets - short-term liquidity) / total assets
91 current assets / common shareholder’s equity
92 current liabilities / total assets
93 dividends / net income
94 working capital / long-term liabilities
95 working capital / operational expenditure
96 EBIT / total tangible assets
97 financial expenses / sales
98 fixed assets / (stockholder’s equity + long-term liabilities)
99 (sales - cost of goods sold) / sales

100 income gearing
101 intangible assets / sales
102 interest expenses / total liabilities
103 interest expenses / total expenses
104 interest income / interest expenses
105 interest income / total assets
106 inventory / cost of goods sold
107 inventory / current assets
108 inventory / sales
109 long-term liabilities / total equity
110 long-term liabilities / total assets
111 sales / tangible assets
112 net income / gross profit
113 net income / total capitalization
114 net quick assets / inventory
115 total equity / (total equity + long-term liabilities)
116 non-interest expenses / operating profit
117 total revenues / sales
118 ordinary income / total equity
119 ordinary income / ordinary expenses
120 pre-tax profit / sales
121 pre-tax profit / total assets
122 owners equity / total assets
123 payable / current liabilities
124 payables / inventories
125 retained earnings / inventory
126 retained earnings / tangible assets
127 return on capital employed
128 return on net fixed assets
129 salary / total assets
130 sales / short-term liquidity
131 sales / inventories
132 sales / receivables
133 sales / total tangible assets
134 interest bearing debt / total liabilities
135 share of labour costs
136 (short-term assets - total liabilities) / total assets
137 solvency ratio
138 sales / stock holders equity
139 (total revenues + interest income) / total expenses
140 interest expenses / total assets
141 operating expenses / total assets

Continued on next page
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Number Description

142 tales / assets employed
143 EBITDA / total assets
144 operating profit / total assets
145 operating profit / sales
146 (current liabilities - short-term liquidity) / total assets
147 accounts payable / sales
148 retained earnings / current liabilities
149 (total equity - intangible assets) / (total assets - intangible assets - short-term liquidity)
150 EBIT / interest expense
151 accounts receivables / total liabilities
152 profit before tax/current liabilities
153 current assets/total liabilities
154 log(age in years)
155 log(total assets)
156 nace_code

Table A.1: All 156 features used to perform bankruptcy prediction.

A.2 Financial abbreviations

In order to easier display the features in visualisations, we have used a number of abbrevia-
tions for the feature names in Table A.1, particularly in the SHAP plots in Sections 6.5 and
7.3. These are shown in Table A.2. While there is some ambiguity, the meaning should be
clear from the context.

Original name Abbreviation

intangible int
liquidity liq
liquid liq
short-term st
revenue rev
ordinary ord
liabilities liab
total tot
income inc
shareholder’s sh.h
stockholder’s st.h

Table A.2: Abbreviations used when visualising features.
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