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Summary
We study naive motivic homotopy classes of endomorphisms of the projective line
over a field. We first give an account of the result in [Caz12] that the canonical
map from naive to motivic homotopy classes is a group completion. We proceed
to study maps from the Jouanolou device to the projective line, where there is a
bijection between the naive and motivic homotopy classes. Looking at which of
these maps factor through the Hopf map gives us a partial classification of the
naive homotopy classes.

Sammendrag
Vi studerer naive motiviske homotopiklasser av endomorfier av den projektive linja
over en kropp. Først redegjør vi for resultatet fra [Caz12] om at den kanoniske
funksjonen fra naive til motiviske homotopiklasser er en gruppekomplettering. Så
fortsetter med å studere morfier fra Jouanolou-anordningen til den projektive linja,
der det er en bijeksjon mellom de naive og motiviske homotopiklassene. Når vi
ser på hvilke av disse funksjonene som faktoriserer gjennom Hopf-funksjonen, gir
det oss en delvis klassifisering av de naive homotopiklassene.
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Chapter 1
Introduction

To do algebraic topology in an algebro-geometric setting, we need to make some
adjustments. For instance, we can not use the unit interval [0, 1] to define homo-
topies, as it is not a scheme. Replacing it with A1 allows us to define naive ho-
motopies. Morel and Voevodsky’s work [MV99] gives a way to do A1-homotopy
theory in the category SmS of smooth schemes of finite type over a finite dimen-
sional noetherian base scheme S. We are interested in the case of Smk, where
the base scheme is Spec (k) for some field k. We define the less technical notion
of a naive homotopy, which we can then compare to the actual motivic homotopy
theory.

Definition 1.0.1 (Definition 1.1 in [Caz12]). Let X and Y be two spaces in Smk.
A naive homotopy is a morphism

F : X × A1 → Y.

The restriction σ(F ) := F|X×{0} is the source of the homotopy and τ(F ) :=
F|X×{1} is its target. When X and Y have base points, say x0 and y0, we say that
F is pointed if its restriction to {x0} × A1 is constant equal to y0.

There exists a monoid structure on the set of naive homotopy classes of endo-
morphisms

( [
P1,P1

]N
,⊕N

)
. There is also a group structure on the set of motivic

homotopy classes
( [
P1,P1

]A1

,⊕A1)
. Christophe Cazanave showed the following

theorem in his article “Algebraic homotopy classes of rational functions”.

Theorem 1.0.2 (Theorem 1.2 in [Caz12]). The canonical map from the monoid of
pointed naive homotopy classes of endomorphisms

( [
P1,P1

]N
,⊕N

)
to the group

1



Chapter 1. Introduction

( [
P1,P1

]A1

,⊕A1)
of A1-homotopy classes of endomorphisms of P1 is a group

completion.

The Jouanolou device of P1 is an affine scheme which surjects onto P1 with affine
fibers. It is A1-homotopy equivalent to P1, and so the homotopy classes of maps
[J ,P1]A

1
are in bijection with the homotopy classes of maps from [P1,P1]A

1
. The

canonical map [J ,P1]N −→ [J ,P1]A
1

is a bijection, due to a result of Asok,
Hoyois and Wendt in [AHW18]. This suggests the existence of a group structure
on
[
J ,P1

]N. We arrive at the following theorem.

Theorem 1.0.3. Over a field k, the bijection
[
J ,P1

]N −→ [
P1,P1

]A1

induces a

group structure on
[
J ,P1

]N. The group
[
J ,P1

]N
=
[
J ,A2 \ {0}

]N ⊕ PicJ is
a direct sum.

This master’s thesis consists of two parts. In the first part (Chapter 2 and 3) we
present Cazanave’s article and prove the main result. Our exposition follows his,
quoting some definitions and theorems verbatim. We also state additional defini-
tions, give illustrating examples, prove some extra lemmata and expand on expla-
nations and proofs. Chapter 2 covers a lot of background material, the purpose
of which is to make this thesis accessible for nonexpert readers. Chapter 3 is an
exposition of the proof of Theorem 1.0.2. Throughout this first part, some results
and definitions are stated in greater generality than needed, in order to refer back
to them in the second part of the thesis.

In the second part (Chapter 4 and 5) we approach the problem in a completely
different way, using the Jouanolou device to attempt to understand the group com-
pletion geometrically. Chapter 4 covers the construction of the Jouanolou device
and morphisms from it to P1. In Chapter 5 we prove Theorem 1.0.3, as well as
some results about

[
J ,P1

]N by looking at which of the morphisms factor through
the Hopf map η. We also find a naive homotopy invariant on subfields of R.

2



Chapter 2
Preliminary theory

2.1 Naive homotopies

Unlike in algebraic topology, a composition of naive homotopies is not necessarily
a naive homotopy itself. Hence we need to define naive homotopy classes in the
following way to ensure transitivity.

Definition 2.1.1 (Definition 2.5 in [Caz12]). Let f and g be two pointed rational
functions over k. We say that f and g are in the same pointed naive homotopy
class, and we write f

p∼ g, if there exists a finite sequence of pointed homotopies,
say (Fi) with 0 ≤ i ≤ N , such that

• σ(F0) = f and τ(FN ) = g;

• for every 0 ≤ i ≤ N − 1, we have τ(Fi) = σ(Fi+1).

2.2 Pointed scheme endomorphisms of P1

Recall that the projective line over a commutative ring S is P1
S = Proj(S[x0, x1]),

where Proj(−) denotes the set of homogeneous prime ideals of a graded commu-
tative ring, and the sheaf structure is as in [Har13, p. 76]. We may cover P1 by
U0 = S[s] ' A1 and U1 = S[t] ' A1, by gluing by the map s 7−→ t−1 on the
intersection U0 ∩ U1 ' A1 \ {0}. We will often write this as U0 = S[x1/x0] and
U1 = S[x0/x1], sometimes even shortening xi/xj to xi/j .

MorphismsX −→ An are in one-to-one correspondence with elements of Γ(X,OX)n.
Morphisms to Pn are slightly more subtle. Hartshorne states:

3



Chapter 2. Preliminary theory

Theorem 2.2.1 (II, Theorem 7.1 (b) in [Har13]). Let A be a ring, and let X be a
scheme over A. If L is an invertible sheaf on X , and if s0, s1, ..., sn ∈ Γ(X,L)
are global sections which generate L, then there exists a unique A-morphism ϕ:
X → PnA such that L ∼= ϕ∗(O(1)) and si = ϕ∗(xi) under this isomorphism.

Proof. PnA is covered by the open affine schemesD+(xi) = Spec
(
A[x0/i, x1/i, ..., xn/i]

)
,

while X is covered by open sets Xi = {P ∈ X|si(P ) 6= 0}. Using the local iso-
morphisms ϕi : L|Ui −→ OX |Ui , we can view the fraction sj/si as an element of
Γ(Xi,OXi). Using the duality of rings and affine schemes, each ring homomor-
phism

A[x0/i, x1/i, ..., xn/i] −→ Γ(Xi,OXi)
xj
xi
7−→ sj

si

corresponds to a morphism of schemes Xi −→ D+(xi). Observe that the maps
agree on the overlapsXi∩Xj , so they glue to give a morphism ϕ: X −→ PnA.

Remark 2.2.2. We will slightly abuse notation in the following way. A morphism
ϕ : X −→ Pn is given by (L, s0, s1, ..., sn) and can be written in “homogeneous
coordinates” as

x 7−→ [s0(x) : s1(x) : ... : sn(x)].

Cazanave considers pointed endomorphisms of P1
k, where k is a field. We consider

P1 to be pointed at [1 : 0] = ∞. By the theorem, an endomorphism corresponds
to an invertible sheaf L on P1, and two generating sections s0, s1 of it.

Definition 2.2.3 (Picard group). Recall that an invertible sheaf (line bundle) on X
is a locally free OX -module of rank 1. The Picard group of X, PicX , is a group
of isomorphism classes of invertible sheaves on X, under the operation ⊗. Notice
that the group operation is well defined, the unit is OX , and that each L has as its
inverse the dual sheaf L∨ = Hom(L,OX).

Proposition 2.2.4. The Picard group of P1
k is isomorphic Z.

Proof. For each n ∈ Z there is a different invertible sheaf O(n) with global sec-
tions Γ(P1,O(n)) = k[x0, x1]n, homogeneous polynomials in x0, x1 of degree
n. Take any line bundle L on P1. The restrictions L|U0 and L|U1 must be trivial.
Restricting further to U0 ∩ U1, there is a gluing map, i.e. an isomorphism of two
trivial k[s

±1
]-modules. Such a module isomorphism is given by multiplication by

an invertible element csn of k[s±1]×, where c ∈ k×, n ∈ Z. This implies that the
global sections are exactly the homogeneous polynomials in x0, x1 of degree n,
hence L ' O(n).

4



2.3 The scheme of pointed rational functions

A line bundle O(n) and two generating sections give rise to a morphism

[x0 : x1] 7−→ [anx
n
0 +an−1x

n−1
0 x1+· · ·+a0x

n
1 : bnx

n
0 +bn−1x

n−1
0 x1+· · ·+b0xn1 ].

A pointed endomorphism f sends [1 : 0] to [1 : 0] = [an : bn], so we need
an 6= 0, bn = 0. Having taken care of f([x0 : 0], we may assume x1 6= 0 and work
in coordinates X = x0

x1
. Dividing through by anxn1 , we get the following.

Lemma 2.2.5. Any pointed endomorphism f : P1 −→ P1 is given by

f ([x0 : x1]) = [Xn + an−1X
n−1 + · · ·+ a0 : bn−1X

n−1 + · · ·+ b0]. (2.1)

∞

f

∞

Figure 2.1: P1C is topologically a sphere. A pointed endomorphism f : P1C −→ P1C sends
∞ to∞.

2.3 The scheme of pointed rational functions

The preceding discussion motivates the definition of the scheme of pointed degree
n rational functions. In order to state it, we first need to define the resultant.

Definition 2.3.1 (Sylvester matrix and resultant). Let Syln,m(A,B) denote the
Sylvester matrix of the polynomialsA andB (considered as polynomials of degree
less or equal to n and m). It is a square (n + m) × (n + m)-matrix with entries
corresponding to the polynomial coefficients in the following way:

5



Chapter 2. Preliminary theory

Syln,m(A,B) =



an 0 · · · 0 bm 0 · · · 0
an−1 an · · · 0 bm−1 bm · · · 0

an−2 an−1
. . . 0 bm−2 bm−1

. . . 0
...

...
. . . an

...
...

. . . bm

a0 a1 · · ·
... b0 b1 · · ·

...

0 a0
. . .

... 0 b0
. . .

...
...

...
. . . a1

...
...

. . . b1
0 0 · · · a0 0 0 · · · b0


.

The resultant is defined to be the determinant of this matrix.

resn,m(A,B) = det
(
Syln,m(A,B)

)
.

The resultant is 0 if and only if A and B share a common factor. We prove this
(for general k-algebras) in Lemma 2.4.6.

Definition 2.3.2 (Definition 2.1. in [Caz12]). For an integer n ≥ 1, the schemeFn
of pointed degree n rational functions is the open subscheme of the affine space
A2n = Spec (k[a0, . . . , an−1, b0, . . . , bn−1]) complementary to the hypersurface
of equation

resn,n(Xn + an−1X
n−1 + · · ·+ a0, bn−1X

n−1 + · · ·+ b0) = 0.

By convention F0 := Spec (k).

2.4 Schemes as functors

In this section we define some categorical notions. The functor of points gives
a very useful perspective by using the Yoneda lemma to view schemes as func-
tors. While the functor of points construction works for general schemes, we get a
stronger result when restricting to the case of schemes over a commutative ring S.
Since we are working in the category of smooth schemes over a field k, it is useful
to state this stronger version of the definition.

Definition 2.4.1 (Representable functor). Let C be a category. A functor F :
C op −→ Set is called representable if it is naturally isomorphic to HomC (−, c)
for some object c ∈ C . We say that F is represented by c.

Similarly a functor G : D −→ Set is corepresentable if it is naturally isomorphic
to HomD(d,−) for some d ∈ D .

6



2.4 Schemes as functors

The functor of points is an example of a representable functor.

Definition 2.4.2 (Functor of points). The functor h given by

h : Sch −→ Fun
(
Schop,Set

)
X 7−→ hX(

f : X −→ Y
)
7−→

(
h(f) : hX −→ hY

)
is an equivalence of the category of schemes and a full subcategory of the category
of functors. Now, what does the functor hX do? Let Y, Z be schemes. hX is
defined by

hX : Y −→ Hom(Y,X)

(f : Y −→ Z) 7−→ (hX(f) : hX(Z) −→ hX(Y )).

hX is represented by X .

Since our schemes are all in Smk, the following result [EH06, Prop VI-2] will
be useful. Recall that the category of S-algebras is dual to the category of affine
S-schemes.

Proposition 2.4.3 (Restricted functor of points). Fix a commutative ring S. The
functor of points hX of the S-schemeX is completely determined by where it sends
affine S-schemes.

hX : Affop
S −→ Set
Y 7−→ Hom(Y,X)

For S-algebras Zop, we call hX(Z) the set of Q-valued points of Y . An element
of this set is called a Q-valued point of Y .

Using this proposition, we may now pass freely back and forth between the per-
spective of smooth k-schemes, and the perspective of functors from smooth affine
k-schemes to sets. We may even pass to the perspective of corepresentable functors
from k-algebras to sets, as this the same thing.

Remark 2.4.4. Notice that this restricted functor of points hX is representable, and
represented by the S-schemeX . The above definition simply states that restricting
to the full subcategory AlgS = Affop

S of Schop
S still gives us sufficient information

for the scheme and functor to uniquely determine each other.

Notational remark. We use Fn to denote this scheme of rational functions, but
also to denote its functor of points, meaning that we write Fn(Q) = hFn(Q).

7



Chapter 2. Preliminary theory

Applying Proposition 2.4.3 of an S-valued point to the scheme Fn gives us the
following.

Definition 2.4.5. Let S be a k-algebra and n a non-negative integer. An S-point
of Fn is a pair (A,B) of polynomials of S[X], where

• A is monic of degree n,

• B is of degree strictly less than n,

• the scalar resn,n(A,B) is invertible in S.

Such a point is denoted by A
B and is called a pointed degree n rational function

with coefficients in S.

Lemma 2.4.6 (Second part of Remark 2.2 in [Caz12]). The above condition resn,n(A,B) ∈
S× is equivalent to the existence of a (necessarily unique) Bézout relation

AU +BV = 1

with U and V polynomials in S[X] such that degU ≤ n− 2 and deg V ≤ n− 1.

Proof. Notice that an = 1, bn = 0 implies resn,n(A,B) = resn,n−1(A,B). We
look at resn,n−1(A,B) to make this proof more natural. The Sylvester matrix is
a linear operator Syln,n−1(A,B), which sends pairs (U, V ) of polynomials with
degU ≤ n− 2 and deg V ≤ n− 1 to AU +BV , a polynomial of degree at most
2n− 2.
The resultant is invertible if and only if the Sylvester matrix has full rank. Then
there exists a unique vector v = [un−2, . . . , u0, vn−1, . . . , u0] such that Syln,n−1(A,B)·
v = [0, . . . , 0, 1], which corresponds to AU +BV = 1, where U = un−2X

n−2 +
. . .+ u0 and V = vn−1X

n−1 + . . .+ v0.
Conversely, if a Bézout relation exists, then gcd(A,B) = 1 and there exists no
nonzero (U, V ) such that AU +BV = 0. This implies that the kernel is trivial, so
the Sylvester matrix has full rank and resn,n(A,B) = resn,n−1(A,B) ∈ S×.

2.5 Naive connected components functor

Let us define the naive connected components functor on the functors of points. In
the next section we will state a more explicit definition of naive homotopy classes
on Fn (as a scheme) and see that these definitions coincide.

Definition 2.5.1 (Coequalizer). Given a diagram with two objects X,Y and two
morphisms f, g : X ⇒ Y , a coequalizer is a universal pair (Q, q) where Q is an

8



2.6 Pointed morphisms are rational functions

object and q : Y −→ Q a morphism such that q ◦ f = q ◦ g, making this diagram
commute:

X Y Q

Q′

f

g

q

q′
∃!u

Definition 2.5.2 (Naive connected components functor). Let G be an object in
Fun (Algk,Set). We define a functor πN

0 sending G to its naive connected compo-
nents as follows

πN
0 : Fun

(
Algk,Set

)
−→ Fun

(
Algk,Set

)
G 7−→ πN

0 G(
f : G −→ H

)
7−→

(
πN

0 (f) : πN
0 G −→ πN

0 H
)
.

Here πN
0 G sends a k-algebra S to the coequalizer of the diagram G(S[T ]) ⇒

G(S), where the two morphisms are given by evaluation at T = 0 and at T = 1.

Lemma 2.5.3. Any k-scheme morphism Fn −→ X produces a naive homotopy
invariant (πN

0 Fn)(k) −→ (πN
0 X)(k).

Proof. This is a consequence of the functoriality of πN
0 .

2.6 Pointed morphisms are rational functions

Pointed naive homotopies of rational functions are algebraic paths (parameterized
by T ) in the scheme of pointed rational functions. Pointed k-scheme morphisms
P1 −→ P1 and pointed naive homotopies F : P1 × A1 = P1

k[T ] −→ P1 are
described in terms of rational functions as follows.

Proposition 2.6.1 (Proposition 2.3 in [Caz12]). Let S = k or S = k[T ]. The
datum of a pointed k-scheme morphism f : P1

S −→ P1
k is equivalent to the datum

of a non-negative integer n and of an element AB ∈ Fn(S). The integer n is called
the degree of f and is denoted deg(f); the scalar resn,n(A,B) ∈ S× = k× is
called the resultant of f and is denoted res(f).

Proof. If S = k, just combine Lemma 2.2.5 which states what pointed P1-endomorphisms
look like, with Definition 2.3.2 of the scheme Fn. Observe that s0, s1 generate
O(n) if and only if they have no common factor if and only if res(f) 6= 0. If
S = k[T ], then Definition 2.4.5 of S-points tells us that the argument for S = k
still works, since k[T ]× = k×.

9



Chapter 2. Preliminary theory

Example 2.6.2. Let us calculate some examples. Let n be a positive integer, b0 be
a unit in k× andA = Xn+an−1X

n−1 + · · ·+a0 be a monic degree n polynomial
of k[X]. The element

Xn + Tan−1X
n−1 + · · ·+ Ta0

b0
∈ Fn(k[T ])

gives a pointed naive homotopy between A
b0

and Xn

b0
. That is, any polynomial is

homotopic to its leading term.

Example 2.6.3. LetB = bn−1X
n−1 + · · ·+b0 be a polynomial of degree≤ n−1

such that B(0) = b0. Then Xn

B is a k-point of Fn and the element

Xn

Tbn−1Xn−1 + · · ·+ Tb1X + b0
∈ Fn(k[T ])

gives a pointed naive homotopy between Xn

B and Xn

b0
.

We call the examples above “trivial homotopies.” It is in general difficult to find
homotopies between arbitrary rational functions.

Proposition 2.6.1 implies that two pointed rational functions which are in the same
pointed naive homotopy class have same degree and same resultant. In particular,
the set

[
P1,P1

]N splits as the disjoint union of its components of a given degree[
P1,P1

]N
=
∏
n≥0

[
P1,P1

]N
n
.

Lemma 2.6.4. For every non-negative integer n, we have a bijection[
P1,P1

]N
n
' (πN

0 Fn)(k).

Proof. Combine Proposition 2.6.1 with Definition 2.5.2.

2.7 Monoid structure on rational functions

In this section, we define a graded monoid structure on
[
P1,P1

]N by using the
graded monoid structure that already exists on the disjoint union scheme

F :=
∐
n≥0

Fn.

We follow Cazanave in stating this at the generality of any k-algebra S, but note
that the k-algebras of interest are just k and k[T ].

10



2.7 Monoid structure on rational functions

Two rational functions Ai
Bi
∈ Fni(S) for i = 1, 2, uniquely define two pairs

(Ui, Vi) of polynomials of S[X] with degUi ≤ ni − 2 and deg Vi ≤ ni − 1
and satisfying Bézout identities AiUi + BiVi = 1 (by Lemma 2.4.6). We define
polynomials A3, B3, U3 and V3 by setting[

A3 −V3

B3 U3

]
:=

[
A1 −V1

B1 U1

]
·
[
A2 −V2

B2 U2

]
.

Since the matrices
[
A1 −V1

B1 U1

]
and

[
A2 −V2

B2 U2

]
belong to SL2(S[X]), so does[

A3 −V3

B3 U3

]
. This means that A3U3 + B3V3 = 1, so we also have a Bézout

relation for A3 and B3. Moreover, observe that A3 = A1A2 − V1B2 is monic
of degree n1 + n2 and that B3 = B1A2 + U1B2 is of degree strictly less than
n1 + n2. So A3

B3
is in Fn1+n2(S). Since matrix multiplication is associative, so is

this operation.

Proposition 2.7.1. Let F =
∏
n≥0
Fn be the scheme of pointed rational functions.

Then the naive sum ⊕N defines a graded monoid structure on F:

⊕N : F × F −→ F(
A1

B1
,
A2

B2

)
7−→ A3

B3
.

The above graded monoid structure on F induces a graded monoid structure on
the connected components (πN

0 F)(k) :=
∏
n≥0

(πN
0 Fn)(k), and thus on

[
P1,P1

]N
by Lemma 2.6.4. The monoid operation on these sets is again denoted by ⊕N.

Example 2.7.2. Here are some naive sums of rational functions in k and k[T ]. Let
u be in k×. Then

X

1
⊕N X

u
=
X2 − u
X

and
X

u
⊕N X

1
=
X2 − u−1

uX
.

This shows that the naive sum is not commutative.

Example 2.7.3. The sum of homotopies

X + T

1
⊕N X + 2T

1
=
X2 + 3TX + 2T 2 − 1

X + 2T
,

gives us a homotopy between

X2 − 1

X
and

X2 + 3X + 1

X + 2
.

11



Chapter 2. Preliminary theory

This illustrates that the naive sum of trivial homotopies may give a nontrivial ho-
motopy.

Example 2.7.4. For every monic polynomial P ∈ k[X], and for every unit b0 ∈
k×, we have

P

b0
⊕N A

B
=
AP − B

b0

b0A
=
P

b0
− 1

b20
A
B

.

This last example motivates the next lemma.

Lemma 2.7.5. Every rational function f ∈ Fn(k) admits a unique twisted contin-
ued fraction expansion, which allows us to write

f =
P0

b0
⊕N P1

b1
⊕N . . .⊕N Pr

br
.

Proof. In degree n = 1, every pointed rational function is a polynomial. Let n ≥ 2
and assume that the lemma holds for all f of degree strictly less than n. Since k is
a field, the ring of polynomials k[x] is a Euclidean domain, and so f = A

B ∈ Fn(k)
admits an expansion of the following form:

A

B
=
P0

b0
− Q

B
,

where P0 ∈ k[X] is a monic polynomial of positive degree and b0 is the leading
non-zero coefficient ofB. Crucially, the degree ofQ is strictly less than the degree
of B, and so B

Q ∈ Fm(k) is a pointed rational function of degree m < n. By in-
duction, we are done. Using this Euclidean algorithm repeatedly yields the unique
twisted continued fraction expansion:

A

B
=
P0

b0
− 1

b20

(
P1
b1
− 1

b21(... )

) ,

where for each i, Pi ∈ k[X] is a monic polynomial of positive degree and bi is a
non-zero scalar in k×. Such an expansion always stops, as the sum of the degrees
of the Pi equals the degree of A.

Remark 2.7.6. Note that Cazanave uses the assumption that k is a field here. If
S[x] is a Euclidean domain, then S[x] is a PID. But S[x] is a PID if and only if S is
a field. It immediately follows that if S is not a field, then S[x] is not a Euclidean
domain. Hence the technique used above to write f = A

B ∈ Fn(k) as a naive sum
of polynomials would not work in general.
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2.8 Theory of symmetric bilinear forms

2.8 Theory of symmetric bilinear forms

Symmetric bilinear forms play an important role in Cazanave’s proof. This section
goes quickly through the definitions and theorems that we will need, following
[Aso16, Lam05, EKM08, Lam10]. Note that we need more than just the theory
of bilinear forms over a field k — in order to account for homotopies, we need to
understand bilinear forms over k[T ]. For this reason the following definitions are
stated for commutative rings.

Let S be a commutative unital ring and M be an S-module. A bilinear form
is a map B : M × M −→ S that is linear in both variables. We call the
pair (M,B) a bilinear S-module. If (M,B) and (M ′, B′) are bilinear modules,
then an S-module map f : M −→ M ′ is a morphism of bilinear modules if
B′(f(m1), f(m2)) = B(m1,m2) for all m1,m2 ∈ M . These objects and mor-
phisms form a category BilS . An isomorphism in this category is called an isome-
try. A symmetric bilinear form is a bilinear form satisfying B(u, v) = B(v, u).

Definition 2.8.1. A bilinear module is nondegenerate if the map M −→ M∨

sending m ∈M to B(−,m) is an isomorphism of S-modules.

Definition 2.8.2. If M is a finitely generated projective module, and the bilinear
form B is nondegenerate, then (M,B) is called an inner product space.

Definition 2.8.3 (Orthogonal sum). Let (M,B) and (M ′, B′) be bilinear S-modules.
Their orthogonal sum (M,B) ⊥ (M ′, B′) consists of the direct sum module
M⊕M ′ equipped with the bilinear formB′′ : ((x1, x2), (y1, y2)) −→ B(x1, y1)+
B′(x2, y2). We will also write this as B′′ = B ⊥ B′. Note that B ⊥ B′ ' B′ ⊥
B.

Definition 2.8.4 (Tensor product). Let (M,B) and (M ′, B′) be bilinear S-modules.
Their tensor product (M,B)⊗ (M ′, B′) consists of the moduleM ⊗M ′ equipped
with the bilinear form B′′ : ((x1⊗x2), (y1⊗ y2)) −→ B(x1, y1) ·B′(x2, y2). We
will also write this as B′′ = B ⊗B′. Note that B ⊗B′ ' B′ ⊗B.

Definition 2.8.5 (Witt monoid/semiring). The set of isometry classes of symmet-
ric inner product spaces equipped with the orthogonal sum form a commutative
monoid. The unit is the module 0 equipped with the trivial bilinear form. This
is called the Witt monoid of S, and is denoted WM(S). The stable Witt monoid
WMs(S) has stable isometry classes as objects. B and B′ are called stably iso-
metric if there exists a B′′ such that B ⊥ B′′ ' B′ ⊥ B′′. When char(S) 6= 2, we
have WMs(S) = WM(S). Equipping the Witt monoid with the tensor product,
we get a commutative semiring.

Given any commutative monoidN , its Grothendieck group Groth(N) is an abelian

13



Chapter 2. Preliminary theory

group satisfying the universal property that any monoid morphism N −→ A,
where A is an abelian group, factors through Groth(N). There is also an ex-
plicit construction, reminiscent of how you might construct Z from N. On the
set N × N , define addition coordinate-wise. Then mod out by the relation that
(x1, x2) ∼ (y1, y2) if x1 + y2 + c = y1 + x2 + c, for some c ∈ N . The elements
can be thought of as formal differences, so (x1, x2) “is” x1 − x2.

Definition 2.8.6 (Grothendieck-Witt group/ring). The Grothendieck-Witt group
GW(S) is the Grothendieck group of the stable Witt monoid WMs(S). This group
completion is compatible with the tensor product, so (GW(S),⊕,⊗) is a ring.

Notational remark. The multiplicative structure is not important for Cazanave’s
argument. We will refer to WMs(S) and GW(S) respectively as a monoid and a
group when the product structure is irrelevant.

2.8.1 Symmetric bilinear forms over a field

We restrict our attention to the case of symmetric bilinear forms over a field k,
following [EKM08] and [Lam05]. Any inner product space (V, f) over k (or over
k[T ] by the Quillen-Suslin theorem) is free as a module and admits a basis B =
{e1, . . . , en}. We may express f with respect to B as a symmetric matrix Bf .
Using a matrix C ∈ GLn(k) to change bases, we see that f can be represented
by any congruent matrix CtBfC. Since this transformation may only change the
determinant by a factor (detC)2 in k×2, we define the discriminant disc f :=
detBf · k×2 ∈ k×/k×2 which is independent of choice of basis. This allows us to
switch back and forth between the perspective of symmetric bilinear forms and of
symmetric matrices.

By [Lam05, §VII.1], GW(−) is a functor from the category of fields of character-
istic not 2, to the category of rings.

Definition 2.8.7 (Isotropicity). Let (V, f) be a symmetric bilinear form over k. We
call v ∈ V isotropic if f(v, v) = 0. We call a subspace W ⊂ V totally isotropic
if f(W,W ) = 0. We call f isotropic if there exists an isotropic vector v ∈ V . We
call f anisotropic otherwise.

Definition 2.8.8 (Scheme of nondegenerate symmetric matrices). Let Sn(k) de-
note the scheme of nondegenerate symmetric n × n-matrices over k. That is, the
open subscheme of An2

= Spec (k[a0, . . . , an2 ]) complementary to the hypersur-
face of equation det = 0.

Remark 2.8.9. A matrix in Sn determines a nondegenerate symmetric bilinear
form on the vector space kn. Similarly, picking a basis associates a matrix to

14
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a bilinear form, and the isometry class of the form is invariant under change of
basis. The orthogonal sum ⊥ corresponds to the direct sum ⊕, and the tensor
product of bilinear forms ⊗ corresponds to the Kronecker product ⊗ of matrices.
For this reason, we may change perspectives back and forth, and we may use
matrix arguments to prove statements about bilinear forms.

Definition 2.8.10 (Diagonal forms). Let n be a positive integer. For a sequence
of units u1, . . . , un ∈ k×, let 〈u1, . . . , un〉 denote the diagonal symmetric bilinear
form 〈u1〉 ⊥ · · · ⊥ 〈un〉.

Proposition 2.8.11 (§1, Corollary 1.9 in [EKM08]). Any nondegenerate sym-
metric bilinear form (V, f) over k may be written as f ' 〈u1, . . . , un〉 ⊥ W ,
where W is hyperbolic, meaning it may be written as a block diagonal matrix

with
[
0 1
1 0

]
blocks. However, if char(k) 6= 2, then f is diagonalizable, meaning

f ' 〈u1, . . . , un〉.

Proposition 2.8.12 (§I, Theorem 4.7 in [EKM08]). The Grothendieck-Witt group
GW(k) is generated by the isometry classes of 1-dimensional symmetric bilinear
forms 〈a〉 that are subject to the defining relation

〈a〉 ⊥ 〈b〉 = 〈a+ b〉 ⊥ 〈ab(a+ b)〉 for all a, b ∈ k× such that a+ b 6= 0.

Remark 2.8.13. Note that the isometry classes of 1-dimensional symmetric bilin-
ear forms are generated by units modulo squares. That is, units a ∈ k× modulo
the relation 〈a〉 = 〈ab2〉. Also note that in order to generate the Grothendieck-Witt
ring, it suffices to add the relations 〈1〉 = 1 and 〈ab〉 = 〈a〉 ⊗ 〈b〉.

Examples 2.8.14.

1. For any algebraically closed field, k×/k×2 is the trivial group, so the map
rank : GW(k) −→ Z is an isomorphism. In fact, it is sufficient for the field
to be quadratically closed for this to hold.

2. Over R, by Proposition 2.8.11 any form is isometric to a diagonal form.
Sylvester’s law of inertia states that a complete isometry class invariant is
the indices of inertia (n+, n−), where n+ and n− denote the number of
positive and negative entries on the diagonal. The rank n equals the sum
n+ + n−, and the difference n+ − n− is called the signature. Hence we get
WM(R) = N× N. Group completing, we get GW(R) = Z× Z.

If (V, f) and (W, g) are forms with indices of inertia (n+, n−) and (m+,m−)
respectively, then the class of ((V, f), (W, g)) in GW(R) is given by the
componentwise difference of indices of inertia (n+ −m+, n− −m−). We

15



Chapter 2. Preliminary theory

may apply a group automorphism of (Z × Z,+) to get another useful in-
terpretation. We get (n+ + n− − (m+ + m−), n+ − n− − (m+ −m−)),
where the first component is rank f − rank g, and the second component is
the difference of the signatures. The canonical inclusion R −→ C then
induces (by functoriality of GW(−)) a projection to the first component
GW(R) = Z× Z −→ Z = GW(C).

3. Over a finite field Fq, the rank and the discriminant determine a group iso-
morphism GW(Fq) ' Z× F×q /F×2

q . The multiplicative group F×q is cyclic.
Hence, when q is even, there is only one square class. When q is odd, there
are two.

2.8.2 Symmetric bilinear forms over k[T ]

The following definition and theorem is from Lam’s book on Serre’s problem
[Lam10, p. 236–246].

Definition 2.8.15. Let (P,B) be an inner product space over S. If f : S −→ S′

is a homomorphism of commutative rings, we can define, by “scalar extension”, a
new pair (P ′, B′) over S′, where P ′ = S′ ⊗S P , and B′ is given by

B′(s′1 ⊗ p1, s
′
2 ⊗ p2) = s′1s

′
2 · f(B(p1, p2)).

We say that the resulting inner product space (P ′, B′) over S′ is extended from
(P,B).

Theorem 2.8.16 (Harder). Let k be a field of characteristic not 2. Then any inner
product space (L,B) over k[T ] has an orthogonal k[T ]-basis, and is therefore
extended from an inner product space over k.

If the characteristic is 2, then any inner product space (L,B) over k[T ] will de-
compose into an orthogonal sum L0 ⊥ L1 ⊥ . . . ⊥ Lm, where L0 is extended

from k, and all other Li have rank 2, with matrices of the type Si =

(
si 1
1 0

)
, for

si ∈ k[T ].

2.9 Bézout form

Now that we have reviewed the basics of bilinear forms, it is time to connect this
to our scheme of rational functions Fn. Bézout described a way to associate a
nondegenerate symmetric matrix to any rational function. That is, for each integer
n, a scheme morphism

Bézn : Fn −→ Sn.
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Observe that the polynomialA(X)B(Y )−A(Y )B(X) ∈ S[X,Y ] has no constant
term. Notice also that for any term that can be written as CX for some C ∈
S[X,Y ], there is a corresponding term −CY . Hence, A(X)B(Y )− A(Y )B(X)
is divisible by X − Y .

Definition 2.9.1. Let S be k or k[T ], n be a positive integer and f = A
B be an

element of Fn(S). Let

δA,B(X,Y ) :=
A(X)B(Y )−A(Y )B(X)

X − Y
=:

∑
1≤p,q≤n

cp,qX
p−1Y q−1.

Observe that the coefficients of δA,B(X,Y ) are symmetric in the sense that one
has

cp,q = cq,p ∀ 1 ≤ p, q ≤ n.

The Bézout form of f is the symmetric bilinear form over Sn whose matrix (cor-
responding to the canonical basis of Sn) is the n×n-symmetric matrix (cp,q). We
denote it Bézn(A,B) or Bézn(f).

The following lemma implies that Bézn(f) is a non-degenerate bilinear form.

Lemma 2.9.2. This equality holds for any pointed rational function:

det Bézn(f) = (−1)
n(n−1)

2 resn,n(f). (2.2)

Proof. Observe that the 2n×2n Sylvester matrix can be split up into n×n-matrix
blocks.

resn,n(A,B) = det Syln,n(A,B) =

∣∣∣∣A− B−

A+ B+

∣∣∣∣ ,
where

A− =


an 0 · · · 0

an−1 an
. . . 0

...
. . . . . .

...
a1 a2 · · · an

 and A+ =


a0 a1 · · · an−1

0 a0
. . . an−2

...
. . . . . .

...
0 0 · · · a0

 ,

andB−, B+ are defined similarly. We have an = 1,which implies detA− = 1.We
would like to multiply Syln,n(A,B) by some matrix to make its determinant more
easily comparable to det Bézn(A,B). Notice that A−B− − B−A− = 0, since
lower triangular matrices commute. Hence,(

A− B−

A+ B+

)
·
(
In B−

0n −A−
)

=

(
A− 0n
A+ C

)
,
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where C := A+B− − B+A−. Recall that the determinant of a block triangular
matrix is the product of the determinants of its diagonal blocks, which gives

resn,n(f) · 1 · (−1)n = 1 · detC

We denote by −Jn the n×n-matrix that has −1 along the anti-diagonal and zeros
everywhere else. Notice that −Jn · C = Bézn(f). Finally, because det−Jn =

(−1)n(−1)
n(n−1)

2 , we get

resn,n(f) = (−1)
n(n−1)

2 det Bézn(f).

The above construction describes for every positive integer a natural transforma-
tion of functors of points Fn(−) −→ Sn(−) and thus a morphism of schemes

Bézn : Fn −→ Sn.

Example 2.9.3. Any rational function of degree 1 corresponds to the 1×1 identity
matrix. For instance,

Béz

(
X

1

)
=
(
1
)

and Béz

(
X + T

1

)
=
(
1
)
.

Example 2.9.4. Recalling that

X

1
⊕N X

1
=
X2 − 1

X
,

we might ask: is the direct sum ⊕ of matrices compatible with the naive sum ⊕N

of rational functions? We calculate

Béz

(
X

1

)
⊕ Béz

(
X

1

)
=

(
1 0
0 1

)
6=
(
−1 0
0 1

)
= Béz

(
X2 − 1

X

)
,

so this is not the case. However, as we shall prove in the next chapter, the monoid
structures are indeed compatible after passing to naive homotopy classes.
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Chapter 3
Cazanave’s proof

Cazanave uses a series of graded monoid isomorphisms in order to arrive at the
following theorem.

Theorem 3.0.1 (Corollary 3.10 in [Caz12]). There is a canonical isomorphism of
graded monoids:([

P1,P1
]N
,⊕N

)
'
(∏
n≥0

WMs
n(k) ×

k×�k×2

k×,⊕
)
.

Combining this with Theorem 6.36 in [Mor12] gives the abstract isomorphism

Groth
([
P1,P1

]N
,⊕N

)
'
( [
P1,P1

]A1

,⊕A1)
.

Cazanave then checks (in the appendix) that the isomorphism is in fact induced by
the canonical map, which proves Theorem 1.0.2. To get an overview, here are all
the graded monoid isomorphisms used to prove Theorem 3.0.1 assembled in one
diagram.([

P1,P1
]N
,⊕N

)
'
(
πN

0 Fn(k),⊕N
)

'
(
πN

0 Sn(k),⊥
)
'
(

WMs
n(k) ×

k×�k×2

k×,⊕
)
. (3.1)

We have already proved the first isomorphism in Proposition 2.6.1. The third iso-
morphism will be proven in Proposition 3.1.4, and it draws heavily on our discus-
sion of the Witt monoid in Section 2.8. The second isomorphism (Theorem 3.3.9)
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Chapter 3. Cazanave’s proof

requires a few lemmata. The idea of the proof is that of generators and relations.
That is, we think about each monoid πN

0 F and πN
0 S as a free monoid on a set

of generators, modulo some set of relations. We will first prove that there is a
bijection on the sets of generators of πN

0 F and πN
0 S , and prove that this map of

generators induces a monoid morphism. This establishes surjectivity. We then
check that any relations that hold in πN

0 S corresponds to relations in πN
0 F . This

correspondence of relations ensures injectivity.

3.1 The third isomorphism

In this section, we prove the isomorphism
(
πN

0 Sn(k),⊥
)
'
(

WMs
n(k) ×

k×�k×2

k×,⊕
)

.

Let us first prove a lemma about transvection matrices. Transvection matrices (also
called elementary SLn-transformations) add a multiple λ of a row i to another row
j when you multiply by them. We denote by Aijλ the transvection matrix

1 0
. . .

λ
. . .

0 1

 ,

where entry aji = λ. Note that I = Aij0 and A−1
ijλ = Aij(−λ), so the transvection

matrices form a group TVn.

Lemma 3.1.1. Let S be a Euclidean domain. Then SLn(S) = TVn(S).

Proof. Observe that this is true for n = 1. If there exists a sequence of transvection
matrices transforming M ∈ SLn(S) into In, then M ∈ TVn. Let n ≥ 2 and let
M ∈ SLn(S). There exists at least one nonzero entry m1j = u in the first column.
The determinant is a linear combination of the elements in the first column, and
since S is a Euclidean domain there exists a linear combination that equals 1.
Multiply by A1jλ and Ai1λ until m11 = 1, and then by A1jλ until m1j = 0 for all
j 6= 1. The problem has now been reduced to the case n− 1. The lemma follows
by induction.

Lemma 3.1.2. Any matrixM in SLn(k) is naively homotopic to the identity matrix.

Proof. Decomposing M into a product of transvection matrices as in the proof
of Lemma 3.1.1 and replacing each Ai,j,λ by Ai,j,(λ−Tλ) ∈ SLn(k[T ]) yields a
homotopy M ∼ In.
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Lemma 3.1.3. Let n be a positive integer. The canonical quotient map qn :
Sn(k) −→ WMs

n(k) factors through (πN
0 Sn)(k):

Sn(k) WMs
n(k)

(πN
0 Sn)(k)

qn

πN
0

qn

Proof. From Harder’s theorem (Theorem 2.8.16), we get that WM(k) −→WM(k[T ])
is an isomorphism, and the inverse is given by evaluating T at any a ∈ k. Hence,
for any M(T ) ∈ Sn(k[T ]), we must have q(M(0)) = q(M(1)), so q is well
defined.

Proposition 3.1.4. Let
WMs

n(k) ×
k×�k×2

k×

be the canonical fibre product induced by the discriminant map WMs
n(k) −→

k×�k×2.

WMs
n(k) ×

k×�k×2

k× k×

WMs
n(k) k×�k×2

p

disc

Then the map

(∏
n≥0

(πN
0 Sn)(k),⊕

) ∏
n≥0

qn×det

−−−−−−−→
(∏
n≥0

WMs
n(k) ×

k×�k×2

k×,⊕
)
.

is a monoid isomorphism. (The right term is endowed with the canonical monoid
structure induced by the orthogonal sum in WMs(k) and the product in k×).

Proof. We know that q × det is well defined since q and det are, and for M(T ) ∈
Sn(k[T ]), detM(T ) = detM(0) = detM(1) ∈ k×.

To prove injectivity, assumeP,Q ∈ Sn(k) define isometric forms, and that det(P ) =
det(Q). This implies P = M tQM , for some M ∈ SL±n (k). We want to show
that we can always have M ∈ SLn(k).
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Chapter 3. Cazanave’s proof

In characteristic 2, SL±n (k) = SLn(k), so we are done. When char(k) 6= 2, we
may have detM = −1, in which case we do the following. Every nondegenerate
symmetric matrix P is congruent to a diagonal matrixD byN tPN = D, whereN
is invertible. We define Ct = C = diag(−1, 1, . . . , 1), and observe that CtDC =
D. Hence we get a congruence P ∼ Q given by

P = (N t)−1CtDCN−1 = (MNCN−1)tQMNCN−1.

We calculate det(MNCN−1) = 1, which means that (MNCN−1) ∈ SLn(k).
By Lemma 3.1.2 the congruence P ∼ Q gives rise to a homotopy, so πN

0 P = πN
0 Q

in πN
0 Sn(k).

To prove surjectivity, assume we are given (β, d) ∈
( ∏
n≥0

WMs
n(k) ×

k×�k×2

k×,⊕
)

.

By the definition of the fiber product, discβ ∼= d (mod k×2). We know that
q is surjective, so we may pick a preimage P ∈ q−1(β) ⊂ Sn(k). We have
detP = p = u2d, where u ∈ k×. Using U = diag(u−1, 1, . . . , 1) to change
bases, we obtain Q = U tPU . We get that q × det : πN

0 Q 7−→ (β, d), so q × det
is surjective.

3.2 Surjectivity and monoid compatibility

In this section we want to show that πN
0 F(k) surjects onto πN

0 S(k). We do this
by giving a surjective map of generators onto generators, and showing that the
monoid structures are compatible.

The following lemma shows that, up to naive homotopy, any symmetric bilinear
form is diagonal.

Lemma 3.2.1 (Lemma 3.13 (1) in [Caz12]). Let n be a positive integer. For any
symmetric bilinear form B ∈ Sn(k) there exists units u1, . . . , un ∈ k× such that
B is homotopic to the diagonal form 〈u1, . . . , un〉.

Proof. If char(k) 6= 2, then by Proposition 2.8.11 B ∈ Sn(k) is conjugate by
an element P ∈ SLn(k) to a diagonal matrix. Decomposing P into a product of
transvection matrices as in the proof of Lemma 3.1.1 and replacing each Ai,j,λ by
Ai,j,(λ−Tλ) yields a homotopy to a diagonal matrix.
If char(k) = 2, by Proposition 2.8.11B is conjugate by an element P ∈ SLn(k) to

a block diagonal matrix, with possible
[
0 1
1 0

]
terms. In addition to the preceding

argument, we can use the homotopy
[
T 1
1 0

]
to link B to a diagonal matrix.
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3.3 Injectivity

Definition 3.2.2. Let n be a positive integer. For a sequence of units u1, . . . , un ∈
k×, let [u1, . . . , un] denote the pointed rational function X

u1
⊕N . . .⊕N X

un
∈ Fn(k).

Lemma 3.2.3 (Lemma 3.13 (2) in [Caz12]). For any pointed rational function
f ∈ Fn(k) there exists units u1, . . . , un ∈ k× such that we have

f
p∼ [u1, . . . , un].

Proof. We prove this by induction on the degree n of f . As shown in Lemma 2.7.5,
any rational function f ∈ Fn(k) is the naive sum of polynomials P1⊕N . . .⊕NPk.
Thus we may assume that f is a polynomial. Example 2.6.2 then shows that a
polynomial is always homotopic to its leading term. So it’s enough to treat the
case of a monomial X

n

u , with u ∈ k×. Now, Example 2.6.3 shows that the element
Xn

TXn−1+u
∈ Fn(k[T ]) defnines a homotopy between Xn

u and Xn

Xn−1+u
. But this

last rational function decomposes as X ⊕N Xn−1+u
uX , where Xn−1+u

uX ∈ Fn−1(k).
By the inductive hypothesis on Xn−1+u

uX we are done.

The monoids ((πN
0 F)(k),⊕N) and ((πN

0 S)(k),⊕) are generated by their degree
1 components, and the map on generators πN

0 Béz1 : (πN
0 F1)(k) −→ (πN

0 S1)(k)
sending [u] to 〈u〉 is a bijection. The next lemma shows monoid compatibility, and
hence that the Bézout form of [u1, . . . , un] ∈ Fn(k) is homotopic to the diagonal
form 〈u1, . . . , un〉 ∈ Sn.

Lemma 3.2.4 (Lemma 3.14 in [Caz12]). Let A
B ∈ Fn(k) and u ∈ k×. Then the

Bézout form of Xu ⊕
N A
B is conjugate (hence homotopic) by an element in SLn+1(k)

to the block diagonal form 〈u〉 ⊕ Bézn(A,B).

Proof. By definition, one has X
u ⊕

N A
B =

XA−B
u

uA . Using the notation from Defi-
nition 2.9.1, we have

δXA−B
u
,uA(X,Y ) = uA(X)A(Y ) + δA,B(X,Y ) .

In the basis (1, X, . . . ,Xn−1, A(X)), the matrix of the Bézout form is diagonal.

3.3 Injectivity

Let n be a positive integer. To prove the injectivity of the map πN
0 Bézn, we prove

the injectivity of the composite

(πN
0 Fn)(k)

πN
0 Bézn−−−−−→ (πN

0 Sn)(k)
qn×det−−−−→WMs

n(k) ×
k×�k×2

k×.
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Chapter 3. Cazanave’s proof

By Lemma 3.2.3, any rational function is up to homotopy a naive sum of mono-
mials. Proving injectivity amounts to proving that any equivalence of forms on the
right side corresponds to an equivalence of rational functions on the left. We know
by Proposition 2.8.12 that GW(k) is defined by the relation 〈a〉 ⊥ 〈b〉 = 〈a+b〉 ⊥
〈ab(a+ b)〉. Since this relation exists in degree 2, we should expect corresponding
relations to take place in F2(k).

The Chain Equivalence Theorem [Lam05, §I, Theorem 5.2] tells us that two quadratic
forms are isometric exactly when they can be connected by a chain of simple equiv-
alences. Two diagonal forms 〈a1, . . . , an〉, 〈b1, . . . , bn〉 are simply equivalent if
ak = bk, for all k except for two distinct i, j, where 〈ai, aj〉 ' 〈bi, bj〉.

When the field has characteristic 2, this gets slightly more complicated to prove.
There is however an analogous result [MH73, §III, Lemma 5.6] which reduces the
problem to checking degree 2. We will do that in the next section, and then we
may conclude that the following proposition holds.

Proposition 3.3.1. Let u1, . . . , un, v1, . . . , vn be a sequence of units in k×. If the
classes in WMs

n(k) ×
k×�k×2

k× of the diagonal forms 〈u1, . . . , un〉 and 〈v1, . . . , vn〉

are equal, then [u1, . . . , un]
p∼ [v1, . . . , vn] holds in Fn(k).

Proof. Follows from degree 2 case in the next section.

3.3.1 Injectivity in degree 2

When proving injectivity in degree 2, we need the scheme-theoretic analogs of a
group (group scheme) and of a principal bundle (torsor over a base space). We will
define these terms rigorously, although we only need the simplest case of a group
scheme, Ga, which is A1 with additive group structure.

If a functor of points hX : Affop
k −→ Set factors through the forgetful functor

F : Grp −→ Set, then we may write hX = F ◦G, where G : Algk −→ Grp. A
scheme X with such a factorization hX = F ◦G is called a group scheme [EH06,
§VI.1.4].

More explicitly, we can ensure that such a factorization exists by equipping a func-
tor of points with additional structure. This is how Waterhouse defines an affine
group scheme over k in [Wat12, §1]:

Definition 3.3.2 (Affine group scheme over k). LetH : Algk −→ Set be a functor
corepresented by A. Let A be equipped with natural maps that make it into a Hopf
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3.3 Injectivity

algebra. That is, we have k-algebra morphisms

comultiplication ∆ : A −→ A⊗A
counit ε : A −→ k

coinverse S : A −→ A,

which correspond to multiplication, unit and inverse. These morphisms satisfy
(id ⊗ ∆) ◦ ∆ = (∆ ⊗ id) ◦ ∆, and if we write ∆(a) =

∑
bi ⊗ ci, then they

satisfy a =
∑
ε(bi)ci and ε(a) =

∑
S(bi)ci. This corresponds to the usual group

axioms. These data define a factorization H = F ◦ G : Algk −→ Grp −→ Set,
which we call an affine group scheme over k.

Notational remark. We just write G : Algk −→ Grp, but H = F ◦G is implied.
All group schemes considered are affine and over k, so we write “group scheme”
for short.

Lemma 3.3.3. The k-algebra k[X] equipped with ∆ : X 7−→ X ⊗ 1 + 1 ⊗ X ,
ε : X 7−→ 0 and S : X 7−→ −X is an group scheme Ga : Algk −→ Grp.

Proof. We only need to check that the relations hold for the generator X of k[X].
We get (id⊗∆)◦∆ = X⊗1⊗1+1⊗X⊗1+1⊗1⊗X = (∆⊗id)◦∆. The second
condition is X = ε(X) ·1 + ε(1) ·X = X . The third is 0 = (−X) ·1 + 1 ·X .

Definition 3.3.4. Let G : Algk −→ Grp be a group scheme over k, and let
hX : Algk −→ Set be a corepresentable functor. An action ofG on hX is a natural
map G × hX −→ hX such that each map G(S) × hX(S) −→ hX(S) is a group
action. hX is called a G-torsor over a point1 if the map hG × hX −→ hX × hX
sending (g, x) to (gx, x) is bijective and if there exists an S such that k −→ S is
faithfully flat and hX(S) 6= ∅.

Note that any module over a field is free, and hence k −→ S is faithfully flat for
any k-algebra S, and Fn(S) is nonempty, so this last part is okay.

Definition 3.3.5. AG-torsor over a base spaceB is a bundle π : P −→ B together
with a group action

ρ : G×B P −→ P,

such that the induced map

(ρ, id) ◦ (id,∆) : G×B P −→ G×B P ×B P −→ P ×B P
(g, p) 7−→ (g, p, p) 7−→ (g · p, p)

is an isomorphism.
1A G-torsor over a point is sometimes called a principal homogeneous G-space
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Chapter 3. Cazanave’s proof

Definition 3.3.6. Let G be a group scheme, and let X and Y be G-torsors. A
scheme morphism f : X −→ Y is G-equivariant if the diagram

X Y

X Y

G

f

G

f

commutes.

We would like to show that Fn is a Ga-torsor when equipped with the action

h · A
B

:=
A+ hB

B
.

One way to show that would be to show thatFn(k) splits into some productC×D,
in such a way that Ga acts simply transitively on C and trivially on D. This would
make Fn(k) into a Ga-torsor over the base space D.

Lemma 3.3.7. Let S be a k-algebra and A
B be an element of Fn(S). There exists

a unique pair of polynomials (U1, V1) of S[X] with deg(U1) = n− 1, deg(V1) ≤
n− 1 and such that AU1 +BV1 = X2n−1. Let ϕn

(
A
B

)
be the additive inverse of

the coefficient of Xn−1 in V1. Then the associated scheme morphism

ϕn : Fn −→ A1

is Ga-equivariant. In particular, Fn splits as the product ϕ−1
n (0)× A1.

Proof. Observe that the existence of such (U1, V1) follows from the fact that the
linear operator Syln,n(A,B) has full rank, as explained in the proof of Lemma 2.4.6.
Looking at the highest degree terms, we see that AU1 + BV1 = un−1X

2n−1 +
(an−1un−1 + bn−1vn−1 + un−2)xn−1 + . . ., which implies that U1 is monic. Act-
ing on (A,B) by h to give (A+hB,B), turns (U1, V1) into (U1, V1−hU1), since
(A+hB)U1 +B(V1−hU1) = Xn−1. The following diagram commutes, and the
lemma follows.

(A,B) −vn−1

(A+ hB,B) −vn−1 + h

h·

ϕn

h·
ϕn

Notice that Bézn(A+hB,B) = Bézn(A,B), because hB(Y )B(X)−hB(X)B(Y ) =
0. This means that Bézn is Ga-equivariant if we let Ga act trivially on Sn. Thus
Béz2 induces a scheme isomorphism ϕ−1

2 (0) −→ S2, and we get the following
proposition.
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3.3 Injectivity

Proposition 3.3.8. The morphism

ϕ−1
n (0)× A1 = F2

Béz2×ϕ2−−−−−→ S2 × A1

is a Ga-equivariant isomorphism of schemes.

Proof. We find the inverse morphism ψ : S2 −→ ϕ−1
2 (0) by solving a system of

two equations with two unknowns. The formula is

ψ

([
α β
β γ

])
=
X2 + αβ

β2−αγX + α2

β2−αγ
γX + β

.

Having checked degree 2, we may now conclude that injectivity (Proposition 3.3.1)
holds. Since we have also proven surjectivity and graded monoid compatibility, we
conclude with the main theorem of Cazanave’s article.

Theorem 3.3.9. The map πN
0 Béz is an isomorphism of graded monoids:(

πN
0 Fn(k),⊕N

)
'
(
πN

0 Sn(k),⊥
)
.

Having shown all of the necessary graded monoid isomorphisms, we may conclude
that Theorem 3.0.1 holds.
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Chapter 4
Group completing by way of
Jouanolou’s device

In this chapter, we define the Jouanolou device of P1. We then define morphisms
and naive homotopies of morphisms from the Jouanolou device to the projective
line.

In his paper “Une suite exacte de Mayer-Vietoris en K-théorie algébrique,” Jouanolou
states the following lemma (my translation, quotation marks in original):

Lemma 4.0.1 (Lemme 1.5 in [Jou73]). Let X be a quasi-projective scheme. Then
there exists a vector bundle E on X , and a torsor

p : W −→ X

on E, with W affine. In particular, the fibers of W are vector spaces, and we can
say, in a sense that should be clarified, that any quasi-projective scheme has “the
same homotopy type” as an affine scheme.

To clarify, W and X are A1-homotopy equivalent, as stated in [AØ19, Lemma
3.1.4]. We call this W an affine vector bundle torsor on X , meaning that it is a
torsor over a base space in the sense of Definition 3.3.5, and that the group action
is that of a vector space [Wei89, Definition 4.2]. Such an affine torsor bundle will
be called a Jouanolou device. In our case, the base space is P1

k over some field k.

Definition 4.0.2 (Jouanolou device of P1
k). Denote by R the ring

R :=
k[x, y, z, w]

(x+ w − 1, xw − yz)
=

k[x, y, z]

(x (1− x)− yz)
. (4.1)
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Chapter 4. Group completing by way of Jouanolou’s device

The Jouanolou device of P1 is J := Spec (R). We consider J to be pointed at
(x− 1, y, z, w).

Notational remark. Throughout this thesis, we will use R for referring to this
specific ring, and never as a placeholder for an arbitrary ring.

Since J and P1 are A1-homotopy equivalent, it is true that

[P1,P1]A
1

= [J ,P1]A
1
. (4.2)

Asok, Hoyois and Wendts paper “Affine representability results in A1-homotopy
theory II: principal bundles and homogeneous spaces” gives us some really useful
results. In [AHW18, Definition 2.1.1] they define the notion of being A1-naive. If
a scheme Y ∈ Smk is A1-naive, then the canonical map [X,Y ]N −→ [X,Y ]A

1

is a bijection for all smooth, affine k-schemes X ∈ Smaff
k . In the same paper,

[AHW18, Theorem 4.2.2] states that J is A1-naive. [AHW18, Lemma 4.2.4]
states that an affine torsor bundle over a base space is A1-naive if and only if the
base space is. Since J is A1-naive and an affine torsor bundle over P1, we get that
P1 is A1-naive.

Since J ∈ Smaff
k and P1 is A1-naive, the canonical map is a bijection

c : [J ,P1]N −→ [J ,P1]A
1
. (4.3)

Combining Eq. (4.2) with Eq. (4.3) gives the bijection

d : [J ,P1]N −→ [P1,P1]A
1
. (4.4)

The remainder of this thesis is dedicated to understanding Eq. (4.4). It is a bijection
of sets, and the right side is a group. Hence there is a group structure on

[
J ,P1

]N
induced by the canonical bijection c in Eq. (4.3). Our goal for the remainder of
this thesis is to understand the group structure on

[
J ,P1

]N geometrically.

Remark 4.0.3. A path one could take, but which we will not explore is the one
Cazanave points out in his PhD-thesis [Caz09, p. 31]. One could study the canon-
ical bijection [J ,J ]N −→ [J ,J ]A

1 ' [P1,P1]A
1
. This would be interesting, but

is beyond the scope of this thesis.

4.1 The canonical projection

In order to properly define morphisms J −→ P1, we will use Theorem 2.2.1 and
line bundles on J and two generating sections. However, it is nice to gain some
intuition first. As J is a torsor bundle over P1, there is a canonical morphism
π : J −→ P1, which we will properly define in Example 4.3.5.
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4.1.1 Intuition for k = C

We informally explore this canonical morphism in the special case of k = C to
gain some visual intuition.

Since C is algebraically closed, maximal ideals ofR are all of the form (x−a, y−
b). The ideal (x − a, y − b, xw − yz, x + w − 1) is maximal in k[x, y, z, w]
and determines a unique point (x, y, z, w) = (a, b, c, d) ∈ k4. The canonical
morphism π acts on points by sending (a, b, c, d) to [a : b] or [c : d], depending
on which one is well-defined. Note that they are equal when both are defined. The
ideal (x+ w − 1) ensures that we will never have [a : b] = [0 : 0] = [c : d].

If these were the entries of a matrixM =

[
x z
y w

]
=

[
a c
b d

]
, it would be idempo-

tent. The ideal (xw− yz) ensures that the determinant is 0, and ideal (x+w− 1)
ensures that the trace is 1. Idempotence combined with trace 1 implies rank 1, and
we see that it is idempotent by squaring the matrix:

[
x z
y w

]2

=

[
x2 + yz z(x+ w)
y(x+ w) w2 + yz

]
=

[
x(x+ w) z(x+ w)
y(x+ w) w(x+ w)

]
=

[
x z
y w

]
.

Looking at such a matrix M , there are two canonical ways of assigning a 1-
dimensional subspace of k2 to it: its image and kernel. Note that if imM = kerM ,
thenM2 = M = 0, which contradicts idempotence, so this can’t be the case. Thus
M corresponds to (kerM, imM), which is a point in P1

C × P1
C \ ∆, where ∆ is

the diagonal.

The canonical map π : J −→ P1 acts on points by sending π : M 7−→ imM . We
see that the fiber consists of the different possible kernels, and it is parameterized
by A1

C. This illustrates how J is a Ga-torsor over P1.

Let π : J −→ P1 be given in homogeneous coordinates by

π :

[
x y
z w

]
−→

[[
x
z

]
:

[
y
w

]]
.

Note the position of y and z here. Observe that imM = Span

{[
x
y

]
,

[
z
w

]}
, and

that the span of
[
x
y

]
corresponds to the point [x : y] in P1, and similarly

[
z
w

]
corresponds to [z : w].
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Q

Figure 4.1: A very incomplete illustration of J over C. P1C is topologically a 2-sphere,
and each point in P1C has a complex affine line A1

C (i.e. a plane) as a fiber. A “correct”
illustration would show an attached plane at every point of the sphere, twisting in the
appropriate way. Because of the insufficient available dimensions, this illustration only
shows the fiber over the point Q.

4.1.2 Preimages of the cover of P1

We have explored where π sends points (when k = C). We now do the converse
for arbitrary fields k, finding the preimages under π of the open affines that cover
P1.

Proposition 4.1.1. J is covered by two copies of the affine plane A2.

We prove this by first showing the following lemma.

Lemma 4.1.2. The preimage π−1(U0) is A2 ' D(x) ∪D(z).

Proof. We have a ring isomorphism α : k[a, b, c]/(c(1 − ab) − 1) −→ R[x−1],
defined by

α : a 7−→ yx−1

b 7−→ z

c 7−→ x−1,

which induces a scheme isomorphism D(x) −→ D(1− ab) ⊂ A2. Similarly, the
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4.1 The canonical projection

ring isomorphism β : k[d, e, e−1] −→ R[z−1], defined by

β : d 7−→ wz−1

e 7−→ z

e−1 7−→ z−1

induces a scheme isomorphism D(z) −→ D(e) ⊂ A2. Gluing on the intersection
by a 7−→ d, b 7−→ e, we get the following pushout diagram.

D(1− ab) ∩D(b) ' D(1− de) ∩D(e) D(e) ⊂ A2

D(1− ab) ⊂ A2 A2

We know that D(1 − ab) ∪ D(a) = A2, since this is equivalent to the existence
of ci ∈ k[a, b] such that c1(1 − ab) + c2a = 1. We have 1(1 − ab) + ba = 1.
Each term in the proceeding diagram is isomorphic to the corresponding term in
the following diagram.

D(x) ∩D(z) D(z)

D(x) D(x) ∪D(z)

Hence, D(x) ∪D(z) ' A2.

Lemma 4.1.3. The preimage π−1(U1) is A2 ' D(y) ∪D(w).

Proof. By symmetry, this follows from the proof of Lemma 4.1.2.

Proof of Proposition 4.1.1. We have an isomorphism Spec (k[a, b]) ' D(x) ∪
D(z) given by y/x = w/z 7−→ a and z 7−→ b. The other isomorphism Spec (k[u, v]) '
D(y) ∪D(w) is given by x/y = z/w 7−→ u and y 7−→ v.

On the intersection, we glue by the following map, and we prove it is an isomor-
phism by constructing its inverse.

ψ : k[a, a−1, b] −→ k[u, u−1, v] ψ−1 : k[u, u−1, v] −→ k[a, a−1, b]

a 7−→ u−1 u−1 7−→ a

a−1 7−→ u u 7−→ a−1

b 7−→ u− u2v v 7−→ a− a2b.
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Corollary 4.1.4. J is an affine vector bundle torsor on P1.

Proof. J is an affine scheme and π : J −→ P1 is an affine map. J is locally
trivializable and hence locally isomorphic to a vector bundle on P1. The patching
maps ψ,ψ−1 are affine.

Corollary 4.1.5. The Krull dimension of R is 2.

Proof. For any covering of the scheme X by affine open schemes Xi we have
dim(X) = supi(dim(Xi)). Hence, by Proposition 4.1.1, J is two-dimensional.

4.2 Understanding R and its modules

To study morphisms J −→ P1 we should understand the line bundles on J .
Serre’s theorem [Ser55, Corollaire to Proposition 4, p. 242] states that for an
affine scheme (X,OX), there is an equivalence of categories between the category
of algebraic vector bundles on X and the category of finitely generated projective
Γ(X,OX)-modules. And an algebraic line bundle L over a commutative ring S is
a finitely-generated S-module of constant rank 1 [Wei13, p.15].

In this section we first show that R is an integral domain, which implies that all
finitely generated projective modules have constant rank. We then find enough
rank 1 finitely generated projective modules to have a line bundle in each class of
Pic (J ). The Picard group is an A1-homotopy invariant, hence the A1-homotopy
equivalence π : J −→ P1 induces an isomorphism of Picard groups π∗ : PicP1 −→
PicJ ∼= Z.

Lemma 4.2.1. R is an integral domain.

Proof. This is equivalent to showing that the ideal (x(1 − x) − yz) ⊂ k[x, y, z]
is prime. Since k[x, y, z] is a domain, it suffices to show that x(1− x)− yz is an
irreducible element. The grading on k[x, y, z] tells us that if pq = x(1− x)− yz,
then deg p = 1 = deg q. We write p = ax+by+cz+d and q = ex+fy+gz+h.
Now, we need these coefficients to satisfy (among others) the following equations:

dh = 0 ah+ de = 1 ch+ dg = 0

bh+ df = 0 bg + cf = −1.

Since (0) is prime, dh = 0 implies that d = 0 or h = 0, and ah+ de = 1 implies
that d, h are not both 0. Without loss of generality, h = 0, d 6= 0. Then ch+dg = 0
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implies g = 0, and bh + df = 0 implies f = 0. But then 0 = bg + cf = −1,
which is absurd, hence p, q can not exist.

Since R is an integral domain it contains no nontrivial idempotents. Since local
rings have no nontrivial idempotents, there is a correspondence between idem-
potents e ∈ R and clopen sets D(e) = {p ∈ Spec (R) |e /∈ p} = {p ∈
Spec (R) |ep = 1}. The only idempotents of R are 1 and 0, which correspond
to the only clopen sets J and ∅. Hence J = Spec (R) is connected. Finitely gen-
erated projective modules have locally constant rank, so if J is connected, then
they all have constant rank.

4.2.1 Finitely generated rank 1 projective modules on R

Any finitely generated projective module P is by definition a direct summand of
P⊕Q = Rn. Hence, the projection-inclusionRn −→ P −→ Rn is an idempotent
matrix e ∈ Mn(R) [Wei13, p. 8]. We have im e = P and ker e = Q. We will
use this method to find enough modules to describe each isomorphism class of line
bundles over J .

Let P1,Q1 be the images of the following idempotent matrices.

P1 = Im
(
x y
z w

)
Q1 = Im

(
x z
y w

)
These images are modules of rank 1, since the columns of each matrix are linearly
dependent. Thus they are line bundles over J . We show that they are inverses in
Pic (J ) by calculating their tensor product. An element of P1⊗Q1 can be written
as ∑(

αi

[
x
z

]
+ βi

[
y
w

])
⊗R

(
ai

[
x
y

]
+ bi

[
z
w

])
, αi, βi, ai, bi ∈ R.

We see that P1 ⊗Q1 is generated by the elements{[x
z

]
⊗
[
x
y

]
,

[
x
z

]
⊗
[
z
w

]
,

[
y
w

]
⊗
[
x
y

]
,

[
y
w

]
⊗
[
z
w

]}
.

We define a module homomorphism ϕ : R2 ⊗R2 −→ R2 by

ϕ

([
a
c

]
⊗
[
b
d

])
=

[
ab
cd

]
. (4.5)
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Chapter 4. Group completing by way of Jouanolou’s device

Restricting, we get ϕ|P1⊗Q1 : P1 ⊗ Q1 −→ R2. We see that the four basis
elements correspond to the following elements in R2

{
x

[
x
w

]
, z

[
x
w

]
, y

[
x
w

]
, w

[
x
w

]}
.

Since (x + w) = 1, these elements generate a rank 1 submodule of R2. This

submodule R
[
x
w

]
is isomorphic to R, so P1 ⊗Q1

∼= OJ .

Similarly, for each n, we define the (n+ 1)× (n+ 1)-matrix

MPn
:=



(
n
0

)
xn · · ·

(
n
i

)
xn−iyi · · ·

(
n
n

)
yn

...
. . .

...(
n
0

)
xn−jzj

(
n
i

)
xαyβzγwδ

(
n
n

)
yn−jwj

...
. . .

...(
n
0

)
zn · · ·

(
n
i

)
zn−iwi · · ·

(
n
n

)
wn

 ,

where α = min{n− i, n− j}, β = n− j−α, δ = min{i, j}, and γ = j− δ, and(
n
i

)
denotes n choose i. This matrix is idempotent. Since the rows are all linearly

dependent, the projective module im(MPn) has rank 1. It is isomorphic to the

module generated by the elements
{[xn−iyi

zn−iwi

]}
0≤i≤n

. This module is denoted

by Pn.

Similarly, for each n there exists an idempotent matrix MQn which is obtained by
by interchanging y and z in the matrix MPn . The image of MQn is a projective

module isomorphic to the one generated by
{[xn−izi

yn−iwi

]}
0≤i≤n

. This module is

denoted by Qn.

Remark 4.2.2. For the generators of Pn and Qn respectively, observe that

y

[
xn−iyi

zn−iwi

]
= x

[
xn−i−1yi+1

zn−i−1wi+1

]
and w

[
xn−iyi

zn−iwi

]
= z

[
xn−i−1yi+1

zn−i−1wi+1

]
, as well as

z

[
xn−izi

yn−iwi

]
= x

[
xn−i−1yi+1

zn−i−1wi+1

]
and w

[
xn−izi

yn−iwi

]
= y

[
xn−i−1zi+1

yn−i−1wi+1

]
.

Lemma 4.2.3. The involutive automorphism τ : R −→ R is defined by

τ : x 7−→ x y 7−→ z

z 7−→ y w 7−→ w.

Pulling back along τ givesR-module isomorphisms τ∗Pn ' Qn and τ∗Qn ' Pn.
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4.2 Understanding R and its modules

Proof. To more easily distinguish between them, we give the domain and codomain
different names: τ : R −→ R′. Pulling back the R′-module Pn, we get the R-
module τ∗Pn, where the multiplication is defined by r ·R p = τ(r) ·R′ p. The map
f : τ∗Pn −→ Qn is defined on basis of elements by

f :

[
xn−iyi

zn−iwi

]
7−→

[
xn−izi

yn−iwi

]
.

It is easily checked that f is bijective and R-linear and hence an R-module iso-
morphism.

To see that τ∗Qn ' Pn, we pull back along τ on both sides, getting τ∗τ∗Qn '
τ∗Pn. Since τ ◦ τ = id, this simplifies to Qn ' τ∗Pn, which we just proved.

Proposition 4.2.4. P⊗n1
∼= Pn and Q⊗n1

∼= Qn.

Proof. It suffices to prove this for one of them, since interchanging z and y would
be a proof for the other by Lemma 4.2.3. We prove P⊗n1

∼= Pn by induction.
Observe that P⊗1

1
∼= P1 is true by definition. Assume that the proposition holds

for all m ≤ n. Calculating P1 ⊗ Pn yields the following set of generators

{[
x
z

]
⊗
[
xn−iyi

zn−iwi

]}
0≤i≤n

⋃{[
y
w

]
⊗
[
xn−iyi

zn−iwi

]}
0≤i≤n

.

By applying the same homomorphism ϕ we used earlier, we get the set{[
xn+1−iyi

zn+1−iwi

]}
0≤i≤n+1

,

which by definition generates Pn+1.

This gives us the following result.

Theorem 4.2.5. The line bundle P1 generates Pic (J ) = Z, andQ1 is its inverse.

Proposition 4.2.6. TheR-module generated by
{[
xn

zn

]
, . . . ,

[
xn−iyi

zn−iwi

]
, . . . ,

[
yn

wn

]}
equals the R-module generated by the set

{[
xn

zn

]
,

[
yn

wn

]}
, and hence these two

elements generate Pn. The analogous statement holds for Qn.
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Proof. We will only prove it for Pn, because by Lemma 4.2.3 the other proof
follows. Containment in one direction is obvious. For the other direction, fix n
and pick a number 0 ≤ i ≤ n. Consider the element[

xn−iyi

zn−iwi

]
= (x+ w)n

[
xn−iyi

zn−iwi

]
=

n∑
d=0

(
n

d

)
xn−dwd

[
xn−iyi

zn−iwi

]
.

For each d, one of the following hold:

xn−dwd
[
xn−iyi

zn−iwi

]
= xn−i−dyiwd

[
xn

zn

]
if i+ d ≤ n,

xn−dwd
[
xn−iyi

zn−iwi

]
= xn−dzn−iwd+i−n

[
yn

wn

]
if i+ d > n.

The proposition follows.

Corollary 4.2.7. The ideal (xn, xn−1y, . . . , xyn−1, yn) equals (xn, yn) ⊂ R, and
similarly for all other pairs {z, w}, {x, z}, {y, w}, {y, z}, and {x,w}.

Proof. All of the pairs are immediate consequences of Proposition 4.2.6 except
for {y, z} and {x,w}, which follow from calculating (x + w)nyn−izi and (x +
w)nxn−iwi.

Proposition 4.2.8. The ideal (xn, wn) equals R.

Proof. By Corollary 4.2.7, the ideal (xn, xn−1w, . . . , wn) = (xn, wn) ⊆ R. Since
1 = (x + w)n =

∑n
i=0

(
n
i

)
xn−iwi ∈ (xn, xn−1w, . . . , wn), we get equality

(xn, wn) = R.

4.2.2 Generating global sections

Using the concept of a unimodular row, we get a simple description of J and its
line bundles.

Definition 4.2.9 (Unimodular row). Let S be a ring. We call σ = (s1, . . . , sn),
where si ∈ S, a unimodular row if any of the following equivalent conditions hold:

• Sn ∼= P ⊕ S, where P = kerσ and the projection Sn −→ S is σ.

• S = s1S + . . .+ snS.

• 1 = s1r1 + . . .+ snrn.
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Weibel writes about using unimodular rows to build projective modules by patch-
ing free modules in “The K-book” [Wei13, p. 11]. A unimodular row with
si ∈ S gives rise to a covering of Spec (S). Given transition functions gij ∈
GLn(S[s−1

i s−1
j ]) that satisfy some compatibility conditions, this data determines

a finitely generated projective S-module.

A pair of generating sections of OJ is by definition a unimodular row. It is also
practical to use unimodular rows to check whether a pair of sections of Pn or Qn
generate. Observe that (x,w) is a unimodular row since x+ w = 1. This implies
that J = Spec (R) is covered by the open sets D(x) and D(w), a subcover of the
cover in Proposition 4.1.1.

If a module M is finitely presented and satisfies that for all prime ideals p ∈ R,
Mp is a free Rp-module, then (and only then) is M a finitely generated projective

R-module [Wei13, p. 10]. Let s0 = f0

[
xn

zn

]
+f1

[
yn

wn

]
, s1 = g0

[
xn

zn

]
+g1

[
yn

wn

]
be a pair of sections of Pn. They generate Pn if they generate R[x−1] on D(x)
and R[w−1] on D(w). We express this in a single equation in Proposition 4.3.1.

4.3 Morphisms from J to P1

We have found a line bundle for each element of Pic (J ). If we pick a line bundle,
and a pair of generating sections, we get a scheme morphism J −→ P1. We give
an algebraic criterion before giving some examples. We then look at the homotopy
classes

[
J ,P1

]N.

4.3.1 Criterion for being a morphism

To verify that a pair of sections give a morphism, we need to check that they
generate the line bundle. It will be convenient to reformulate that condition in the
following way.

Proposition 4.3.1. Let s0 = f0

[
xn

zn

]
+ f1

[
yn

wn

]
, s1 = g0

[
xn

zn

]
+ g1

[
yn

wn

]
be

a pair of sections of Pn. The following are equivalent:

1. The pair defines a morphism (f0, f1 : g0, g1)Pn .

2. The sections generate Pn.

3. There exist A,B,C,D ∈ R such that

A(xnf0+ynf1)+B(xng0+yng1)+C(znf0+wnf1)+D(zng0+wng1) = 1.
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The analogous statement for Qn also holds.

Proof. We already know that the first two statements are equivalent. By Lemma 4.2.3
it suffices to prove the proposition for Pn. We will first prove that (2) implies (3),
and then that (3) implies (2).

Assume that the sections generate Pn. By looking at Pn over the open cover con-
sisting of D(x) and D(w), we get to use the elements x−1 and w−1 respectively.
Applying Remark 4.2.2 and localizing away from x we get

s0 = f0

[
xn

zn

]
+ f1

[
yn

wn

]
=

(
f0 + f1

yn

xn

)[
xn

zn

]
s1 = g0

[
xn

zn

]
+ g1

[
yn

wn

]
=

(
g0 + g1

yn

xn

)[
xn

zn

]
.

Localizing away from w gives

s0 =

(
f0
zn

wn
+ f1

)[
yn

wn

]
s1 =

(
g0
zn

wn
+ g1

)[
yn

wn

]
.

Since we assumed that (s0, s1) generates Pn, there exist Ux, Vx, Uw, Vw ∈ R such
that

Ux

(
f0 + f1

yn

xn

)
+ Vx

(
g0 + g1

yn

xn

)
= 1 (∗)

and

Uw

(
f0
zn

wn
+ f1

)
+ Vw

(
g0
zn

wn
+ g1

)
= 1. (∗∗)

Multiplying (∗) by xn and (∗∗) by wn yields the following equations, which no
longer contain x−1 or w−1, and hence hold over all of J .

Ux(f0x
n + f1y

n) + Vx(g0x
n + g1y

n) = xn

Uw(f0z
n + f1w

n) + Vw(g0z
n + g1w

n) = wn.

By Proposition 4.2.8, (xn, wn) = R. Hence there exist A,B,C,D ∈ R such that

A(xnf0 + ynf1) +B(xng0 + yng1) +C(znf0 +wnf1) +D(zng0 +wng1) = 1.
(∗ ∗ ∗)

To prove the converse, we assume there exist A,B,C,D ∈ R such that (∗ ∗ ∗)
holds. Multiplying (∗ ∗ ∗) by xn gives

(Axn + Czn)(xnf0 + ynf1) + (Bxn +Dzn)(xng0 + yng1) = xn,
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a relation for creating a unit in R[x−1]. Similarly, multiplying (∗ ∗ ∗) by wn gives

(Ayn + Cwn)(znf0 + wnf1) + (Byn +Dwn)(zng0 + wng1) = wn,

a relation for creating a unit in R[w−1]. Which means (f0, f1 : g0, g1)Pn is a
morphism.

Let us define some notation.

Definition 4.3.2 (Compact morphism notation). We use morphism notation similar
to in Remark 2.2.2. The subscript Pn, OJ or Qn indicates the line bundle. Let
fi, gi ∈ R. The morphism defined by Pn and the sections

s0 = f0

[
xn

zn

]
+ f1

[
yn

wn

]
s1 = g0

[
xn

zn

]
+ g1

[
yn

wn

]
will be denoted by

(f0, f1 : g0, g1)Pn ,

and similarly for OJ and Qn.

Definition 4.3.3 (Degree of a morphism). We define a degree map deg : PicJ −→
Z which sends Pn to n, OJ to 0, and Qn to −n. We say that the degree of a mor-
phism is the degree of the line bundle that defines it.

Notational remark. The line bundles Pn and Qn admit (by Proposition 4.2.6) a
“short” 2-element basis as well as a “long” n+ 1-element generating set. We will
use both. They coincide when 2 = n + 1, and are otherwise clearly distinct since
the number of elements differ, so we will not do anything else to distinguish them.
For the trivial line bundle OJ , we simply use the canonical 1-element basis, and
denote morphisms by (f0 : g0)OJ .

We consider J to be pointed at (x − 1, y, z, w), and a morphism J −→ P1 is
pointed if it sends (x− 1, y, z, w) to [1 : 0].

Proposition 4.3.4 (Pointed criterion). The morphism (f0, f1 : g0, g1)Pn is pointed
if f0 /∈ (x − 1, y, z, w) and g0 ∈ (x − 1, y, z, w). The condition for (f0, f1 :
g0, g1)Qn is the same. Similarly, (f0 : g0)OJ is pointed if f0 /∈ (x−1, y, z, w) and
g0 ∈ (x− 1, y, z, w).

Proof. This is immediate, as J is pointed at (x− 1, y, z, w), and P1 is pointed at
[1 : 0].
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4.3.2 Examples of morphisms

Example 4.3.5. The canonical morphism π is defined by P1 and the sections

s0 =

[
x
z

]
and s1 =

[
y
w

]
,

which in compact notation is written as (1, 0 : 0, 1)P1 . We may check that this
defines a morphism by using the criterion in Proposition 4.3.1. A = D = 1, B =
C = 0 satisfy the equation Ax+By + Cz +Dw = 1, since x+ w = 1.

Example 4.3.6. Another morphism is defined by P1 and the sections

s0 =

[
x
z

]
and s1 = y4

[
x
z

]
+

[
y
w

]
,

which in compact notation is written as (1, 0 : y4, 1)P1 .

Example 4.3.7. The Q1-analog of the canonical morphism is called π̃ and is de-
fined by Q1 and the sections

s0 =

[
x
y

]
and s1 =

[
z
w

]
.

In compact notation it is written as (1, 0 : 0, 1)Q1 .

Example 4.3.8. An example over Q2 is given by

s0 =

[
x2

y2

]
+ 2

[
z2

w2

]
and s1 =

[
z2

w2

]
,

which in short compact notation is written as (1, 2 : 0, 1)Q2 and in long compact
notation as (1, 0, 2 : 0, 0, 1)Q2 .

Example 4.3.9. The terms f0, f1, g0, g1 do not have to be elements of the ground
field k to define a morphism. An example of this is the morphism (x, 0 : 0, w)P1 .
We see that it is a morphism by using the condition in Proposition 4.3.1. Picking
A = 1 + 2w,B = C = 0, D = 1 + 2x satisfies the equation.

Example 4.3.10. Being expressible in compact notation with only coefficients
from the ground field k depends on whether you use short or long notation. An ex-
ample is the morphism (1, 0, 1 : 0, 1, 0)P2 = (1, 0, 1 : y, 0, z)P2 = (1, 1 : y, z)P2 .

Example 4.3.11. The degree 0-morphisms are given by a pair of elements ofR that
generate the unit ideal, i.e., a unimodular row (Definition 4.2.9). Two examples are
(1− 2y : y)OJ and (x2 + 2xw : w2)OJ .
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4.3.3 Factoring through π or π̃

An interesting question is when morphisms f : J −→ P1 factor as f = g ◦π or as
f = g ◦ π̃, where g : P1 −→ P1. In this section we give a sufficient condition for
this to hold by defining a resultant for morphismsJ −→ P1. It is not nearly as well
behaved as the one defined in Definition 2.3.1 for pointed morphisms P1 −→ P1,
but it will still be useful.

Proposition 4.3.12. Let s0 = anx
n
0 + . . . + a0x

n
1 and s1 = bnx

n
0 + . . . + b0x

n
1

be two homogeneous polynomials in variables x0, x1 with coefficients ai, bi from
a ring S. Then

resn,n

(
s0

xn0
,
s1

xn0

)
= (−1)n+1resn,n

(
s0

xn1
,
s1

xn1

)
.

Proof. Consider the Sylvester matrix.

Syln,n

(
s0

xn0
,
s1

xn0

)
=



an 0 bn 0
...

. . .
...

. . .
a1 . . . an b1 . . . bn
a0 . . . an−1 b0 . . . bn−1

. . .
...

. . .
...

0 a0 0 b0


.

We denote the zero matrix by 0n, the identity matrix by In, and the matrix with 1s
on the anti-diagonal and 0s everywhere else by Jn. We calculate(

Jn 0n
0n Jn

)(
0n In
In 0n

)
Syln,n

(
s0

xn0
,
s1

xn0

)(
Jn 0n
0n Jn

)

= Syln,n

(
s0

xn1
,
s1

xn1

)
=



a0 0 b0 0
...

. . .
...

. . .
an−1 . . . a0 bn−1 . . . b0
an . . . a1 bn . . . b1

. . .
...

. . .
...

0 an 0 bn


.

Calculating the determinant of both sides yields

resn,n

(
s0

xn1
,
s1

xn1

)
= (−1)n+1resn,n

(
s0

xn0
,
s1

xn0

)
.
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On J we use this in the following way. Consider, without loss of generality, Pn,
and a pair of global sections s0, s1 of given by

s0 =

[
a0x

n + . . .+ any
n

a0z
n + . . .+ anw

n

]
and s1 =

[
b0x

n + . . .+ bny
n

b0z
n + . . .+ bnw

n

]
.

They define a map J −→ P1. On D(x) the map can be written as

(x, y, z, w) 7−→ [a0x
n + . . .+ any

n : b0x
n + . . .+ bny

n],

which simplifies to

(x, y, z, w) 7−→ [a0 + . . .+ an(y/x)n : b0 + . . .+ bn(y/x)n].

After simplifying on D(w), we get

(x, y, z, w) 7−→ [a0(z/w)n + . . .+ an : b0(z/w)n + . . .+ bn].

Hence a morphism (a0, . . . , an : b0, . . . , bn)Pn can be written on the form as a
homogeneous polynomial in x, y and as a homogeneous polynomial in z, w. We
can use Proposition 4.3.12 to associate a resultant up to sign to that specific pre-
sentation of the morphism.

However, there are two big problems with this resultant. It is possible for the same
morphism to have multiple representations that have different resultants. It is also
possible for a pair of generating sections to have the same resultant as a pair of
non-generating sections.

Example 4.3.13. We have the equality x
[
y
w

]
= y

[
x
z

]
, but the resultant is not

invariant when using this equality to represent a global section differently.

Example 4.3.14. The two pairs of sections (x, 0 : 0, w)P1 and (x, 2x : w,w)P1

both have resultant xw, but only (x, 0 : 0, w)P1 generates a morphism. Let k = C
and localize at the maximal ideal m = (x − 1, y + 1

2). The value of the first
section of (x, 2x : w,w)P1 is x2− 2yx = 0, and the value of the second section is
wx+ wy = 0. Since both vanish, they do not define a morphism.

These problems only arise when the coefficients are not in the field k. With those
caveats out of the way, the resultant is useful when we only have field coefficients.

Proposition 4.3.15. f : J −→ P1 factors as f = g ◦ π : J −→ P1 −→ P1 if
the sections (s0 : s1)Pn defining f can be written in long compact notation with
only field coefficients. f : J −→ P1 factors as f = g ◦ π̃ : J −→ P1 −→ P1

if (s0 : s1)Qn defining f can be written in long compact notation with only field
coefficients.

44



4.4 Naive homotopies of morphisms

Proof. We only prove this for Pn. As we have seen in Lemma 4.1.2, π acts by

π : y/x 7−→ x1/x0

z/w 7−→ x0/x1

onD(x) andD(w) respectively. If all the coefficients ai, bi are in k, then f factors
as g ◦ π, where g : P1 −→ P1 is the map

g : [x0, x1] 7−→ [a0(x0/x1)n + . . .+ an : b0(x0/x1)n + . . .+ bn].

The resultant of f on D(w) and the resultant of g are equal.

4.4 Naive homotopies of morphisms

Recall the definition of a naive homotopy (Definition 1.0.1). A naive homotopy of
maps J −→ P1 is a morphism H : J × A1 −→ P1.

J J × A1 P1
s0

s1

H

The inclusions s0, s1 of J are induced by the ring maps R[T ] −→ R given by
evaluating at T = 0 and T = 1. The modules on R can be pulled back under these
ring maps to give modules on R[T ]. The pullback of any L is L ⊗R R[T ], which
we will denote L(R[T ]). It is given by the same generators as L, but allows for
coefficients inR[T ]. Since PicJ = PicJ ×A1 (the Picard group isA1-homotopy
invariant), we obtain all line bundles on J × A1 in this way.

Proposition 4.4.1. The degree (Definition 4.3.3) of a morphism J −→ P1 is a
naive homotopy invariant.

Proof. This follows from the fact that the line bundles on J × A1 are L(R[T ]),
where L is a line bundle on J .

Two global sections of a line bundle L(R[T ]) generate the line bundle if they lo-
cally generate a module isomorphic to R[T, x−1] on D(x) ⊂ Spec (R[T ]) and
similarly a module isomorphic to R[T,w−1] on D(w) ⊂ Spec (R[T ]). The fol-
lowing analog of Proposition 4.3.1 holds.

Proposition 4.4.2. Let s0 = f0

[
xn

zn

]
+ f1

[
yn

wn

]
, s1 = g0

[
xn

zn

]
+ g1

[
yn

wn

]
be

a pair of sections of Pn(R[T ]). The following are equivalent:

1. (f0, f1 : g0, g1)Pn(R[T ]) defines a morphism.
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2. The sections generate Pn(R[T ]).

3. There exist A,B,C,D ∈ R[T ] such that

A(xnf0+ynf1)+B(xng0+yng1)+C(znf0+wnf1)+D(zng0+wng1) = 1.

The analogous statement for Qn(R[T ]) also holds.

Proof. The proof is the same as for Proposition 4.3.1.

4.4.1 Examples of naive homotopies

Example 4.4.3. Recall Examples 4.3.5 and 4.3.6. They are homotopic, and a
homotopy connecting them is (1, 0 : Ty4, 1)P1(R[T ]). Picking A = D = 1, B =
C = 0 satisfies the condition in Proposition 4.4.2.

Proposition 4.4.4. Generalizing the last example, let L be Pn or Qn for some n.
For any r ∈ R, (1, 0 : Tr, 1)L(R[T ]) and (1, T r : 0, 1)L(R[T ]) are morphisms.

Proof. To see this, consider, without loss of generality, L = Pn. By Proposi-
tion 4.2.8, it is possible to find A and D such that Axn+Dwn = 1. To ensure that
the entire equation equals 1, set B = 0 and C = −rTD. This yields

Axn − Czn +D(znrT + wn) = Axn +Dwn = 1.

By symmetry (1, T r : 0, 1)L(R[T ]) is a morphism.

Corollary 4.4.5. The property of being a pointed morphism is not preserved by
naive homotopies.

Proof. Example: (1, 0 : 0, 1)L is pointed and (1, 0 : 1, 1)L isn’t, but (1, 0 :
0, 1)L ∼ (1, 0 : 1, 1)L by Proposition 4.4.4.

Example 4.4.6. There is a naive homotopy (1−Tyz,−Tz : y, 1)P1(R[T ]) connect-
ing (1, 0 : y, 1)P1 and (1 − yz,−z : y, 1)P1 . Hence by using Proposition 4.4.4,
we obtain (1 − yz,−z : y, 1)P1 ∼ (1, 0 : 0, 1)P1 . However, (1 − Tyz,−Tz :
Ty, 1)P1(R[T ]) is not a naive homotopy.

Example 4.4.7. There is a naive homotopy (x, 0 : 0, w)P1 ∼ (1, 0 : 0, 1)P1 , but it
is not given by (x+ wT, 0 : 0, w + xT )P1(R[T ]). Instead, we have two steps

(x, 0 : 0, w)P1 ∼ (x, 0 : 0, 1)P1 ∼ (1, 0 : 0, 1)P1 ,
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given by

(x, 0 : 0, w + Tx)P1(R[T ]) and (x+ Tw, 0 : 0, 1)P1(R[T ]).

We show that (x, 0 : 0, w + Tx)P1(R[T ]) is a homotopy by showing that the
module generated by the sections is locally free. On D(x) ⊂ R[T ] we see that
(x2, wy + Txy) generates the unit ideal R[x−1, T ]. On D(w) we need to check
that (xz,w2 + Txw) = R[w−1, T ]. We calculate

z

w2
(w2 + Txw) =

z

w
(w + Tx) = z + xz

T

w
,

so the module contains z. Since w2 + Txw = w2 + Tyz, it contains w2, which is
a unit in R[w−1, T ].

The case of (x+Tw, 0 : 0, 1)P1(R[T ]) is similar. It contains a unit onD(w). To see
that (x2 + Twx, y) is the unit ideal in R[x−1, T ] we calculate Txw = Tyz 3 (y),
hence x2 ∈ (x2 + Twx, y). Since x2 is a unit in R[x−1, T ] we are done.

Example 4.4.8. There is a naive homotopy (1, 1 : 0, 1)P1 ∼ (1, 1−z : z, 1−z2)P1 .
However, carelessly multiplying each difference of coefficients by T results in
(1, 1 − Tz : Tz, 1 − Tz2)P1(R[T ]), which is not a valid morphism. A homotopy
is given by (1, 1− Tz : Tz, 1− T 2z2)P1(R[T ]), where the exponents of the T s are
crucial.

Examining morphisms and homotopies quickly becomes unwieldy. We automated
the process using a Macaulay2-script, but this did not reveal enough families of
homotopies to determine the homotopy classes.

There are three heuristic reasons why automating seems intractable. Firstly, the set
of morphisms is huge, and the set of naive homotopies is even huger. Secondly,
morphisms can be homotopic without being connected by a single homotopy, as
remarked in Definition 2.1.1, and illustrated in Examples 4.4.7 and 4.4.6. Thirdly,
homotopies may require powers of T greater than 1, as shown in Example 4.4.8.

4.5 Conjectures over a quadratically closed field

In this section, we assume that k is a quadratically closed field, and summarize
what we know in this case. After stating it, we also assume Conjecture 4.5.1, and
derive some consequences from that. We know the group structure on

[
P1,P1

]A1

is GW(k) ×k×�k×2
k×, which is Z × k× since k is quadratically closed. From

Eq. (4.4) we know we should expect this group structure on
[
J ,P1

]N. We know
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from Proposition 4.3.15 that the elements of the families of morphisms Pn(k) and
Qn(k) factor through π and π̃ respectively. L(k) denotes morphisms given by the
line bundle L and global sections with only field coefficients. This leads us to the
following conjectures.

Conjecture 4.5.1. Any pointed morphism f : J −→ P1 is naively homotopic to
a morphism (an, . . . , a0 : 0, bn−1, . . . , b0)L with L being one of Pn,OJ or Qn,
and ai, bi ∈ k. Moreover, if two morphisms in L(k) are homotopic as elements of
L(R), then there exists a homotopy by elements of L(k[T ]) connecting them.

We define some ad hoc notation in order to state the next conjecture.

Definition 4.5.2. Denote the naive homotopy classes of maps from J −→ P1

arising from sections of L by [L,P]N. We define

PN :=
∏
i≥0

[Pn,P1
k]

N and QN :=
∏
i≥0

[Qn,P1
k]

N.

Conjecture 4.5.3. The following are module isomorphisms.

PN ∼= [P1,P1]N and QN ∼= [P1,P1]N.

Proof that Conjecture 4.5.1 =⇒ Conjecture 4.5.3. Fix a morphism in PN. By
assumption it is naively homotopic to the pair (an, . . . , a0 : 0, bn−1, . . . , b0)n. On
D(w), we can now calculate the resultant of (an

zn

wn + . . . a0
wn

wn , bn−1
zn−1

wn−1 + . . .+

b0
wn

wn ). Replacing z
w with X yields Cazanave’s rational functions.

One can then use Cazanave’s results for naive homotopies of pointed rational func-
tions to figure out the naive homotopy classes.

Since k is quadratically closed, [P1,P1]N = N × k×. Group completing gives
Z× k×, which amounts to adjoining inverses.1 We can define the group operation
on [J ,P1]N by combining the group operations on PN and QN.

Conjecture 4.5.4. Let (p, α)P ∈ PN and (q, β)Q ∈ QN. The group operation is
as follows.

(p, α)⊕N (q, β) :=


(0, αβ )P = (0, αβ )Q if p = q,

(p− q, αβ )P if p > q,

(q − p, βα)Q if q < p.

1In general, the group completion of a monoid contains more elements than just the elements of
the monoid and their inverses.
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When [J ,P1]N is equipped with this group operation, the bijection in Eq. (4.4) is
a group isomorphism.[

P1,P1
]A1

' Groth
(
[P1,P1]N

)
' [J ,P1]N ' Z× C×.
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Chapter 5
Hopf map fibration sequence

In this chapter, we break down
[
J ,P1

]N into components that are more easily
described. We decompose

[
J ,P1

]N into a degree-part and a part factoring through
the algebraic Hopf map η : A2 \{0} −→ P1. We then compare this to results from
Morel’s book “A1-algebraic topology over a field.”

5.1 Morphisms from J to A2 \ {0}

We write A2 = Spec (k[s, t]) and consider A2 \ {0} to be pointed at (s− 1, t).

Definition 5.1.1 (Hopf map). The Hopf map is a scheme morphism η : A2 \
{0} −→ P1. It is defined (using Theorem 2.2.1) by the structure sheaf OA2\{0},
and the pair (s, t) of generating global sections. That is, η : (s, t) 7−→ [s : t].

To look at the maps J −→ P1 which factor through the Hopf map, we simply look
at all maps f : J −→ A2 \ {0} and compose them with η. We in turn understand
the maps to A2 \ {0} in terms of maps to A2 that factor through the inclusion
i : A2 \ {0} −→ A2.

J A2

A2 \ {0}
f

g

i

To have a scheme morphism (f, f#) : (J ,OJ ) −→ (A2\{0},OA2\{0}), we need
a continuous map of points f : J −→ A2 \ {0} as well as a map of sheaves on
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A2 \ {0}, f# : OA2\{0} −→ f∗OJ .

A continuous map defining a scheme morphism g : J −→ A2 = Spec (k[s, t])
is given by a ring map α : k[s, t] −→ R. The map g factors through f : J −→
A2 \ {0} if and only if α is defined by s 7−→ p, t 7−→ q such that there exist
u, v ∈ R such that up + vq = 1. In other words, g = i ◦ f if (p, q) ∈ R2 is a
unimodular row.

Observe that if U ⊆ A2 \ {0} is open, then U ⊆ A2 is open too. The ring k[s, t] =
Γ
(
A2,OA2

)
is a unique factorization domain, which implies that the maximal

set on which a regular function is defined is of the form D(g) = Spec (k[s, t]g).
Since A2 \ {0} is neither of that form nor contained in anything of that form,
there exist no regular functions on A2 \ {0} that do not extend to A2. Hence
Γ
(
U,OA2\{0}

)
= Γ (U,OA2) for all U ⊆ A2 \ {0}, and i# is an isomorphism of

sheaves i# : OA2 −→ i∗OA2\{0} on A2.

We now define the map of sheaves f# by using g# : OA2 −→ g∗OJ . We require
g = i ◦ f , which implies

g# = f# ◦ i# : OA2 −→ i∗OA2\{0} −→ i∗f∗OJ .

Since i# is an isomorphism of sheaves on A2, we have g#|A2\{0} = f#.

Proposition 5.1.2. The data of a k-scheme morphism f : J −→ A2 \ {0} is
equivalent to a unimodular row (A,B) ∈ R2.

Proposition 5.1.3. The data of a naive homotopy H : J × A1 −→ A2 \ {0} is
equivalent to a unimodular row (A,B) ∈ R[T ]2.

Proof. Recall Definition 1.0.1 and Section 4.4. A naive homotopy is a morphism
H as in the diagram.

J J × A1 A2 \ {0}.
s0

s1

H

The argument that a morphism X −→ A2 \ {0} is given by a length 2 uni-
modular row in Γ(X,OX) holds for any affine scheme. In particular it holds for
Spec (R[T ]).

Lemma 5.1.4. A morphism (A,B) : J −→ A2 \ {0} is pointed if A − 1 ∈
(x− 1, y, z, w) and B ∈ (x− 1, y, z, w).

Proof. J is a pointed at (x − 1, y, z, w), and if (A,B) evaluates to (1, 0) at that
ideal, it sends the point (x− 1, y, z, w) to (s− 1, t).
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We define a binary operation (M-sum) on morphisms J −→ A2 \ {0}. This
is completely analogous to Cazanave’s naive sum of pointed rational functions,
defined in Proposition 2.7.1.

Definition 5.1.5 (M-sum and group structure). Let (Ai, Bi) ∈ R2 (respectively
(Ai, Bi) ∈ R[T ]2) for i = 1, 2, define a morphism J −→ A2 \ {0} (respectively
J ×A1 −→ A2 \ {0}). Their M-sum is (A1, B1)⊕M (A2, B2) = (A3, B3), given
by the matrix product(

A3 −V3

B3 U3

)
:=

(
A1 −V1

B1 U1

)
·
(
A2 −V2

B2 U2

)
.

The operation is associative, but in not commutative. The identity is (1, 0). The
inverse is given by (

A −V
B U

)−1

=

(
U V
−B A

)
.

This equips
[
J ,A2 \ {0}

]N with a group structure.

Remark 5.1.6. The group
([
J ,A2 \ {0}

]N
,⊕M

)
might not be a subgroup of([

J ,P1
]N
,⊕N

)
, in the sense that the group operation ⊕M may differ from the

operation ⊕N. We conjecture that they are equal, but have not been able to prove
it yet.

Example 5.1.7. We calculate(
2x− 1 −2z

2y 2x− 1

)2

=

(
4x2 − 4x+ 1− 4yz −4z(2x− 1)

4y(2x− 1) 4x2 − 4x+ 1− 4yz

)
.

Simplifying, we get (2x− 1, 2y)⊕M (2x− 1, 2y) = (1− 8yz, 8xy − 4y).

Proposition 5.1.8. If (A1, B1) and (A2, B2) are pointed, then so is (A3, B3) =
(A1A2 − V2B1, B1A2 +B2U1).

Proof. Assume (A1, B1) and (A2, B2) are two pointed morphisms. We have

(A1, B1)⊕M (A2, B2) =

(
A1 −V1

B1 U1

)(
A2 −V2

B2 U2

)
=

(
A1A2 − V2B1 −(A1V2 + V1U2)
B1A2 +B2U1 U1U2 −B1V2

)
= (A1A2 − V2B1, B1A2 +B2U1).

Since for i = 1, 2, we have Ai − 1 ∈ (x − 1, y, z, w) and Bi ∈ (x − 1, y, z, w),
it follows that A1A2 − V2B1 − 1 ∈ (x − 1, y, z, w) and B1A2 + B2U1 ∈ (x −
1, y, z, w).
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5.1.1 Naive homotopies of morphisms from J to A2 \ {0}

We may associate each unpointed morphism (A,B) : J −→ A2 \ {0} with the
matrix with determinant AU + BV = 1. We proved in Lemma 3.1.2 that any
matrix SLn(k) is naively homotopic to the identity matrix. Hence if (A,B) ∈ k2,
then it is homotopic to (1, 0).

Allowing coefficients in R complicates things. There are examples of rings S
where there are elements of SL2(S) that are naively homotopy trivial that are not
in TV(S). We have not been able to show whether R is such a ring.

5.1.2 The Picard group of the punctured plane

The Picard group ofA2\{0} can be calculated using Čech cohomology. Intuitively,
this is because a line bundle is completely determined by how its locally trivial
parts are glued together. They are glued by units of the structure sheaf, and the
first Čech cohomology group of the sheaf of units of the structure sheaf measures
exactly which units give rise to “interesting” ways to glue.

Proposition 5.1.9. The Picard group of A2 \ {0} is trivial.

Proof. We have

Pic
(
A2 \ {0}

)
= H1

(
A2 \ {0},O×A2\{0}

)
' Ȟ1

(
U ,O×A2\{0}

)
,

where U = {D(s), D(t)} is a cover of A2 \ {0}. The sections of the sheaf
O×A2\{0}(U) are the units in the ring OA2\{0}(U). The relevant part of the Čech

complex is Č0 δ0−−→ Č1 δ1−−→ Č2, which is

O×A2\{0}(D(s))⊕O×A2\{0}(D(t))
δ0−−→ O×A2\{0}(D(s) ∩D(t))

δ1−−→ 0.

Calculating what the units are, we get the following cochain complex.

{asn} ⊕ {btm} δ0−−→ {csptq} δ1−−→ 0,

where a, b, c ∈ k×, n,m, p, q ∈ Z. The map δ1 sends everything to 0, so the kernel
is {csptq}. The image of δ0 is {asnb−1t−m} which equals {csptq}. We calculate
the quotient Ȟ1

(
U ,O×A2\{0}

)
= 0.

Proposition 5.1.10. A map f : J −→ P1 factors through η : A2 \ {0} −→ P1 if
and only if it induces a trivial map of Picard groups.
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Proof. The map f : J g−−→ A2 \ {0} η−−→ P1 induces a map on Picard groups

f∗ : Z η∗−−→ 0
g∗−−→ Z. Conversely, a map f : J −→ P1 that induces a trivial

map of Picard groups must be given by the trivial bundle OJ and two generating
sections. That is exactly the data of a unimodular row (A,B) ∈ R2, thus it defines
a map g : J −→ A2 \ {0}. Composing with η, we obtain η ◦ g = f .

5.2 Fibration sequence

5.2.1 Milnor Witt K-theory

KMW
∗ (k) is the Milnor Witt K-theory of the field k. It is the associative graded

ring defined by the following generators and relations. The generators are η of
degree −1, and elements [a] of degree 1 for each a ∈ k×.

Definition 5.2.1 (Definition 3.1 in [Mor12]). Let k be a commutative field. The
Milnor-Witt K-theory of k is the graded associative ring KMW

∗ (k) generated by
the symbols [u] of degree +1, for each unit u ∈ k×, and one symbol η of degree
−1 subject to the following relations:

1. (Steinberg relation) For each a ∈ k× \ {1} : [a].[1− a] = 0

2. For each pair (a, b) ∈ (k×)
2

: [ab] = [a] + [b] + η.[a].[b]

3. For each u ∈ k× : [u].η = η.[u]

4. Set h := η.[−1] + 2. Then η.h = 0

The Grothendieck-Witt ring is isomorphic to the degree 0 subring KMW
0 (k), and

the isomorphism is given by 〈a〉 7−→ 1 + η.[a].

Morel defines in [Mor12, §3.2] for each n ∈ Z an explicit sheaf KMW
n on Smk.

(Notice that it is bold and underlined.) The sections of this sheaf on any field k is
the group KMW

n (k).

5.2.2 Fibration sequence

In [Mor12, p. 191] we find the following fibration sequence

A2 \ 0
η−−→ P1 −→ P∞.

This sequence gives rise to a long exact sequence of homotopy sheaves, from
which one can get a short exact sequence. By applying contraction — which is
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an exact functor — to the short exact sequence we get the following central exten-
sion of sheaves.

1 −→ KMW
1 −→ (FA1(1))−1 −→ (Gm)−1 −→ 1. (5.1)

Since PicP1 ' (Gm)−1 ' Z, the sequence splits, which leads Morel to the fol-
lowing corollary.

Proposition 5.2.2 (Corollary 7.34 in [Mor12]). The sheaf of groups (FA1(1))−1 is
abelian and is canonically isomorphic to Z⊕KMW

1 .

Evaluating Seq. (5.1) at a field k gives a short exact sequence of groups.

1 −→ KMW
1 (k) −→

[
P1,P1

]A1

−→ PicP1 −→ 1. (5.2)

Using that J and P1 are A1-homotopy equivalent, we may rewrite this as

1 −→ KMW
1 (k) −→

[
J ,P1

]A1

−→ PicJ −→ 1.

We compare this to
[
J ,P1

]N. The group structure on
[
J ,P1

]N is induced by the

canonical bijection c :
[
J ,P1

]N −→ [
P1,P1

]A1

, which tautologically makes c a
group isomorphism.

Lemma 5.2.3. The following square commutes and the vertical maps are isomor-
phisms. [

J ,P1
]N

PicJ

[
J ,P1

]A1

PicJ

c

deg

id

deg

Proof. The identity map on morphisms induces the map c on homotopy classes.
The map deg is a well-defined map on naive homotopy classes (Proposition 4.4.1)
as well as on A1-homotopy classes (Seq. (5.2.2)) and their definitions coincide.
They both take the homotopy class of a morphism f to the element in PicJ used
to define f .

Theorem 5.2.4. The following diagram commutes, and the vertical maps are iso-
morphisms.

1
[
J ,A2 \ {0}

]N [
J ,P1

]N
PicJ 1

1 KMW
1 (k)

[
J ,P1

]A1

PicJ 1

deg

c id

deg

(5.3)
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Proof. The first row is a short exact sequence by Proposition 5.1.10. The two right-
most maps are isomorphisms by Lemma 5.2.3, so by the five lemma the leftmost
map must be too.

Remark 5.2.5. In the diagram, A2 \ {0} is equipped with the group structure it
has as a subgroup of

[
J ,P1

]N, which may differ from the group structure defined
in Definition 5.1.5.

Since PicJ ' Z, the first row in Diagram (5.3) splits. Since the group
[
J ,P1

]N '[
P1,P1

]A1

is abelian, we may use the splitting lemma to obtain the following.[
J ,P1

]N
=
[
J ,A2 \ {0}

]N ⊕ PicJ .

This proves Theorem 1.0.3.

5.3 Group completion arguments

If k is a quadratically closed field, we have an isomorphism of monoids
[
P1,P1

]N '
N× k×. Group completing gives us Z× k×, which amounts to adjoining inverses
to the elements of the monoid, as discussed in Section 4.5.

However, if we look at a non-algebraically closed field, the group completion may
adjoin more than just the inverses. As a simple example, consider R. We calculate[
P1,P1

]N ' N × N × R×, and the group completion is Z × Z × R×. This
creates elements (a, b, u) where ab < 0, which are neither elements of the monoid,
nor of the monoid of inverses. This shows that not all elements of

[
J ,P1

]N are
expressible as pointed rational functions with field coefficients. The best we can
hope for is to be able to express them as formal differences of rational functions.

In the case of R, it is reasonable to expect that any such formal difference may
be turned into an element expressible as a rational function, by shifting by the
homotopy class of π. In other words, for any homotopy class in Z× Z× R×, and
any function f : J −→ P1 representing that class, there exists an n ∈ Z such
that n · π + f is homotopic to a rational function. This leads us to the following
conjecture.

Conjecture 5.3.1. If GW(k)×k×�k×2
k× is a finitely generated group, we may find

a “shifting element” ρ, such that for any f there exists an n ∈ Z such that n ·ρ+f
is homotopic to a rational function.

The Witt ring is a quotient of the Grothendieck-Witt ring by the fundamental
ideal I . This ideal is generated by the isometry class of the hyperbolic form,
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I = (〈1,−1〉). The Hasse-Minkowski theorem states that quadratic forms over
Q are equivalent if and only if they are equivalent over all local fields. As a conse-
quence, the Witt ring of Q is the product

∏
p≤∞W(Qp), where p ranges over the

primes, Qp is the field of p-adic numbers, and by convention we write Q∞ = R.1

W(Q) ' Z⊕ Z/2⊕
∏

2<p<∞
W(Fp),

where p ranges over the primes greater than 2.

If the Grothendieck-Witt group has an infinite number of Z-factors that stem from
correspondingN-factors in the Witt monoid, then the shifting element ρ of Conjec-
ture 5.3.1 can not exist. The condition that GW(k)×k×�k×2

k× be finitely generated

is included for this reason.

Another strategy for understanding the group structure on
[
J ,P1

]N is looking
at the nice submonoids. For instance, the family of naive homotopy classes of
morphisms PN :=

∏
0≤n Pn(R) is a submonoid consisting of homotopy classes

of positive degree. A submonoid of PN is PN(k) :=
∏

0≤n Pn(k), where the
generating sections only have field coefficients. Elements of PN(k) factor as π
composed with a pointed rational function P1 −→ P1 by Proposition 4.3.15.

Similarly, by symmetry, there are nice submonoids QN(k) ⊆ QN ⊂
[
J ,P1

]N.
The subgroup of morphisms defined by the structure sheafOJ is exactly the group[
J ,A2 \ {0}

]N, as shown in Proposition 5.1.10.

5.4 Real realization

If k is a field and k ↪→ R is an embedding, then sending a smooth k-scheme X
to the topological space X(R) equipped with its usual structure of a real manifold
extends to a functor < : H•(k) −→ H [AFW20, p. 14]. H•(k) is the homotopy
category of smooth k-schemes and H is the homotopy category of topological
spaces. This is shown to be a functor is in [DI04, Section 5.3]. This allows us
deduce properties of J from properties of the topological space it corresponds to.

Proposition 5.4.1. A naive homotopy J × A1 −→ A2 \ {0} over k ⊆ R cor-
responds to a homotopy of continuous maps from J (R) to R2 \ {0} in the real
realization.

1See for example [Gou97, p. 46] for this notation.
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5.4 Real realization

(a) Side view. (b) Inside view.

Figure 5.1: The real realization of the Jouanolou device of P1 is the surface in R3 defined
by x(1− x)− yz = 0.

Proof. Let f : J −→ A2 \ {0} be a map defined in the category Smk where
i : k ↪→ R. Then f is determined by a unimodular row (f1, f2) ∈ R2. Algebraic
maps are continuous, and any naive homotopy is sent to a homotopy of continuous
maps.

If f, g are naively homotopic in Smk, and k is a subfield of R, then the realizations
<(f),<(g) : R[x, y, z]/(x− x2 − yz) −→ R2 \ (0, 0) are homotopic in Top.

Corollary 5.4.2. If <(f) and <(g) are not homotopic in Top, then f and g are not
naively A1-homotopic.

Proof. This is simply the contrapositive of Proposition 5.4.1.

5.4.1 A homotopy invariant

As a topological space, J (R) retracts to S1. R2 \ {0} retracts to S1 as well.
We know that homotopy classes of continuous maps S1 −→ S1 are completely
classified by their winding number. Thus we expect the topological homotopy
classes of maps fromJ (R) toR2\{0} to correspond to different winding numbers.

We define the loop γ : S1 −→ J (R) by

γ : θ 7−→
(

cos(θ) + 1

2
,
− sin(θ)

2
,
− sin(θ)

2

)
.

The scheme morphism F : J −→ A2 \ {0} is defined by (2x − 1, 2y). Its real
realization is the map <(F ) : J (R) −→ R2 \ {0} defined by

<(F ) : (x, y, z) 7−→ (2x− 1, 2y).
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It acts on im γ ∈ J (R) by

<(F ) :

(
cos(θ) + 1

2
,
− sin(θ)

2
,
− sin(θ)

2

)
7−→ (cos(θ),− sin(θ)) , (5.4)

which implies that <(F ) ◦ γ : S1 −→ J (R) −→ R2 \ (0, 0) is homotopically
nontrivial. By Corollary 5.4.2, F is a homotopically nontrivial scheme morphism.
Using the classical result that loops with different winding numbers are not homo-
topy equivalent, we get the following.

Proposition 5.4.3. For k a subfield of R, there exists a surjection from the naive
homotopy classes of maps

[
J ,A2 \ {0}

]N to Z.

The scheme morphism F−1 : J −→ A2 \ {0} is defined by (2x − 1,−2y). We
calculate(

2x− 1 −2z
2y 2x− 1

)(
2x− 1 2z
−2y 2x− 1

)
=

(
1 + 4x2 − 4x+ 4yz 0

0 1 + 4x2 − 4x+ 4yz

)
.

Since x2 − x+ yz = 0 this means that (2x− 1, 2y)⊕M (2x− 1,−2y) = (1, 0),
so F and F−1 are inverses. Denote by Fn the n-fold M-sum F ⊕M . . .⊕M F , by
F−n the n-fold M-sum F−1 ⊕M . . .⊕M F−1, and by F 0 the map given by (1, 0).
In general the following proposition holds.

Proposition 5.4.4. Let k be a subfield of R. For integers n 6= m, the morphisms
Fn and Fm are not naively homotopic. The subgroup of

[
J ,A2 \ {0}

]N gener-
ated by F and F−1 is isomorphic to Z.

Proof. F 0 is the identity of
[
J ,A2 \ {0}

]N, and F ⊕M F−1 = F−1 ⊕M F =
(1, 0). Hence F, F−1 generate a cyclic group. To show that this group is isomor-
phic to Z amounts to showing that Fn and Fm are never naively homotopic when
n 6= m. To do this, we show that <(Fn) and <(Fm) are not homotopic.

<(F ) sends im γ ∈ J (R) to the left column of

M =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

That is, to (cos(θ),− sin(θ)). The function <(Fn) sends im γ to the left column
of Mn. Recall that complex numbers can be represented by 2 × 2-matrices over

60



5.4 Real realization

Figure 5.2: The real realization of the Jouanolou device of P1R and the plane y − z = 0.
Their intersection is a circle.

R with the correspondence a+ bi 7−→
(
a b
−b a

)
, and observe that our matrix M

corresponds to eiθ. Since (eiθ)n = eniθ, we get

Mn =

(
cos(nθ) sin(nθ)
− sin(nθ) cos(nθ)

)
.

Hence <(Fn) ◦ γ has winding number n, and is not homotopic to <(Fm) ◦ γ for
any m 6= n.

Example 5.4.5. We calculated in Example 5.1.7 that

(2x− 1, 2y)⊕M (2x− 1, 2y) = (1− 8yz, 8xy − 4y).

By applying the real realization functor to this morphism, we obtain

<(F ⊕M F ) : (x, y, z) 7−→ (1− 8yz, 8xy − 4y).

This acts on im γ ∈ J (R) by

<(F ) :

(
cos(θ) + 1

2
,
− sin(θ)

2
,
− sin(θ)

2

)
7−→ (cos(2θ),− sin(2θ)) .
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5.5 Outlook

We have obtained some partial results about the group structure on
[
J ,P1

]N. The-
orem 1.0.3 states that it is a direct sum

[
J ,A2 \ {0}

]N ⊕ Z. Further research is
needed to understand the group structure on

[
J ,A2 \ {0}

]N, and in particular
to investigate whether the identity map on this set is an isomorphism of groups([
J ,A2 \ {0}

]N
,⊕M

)
'
([
J ,A2 \ {0}

]N
,⊕N

)
.

It might be possible to generalize beyond fields. The Jouanolou device of P1 isA1-
naive when working in SmS , where S is an ind-smooth Dedekind ring with perfect
residue fields [AHW18, Theorem 4.2.2]. In particular this holds for S = Z. It is
also true that PicP1

Z = Z, since Z is a UFD.

Conjecture 5.5.1. There is a group structure on
[
J ,P1

]N in SmZ. There is a split
short exact sequence

1 −→
[
J ,A2 \ {0}

]N −→ [
J ,P1

]N −→ PicJ −→ 1.
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Hitchin. PhD thesis, 2009.

[Caz12] Christophe Cazanave. Algebraic homotopy classes of rational func-
tions. In Annales scientifiques de l’Ecole normale supérieure, vol-
ume 45, pages 511–534, 2012.

[DI04] Daniel Dugger and Daniel C Isaksen. Topological hypercovers and
A1-realizations. Mathematische Zeitschrift, 246(4):667–689, 2004.

[EH06] David Eisenbud and Joe Harris. The geometry of schemes, volume 197.
Springer Science & Business Media, 2006.

[EKM08] Richard S Elman, Nikita Karpenko, and Alexander Merkurjev. The
algebraic and geometric theory of quadratic forms, volume 56. Amer-
ican Mathematical Soc., 2008.

63
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