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Abstract

Model-based data integration provides a promising framework for fitting species
distribution models using citizen science data together with structured survey data,
but a common challenge is how to properly include biased citizen science data in
an integrated model.

I implement an integrated species distribution model using two data sets of fresh-
water fish in Norway: one which is a structured survey data set and one which is
a citizen science data set. For the underlying distribution, I use a log-Gaussian
Cox-process. Together with this, I assume separate observation processes for each
data set, but with shared environmental covariates and a shared spatial field. In
addition, the observation process for the citizen science data is given a separate
spatial field which is estimated only from the citizen science data, referred to as the
effort spatial field. This allows us to estimate the spatial bias of these observations.

By comparing the estimated separate spatial field across four different species of
freshwater fish, we see that even in fish with very different distributions, the effort
spatial field is very similar. When comparing variations of integrated models to
a survey-only model, the integrated models perform consistently better than the
single-dataset model.

The integrated nested Laplace approximation (INLA) methodology is used to fit
all models, and gives great flexibility as well as very efficient computation.
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Sammendrag

Modellbasert dataintegrasjon gir et lovende rammeverk for konstruksjon av arts-
fordelingsmodeller ved bruk av folkeforsknings-data sammen med strukturerte data
fra undersøkelser, men en vanlig utfordring er hvordan man skal forholde seg til
romlige skjevheter i folkeforsknings-dataene i slike modeller.

Jeg implementerer en integrert artsfordelingsmodell ved å bruke to datasett med
observasjoner av ferskvannsfisk i Norge: et strukturert datasett, og et folkeforsknings-
datasett. Det antas en log-Gaussisk Cox-prosess for den underliggende fordelingen
til dataene. I tillegg antas det individuelle observasjonsprosesser for hvert datasett,
men med felles miljømessige kovariater og et felles romlig felt. Observasjonspros-
essen for folkeforsknings-dataene blir ogs̊a gitt et eget romlig felt som estimeres fra
folkeforsknings-data alene. Dette lar oss estimere den romlige skjevheten til disse
observasjonene.

Ved å sammenligne dette estimerte separate romlige feltet p̊a tvers av fire forskjel-
lige arter av ferskvannsfisk, ser vi at selv i fiskearter med svært forskjellige fordelinger,
er det romlige feltet veldig likt. N̊ar vi sammenligner varianter av integrerte mod-
eller med en modell basert kun p̊a undersøkelses-datasettet, yter de integrerte
modellene konsekvent bedre enn modellen med bare ett datasett.

All inferens er utført med metodikken “Integrated nested Laplace approximation”
(INLA), som gir god fleksibilitet og effektiv utregning.
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Chapter 1

Introduction

Citizen science species observations are becoming more and more interesting as a
source of data in ecology, as there are both more efforts to gather citizen science
data, as well as more ways of accessing it, for example through the open database
GBIF.1 The term citizen science data is broad, even within ecology. In some cases,
data may be reported through a website, such as the Norwegian Species Observa-
tion Service, Artsobservasjoner.2 There are also several mobile applications that
seek to make it easier to report various species, notably iNaturalist for species in
general and eBird for birds. The more specific Bumble Bee Watch seeks to track
and conserve North America’s bumble bees. For a more local example, the app
Målerjakt3 seeks to track the northward spread of the scarce umber moth (Agriopis
aurantiaria, gul frostmåler). This is of great interest since similar species tend to
cause great damage to many tree species in Northern Norway, and this particular
species has never been observed further north than Troms. There are also more
organized types of citizen science projects, such as the North American Breeding
Bird Survey,4 where participants are asked to walk a specific route and record all
the birds they observe along it.

As is clear from these examples, the purpose of citizen science data collection can
be anything from engaging people in the nature around them, to collecting data for
very specific tracking and conservation efforts. For some purposes citizen science
data works very well, for instance in the moth example from above. This particular
moth species is easy to distinguish from other moths, it is important to track its

1https://www.gbif.org/
2https://www.artsobservasjoner.no/
3https://www.malerjakt.no/
4https://www.pwrc.usgs.gov/bbs/
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spread north, but sending individual researchers out would be expensive. Provided
one is able to engage the locals, this seems like a perfect solution, because we are
only interested in knowing about single presences. But for more general ecological
purposes, there are several challenges with this type of data.

First of all, citizen science data is often opportunistic. The citizen scientist will
commonly only report the species they happen to come across, and realistically not
even all of them. Often they will report a species that was out of the ordinary, since
reporting all the common species would be quite uninteresting, and so rarer species
may be over-represented when looking at citizen science species observations as a
whole. People may also easily misclassify species they are less familiar with. They
will also report only species that happen to be at the location they have gone to,
instead of following a systematic observation procedure, such as observing at a set
of random locations. This results in sites near cities, landmarks and roads being
over-represented, and so the observations will be spatially biased. It also means
that we only have information about when a species is present, and the fact that a
species is not reported in a given location does not mean that the species is absent,
it could mean that; or it could mean that it was just not observed and recorded
there. This is an important distinction in many ecological models, and has been
(and still is) the topic of many studies, see for instance Hastie and Fithian (2013).

The main advantages of citizen science data is that it is usually not very costly to
collect, and that we often have large quantities of it. But there is a large variety
of citizen science data types and collection procedures, and both the advantages
and disadvantages will vary widely based on this. Although attempts have been
made to assess the quality of citizen science data in a larger sense (see e.g. Kosmala
et al. (2016)), it is hard to say anything general due to the wide variety of collection
methods as well as project aims. Kosmala et al. (2016) also point out that biases
that scientists are aware of in citizen science data might often be present in survey
or more organized data as well.

Overall, the aim of this thesis is to develop a model that combines structured
species observations (in an organized survey with both presences and absences
reported) with citizen science data (which gives only the presences of a species), in
order to produce better predictions than we would have if we used only structured
data. Ideally, this approach will enable us to take advantage of the best aspects of
both data sets: the survey data may have higher quality and more information in
the sense that it is presence/absence data, but the citizen science data is cheaper
to collect and will in many cases be more plentiful. This motivates the idea of
creating a model that combines the two types of data. There are several aspects
and challenges to this.

Firstly, we need to know how to model single data sets, which will differ depending

2



CHAPTER 1. INTRODUCTION

on the type of data we have at hand. Topics like spatial models and species
distribution models tie into this. Secondly, we need to have some framework for
combining models of different data types. This motivates using what is referred
to as integrated distribution models (or model-based data integration).

Species distribution models are a large class of ecological models that seek to
describe or predict the distribution of some species across a geographic space,
using environmental explanatory variables. Originally the interest was often in
understanding ecological connections, but lately the interest has to some degree
shifted more towards prediction into the future or onto some other new space
(Elith and Leathwick, 2009). This especially relates to how we can expect species’
distributions to change as temperatures rise in connection to global warming, which
is of great interest for many parties.

An extension from the basic species distribution model is to construct a model
from two or more data sets reporting on the same species. There are many ways
to do this. In this thesis, I will be using an integrated model. This approach allows
for sharing parameters across the different sub-models representing the individual
data sets, and thereby better capturing the underlying distribution as well as
taking into account potential biases in each of the individual data sets (Isaac
et al., 2020; Miller et al., 2019). This becomes particularly useful when dealing
with citizen science data.

In a recent simulation study, Simmonds et al. (2020) compare different integrated
models fit on simulated data sets representing a structured data set and an un-
structured citizen science data set. They compare a variety of models, some based
on individual data sets and others based on both data sets. They also introduce
the concept of including a separate spatial field informed only by the citizen sci-
ence data, in an attempt to capture the bias of the data. This gave significant
model improvements, and this thesis will be among the first attempts to recreate
this using real data. Thus one of the most important points of discussion will be
how this has contributed to the model performance, and how this can be explored
in future applications.

Specifically, I will be looking at observations made of three freshwater fish species
both from a 1996 survey of approximately 800 lakes in Norway, in addition to
citizen science data from Artsobservasjoner of the same fish species. Following
the approach of Isaac et al. (2020), I will use a model formulation that explicitly
separates the biological and data generation processes, emphasizing the different
observation processes that generate the different data types. I will be modeling
them in an integrated model using binomial regression with a cloglog link for the
presence/absence survey data, and a Poisson regression with a log link for the
presence-only citizen science data. In addition to various environmental variables

3



and a shared spatial field that explains spatial autocorrelation of the observations,
I will also examine models with variables that in some way explain the human
impact at the location, and a second spatial field fit only from the citizen science
data, that will attempt to explain the spatial variance unique to the citizen science
data.

With multiple data types, the flexibility of a Bayesian model makes it an attractive
choice, but due to the complexity of Bayesian models this may be computation-
ally expensive. However, integrated nested Laplace approximation (INLA) (Rue
et al., 2009) provides a computationally feasible framework for approximating a
continuous surface, and modeling complex point process models can be done in a
relatively short period of time (Isaac et al., 2020).

I begin by introducing the data and initial analysis in chapter 2, to make clear
what we are dealing with and how I chose to clean the data. In chapter 3 I move
on to necessary background theory. Here I will give a brief background in some
concepts from spatial statistics and from ecology, covering how to model one or
more data sets in an integrated model, as well as giving some insight into INLA.

In chapter 4, I will introduce the specific observation models as well as the model
components I use in this study. Some of these will already have been introduced in
chapter 3, but here I will present them in a more specific context. I will describe
the model fitting, evaluation and validation. The results of this will be presented
in chapter 5, where I compare five different models, and also examine the results
of the chosen model in more detail.

Finally, I will discuss my results in further detail in chapter 6, before concluding
in chapter 7.
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Chapter 2

Data presentation and initial
exploration

2.1 Observation data sets

The data used in this thesis consists of two data sets of freshwater fish observations:
one that has been collected in a systematic way, and one opportunistic citizen
science data set.

As citizen science data, I have used observations from the Artsobservasjoner dataset,
available through GBIF (see appendix A for download links). I have chosen to look
at the four most prevalent freshwater fish in this data set, which are the brown trout

Table 2.1: Number of observations of each of the fish species examined in the citizen
science data set, before and after matching them to the closest lake (observations
further than 30 m from a lake are removed)

Number of observations

Species Originally After data Fraction
cleaning removed

Brown trout 1220 661 0.45
European perch 417 321 0.23
Arctic char 280 254 0.09
Northern pike 312 237 0.24
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2.1. OBSERVATION DATA SETS
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Figure 2.1: Top row: point maps of all cleaned observations of trout in both data
sets. Bottom row: Hexagon maps of the observations of trout in both data sets,
to illustrate the density of observations in areas where the points land on top of
each other.

(Salmo trutta), the European perch (Perca fluviatilis), the Arctic char (Salvelinus
alpinus) and the northern pike (Esox lucius).

For presence-absence data, I have used the Fish Status Survey of Nordic Lakes
(Tammi and Finstad, 2019). This was a survey conducted over several lakes in
Norway, Sweden and Finland, where the presence or absence of a number of fresh-
water fish was recorded in 1996. I selected the Norwegian observations of the four
species of interest from this data set, which left me with the occurrence status of
these species in around 800 lakes in Norway.

One of the challenges in using citizen science data is that the spatial location
for the observation may not be completely accurate. In this project, I have the
advantage of working with individuals within lakes, and I am not interested in the
exact location of the fish within the lake.
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Char Perch Pike Trout

10 20 30 10 20 30 10 20 30 10 20 30

60

64

68

30

60

90

count

Figure 2.2: Hexagon maps of the citizen science observations (from Artsobser-
vasjoner) of all four fish species (note that for the survey data, locations are the
same for all species, so the hexagon maps will all look like the one in figure 2.1).
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Figure 2.3: Presences and absences from the survey data for all four species.

Often the citizen scientist will specify a location outside of the lake itself, but it
is fairly easy to check if an observation is within some reasonable distance of a
lake and then match it to the closest lake. This strategy does potentially allow for
some error, in the cases where there are several lakes close to each other.

One might try to remedy this somehow, for instance one could favour large lakes
in cases where there are multiple lakes within a given threshold of the observation,
or one could try to use the name of the lake to a larger degree if this is given,
although this gives rise to a whole new set of problems since lake names are not
at all unique, see for example Storvatnet and Langvatnet (or just look at the
occurrences of Lomtjønna in the Trondheim area alone!), and if the user is asked
to spell the name themselves this could give rise to more problems, for example,
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Figure 2.4: The number of observations in the citizen science data set per year,
for all four fish species. The black dashed line at 1996 is included to mark that
this is the year the observations in the survey data set were made.

should they write ‘vatn’ or ‘vann’, ‘tjern’ or ‘tjønn’?1

In this case, I excluded observations that were further than 30 meters from the
lake shore. This was done by using a list of all Norwegian lakes, and checking if
the observation was within 30 meters of some lake. If it was, the observation was
marked as coming from that lake, if not it was removed from the considered data
set. A fairly large proportion of the data was marked as further than 30 meters
from a lake, see table 2.1 for exact numbers. This was done since it was crucial for
further analysis to be able to connect the individual fish with the lake they came
from. Note that the removed observations may just be fish observed in rivers,
which seems plausible when looking at how the removed fractions differ between
species: the brown trout is the only species that is commonly found in rivers, and
it also has the highest removal percentage. After this, any observations missing
the observation time were also removed.

2.2 Explanatory variables

As potential covariates I had access to the area of each lake, in square kilometers;
the average air temperature by each lake of the warmest annual quarter, measured
in degrees Celsius multiplied by 10 (estimated in Metz et al. (2014)); the perimeter
of the lake in meters; the shoreline complexity index (SCI); and the size of the
catchment area (this is the area that drains into the lake in question) in square
kilometers. I also have the longitude and latitude location of each lake.

1‘Storvatnet’ means ‘the big lake’, ‘Langvatnet’ is ‘the long lake’. ‘Lom’ is a bird, the black-
throated loon (Gavia arctica), and ‘tjønn’ is a term for a small lake. ‘vatn’ and ‘vann’ both mean
lake, and ‘tjern’ and ‘tjønn’ are local variations on the same term.
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Figure 2.5: Histograms showing the distributions of the explanatory variables.

These variables all have reasonable interpretations in an ecological context when
explaining occurrences of different freshwater fish. I will be referring to this set of
variables as the environmental variables.

In addition to these, I have two variables that can be used as a measure of effort
needed to make the observations: the distance to the closest road for each lake;
and the human footprint index (HFP) at each lake. The latter is a score made
up of eight human impact variables (the variables are: built-up environments,
population density, electric power infrastructure, crop lands, pasture lands, roads,
railways, and navigable waterways) that approximate the level of human pressure
in this area (from Venter et al. (2016)). I will refer to the set of these two variables
as the effort variables.

Due to strongly skewed distributions, three of the environmental variables, the lake
area; catchment area; and lake perimeter, were log-transformed in all subsequent
analysis.
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Figure 2.6: Spatial plots of the explanatory variables that appear to display some
spatial structure.

10



Chapter 3

Background

The motivation of this thesis is the challenge of using citizen science data to model
species distributions. This has in itself been addressed previously by many different
studies. I will first give some ecological background, to point out what is unique for
this context. I will then cover some general statistical background, and introduce
some point process models that will be used in this project. Following that, I
will cover a few different topics that are instrumental in understanding my further
analysis.

3.1 The ecological context

Models for describing the distributions of species exist in an intersection between
statistics and ecology. The statistical framework for considering point observations
will be presented in subsequent sections, but first I will cover some considerations
that are specific for the ecological setting.

3.1.1 Types of observation data

When examining the distribution of species, we may encounter many different
types of data, and knowing how to best model the specific data on hand is im-
portant (Guillera-Arroita et al., 2015). A common type of observation type is
presence-only data, which, not surprisingly, consists of only the locations of pres-
ences of a given species. This is common in cases such as citizen science data
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collection, or records from museum samples. In surveys and more structured data
collections, we often have presence/absence data. As the name suggests, this gives
us double the information in the sense that we get information about where the
species is recorded as absent, as opposed to presence-only data, where an absence
of observations in an area may mean that the species is not there, or it may mean
that it was simply not observed there despite the fact that it was present. However,
note that detection may not be perfect for presence/absence data either. Another
common data type is abundance data (or count data), where counts of individuals
or some index based on the counts is reported.

We also distinguish between structured and unstructured data, where structured
data is derived from a well-defined sampling protocol, often repeated over time, and
unstructured data is often more opportunistic in nature (and more often tends to
be presence-only data). Commonly we assume that structured data is less spatially
biased than unstructured data (as this is often one of the aims of having structured
data in the first place), but this does not need to be the case (Isaac et al., 2020).

3.1.2 Species distribution models

The broad class of models that connect environmental covariates to species’ records
over geographic region are referred to as species distribution models. The aim is
either to get further understanding of a species or to predict the species’ distri-
bution across a landscape or into the future, for example as a result of changing
temperatures (Elith and Leathwick, 2009). The term encompasses multiple differ-
ent technical approaches, though the most common models today are maximum
entropy models (MaxEnt) (Phillips et al., 2006) and generalized linear models
(GLM). The covariates might include longitude and latitude, some measure of
temperature, some measure of human involvement in the area or altitude, just
to mention a few. Many also incorporate some term to capture spatial autocor-
relation between the observations, such as a spatial field (Elith and Leathwick,
2009).

3.1.3 Integrated distribution models

There are several different ways to combine different data sets in order for them
to inform one species distribution model (Fletcher Jr. et al., 2019; Pacifici et al.,
2017). For instance, if one has access to one data set with both presences and ab-
sences reported, and another data set with presence-only data, one could convert
the presence/absence data into presence-only and then combine the data sets in or-
der to inform one model. This approach is referred to as data pooling (Fletcher Jr.
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CHAPTER 3. BACKGROUND

et al., 2019), and it is an approach that combines the actual data sets before feeding
the data to the model. The disadvantage with this approach is that it essentially
degrades the presence/absence data, and we loose information that we had access
to in the original data set.

A different approach is to explicitly describe the differences in how data were col-
lected by using individual observation models for each data set. In this approach,
we are combining the models, rather than the data directly, which is why it is
sometimes referred to as model-based data integration (Isaac et al., 2020), though
the term integrated distribution modelling is more widely used. When we have ac-
cess to multiple data sets that are observed from the same underlying population,
we can combine these data sets in an integrated distribution model. The idea is
that the data all arise as separate realizations of the true distribution model, and
that by taking into account separate observation processes for each data set, we
will be able to capture more of the underlying distribution than when using only
one data set. Given M data sets with individual observation processes, the total
model likelihood can then be found by

L(Y1, . . . , YM | X,φ, θ1, . . . , θM) ∝ p(λ(s), X, φ)︸ ︷︷ ︸
model for unobserved state

M∏
i=1

Pr(Yi | λ(s), θi),︸ ︷︷ ︸
likelihood for dataset i

(3.1.1)
where Yi is observation data set number i, X is the environmental covariates, the
parameters φ for the underlying model, and the parameters θi for the likelihood
of data set i.

Integrated distribution models become particularly interesting in connection to
citizen science data, since we may have access to, for instance, a survey data set
and a citizen science data set. Here, the citizen science data is most often presence-
only, while the survey could be presence-absence, or maybe it even provides counts
of some type. A range map could also be included, such as in Merow et al. (2017),
where they integrate occurrence data and expert range maps. In these cases it
is a great advantage to be able to integrate several data sets to inform the same
model.

However, in practice it is not always guaranteed that an integrated model will
perform better than one based on a single data set (Isaac et al., 2020), and ben-
efits observed in some cases may not be universal. Especially interesting for this
thesis are the results of Simmonds et al. (2020), where they explore integrated
distribution models on structured and unstructured data in a simulation study.
They, among other things, find that the integrated distribution model does not
improve over the model using only structured data, if the bias in the unstructured
data is not accounted for in any way. This issue of accounting for the bias in some
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meaningful way is at the core of this thesis, and will be addressed in detail in later
sections.

3.2 Bayesian inference and hierarchical models

In the classical, frequentist approach to statistics, the parameter(s) θ is consid-
ered to be some unknown, but fixed, value. Based on a sample observed from a
population generated in some way from θ, we can obtain some knowledge about
θ. In the Bayesian approach however, θ is considered to itself have some prob-
ability distribution, which we denote the prior distribution. This is subjective,
usually provided by the statistician constructing the model, and reflects any prior
knowledge from before the data has been observed. The fact that the parame-
ters are given a distribution may represent either the fact that the parameters are
truly varying, or it could reflect the fact that our knowledge of the parameters is
imperfect. Either way, it provides an additional layer of flexibility.

After data has been observed, we update our prior distribution with information
from the data we have observed, to obtain a posterior distribution. Specifically,
we denote the prior distribution by p(θ), and the likelihood by p(data|θ). Then
the posterior distribution p(θ|data) is proportional to p(data|θ) × p(θ), that is,
the likelihood times the prior.

In hierarchical modeling, we allow for models with more levels to estimate the
parameters. If, as above, θ is our parameter determining the data generating
process, and φ is some hyperparameter governing θ, then we can define the three
levels or stages of the model as

1. the likelihood or data model, π(y|θ, φ),

2. the prior distribution (or process model) π(θ|φ),

3. the hyperprior distribution (or parameter model) π(φ),

see e.g. Cressie and Wikle (2011) or Gelman et al. (2003). These give the joint
distribution

π(y,θ, φ) = π(y|θ, φ)π(θ|φ)π(φ),

and finally the joint posterior distribution

π(θ, φ|y) =
π(y|θ, φ)π(θ|φ)π(φ)

π(y)
.
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This is the posterior distribution I will be interested in estimating in this thesis.

3.3 Spatial point processes

A spatial point process is a stochastic process that determines the locations of some
events {si} in a set S ⊆ Rd, often on the plane, so S ⊆ R2 (see e.g. Cressie and
Wikle (2011), section 4.3). There exist a great number of spatial point processes
and variations on these. I will be using a log Gaussian Cox point process, a version
of a Cox point process, which is a generalization of a Poisson point process.

3.3.1 Poisson point processes

Poisson point processes can be used to model occurrences of random events in time
by defining the process on the real line, or occurrences of some event in space by
looking at the process defined on a plane, or even higher dimensions where that is
appropriate.

An inhomogeneous Poisson point process is characterized by the conditions that
the number of points in disjoint sets are distributed independently of each other;
and that the intensity λ(s) varies spatially according to covariates indexed by loca-
tion s (Cressie, 2015). Then the number of points m in a region A is a realization
of a Poisson random variable M with mean

∫
A
λ(s)ds. From this, the likelihood

can be derived, and is

L(β; s) = exp(−
∫
A

λ(s)ds)
m∏
i=1

λ(si),

which then leads to the log-likelihood

l(β; s) =
m∑
i=1

lnλ(si)−
∫
A

λ(s)ds.

However, an assumption here is that data are conditionally independent given the
covariates. This is often not the case, and does not account for spatial dependence
(Renner et al., 2015). Therefore, I move on to consider a practical generalization:
the Cox process.
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3.3.2 Cox processes

A Cox process is a generalization of the class of Poisson processes, designed to
allow for more flexible models. They were originally known as doubly stochastic
Poisson processes, which stems from the fact that the intensity is itself a stochastic
process, in contrast to the standard Poisson process (Møller and Waagepetersen,
2003). Like Poisson processes, Cox processes can model events both in time or
events in space. Here, I am interested in the latter. Using the definition given by
Møller and Waagepetersen (2003), we can define a Cox process as follows.

Definition 1. Suppose that Z = {Z(ξ) : ξ ∈ S} is a nonnegative random field
so that with probability one, ξ → Z(ξ) is a locally integrable function. If the
conditional distribution of X given Z is a Poisson process on S with intensity
function Z, then X is said to be a Cox process driven by Z.

The statement that ξ → Z(ξ) is a locally integrable function just means that its
integral is finite, which is required so we can actually find the intensity measure,
where the intensity measure of the Poisson process X | Z is

M(B) =

∫
B

Z(ξ)dξ, B ⊆ S.

In other words, this measure will be the mean of the Poisson distribution that
describes the number of observations in the area B.

3.3.3 Log Gaussian Cox processes

For our purposes however, we consider the specific case when Y = log(X) is a
Gaussian field, Again, using the definition from Møller and Waagepetersen (2003),
we define this process.

Definition 2. Let X be a Cox process on Rd driven by Z = exp(Y ) where Y is a
Gaussian field. Then X is said to be a log Gaussian Cox process (LGCP).

Now, the distribution of (X, Y ) is completely determined by the mean and covari-
ance function

m(ξ) = E[Y (ξ)] and c(ξ, η) = Cov(Y (ξ), Y (η)).

We can understand this as the point process equivalent of a generalized linear
mixed model with a random intercept that is normally distributed (Renner et al.,
2015).
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The wide range of possibilities for these make log Gaussian Cox processes very
flexible. In general, the intensity λ(s) of a log Gaussian Cox process at a point s
is

log(λ(s)) = x(s)Tβ + ξ(s),

where x(s)Tβ is the standard linear regression predictor while ξ(s) is a spatial
Gaussian random field with mean zero and a covariance function that varies such
that observations that are closer together have higher correlation than observations
that are further apart.

3.4 Computational tools for fast inference

All model fitting in this thesis has been carried out by using integrated nested
Laplace approximations (INLAs) (Rue et al., 2009), and in this section I hope to
de-mystify this to anyone unfamiliar with the INLA methodology. I will not go
further into detail than what is necessary to understand my model implementation,
as the inner workings of INLA are not directly relevant to the questions addressed
in this thesis. I will also focus part of this section on stochastic partial differential
equations, which are essential to model spatial fields through INLA. For a more in-
depth introduction to the spatial methods used in this thesis, the book by Krainski
et al. (2019) is an excellent guide.

3.4.1 Integrated nested Laplace approximations

When fitting Bayesian models, the most common approach has been to use Markov
chain Monte Carlo (MCMC). However, as models have become more complex,
faster methods have been necessary. INLA is an alternative that is growing more
and more accessible and popular.

Latent Gaussian models

In order to be able to use INLA for a model, the model must belong to the class
of latent Gaussian models (LGMs). This is a very wide class of models that
encompasses generalized linear models, generalized additive models, time series
and spatial models, and several more (Rue et al., 2009). The latent Gaussian
model is a hierarchical model with three levels. First, there is the likelihood
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function
y|x,θ ∼

∏
i

π(yi|ηi(x),θ).

Next, there is the latent field

x|θ ∼ π(x|θ) = N (µ,Σ),

and finally, there are the hyperpriors,

θ ∼ π(θ).

Here, y is an observed data set, x is the latent field (where the latent field can be
understood as the joint distribution of the parameters in the linear predictor), θ
is the hyperparameter vector and ηi(x) is the ith linear predictor connecting the
data to the latent field.

The general form of the linear predictor is

ηi = β0 +

nβ∑
j=1

βjzji +

nf∑
k=1

fk(vki) + εi, (3.4.1)

where β0 is the intercept, the remaining β are the regression coefficients for the
fixed effects z, and the functions f are a set of functions on some covariates
v. These functions could be non-linear, for example they might give a spatially
correlated random effect.

Latent Gaussian models are a special case of Bayesian hierarchical models with a
structured additive predictor, where the elements of the predictors are assumed
to follow a Gaussian distribution (Rue et al., 2009). This can be achieved by
assigning Gaussian priors.

Now, in our case, using a log Gaussian Cox process, we have that the intensity
is exp(η), where η is the linear predictor, and just as in equation 3.4.1, it is a
sum of some fixed effects, a random spatial field (specifically a Gaussian Markov
random field with a Matérn covariance function, so this term is also Gaussian),
and an unstructured error term. So we see that the log Gaussian Cox process is an
example of a LGM, which is again a special case of a hierarchical Bayesian model,
and this all fits into the framework of INLA.
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Figure 3.1: The triangulated mesh used to calculate the SPDE representation of
the Gaussian field.

3.4.2 Stochastic partial differential equations

In order to fit the spatial model in practice with INLA, I use a stochastic partial
differential equation (SPDE) representation of the Gaussian fields in the models
I fit. This approach was originally proposed by Lindgren et al. (2011), where
they show how Gaussian fields with Matérn covariance, which result in dense
matrices and are therefore computationally expensive to calculate, can in some
cases be represented by a Gaussian Markov random field, which has a sparse
precision matrix and is therefore a lot quicker to carry out. This is done by using
a solution to stochastic partial differential equations, and is implemented in the
R-INLA package. I will not go into detail on the general theory of this, which can
be found in Lindgren et al. (2011), as well as Simpson et al. (2016) for log Gaussian
Cox processes in particular. For details on how to use the SPDE results in INLA,
Krainski et al. (2019) gives great insight into this.

When implementing the SPDE representation of the Gaussian field in practice,
we must first define a mesh over the spatial region we wish to model. This mesh
will consist of a triangulation of the region, which is what is used to define the
basis functions that approximate the spatial process. See figure 3.1 for the mesh
used in this thesis. The reason for using a triangulation as opposed to a regular
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grid, is that it allows for irregular boundaries and finer resolution where that is
needed (Lindgren et al., 2011). Usually a Delaunay triangulation is used, which
maximizes the smallest angle of each triangle.

Each basis function will be equal to one at a given vertex and zero outside the
triangles that meet at that vertex. The functions then decrease linearly from the
vertex. The result is that for any one triangle in the mesh, there are only three
functions in the basis that are non-zero, so that the estimate of the random spatial
effect at any point is just a linear combination of these three basis functions. Then,
using a projector matrix, the projection of the SPDE is mapped to the observed
points (Krainski et al., 2019; Gomez-Rubio, 2020).

3.4.3 Prior distributions in INLA: Penalized complexity
priors

When fitting any Bayesian model, and thus also any model we are to fit in INLA,
an important question is which priors to use. The idea of the priors is that they
will convey any information the modellers knows about the behavior of the hy-
perparameters a priori, based on previous experience on similar data or common
knowledge. Priors can be very subjective to the problem at hand, and so general
guidelines are hard to come by.

I will be using penalized complexity priors (PC priors) (Simpson et al., 2017),
which have been showed to be especially robust, and make user-defined scaling
easier. In the case when the prior is for a Gaussian random field (GRF), we can
follow the derivation from Fuglstad et al. (2018). They show that for dimension
d = 2 and smoothness parameter ν = 1, the Matérn covariance function giving
the covariance between sites si and sj is

C(si, sj) = σ2

(√
8

ρ
|si − sj|

)
K1

(√
8

ρ
|si − sj|

)
, ρ > 0, σ > 0. (3.4.2)

The joint PC prior for the range and the standard deviation of the field is

π(ρ, σ) = λσλρρ
−2 exp(−λσσ − λρρ−1), (3.4.3)

which is specified by the user through the two probabilities Pr(σ > σ0) = ασ and
Pr(ρ < ρ0) = αρ through the relationship

λσ = − log(ασ)

σ0
and λρ = − log(αρ)ρ0.
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From the joint distribution in 3.4.3 we can easily find the marginal distributions
for ρ and σ,

π(ρ) = λρρ
−2 exp(−λρρ−1)

∫ ∞
0

λσ exp(−λσσ)dσ

= λρρ
−2 exp(−λρρ−1),

and

π(σ) = λσ exp(−λσσ)

∫ ∞
0

λρρ
−2 exp(−λρρ−1)dρ

= λσ exp(−λσσ).

So we have that the range ρ has an inverse exponential distribution with parameter
λρ, and the standard deviation σ has an exponential distribution with parameter
λσ.
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Chapter 4

Method

In this section, I will derive and describe the models used in a theoretical sense,
stating the underlying point process model as well as the different observation
models for each of the two data sets, and then describe the step-by-step imple-
mentation, model fitting and selection in detail.

4.1 Models

As described in equation 3.1.1, the total model likelihood will consist of both an
underlying model for the unobserved state, as well as an observation process for
each of the two data sets used. I will first describe how the intensity λ(s) is
modelled in the underlying model, and then explain how the two data sets are
modelled individually.

4.1.1 Underlying process model

I model the underlying process as a log-Gaussian Cox process (Møller et al., 1998).
That means that the density of the points is described by the intensity λ(s) =
exp{η(s)}, with

η(s) = log(λ(s)) = α0 + x(s)Tβ + ξ(s) + ε(s),

23
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where x(s)Tβ are the fixed effects, ξ(s) is a Gaussian Markov random field that
ensures spatial autocovariance, and ε(s) is some random error. The random field
ξ(s) is determined by a Matérn covariance function (see equation 3.4.2) (Lindgren
et al., 2011), which in our specific case is determined by two parameters controlling
the standard deviation and the range. Then the total number of presences in a
given region A is Poisson distributed with mean given by integrating λ(s) over A,

µ(A) =

∫
A

λ(s)ds =

∫
A

exp(η(s))ds.

That means that the probability that A has at least one individual is

Pr(NA > 0) = 1− Pr(NA = 0) = 1− exp(−µ(A)).

The integral in equation 4.1.1 may be tough to solve, and is therefore done nu-
merically. In this case, we solve it using the approach of Simpson et al. (2016). As
described in section 3.4.2 on the SPDE method, the region A is discretized into
a tesselation of triangles, and each center point of a triangle is referred to as an
integration point. We then calculate the value of the intensity at each integration
point. The mean for the Poisson distribution at area A will then be approximated
by the sum

µ(A) ≈
∑
s∈PA

|Ts| exp{η(A(s))},

where PA is the set of integration points in A and |Ts| is the area of the triangle
around s. This means that we only need to calculate the intensity at the integration
points, and to estimate the intensity of any other point we just interpolate between
the three vertex points of that integration point’s triangle.

This gives the specifications for the actual abundance in any area. We will now
move on to look at models describing the observation processes of the two data
sets in question.

4.1.2 Observation processes

Depending on which type of data we are dealing with, we have different observation
processes. I work with two different types of data: presence/absence data and
presence only data.
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Figure 4.1: Schematic representation of observation models.

Count data: The more general case

In order model the presence/absence data we have in our survey data set, I first
take a look at how to model count data, that is, data where for each location we
have a number of observed individuals. We observe a region S, and the probability
of observing each individual in the site is p. Then the number of individuals
counted is

Pr(N(S) = r) =
µ(S)re−µ(S)

r!
,

where

µ(S) = pt

∫
S

λ(s)ds.

If S can be assumed to be small, then we can treat the intensity and covariates as
constant on the site, so

µ(S) ≈ p|S|λ(S).

This is reasonable in my application, as the surface is discretized into lakes where
the intensity and covariates are constant over the lake surface anyway.

We are unlikely to know p and |S|, but since both can be seen as the observation
effort we combine them to the parameter E(S) = p|S|. In practice, this is modeled
on the log-scale as

log(µ(S)) ≈ log(E(S)) + log(λ(S)) = log(E(S)) + η(S).
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Presence/absence data: Binomial regression with cloglog link

Now, if instead of count data we are only given the information of whether the
species is present or not, we have presence/absence data. From equation 4.1.2, if
we have only a presence or absence, this simplifies to

Pr(N(S) > 0) = 1− Pr(N(S) = 0) = 1− exp{µ(S)}.

When operating on the log scale for µ(S) and inverting this expression, we see how
this results in the complementary log-log (cloglog) link function:

log(µ(S)) = log(− log(1− Pr(N(S) > 0)))

If we have multiple visits to the site, we can set p = Pr(N(S) > 0) and extend
this from a Bernoulli to a binomial model. Then the likelihood that the species is
observed n times in N visits is

Pr(n = r | N, p(S)) ∝ p(S)n(1− p(S))N−n

So for modeling presence/absence data I will be using a binomial regression model
with a cloglog link function in order to link the probability of presence to the log
intensity.

Presence-only data: Poisson regression with log link

The other data type I will be dealing with is presence-only data, which is typical
for citizen science data. For the presence-only data a thinned point process model
is used. Had all the individuals been observed, this would have simply been the
process model, but this is probably not the case in the citizen science observations
of lake fish. If we assume that each individual is observed with probability q(s),
then the intensity of observation is φ(s) = q(s)λ(s). Then if we observe M points,
at locations s1, . . . , sM , the log-likelihood is

l(β | s1, . . . , sM) =
M∑
i=1

φ(s)−
∫
A

φ(a)da

(see Renner et al. (2015) for the details of this). This turns out to have the form of
a Poisson likelihood, and so we may use a standard GLM formulation of a Poisson
regression with a log link for the model (Renner et al., 2015). The log intensity is
now

log(φ(s)) = log(λ(s)q(s)) = η(s) + log(q(s)),
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and so any other additive terms may be included here, for example terms explaining
observation bias.

So to sum up the process and observation models: we assume the data all come
from the same underlying process, but that the data sets have different observa-
tion processes. For estimating the intensity, we may construct a linear predictor
consisting of any environmental covariates we choose, as well as a spatial field to
account for any spatial autocorrelation in the data. The specifications of the linear
predictors will be detailed in section 4.2.

4.1.3 An effort field for describing the spatial bias of citi-
zen science data

As mentioned, the linear predictors of the observation models will include a spatial
field. This will be shared between the models, that is, it will be estimated from
both of the data sets. In addition, in some of the models I will include a second
spatial field, estimated by only using the citizen science data. This field will explain
variation in the data not explained by the shared spatial field or the environmental
covariates, and the intention is for it to capture the observation bias of the citizen
science data. I will be referring to this spatial field as the effort field.

This approach is inspired by that of Illian (2019) (although that second field had a
slightly different purpose), and more directly from Simmonds et al. (2020), where
the authors use the second spatial field to capture the spatial bias of simulated
“citizen science” data, which is exactly my aim as well. The advantage with this
is that when dealing with citizen science data, we may not always know exactly
what the source of bias is. This method does not depend on that, as opposed to
other methods of accounting for spatial bias, such as including covariates that one
might hope capture the bias of the citizen science data.

Fithian et al. (2015) has done something similar, although they looked at capturing
the bias using predictors instead of spatial fields. They model the distribution of
36 eucalyptus species in a region of Australia, using biased presence-only data and
systematic presence/absence data to build a multispecies model. They model sam-
pling bias as a function of observation predictors, and assume this to be common
across species, so that it can be shared across species.

By comparing the effort fields across different fish species, we may be able to
identify such a bias field, that can then be used on other species.
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4.2 Implementation in R

All analysis for this thesis was done in R (R Core Team, 2019). For the models
themselves, these were implemented using the integrated nested Laplace approx-
imation (INLA) methodology (Rue et al., 2009), specifically the R-INLA package,
with the stochastic partial differential equation (SPDE) approach (Lindgren et al.,
2011). I also used the package PointedSDMs (O’Hara, 2017), which is designed
to make the INLA methodology more accessible when making species distribution
models.

4.2.1 Model options

For all models, I included a base set of environmental covariates consisting of
latitude, longitude, log lake area, log catchment area, shoreline complexity index
and mean summer temperature. The log perimeter was excluded as it was strongly
correlated (r = 0.96) with log area.

I was interested in comparing the four models that result from varying the spatial
fields used and the covariate sets used. In addition, it is interesting to include
a model fit only to the survey data, as I would be interested in examining if the
models including citizen science data in some way can outperform this. Specifically,
the five following models are of interest (see table 4.1 as well):

0. One spatial field fit only on survey data, and using only environmental co-
variates.

1. One spatial field fit on both survey data and citizen science data, and using
only environmental covariates.

2. One spatial field fit on both survey data and citizen science data, one spa-
tial field fit on citizen science data only, and and using only environmental
covariates.

3. One spatial field fit on both survey data and citizen science data, and using
both environmental and effort covariates.

4. One spatial field fit on both survey data and citizen science data, one spatial
field fit on citizen science data only, and and using both environmental and
effort covariates.

Apart from the varied components, all other settings were kept the same through-
out all models. Notably, I used penalized complexity (PC) priors (Simpson et al.,
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Table 4.1: The different models that were fit. The environmental covariates are
x(s), while the effort covariates are z(s). ξ̂1(s) is the spatial field informed by both
data sets, while ξ̂2(s) is the effort field estimated only from the citizen science data.

# Data sets
Second sp.

field?
Effort
covs.?

Linear predictor

0 Survey only No No α̂PA + x(s)T β̂x + ξ̂1(s)

1 Both No No α̂PA + x(s)T β̂x + ξ̂1(s)

α̂PO + x(s)T β̂x + ξ̂1(s)

2 Both Yes No α̂PA + x(s)T β̂x + ξ̂1(s)

α̂PO + x(s)T β̂x + ξ̂1(s) + ξ̂2(s)

3 Both No Yes α̂PA + x(s)T β̂x + ξ̂1(s)

α̂PO + x(s)T β̂x + z(s)T β̂z + ξ̂1(s)

4 Both Yes Yes α̂PA + x(s)T β̂x + ξ̂1(s)

α̂PO + x(s)T β̂x + z(s)T β̂z + ξ̂1(s) + ξ̂2(s)

2017), through the function inla.spde.pcmatern (Fuglstad et al., 2018), for the
parameters of the spatial fields. This function requires the user to specify two
parameters, prior.range and prior.sd, which control the joint prior on range
and standard deviation of the spatial field, as described in equation 3.4.3. I specify
the the range ρ and the standard deviation σ through

Pr(ρ < 10) = 0.1, Pr(σ > 0.1) = 0.1.

I use the same prior specifications for both spatial fields.

For the fixed effects of the model, I use the INLA default priors, which for the
intercepts means a normal distribution with mean 0 and precision 0, and for the
remaining coefficients a normal distribution with mean 0 and precision 0.001.

4.2.2 Model validation

In order to compare these models, I used block cross-validation. This simply
means dividing the data into blocks spatially, and then iteratively using all but
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Figure 4.2: The spatial folds used for cross validation.

one of these blocks for fitting the model, and the last one for testing the model.
This means that each block has been used for model fitting and testing separately.
Block cross validation differs from regular cross validation in that the observa-
tions are not assigned to folds completely at random, they are assigned in spatial
chunks, as shown in figure 4.2, and each chunk of observations is then assigned
to a fold. The reason for choosing block CV, as opposed to a completely random
fold assignment, is that our data has an underlying spatial structure, and a com-
pletely random cross validation procedure will quite probably give underestimated
predictive error (Roberts et al., 2017). To implement the block cross validation, I
used the package blockCV (Valavi et al., 2019). I used five folds (k = 5) with a
random fold assignment, see figure 4.2 for the fold assignment used.

When the folds are established based on the survey data, the models are fit based
on all the data in the training folds, both survey and citizen science (except in
model 0). Only the survey data is used as validation data, the corresponding
citizen science data in the same spatial block is not used for validation or training,
since we do not wish to reconstruct the sampling bias of the citizen science data.
Although there may be biases present in the survey data as well, it is probably the
most reliable source of data.

For validating the models, I calculated the linear predictor for the validation sites
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and then fitted an intercept-only model with these as an offset. Then I use the
marginal deviance (marginalized over the prediction and the parameter uncer-
tainty) from this as the validation statistic. Note that with the cross validation
procedure all the models are compared on exactly the same data (since we use only
survey data for validation), and thus the marginal deviances should be comparable.

When the model with the lowest marginal deviance has been established, I fit
this model on the entire data sets to examine the final prediction as well as the
posterior coefficients, spatial fields and hyperparameters of this model.

Running the model with two spatial fields takes no more than 10 minutes, and the
whole cross-validation procedure with five models takes approximately two hours.

Up until this point, I have only been looking at observations of brown trout. As
a final step, I fit the selected model on three additional fish species: Arctic char,
European perch and Northern pike. It should be noted that this may not be the
optimal procedure: the model is selected based on the trout observations, and
then this selected model is used on all fish species. A more accurate procedure
might have been to do the cross-validation procedure for each species separately,
but since the three additional fish species had so few observations, the choice was
made to use the model selected by the trout data. More importantly, I want to be
able to compare the same model across species to study how that affects the first
and second spatial field.
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Results

5.1 Choosing between models with different pre-

dictors

The first requirement for the models is that the integrated models need to be able
to outperform the model based only on the survey data. The averaged marginal
deviance of the single data set model on the validation data is 65.27, and all the
other models have deviances below 14.00, so I move on to compare the integrated
models to each other. The marginal deviances for each model on each cross-
validation fold can be seen in table 5.1, and the averaged marginal deviances,
which are used to select the final model, are compared in table 5.2.

Table 5.1: The marginal deviance resulting from predicting onto the validation
fold in the cross validation procedure.

Validation fold Averaged
1 2 3 4 5

Model 0 58.30 76.18 57.46 58.78 75.63 65.27
Model 1 16.32 15.67 13.37 10.62 10.17 13.23
Model 2 16.28 15.63 13.00 10.24 9.60 12.95
Model 3 16.34 15.67 13.38 10.62 10.19 13.24
Model 4 16.29 15.64 13.01 10.24 9.62 12.96

We see that the models with an effort field do slightly better than the models
without, but the difference is not large. Including effort covariates or not does
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Table 5.2: Averaged marginal deviance values for each model, averaged across
results of five-fold block cross validation.

Spatial fields

One Two

Covariates Environmental 13.23 12.95

Env. and effort 13.24 12.96

not seem to improve or worsen the model in any significant way. But either way,
including the effort covariates does not seem to be helping the predictive power of
the model, and so as my final model I will be using model 2, that is, a model with
an effort field but no effort covariates.

5.2 Examining the selected model

I will now examine model 2 (see table 4.1), that is, the model with an effort field
and no effort covariates. Again, the linear predictors are specified by

η1(s) = α̂PA + x(s)T β̂x + ξ̂1(s)

η2(s) = α̂PO + x(s)T β̂x + ξ̂1(s) + ξ̂2(s)

Note that the model has now been fit on the entire data sets, not sub-folds as in the
cross-validation previously. That means that measures of error are probably over-
optimistic and should not be relied upon without caution (Elith and Leathwick,
2009). The aim now is to study the behavior of the model and the predictions as
they are in the case with the most available data.

First, looking at the environmental coefficients of the model, displayed in figure
5.1, they are all found to be insignificant. However, when looking at the predicted
posterior log intensity of the model, plotted spatially on the map of Norway, as
seen in figure 5.2, we see that there definitely seems to be a clear tendency of
variation across the longitude and latitude, in that the log intensity is higher to
the south-west and lower in the north-east of the map (although the effect is not
very strong). In other words, there does seem to be that kind of environmental
variation, at least in the distribution of the brown trout, but it has not been
picked up in the latitude/longitude covariates. I suspect this variation has been
completely captured in the spatial fields.

The two spatial fields of the model, ξ1(s) and ξ2(s), have been projected to the
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Figure 5.1: Estimated coefficients and 95% credible intervals for the environmental
covariates of the final model, on observations of brown trout.
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Figure 5.2: Predicted posterior log intensity log(λ(s)) for the selected model, as
well as standard deviation, for brown trout data.
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Figure 5.3: The random spatial fields of the final model. The first random field
reflects the variation that was not explained by the covariates and that is shared
between the two data sets, and the second spatial field shows the variation that is
specific to the citizen science data set.

entire surface of Norway, in order to allow for better interpretation, since originally
the values for the spatial field are only estimated at the integration points (the
centroids between the vertices of the triangles in the mesh) of the model. The
maps can be seen in figure 5.3. We may note that the standard deviation of the
first spatial field is fairly high, compared to the estimated mean of the field. This
is not the case for the second spatial field, to the same degree.

I was interested in seeing if there are any tendencies in the locations of the obser-
vation points in the citizen science data that are recognizable in the effort field,
but this does not seem to be the case; in the citizen science data there are hotspots
near the southern tip of Norway, as well as in Trondheim (in the center of Norway)
and at the very north of the country (see figure 2.1), and this does not correspond
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to any visible tendency in the effort field (see figure 5.3). This is not very unex-
pected though, since the effort field may only be picking up on residual variation
left after the first spatial field has captured the variation that is shared between
the two spatial fields, and thus not dependant on the citizen science observations
alone.

5.3 Beyond trout: Comparing the selected model

on four fish species

The estimated coefficients are not found to be significant for any of the other
species either, see appendix C for the coefficients of these.

For each of the four fish species, the posterior mean and standard deviation is
displayed in figure 5.4. There are clearly differing spatial trends for each of the
species, I will discuss further how these correspond to the actual distributions of
the fish in the discussion.

In addition to the posterior mean and standard deviation, the mean of the two
spatial fields for each fish species has been plotted in figure 5.5. Here, it is inter-
esting to see that although the first spatial field varies widely between species, the
second spatial field seems to show the same tendency across species. I will discuss
this further in the next chapter as well.

I also examine the posterior marginal distributions of the hyperparameters of both
spatial fields for all fish species, see figure 5.6. As mentioned when specifying priors,
each spatial field has two hyperparameters; the range ρ and the standard deviation
σ. The posterior estimates for these are given in figure 5.6.

37



5.3. BEYOND TROUT: COMPARING THE SELECTED MODEL ON FOUR
FISH SPECIES

60

64

68

60

64

68

60

64

68

60

64

68

10 20 30

−0.10

−0.05

0.00

0.05

0.10

Mean

A
rctic char

E
uropean perch

N
orthern pike

B
row

n trout

10 20 30

0.02

0.04

0.06

0.08

Standard deviation
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Discussion

By comparing four different integrated models to the model using only survey data,
we can establish that the integrated models outperform the survey-only model.
Including a second spatial field (effort field) informed only by the citizen science
data, in addition to a first spatial field fit to both data sets, did slightly improve
predictions on new data, which was established through cross-validation. But
it should be emphasized that the improvement, as measured using the averaged
marginal deviance when predicted onto new data through cross validation, is not
large.

Another finding from comparing the four candidate models was that the two co-
variates meant to measure citizen scientists’ access to locations - distance to road
and human footprint - did not seem to improve the model in any way. This agrees
with the findings of Simmonds et al. (2020), and it does make sense that including
both an effort field and effort covariates is redundant, since these may be explaining
a lot of the same variation.

Another point is that our effort variables may just be poor choices for describing
the spatial bias of the citizen science observations, maybe other variables than the
human footprint index and distance to road would be better at describing this?
Assuming that we can include these variables as a way to describe effort for the
observation process of the citizen science data may also be problematic, since these
variables might just as well be influencing the actual distribution of the species.
For instance, areas with a higher human footprint are likely to be more polluted.

It is worth considering if a different model would have been better. For instance,
given that none of the covariates were found to be significant, and the spatial
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fields seem to be able to capture the spatial variation fully, a model without any
covariates could be considered. The priors for the spatial fields should also be
studied further, for instance, maybe a smaller range value should be used in order
to capture more local processes.

Looking at the spatial fields for all four fish species in figure 5.5, there is clearly a
greater difference across species in the first spatial field than in the effort field. This
is definitely an interesting result, as it shows that the effort field is seemingly pick-
ing up on something underlying beyond the distribution of the individual species
itself. Once the effort field is estimated based on some more common species, a
possible next step might then be to transfer this field to models of less observed
species as well.

At the same time, one must be careful in applying spatial fields as a mean of
capturing the bias in citizen science data, as the bias might not only be spatial.
As an example, Courter et al. (2012) looked at how observations of first arrivals of
migratory birds tend to be reported on weekends rather than weekdays. Other un-
known non-spatial biases may also be affecting the data and should be considered,
especially if one wishes to extend this to a spatio-temporal model.

In all examined models, the specifications for the penalized complexity priors were
kept the same, and they were also the same for both spatial fields, but there is
no reason why this needs to be the case. The reasoning was simply that there
was not good enough prior information to set the priors to any specific differing
values, so they were instead rather arbitrarily set to the same values. Finding
good values for the prior specification was not a major focus of this project, and
the chosen priors gave reasonable results. They were not found to influence the
model dramatically, so this approach seemed reasonable. But setting the prior
specifications to separate values for the two spatial fields, if there was found to be
some motivation for that, might be of interest.

One of the main benefits of including citizen science data is that this often gives us
access to a lot of observations, compared to structured data sets that require more
work to gather. However, fish are not the most popular animals to make citizen
science observations of, and in this case I actually had more survey observation
sites than I had citizen science, for any one of the most prevalent freshwater fish
species. This means that the structured data likely played a central role in the
final models.

Situations where one has access to more citizen science data may give more accu-
rate models, since more data gives more information, but it may also strengthen
the effect of the sampling bias of this data on the model. At the same time, sim-
ply having access to larger amounts of data may help to cancel out some of the
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CHAPTER 6. DISCUSSION

bias. If the citizen science data set becomes very large, additional measures may
be necessary to ensure that the likelihood is not swamped by the citizen science
data (Simmonds et al., 2020), such as a weighted likelihood approach (Fletcher Jr.
et al., 2019).

The advantage of using freshwater fish in lakes is that it gives a nice variety of
comparable species and good grounds for comparison across fish species. In order
to have access to more citizen science data, one could easily look at the same data
for Sweden or Finland. The survey data set covers Sweden and Finland as well as
Norway, and from looking briefly at citizen science observations in Sweden, they
seem to be significantly more plentiful than in Norway. Regardless, the methods
of this thesis should be easily transferable to other species, even beyond freshwater
fish, which should be done to examine further the behavior and challenges of the
model with an effort field.

The posterior predictions of the distributions of the species seem pretty much in
accordance with common knowledge about these species. The the Arctic char is
predicted to be more common in the north of Norway than the south, which is
opposite of the European perch and brown trout, and this is indeed the case. We
also know that the pike is commonly found in northern Norway as well as in the
east of Norway, and that the perch is also mostly found in eastern Norway (Pethon
and Vøllestad, 2019). Looking more into the details of the predictions, maybe also
on a smaller spatial scale so we can look at individual lakes to a larger degree,
would be interesting as a second type of validation for the model.
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Chapter 7

Conclusion

I propose an integrated species distribution model with two spatial fields in order
to capture two different underlying spatial trends: the distribution of the species
itself, and the spatial bias of the citizen science data. The effort field captures
whatever variance is unique for the citizen science data after the first spatial field
has captured the variance that is shared in both data sets. Interestingly, the effort
field is similar across very different fish species, showing that the effort field does
indeed capture something beyond the distribution of the species itself.

The proposed model is intuitive in its components, it shows predicted distributions
for each species that seem reasonable, and picks up on a significant trend in the
effort field. The model is relatively fast to run, taking around 10 minutes.

An interesting extension to this would be to estimate the effort field from one or
more species that are rich in observations, and then use this to account for spatial
bias in citizen science observations of less common fish species. In addition to this,
it would be interesting to extend the model to a spatio-temporal model, especially
as the amount of citizen science observations seems to be consistently increasing
for every year.

A point that needs to be addressed further is the priors for both spatial fields. It
does seem reasonable to assign different prior hyperparameter values for each of
the spatial fields, but it takes time to do this in a systematic manner, and further
insight is needed in order to decide how these should differ.
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Bibliographic notes

A lot of the topics of this thesis were completely new to me at the time I started
working with it. I have relied on a large number of sources throughout the period,
and although these have all been cited throughout my thesis, I would like to give
an extra mention here of my main sources for each topic, both for my future self
as well as for others looking for helpful resources in similar projects.

First of all, my approach with the second spatial field was fully inspired from
Simmonds et al. (2020). I really think the concept of applying a separate spatial
field to the citizen science data is a promising idea that deserves further exploration
beyond what I have done in my thesis, and this is a great read for anyone looking
to try it.

My challenge with learning about species distribution models is that it is such a
huge and general topic, that it is hard to know where to begin. Elith and Leathwick
(2009) approaches the topic with language that is not confusing, and doesn’t take
the basics for granted, but covers them efficiently and then moves on to the more
interesting topics surrounding SDMs. This article helped me feel more confident
about the ecological aspects of my thesis.

There are already a few review articles on integrated species distribution models,
but I have especially appreciated Isaac et al. (2020). They provide useful expla-
nations of terminology, which is particularly helpful for a non-ecologist like me,
and they also give a very nice explanation of why one might want to use inte-
grated models, as well as intuitive explanations of the modeling framework, and
considerations to make when applying integrated models.

For the model validation through block cross validation, Roberts et al. (2017) gives
a thorough explanation of the reasoning behind it, not only in the spatial case but
also for other cases where one might expect some dependence structure in the
data, such as temporal or grouped data. The article is well reasoned and a very
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informative read, and at the end gives a very specific step-by-step procedure to
model validation.

A large part of my learning curve throughout this project consists of learning how
to use INLA for spatial models. I used multiple sources for this, but the one that
resulted in the most aha-moments and was the most directly applicable to my
thesis was Krainski et al. (2019) (in particular chapter 4 on point processes). This
became my go-to source for spatial models in INLA. The book is direct and to the
point, and very user-oriented, with specific examples of code, but it also provides
the theoretical framework necessary to get a complete understanding.
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Appendix A

Data accessibility

All observation data used in this thesis are publicly available. The exact citi-
zen science observations used in this thesis can be found at https://www.gbif.

org/occurrence/download/0006251-200127171203522 and more recent citizen
science observations for Norway can be found through the Norwegian Species Ob-
servation Service (Artsobservasjoner) through GBIF at https://www.gbif.org/

dataset/b124e1e0-4755-430f-9eab-894f25a9b59c. The survey data is found
at https://gbif.vm.ntnu.no/ipt/resource?r=fish_status_survey_of_nordic_
lakes.

All R-scripts used for analysis are also publicly available. The static version at
the point of completing this thesis is available at https://doi.org/10.5281/

zenodo.3941072, and the latest version (which may change after completion of this
thesis) can be found at https://github.com/emmaSkarstein/Citizen_Science_
Skarstein_master.
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Appendix B

Further data exploration

Figure B.1: Pairs plot to examine relationships between variables.
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Appendix C

Additional results from
comparing different species
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Figure C.1: Estimated coefficients and 95% credible intervals for the environmental
covariates of the final model, on observations of European perch.
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Figure C.2: Estimated coefficients and 95% credible intervals for the environmental
covariates of the final model, on observations of Arctic char.
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Figure C.3: Estimated coefficients and 95% credible intervals for the environmental
covariates of the final model, on observations of northern pike.
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