
Even M
oa M

yklebust
A robustness evaluation of the latent m

anifold tuning m
odel

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Even Moa Myklebust

A robustness evaluation of the latent
manifold tuning model

Master’s thesis in Industrial Mathematics

Supervisor: Benjamin Adric Dunn

July 2020

Even Moa Myklebust

A robustness evaluation of the latent
manifold tuning model

Master’s thesis in Industrial Mathematics
Supervisor: Benjamin Adric Dunn
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

Recent advances in neural recording techniques give access to simultaneous recordings of increas-
ingly many neurons. Dimensionality reduction techniques can be used to investigate how neurons
work together as a system by extracting low-dimensional latent variables from high-dimensional neu-
ral data. A doubly nonlinear model for latent variable inference called the latent manifold tuning
model was introduced by Anqi Wu and colleagues in 2017. We explicitly state some assumptions
that were not mentioned in the original article and investigate how the model’s initialization affects its
convergence. We evaluate the robustness of the model with regards to different tuning strengths and
data lengths and discover an optimal tuning strength that depends on the data length. Finally, we ap-
ply the model to neural data by Adrien Peyrache and colleagues, where we use a periodic covariance
kernel to infer the head direction of a mouse.

Sammendrag

Nye teknikker for nevrale opptak setter forskere i stand til å gjøre simultanopptak av aktiviteten til
stadig flere nevroner. Teknikker for dimensjonsreduksjon kan brukes til å undersøke hvordan nevroner
jobber sammen som et system ved å ekstrahere lavdimensjonale latente variabler fra høydimensjonal
nevral data. En dobbelt ikke-lineær modell for inferens av latent variabler, kalt “the latent manifold
tuning model”, ble introdusert av Anqi Wu og medforfattere i 2017. Vi beskriver eksplisitt noen
antakelser som ikke ble beskrevet i den opprinnelige artikkelen, og undersøker hvordan modellens
initialisering påvirker dens konvergens. Vi evaluerer modellens robusthet i forhold til ulike respon-
sstyrker (hvor mye aktiviteten til et nevron påvirkes av en variabel) og ulike datalengder, og finner en
optimal responsstyrke som avhenger av datalengden. Avslutningsvis anvender vi modellen på nevral
data innsamlet av Adrien Peyrache og medforfattere, hvor vi bruker en periodisk kovarians-kjerne til
å estimere hoderetningen til en mus.

I

II

Preface

This thesis concludes the course TMA4900 - Master’s thesis in industrial mathematics at the Norwe-
gian University of Science and Technology (NTNU), and marks my completion of the study program
Physics and Mathematics with specialization in statistics.

I would like to thank my supervisor Benjamin Adric Dunn for introducing me to the exciting
worlds of neuroscience and dimensionality reduction, for his unwavering support and for the warm
and friendly environment he has created in his research group. To all the members of the group, thank
you for lively discussions and inspiring talks, and a special thanks to Ben and Claudia for providing
me with valuable feedback in the last stages of the project.

Thanks also to my friends and family for helping me take my mind off work and come back in-
vigorated. The year 2020 will be remembered by many for the coronavirus lockdown, making every
social interaction all the more valuable, either online, offline, or on some latent manifold. Finally,
thanks to all the fantastic teachers I have had through the years, without whom I would still be grap-
pling with the basics.

Even Moa Myklebust
Trondheim, Norway
July 2020

III

IV

Table of Contents

Abstract I

Sammendrag I

Preface III

Table of Contents V

1 Introduction 1
1.1 Dimensionality reduction . 1
1.2 Neural tuning . 2
1.3 Probabilistic methods for dimensionality reduction 3
1.4 Our contribution . 4

2 Neural activity and mouse head direction data 5
2.1 Observed head direction and neural activity . 5

2.1.1 Neuron tuning . 7
2.2 Applying principal component analysis . 8

3 Theoretical background 11
3.1 Parameter estimation . 11

3.1.1 Maximum likelihood estimate . 12
3.1.2 Maximum a posteriori estimate . 12
3.1.3 Heuristics for global optimization . 13

3.2 Gaussian processes . 13
3.2.1 Conditional distribution . 15
3.2.2 Noisy observations . 16

3.3 Approximate Gaussian processes . 17
3.4 Principal component analysis . 18
3.5 Generalized Linear Models . 19

4 The latent manifold tuning model 21
4.1 The latent manifold tuning model . 21

4.1.1 Modeling the latent variable . 21
4.1.2 Modeling the spike counts and tuning curves 22

4.2 Inference . 24

V

TABLE OF CONTENTS

4.2.1 MAP estimate of tuning curves . 24
4.2.2 MAP estimate of the latent variable . 25
4.2.3 Gradient . 28
4.2.4 The iterative MAP procedure . 31

5 Applying the LMT model to simulated and experimental data 33
5.1 Convergence and pitfalls . 33

5.1.1 Flipping . 35
5.1.2 Scaling . 36
5.1.3 Partly flipped estimates . 37
5.1.4 Placement of the inducing grid . 38

5.2 Initialization . 38
5.2.1 Initial estimate for F . 38
5.2.2 Initial estimate for X . 40

5.3 Robustness evaluation . 42
5.3.1 Choosing between final estimates . 43

5.4 Application to head direction data . 45
5.4.1 Initialization 1: True X and optimal F . 47
5.4.2 Initialization 2: True X and estimated F . 48
5.4.3 Initialization 3: PCA initialization of X and optimal F 49
5.4.4 Initialization 4: PCA initialization of X and estimated F 50
5.4.5 Initialization 5: Flat initialization of X and estimated F 51
5.4.6 Comparison of different initializations . 52

6 Discussion and further work 53
6.1 Simulated data . 53
6.2 Robustness evaluation . 53
6.3 Head direction data . 54
6.4 Future work . 54
6.5 Conclusion . 55

Bibliography 57

Appendices 61

A Theorems and derivations 61
A.1 Matrix calculus . 61

A.1.1 Maximizing the fraction of two quadratic forms 61
A.1.2 Matrix inversion lemma . 61
A.1.3 Theorem 1.3.22 from Horn and Johnson (1985) 61
A.1.4 Matrix differentiation . 62

A.2 Bernoulli spike model . 62

B Python code 63
B.1 Function library . 63
B.2 Application to head direction dataset . 74
B.3 Robustness evaluation . 88

VI

Chapter 1
Introduction

In this chapter, we introduce the concepts of dimensionality reduction and neural tuning and contex-
tualize the latent manifold tuning model by relating it to other dimensionality reduction techniques.

1.1 Dimensionality reduction
Recent advances in neural recording techniques enable simultaneous recording of increasingly many
neurons (Nicolelis et al. (2003), Ahrens et al. (2013) and Steinmetz et al. (2018) are some examples).
The number of simultaneously recorded neurons is growing exponentially, and comparisons have
been made to Moore’s law (Stevenson and Kording, 2011). These growing datasets present new
opportunities to researchers, along with new challenges.

A lot of research has focused on understanding individual neurons’ behavior in terms of their re-
sponse to a set of external, measurable covariates (e.g., Mimica (2019)), but simultaneous recordings
of many neurons open the field for more exploratory approaches. A time series of the activity of N
neurons can be viewed as an N -dimensional variable developing through time. In many cases, the
population activity of these N neurons can be represented by a lower-dimensional, latent, variable.
Dimensionality reduction techniques (see Cunningham and Byron (2014) for an overview) can be
used to understand the behavior of neurons on the population level by extracting a latent variable
from the high-dimensional data.

Variables with dimensionality lower than four have the advantage of being easy to visualize, and
a lot easier to interpret than high-dimensional variables. In addition, extracting latent variables from
a population can provide new insight into what role the population plays in the brain. Some examples
of low dimensional variables could be allocentric features of a task, such as the speed, direction, or
position of the animal whose brain is recorded. Low-dimensional representations can also relate to the
low dimensionality of the task the animal is performing (see Gao and Ganguli (2015)). The usefulness
of dimensionality reduction techniques extends beyond neuroscience to any domain concerned with
high-dimensional data, like environmental sciences or social networks modeling. The domain of this
lower-dimensional variable is often referred to as the latent manifold.

1

Chapter 1. Introduction

1.2 Neural tuning

Determining how each neuron is related to the latent variable is essential in any dimensionality re-
duction technique. Every neuron has an electric potential that can be brought to a sharp increase in
potential known as a spike for a short amount of time, after which it returns to its resting potential. A
visualization of a spike is shown in Figure 1.1.

Action
potential

V
o
lt

a
g
e
 (

m
V

)

D
e
p
o
la

ri
za

ti
o
n R

e
p
o
la

riza
tio

n

Threshold

Stimulus

Failed
initiations

Resting state

Refractory
period

+40

0

-55

-70

0 1 2 3 4 5

Time (ms)

Figure 1.1: The red line shows the change in a neuron’s action potential associated with a spike.
Source: https://commons.wikimedia.org/w/index.php?curid=2241513. License: CC BY-SA 3.0.

Neurons are linked to other neurons, and when a neuron spikes, it passes on an electric pulse to
its connected neurons. Depending on the type of connection, a received pulse may either increase or
decrease the potential of the receiving neuron, increasing or decreasing the probability of the receiving
neuron producing a spike of its own. In this way, signals caused by some internal or external stimuli
will be either propagated or inhibited based on the relaying neurons.

A neuron is said to be tuned to a variable if the state of the variable alters its tendency to spike. The
probability of observing a neuron in an active state can then be linked to the state of the variable by
the use of probabilistic models (e.g., Truccolo et al. (2005), Paninski (2004)). A function describing
the expected activity of a neuron as a function of the variable is known as a tuning curve.

Figure 1.2 shows a tuning curve from the dataset by Peyrache et al. (2015) that will be introduced
in Chapter 2. The neuron activity is measured as the number of spikes for a given time bin, and in the
figure, the activity is shown as a function of the animal’s head direction. The neuron seems to be a
clearly tuned to the head direction for a given angular interval.

2

1.3 Probabilistic methods for dimensionality reduction

Figure 1.2: Observed average number of spikes per time bin with size 25.6 ms for one neuron plotted against
the animal’s head direction, given as an angle in radians. The neuron is active mainly for head directions
between 1 and 3, thus tuned to this interval.

1.3 Probabilistic methods for dimensionality reduction
One well-known dimensionality reduction technique is principal component analysis (PCA), which
finds a linear mapping from the observed data onto a lower-dimensional space chosen to maximize
the variance in the projected data. Examples of more flexible methods are ISOMAP (Tenenbaum
et al., 2000) and locally linear embedding (LLE) (Roweis and Saul, 2000). PCA is well-known due
to its simplicity but is limited to linear mappings between the latent manifold and the data. Neil
D. Lawrence proposed a nonlinear generalization of PCA (Lawrence, 2004), called the Gaussian
process latent variable model (GPLVM), where the mappings from the latent space to the observed-
data space were allowed to be nonlinear by modeling them as Gaussian processes. Gaussian processes
(see Rasmussen and Williams (2006) for an introduction) are powerful tools for both regression and
classification problems and are highly nonlinear since they work by placing a probability distribution
over every continuous function.

If the latent variable is assumed to move somewhat smoothly in time, it too can be modeled as
a Gaussian process (see, e.g., Byron et al. (2009)). Furthermore, the spike count in a given time
interval can be modeled as a Poisson process (e.g., Macke et al. (2015)). Anqi Wu (Wu et al., 2017)
combined these three elements (GP tuning curves, GP latent variable, Poisson observation model)
into the Poisson Gaussian process latent variable model (P-GPLVM), later renamed to the latent
manifold tuning model (LMT). An example of its use is Wu et al. (2018), where a latent “odor space”
was introduced, and positions in this space, as well as mappings from neural responses, were inferred
using the LMT model.

The GPLVM can be generalized even further by extending the shape of the latent manifold to
include non-Euclidean manifolds like spheres, tori, or rotation groups of various dimensions. This
was recently done by Jensen et al. (2020), who also used cross-validation to perform model selection
between different types of manifolds.

3

Chapter 1. Introduction

1.4 Our contribution
In the latent manifold tuning model, estimates of the latent variable and tuning curves must be found
using approximate methods. Wu et al. (2017) introduced the decoupled Laplace approximation, a
computationally efficient method for approximate inference. We use an iterative maximum a priori
(MAP) procedure instead, where MAP estimates of the latent variable and tuning curves are updated
iteratively.

We also show explicitly how the inference framework is made computationally efficient using
approximate Gaussian processes, and provide a free-standing implementation of the LMT model
in Python. The convergence properties of the algorithm are discussed through exploring different
ways the algorithm can be initialized and its consequent results. We evaluate the robustness of the
algorithm with regards to different tuning strengths and data lengths and find that there is an optimal
tuning strength that depends on the data length.

Finally, we apply the model to head direction neurons in a dataset by Peyrache et al. (2015) and
infer the observed head direction with higher precision than PCA.

4

Chapter 2
Neural activity and mouse head direction data

In this chapter, we introduce a dataset by Peyrache et al. (2015), that will be analyzed in Chapter
5. We then discuss the time bin width, a hyperparameter of the model, and look at how consistently
these neurons are tuned. Finally, we apply principal component analysis to the dataset to explore the
lower-dimensional projections of the data.

2.1 Observed head direction and neural activity

Peyrache et al. (2015) studied the brain’s mechanisms for head direction monitoring by making si-
multaneous recordings from the antero-dorsal thalamic nucleus and the post-subiculum parts of the
brains of seven mice. We will limit our analysis to one mouse trial called Mouse28-140313. The
recordings were done using extracellular multi-electrode arrays, and a camera tracked the head di-
rection (measured as the azimuthal angle of the animal’s head in a reference frame anchored to the
recording room) of the mouse during the experiment. Figure 2.1 shows the head direction during an
approximately four-minute interval, observed at 25.6 milliseconds (ms) intervals for a total of 10.000
observations. Observe how the head direction “wraps around” from 0 to 2π whenever it reaches the
border of the domain. We can model the head direction as a 1-dimensional, 2π-periodic variable, and
this latent variable is what we will be looking for in the recorded neural data.

Figure 2.1: Observed head direction in radians for the 10.000 bins starting at time 6881305.6 in the dataset
Mouse28-140313. Some missing observations have been removed.

Through the multi-electrode array, the time of each spike was recorded for each neuron. By
dividing time into bins of a certain bin width, we can count the number of spikes in each time bin for
every neuron. These spike counts can then be compared to the head direction value in that time bin.
Alternatively, one can look at the spike presence instead of spike count, which is the presence of at
least one spike in a particular bin. Figure 2.2 shows a representation of the spike presence.

5

Chapter 2. Neural activity and mouse head direction data

Figure 2.2: Spike presence for 73 neurons across 10.000 time bins. The neurons are placed on the y-axis, and
a black dot means that at least one spike was observed in that time bin for that neuron.

0 1 2
Spike count

103

104

105

Nu
m

be
r o

f b
in

s

Bin width 5 ms

0 1 2 3 4 5
Spike count

102

103

104

105

Nu
m

be
r o

f b
in

s

Bin width 10 ms

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Spike count

102

103

104

105

Nu
m

be
r o

f b
in

s

Bin width 25.6 ms

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
Spike count

101

102

103

104

105

Nu
m

be
r o

f b
in

s

Bin width 50 ms

Figure 2.3: Log scale distribution of spike counts across all neurons, for 10.000 bins starting at time 6891305.6.
Upper left: Bin width 5 ms. Upper right: Bin width 10 ms. Lower left: Bin width 25.6 ms. Lower right: Bin
width 50 ms.

6

2.1 Observed head direction and neural activity

In Figure 2.2, the bin width was chosen equal to the intervals between head direction observations,
25.6 ms. The chosen time interval is the same as in Figure 2.1. By interpolating between the observed
head direction values, or averaging over them, the width of the time bins can be chosen as smaller
or wider than the camera capture rate. The choice of bin width changes the distribution of the spike
counts. Figure 2.3 shows histograms in logarithmic scale of the distribution of spike counts for all
neurons and four different bin widths and 10.000 bins starting at time 6891305.6.

If the bin width is set too low, the total number of bins needed to cover the observed data increases,
and most methods increase in computing time as the number of time bins increases. On the other hand,
if the bin size is set wider than the interval between head direction observations, some information
may be lost when we average over the observed head direction values. In addition, if the data is
handled based on spike presence instead of spike count, some information is lost whenever there is
more than one spike in a bin. Ultimately, the preferred bin width depends on the observed neurons as
well as on the model. For a model dealing with spike presence, a smaller bin width may be preferred,
while for models that deal with spike counts a tradeoff must be made between the resolution of the
observed head direction and the computational complexity of the model.

2.1.1 Neuron tuning

Some neurons are more clearly tuned to the head direction than others. By partitioning the domain of
[0, 2π] into 50 uniformly sized intervals, the average number of spikes per bin can be represented as a
function of the head direction. Figure 2.4 shows the observed average number of spikes per bin with
size 25.6 ms for two neurons, for the same time period as in figures 2.1 and 2.2.

Figure 2.4: Observed spike counts per bin, with size 25.6 ms, for two observed neurons. Left: Neuron 1 that
does not seem to be tuned to the head direction. Right: Neuron 25 that seems clearly tuned to head direction
values between approximately 1.5 and 3.

If a neuron is truly tuned to the head direction, that tuning should be consistent through time. To
investigate how consistent the tuning was for these neurons, we looked at two separate time intervals
of 10.000 bins, or a little more than four minutes. Figure 2.5 shows the average number of spikes in a
bin of size 25.6 ms, as a function of the head direction, for four selected neurons. The tuning of these
neurons seems quite robust between the different time periods.

7

Chapter 2. Neural activity and mouse head direction data

Figure 2.5: Comparison of observed spike counts between two non-overlapping time intervals of 10.000 time
bins with bin width 25.6 ms.

2.2 Applying principal component analysis

Before we introduce the latent manifold tuning model, let us apply principal component analysis
(PCA), a well-known dimensionality reduction technique described in section 3.4, to the data to see
what we can find. After removing any neurons that produced less than 1000 spikes during the entire
trial, 51 neurons remained. The goal of dimensionality reduction is to find a lower-dimensional
variable that will explain the behavior of this 51-dimensional variable. We may, for example, choose
to look for a two-dimensional latent variable. The observed spike counts were smoothed in time
by a Gaussian smoothing kernel with a standard deviation of ten bins, or equivalently 256 ms, and
then PCA was applied to the smoothed data. Figure 2.6 shows the value of the two first principal
components for all the 85.504 time bins in the observed data.

8

2.2 Applying principal component analysis

Figure 2.6: A projection of the observed neural activity into the space spanned by the two first principal
components found by applying PCA to the spike data. The color of each point represents the observed head
direction value for that time bin, colored according to the bar to the right.

The visualization suggests that the latent variable lives on a circular manifold, which indeed is the
case for head direction. We also see that the angle of the position in the PCA domain corresponds well
to the coloring from the observed head direction. This indicates that the PCA has managed to extract
the head direction from the spike data to some degree. We note that while in this case, the shape of
the latent manifold can be deduced by the dimensionality reduction technique, the correct rotation can
not be inferred. We shall see in Chapter 5 that the correct rotation, or offset for nonperiodic variables,
has to be found by comparing the estimate with the true latent variable.

In Figure 2.6, every time bin is represented by a point in the space spanned by the two first
principal components. The angle between the positive axis of the first principal component and the
line from the origin to this point can be calculated using standard geometrical properties. Since the
cloud of points appears to live on a circle in PCA space, we can compare these angles with the
observed head direction angles to check how well they match up. Figure 2.7 shows the angle of the
points in Figure 2.6 compared to the observed head direction. The latent variable is referred to as
X, which will be a recurring notation in the following chapters. Even though PCA implies a circular
domain, the angle in the PCA space does not correspond very well to the observed head direction.
The fit is particularly bad whenever the head direction wraps around from 0 to 2π. An example of
this is the bump in the principal component around time bin 750.

9

Chapter 2. Neural activity and mouse head direction data

Figure 2.7: The angle in Figure 2.6 compared to the observed head direction.

Instead of a two-dimensional variable, we may ask how well a one-dimensional variable can
explain the data. Figure 2.8 shows the first principal component compared to the observed head
direction. Using the first principal component actually provides an estimate that is slightly better than
using the angle from the two-dimensional PCA.

Figure 2.8: The first principal component compared to the actual observed head direction for 2000 time bins.

It is helpful to remove inactive neurons and neurons that are not tuned to head direction. This was
done before the analysis described in Chapter 5. Of course, this type of screening can only be done
if the latent variable of interest is known. Methods for identifying such neural ensembles is an active
line of research (e.g., Rybakken et al. (2019), Carrillo-Reid et al. (2016)).

It appears that inferring a latent variable is not trivial even when the dimensionality and the domain
of the latent variable are known. Though some of the latent dynamics can be recovered by using PCA,
this model is limited due to its linear mappings. We will introduce the theory that is necessary to define
the doubly nonlinear latent manifold tuning model in the next chapter.

10

Chapter 3
Theoretical background

We begin this chapter by outlining some concepts in parameter estimation in section 3.1. We then
introduce Gaussian processes in section 3.2, which we will use to model both the latent variable and
the tuning curves of each neuron in Chapter 4. We show how Gaussian processes can be made com-
putationally efficient by sparse approximations in section 3.3. In section 3.4, we describe principal
component analysis (PCA), which will be used to find an initial estimate of the latent variable. Fi-
nally, in section 3.5, we include some theory about generalized linear models (GLMs), which will be
used to model spike counts.

3.1 Parameter estimation

Here we will explain how parameters in probability distributions can be inferred using the likelihood
function and the posterior distribution. Let us begin by defining a random sample from a population.
A probability distribution of a random variable X either has a probability density function (pdf) if X
is continuous or a probability mass function (pmf) if X is discrete. Casella and Berger (2002) use the
following definition of a random sample:

“The random variables X1, . . . , Xn are called a random sample of size n from the population f(x)
if X1, . . . , Xn are mutually independent random variables and the marginal pdf or pmf of each Xi is
the same funciton f(x).” - Casella and Berger (2002)

A probability distribution typically depends on one or more parameters θ = {θ1, θ2, . . . , θk}, and
we can write the pdf or pmf as f(x|θ). For example, the normal distribution has two parameters: the
mean µ and variance σ2, while the Poisson distribution has one parameter, the rate λwhich determines
both the mean and the variance. In a typical experiment, we have some observations from a process
that we model using some probability distribution. Knowledge of the underlying parameters gives
the experimenter knowledge about the entire population from which the sample is drawn, but in a
typical experiment, the parameters are not known and must be estimated. Casella and Berger (2002)
define a point estimator as “any function W (X1, . . . , Xn)) of a sample; that is, any statistic is a point
estimator.” - Casella and Berger (2002)

Obviously, this is a very wide definition, and some estimators are typically better than others.
Here, we will describe two commonly used estimators, the maximum likelihood estimator (MLE) and
maximum a posteriori estimate (MAP).

11

Chapter 3. Theoretical background

3.1.1 Maximum likelihood estimate
For observations x = {x1, . . . , xn} of a random sample X = {X1, . . . , Xn} from the population
f(x|θ), the likelihood function is defined as

L(θ|x) =
n∏
i=1

f(xi|θ) (3.1)

and the maximum likelihood estimate (MLE) is defined as

θ̂MLE = argmaxθL(θ|x)

⇔ argmaxθ logL(θ|x)
(3.2)

Usually, the loglikelihood function logL is optimized instead of L due to numerical stability issues.
In a standard linear regression setting, the MLE can be found analytically, but in most cases, an
analytical expression is not available. In these cases, gradient-based iterative optimization techniques
can be used to find the MLE exactly provided that the loglikelihood function is concave. If the
loglikelihood function is not concave, an estimate can still be found using iterative methods, but it is
not necessarily the exact MLE estimate.

3.1.2 Maximum a posteriori estimate
Another estimator is the Bayesian maximum a posteriori estimator (Casella and Berger (2002), p.
324). In Bayesian statistics, a prior distribution π(θ) is placed over the domain of the parameters.
The prior is chosen either to reflect the experimenter’s previous knowledge about the parameters or to
assume as little as possible about the parameters, a so-called un-informed prior. By applying Bayes’
rule, a posterior distribution f(θ|x) of θ can be obtained.

f(θ|x) =
f(x|θ)× π(θ)

f(x)
(3.3)

For some combinations of likelihood function f(x|θ) and prior π(θ) the resulting posterior belongs
to a known probability distribution. In this case, the prior and posterior are called conjugate dis-
tributions. Using a conjugate prior is very favorable computationally since it provides an analytic
expression of the posterior distribution. In the absence of a conjugate prior, finding or approximating
the posterior distribution is generally a computationally demanding task. The task of finding poste-
rior distributions can be approached, for example, by sampling-based techniques like Markov Chain
Monte Carlo methods (e.g., Geyer (1992) or Chib and Greenberg (1995)), or by approximate methods
like Integrated nested Laplace approximation (INLA, Rue et al. (2009)). The posterior distribution
can be used to find point estimates of θ like the MAP estimate, which is defined as:

θ̂MAP = argmaxθf(x|θ)× π(θ)

= argmaxθ log
[
f(x|θ) + π(θ)

] (3.4)

Note that since f(x) is constant in θ, it is not required to find the MAP estimate. As for the MLE esti-
mate, iterative methods may be used to find the MAP estimate, where the log posterior is maximized
instead of the posterior due to numerical stability issues. How good the estimate obtained from the
iterative method is, depends on the shape of the likelihood function or posterior function, respectively.
If the gradient and Hessian of the posterior can be calculated, these can be used to check for local
maxima, and if the log posterior is concave, a global maximum can be verified.

12

3.2 Gaussian processes

Credible intervals

For a chosen α ∈ (0, 1), a (1 − α) credible interval of a posterior distribution is defined as any
Iθ = [tl, tu] such that ∫ tu

tl

f(θ|x)dθ = 1− α (3.5)

A credible interval is called equi-tailed if∫ tl

θmin

f(θ|x)dθ =

∫ θmax

tu

f(θ|x)dθ (3.6)

where θmin and θmax indicate the lower and upper boundary of the domain of θ, respectively. A credible
interval is said to be a highest posterior density interval if

f(θ1|x) ≥ f(θ2|x) ∀ {θ1 ∈ Iθ, θ2 /∈ Iθ} (3.7)

For symmetric posterior distributions, the highest posterior density interval and the equi-tailed credi-
ble intervals are equivalent.

3.1.3 Heuristics for global optimization

Unfortunately, many posteriors are not concave, providing no guarantee that the obtained MAP esti-
mate will be optimal. As for the MLE, the problem is that gradient-based optimization algorithms can
become trapped in suboptimal local maxima from which they cannot escape. To prevent this, several
heuristic techniques exist that deal with global optimization. Particle swarm optimization (Kennedy
and Eberhart, 1995) is one of several techniques that select several initial positions, then chooses the
best estimate among the final estimates after the iteration has converged.

Another technique is simulated annealing (Van Laarhoven and Aarts, 1987), a heuristic that takes
its name from the process of controlled cooling of a piece of metal. Instead of simply climbing the
gradient to find better estimates at every iteration, it introduces a nonzero probability for moving to
an estimate in the next iteration that is worse than the current iteration. The probability of making
such a move starts high and is then lowered gradually. This creates an initial phase of exploration
before the algorithm hopefully settles and converges to the best local maximum. An adjacent idea is
that of graduated optimization (Hazan et al. (2016), Wu (1996)), in which the objective function is
approximated or smoothed to keep the estimate from getting trapped in local maxima. The amount
of smoothing, analogous to a temperature, starts at a high value and decreases at every iteration until
there is no smoothing, and one is left with the plain objective function.

3.2 Gaussian processes

For a comprehensive introduction to Gaussian processes, see Rasmussen and Williams (2006). For
material on sparse Gaussian processes, see Bauer et al. (2016) and Quiñonero-Candela and Rasmussen
(2005). Formally, a Gaussian process is a set of random variables where any finite collection of
those random variables has a joint multivariate normal distribution. If we let f(x) be a real-valued
function and let the domain of x be some continuous domain (e.g., space or time), then if the variable
f = (f(x1), . . . , f(xn)) follows a multivariate normal distribution for any collection of n locations
x = (x1, . . . , xn), then we have a Gaussian process. A Gaussian process can be completely specified

13

Chapter 3. Theoretical background

by its mean function m(x) and covariance kernel function k(x, x′), since they determine the mean
vector and covariance matrix of the joint normal distribution.

m(x) = E[f(x)]

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
(3.8)

In Bayesian terms, this gives us the following prior over the function values f :

f ∼ N (m(x), Kx(x)) (3.9)

where m(x) is the mean vector m(x) = (m(x1), . . . ,m(xn)) and Kx(x) is the covariance matrix
containing the covariance function evaluated for all pairs of locations in x. We will use the following
equivalent notation:

f ∼ GP(m(x), kx) (3.10)

where kx represents the covariance kernel function. The choice of covariance function and its hyper-
parameters determines the assumed smoothness of the function and should reflect Tobler’s first law
of geography: “everything is related to everything else, but near things are more related than distant
things” (Tobler, 1970). Some common covariance functions are the Gaussian, Matérn and exponential
covariance functions:

kGauss(x, x
′) = σ exp(−||x− x′||22/2δ2)

kMatérn(x, x
′) = σ (1 + ||x− x′||2/δ) exp(−||x− x′||2/δ)

kExponential(x, x
′) = σ exp(−||x− x′||2/δ)

(3.11)

All these three covariance functions have two hyperparameters: The marginal variance σ and the
length scale δ. Other covariance functions could have a different number of hyperparameters. Ob-
serve that the covariance between two function values f(x) and f(x′) depends only on the positions
x and x′, and not on the values f(x) and f(x′). We can choose a set of points in the domain of x
(for example, an evenly spaced grid) and sample values f(x) from their joint prior multivariate nor-
mal distribution. Figure 3.1 shows samples from a Gaussian process with zero mean function and
Gaussian covariance function, with different choices for the hyperparameters.

Figure 3.1: Four realizations from a Gaussian process prior with Gaussian covariance function, evaluated at a
grid of 50 x values with equal distance. Function values at the grid are shown with dots. Left: σ = 1.2, δ = 2.
Right: σ = 1.2, δ = 1. The zero mean is shown as a grey line and the boundaries of the 95 % confidence
interval of the prior is shown in dotted grey.

14

3.2 Gaussian processes

The interpretation of the hyperparameters is as follows: By increasing δ, we increase the smooth-
ness of the function along the x axis. By increasing σ, we increase the amplitude of their deviation
from the mean function. The Gaussian covariance function is smoother than the exponential covari-
ance function for the same choice of parameters. Figure 3.2 shows a comparative plot with samples
from a Gaussian process with zero mean function and exponential covariance function, with the same
hyperparameters as in Figure 3.1.

Figure 3.2: Four realizations from a Gaussian process prior with exponential covariance function, evaluated at
a grid of 50 x values with equal distance. Function values at the grid are shown with dots. Left: σ = 1.2, δ = 4.
Right: σ = 1.2, δ = 1. The zero mean is shown as a grey line and the boundaries of the 95 % confidence
interval of the prior is shown in dotted grey.

3.2.1 Conditional distribution
Based on our observations, we may want to predict the function values at another set of points.
For instance, we may want to predict the tuning curve values on a uniformly spaced grid in the
domain of x to visualize the tuning curve. Since the value of f at any collection of points is jointly
normally distributed, the joint distribution p(f , f grid) of some observations f and p values f grid on a
grid xgrid = (xgrid1 , . . . , xgridp) is[

f
f grid

]
∼ N

(
0,

[
Kx Kgrid,x

Kx,grid Kgrid

])
(3.12)

where the entries in the covariance matrices are found by evaluating the covariance kernel at the
respective combinations of points:

Kx[i,j] = k(xi, xj)

Kgrid,x[i,j] = k(xgridi , xj)

Kx,grid[i,j] = k(xi, xgridj)

Kgrid[i,j] = k(xgridi , xgridj)

(3.13)

Using well known facts about the multivariate normal distribution, we know that the conditional
probability distribution p(f grid|f) =

∫
p(f grid, f)df is also multivariate normal:

f grid|f ∼ N (µgrid,Σgrid)

where µgrid = Kx,gridK
−1
x (f − µ(xgrid))

Σgrid = Kgrid −Kx,gridK
−1
x Kgrid,x

(3.14)

15

Chapter 3. Theoretical background

The conditional mean µgrid is the best linear unbiased predictor of the Gaussian process, and is also
known as the Kriging estimate.

3.2.2 Noisy observations
Often, a noisy version of the actual function values f is observed. If we assume additive and inde-
pendent, identically distributed Gaussian noise, f = f noiseless(x) + ε, ε ∼ N (0, σ2

ε), where σ2
ε is the

noise variance, then the likelihood model is p(f |f noiseless) ∼ N (f noiseless, σ
2
εI), where I represents the

identity matrix of size N and the joint distribution of observations f and f grid is[
f

f grid

]
∼ N

(
0,

[
Kx + σ2

εI Kgrid,x

Kx,grid Kgrid

])
(3.15)

The conditional distribution with observation noise is

f grid|f ∼ N (µgrid,Σgrid)

where µgrid = Kx,grid[Kx + σ2
εI]−1(f − µ(xgrid))

Σgrid = Kgrid −Kx,grid[Kx + σ2
εI]−1Kgrid,x

(3.16)

Figure 3.3 shows the posterior mean and 95 % credible interval with and without the assumption of
observation noise for the same set of observations, with noise parameter σ2

ε . Since a normal posterior
distribution is symmetric, the highest posterior density interval is equal to the equi-tailed credible
interval, and this is the credible interval we will use throughout.

Figure 3.3: Posterior mean (grey) and 95 % credible interval (dotted grey) for a fitted Gaussian process with
parameters σ = 1.2, δ = 2, based on 5 observations. Left: With the assumption of zero noise. Right: With the
assumption of independent additive Gaussian noise with σ2ε = 0.05. The underlying tuning curve was generated
from a Gaussian process with squared exponential covariance function with parameters σ = 1.2, δ = 2.

An interpretation of the noise parameter σ2
ε is that when the noise parameter is increased, we

increase the willingness of the estimate to deviate from the observed points in order to make the
graph smoother. A higher noise parameter also causes the credible intervals to become wider. In the
inference described in Chapter 4, we will borrow ideas from graduated optimization and simulated
annealing in an attempt to tackle the nonconvexity of the posterior distribution. We will start with a
high noise parameter, then lower its value at every iteration to hopefully decrease the chance of the
estimate ending up at some suboptimal local maximum.

16

3.3 Approximate Gaussian processes

In the above, we calculated the posterior using the exact hyperparameters δ, σ, and σ2
ε that were

used to generate the observations. In real applications, we cannot know a priori which hyperparam-
eters provide the best fit, and these have to be estimated. Note also that if there are two observations
with the same x-value, this will make two columns inKx linearly dependent, making it non-invertible.
However, when noise is assumed in the model, the addition of σ2

ε on the diagonal makes the two
columns different. Therefore, in practice, the linear dependency goes unnoticed.

3.3 Approximate Gaussian processes
A drawback of the Gaussian process is that it scales poorly to big datasets. With N observations, the
size of the covariance matrix is N by N . To calculate the posterior distribution, this matrix must be
inverted, an operation of computational complexity N3. This limits the exact treatment of Gaussian
processes to a couple of thousands of observations on modern laptops, especially if the covariance
matrix must be inverted more than once. Fortunately, several models for sparse, approximate Gaus-
sian processes exist that are much more computationally efficient. A good overview is provided by
Quiñonero-Candela and Rasmussen (2005).

A common way to deal with the computational complexity is to introduce a set of Nind latent
variables u = (u1, . . . , uNind), which are function values in the same sense as f . These are evaluated
at positions (xu1 , . . . ,xuNind

), referred to as inducing points. These inducing points can be chosen
as a subset of the observed points x, or as separate points. The optimal placement of these points
is in itself an interesting problem, but for convenience, we can choose a uniform placement over the
domain of x. According to the properties of a GP, f grid, f and u are all jointly normally distributed.
To find the posterior p(f grid|f) we must first integrate out the inducing points to find p(f , f grid):

p(f , f grid) =

∫
p(f , f grid,u)du

=

∫
p(f , f grid|u)p(u)du

(3.17)

where p(u) = N (0, Ku,u). One model assumption shared by all the approximations reviewed by
Quiñonero-Candela and Rasmussen (2005), is that the training values f and the test values f grid are
conditionally independent given u:

p(f , f grid) ≈ q(f , f grid) =

∫
q(f |u)q(f grid|u)p(u)du (3.18)

This gives the following conditional distributions of f and f grid, where we use the notation Ka,b to
mean the covariance matrix evaluated at the combinations of x values of the vectors a and b (which
are vectors of function values), and we define Qa,b = Ka,uK

−1
u,uKu,b.

f |u ∼ N (Kf ,uK
−1
u,uu, Kf ,f −Qu,u)

f grid|u ∼ N (Kf grid,uK
−1
u,uu, Kf grid,f grid −Qu,u) (3.19)

As noted by Bauer et al. (2016), “the eigenvalues of Ku,u are not bounded away from zero. Any
practical implementation will have to address this to avoid numerical instability.” To be able to invert
this matrix, we add a small jitter term to the diagonal ofKu,u. This practice has been described by e.g.,
Bauer et al. (2016) and Titsias (2009). The addition of the jitter term affects the numerical properties
of the model. It should be chosen as small as possible while still making the matrix invertible.

17

Chapter 3. Theoretical background

The approximate GP method we will use is referred to as deterministic training conditional (DTC)
by Quiñonero-Candela and Rasmussen (2005). It assumes a deterministic relation between the induc-
ing points u and the true tuning curve values f , with the standard likelihood model for observations f
with additive Gaussian noise: p(f |f noiseless) = N (0, σ2I). The relation between f grid and u is kept the
same as in equation (3.19). This gives us the following joint distribution:

qDTC(f , f grid) = N

(
0,

[
Qf ,f Qf ,f grid

Qf grid,f Kf grid,f grid

])
(3.20)

We want to find the posterior distribution on a grid given noisy observations f . If we assume additive
Gaussian noise, the posterior distribution of f grid can be found easily using conjugacy:

f grid|f ∼ N (Qf grid,f (Qf ,f + σ2I)−1f , [Kf grid,f grid −Qf grid,f (Qf ,f + σ2I)−1Qf ,f grid]) (3.21)

In Chapter 4 we will approximate Kx by the sparse approximation K̃x := Qf ,f + σ2I . Note that this
is an N by N matrix that still needs to be inverted in the model inference. But thanks to the inducing
points we can use the matrix inversion lemma (eq. (A.2)) to invert an Nind by Nind matrix instead, and
herein lies the computational advantage of the approximation.

(Qf ,f + σ2I)−1 = (Kf ,uK
−1
u,uKu,f + σ2I)−1

= σ−2I − σ−2Kf ,u(σ2Ku,u +KT
f ,uKf ,u)−1KT

f ,u

(3.22)

Here, I represents the identity matrix of size N .

3.4 Principal component analysis
The following introduction has been adapted from Härdle and Simar (2007).

Let us introduce principal component analysis by looking at how to find the one-dimensional
subspace that best represents a set of N observations of P random variables, {x1, . . . ,xN},xi ∈ RP .
By the best representation we mean the one dimensional subspace that minimizes

N∑
i=1

||xi − pi||2 (3.23)

where pi are the projection points of xi onto the subspace. Since the observations are projected
orthogonally onto the lower dimensional subspace, we have from Pythagoras’ theorem that ||xi −
pi||2 = ||xi||2 − ||pi||2. Therefore, minimizing

∑N
i=1 ||xi − pi||2 is equivalent to maximixing

N∑
i=1

||pi||2 (3.24)

The one-dimensional subspace can be fully described by a unit vector u1 ∈ RP that makes up a basis
of the subspace, and the coordinate of the projection in the low-dimensional subspace is pi = xTi u1.
By gathering the N observations xi in an observation matrix X ∈ RN×P , we have that

p1

p2
...

pN

 =


xT1 u1

xT2 u1
...

xTNu1

 = Xu1 (3.25)

18

3.5 Generalized Linear Models

Consequently, maximizing
∑N

i=1 ||pi||2 is equivalent to maximizing

(Xu1)
TXu1 = uT1X TXu1 (3.26)

The solution to this is given by inserting X TX for A and I for B in eq. (A.1), and we find that the u1

that maximizes the expression in 3.26 is equal to the largest eigenvalue λ1 of X TX . This generalizes
to higher dimensions in the way that the D-dimensional subspace minimizing the sum

N∑
i=1

||xi − pi||2 (3.27)

is the subspace whose basis of unit vectors {u1, . . . ,uD},ui ∈ RP are the eigenvectors corresponding
to the D largest eigenvalues of X TX .

Now, instead of P variables, let the {x1, . . . ,xN},xi ∈ RP be observations of a P -dimensional
random variable X ∈ RP with mean vector µ and covariance matrix Σ. It is often helpful to stan-
dardize the observation before applying PCA. Σ can be decomposed into Σ = ΓΛΓT , where Λ is the
diagonal matrix of eigenvalues sorted in descending order, and Γ is a matrix with columns equal to
the corresponding eigenvectors of Σ. The PC transformation is defined as

Y = ΓT (X− µ) (3.28)

where Y = [Y1, . . . , YP]T contains the P principal components, and these are orthogonal linear
combinations of the P dimensions of X. When using PCA for dimensionality reduction, the standard
approach is to select the first m principal components that correspond to the largest m eigenvalues.
However, there is no guarantee that these variables will have the most explanatory power in a given
regression setting.

3.5 Generalized Linear Models
The framework of generalized linear models (McCullagh and Nelder, 1989) gathers several common
probability distributions into a unified framework. The three core components in a generalized lin-
ear model (GLM) are (i) a probability distribution belonging to the exponential family (the random
component), (ii) a linear predictor η = Xβ (the systematic component), and (iii) a link function g(µi)
from the mean µi = E[yi] to the linear predictor η. In the linear predictor η, X is the design matrix
and β is the parameter vector.

The exponential family of distribution consists of all pdfs and pmfs fYi that can be expressed as

fYi(yi; θi, φ, wi) = exp
(yiθi − b(θi)

φ
wi + c(yi, φ, wi)

)
(3.29)

where θi is called the natural parameter, φ the dispersion parameter and wi the weight parameter.
If g(η) is chosen such that g(µi) = θi, it is called the canonical link function. The link function

has a corresponding response function h(η) = g−1(η). For the Poisson distribution the canonical
response function is

h(η) = exp(η) (3.30)

and for the Bernoulli distribution, the canonical response function is

h(η) =
exp(η)

1 + exp(η)
(3.31)

With the canonical link function, the loglikelihood function becomes concave. This is very useful
since it allows us to find maximum likelihood estimates easily using gradient-based optimization
methods.

19

Chapter 3. Theoretical background

20

Chapter 4
The latent manifold tuning model

In this chapter, in section 4.1, we will draw on theory from Chapter 3 to present the building blocks
of the latent manifold tuning model as presented by Wu et al. (2017). Then, in section 4.2, we show
how MAP estimates of the tuning curves and latent variable can be found, leading us to an iterative
MAP procedure for joint inference of tuning curves and latent variable. The convergence properties
of this method will be discussed in Chapter 5.

4.1 The latent manifold tuning model
We want to infer a low-dimensional latent variable that underlies the spike counts of N neurons
indexed by i = 1, . . . , N , with time divided into bins indexed by t = 1, . . . , T over the period we
are interested in. Let the number of spikes of neuron i in bin t be denoted by yi,t. Furthermore, let
yt ∈ RN denote the vector of spike counts for all neurons at time t, let yj ∈ RT denote the vector of
spike counts in all time bins for neuron j, and let Y ∈ RN×T denote the matrix of spike counts for
all neurons for all time bins, with rows equal to yj and columns equal to yt. The goal is to construct
a model of the latent variable x(t) and the tuning curves hi(x) that allow us to infer x(t) and {hi(x)}
given the observed spikes Y.

4.1.1 Modeling the latent variable

The latent process is a P -dimensional latent variable x(t) ∈ RP that develops in time. In section
3.2 we introduced Gaussian processes. Each component xj(t), j = 1, . . . , P of the latent variable is
modeled as an independent Gaussian process in the time domain,

xj(t) ∼ GP(0, kt) (4.1)

with zero mean and temporal covariance function kt(t, t′). We will follow Wu et al and use an expo-
nential covariance function,

kt(t, t
′) = r exp(−|t− t′|/l) (4.2)

which enforces smoothness in time for the latent variable. This is reasonable for several physical vari-
ables, for example head direction or spatial position. Denote by xj the vector of length T containing
the values xj(t) evaluated at all time bins. Since it is a Gaussian process it will then follow a normal
distribution,

xj ∼ N (0, Kt), (4.3)

21

Chapter 4. The latent manifold tuning model

where Kt ∈ RT×T is the covariance matrix containing the covariance function evaluated at every
combination of time points. Let the vector xt = x(t) denote the value of the latent variable at time t,
and let the matrix X ∈ RP×T contain the values of the P-dimensional latent variable for all time bins,
such that the rows of X are equal to xj .

4.1.2 Modeling the spike counts and tuning curves
A tuning curve can map the latent variable to for example a firing rate λi,t = E[yi,t] or a firing
probability P (yi,t = 1), depending on the choice of response model for the spike data. We model the
number of spikes yi,t of neuron i in time bin t as an inhomogeneous Poisson variable with a firing
rate λi,t that depends on the position of the latent variable at time t. For each neuron i let the function
hi(x(t)) : RP 7−→ R describe a mapping from the latent variable state at time t to the firing rate λi,t
of neuron i at time t. hi(x) will be referred to as the tuning curve of neuron i:

λi,t = hi(x(t)) (4.4)

A firing rate is constrained to positive values, so instead of inferring hi(x) directly, it can be practical
to infer the log tuning curves fi(x) = log hi(x(t)) for i = 1, . . . , N and t = 1, . . . , T and then find
the values of hi(x) through the link

hi(x) = exp(fi(x)) (4.5)

In the view of generalized linear models, the fi(x(t)) corresponds to the canonical parameter of the
Poisson distribution. The spikes can also be modeled using another distribution, e.g., as Bernoulli
variables, in which case the canonical link would be

hi(x) =
exp(f(x))

1 + exp(f(x))
(4.6)

We will stick to the Poisson distribution in the remainder of the chapter. The corresponding results
for a Bernoulli model using spike probability πi,t = P (yi,t = 1) can be found in appendix A.2. The
likelihood model links the observed spikes to the latent variable through the log tuning curves.

yi,t|fi,xt ∼ Poiss(exp(fi(xt))) (4.7)

We follow Wu et al. (2017) in modeling the log tuning curve fi(x) of neuron i as a Gaussian process
over the P -dimensional space of the latent variable,

fi(x) ∼ GP(0, kx) (4.8)

using the squared exponential covariance kernel, which we assume has the same parameters for all N
neurons:

kx(x,x
′) = σ exp(−||x− x′||22/2δ2) (4.9)

This enforces smoothness in the latent variable space for the tuning curves. The degree of smoothness
can be adjusted by the choice of the parameter δ, and the magnitude can be adjusted using the σ
variable.

Let the vector f i ∈ RT contain the estimated value of the log tuning curve fi,t = fi(xt) for all
times t. With a noisy observation model, the multivariate normal distribution of f i conditioned on the
latent variable X is

f i|X ∼ N (0, Kx + σ2
εI) (4.10)

22

4.1 The latent manifold tuning model

where Kx ∈ RT×T is the covariance matrix of f i containing elements Kx{t,t′} = kx(xt,xt′) for every
pair of latent states (x,x′) that x attains between t = 1 and t = T ; σ2

ε is the noisy parameter, and I is
the identity matrix of size T .

Strictly speaking, the latent variable definition in equation (4.3) allows the x value to have the
same value for two different time bins. In that case, the multivariate normal distribution in equation
(4.10) can not represent a sample from a Gaussian process, since equation (4.10) allows fi(x) to have
different values for the same x value, even when the noise parameter is set to zero. In this sense, f i
represents neither samples from a tuning curve or a Gaussian process, since a tuning curve only can
have one value for a given x. However, this is just a theoretical distinction and will have no practical
implication for the inference.

To get a similar notation to Y and X, we gather the f i vectors as rows in the matrix F ∈ RN×T .
Then the rows of F contain the values of the log tuning curves of a single neuron evaluated at every
time bin, and a column f t of F describes the values of the log tuning curves at time t for the entire
neuron population i = 1, . . . , N .

23

Chapter 4. The latent manifold tuning model

4.2 Inference

Given the definitions in the previous section, the joint probability distribution of observations Y,
tuning curves F, latent variables X and hyperparameters θ = {σ, δ, r, l} in the LMT model is:

p(Y,F,X,θ) = p(Y|F)p(F|X, σ, δ)p(X|r, l)

=
N∏
i=1

T∏
t=1

p(yi,t|fi,t)
N∏
i=1

p(f i|X, σ, δ)
P∏
j=1

p(xj|r, l)

=
N∏
i=1

T∏
t=1

Poiss(exp(fi,t))
N∏
i=1

φ(f i; 0, Kx)
P∏
j=1

φ(xj; 0, Kt)

=
N∏
i=1

T∏
t=1

(exp(fi,t))
yi,t

yi,t!
exp(− exp(fi,t))

× 1

(2π)
NT
2 |Kx|

N
2

exp

(
− 1

2

N∑
i=1

fTi K
−1
x f i

)

× 1

(2π)
PT
2 |Kt|

P
2

exp

(
− 1

2

P∑
j=1

xTj K
−1
t xj

)

(4.11)

Here, φ(f i; 0, Kx) means the pdf of the multivariate normal distribution with mean 0 and covariance
matrix Kx. From here on, we will not refer to the hyperparameters, in order to simplify the nota-
tion. Our goal is to find the maximum a posteriori estimates of F̂MAP and X̂MAP. Wu et al. (2017)
introduced the decoupled Laplace approximation, an iterative solution in which some initial estimate
X0 is provided, and then at every iteration the estimate is updated based on an approximate posterior
distribution of X obtained by using the Laplace approximation to integrate over the tuning curves f i.
Another option is to use an iterative procedure where some initial X0 and F0 are chosen, and then
update these estimates at every iteration k, first finding Fk = F̂MAP by conditioning on Xk−1, and then
finding Xk = X̂MAP by conditioning on Fk. This is the approach that we will take. The algorithm
is shown at the end of the chapter. In the following sections, we will show how these estimates are
calculated.

4.2.1 MAP estimate of tuning curves

Each tuning curve f i in F is modeled as independent from the others, so we can estimate them sepa-
rately. We use Bayes’ rule to express the posterior distribution of f i given X and yi.

p(f i|yi,X) =
p(yi|f i)p(f i|X)

p(yi|X)
∝

T∏
t=1

p(yi,t|fi,t)× p(f i|X) (4.12)

The Gaussian process provides the prior over the f i, and the Poisson spiking model provides the
likelihood. Using the Poisson spiking model, we assume that the spike count yi,t of neuron i in bin t
is Poisson distributed with firing rate equal to λi,t.

yi,t|λi,t ∼ Poiss(λi,t) =
λ
yi,t
i,t

yi,t!
exp−λi,t (4.13)

24

4.2 Inference

with yi,t ∈ {0, 1, 2, . . . }. Using the canonical link function fi,t = log λi,t, we can write this pdf as

p(yi,t|fi,t) = exp
(
yi,tfi,t − exp(fi,t)− log(yi,t!)

)
=⇒ log p(yi,t|fi,t) = yi,tfi,t − exp(fi,t)− log(yi,t!)

(4.14)

The MAP point estimate f̂ i of each vector f i is found independently by maximizing the log pos-
terior, which using equations 4.10, 4.12 and 4.14, can be written as

f̂
k

i = argmaxf i
log
(p(yi|f i)p(f i|X)

p(yi|X)

)
= argmaxf i

log
(
p(yi|f i)

)
+ log

(
p(f i|X)

)
= argmaxf i

[T∑
t=1

(yi,tfi,t − exp(fi,t))−
1

2
fTi K

−1
x f i

] (4.15)

where terms that are constant in f i have been omitted. Since the Poisson distribution belongs to the
exponential family and we are using the canonical link function, we know that the likelihood function
is concave in fi,t. Furthermore, we see that the quadratic term −1

2
fTi K

−1
x f i is concave, since K−1x is

a positive semi-definite matrix, meaning that the sum of these two functions is concave. Therefore,
finding the MAP estimate of f is a concave optimization problem that can be solved optimally using
any gradient-based optimization method. To improve the speed of the algorithm we can find the
gradient and hessian matrix by differentiating the expression explicitly. Let Ψ(f i) denote the objective
function for this optimization problem:

Ψ(f i) : = log p(yi|f i) + log p(f i|X)

=
T∑
t=1

[
yi,tfi,t − exp(fi,t)− log(yi,t!)

]
− 1

2
fTi K

−1
x f i

(4.16)

We calculate the first derivative of Ψ(f i). The gradient notation used is∇ = [∂
∂fi,1

. . . ∂
∂fi,T

]T .

∂

∂fi,t
Ψ(f i) = yi,t − exp(fi,t)−

T∑
j=1

fi,jK
−1
x{t,j}

⇐⇒ ∇Ψ(f i) = yi − ePoiss
i −K−1x f i,

(4.17)

where we have used the fact that Kx is symmetric. Here the vector epoissi has elements epoissi,t =
exp(fi,t), t = 1, . . . , T . We calculate the second derivative of Ψ(f i):

∂2

∂fi,t1∂fi,t2
Ψ(f i) =

{
− exp(fi,t1)−Kx{t1,t1} for t1 = t2

−Kx{t1,t2} for t1 6= t2

=⇒ ∇∇Ψ(f i) = −Iepoissi −K−1x

(4.18)

where I represents the identity matrix of size T .

4.2.2 MAP estimate of the latent variable
For the posterior distribution of X, the prior is the Gaussian process of X, and the Gaussian processes
of the tuning curves p(f i|X) take on the role of a likelihood model. Notice that when X is conditioned

25

Chapter 4. The latent manifold tuning model

on F, the observed spikes Y do not enter into the MAP expression for X.

p(X|F) =
p(F|X)p(X)

p(F)

= [p(F)]−1
N∏
i=1

p(f i|X)
P∏
j=1

p(xj)

= [p(F)]−1 × 1

(2π)
NT
2 |Kx|

N
2

exp

(
− 1

2

N∑
i=1

fTi K
−1
x f i

)

× 1

(2π)
PT
2 |Kt|

P
2

exp

(
− 1

2

P∑
j=1

xTj K
−1
t xj

)

=
1

|Kx|
N
2

exp

(
− 1

2

N∑
i=1

fTi K
−1
x f i

)
exp

(
− 1

2

P∑
j=1

xTj K
−1
t xj

)
× C ′

⇒ log p(X|F) = −N
2

log |Kx| −
1

2

N∑
i=1

(
fTi K

−1
x f i

)
− 1

2

P∑
j=1

(
xTj K

−1
t xj

)
+ C

(4.19)

where C ′ = [p(F) × (2π)
(N+P)T

2 |Kt|
P
2]−1 and C = logC ′. The MAP estimate of X is found by

maximizing the log posterior:

X̂MAP|F = argmaxX

[
− N

2
log |Kx| −

1

2

N∑
i=1

(
fTi K

−1
x f i

)
− 1

2

P∑
j=1

(
xTj K

−1
t xj

)]
(4.20)

and we define the objective function

L(X) : = −N
2

log |Kx| −
1

2

N∑
i=1

(
fTi K

−1
x f i

)
− 1

2

P∑
j=1

(
xTj K

−1
t xj

)
(4.21)

Observe that this function is not concave in X. It is therefore not guaranteed that the estimate of
X found by a gradient-based optimization method will be optimal. Furthermore, in order to address
the challenges with the computational complexity of the covariance matrix, we replace the T by T
covariance matrixKx with its sparse deterministic training conditional approximation K̃x as described
in subsection 3.3.

K̃x = Kf ,uK
−1
u,uKu,f + σ2I (4.22)

where I is the identity matrix of size T ; u is the vector of function values at Nind inducing points
uniformly spaced in the range of x and the covariance matrices Ku,u ∈ RNind×Nind , Kf ,u ∈ RT×Nind

and Ku,f = KT
f ,u are found as described in section 3.2:

Ku,u[i,j] = k(xui ,xuj)

Kf ,u[i,j] = k(xti ,xuj)
(4.23)

where xti are the estimated states of the latent variables at times ti and tj , and xuj are the inducing
points. In the next sections we derive the expression of L(X) with the sparse approximation K̃x.
Since this part involves some algebra, we break the log posterior of X into its additive terms and

26

4.2 Inference

evaluate the effect of the inducing points approximation on each of them separately. We name the
terms in L(X) as follows:

L(X) = −N
2

log |K̃x| −
1

2

N∑
i=1

(
fTi K̃

−1
x f i

)
− 1

2

P∑
j=1

(
xTj K

−1
t xj

)
= log determinant term + quadratic term + x prior term

(4.24)

The log determinant term

With the sparse approximation, the logdeterminant term becomes:

−N
2

log |K̃x| = −
N

2
log |Kf ,uK

−1
u,uKu,f + σ2IT |

= −N
2

log |(Kf ,uK
−1
u,uKu,fσ

−2 + IT)(σ2IT)|

= −N
2

(
log |Kf ,uK

−1
u,uKu,fσ

−2 + IT |+ T log(σ2)
)

= −N
2

(
log |K−1u,uKu,fKf ,uσ

−2 + INind |+ T log(σ2)
)

= −N
2

(
log |Ku,fKf ,uσ

−2 +Ku,u|+ log |Ku,u|−1 + T log(σ2)
)

= −N
2

(
log |Ku,fKf ,u + σ2Ku,u| −Nind log |σ2| − log |Ku,u|+ T log(σ2)

)
= −N

2

(
log |Ku,fKf ,u + σ2Ku,u| − log |Ku,u|+ (T −Nind) log(σ2)

)

(4.25)

In the transition from the third to the fourth line we use Theorem 1.3.22 from Horn and Johnson
(1985), listed in appendix A.1.3, stating that the eigenvalues of Kf ,uK

−1
u,uKu,f are equal to the eigen-

values of K−1u,uKu,fKf ,u together with T − N zeroes. Clearly, Kf ,uK
−1
u,uKu,f is a symmetric matrix.

For any symmetric matrix A we have that

eig(cA+ I) = c eig(A) + 1 (4.26)

where eig(A) means the eigenvalues of A. Therefore

eig(Kf ,uK
−1
u,uKu,fσ

−2 + IT) = σ−2eig(Kf ,uK
−1
u,uKu,f) + 1 (4.27)

Together with Theorem 1.3.22 from Horn and Johnson (1985), this means that

|Kf ,uK
−1
u,uKu,fσ

−2 + IT | =
∏

ei∈eig(Kf ,uK
−1
u,uKu,f)

(σ−2ei + 1)

=
∏

ei∈eig(K−1
u,uKu,fKf ,u)

(σ−2ei + 1)

= |K−1u,uKu,fKf ,uσ
−2 + INind|

(4.28)

allowing us to make the transition from line three to four.

27

Chapter 4. The latent manifold tuning model

The quadratic term

quadratic term = −1

2

N∑
i=1

(
fTi K̃

−1
x f i

)
= −1

2

N∑
i=1

(
fTi (Kf ,uK

−1
u,uKu,fσ

−2 + IT)−1f i

)
= −1

2

N∑
i=1

(
fTi (σ−2INind − σ−2Kf ,u(σ2Ku,u +KT

f ,uKf ,u)−1KT
f ,u)f i

)
= −σ

−2

2

N∑
i=1

(
fTi f i

)
+
σ−2

2

N∑
i=1

(
fTi (Kf ,u(σ2Ku,u +KT

f ,uKf ,u)−1KT
f ,u)f i

)
(4.29)

Here we have applied the Matrix inversion lemma (eq. (A.2)) to make the inversion of the covariance
matrix computationally efficient.

Notice that the x prior term in eq. (4.24) is not affected by the inducing points approximation.
Thus the objective function with the inducing points approximation is:

L(X) = −1

2

N∑
i=1

N

2
log |Ku,fKf ,u + σ2Ku,u| −

N

2
log |K−1u,u| −

N(T −Nind)

2
log |σ2|

− σ−2

2

N∑
i=1

(
fTi f i

)
+
σ−2

2

N∑
i=1

(
fTi (Kf ,u(σ2Ku,u +KT

f ,uKf ,u)−1KT
f ,u)f i

)
− 1

2

P∑
j=1

(
xTj K

−1
t xj

)
(4.30)

4.2.3 Gradient

Using numerical estimates for the gradient is very slow when the number of bins T is large. Therefore,
we want to derive an analytical expression for the gradient of L(X) for the optimization. Calculations
are shown here for a one-dimensional latent variable, denoted by x = (x1, . . . , xT). For clarity, the
notation used for the gradient is

∇L(X) =

[
∂

∂x1
L(X) . . .

∂

∂xT
L(X)

]T
(4.31)

Again we will treat the three terms of L(X) separately:

∂

∂Xt

L(X) =
∂

∂Xt

(log determinant term) +
∂

∂Xt

(quadratic term) +
∂

∂Xt

(x prior term) (4.32)

28

4.2 Inference

Gradient of the log determinant term

We define B := (Ku,fKf ,u + σ2Ku,u).

∂

∂xt
(log determinant term) =

∂

∂xt

[
− N

2
log |B|+ N

2
log |Ku,u| −

N(T −Nind)

2
log |σ2|

]

= −N
2

(
∂

∂xt
log |B|

)
+
N

2

∂

∂xt

(
log |Ku,u|

)

= −N
2

trace

(
B−1

∂

∂xt
(Ku,fKf ,u + σ2Ku,u)

)
+
N

2
tr

(
K−1u,u

∂

∂xt
(Ku,u)

)

= −N
2

trace

(
B−1

[
(
∂

∂xt
Ku,f)Kf ,u +Ku,f (

∂

∂xt
Kf ,u)

])

= −N
2

trace

(
B−1

[
[Ku,f (

∂

∂xt
Kf ,u))]T +Ku,f (

∂

∂xt
Kf ,u))

])
(4.33)

To differentiate the log determinant of a matrix, we use equation (A.8). In the transition from line two
to three, we use the fact that Ku,u does not depend on x, then in the transition from lines three to four,
we use the product rule for derivatives. In the transition from line four to five we used the fact that
Kf ,u and Ku,f are each other’s transpose and that (AB)T = BTAT .

Kf ,u is a T by Nind matrix with entries defined by the squared exponential covariance kernel. For
any t ∈ [1, . . . , T]:

Kf ,u[t,j] = σ exp(−(xt − xuj)
2/(2δ2)) (4.34)

So
∂

∂xt
Kf ,u[t,j] = −(xt − xuj)

σ

δ2
exp(−(xt − xuj)

2/(2δ2)) := f1(xt,xuj), (4.35)

and

∂

∂xt
Kf ,u =

 0t−1,Nind

f1(xt,xgrid)
0T−t,Nind

 (4.36)

where f1(xt,xgrid) =
[
f1(xt,xu1) . . . f1(xt,xuNind

)
]

and the zero matrices have the appropriate size
such that the nonzero row is placed at index t.

Gradient of the quadratic term

We compute the gradient of the quadratic term (the two terms in the second row of the right-hand side
of eq. (4.30)). We will need the derivative of the B matrix:

∂

∂xt
B =

∂

∂xt
((Ku,fKf ,u + σ2Ku,u))

=
∂

∂xt
(Ku,fKf ,u)

=
(∂

∂xt
Ku,f

)
Kf ,u +Ku,f

(∂

∂xt
Kf ,u

) (4.37)

29

Chapter 4. The latent manifold tuning model

Eq. 4.37 allows us to develop the gradient of the quadratic term as follows:

∂

∂xt
(quadratic term) =

σ−2

2

N∑
i=1

fTi

(
Kf ,u(σ2Ku,u +KT

f ,uKf ,u)−1KT
f ,u

)
f i

=
σ−2

2

N∑
i=1

fTi
∂

∂xt

(
Kf ,uB

−1Ku,f

)
f i

=
σ−2

2

N∑
i=1

fTi

[(∂

∂xt
Kf ,u

)
B−1Ku,f

+Kf ,u

(∂

∂xt
B−1

)
Ku,f

+Kf ,uB
−1
(∂

∂xt
Ku,f

)]
f i

=
σ−2

2

N∑
i=1

fTi

[(∂

∂xt
Kf ,u

)
B−1Ku,f

+Kf ,u

(
−B−1

(∂

∂xt
B
)
B−1

)
Ku,f

+Kf ,uB
−1
(∂

∂xt
Ku,f

)]
f i

=
σ−2

2

N∑
i=1

fTi

[(∂

∂xt
Kf ,u

)
B−1Ku,f

+Kf ,u

(
−B−1

(
(
∂

∂xt
Ku,f)Kf ,u +Ku,f (

∂

∂xt
Kf ,u)

)
B−1

)
Ku,f

+Kf ,uB
−1
(∂

∂xt
Ku,f

)]
f i

=
σ−2

2

N∑
i=1

fTi

[(∂

∂xt
Kf ,u

)
B−1Ku,f

−Kf ,uB
−1(

∂

∂xt
Ku,f)Kf ,uB

−1Ku,f

−Kf ,uB
−1Ku,f (

∂

∂xt
Kf ,u)B−1Ku,f

+Kf ,uB
−1
(∂

∂xt
Ku,f

)]
f i

=
σ−2

2

N∑
i=1

fTi

[(
IT −Kf ,uB

−1Ku,f

)(∂

∂xt
Kf ,u

)
B−1Ku,f

+Kf ,uB
−1(

∂

∂xt
Ku,f)

(
IT −Kf ,uB

−1Ku,f

)]
f i

(4.38)
where in the third line we use the product rule for differentiation: (ABC)’ = A’BC + AB’C + ABC’,
and in the fourth line we use equation (A.6) to differentiate the inverse of B. Notice that B =

30

4.2 Inference

(Ku,fKf ,u + σ2Ku,u)−1 is symmetric because Ku,f = KT
f ,u and because a product AAT is always

symmetric.

Gradient of the x prior term

Finding the gradient of the x prior term is easy.

∇(x prior term) = −1

2
∇[xTj K

−1
t xj]

= −xTj K−1t
(4.39)

4.2.4 The iterative MAP procedure
By starting with some initial guesses X0 and F0, and then updating the estimates iteratively using the
maximum a posteriori formulas we have described, one can converge to some final estimates of both
F and X. This setup is described in algorithm 1 and corresponds to Algorithm 1 in Wu et al. (2017)
without the decoupled Laplace approximation.

As mentioned in section 3.2, we will start with a high noise term for the Gaussian process tuning
curves, σ2

ε , and then lower its value at every iteration by multiplying with a learning rate lr, where
0 < lr < 1. By increasing the assumed noise level in the model, f i estimates that would be considered
extreme or highly unlikely with a lower noise term, appear more likely. This changes the objective
function, allowing the algorithm to explore more in the first iterations. Convergence is declared
when the root mean squared error deviation between the estimates Xk and Xk−1 becomes lower than
the predetermined tolerance value, or by having reached the predetermined maximum number of
iterations.

Algorithm 1: Iterative MAP procedure
Input: observations Y, initial guesses X0 and F0, initial σ2

ε

1 begin
2 while not converged, at iteration k do
3 for i = 1, . . . , N do
4 f̂

k

i = argmaxf i
Ψ(f i)

5 end
6 X̂

k
= argmaxXL(X)

7 σ2
ε = lr × σ2

ε

8 end
9 return F̂

k
, X̂

k

10 end
We will make one more alteration to algorithm 1. As we shall see in Chapter 5, initial estimates

of F and X can be obtained based on the observed matrix of spikes Y. An explanation of this may
be that the initial estimate of F is better than the initial estimate for X. If the X estimate is bad, then
by updating F in the first iteration, we are worsening the F estimate, which has consequences for the
remaining iterations. Therefore, we alter algorithm 1 by skipping the F update in the first iteration.
To find the MAP estimates at each step, an efficient approximate conjugate gradient method known
as L-BFGS-B (Zhu et al., 1997) is used. The initial estimates for F and X will be discussed in greater
detail in Chapter 5.

31

Chapter 4. The latent manifold tuning model

32

Chapter 5
Applying the LMT model to simulated and
experimental data

In this chapter, we present results from the implementation of the algorithm presented in chapter 4,
starting with a discussion on the challenges with convergence, which we address in sections 5.1 and
5.2. In section 5.3, we evaluate the robustness of the model on synthetic data against two fundamental
hyperparameters, namely the tuning strength and the data length. Finally, in section 5.4, we use the
model to infer head direction in the dataset described in Chapter 2.

5.1 Convergence and pitfalls
As mentioned in Chapter 4, the objective function we maximize to find the posterior estimate of the
latent variable X is not a concave function. Therefore, there is no guarantee that the local maximum
the algorithm converges to will be “optimal” in any sense of the word. Our definition of the “best”
estimate will be the one with the lowest root mean squared error (RMSE) between the final estimate
X̂ and the true X, which is only available for synthetic data.

RMSE =

√√√√ 1

T

T∑
t=1

||xt − x̂t||22 (5.1)

A common technique for dealing with non-concave problems, mentioned in section 3.1.3, is to start
at several initial estimates and then pick the best estimate once they all have converged. However,
when choosing between these estimates, we cannot use the RMSE value, since we cannot use the
true X to select our estimate. Instead, the log posterior L(X) can be used to rate different solutions.
Unfortunately, there is no guarantee that the estimate with the lowest RMSE will also have the highest
L(X) value. It may even be the case that picking between estimates based on the L(X) value gives
a worse RMSE value on average than just picking the estimate randomly. We will investigate the
feasibility of using L(X) to pick between estimates in section 5.3. First, we will define a simple
simulated latent variable to get to know the model.

In this section we will look at a simulated one-dimensional latent variable with values restricted
by a minimum and a maximum value: x ∈ [xmin,xmax] ⊂ R1. Every log tuning curve fi(x) will be
defined as a Gaussian bump with its peak positioned randomly between xmin and xmax. The tuning
strength of a neuron is defined as its firing rate h(x) = exp(f(x)) when x is positioned exactly where
the tuning curve has its peak. We will also refer to the background firing rate, which is the firing rate
a neuron approaches in the limit as the distance between x and the peak of its tuning curve increases.

33

Chapter 5. Applying the LMT model to simulated and experimental data

To link this setup to a neuroscience scenario, imagine a rodent in a corridor that is so narrow that
movement is mainly one-dimensional except when the animal is turning, and let the recorded neurons
be place-cells that are tuned to different locations along the length of the corridor. At the center of
the place field, the tuning curve of the neuron will reach the tuning strength value, while outside of
the place field, the probability of the neuron firing in each time bin will correspond to the background
firing rate.

We choose xmin = 0 and xmax = 10. The “path” of x is sampled from a generative Gaussian
process identical to the prior of X in chapter 4. A neuron will only produce spikes if the simulated
latent variable visits the zone it is tuned to during the simulation. Therefore, to record information
about all the neurons, it is desirable to sample a path that covers the entire domain of X. Since the
path of X is sampled randomly from the Gaussian process prior, the minimum and maximum values
will vary between simulations. By increasing the variance parameter σx, we can make sure the path
covers our chosen domain of [0, 10]. To keep the path inside the domain, we “fold” the path back into
the domain whenever it moves outside the min or max value. This is an important distinction because
this path is no longer strictly sampled from the generative Gaussian prior, and consequently has a
slightly different distribution. The hyperparameters in this example were chosen by trial and error,
and the jitter term added to the diagonal of Ku,u was set to 10−5. Figure 5.1 shows an example path
with length T = 1000 sampled from the prior and kept inside the domain by folding it back whenever
it meets the boundary.

Figure 5.1: An example of a generated path for the latent variable, kept between the limits of 0 and 10 by
folding it back whenever the path goes outside the domain.

A comment on neural density and inactive neurons

The background firing rate was set to 0.5 spikes per bin, and the tuning strength set to 4 spikes per
bin. There will be a total of 100 neurons, whose tuning peaks are distributed randomly along the
domain of x. Ideally, we would want the number of neuron peaks per unit length in the domain of
x (the neural density) to be constant for the estimate of X to be equally good at different regions in
the domain. However, consider the tuning curves shown in Figure 5.2, which represents a realization
of the tuning curve definition just described. Here, the neural density is lower in the regions close to
the edges of the domain. To achieve a constant neural density, we should either add some neurons to
each side with peaks positioned outside the domain and tails entering the domain or impose periodic
boundary conditions, which we do not want to do because it is harder to infer a periodic variable, as
we shall see in section 5.4. Unfortunately, experiments have shown that if neurons are added with too
few observed spikes, the quality of the X estimate is worsened. Therefore, we choose to not add any
neurons that are partly outside, and as a consequence of this, we should expect the inference of X to
be less precise near the edges of the domain.

34

5.1 Convergence and pitfalls

Figure 5.2: Left: Simulated log tuning curves f i(x) with peaks distributed randomly across the domain of x.
Right: Corresponding firing rates hi(x) = exp(f i(x)) with background firing rate is 0.5 and tuning strength 4.

5.1.1 Flipping

We will now describe some types of local maxima that the algorithm may converge to. Since the log
posterior of X is not concave, the starting point of X will determine how good the final estimate is.
First, because Kf ,u only depends on on X through the squared distances (xt − xuj)

2, we see that
L(X) is an even function:

L(−X) = −1

2

N∑
i=1

N

2
log |Ku,fKf ,u + σ2Ku,u| −

N

2
log |K−1u,u| −

N(T −Nind)

2
log |σ2|

− σ−2

2

N∑
i=1

(
fTi f i

)
+
σ−2

2

N∑
i=1

(
fTi (Kf ,u(σ2Ku,u +KT

f ,uKf ,u)−1KT
f ,u)f i

)
− 1

2

P∑
j=1

(
(−xTj)K−1t (−xj)

))
= L(X)

(5.2)

SinceL(X) is even, any local maximum X̂ will be repeated for−X̂. In addition to this, the covariance
matrices can not distinguish between X̂ or X̂+ c, where c is some constant offset, due to the isotropic
covariance kernel. This means that we are just as likely to converge to an estimate that is upside down
as not, and also that the offset c can not be inferred. Figure 5.3 shows how different random initial
positions may lead to estimates that are either upside down or correctly aligned. In this case, the offset
has been found by comparing with the true X. Observe also how the estimate is less accurate near the
boundaries of the domain due to the lower neural density there.

35

Chapter 5. Applying the LMT model to simulated and experimental data

Figure 5.3: Left: 7 random initial estimates, where the value at every time point xt is sampled independently
from a uniform distribution in the range from 0 to the upper limit 2π (not implying periodicity in this example).
Right: Final estimates.

5.1.2 Scaling

Analytically, the L(X) function should be able to distinguish between differently scaled versions of
X. A scaled-up estimate of X means that the off-diagonal entries in Kx will, on average, have lower
values, since the x values are further apart. Still, to be able to find the correct scaling of X, the
correct hyperparameters for the covariance kernel must be known precisely, and there would still be
no guarantee that the algorithm would converge to a correctly scaled estimate due to the non-concavity
of L(X).

Figure 5.4 shows an example where the estimate converges to an estimate of X that has the right
shape, but the wrong scaling, and Figure 5.5 shows the same estimate after rescaling.

Figure 5.4: An example where the final estimate is wrongly scaled. The correct scaling can be found by
comparing to the true latent variable.

36

5.1 Convergence and pitfalls

Figure 5.5: The same experiment as in Figure 5.4 except the estimate has been rescaled after convergence to
fit the range of the true latent variable.

In this test case, the neural density is lower near the boundaries of the domain, making it harder to
infer the latent variable near the border. Still, in the supervised learning case where there is a known
latent variable to compare the estimate with, the flipping, offset, and scaling can be determined by
comparing to the true X. In an exploratory setting where the latent variable was unknown, the shape
and dynamics of the inferred latent variable could suggest variables to which the population might be
responding. Those variables could be used to adjust the flipping, offset, and scaling of the estimate.
In the remainder of the chapter, we will find the correct rotation, offset, and scaling for the estimate
by comparing the final estimate with the true path. This is done before the RMSE value is calculated.

5.1.3 Partly flipped estimates

In addition to the issues described above, the estimate may converge to a local maximum where the
estimate is partly upside down, which is more problematic since this can not be handled by flipping,
scaling, or adding an offset. In Figure 5.6, the number of initial estimates has been increased from
7 to 20, and estimates that ended up upside down have been flipped by comparing to the true path.
However, one of the random initial starts has converged to an estimate that appears to be partly upside
down (light blue). It appears like the estimate is correctly aligned for all values above 3, but upside
down for values below 3. Partial flipping is a problem that can not be avoided entirely.

Figure 5.6: Left: 20 random initial estimates for X. Right: Final estimates corrected for flipping.

37

Chapter 5. Applying the LMT model to simulated and experimental data

5.1.4 Placement of the inducing grid
Finding the optimal position for and number of the inducing points is an interesting problem by itself
(see Titsias (2009) for a variational inference approach). For simplicity, we choose a uniformly spaced
grid. Choosing the range of the inducing grid requires knowledge of the domain and range of X. If
the range of X is unknown, one approach is to start with a wide range for the inducing points and
then set the range equal to the range of the X estimate at every iteration as it changes. In this chapter,
the range of the inducing grid was set equal to the range of the domain, [0, 10].

5.2 Initialization

5.2.1 Initial estimate for F

Since the log posterior of F is a concave function, finding an initial estimate of F would be irrelevant
if the true X were known, since the algorithm would converge to the global maximum no matter
the initialization. However, if we start with an unfortunate estimate for F, we may converge to
a suboptimal local maximum for X, which will, in turn, affect the estimate of F. The observed
spike matrix Y can be used to find a good starting point for F. With a Poisson likelihood model,
fi,t = log λi,t = logE[yi,t]. Based on this, a suggestion for the initial F could be

Finitial = log(Y + ε) (5.3)

where some ε < 0 is introduced to be able to take the logarithm when yi,t = 0. Another candidate is
the Anscombe transform (Anscombe, 1948), that has been used to transform Poisson distributed data
to approximately normally distributed:

Finitial = 2

√
Y +

3

8
(5.4)

However, after trying to find a transformation of the Y matrix that made the distribution of the trans-
formed values look like the true synthetic log firing rates, the following initialization was found to
produced the best results:

Finitial =
√
Y − max(

√
Y)

2
(5.5)

The usefulness of the square root transformation for Poisson data before modeling it with a Gaussian
process has been described before, e.g., by Byron et al. (2009). In addition to this, the transformation
in equation (5.5) moves the mean of the data closer to zero. Figures 5.7 and 5.8 shows a heat map of
the true F compared to the initial Finitial for 100 simulated neurons.

Figure 5.7: True F values. The y axis shows the index of the neurons, and the x axis shows the index of the
timebins.

38

5.2 Initialization

Figure 5.8: Initial F with the square root initialization (eq. (5.5)). The y axis shows the index of the neurons,
and the x axis shows the index of the timebins.

For visualization, it may be better to find the posterior mean of the tuning curve on a uniform grid
in the domain of X, given the true path of X. Figure 5.9 shows the mean of the posterior distribution
of f i(X) on the grid given the square root initialization. Figure 5.10 shows the same posterior mean
as in eq. (3.14) given the logarithm initialization.

Both initializations seem to capture the location of the peak, but the square root initialization is
better in terms of finding the width of the bump, while the log is better at capturing the height of
the peak. Exactly how this choice of initial F affects the L(X) function is not obvious, but it is
clear that larger values in F make the quadratic term more important relative to the logdet and xprior
terms. Another explanation is that more pronounced tuning curves like the ones in Figure 5.10 cause
local maxima in L(X) to become more pronounced, limiting the region that the X estimate is able to
explore in the first iteration.

Figure 5.9: The posterior mean of the tuning curve on a grid of points, obtained using the square root initial-
ization.

39

Chapter 5. Applying the LMT model to simulated and experimental data

Figure 5.10: The posterior mean of the tuning curve on a grid of points, obtained using the logarithm initial-
ization.

Note that in order to find a good posterior estimate of F, it is essential that the final X estimate is
reasonable. To illustrate this, we provide the initial estimate for F described in eq. (5.5), but instead
of using the true path to find the posterior of the tuning curves, we provide it with random noise as
the estimate of X. Figure 5.11 shows that the posterior is useless in this case. The lesson is that the
posterior estimate of the tuning curve depends heavily on the estimate of X.

Figure 5.11: Posterior estimate of f i(X) based on an estimate of X that is just randm noise.

5.2.2 Initial estimate for X

The initial estimate of X is important since L(X) is not a concave function. Several candidates
were examined, including flat lines, random paths generated from the generative model, and principal
component analysis applied to the spike matrix Y. First, the observed spike matrix was smoothed
with a Gaussian filter independently per neuron, then PCA was applied, and the PCA estimate was
rescaled to match the domain of X. An example PCA initialization with standard deviation 15 in the
Gaussian filter is shown together with the true path of X in Figure 5.12.

40

5.2 Initialization

Figure 5.12: The first principal component shown together with the true simulated path.

Figures 5.13 and 5.14 show an example of how the performance of the algorithm varies with the
initialization, with all other parameters kept equal. In this case, the estimate of X based on the PCA
initialization has an RMSE value of 0.222, while the X estimate found by starting with a flat line has
an RMSE value of 2.831. However, in other cases, the flat initialization provided a better estimate
than the PCA initialization, so there seems to be no initialization that is best in general. The point
here is to visualize the possible impact of the initialization. For this simulated data, the final estimate
is impressively accurate. However, for recorded neural data, the neurons may be tuned to other things
in addition to the head direction, making it harder to infer the head direction. In the next section, we
will evaluate how the tuning strength and data length influence the quality of the estimate.

Figure 5.13: Final estimate for a PCA initialization of X.

Figure 5.14: Final estimate for a flat initialization of X.

41

Chapter 5. Applying the LMT model to simulated and experimental data

5.3 Robustness evaluation
We will take a closer look at two of the many factors that influence the latent variable inference:
the tuning strength λ and the number of observed time bins T . The tuning strength determines how
much the firing rate is affected by the position of the latent variable. Intuitively, one would think
that a higher tuning strength should improve the inference since it should be easier to detect more
substantial changes in the firing rate. Also, one would expect that observing more time bins should
lead to a better estimate since more data is available.

Recall that the tuning curves are defined as Gaussian bumps and that the tuning strength is defined
as the firing rate at the peak of the bump. The background noise level will be the firing rate in the
limit where the distance between x and the peak increases towards infinity. The loss function we will
use to describe how well the inference works is the root mean squared error (RMSE) between the
estimated X and the true path of X, defined in eq. (5.1). We set the background tuning strength to
0.5, and choose an array of 21 tuning strengths:

λ =

 0.51 0.6 0.7 0.8 0.9 1.0 1.25
1.5 1.75 2.0 2.25 2.5 3.0 3.5
4.0 4.5 5.5 6.5 7.5 8.5 9.5

 (5.6)

We select six different T values, T = (200, 500, 1000, 2000, 3000, 5000), and for each of these we
construct 20 simulated paths for X of length T . Then, for every combination of T and tuning strength
λ, we initialize the estimate of X using PCA with a smoothing filter standard deviation of 5 and
let the algorithm converge independently for every path in the array of 20 test cases. We can then
calculate the average RMSE across the 20 paths, for all combinations of λ and T . Figure 5.15 shows
the average RMSE values plotted as a function of the tuning strength for different T values.

Figure 5.15: Mean RMSE across 20 individual random paths for each T value, with 95 % confidence intervals
calculated from a t-distribution with 19 degrees of freedom. The background firing rate of 0.5 is shown with a
black vertical line.

42

5.3 Robustness evaluation

Surprisingly, for every value of T , there appears to be an optimal tuning strength beyond which
increasing the tuning strength worsens the RMSE value. We see that for very low tuning strengths,
the RMSE value is high because the neurons are effectively not tuned to the latent variable. As the
tuning strength increases towards the optimal tuning strength, the RMSE value lowers as the tuning
becomes more pronounced, allowing the algorithm to infer the latent variable. The curve drops faster
for higher T values since the inference performs better when more data is available. Beyond the
optimal point, however, the RMSE increases as the tuning strength increases.

Similar observations have been made by Davidovich et al. (2020) in the reconstruction of the
hidden node problem. We have established that there exist suboptimal local maxima the algorithm
may converge to. An explanation for the existence of an optimal tuning strength may be that the local
maxima become more pronounced as the tuning strength increases. Combined with the fact that a
higher number of time bins provides more opportunities for such local maxima to occur, this may
explain why the optimal tuning strength occurs at a lower value for higher T values.

5.3.1 Choosing between final estimates
For every individual iteration in Figure 5.15, the initial estimate was found by applying PCA to

the observed spike matrix Y after smoothing it with a Gaussian filter with standard deviation 5. By
varying the smoothing width in the Gaussian filter, several reasonable initial estimates with varying
degrees of smoothness can be obtained. By re-running all the iterations of Figure 5.15 with standard
deviations in the smoothing filter equal to 3, 5, and 10, we find the RMSE values shown in Figure
5.16. From this simulation, it seems like a width of 5 is preferred for tuning strengths lower than 3,
while for higher tuning strengths, a width of 3 may be marginally better.

Figure 5.16: For each tuning strength λ, 20 random paths of length T = 5000 were generated. For each path,
three different initializations were generated by using three different widths for the smoothing filter applied
to Y before applying PCA. This plot shows the average RMSE value for each tuning strength for the three
standard deviations. 95 % confidence intervals are shown as bars.

43

Chapter 5. Applying the LMT model to simulated and experimental data

We mentioned in the introduction to section 5.1 that if we wish to start an ensemble of differently
initialized iterations for a specific problem, then after convergence we must choose the best estimate
among them by comparing their L(X) scores, since the true X can not be used for comparison when
it comes to real data. To test whether the L(X) metric can differentiate between better and worse esti-
mates, we calculate the average RMSE value that results from using the L(X) value to pick between
estimates. Figure 5.17 shows these values compared to the RMSE values that result from only using
a smoothing filter width of 5. For reference, we include the RMSE values where the final estimate
has been picked based on comparing their actual RMSE values, which represents the optimal choice.

Figure 5.17: Comparison of average RMSE values resulting from consistently picking the estimate with
smoothing filter width 5; the estimate with the highest L(X) value; or the estimate with the lowest RMSE
value, respectively. The plot shows the mean RMSE values over the 20 paths. 95 % confidence intervals are
shown as bars.

It seems like using the L(X) value to pick between estimates is worse than just sticking with one
estimate based on a smoothing filter width of 5. The results for other time lengths than T = 5000 were
similar. For the remainder of the chapter, we will stick to a smoothing filter standard deviation of 5.

44

5.4 Application to head direction data

5.4 Application to head direction data

We applied the model to the head direction cell data described in Chapter 2, recorded by Peyrache
et al. (2015). We will assume that head direction is the only variable driving the recorded population.
To evaluate the final estimates, we use the RMSE described in equation 5.1, where we let the observed
head direction take the role of the “true” X. Since it is known that head direction is a latent variable
driving these neurons, it makes sense to look for a latent variable with a one-dimensional, 2π-periodic
domain. Compared to the nonperiodic example from earlier, the only change in the model is treating
the domain of X as periodic with period 2π. This is reflected in the entries of the covaraince matrix
Ku,u. For periodic data, the jitter term added to the diagonal of Ku,u had to be increased to 10−3 for
the posterior covariance matrix of the tuning curves to still be positive definite. We must also expect
that the head direction behaves periodically by wrapping around the border. An interval of 5000 time
bins with bin width 25.6 ms was chosen for the analysis. The observed head direction for this time
interval is shown in Figure 5.18.

Figure 5.18: Observed head direction.

For this period, 16 neurons appeared to be active and tuned to the head direction. The tuning of
these neurons for the selected interval is shown in Figure 5.19.

Figure 5.19: Observed firing rates (in number of spikes per bin) for the 16 neurons. The bin size is 25.6 ms.

45

Chapter 5. Applying the LMT model to simulated and experimental data

From the observed firing rates, we see that there are neurons that are tuned to every specific bit of
the domain, but 16 is considerably less than the 100 simulated neurons from the simulated examples.
Table 5.1 shows five different ways in which the algorithm can be initialized. The following pages
show the resulting final estimates of X and f i(X) for these initializations. A comparison of their
RMSE values and L(X) values follows at the end of the chapter. As a reference point, we can
initialize the algorithm at the true values of X and see if the estimated path deviates from the true
one. We do not have access to any true F values, only the observed spike matrix Y, but the MAP
estimate of F conditioned on the true values of X is a very good estimate. This will be referred to as
the “optimal estimate” of F.

Initialization True X Optimal F
(1) True X and optimal F Yes Yes

(2) True X and estimated F Yes -
(3) PCA initialization of X and optimal F - Yes

(4) PCA initialization of X and estimated F - -
(5) Flat initialization of X and estimated F - -

Table 5.1: Comparing the different initializations.

46

5.4 Application to head direction data

5.4.1 Initialization 1: True X and optimal F
Figure 5.20 shows the final estimate obtained when using the true X and optimal F as initial estimates.
The RMSE of this estimate of X is 0.520. For comparison, the RMSE of an entirely random estimate
is 2.569. Figure 5.21 shows the inferred tuning curves. The estimate stays in place when initialized
with these values for F and X, and the position of the tuning curves are reconstructed well. The shapes
of the tuning curves are reconstructed fairly well except for neuron 2, which appears too narrow.

Figure 5.20: Final estimate of X compared to initialization and true path.

Figure 5.21: Posterior estimates of f i(X) based on final estimates of F and X. 95 % credible intervals are
shown with dotted lines.

47

Chapter 5. Applying the LMT model to simulated and experimental data

5.4.2 Initialization 2: True X and estimated F
Figure 5.22 shows the final estimate when starting at the true X and the initial estimate of F estimate
described in equation (5.5). The RMSE of this estimate is 1.499. The estimate of X appears shifted
away from the optimal starting point. Since the first update of F is skipped, the X estimate is shifted
away from the truth to match the provided F estimate in the first iteration. The estimated tuning
curves in Figure 5.23 are shifted due to the shifting of X. Here, the initial F estimate in equation (5.3)
may have been better, as this estimate was closer in shape to the true tuning curves.

Figure 5.22: Final estimate of X compared to initialization and true path.

Figure 5.23: Posterior estimates of f i(X) based on final estimates of F and X. 95 % credible intervals are
shown with dotted lines.

48

5.4 Application to head direction data

5.4.3 Initialization 3: PCA initialization of X and optimal F
Figure 5.24 shows the final estimate obtained when the initial X is found using PCA and the initial F
is the MAP estimate of F conditioned on the true X. The RMSE of this estimate is 1.857, the worst so
far after the random estimate. The PCA initialization does not capture points where X wraps around
from 2π to zero, like after time bin 4000. Since the model is unable to correct the PCA’s biggest
mistakes, this is reflected in the final estimate. The tuning curves in Figure 5.25 are affected by the
misplaced X estimate, which makes the tuning curves appear misplaced and with several peaks.

Figure 5.24: Final estimate of X compared to initialization and true path.

Figure 5.25: Posterior estimates of f i(X) based on final estimates of F and X. 95 % credible intervals are
shown with dotted lines.

49

Chapter 5. Applying the LMT model to simulated and experimental data

5.4.4 Initialization 4: PCA initialization of X and estimated F
Figure 5.26 shows the final estimate obtained when PCA is used to find the initial estimate of X and
F is initialized as described in equation (5.5). The RMSE of this estimate is 1.541. As in the previous
example, when not initialized at the true X values, the model does not capture the points where the
latent variable wraps around the border of the domain very well. This is reflected in the tuning curve
estimates in Figure 5.27, which appear misplaced and with several peaks.

Figure 5.26: Final estimate of X compared to initialization and true path.

Figure 5.27: Posterior estimates of f i(X) based on final estimates of F and X. 95 % credible intervals are
shown with dotted lines.

50

5.4 Application to head direction data

5.4.5 Initialization 5: Flat initialization of X and estimated F
Figure 5.28 shows the final estimate when X is initialized as a flat line and F is initialized as described
in equation (5.5) The RMSE of this estimate is 1.537. Interestingly, this RMSE value is slightly better
than the one found by using PCA to initialize X. Figure 5.29 shows the inferred tuning curves.

Figure 5.28: Final estimate of X compared to initialization and true path.

Figure 5.29: Posterior estimates of f i(X) based on final estimates of F and X. 95 % credible intervals are
shown with dotted lines.

51

Chapter 5. Applying the LMT model to simulated and experimental data

5.4.6 Comparison of different initializations
The RMSE and L(X) values for all the different initializations are listed in order of descending
RMSE value in table 5.2. The RMSE value for a PCA estimate of X with standard deviation 4 in the
Gaussian smoothing filter and a random estimate are also included. Notice that the estimate with the
highest L(X) value does not have the lowest RMSE value. The estimate found by initializing at the
true values of X and the optimal estimate of F has the lowest RMSE value. The flat initialization of
X is about equally good as the PCA initialization for this data.

By comparing the RMSE values of initializations (3) and (4), we see that when X is initialized
using PCA, it is better to use the initialization described in equation (5.5) than using the MAP estimate
of F based on the true X value. This may be because for the initialization in equation (5.5), the values
in F are lower and have less variance. This might make local maxima in L(X) less pronounced,
allowing more values for X to be considered in the first iteration, as hypothesized in section 5.2.

Lastly, in figures 5.26 and 5.28, the X estimate appears to be upside down for X values below
3. This is reflected in the estimated tuning curves in figures 5.27 and 5.29, where the inferred tuning
curves of neurons 0 and 2 would be improved by mirroring the inferred tuning curve values between
0 and 3 about the middle point x = 1.5.

Initialization RMSE value L(X) value
(1) True X and optimal F 0.520 -62593

(2) True X and estimated F 1.499 -63402
(5) Flat initialization of X and estimated F 1.537 -63945
(4) PCA initialization of X and estimated F 1.541 -64139

Just PCA estimate of X from Y 1.727 -74525
(3) PCA initialization of X and optimal F 1.857 -62271

Random estimate 2.569 -156869

Table 5.2: Comparison of RMSE values for different initializations and L(X) value.

52

Chapter 6
Discussion and further work

In this chapter, we summarize and interpret the results from Chapter 5, and suggest topics for further
research.

6.1 Simulated data
In section 5.1, we described how an affine transformation is needed to find the correct flipping, scaling,
and offset compared to the true latent variable. In addition, the LMT is exposed to suboptimal local
maxima where the estimate of X may, for example, be partly upside down. A partly upside down
estimate was observed for simulated data in Figure 5.3, and for head direction data in figures 5.26 and
5.28.

In section 5.2, we described how the LMT model depends on the initial estimates of F and X, and
showed how the observed spike data Y and principal component analysis can be used to find initial
estimates for both. We suspect that initializing the estimate of F with a “less confident” estimate
like in equation (5.9) makes the local maxima of L(X) less pronounced, allowing the algorithm to
explore a wider range of X values in the first iteration. Our attempts to determine whether an informed
estimate of X is better than just a flat initialization have been inconclusive.

6.2 Robustness evaluation
In the robustness evaluation in section 5.3, we observed that with our implementation of the LMT
there seems to be an optimal tuning strength value. The value of this optimal tuning strength depends
on the data length T , and the optimal tuning strength value is lower for higher T . For tuning strengths
lower than the optimal value, the RMSE values in Figure 5.15 are lower for longer data. This is in line
with our hypothesis. However, for tuning strengths that are higher than the optimal value, the RMSE
value is higher for longer data. This is unexpected. As mentioned in section 5.3, we suspect that the
local maxima become more pronounced as the tuning strength increases, trapping the estimate of X
in the iterative algorithm. We also suspect that in longer data, there will be more local maxima. This
may explain why the optimal tuning strength occurs at a lower value for higher T values.

As mentioned in section 5.3, similar observations have been made by Davidovich et al. (2020) in
the reconstruction of the hidden node problem. Like them, we used a Poisson likelihood to model
the spike counts. Further work should investigate the effect of exchanging this with another model
like the Bernoulli distribution, to see if the presence of an optimal tuning strength is an artifact of the
Poisson likelihood model.

53

Chapter 6. Discussion and further work

Knowledge of the optimal tuning strength could be used to select an optimal bin width since the
tuning strength is defined in terms of the expected number of spikes per bin. However, another factor
influencing the choice of optimal bin width is the latent variable’s smoothness in time. Increasing the
bin size would mean averaging over observations of the latent variable, meaning that some precision
will be lost.

Figure 5.16 showed that the L(X) function can not be used to pick between different estimates.
This could be investigated further by averaging the different estimates of F before computing the
L(X) values, since the estimate of F influences the L(X) value.

We acknowledge that some or all of these results may be due to our implementation and choices
of hyperparameters. For example, in our robustness evaluation, the tuning curves were defined as
Gaussian bumps with a certain width. Changing the width of these bumps, or selecting another tuning
curve shape could lead to other results. This is just one example of the many choices that have been
made in the modeling.

6.3 Head direction data
In section 5.4, we applied the model to head direction neurons recorded by Peyrache et al. (2015). In
contrast with the simulated data, these neurons may be tuned to other things in addition to the head
direction, even though we performed a screening beforehand by selecting only neurons that were
tuned to head direction. Furthermore, real neurons have autoregressive properties, meaning that a
neuron is more likely to spike if it has spiked in the near past. There is also connectivity between
neurons, and neither of these properties are included in the model. Therefore, we should not expect
these estimates to be as good as for simulated latent variables. Nevertheless, we observed that the
estimate stayed in place when initialized by the true X value and an estimate of F based on the true
X value. This indicates that the neurons are strongly tuned to head direction.

As mentioned for the simulated data, we were unable to conclude whether an informed initializa-
tion of X, like PCA, is better than a flat initial estimate in general. Figures 5.26 and 5.28 showed an
example where the PCA initialization and flat initialization led to similar RMSE values, with the flat
initialization being slightly better.

6.4 Future work
If the head direction neurons were tuned to more than one variable, the LMT might infer some com-
bination of these variables instead of just inferring one. The other variables could be modeled as
well, provided that their dimensionality and domain could be determined. It is expected that inferring
several variables would be more challenging than inferring just one, but we would like to investigate
this further.

We have used an iterative MAP procedure to infer the latent variable instead of the decoupled
Laplace approximation introduced by Wu et al. (2017). It would be interesting to investigate how this
algorithm compares with the decoupled Laplace approximation in terms of accuracy and computa-
tional complexity.

In all our data analysis, the hyperparameters θ = {σ, δ, r, l} were set through an extensive process
of trial and error, and the noise parameter σ2

ε was adjusted at every iteration until convergence, as
has been described. Ideally, the estimates of these hyperparameters should be found by optimization
rather than trial and error. In a supervised setting, prior knowledge of the tuning and the latent
variable may be used to select good initial estimates. In an unsupervised setting, it is our belief that
the observation matrix Y can be used to find reasonable initial estimates, as was done for F and X.

54

6.5 Conclusion

In our robustness evaluation, the number of simulated neurons was set to 100. It would be inter-
esting to investigate how the RMSE value and the ideal tuning strength would vary with the number
of observed neurons.

6.5 Conclusion
We showed how an iterative MAP procedure can be used instead of the decoupled Laplace approxi-
mation to infer the head direction from a neural recording, with a lower RMSE value than PCA. We
have contributed to the Latent Manifold Model (LMT) as described by Wu et al. (2017) by highlight-
ing some convergence issues that users of the method should be aware of. Care should be taken to
select good initial estimates for F and X, and we have described an initialization of F that worked
well in our application.

We made some details in the implementation explicit by showing how the deterministic train-
ing conditional inducing points approximation can be used to implement a computationally efficient
gradient-based optimization, and motivated the practice of lowering the noise term in a way reminis-
cent of simulated annealing and graduated optimization, which was not done by Wu et al. (2017).

Furthermore, we evaluated the feasibility of using the L(X) function to pick between different
estimates and shown that this function is not helpful for this use. In addition, we evaluated the
robustness of the algorithm with regards to different tuning strengths and data lengths and found that
there is an optimal tuning strength that depends on the data length. Whether this is an artifact of our
specific implementation or caused by the use of the Poisson distribution to model the neural activity
should be the topic of future research.

55

Chapter 6. Discussion and further work

56

Bibliography

Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., Keller, P.J., 2013. Whole-brain functional imag-
ing at cellular resolution using light-sheet microscopy. Nature methods 10, 413.

Anscombe, F.J., 1948. The transformation of poisson, binomial and negative-binomial data.
Biometrika 35, 246–254.

Bauer, M., van der Wilk, M., Rasmussen, C.E., 2016. Understanding probabilistic sparse gaussian
process approximations, in: Advances in neural information processing systems, pp. 1533–1541.

Byron, M.Y., Cunningham, J.P., Santhanam, G., Ryu, S.I., Shenoy, K.V., Sahani, M., 2009. Gaussian-
process factor analysis for low-dimensional single-trial analysis of neural population activity, in:
Advances in neural information processing systems, pp. 1881–1888.

Carrillo-Reid, L., Yang, W., Bando, Y., Peterka, D.S., Yuste, R., 2016. Imprinting and recalling
cortical ensembles. Science 353, 691–694.

Casella, G., Berger, R.L., 2002. Statistical inference. volume 2. Duxbury Pacific Grove, CA.

Chib, S., Greenberg, E., 1995. Understanding the metropolis-hastings algorithm. The american
statistician 49, 327–335.

Cunningham, J.P., Byron, M.Y., 2014. Dimensionality reduction for large-scale neural recordings.
Nature neuroscience 17, 1500.

Davidovich, I., Dunn, B.A., Hertz, J., Roudi, Y., 2020. Mean field theory inference and learning in
networks with stochastic natural exponential family neurons.

Gao, P., Ganguli, S., 2015. On simplicity and complexity in the brave new world of large-scale
neuroscience. Current opinion in neurobiology 32, 148–155.

Geyer, C.J., 1992. Practical markov chain monte carlo. Statistical science , 473–483.

Hanche-Olsen, H., 1997. The derivative of a determinant. Personal note available at http://www.
math.ntnu.no/˜hanche/notes/diffdet/diffdet.pdf .

Härdle, W., Simar, L., 2007. Applied multivariate statistical analysis. Springer.

Hazan, E., Levy, K.Y., Shalev-Shwartz, S., 2016. On graduated optimization for stochastic non-
convex problems, in: International conference on machine learning, pp. 1833–1841.

Horn, R., Johnson, C., 1985. Matrix analysis. Cambridge University, Cambridge, UK , p. 65.

57

http://www.math.ntnu.no/~hanche/notes/diffdet/diffdet.pdf
http://www.math.ntnu.no/~hanche/notes/diffdet/diffdet.pdf

Jensen, K.T., Kao, T.C., Tripodi, M., Hennequin, G., 2020. Manifold gplvms for discovering non-
euclidean latent structure in neural data. arXiv preprint arXiv:2006.07429 .

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95-
International Conference on Neural Networks, IEEE. pp. 1942–1948.

Lawrence, N.D., 2004. Gaussian process latent variable models for visualisation of high dimensional
data, in: Advances in neural information processing systems, pp. 329–336.

Macke, J.H., Buesing, L., Sahani, M., Chen, Z., 2015. Estimating state and parameters in state space
models of spike trains. Advanced state space methods for neural and clinical data 137.

Magnus, J.R., Neudecker, H., 1988. Matrix differential calculus with applications in statistics and
econometrics. John Wiley & Sons.

McCullagh, P., Nelder, J.A., 1989. Generalized linear models, volume 37. Monographs on statistics
and applied probability .

Mimica, B., 2019. Neural coding of behavior in the rodent associative cortices. PhD thesis, NTNU.

Nicolelis, M.A., Dimitrov, D., Carmena, J.M., Crist, R., Lehew, G., Kralik, J.D., Wise, S.P., 2003.
Chronic, multisite, multielectrode recordings in macaque monkeys. Proceedings of the National
Academy of Sciences 100, 11041–11046.

Paninski, L., 2004. Maximum likelihood estimation of cascade point-process neural encoding models.
Network: Computation in Neural Systems 15, 243–262.

Peyrache, A., Lacroix, M.M., Petersen, P.C., Buzsáki, G., 2015. Internally organized mechanisms of
the head direction sense. Nature neuroscience 18, 569.

Quiñonero-Candela, J., Rasmussen, C.E., 2005. A unifying view of sparse approximate gaussian
process regression. Journal of Machine Learning Research 6, 1939–1959.

Rasmussen, C., Williams, C., 2006. Gaussian Processes for Machine Learning. MIT press.

Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding.
Science 290, 2323–2326.

Rue, H., Martino, S., Chopin, N., 2009. Approximate bayesian inference for latent gaussian models
by using integrated nested laplace approximations. Journal of the royal statistical society: Series b
(statistical methodology) 71, 319–392.

Rybakken, E., Baas, N., Dunn, B., 2019. Decoding of neural data using cohomological feature
extraction. Neural computation 31, 68–93.

Steinmetz, N.A., Koch, C., Harris, K.D., Carandini, M., 2018. Challenges and opportunities for large-
scale electrophysiology with neuropixels probes. Current opinion in neurobiology 50, 92–100.

Stevenson, I.H., Kording, K.P., 2011. How advances in neural recording affect data analysis. Nature
neuroscience 14, 139.

Tenenbaum, J.B., De Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2323.

58

Teukolsky, S.A., Flannery, B.P., Press, W., Vetterling, W., 1992. Numerical recipes in c. SMR 693,
59–70.

Titsias, M.K., 2009. Variational model selection for sparse gaussian process regression. Report,
University of Manchester, UK .

Tobler, W.R., 1970. A computer movie simulating urban growth in the detroit region. Economic
geography 46, 234–240.

Truccolo, W., Eden, U.T., Fellows, M.R., Donoghue, J.P., Brown, E.N., 2005. A point process frame-
work for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate
effects. Journal of neurophysiology 93, 1074–1089.

Van Laarhoven, P.J., Aarts, E.H., 1987. Simulated annealing: Theory and applications, Springer, pp.
7–15.

Wu, A., Pashkovski, S., Datta, S.R., Pillow, J.W., 2018. Learning a latent manifold of odor represen-
tations from neural responses in piriform cortex, in: Advances in Neural Information Processing
Systems, pp. 5378–5388.

Wu, A., Roy, N.A., Keeley, S., Pillow, J.W., 2017. Gaussian process based nonlinear latent structure
discovery in multivariate spike train data, in: Advances in neural information processing systems,
pp. 3496–3505.

Wu, Z., 1996. The effective energy transformation scheme as a special continuation approach to
global optimization with application to molecular conformation. SIAM Journal on Optimization 6,
748–768.

Zhu, C., Byrd, R.H., Lu, P., Nocedal, J., 1997. Algorithm 778: L-bfgs-b: Fortran subroutines
for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software
(TOMS) 23, 550–560.

59

60

Appendix A
Theorems and derivations

A.1 Matrix calculus

A.1.1 Maximizing the fraction of two quadratic forms
The following theorem from Härdle and Simar (2007) is used to find the optimal lower dimensional
manifold in principal component analysis (section 3.4). If two matrices A and B are symmetric and
B is positive definite, then the maximum of xTAx

xTBx
is given by the largest eigenvalue of B−1A. More

generally,

maxx
xTAx

xTBx
= λ1 ≥ λ2 ≥ · · · ≥ λp = minx

xTAx

xTBx
(A.1)

where λ1, ..., λp are the eigenvalues of B−1A.

A.1.2 Matrix inversion lemma
The matrix inversion lemma (Teukolsky et al., 1992) provides a computational shortcut when calcu-
lating the inverse of an n by n matrix of the following form:

(UWV T + Z)−1 = Z−1 − Z−1U(W−1 + V TZ−1U)−1V TZ−1 (A.2)

If Z = σ2I , we get:

(UWV T + σ2I)−1 = σ−2I − σ−2U(W−1 + V Tσ−2IU)−1V Tσ−2I

= σ−2I − σ−2U(σ2W−1 + V TU)−1V T
(A.3)

This can be used to efficiently invert the approximate covariance matrix of a Gaussian process, where
U = V = Kf ,u and W = K−1u,u:

(Kf ,uK
−1
u,uK

T
f ,u + σ2I)−1 = σ−2I − σ−2Kf ,u(σ2Ku,u +KT

f ,uKf ,u)−1KT
f ,u (A.4)

A.1.3 Theorem 1.3.22 from Horn and Johnson (1985)
Let pAB(t) be the characteristic polynomial pAB(t) = |tI − AB|, where | · | is the determinant. The-
orem 1.3.22 in “Matrix Analysis” by Horn and Johnson (1985) states the following for two matrices
A and B, where the notation has been changed slightly to match the notation of this thesis:

“Suppose that A ∈ Rm×n, B ∈ Rn×m with m ≤ n. Then the n eigenvalues of BA are the m
eigenvalues of AB together with n−m zeroes; that is, pBA(t) = tn−mpAB(t). If m = n and at least
one of A or B is nonsingular, than AB and BA are similar.”

61

A.1.4 Matrix differentiation
Differentiating a matrix with regards to a scalar is done elementwise for the matrix.

∂

∂x
{A}ij = {∂Ai,j

∂x
}ij (A.5)

Differentiating the inverse of a matrix is done like this:

∂A−1

∂x
= −A−1∂A

∂x
A−1 (A.6)

Differentiating the determinant of a matrix is done using Jacobi’s formula. Though this is a
classical result, Magnus and Neudecker (1988) is often cited as a reference. The formula states:

d

dx
detA(x) = trace

(
adj(A(x))

dA(x)

dx

)
(A.7)

where adj(a(x)) is the adjugate, or classical adjoint, of A. As noted by Hanche-Olsen (1997), the
following holds when A is invertible:

d

dx
log detA(x) = trace

(
A(x)−1

dA(x)

dx

)
(A.8)

A.2 Bernoulli spike model

Let πi,t =
exp(fi,t)

1+exp(fi,t)
= P (yi,t = 1) be the spike probability. The Bernoulli likelihood is

p(yi,t|πi,t) = π
yi,t
i,t (1− πi,t)1−yi,t (A.9)

or equivalently, on the form of the exponential family,

p(yi,t|fi,t) = exp
(
yi,tfi,t − log(1 + exp(fi,t))

)
=⇒ log p(yi,t|fi,t) = yi,tfi,t − log(1 + exp(fi,t))

(A.10)

This means that the unnormalized log posterior of f i (the objective function) becomes

Ψ(f i) := log p(yi|f i) + log p(f i|X)

=
T∑
t=1

yi,tfi,t − log(1 + exp(fi,t))−
1

2
fTi K

−1
x f i − log

(
(2π)

T
2 |Kx|

1
2

) (A.11)

The first derivative of Ψ(f i) is:

∂

∂fi,t
Ψ(f i) =yi,t −

exp(fi,t)

1 + exp(fi,t)
−

T∑
j=1

fi,jK
−1
x{t,j}

⇐⇒ ∇Ψ(f i) =yi − eberni −K−1x f i,

(A.12)

where the vector eberni has elements eberni,t =
exp(fi,t)

1+exp(fi,t)
, t = 1, . . . , T . The second derivative of Ψ(f i)

is
∂2

∂fi,t1∂fi,t2
Ψ(f i) =

{
exp(fi,t1)

(1+exp(fi,t1))
2 −Kx{t1,t1} for t1 = t2

−Kx{t1,t2} for t1 6= t2

=⇒ ∇∇Ψ(f i) = −I ẽberni −K−1x

(A.13)

where I represents the identity matrix of size T and the vector ẽberni has elements ẽberni,t =
exp(fi,t)

(1+exp(fi,t))2
.

62

Appendix B
Python code

The following Python code shows the implementation in three parts: a shared function library, the ap-
plication to the head direction dataset, and the robustness evaluation. The entire repository is available
at https://github.com/evenmm.

B.1 Function library
The function library is shared between the application to head direction and the robustness evaluation.

function library.py

1 from scipy import *
2 import scipy.io
3 import scipy.ndimage
4 import numpy as np
5 import scipy.optimize as spoptim
6 import numpy.random
7 import matplotlib
8 #matplotlib.use(’Agg’) # When running on cluster, plots cannot be shown and this

must be used
9 import matplotlib.pyplot as plt

10 import time
11 import sys
12 plt.rc(’image’, cmap=’viridis’)
13 from scipy import optimize
14 numpy.random.seed(13)
15 from multiprocessing import Pool
16 from sklearn.decomposition import PCA
17

18 # Peyrache data with head direction neurons
19 if sys.argv[0] == "em-algorithm-peyrache-data.py":
20 from parameter_file_peyrache import *
21

22 # Robustness evaluation
23 elif sys.argv[0] == "cluster-parallel-robustness-evaluation.py":
24 from parameter_file_robustness import *
25

26 # Example plotting
27 elif sys.argv[0] == "example_plotting.py":
28 from parameter_file_exampleplotting import *

63

https://github.com/evenmm

29

30 ######################
31 # Covariance kernels #
32 ######################
33

34 def squared_exponential_covariance(xvector1, xvector2, sigma, delta):
35 if COVARIANCE_KERNEL_KX == "nonperiodic":
36 distancesquared = scipy.spatial.distance.cdist(xvector1, xvector2, ’

sqeuclidean’)
37 if COVARIANCE_KERNEL_KX == "periodic":
38 # This handles paths that stretches across anywhere as though the domain

is truly periodic
39 # First put every time point between 0 and 2pi
40 xvector1 = xvector1 % (2*np.pi)
41 xvector2 = xvector2 % (2*np.pi)
42 # Then take care of periodicity
43 distancesquared_1 = scipy.spatial.distance.cdist(xvector1, xvector2, ’

sqeuclidean’)
44 distancesquared_2 = scipy.spatial.distance.cdist(xvector1+2*np.pi,

xvector2, ’sqeuclidean’)
45 distancesquared_3 = scipy.spatial.distance.cdist(xvector1-2*np.pi,

xvector2, ’sqeuclidean’)
46 min_1 = np.minimum(distancesquared_1, distancesquared_2)
47 distancesquared = np.minimum(min_1, distancesquared_3)
48 return sigma * exp(-distancesquared/(2*delta**2))
49

50 def exponential_covariance(tvector1, tvector2, sigma, delta):
51 absolutedistance = scipy.spatial.distance.cdist(tvector1, tvector2, ’

euclidean’)
52 return sigma * exp(-absolutedistance/delta)
53

54 ########################
55 # Covariance matrices #
56 ########################
57 K_t = exponential_covariance(np.linspace(1,T,T).reshape((T,1)),np.linspace(1,T,T

).reshape((T,1)), sigma_x, delta_x)
58 K_t_inverse = np.linalg.inv(K_t)
59

60 #########################
61 ## Likelihood functions #
62 #########################
63

64 # NEGATIVE Loglikelihood, gradient and Hessian. minimize to maximize. Equation
(4.17)++

65 def f_loglikelihood_bernoulli(f_i, sigma_n, y_i, K_xg_prev, K_gg): # Psi
66 likelihoodterm = sum(np.multiply(y_i, f_i) - np.log(1+np.exp(f_i))) #

Corrected 16.03 from sum(np.multiply(y_i, (f_i - np.log(1+np.exp(f_i)))) +
np.multiply((1-y_i), np.log(1- np.divide(np.exp(f_i), 1 + np.exp(f_i)))))

67 priorterm_1 = -0.5*sigma_n**-2 * np.dot(f_i.T, f_i)
68 fT_k = np.dot(f_i, K_xg_prev)
69 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_xg_prev.T,

K_xg_prev))
70 priorterm_2 = 0.5*sigma_n**-2 * np.dot(np.dot(fT_k, smallinverse), fT_k.T)
71 return - (likelihoodterm + priorterm_1 + priorterm_2)
72 def f_jacobian_bernoulli(f_i, sigma_n, y_i, K_xg_prev, K_gg):
73 yf_term = y_i - np.divide(np.exp(f_i), 1 + np.exp(f_i))
74 priorterm_1 = -sigma_n**-2 * f_i
75 kTf = np.dot(K_xg_prev.T, f_i)

64

76 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_xg_prev.T,
K_xg_prev))

77 priorterm_2 = sigma_n**-2 * np.dot(K_xg_prev, np.dot(smallinverse, kTf))
78 f_derivative = yf_term + priorterm_1 + priorterm_2
79 return - f_derivative
80 def f_hessian_bernoulli(f_i, sigma_n, y_i, K_xg_prev, K_gg):
81 e_tilde = np.divide(np.exp(f_i), (1 + np.exp(f_i))**2)
82 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_xg_prev.T,

K_xg_prev))
83 f_hessian = - np.diag(e_tilde) - sigma_n**-2 * np.identity(T) + sigma_n**-2

* np.dot(K_xg_prev, np.dot(smallinverse, K_xg_prev.T))
84 return - f_hessian
85

86 # NEGATIVE Loglikelihood, gradient and Hessian. minimize to maximize.
87 def f_loglikelihood_poisson(f_i, sigma_n, y_i, K_xg_prev, K_gg):
88 likelihoodterm = sum(np.multiply(y_i, f_i) - np.exp(f_i))
89 priorterm_1 = -0.5*sigma_n**-2 * np.dot(f_i.T, f_i)
90 fT_k = np.dot(f_i, K_xg_prev)
91 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_xg_prev.T,

K_xg_prev))
92 priorterm_2 = 0.5*sigma_n**-2 * np.dot(np.dot(fT_k, smallinverse), fT_k.T)
93 return - (likelihoodterm + priorterm_1 + priorterm_2)
94

95 def f_jacobian_poisson(f_i, sigma_n, y_i, K_xg_prev, K_gg):
96 yf_term = y_i - np.exp(f_i)
97 priorterm_1 = -sigma_n**-2 * f_i
98 kTf = np.dot(K_xg_prev.T, f_i)
99 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_xg_prev.T,

K_xg_prev))
100 priorterm_2 = sigma_n**-2 * np.dot(K_xg_prev, np.dot(smallinverse, kTf))
101 f_derivative = yf_term + priorterm_1 + priorterm_2
102 return - f_derivative
103 def f_hessian_poisson(f_i, sigma_n, y_i, K_xg_prev, K_gg):
104 e_poiss = np.exp(f_i)
105 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_xg_prev.T,

K_xg_prev))
106 f_hessian = - np.diag(e_poiss) - sigma_n**-2*np.identity(T) + sigma_n**-2 *

np.dot(K_xg_prev, np.dot(smallinverse, K_xg_prev.T))
107 return - f_hessian
108

109 # L function
110 def x_posterior_no_la(X_estimate, sigma_n, F_estimate, K_gg, x_grid_induce):
111 start = time.time()
112 K_xg = squared_exponential_covariance(X_estimate.reshape((T,1)),

x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)
113 K_gx = K_xg.T
114 stop = time.time()
115 if SPEEDCHECK:
116 print("Speedcheck of L function:")
117 print("Making Kxg :", stop-start)
118

119 start = time.time()
120 #Kx_inducing = np.matmul(np.matmul(K_xg, K_gg_inverse), K_gx) + sigma_n**2
121 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_gx, K_xg))
122 # Kx_inducing_inverse = sigma_n**-2*np.identity(T) - sigma_n**-2 * np.matmul

(np.matmul(K_xg, smallinverse), K_gx)
123 tempmatrix = np.matmul(np.matmul(K_xg, smallinverse), K_gx)
124 stop = time.time()

65

125 if SPEEDCHECK:
126 print("Making small/tempmatrx:", stop-start)
127

128 # yf_term ##########
129 ####################
130 #start = time.time()
131 #if LIKELIHOOD_MODEL == "bernoulli": # equation 4.26
132 # yf_term = sum(np.multiply(y_spikes, F_estimate) - np.log(1 + np.exp(

F_estimate)))
133 #elif LIKELIHOOD_MODEL == "poisson": # equation 4.43
134 # yf_term = sum(np.multiply(y_spikes, F_estimate) - np.exp(F_estimate))
135 #stop = time.time()
136 #if SPEEDCHECK:
137 # print("yf term :", stop-start)
138

139 # f prior term #####
140 ####################
141 start = time.time()
142 f_prior_term_1 = sigma_n**-2 * np.trace(np.matmul(F_estimate, F_estimate.T))
143 fK = np.matmul(F_estimate, tempmatrix)
144 fKf = np.matmul(fK, F_estimate.T)
145 f_prior_term_2 = - sigma_n**-2 * np.trace(fKf)
146

147 f_prior_term = - 0.5 * (f_prior_term_1 + f_prior_term_2)
148 stop = time.time()
149 if SPEEDCHECK:
150 print("f prior term :", stop-start)
151

152 # logdet term ######
153 ####################
154 #logdet_term = - 0.5 * N * np.log(np.linalg.det(Kx_inducing))
155 # smallinverse = np.linalg.inv(np.matmul(K_gx, K_xg) + K_gg*sigma_n**2)
156

157 start = time.time()
158 logDetS1 = np.log(np.linalg.det(np.matmul(K_gx, K_xg) + K_gg*sigma_n**2)) -

np.log(np.linalg.det(K_gg)) + (T-N_inducing_points) * np.log(sigma_n**2)
159 logdet_term = - 0.5 * N * logDetS1
160 stop = time.time()
161 if SPEEDCHECK:
162 print("logdet term :", stop-start)
163

164 # x prior term #####
165 ####################
166 start = time.time()
167 xTKt = np.dot(X_estimate.T, K_t_inverse) # Inversion trick for this too? No.

If we don’t do Fourier then we are limited by this.
168 x_prior_term = - 0.5 * np.dot(xTKt, X_estimate)
169 stop = time.time()
170 if SPEEDCHECK:
171 print("X prior term :", stop-start)
172 print("logdet_term", logdet_term)
173 print("f_prior_term", f_prior_term)
174 print("x_prior_term", x_prior_term)
175 posterior_loglikelihood = logdet_term + f_prior_term + x_prior_term #+

yf_term
176 return - posterior_loglikelihood
177

178 # Gradient of L

66

179 def x_jacobian_no_la(X_estimate, sigma_n, F_estimate, K_gg, x_grid_induce):
180 ####################
181 # Initial matrices #
182 ####################
183 start = time.time()
184 K_xg = squared_exponential_covariance(X_estimate.reshape((T,1)),

x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)
185 K_gx = K_xg.T
186 stop = time.time()
187 if SPEEDCHECK:
188 print("\nSpeedcheck of x_jacobian function:")
189 print("Making Kxg :", stop-start)
190

191 start = time.time()
192 B_matrix = np.matmul(K_gx, K_xg) + (sigma_n**2) * K_gg
193 B_matrix_inverse = np.linalg.inv(B_matrix)
194 stop = time.time()
195 if SPEEDCHECK:
196 print("Making B and B inverse:", stop-start)
197

198 start = time.time()
199 #Kx_inducing = np.matmul(np.matmul(K_xg, K_gg_inverse), K_gx) + sigma_n**2
200 #smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_gx, K_xg))
201 # Kx_inducing_inverse = sigma_n**-2*np.identity(T) - sigma_n**-2 * np.matmul

(np.matmul(K_xg, smallinverse), K_gx)
202 stop = time.time()
203 if SPEEDCHECK:
204 print("Making small/tempmatrx:", stop-start)
205

206 ####################
207 # logdet term ######
208 ####################
209 start = time.time()
210

211 ## Evaluate the derivative of K_xg. Row t of this matrix holds the nonzero
row of the matrix d/dx_t K_xg

212 d_Kxg = scipy.spatial.distance.cdist(X_estimate.reshape((T,1)),x_grid_induce
.reshape((N_inducing_points,1)), lambda u, v: -(u-v)*np.exp(-(u-v)**2/(2*
delta_f_fit**2)))

213 d_Kxg = d_Kxg*sigma_f_fit*(delta_f_fit**-2)
214

215 ## Reshape K_gx and K_xg to speed up matrix multiplication
216 K_g_column_tensor = K_gx.T.reshape((T, N_inducing_points, 1)) # Tensor with

T depth containing single columns of length N_ind
217 d_Kx_row_tensor = d_Kxg.reshape((T, 1, N_inducing_points)) # Tensor with T

depth containing single rows of length N_ind
218

219 # Matrix multiply K_gx and d(K_xg)
220 product_Kgx_dKxg = np.matmul(K_g_column_tensor, d_Kx_row_tensor) # 1000 by

30 by 30
221

222 # Sum with transpose
223 trans_sum_K_dK = product_Kgx_dKxg + np.transpose(product_Kgx_dKxg, axes

=(0,2,1))
224

225 # Create Bˆ-1 copies for vectorial matrix multiplication
226 B_inv_tensor = np.repeat([B_matrix_inverse],T,axis=0)
227

67

228 # Then tensor multiply Bˆ-1 with all the different trans_sum_K_dK
229 big_tensor = np.matmul(B_inv_tensor, trans_sum_K_dK)
230

231 # Take trace of each individually
232 trace_array = np.trace(big_tensor, axis1=1, axis2=2)
233

234 # Multiply by - N/2
235 logdet_gradient = - N/2 * trace_array
236

237 stop = time.time()
238 if SPEEDCHECK:
239 print("logdet term :", stop-start)
240

241 ####################
242 # f prior term ##### (speeded up 10x)
243 ####################
244 start = time.time()
245 fMf = np.zeros((T,N,N))
246

247 ## New hot take:
248 # Elementwise in the sum, priority on things with dim T, AND things that don

’t need to be vectorized *first*.
249 # Wrap things in from the sides to sandwich the tensor.
250 f_Kx = np.matmul(F_estimate, K_xg)
251 f_Kx_Binv = np.matmul(f_Kx, B_matrix_inverse)
252 #Binv_Kg_f = np.transpose(f_Kx_Binv)
253

254 #d_Kg_column_tensor = np.transpose(d_Kx_row_tensor, axes=(0,2,1))
255

256 # partial derivatives need tensorization
257 # f_dKx = np.matmul(F_estimate, d_Kxg)
258 f_column_tensor = F_estimate.T.reshape((T, N, 1))
259 f_dKx_tensor = np.matmul(f_column_tensor, d_Kx_row_tensor) # (N x N_inducing

) matrices
260 dKg_f_tensor = np.transpose(f_dKx_tensor, axes=(0,2,1))
261

262 f_Kx_Binv_copy_tensor = np.repeat([f_Kx_Binv], T, axis=0)
263 Binv_Kg_f_copy_tensor = np.transpose(f_Kx_Binv_copy_tensor, axes=(0,2,1)) #

repeat([Binv_Kg_f], T, axis=0)
264

265 ## A: f dKx Binv Kgx f
266 fMf += np.matmul(f_dKx_tensor, Binv_Kg_f_copy_tensor)
267

268 ## C: - f Kx Binv Kg dKx Binv Kg f
269 Kg_dKx_tensor = np.matmul(K_g_column_tensor, d_Kx_row_tensor)
270 f_Kx_Binv_Kg_dKx_tensor = np.matmul(f_Kx_Binv_copy_tensor, Kg_dKx_tensor)
271 fMf -= np.matmul(f_Kx_Binv_Kg_dKx_tensor, Binv_Kg_f_copy_tensor)
272

273 ## B: - f Kx Binv dKg Kx Binv Kg f
274 dKg_Kx_tensor = np.transpose(Kg_dKx_tensor, axes=(0,2,1))
275 f_Kx_Binv_dKg_Kx_tensor = np.matmul(f_Kx_Binv_copy_tensor, dKg_Kx_tensor)
276 fMf -= np.matmul(f_Kx_Binv_dKg_Kx_tensor, Binv_Kg_f_copy_tensor)
277

278 ## D: f Kx Binv dKg f
279 fMf += np.matmul(f_Kx_Binv_copy_tensor, dKg_f_tensor)
280

281 ## Trace for each matrix in the tensor
282 fMfsum = np.trace(fMf, axis1=1, axis2=2)

68

283 f_prior_gradient = sigma_n**(-2) / 2 * fMfsum
284

285 stop = time.time()
286 if SPEEDCHECK:
287 print("f prior term :", stop-start)
288

289 ####################
290 # x prior term #####
291 ####################
292 start = time.time()
293 x_prior_gradient = (-1) * np.dot(X_estimate.T, K_t_inverse)
294 stop = time.time()
295 if SPEEDCHECK:
296 print("X prior term :", stop-start)
297 ####################
298 x_gradient = logdet_gradient + f_prior_gradient + x_prior_gradient
299 return - x_gradient
300

301 def just_fprior_term(X_estimate):
302 K_xg = squared_exponential_covariance(X_estimate.reshape((T,1)),

x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)
303 K_gx = K_xg.T
304 #Kx_inducing = np.matmul(np.matmul(K_xg, K_gg_inverse), K_gx) + sigma_n**2
305 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_gx, K_xg))
306 # Kx_inducing_inverse = sigma_n**-2*np.identity(T) - sigma_n**-2 * np.matmul

(np.matmul(K_xg, smallinverse), K_gx)
307 tempmatrix = np.matmul(np.matmul(K_xg, smallinverse), K_gx)
308

309 # f prior term #####
310 ####################
311 f_prior_term_1 = sigma_n**-2 * np.trace(np.matmul(F_estimate, F_estimate.T))
312 fK = np.matmul(F_estimate, tempmatrix)
313 fKf = np.matmul(fK, F_estimate.T)
314 f_prior_term_2 = - sigma_n**-2 * np.trace(fKf)
315

316 f_prior_term = - 0.5 * (f_prior_term_1 + f_prior_term_2)
317

318 posterior_loglikelihood = f_prior_term #+ logdet_term #+ x_prior_term
319 return - posterior_loglikelihood
320

321 ###
322 ##### Posterior inference of tuning curves on a grid ######
323 ###
324

325 def posterior_f_inference(X_estimate, F_estimate, sigma_n, y_spikes, path,
x_grid_for_plotting, bins_for_plotting, peak_f_offset, baseline_f_value,
binsize):

326 #X_estimate = np.copy(path)
327 #print("Setting X_estimate = path for posterior F")
328

329 if N_inducing_points == N_plotgridpoints:
330 ###
331 # Find posterior prediction of log tuning curve #
332 ###
333

334 # Inducing points (g refers to inducing points. Originally u did.)
335 x_grid_induce = np.linspace(min_inducing_point, max_inducing_point,

N_inducing_points)

69

336

337 # K_xg = K_fu
338 K_xg = squared_exponential_covariance(X_estimate.reshape((T,1)),

x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)
339 K_gx = K_xg.T
340

341 # K_gg = K_uu and stands for inducing points
342 K_gg_plain = squared_exponential_covariance(x_grid_induce.reshape((

N_inducing_points,1)),x_grid_induce.reshape((N_inducing_points,1)),
sigma_f_fit, delta_f_fit)

343 # Adding tiny jitter term to diagonal of K_gg (not the same as sigma_n
that we’re adding to the diagonal of K_xgK_ggˆ-1K_gx later on)

344 K_gg = K_gg_plain + jitter_term*np.identity(N_inducing_points)
345 K_gg_inverse = np.linalg.inv(K_gg)
346

347 # Plot K_gg inverse
348 fig, ax = plt.subplots()
349 kxmat = ax.matshow(K_gg_inverse, cmap=plt.cm.Blues)
350 fig.colorbar(kxmat, ax=ax)
351 plt.title("K_gg_inverse")
352 plt.tight_layout()
353 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-posterior-f-infrence-

K_gg_inverse.png")
354

355 # Infer mean on the grid
356 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_gx, K_xg))
357 Q_xx_plus_sigma_inverse = sigma_n**-2 * np.identity(T) - sigma_n**-2 *

np.matmul(np.matmul(K_xg, smallinverse), K_gx)
358 Kxx_times_F = np.matmul(Q_xx_plus_sigma_inverse, F_estimate.T)
359 #mu_posterior = np.matmul(Q_plotgrid_x, Kxx_times_F) # Here we have Kx

crossover. Check what happens if swapped with Q = KKK
360 mu_posterior = np.matmul(K_gx, Kxx_times_F)
361

362 # Calculate standard deviations
363 #sigma_posterior = K_plotgrid_plotgrid - np.matmul(Q_plotgrid_x, np.

matmul(Q_xx_plus_sigma_inverse, Q_x_plotgrid))
364 sigma_posterior = K_gg - np.matmul(K_gx, np.matmul(

Q_xx_plus_sigma_inverse, K_xg))
365

366 else:
367 # If the number of plotgridpoints is different from inducing points, we

do this:
368 ## A new grid is introduced here for plotting
369

370 ###
371 # Find posterior prediction of log tuning curve #
372 ###
373

374 # Inducing points (g efers to inducing points. Originally u did.)
375 x_grid_induce = np.linspace(min_inducing_point, max_inducing_point,

N_inducing_points)
376

377 # K_xg = K_fu
378 K_xg = squared_exponential_covariance(X_estimate.reshape((T,1)),

x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)
379 K_gx = K_xg.T
380

381 # K_gg = K_uu and stands for inducing points

70

382 K_gg_plain = squared_exponential_covariance(x_grid_induce.reshape((
N_inducing_points,1)),x_grid_induce.reshape((N_inducing_points,1)),
sigma_f_fit, delta_f_fit)

383 # Adding tiny jitter term to diagonal of K_gg (not the same as sigma_n
that we’re adding to the diagonal of K_xgK_ggˆ-1K_gx later on)

384 K_gg = K_gg_plain + jitter_term*np.identity(N_inducing_points)
385 K_gg_inverse = np.linalg.inv(K_gg)
386

387 # Plot K_gg inverse
388 fig, ax = plt.subplots()
389 kxmat = ax.matshow(K_gg_inverse, cmap=plt.cm.Blues)
390 fig.colorbar(kxmat, ax=ax)
391 plt.title("K_gg_inverse")
392 plt.tight_layout()
393 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-posterior-f-infrence-

K_gg_inverse.png")
394

395 # Connect x to plotgrid through inducing points
396 K_g_plotgrid = squared_exponential_covariance(x_grid_induce.reshape((

N_inducing_points,1)),x_grid_for_plotting.reshape((N_plotgridpoints,1)),
sigma_f_fit, delta_f_fit)

397 K_plotgrid_g = K_g_plotgrid.T
398

399 # Plot K_g_plotgrid
400 fig, ax = plt.subplots()
401 kx_cross_mat = ax.matshow(K_g_plotgrid, cmap=plt.cm.Blues)
402 fig.colorbar(kx_cross_mat, ax=ax)
403 plt.title("K_g_plotgrid")
404 plt.tight_layout()
405 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-posterior-f-infrence-

K_g_plotgrid.png")
406 print("Making spatial covariance matrice: Kx grid")
407

408 K_plotgrid_plotgrid = squared_exponential_covariance(x_grid_for_plotting
.reshape((N_plotgridpoints,1)),x_grid_for_plotting.reshape((N_plotgridpoints
,1)), sigma_f_fit, delta_f_fit)

409

410 # Plot K_plotgrid_plotgrid
411 fig, ax = plt.subplots()
412 kxmat = ax.matshow(K_plotgrid_plotgrid, cmap=plt.cm.Blues)
413 fig.colorbar(kxmat, ax=ax)
414 plt.title("K_plotgrid_plotgrid")
415 plt.tight_layout()
416 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-posterior-f-infrence-

K_plotgrid_plotgrid.png")
417

418 Q_plotgrid_x = np.matmul(np.matmul(K_plotgrid_g, K_gg_inverse), K_gx)
419 Q_x_plotgrid = Q_plotgrid_x.T
420

421 # Infer mean on the grid
422 smallinverse = np.linalg.inv(K_gg*sigma_n**2 + np.matmul(K_gx, K_xg))
423 Q_xx_plus_sigma_inverse = sigma_n**-2 * np.identity(T) - sigma_n**-2 *

np.matmul(np.matmul(K_xg, smallinverse), K_gx)
424 Kxx_times_F = np.matmul(Q_xx_plus_sigma_inverse, F_estimate.T)
425 mu_posterior = np.matmul(Q_plotgrid_x, Kxx_times_F) # Here we have Kx

crossover. Check what happens if swapped with Q = KKK
426

427 # Calculate standard deviations

71

428 sigma_posterior = K_plotgrid_plotgrid - np.matmul(Q_plotgrid_x, np.
matmul(Q_xx_plus_sigma_inverse, Q_x_plotgrid))

429 ###
430 ### End of special treatment for different n.o. plotgridpoints ###
431 ##
432

433 # Plot posterior covariance matrix
434 fig, ax = plt.subplots()
435 sigma_posteriormat = ax.matshow(sigma_posterior, cmap=plt.cm.Blues)
436 fig.colorbar(sigma_posteriormat, ax=ax)
437 plt.title("Posterior covariance matrix")
438 plt.tight_layout()
439 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-posterior-f-infrence-

sigma_posterior.png")
440

441 ###
442 # Plot tuning curve with confidence intervals #
443 ###
444 standard_deviation = [np.sqrt(np.diag(sigma_posterior))]
445 print("posterior marginal standard deviation:\n",standard_deviation[0])
446 standard_deviation = np.repeat(standard_deviation, N, axis=0)
447 upper_confidence_limit = mu_posterior + 1.96*standard_deviation.T
448 lower_confidence_limit = mu_posterior - 1.96*standard_deviation.T
449

450 if LIKELIHOOD_MODEL == "bernoulli":
451 h_estimate = np.divide(np.exp(mu_posterior), (1 + np.exp(mu_posterior))

)
452 h_upper_confidence_limit = np.exp(upper_confidence_limit) / (1 + np.exp(

upper_confidence_limit))
453 h_lower_confidence_limit = np.exp(lower_confidence_limit) / (1 + np.exp(

lower_confidence_limit))
454 if LIKELIHOOD_MODEL == "poisson":
455 h_estimate = np.exp(mu_posterior)
456 h_upper_confidence_limit = np.exp(upper_confidence_limit)
457 h_lower_confidence_limit = np.exp(lower_confidence_limit)
458

459 mu_posterior = mu_posterior.T
460 h_estimate = h_estimate.T
461 h_upper_confidence_limit = h_upper_confidence_limit.T
462 h_lower_confidence_limit = h_lower_confidence_limit.T
463

464 ## Find true rate on plotgrid
465 #if len(peak_lambda_array) > 1:
466 # print("NBNB! Take care which peak_lambda posterior F are found for!!!")
467 #peak_lambda_global = peak_lambda_array[-1]
468 #peak_f_offset = np.log(peak_lambda_global) - baseline_f_value
469

470 ## ONLY FOR SIMULATED DATA THAT HAS A BUMPFUNCTION
471 #true_plot_f = np.zeros((N, N_plotgridpoints))
472 #for i in range(N):
473 # for t in range(N_plotgridpoints):
474 # true_plot_f[i,t] = bumptuningfunction(x_grid_for_plotting[t], i,

peak_f_offset)
475 #true_expectation = np.exp(true_plot_f) #poisson
476

477 ## Find observed firing rate
478 observed_mean_spikes_in_bins = zeros((N, N_plotgridpoints))
479 for i in range(N):

72

480 for x in range(N_plotgridpoints):
481 timesinbin = (path>bins_for_plotting[x])*(path<bins_for_plotting[x

+1])
482 if(sum(timesinbin)>0):
483 observed_mean_spikes_in_bins[i,x] = mean(y_spikes[i, timesinbin

])
484 elif i==0:
485 print("No observations of X between",bins_for_plotting[x],"and",

bins_for_plotting[x+1],".")
486 for i in range(N):
487 max_firing_rate_per_bin = math.ceil(max(1, 1.05*max(

observed_mean_spikes_in_bins[i,:]), 1.05*max(h_estimate[i,:])))
488 max_firing_rate_per_second = int(max_firing_rate_per_bin / binsize)
489 plt.figure()
490 plt.plot(x_grid_for_plotting, observed_mean_spikes_in_bins[i,:], color=

plt.cm.viridis(0.1), label="Observed average")
491 #plt.plot(x_grid_for_plotting, true_expectation[i,:], color=plt.cm.

viridis(0.3), label="True expectation")
492 plt.plot(x_grid_for_plotting, h_estimate[i,:], color=plt.cm.viridis(0.5)

, label="Estimated expectation")
493 plt.plot(x_grid_for_plotting, h_lower_confidence_limit[i,:], "--", color

=plt.cm.viridis(0.5))
494 plt.plot(x_grid_for_plotting, h_upper_confidence_limit[i,:], "--", color

=plt.cm.viridis(0.5))
495 #plt.plot(x_grid_for_plotting, mu_posterior[i,:], color=plt.cm.viridis

(0.5))
496 #plt.title("Expected and average number of spikes, neuron "+str(i)) #

spikes
497 plt.title("Neuron "+str(i)+" with "+str(int(sum(y_spikes[i,:])))+"

spikes")
498 plt.yticks(range(0,1+max_firing_rate_per_bin))
499 plt.ylim(ymin=0., ymax=max(1, 1.05*max_firing_rate_per_bin))
500 #plt.yticks([0, max(1, 1.05*max(observed_mean_spikes_in_bins[i,:]),

1.05*max(h_estimate[i,:]))])
501 plt.xlabel("x")
502 plt.ylabel("Number of spikes")
503 plt.legend()
504 plt.tight_layout()
505 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-posterior-f-infrence-

tuning-"+str(i)+".png")
506

507 # Plot observed tuning for all neurons together
508 colors = [plt.cm.viridis(t) for t in np.linspace(0, 1, N)]
509 plt.figure()
510 for i in range(N):
511 plt.plot(x_grid_for_plotting, observed_mean_spikes_in_bins[i,:], color=

colors[i])
512 # plt.plot(x_grid_for_plotting, h_estimate[neuron[i,j],:], color=plt.cm.

viridis(0.5))
513 plt.xlabel("x")
514 plt.ylabel("Average number of spikes")
515 plt.tight_layout()
516 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-posterior-f-infrence-tuning-

collected.png")
517 #plt.show()

Listing B.1: function library.py

73

B.2 Application to head direction dataset
The required function call is:

python em-algorithm.py Mouse12-120806_stuff_simple_awakedata.mat

parameter file peyrache.py

1 from scipy import *
2 import scipy.io
3 import scipy.ndimage
4 import numpy as np
5 import scipy.optimize as spoptim
6 import numpy.random
7 import matplotlib
8 #matplotlib.use(’Agg’) # When running on cluster, plots cannot be shown and this

must be used
9 import matplotlib.pyplot as plt

10 import time
11 import sys
12 plt.rc(’image’, cmap=’viridis’)
13 from scipy import optimize
14 numpy.random.seed(13)
15 from multiprocessing import Pool
16 from sklearn.decomposition import PCA
17

18 ##
19 # Parameters for inference, not for generating #
20 ##
21 T = 5000 #5000 #2000 # Max time 85504
22

23 N = 16 # Total of 73 neurons
24 # Time offset 70400: cutoff_spike_number 10:19 50:16 100:16 200:14
25 # Time offset 0: downsample 2: cutoff_spike_number 30-50:16 100:15
26 # downsample 1: cutoff_spike_number 30:16 50:15
27 print("N =", N, "but take care that it must be changed manually if neuron

screening settings are changed")
28

29 N_iterations = 50
30 global_initial_sigma_n = 2.5
31 sigma_n = np.copy(global_initial_sigma_n) # Assumed variance of observations for

the GP that is fitted. 10e-5
32 lr = 0.99 # Learning rate by which we multiply sigma_n at every iteration
33

34 # Parameters for data loading #
35 downsampling_factor = 1 #supreme: 2
36 offset = 0 #3700 #0 #70400 # 0 is good and wraps around a lot #64460 (not so

good) #68170 (getting stuck lower in middle) # 70400 (supreme)
37

38 RECONVERGE_IF_FLIPPED = False
39 KEEP_PATH_BETWEEN_ZERO_AND_TWO_PI = True
40 INFER_F_POSTERIORS = True
41 GRADIENT_FLAG = True # Set True to use analytic gradient
42 USE_OFFSET_AND_SCALING_AT_EVERY_ITERATION = False
43 USE_OFFSET_AND_SCALING_AFTER_CONVERGENCE = True
44 USE_ONLY_OFFSET_AFTER_CONVERGENCE = False
45 TOLERANCE = 1e-5

74

46 X_initialization = "pca" #"true" "true_noisy" "ones" "pca" "randomrandom" "flat"
"flatrandom" "randomprior" "linspace" "supreme"

47 smoothingwindow_for_PCA = 4
48 PCA_TYPE = "1d" #"angle" "1d"
49 USE_ENTIRE_DATA_LENGTH_FOR_PCA_INITIALIZATION = False
50 LET_INDUCING_POINTS_CHANGE_PLACE_WITH_X_ESTIMATE = False # If False, they stay

at (min_inducing_point, max_inducing_point)
51 FLIP_AFTER_SOME_ITERATION = False
52 FLIP_AFTER_HOW_MANY = 1
53 NOISE_REGULARIZATION = False
54 SMOOTHING_REGULARIZATION = False
55 GIVEN_TRUE_F = False
56 SPEEDCHECK = False
57 OPTIMIZE_HYPERPARAMETERS = False
58 PLOTTING = True
59 LIKELIHOOD_MODEL = "poisson" # "bernoulli" "poisson"
60 COVARIANCE_KERNEL_KX = "periodic" # "periodic" "nonperiodic"
61 PLOT_GRADIENT_CHECK = False
62 N_inducing_points = 30 # Number of inducing points. Wu uses 25 in 1D and 10 per

dim in 2D
63 N_plotgridpoints = 30 # Number of grid points for plotting f posterior only
64 sigma_f_fit = 8 # Variance for the tuning curve GP that is fitted. 8
65 delta_f_fit = 0.5 # Scale for the tuning curve GP that is fitted. 0.3
66 min_inducing_point = 0
67 max_inducing_point = 2*np.pi
68 # For inference:
69 sigma_x = 5 # Variance of X for K_t
70 delta_x = 50 # Scale of X for K_t
71 jitter_term = 1e-3 #Nonperiodic 1e-5
72 cutoff_spike_number = 30 # How many spikes a neuron must produce in chosen time

interval for us to include it
73

74 if (COVARIANCE_KERNEL_KX == "periodic") and (downsampling_factor != 1):
75 sys.exit("Don’t downsample when there is data that wraps around!")
76 print("-- using Peyrache parameter file --")

Listing B.2: parameter file peyrache.py

em-algorithm-peyrache-data.py

1 from scipy import *
2 import scipy.io
3 import scipy.ndimage
4 import numpy as np
5 import scipy.optimize as spoptim
6 import numpy.random
7 import matplotlib
8 #matplotlib.use(’Agg’) # When running on cluster, plots cannot be shown and this

must be used
9 import matplotlib.pyplot as plt

10 import time
11 import sys
12 plt.rc(’image’, cmap=’viridis’)
13 from scipy import optimize
14 numpy.random.seed(13)
15 from multiprocessing import Pool
16 from sklearn.decomposition import PCA
17 #from parameter_file_peyrache import * # where all the parameters are set (Not

needed because importing in function library)

75

18 from function_library import * # loglikelihoods, gradients, covariance functions
, tuning curve definitions, posterior tuning curve inference

19

20 ##### Inferring actual HD in Peyrache data #####
21

22 ## History:
23 ## Formerly known as em-algorithm-peyrache-data.py
24 ## Made before parallel-robustness-evaluation.py
25 ## 16.06: Incorporate changes from parallel, apply to Peyrache data
26

27 print("Likelihood model:",LIKELIHOOD_MODEL)
28 print("Covariance kernel for Kx:", COVARIANCE_KERNEL_KX)
29 print("Using gradient?", GRADIENT_FLAG)
30 print("Noise regulation:",NOISE_REGULARIZATION)
31 print("Initial sigma_n:", sigma_n)
32 print("Learning rate:", lr)
33 print("T:", T, "\n")
34 print("PCA smoothingwidth:", smoothingwindow_for_PCA)
35 if FLIP_AFTER_SOME_ITERATION:
36 print("NBBBB!!! We’re flipping the estimate after the second iteration in

line 600.")
37 print("Offset:", offset)
38 print("Downsampling factor:", downsampling_factor)
39 ######################################
40 ## Loading data ##
41 ######################################
42 ## 1) Load data variables
43 name = sys.argv[1] #’Mouse28-140313_stuff_BS0030_awakedata.mat’
44 mat = scipy.io.loadmat(name)
45 headangle = ravel(array(mat[’headangle’])) # Observed head direction
46 cellspikes = array(mat[’cellspikes’]) # Observed spike time points
47 cellnames = array(mat[’cellnames’]) # Alphanumeric identifiers for cells
48 trackingtimes = ravel(array(mat[’trackingtimes’])) # Time stamps of head

direction observations
49 path = headangle
50 T_maximum = len(path)
51 #print("T_maximum", T_maximum)
52 if offset + T*downsampling_factor > T_maximum:
53 sys.exit("Combination of offset, downsampling and T places the end of path

outside T_maximum. Choose lower T, offset or downsampling factor.")
54

55 ## 1) Remove headangles where the headangle value is NaN
56 # Spikes for Nan values are removed in step 2)
57 #print("How many NaN elements in path:", sum(np.isnan(path)))
58 whiches = np.isnan(path)
59 path = path[˜whiches]
60

61 ## 1.5) Make path continuous where it moves from 0 to 2pi
62 if not KEEP_PATH_BETWEEN_ZERO_AND_TWO_PI:
63 for t in range(1,len(path)):
64 if (path[t] - path[t-1]) < - np.pi:
65 path[t:] += 2*np.pi
66 if (path[t] - path[t-1]) > np.pi:
67 path[t:] -= 2*np.pi
68

69 ## 2) Since spikes are recorded as time points, we must make a matrix with
counts 0,1,2,3,4

70 # Here we also remove spikes that happen at NaN headangles, and then we

76

downsample the spike matrix by summing over bins
71 starttime = min(trackingtimes)
72 tracking_interval = mean(trackingtimes[1:]-trackingtimes[:(-1)])
73 #print("Observation frequency for path, and binsize for initial sampling:",

tracking_interval)
74 binsize = tracking_interval
75 nbins = len(trackingtimes)
76 #print("Number of bins for entire interval:", nbins)
77 print("Putting spikes in bins and making a matrix of it...")
78 binnedspikes = zeros((len(cellnames), nbins))
79 for i in range(len(cellnames)):
80 spikes = ravel((cellspikes[0])[i])
81 for j in range(len(spikes)):
82 # note 1ms binning means that number of ms from start is the correct

index
83 timebin = int(floor((spikes[j] - starttime)/float(binsize)))
84 if(timebin>nbins-1 or timebin<0): # check if outside bounds of the awake

time
85 continue
86 binnedspikes[i,timebin] += 1 # add a spike to the thing
87

88 # Now remove spikes for NaN path values
89 binnedspikes = binnedspikes[:,˜whiches]
90 # Copy entire spike data for PCA analysis before downsampling
91 entire_y_spikes = np.copy(binnedspikes)
92 # And downsample
93 binsize = downsampling_factor * tracking_interval
94 nbins = len(trackingtimes) // downsampling_factor
95 print("Bin size after downsampling: {:.2f}".format(binsize))
96 print("Number of bins for entire interval:", nbins)
97 print("Downsampling binned spikes...")
98 downsampled_binnedspikes = np.zeros((len(cellnames), nbins))
99 for i in range(len(cellnames)):

100 for j in range(nbins):
101 downsampled_binnedspikes[i,j] = sum(binnedspikes[i,downsampling_factor*j

:downsampling_factor*(j+1)])
102 binnedspikes = downsampled_binnedspikes
103

104 if LIKELIHOOD_MODEL == "bernoulli":
105 binnedspikes = (binnedspikes>0)*1
106

107 ## 3) Select an interval of time and deal with downsampling
108 # We need to downsample the observed head direction when we tamper with the

binsize (Here we chop off the end of the observations)
109 downsampled_path = np.zeros(len(path) // downsampling_factor)
110 for i in range(len(path) // downsampling_factor):
111 downsampled_path[i] = mean(path[downsampling_factor*i:downsampling_factor*(i

+1)])
112 path = downsampled_path
113 # Then do downsampled offset
114 downsampled_offset = offset // downsampling_factor
115 path = path[downsampled_offset:downsampled_offset+T]
116 binnedspikes = binnedspikes[:,downsampled_offset:downsampled_offset+T]
117

118 ## plot head direction for the selected interval
119 if PLOTTING:
120 if T > 100:
121 plt.figure(figsize=(10,3))

77

122 else:
123 plt.figure()
124 plt.plot(path, color="black", label=’True X’, linewidth=1) #plt.plot(path,

’.’, color=’black’, markersize=1.) # trackingtimes as x optional
125 #plt.plot(trackingtimes, path, ’.’, color=’black’, markersize=1.) #

trackingtimes as x optional
126 #plt.plot(trackingtimes-trackingtimes[0], path, ’.’, color=’black’,

markersize=1.) # trackingtimes as x optional
127 plt.xlabel("Time bin")
128 plt.ylabel("x")
129 plt.title("Head direction")
130 #plt.yticks([0,3.14,6.28])
131 plt.tight_layout()
132 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-path.png")
133

134 ## 5) Remove neurons that are not actually tuned to head direction
135 # 70400
136 active_and_strongly_tuned_from_70400_to_74400 =

[20,21,22,23,25,26,27,29,31,33,34,35,36,37,38,39,45,53,63,68] #33 has few
spikes

137 active_and_slightly_tuned_from_70400_to_74400 = [70,61,58,56,52,47,44,24,5,4]
138 barely_active_maybe_tuned_from_70400_to_74400 = [69,64,62,60,28,18,17,3,2]
139 active_but_not_tuned_from_70400_to_74400 = [71,67,66,15,14,13,12,11,10,1]
140 # 0
141 active_and_strongly_tuned_from_0_to_4000 =

[20,21,22,23,24,25,26,27,29,31,35,36,37,38,39,68] # 29 has only 97 spikes
142 active_and_slightly_tuned_from_0_to_4000 = [17,18,19,28,34,44] #34 is quite good

just a bit all over with 139 spikes
143 active_and_maybe_tuned_from_0_to_4000 = [4,5,6,12,13,61,67,69]
144 active_but_not_tuned_from_0_to_4000 = [1,10,11,14,15,43,45,47,58,70,71]
145 # On the entire range of time, these neurons are tuned to head direction:
146 #neuronsthataretunedtoheaddirection = [17,18,

20,21,22,23,24,25,26,27,28,29, 31,32,34,35,36,37,38,39,68] # from my
analysis and no spike cutoff

147 #
[16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, 38, 47] ##
froms tc-inference, after removing those with too few spikers

148 #neuronsthataretunedtoheaddirection =
[17,18,19,20,21,22,23,24,25,26,27,29,31,34,35,36,38,39,68] # for presentation

149 #neuronsthataretunedtoheaddirection = [i for i in range(len(cellnames))] # all
of them

150 #neuronsthataretunedtoheaddirection =
[17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,47,68] #
best of both worlds?

151 sgood = np.zeros(len(cellnames))<1
152 #for i in range(len(cellnames)): # Threshold value of 1000
153 # if sum(entire_y_spikes[i,:]) < 1000:
154 # sgood[i] = False
155 for i in range(len(cellnames)):
156 #print("Neuron", i, "has" sum(binnedspikes[i,:]), "spikes in chosen interval

")
157 if offset == 0:
158 if ((i not in active_and_strongly_tuned_from_0_to_4000) or (sum(

binnedspikes[i,:]) < cutoff_spike_number)):
159 sgood[i] = False
160 elif offset == 70400:
161 if ((i not in active_and_strongly_tuned_from_70400_to_74400) or (sum(

binnedspikes[i,:]) < cutoff_spike_number)):

78

162 sgood[i] = False
163 else:
164 if ((i not in active_and_strongly_tuned_from_70400_to_74400) or (sum(

binnedspikes[i,:]) < cutoff_spike_number)):
165 sgood[i] = False
166 binnedspikes = binnedspikes[sgood,:]
167 cellnames = cellnames[sgood]
168 print("Cutoff value:", cutoff_spike_number)
169 print("len(cellnames) after removing less active neurons:",len(cellnames))
170

171 # Plot binned spikes for selected neurons in the selected interval (Bernoulli
style since they are binned)

172 bernoullispikes = (binnedspikes>0)*1
173 if PLOTTING:
174 plt.figure(figsize=(5,4))
175 for i in range(len(cellnames)):
176 plt.plot(bernoullispikes[i,:]*(i+1), ’|’, color=’black’, markersize=2.)
177 plt.ylabel("neuron")
178 plt.xlabel("Time bin")
179 plt.ylim(ymin=0.5)
180 plt.yticks(range(1,len(cellnames)+1))
181 #plt.yticks([9*i+1 for i in range(0,9)])
182 plt.tight_layout()
183 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-binnedspikes.png",

format="png")
184 ## 6) Change names to fit the rest of the code
185 #N = len(cellnames) #51 with cutoff at 1000 spikes
186 #print("N:",N)
187 if len(cellnames) != N:
188 sys.exit("N must be set equal to " + str(len(cellnames)) + " in

parameter_file_peyrache")
189 y_spikes = binnedspikes
190 if PLOTTING:
191 plt.figure()
192 plt.title("Total number of spikes in bin")
193 plt.xlabel("Time bin")
194 plt.plot(sum(y_spikes, axis=0))
195 plt.tight_layout()
196 #plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-spikesum.png",

format="png")
197 print("mean(y_spikes)",mean(y_spikes))
198 print("mean(y_spikes>0)",mean(y_spikes[y_spikes>0]))
199 # Spike distribution evaluation
200 spike_count = np.ndarray.flatten(binnedspikes)
201 #print("This is wrong: Portion of bins with more than one spike:", sum(

spike_count>1)/T)
202 #print("This is wrong: Portion of nonzero bins with more than one:", sum(

spike_count>1) / sum(spike_count>0))
203 # Remove zero entries:
204 #spike_count = spike_count[spike_count>0]
205 if PLOTTING:
206 plt.figure()
207 plt.hist(spike_count, bins=np.arange(0,int(max(spike_count))+1)-0.5, log=

True, color=plt.cm.viridis(0.3))
208 plt.ylabel("Number of bins")
209 plt.xlabel("Spike count")
210 plt.title("Spike histogram")
211 plt.xticks(range(0,int(max(spike_count)),1))

79

212 plt.tight_layout()
213 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-spike-histogram-log

.png")
214

215 # Plot y spikes
216 if PLOTTING:
217 fig, ax = plt.subplots(figsize=(8,1))
218 foo_mat = ax.matshow(y_spikes) #cmap=plt.cm.Blues
219 fig.colorbar(foo_mat, ax=ax)
220 plt.title("y spikes")
221 plt.tight_layout()
222 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-y-spikes.png")
223

224 # Inducing points based on a predetermined range
225 x_grid_induce = np.linspace(min_inducing_point, max_inducing_point,

N_inducing_points) #np.linspace(min(path), max(path), N_inducing_points)
226 print("Min and max of path:", min(path), max(path))
227

228 K_gg_plain = squared_exponential_covariance(x_grid_induce.reshape((
N_inducing_points,1)),x_grid_induce.reshape((N_inducing_points,1)),
sigma_f_fit, delta_f_fit)

229 if PLOTTING:
230 fig, ax = plt.subplots()
231 foo_mat = ax.matshow(K_gg_plain, cmap=plt.cm.Blues)
232 fig.colorbar(foo_mat, ax=ax)
233 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-kgg.png")
234 K_gg = K_gg_plain + jitter_term*np.identity(N_inducing_points)
235

236 # Grid for plotting
237 bins_for_plotting = np.linspace(0, 2*np.pi, num=N_plotgridpoints + 1)
238 x_grid_for_plotting = 0.5*(bins_for_plotting[:(-1)]+bins_for_plotting[1:])
239

240 ######################
241 # Initialize X and F #
242 ######################
243 # PCA initialization:
244 if USE_ENTIRE_DATA_LENGTH_FOR_PCA_INITIALIZATION:
245 celldata = zeros(shape(entire_y_spikes))
246 for i in range(N):
247 # celldata[i,:] = entire_y_spikes[i,:] # not good
248 celldata[i,:] = scipy.ndimage.filters.gaussian_filter1d(entire_y_spikes[

i,:], smoothingwindow_for_PCA) # smooth
249 #celldata[i,:] = (celldata[i,:]-mean(celldata[i,:]))/std(celldata[i,:])

standardization requires at least one spike
250 else:
251 celldata = zeros(shape(y_spikes))
252 for i in range(N):
253 # celldata[i,:] = y_spikes[i,:] # not good
254 celldata[i,:] = scipy.ndimage.filters.gaussian_filter1d(y_spikes[i,:],

smoothingwindow_for_PCA) # smooth
255 #celldata[i,:] = (celldata[i,:]-mean(celldata[i,:]))/std(celldata[i,:])

standardization requires at least one spike
256 X_pca_result_2comp = PCA(n_components=2, svd_solver=’full’).fit_transform(

transpose(celldata))
257 X_pca_result_1comp = PCA(n_components=1, svd_solver=’full’).fit_transform(

transpose(celldata))
258 pca_radii = np.sqrt(X_pca_result_2comp[:,0]**2 + X_pca_result_2comp[:,1]**2)
259 pca_angles = np.arccos(X_pca_result_2comp[:,0]/pca_radii)

80

260 if PCA_TYPE == "angle":
261 X_pca_initial = pca_angles
262 elif PCA_TYPE == "1d":
263 X_pca_initial = np.zeros(T)
264 for i in range(T):
265 X_pca_initial[i] = X_pca_result_1comp[i][0]
266 if USE_ENTIRE_DATA_LENGTH_FOR_PCA_INITIALIZATION:
267 # Crop PCA initialization to selected time interval
268 X_pca_initial = X_pca_initial[downsampled_offset:downsampled_offset+T]
269 # Scale PCA initialization to fit domain:
270 X_pca_initial -= min(X_pca_initial)
271 X_pca_initial /= max(X_pca_initial)
272 X_pca_initial *= 2*np.pi
273 X_pca_initial += 0
274 # Flip PCA initialization correctly by comparing to true path
275 X_pca_initial_flipped = 2*mean(X_pca_initial) - X_pca_initial
276 X_pca_initial_rmse = np.sqrt(sum((X_pca_initial-path)**2) / T)
277 X_pca_initial_flipped_rmse = np.sqrt(sum((X_pca_initial_flipped-path)**2) / T)
278 if X_pca_initial_flipped_rmse < X_pca_initial_rmse:
279 X_pca_initial = X_pca_initial_flipped
280 X_pca_initial -= min(X_pca_initial)
281 X_pca_initial /= max(X_pca_initial)
282 X_pca_initial *= 2*np.pi
283 X_pca_initial += 0
284 # Plot PCA initialization
285 if T > 100:
286 plt.figure(figsize=(10,3))
287 else:
288 plt.figure()
289 plt.xlabel("Time bin")
290 plt.ylabel("x")
291 plt.title("PCA initial of X")
292 plt.plot(path, color="black", label=’True X’, linewidth=1)
293 #plt.plot(linspace(offset, offset+T, T), path, color="black", label=’True X’,

linewidth=1)
294 #plt.plot(linspace(offset, offset+T, T), X_pca_initial, label="Initial",

linewidth=1)
295 plt.plot(X_pca_initial, label="Initial", linewidth=1)
296 plt.legend(loc="upper right")
297 plt.tight_layout()
298 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-PCA-initial.png")
299

300

301 # Initialize X
302 np.random.seed(0)
303 if X_initialization == "true":
304 X_initial = np.copy(path)
305 if X_initialization == "true_noisy":
306 X_initial = np.copy(path) + np.pi/4*np.sin(np.linspace(0,10*np.pi,T))
307 upper_domain_limit = 2*np.pi
308 lower_domain_limit = 0
309 #X_initial = np.copy(path) + 1*np.random.multivariate_normal(np.zeros(T),

K_t) #2*np.random.random(T) - 1
310 X_initial -= lower_domain_limit # bring X_initial to 0
311 modulo_two_pi_values = X_initial // (upper_domain_limit)
312 oddmodulos = (modulo_two_pi_values % 2).astype(bool)
313 evenmodulos = np.invert(oddmodulos)
314 # Even modulos: Adjust for being outside

81

315 X_initial[evenmodulos] -= upper_domain_limit*modulo_two_pi_values[
evenmodulos]

316 # Odd modulos: Adjust for being outside and flip for continuity
317 X_initial[oddmodulos] -= upper_domain_limit*(modulo_two_pi_values[oddmodulos

])
318 differences = upper_domain_limit - X_initial[oddmodulos]
319 X_initial[oddmodulos] = differences
320 X_initial += lower_domain_limit # bring X_initial back to min value for

tuning
321 if X_initialization == "ones":
322 X_initial = np.ones(T)
323 if X_initialization == "pca":
324 X_initial = X_pca_initial
325 if X_initialization == "randomrandom":
326 X_initial = (max_inducing_point - min_inducing_point)*np.random.random(T)
327 if X_initialization == "randomprior":
328 X_initial = (max_inducing_point - min_inducing_point)*np.random.

multivariate_normal(np.zeros(T), K_t)
329 if X_initialization == "linspace":
330 X_initial = np.linspace(min_inducing_point, max_inducing_point, T)
331 if X_initialization == "supreme":
332 X_initial = np.load("X_estimate_supreme.npy")
333 if X_initialization == "flatrandom":
334 X_initial = 1.5*np.ones(T) + 0.2*np.random.random(T)
335 if X_initialization == "flat":
336 X_initial = 1.5*np.ones(T)
337

338 initial_rmse = np.sqrt(sum((X_initial-path)**2) / T)
339 print("Initial RMSE:", initial_rmse)
340 X_estimate = np.copy(X_initial)
341

342 if PLOTTING:
343 if T > 100:
344 plt.figure(figsize=(10,3))
345 else:
346 plt.figure()
347 plt.title("Initial X")
348 plt.xlabel("Time bin")
349 plt.ylabel("x")
350 plt.plot(path, color="black", label=’True X’, linewidth=1)
351 plt.plot(X_initial, label=’Initial’, linewidth=1)
352 #plt.legend(loc="upper right")
353 #plt.ylim((0, 2*np.pi))
354 plt.tight_layout()
355 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-X-initial.png")
356

357 # Initialize F
358 # Anscombe transform
359 #F_initial = 2*np.sqrt(y_spikes + 3/8)
360 F_initial = np.sqrt(y_spikes) - np.amax(np.sqrt(y_spikes))/2 #np.log(y_spikes +

0.0008)
361 F_estimate = np.copy(F_initial)
362 if X_initialization == "supreme":
363 print("Initializing F supremely too")
364 F_initial = np.load("F_estimate_supreme.npy")
365 F_estimate = np.copy(F_initial)
366

367 if GIVEN_TRUE_F:

82

368 # Initialize F at the values given path:
369 print("Setting f hat to the estimates given the true path")
370 temp_X_estimate = np.copy(X_estimate)
371 X_estimate = np.copy(path)
372 K_xg_prev = squared_exponential_covariance(X_estimate.reshape((T,1)),

x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)
373 if LIKELIHOOD_MODEL == "bernoulli":
374 for i in range(N):
375 y_i = y_spikes[i]
376 optimization_result = optimize.minimize(fun=

f_loglikelihood_bernoulli, x0=F_estimate[i], jac=f_jacobian_bernoulli, args=(
sigma_n, y_i, K_xg_prev, K_gg), method = ’L-BFGS-B’, options={’disp’:False})
#hess=f_hessian_bernoulli,

377 F_estimate[i] = optimization_result.x
378 elif LIKELIHOOD_MODEL == "poisson":
379 for i in range(N):
380 y_i = y_spikes[i]
381 optimization_result = optimize.minimize(fun=f_loglikelihood_poisson,

x0=F_estimate[i], jac=f_jacobian_poisson, args=(sigma_n, y_i, K_xg_prev,
K_gg), method = ’L-BFGS-B’, options={’disp’:False}) #hess=f_hessian_poisson,

382 F_estimate[i] = optimization_result.x
383 true_f = np.copy(F_estimate)
384 ## Plot F estimate
385 if PLOTTING:
386 fig, ax = plt.subplots(figsize=(10,1))
387 foo_mat = ax.matshow(F_estimate) #cmap=plt.cm.Blues
388 fig.colorbar(foo_mat, ax=ax)
389 plt.title("F given path")
390 plt.tight_layout()
391 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-F-optimal.png")
392 X_estimate = temp_X_estimate
393

394 ## Plot initial f
395 if PLOTTING:
396 fig, ax = plt.subplots(figsize=(8,1))
397 foo_mat = ax.matshow(F_initial) #cmap=plt.cm.Blues
398 fig.colorbar(foo_mat, ax=ax)
399 plt.title("Initial f")
400 plt.tight_layout()
401 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-initial-f.png")
402

403 if PLOTTING:
404 if T > 100:
405 plt.figure(figsize=(10,3))
406 else:
407 plt.figure()
408 plt.title("X estimate")
409 plt.xlabel("Time bin")
410 plt.ylabel("x")
411 plt.plot(path, color="black", label=’True X’, linewidth=1)
412 plt.plot(X_initial, label=’Initial’, linewidth=1)
413 #plt.legend(loc="upper right")
414 #plt.ylim((0, 2*np.pi))
415 plt.tight_layout()
416 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-X-estimate.png")
417

418 collected_estimates = np.zeros((N_iterations, T))
419 prev_X_estimate = np.Inf

83

420 startalgorithmtime = time.time()
421 ### EM algorithm: Find f given X, then X given f.
422 for iteration in range(N_iterations):
423 if iteration > 0:
424 sigma_n = sigma_n * lr # decrease the noise variance with a learning

rate
425 if LET_INDUCING_POINTS_CHANGE_PLACE_WITH_X_ESTIMATE:
426 x_grid_induce = np.linspace(min(X_estimate), max(X_estimate),

N_inducing_points) # Change position of grid to position of estimate
427 K_gg = K_gg_plain + jitter_term*np.identity(N_inducing_points)
428 K_xg_prev = squared_exponential_covariance(X_estimate.reshape((T,1)),

x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)
429 # Find F estimate only if we’re not at the first iteration
430 if iteration == 0:
431 print("L value of initial estimate", x_posterior_no_la(X_estimate,

sigma_n, F_estimate, K_gg, x_grid_induce))
432 if iteration > 0:
433 if LIKELIHOOD_MODEL == "bernoulli":
434 for i in range(N):
435 y_i = y_spikes[i]
436 optimization_result = optimize.minimize(fun=

f_loglikelihood_bernoulli, x0=F_estimate[i], jac=f_jacobian_bernoulli, args=(
sigma_n, y_i, K_xg_prev, K_gg), method = ’L-BFGS-B’, options={’disp’:False})
#hess=f_hessian_bernoulli,

437 F_estimate[i] = optimization_result.x
438 elif LIKELIHOOD_MODEL == "poisson":
439 for i in range(N):
440 y_i = y_spikes[i]
441 optimization_result = optimize.minimize(fun=

f_loglikelihood_poisson, x0=F_estimate[i], jac=f_jacobian_poisson, args=(
sigma_n, y_i, K_xg_prev, K_gg), method = ’L-BFGS-B’, options={’disp’:False})
#hess=f_hessian_poisson,

442 F_estimate[i] = optimization_result.x
443 # Find next X estimate, that can be outside (0,2pi)
444 if NOISE_REGULARIZATION:
445 X_estimate += 2*np.random.multivariate_normal(np.zeros(T), K_t) - 1
446 if SMOOTHING_REGULARIZATION and iteration < (N_iterations-1) :
447 X_estimate = scipy.ndimage.filters.gaussian_filter1d(X_estimate, 4)
448 if GRADIENT_FLAG:
449 optimization_result = optimize.minimize(fun=x_posterior_no_la, x0=

X_estimate, args=(sigma_n, F_estimate, K_gg, x_grid_induce), method = "L-BFGS
-B", jac=x_jacobian_no_la, options = {’disp’:False})

450 else:
451 optimization_result = optimize.minimize(fun=x_posterior_no_la, x0=

X_estimate, args=(sigma_n, F_estimate, K_gg, x_grid_induce), method = "L-BFGS
-B", options = {’disp’:False})

452 X_estimate = optimization_result.x
453 if (iteration == (FLIP_AFTER_HOW_MANY - 1)) and FLIP_AFTER_SOME_ITERATION:
454 # Flipping estimate after iteration 1 has been plotted
455 X_estimate = 2*mean(X_estimate) - X_estimate
456 if USE_OFFSET_AND_SCALING_AT_EVERY_ITERATION:
457 X_estimate -= min(X_estimate) #set offset of min to 0
458 X_estimate /= max(X_estimate) #scale length to 1
459 X_estimate *= (max(path)-min(path)) #scale length to length of path
460 X_estimate += min(path) #set offset to offset of path
461 if PLOTTING:
462 plt.plot(X_estimate, label=’Estimate’, linewidth=1)
463 #plt.ylim((min_neural_tuning_X, max_neural_tuning_X))

84

464 plt.tight_layout()
465 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-X-estimate.png"

)
466 if np.linalg.norm(X_estimate - prev_X_estimate) < TOLERANCE:
467 break
468 prev_X_estimate = X_estimate
469 #np.save("X_estimate", X_estimate)
470 print("Time used:", time.time()-startalgorithmtime)
471 if USE_OFFSET_AND_SCALING_AFTER_CONVERGENCE:
472 X_estimate -= min(X_estimate) #set offset of min to 0
473 X_estimate /= max(X_estimate) #scale length to 1
474 X_estimate *= (max(path)-min(path)) #scale length to length of path
475 X_estimate += min(path) #set offset to offset of path
476 if USE_ONLY_OFFSET_AFTER_CONVERGENCE:
477 X_estimate -= np.mean(X_estimate)
478 X_estimate += np.mean(path)
479 # Flipped
480 X_flipped = - X_estimate + 2*mean(X_estimate)
481 # Rootmeansquarederror for X
482 X_rmse = np.sqrt(sum((X_estimate-path)**2) / T)
483 X_flipped_rmse = np.sqrt(sum((X_flipped-path)**2) / T)
484 ##### Check if flipped and maybe iterate again with flipped estimate
485 if X_flipped_rmse < X_rmse and RECONVERGE_IF_FLIPPED:
486 #print("RMSE for X:", X_rmse)
487 #print("RMSE for X flipped:", X_flipped_rmse)
488 print("Re-iterating because of flip")
489 x_grid_induce = np.linspace(min_inducing_point, max_inducing_point,

N_inducing_points) #np.linspace(min(path), max(path), N_inducing_points)
490 K_gg_plain = squared_exponential_covariance(x_grid_induce.reshape((

N_inducing_points,1)),x_grid_induce.reshape((N_inducing_points,1)),
sigma_f_fit, delta_f_fit)

491 X_initial_2 = np.copy(X_flipped)
492 X_estimate = np.copy(X_flipped)
493 F_estimate = np.copy(F_initial)
494 if GIVEN_TRUE_F:
495 F_estimate = np.copy(true_f)
496 if PLOTTING:
497 if T > 100:
498 plt.figure(figsize=(10,3))
499 else:
500 plt.figure()
501 #plt.title("After flipping") # as we go
502 plt.xlabel("Time bin")
503 plt.ylabel("x")
504 plt.plot(path, color="black", label=’True X’, linewidth=1)
505 plt.plot(X_initial_2, label=’Initial’, linewidth=1)
506 #plt.ylim((min_neural_tuning_X, max_neural_tuning_X))
507 plt.tight_layout()
508 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-X-flipped.png")
509 #############################
510 # EM after flipped #
511 #############################
512 prev_X_estimate = np.Inf
513 sigma_n = np.copy(global_initial_sigma_n)
514 for iteration in range(N_iterations):
515 if iteration > 0:
516 sigma_n = sigma_n * lr # decrease the noise variance with a

learning rate

85

517 if LET_INDUCING_POINTS_CHANGE_PLACE_WITH_X_ESTIMATE:
518 x_grid_induce = np.linspace(min(X_estimate), max(X_estimate),

N_inducing_points) # Change position of grid to position of estimate
519 K_gg = K_gg_plain + jitter_term*np.identity(N_inducing_points)
520 K_xg_prev = squared_exponential_covariance(X_estimate.reshape((T,1)),

x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)
521 # Find F estimate only if we’re not at the first iteration
522 if iteration > 0:
523 if LIKELIHOOD_MODEL == "bernoulli":
524 for i in range(N):
525 y_i = y_spikes[i]
526 optimization_result = optimize.minimize(fun=

f_loglikelihood_bernoulli, x0=F_estimate[i], jac=f_jacobian_bernoulli, args=(
sigma_n, y_i, K_xg_prev, K_gg), method = ’L-BFGS-B’, options={’disp’:False})
#hess=f_hessian_bernoulli,

527 F_estimate[i] = optimization_result.x
528 elif LIKELIHOOD_MODEL == "poisson":
529 for i in range(N):
530 y_i = y_spikes[i]
531 optimization_result = optimize.minimize(fun=

f_loglikelihood_poisson, x0=F_estimate[i], jac=f_jacobian_poisson, args=(
sigma_n, y_i, K_xg_prev, K_gg), method = ’L-BFGS-B’, options={’disp’:False})
#hess=f_hessian_poisson,

532 F_estimate[i] = optimization_result.x
533 # Find next X estimate, that can be outside (0,2pi)
534 if NOISE_REGULARIZATION:
535 X_estimate += 2*np.random.multivariate_normal(np.zeros(T), K_t) - 1
536 if SMOOTHING_REGULARIZATION and iteration < (N_iterations-1) :
537 X_estimate = scipy.ndimage.filters.gaussian_filter1d(X_estimate, 4)
538 if GRADIENT_FLAG:
539 optimization_result = optimize.minimize(fun=x_posterior_no_la, x0=

X_estimate, args=(sigma_n, F_estimate, K_gg, x_grid_induce), method = "L-BFGS
-B", jac=x_jacobian_no_la, options = {’disp’:False})

540 else:
541 optimization_result = optimize.minimize(fun=x_posterior_no_la, x0=

X_estimate, args=(sigma_n, F_estimate, K_gg, x_grid_induce), method = "L-BFGS
-B", options = {’disp’:False})

542 X_estimate = optimization_result.x
543 if (iteration == (FLIP_AFTER_HOW_MANY - 1)) and

FLIP_AFTER_SOME_ITERATION:
544 # Flipping estimate after iteration 1 has been plotted
545 X_estimate = 2*mean(X_estimate) - X_estimate
546 if USE_OFFSET_AND_SCALING_AT_EVERY_ITERATION:
547 X_estimate -= min(X_estimate) #set offset of min to 0
548 X_estimate /= max(X_estimate) #scale length to 1
549 X_estimate *= (max(path)-min(path)) #scale length to length of path
550 X_estimate += min(path) #set offset to offset of path
551 if PLOTTING:
552 plt.plot(X_estimate, label=’Estimate (after flip)’, linewidth=1)
553 #plt.ylim((min_neural_tuning_X, max_neural_tuning_X))
554 plt.tight_layout()
555 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-X-flipped.

png")
556 if np.linalg.norm(X_estimate - prev_X_estimate) < TOLERANCE:
557 #print("Seed", seeds[seedindex], "Iterations after flip:", iteration

+1, "Change in X smaller than TOL")
558 break
559 #if iteration == N_iterations-1:

86

560 # print("Seed", seeds[seedindex], "Iterations after flip:", iteration
+1, "N_iterations reached")

561 prev_X_estimate = X_estimate
562 if USE_OFFSET_AND_SCALING_AFTER_CONVERGENCE:
563 X_estimate -= min(X_estimate) #set offset of min to 0
564 X_estimate /= max(X_estimate) #scale length to 1
565 X_estimate *= (max(path)-min(path)) #scale length to length of path
566 X_estimate += min(path) #set offset to offset of path
567 if USE_ONLY_OFFSET_AFTER_CONVERGENCE:
568 X_estimate -= np.mean(X_estimate)
569 X_estimate += np.mean(path)
570 # Rootmeansquarederror for X
571 X_rmse = np.sqrt(sum((X_estimate-path)**2) / T)
572 ######################
573 #### Handle rotation #
574 ######################
575 SStot = sum((path - mean(path))**2)
576 SSdev = sum((X_estimate-path)**2)
577 Rsquared = 1 - SSdev / SStot
578 print("R squared value of X estimate:", Rsquared)
579 print("RMSE value of X estimate:", X_rmse)
580 print("L value of final estimate:", x_posterior_no_la(X_estimate, sigma_n,

F_estimate, K_gg, x_grid_induce))
581 if PLOTTING:
582 if T > 100:
583 plt.figure(figsize=(10,3))
584 else:
585 plt.figure()
586 plt.title("Final estimate") # as we go
587 plt.xlabel("Time bin")
588 plt.ylabel("x")
589 plt.plot(path, color="black", label=’True X’, linewidth=1)
590 plt.plot(X_initial, label=’Initial’, linewidth=1)
591 plt.plot(X_estimate, label=’Estimate’, linewidth=1)
592 plt.legend(loc="lower right")
593 #plt.ylim((min_neural_tuning_X, max_neural_tuning_X))
594 plt.tight_layout()
595 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-peyrache-X-final-RMSE-" +

str(X_rmse) + "-L-" + str(x_posterior_no_la(X_estimate, sigma_n, F_estimate,
K_gg, x_grid_induce)) + ".png")

596

597 ###
598 # Find posterior prediction of log tuning curve #
599 ###
600 if INFER_F_POSTERIORS:
601 print("Sigma_n:", sigma_n)
602 bins_for_plotting = np.linspace(0, 2*np.pi, num=N_plotgridpoints + 1)
603 x_grid_for_plotting = 0.5*(bins_for_plotting[:(-1)]+bins_for_plotting[1:])
604 #posterior_f_inference(X_estimate, F_estimate, sigma_n, y_spikes, path,

x_grid_for_plotting, bins_for_plotting, peak_f_offset, baseline_f_value,
binsize)

605 posterior_f_inference(X_estimate, F_estimate, sigma_n, y_spikes, path,
x_grid_for_plotting, bins_for_plotting, 0.1, 0.1, binsize) # the two latest
are only for simulated

Listing B.3: em-algorithm-peyrache-data.py

87

B.3 Robustness evaluation
To find the average RMSE value for the given T value with the tuning strength corresponding to index
<index> in the tuning difference array, the required function call is:

python cluster-parallel-robustness-evaluation.py <index>

parameter file robustness.py

1 from scipy import *
2 import scipy.io
3 import scipy.ndimage
4 import numpy as np
5 import scipy.optimize as spoptim
6 import numpy.random
7 import matplotlib
8 #matplotlib.use(’Agg’) # When running on cluster, plots cannot be shown and this

must be used
9 import matplotlib.pyplot as plt

10 import time
11 import sys
12 plt.rc(’image’, cmap=’viridis’)
13 from scipy import optimize
14 numpy.random.seed(13)
15 from multiprocessing import Pool
16 from sklearn.decomposition import PCA
17

18 ############################
19 # Parameters for inference #
20 ############################
21 T = 1000 # change only after previous job is definitely RUNNING on cluster
22 N_iterations = 20
23

24 global_initial_sigma_n = 2.5 # Assumed variance of observations for the GP that
is fitted. 10e-5

25 lr = 0.95 # 0.99 # Learning rate by which we multiply sigma_n at every iteration
26

27 RECONVERGE_IF_FLIPPED = False
28 INFER_F_POSTERIORS = False
29 GRADIENT_FLAG = True # Set True to use analytic gradient
30 USE_OFFSET_AND_SCALING_AT_EVERY_ITERATION = False
31 USE_OFFSET_AND_SCALING_AFTER_CONVERGENCE = True
32 TOLERANCE = 1e-6
33 X_initialization = "pca" #"true" "true_noisy" "ones" "pca" "randomrandom" "flat"

"flatrandom" "randomprior" "linspace" "supreme"
34 # Using ensemble of PCA values
35 ensemble_smoothingwidths = [3,5,10]
36 LET_INDUCING_POINTS_CHANGE_PLACE_WITH_X_ESTIMATE = False
37 FLIP_AFTER_SOME_ITERATION = False
38 FLIP_AFTER_HOW_MANY = 1
39 NOISE_REGULARIZATION = False
40 SMOOTHING_REGULARIZATION = False
41 GIVEN_TRUE_F = False
42 SPEEDCHECK = False
43 OPTIMIZE_HYPERPARAMETERS = False
44 PLOTTING = False
45 LIKELIHOOD_MODEL = "poisson" # "bernoulli" "poisson"

88

46 COVARIANCE_KERNEL_KX = "nonperiodic" # "periodic" "nonperiodic"
47 TUNINGCURVE_DEFINITION = "bumps" # "triangles" "bumps"
48 UNIFORM_BUMPS = False
49 PLOT_GRADIENT_CHECK = False
50 N_inducing_points = 30 # Number of inducing points. Wu uses 25 in 1D and 10 per

dim in 2D
51 N_plotgridpoints = 40 # Number of grid points for plotting f posterior only
52 tuning_width_delta = 1.2 # 0.1
53 # Peak lambda should not be defined as less than baseline h value
54 baseline_lambda_value = 0.5
55 baseline_f_value = np.log(baseline_lambda_value)
56 tuning_difference_array =

[0.01,0.1,0.2,0.3,0.4,0.5,0.75,1,1.25,1.5,1.75,2,2.5,3,3.5,4,5,6,7,8,9] #
choose index 14 for a good example

57 peak_lambda_array = [baseline_lambda_value + tuning_difference_array[i] for i in
range(len(tuning_difference_array))]

58 seeds = [5,6,7,8,9] #range(5) #[11]
#[0,2,3,4,5,6,8,9,11,12,16,17,18,19,21,22,25,26,28,29] # chosen only so that
they cover the entire domain of X for T>=200 and sigma_x=40

59 NUMBER_OF_SEEDS = len(seeds)
60 sigma_f_fit = 2 #8 # Variance for the tuning curve GP that is fitted. 8
61 delta_f_fit = 0.83 # sqrt(0.7) # Scale for the tuning curve GP that is fitted.

0.3
62 # Define max and min of neural tuning
63 lower_domain_limit = 0
64 upper_domain_limit = 10
65 how_many_added_neurons_outside_factor = 0.0 # Just makes it worse. If you must,

use 0.1
66 min_neural_tuning_X = lower_domain_limit - how_many_added_neurons_outside_factor

*(upper_domain_limit - lower_domain_limit)
67 max_neural_tuning_X = upper_domain_limit + how_many_added_neurons_outside_factor

*(upper_domain_limit - lower_domain_limit)
68 min_inducing_point = lower_domain_limit
69 max_inducing_point = upper_domain_limit
70 # Neural density:
71 N = int((1+2*how_many_added_neurons_outside_factor)*100) # 100 with peaks in

tuning area and 40 with tails coming in from each side
72 # For inference:
73 sigma_x = 40 # Variance of X for inference matrix K_t
74 delta_x = 100 # Scale of X for inference matrix K_t
75 # Generative parameters for X path:
76 KEEP_PATH_INSIDE_DOMAIN_BY_FOLDING = True # Stop path from going outside defined

domain with neurons
77 SCALE_UP_PATH_TO_COVER_DOMAIN = False # If True, the generated path is scaled up

after being generated
78 sigma_x_generate_path = 40 # Variance for path generation. Set high enough so

the path reaches max and min of tuning area
79 delta_x_generate_path = 100 # Scale for path generation.
80 jitter_term = 1e-5
81

82 print("-- using Robustness evaluation parameter file --")

Listing B.4: parameter file robustness.py

cluster-parallel-robustness-evaluation.py

1 from scipy import *
2 import scipy.io
3 import scipy.ndimage

89

4 import numpy as np
5 import scipy.optimize as spoptim
6 import numpy.random
7 import matplotlib
8 #matplotlib.use(’Agg’) # When running on cluster, plots cannot be shown and this

must be used
9 import matplotlib.pyplot as plt

10 import time
11 import sys
12 plt.rc(’image’, cmap=’viridis’)
13 from scipy import optimize
14 numpy.random.seed(13)
15 from multiprocessing import Pool
16 from sklearn.decomposition import PCA
17 #from parameter_file_robustness import * # where all the parameters are set (Not

needed because importing in function library)
18 from function_library import * # loglikelihoods, gradients, covariance functions

, tuning curve definitions, posterior tuning curve inference
19

20 ###
21 ##### Cluster - Robustness evaluation #####
22 ###
23

24 ## Set T and background noise level
25 ## Array of 21 lambda peak strengths is done in parallel using job-array
26 ## For each lambda peak strength: Run 20 seeds sequentially
27 ## For each seed, the best RMSE is taken from an ensemble of 3-5 initializations

with different wmoothingwindow in the PCA (run sequentially)
28

29 ## History:
30 ## Branched off from em-algorithm on 11.05.2020
31 ## and from robust-sim-data on 28.05.2020
32 ## then from robust-efficient-script on 30.05.2020
33 ## then from parallel-robustness-evaluation.py on 18.06.2020
34

35 ######################################
36 ## Data generation ##
37 ######################################
38 K_t_generate = exponential_covariance(np.linspace(1,T,T).reshape((T,1)),np.

linspace(1,T,T).reshape((T,1)), sigma_x_generate_path, delta_x_generate_path)
39

40 ############################
41 # Tuning curve definitions #
42 ############################
43

44 if UNIFORM_BUMPS:
45 # Uniform positioning and width:’
46 bumplocations = [min_neural_tuning_X + (i+0.5)/N*(max_neural_tuning_X -

min_neural_tuning_X) for i in range(N)]
47 bump_delta_distances = tuning_width_delta * np.ones(N)
48 else:
49 # Random placement and width:
50 bumplocations = min_neural_tuning_X + (max_neural_tuning_X -

min_neural_tuning_X) * np.random.random(N)
51 bump_delta_distances = tuning_width_delta + tuning_width_delta/4*np.random.

random(N)
52

53 def bumptuningfunction(x, i, peak_f_offset):

90

54 x1 = x
55 x2 = bumplocations[i]
56 delta_bumptuning = bump_delta_distances[i]
57 if COVARIANCE_KERNEL_KX == "periodic":
58 distancesquared = min([(x1-x2)**2, (x1+2*pi-x2)**2, (x1-2*pi-x2)**2])
59 elif COVARIANCE_KERNEL_KX == "nonperiodic":
60 distancesquared = (x1-x2)**2
61 return baseline_f_value + peak_f_offset * exp(-distancesquared/(2*

delta_bumptuning))
62

63 def offset_function(offset_for_estimate, X_estimate, sigma_n, F_estimate, K_gg,
x_grid_induce):

64 offset_estimate = X_estimate + offset_for_estimate
65 return x_posterior_no_la(offset_estimate, sigma_n, F_estimate, K_gg,

x_grid_induce)
66

67 def scaling_function(scaling_factor, X_estimate, sigma_n, F_estimate, K_gg,
x_grid_induce):

68 scaled_estimate = scaling_factor*X_estimate
69 return x_posterior_no_la(scaled_estimate, sigma_n, F_estimate, K_gg,

x_grid_induce)
70

71 def scale_and_offset_function(scale_offset, X_estimate, sigma_n, F_estimate,
K_gg, x_grid_induce):

72 scaled_estimate = scale_offset[0] * X_estimate + scale_offset[1]
73 return x_posterior_no_la(scaled_estimate, sigma_n, F_estimate, K_gg,

x_grid_induce)
74 #return just_fprior_term(scaled_estimate)
75

76 ######################################
77 ## RMSE function ##
78 ######################################
79 def find_rmse_for_this_lambda_this_seed(seedindex):
80 global lower_domain_limit
81 global upper_domain_limit
82 starttime = time.time()
83 #print("Seed", seeds[seedindex], "started.")
84 peak_f_offset = np.log(peak_lambda_global) - baseline_f_value
85 np.random.seed(seeds[seedindex])
86 # Generate path
87 path = (upper_domain_limit-lower_domain_limit)/2 + numpy.random.

multivariate_normal(np.zeros(T), K_t_generate)
88 #path = np.linspace(lower_domain_limit, upper_domain_limit, T)
89 if KEEP_PATH_INSIDE_DOMAIN_BY_FOLDING:
90 # Use boolean masks to keep X within min and max of tuning
91 path -= lower_domain_limit # bring path to 0
92 modulo_two_pi_values = path // (upper_domain_limit)
93 oddmodulos = (modulo_two_pi_values % 2).astype(bool)
94 evenmodulos = np.invert(oddmodulos)
95 # Even modulos: Adjust for being outside
96 path[evenmodulos] -= upper_domain_limit*modulo_two_pi_values[evenmodulos

]
97 # Odd modulos: Adjust for being outside and flip for continuity
98 path[oddmodulos] -= upper_domain_limit*(modulo_two_pi_values[oddmodulos

])
99 differences = upper_domain_limit - path[oddmodulos]

100 path[oddmodulos] = differences
101 path += lower_domain_limit # bring path back to min value for tuning

91

102 if SCALE_UP_PATH_TO_COVER_DOMAIN:
103 # scale to cover the domain:
104 path -= min(path)
105 path /= max(path)
106 path *= (upper_domain_limit-lower_domain_limit)
107 path += lower_domain_limit
108 if PLOTTING:
109 ## plot path
110 if T > 100:
111 plt.figure(figsize=(10,3))
112 else:
113 plt.figure()
114 plt.plot(path, color="black", label=’True X’)
115 #plt.plot(path, ’.’, color=’black’, markersize=1.) # trackingtimes as x

optional
116 #plt.plot(trackingtimes-trackingtimes[0], path, ’.’, color=’black’,

markersize=1.) # trackingtimes as x optional
117 plt.xlabel("Time bin")
118 plt.ylabel("x")
119 plt.title("True path of X")
120 plt.ylim((lower_domain_limit, upper_domain_limit))
121 #plt.title("Simulated path of X")
122 #plt.yticks([-15,-10,-5,0,5,10,15])
123 plt.tight_layout()
124 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-eval-T-" +

str(T) + "-seed-" + str(seeds[seedindex]) + "-path.png")
125 ## Generate spike data. True tuning curves are defined here
126 if TUNINGCURVE_DEFINITION == "triangles":
127 tuningwidth = 1 # width of tuning (in radians)
128 biasterm = -2 # Average H outside tuningwidth -4
129 tuningcovariatestrength = np.linspace(0.5*tuningwidth,10.*tuningwidth, N

) # H value at centre of tuningwidth 6*tuningwidth
130 neuronpeak = [min_neural_tuning_X + (i+0.5)/N*(max_neural_tuning_X -

min_neural_tuning_X) for i in range(N)]
131 true_f = np.zeros((N, T))
132 y_spikes = np.zeros((N, T))
133 for i in range(N):
134 for t in range(T):
135 if COVARIANCE_KERNEL_KX == "periodic":
136 distancefrompeaktopathpoint = min([abs(neuronpeak[i]+2.*pi-

path[t]), abs(neuronpeak[i]-path[t]), abs(neuronpeak[i]-2.*pi-path[t])])
137 elif COVARIANCE_KERNEL_KX == "nonperiodic":
138 distancefrompeaktopathpoint = abs(neuronpeak[i]-path[t])
139 Ht = biasterm
140 if(distancefrompeaktopathpoint < tuningwidth):
141 Ht = biasterm + tuningcovariatestrength[i] * (1-

distancefrompeaktopathpoint/tuningwidth)
142 true_f[i,t] = Ht
143 # Spiking
144 if LIKELIHOOD_MODEL == "bernoulli":
145 spike_probability = exp(Ht)/(1.+exp(Ht))
146 y_spikes[i,t] = 1.0*(rand()<spike_probability)
147 # If you want to remove randomness: y_spikes[i,t] =

spike_probability
148 elif LIKELIHOOD_MODEL == "poisson":
149 spike_rate = exp(Ht)
150 y_spikes[i,t] = np.random.poisson(spike_rate)
151 # If you want to remove randomness: y_spikes[i,t] =

92

spike_rate
152 elif TUNINGCURVE_DEFINITION == "bumps":
153 true_f = np.zeros((N, T))
154 y_spikes = np.zeros((N, T))
155 for i in range(N):
156 for t in range(T):
157 true_f[i,t] = bumptuningfunction(path[t], i, peak_f_offset)
158 if LIKELIHOOD_MODEL == "bernoulli":
159 spike_probability = exp(true_f[i,t])/(1.+exp(true_f[i,t]))
160 y_spikes[i,t] = 1.0*(rand()<spike_probability)
161 elif LIKELIHOOD_MODEL == "poisson":
162 spike_rate = exp(true_f[i,t])
163 y_spikes[i,t] = np.random.poisson(spike_rate)
164 if PLOTTING:
165 ## Plot true f in time
166 plt.figure()
167 color_idx = np.linspace(0, 1, N)
168 plt.title("True log tuning curves f")
169 plt.xlabel("x")
170 plt.ylabel("f value")
171 x_space_grid = np.linspace(lower_domain_limit, upper_domain_limit, T)
172 for i in range(N):
173 plt.plot(x_space_grid, true_f[i], linestyle=’-’, color=plt.cm.

viridis(color_idx[i]))
174 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-eval-true-f.

png")
175 if PLOTTING:
176 ## Plot firing rate h in time
177 plt.figure()
178 color_idx = np.linspace(0, 1, N)
179 plt.title("True firing rate h")
180 plt.xlabel("x")
181 plt.ylabel("Firing rate")
182 x_space_grid = np.linspace(lower_domain_limit, upper_domain_limit, T)
183 for i in range(N):
184 plt.plot(x_space_grid, np.exp(true_f[i]), linestyle=’-’, color=plt.

cm.viridis(color_idx[i]))
185 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-eval-true-h.

png")
186 ###############################
187 # Covariance matrix Kgg_plain #
188 ###############################
189 # Inducing points based on a predetermined range
190 x_grid_induce = np.linspace(min_inducing_point, max_inducing_point,

N_inducing_points) #np.linspace(min(path), max(path), N_inducing_points)
191 #print("Min and max of path:", min(path), max(path))
192 #print("Min and max of grid:", min(x_grid_induce), max(x_grid_induce))
193 K_gg_plain = squared_exponential_covariance(x_grid_induce.reshape((

N_inducing_points,1)),x_grid_induce.reshape((N_inducing_points,1)),
sigma_f_fit, delta_f_fit)

194 ######################
195 # Initialize X and F #
196 ######################
197 # Here the PCA ensemble comes into play:
198 ensemble_array_L_value = np.zeros(len(ensemble_smoothingwidths))
199 ensemble_array_X_rmse = np.zeros(len(ensemble_smoothingwidths))
200 ensemble_array_X_estimate = np.zeros((len(ensemble_smoothingwidths), T))
201 ensemble_array_F_estimate = np.zeros((len(ensemble_smoothingwidths), N, T))

93

202 ensemble_array_y_spikes = np.zeros((len(ensemble_smoothingwidths), N, T))
203 ensemble_array_path = np.zeros((len(ensemble_smoothingwidths), T))
204 for smoothingwindow_index in range(len(ensemble_smoothingwidths)):
205 smoothingwindow_for_PCA = ensemble_smoothingwidths[smoothingwindow_index

]
206 # PCA initialization:
207 celldata = zeros(shape(y_spikes))
208 for i in range(N):
209 celldata[i,:] = scipy.ndimage.filters.gaussian_filter1d(y_spikes[i

,:], smoothingwindow_for_PCA) # smooth
210 #celldata[i,:] = (celldata[i,:]-mean(celldata[i,:]))/std(celldata[i

,:]) # standardization requires at least one spike
211 X_pca_result = PCA(n_components=1, svd_solver=’full’).fit_transform(

transpose(celldata))
212 X_pca_initial = np.zeros(T)
213 for i in range(T):
214 X_pca_initial[i] = X_pca_result[i]
215 # Scale PCA initialization to fit domain:
216 X_pca_initial -= min(X_pca_initial)
217 X_pca_initial /= max(X_pca_initial)
218 X_pca_initial *= (upper_domain_limit-lower_domain_limit)
219 X_pca_initial += lower_domain_limit
220 # Flip PCA initialization correctly by comparing to true path
221 X_pca_initial_flipped = 2*mean(X_pca_initial) - X_pca_initial
222 X_pca_initial_rmse = np.sqrt(sum((X_pca_initial-path)**2) / T)
223 X_pca_initial_flipped_rmse = np.sqrt(sum((X_pca_initial_flipped-path)

**2) / T)
224 if X_pca_initial_flipped_rmse < X_pca_initial_rmse:
225 X_pca_initial = X_pca_initial_flipped
226 # Scale PCA initialization to fit domain:
227 X_pca_initial -= min(X_pca_initial)
228 X_pca_initial /= max(X_pca_initial)
229 X_pca_initial *= (upper_domain_limit-lower_domain_limit)
230 X_pca_initial += lower_domain_limit
231 if PLOTTING:
232 # Plot PCA initialization
233 if T > 100:
234 plt.figure(figsize=(10,3))
235 else:
236 plt.figure()
237 plt.xlabel("Time bin")
238 plt.ylabel("x")
239 plt.title("PCA initial of X")
240 plt.plot(path, color="black", label=’True X’)
241 plt.plot(X_pca_initial, label="Initial")
242 plt.legend(loc="upper right")
243 plt.tight_layout()
244 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-eval-T-"

+ str(T) + "-lambda-" + str(peak_lambda_global) + "-background-" + str(
baseline_lambda_value) + "-seed-" + str(seeds[seedindex]) + "-PCA-initial.png
")

245 # Initialize X
246 np.random.seed(0)
247 if X_initialization == "true":
248 X_initial = np.copy(path)
249 if X_initialization == "true_noisy":
250 X_initial = np.copy(path) + np.pi/4*np.sin(np.linspace(0,10*np.pi,T)

)

94

251 upper_domain_limit = 2*np.pi
252 lower_domain_limit = 0
253 #X_initial = np.copy(path) + 1*np.random.multivariate_normal(np.

zeros(T), K_t) #2*np.random.random(T) - 1
254 X_initial -= lower_domain_limit # bring X_initial to 0
255 modulo_two_pi_values = X_initial // (upper_domain_limit)
256 oddmodulos = (modulo_two_pi_values % 2).astype(bool)
257 evenmodulos = np.invert(oddmodulos)
258 # Even modulos: Adjust for being outside
259 X_initial[evenmodulos] -= upper_domain_limit*modulo_two_pi_values[

evenmodulos]
260 # Odd modulos: Adjust for being outside and flip for continuity
261 X_initial[oddmodulos] -= upper_domain_limit*(modulo_two_pi_values[

oddmodulos])
262 differences = upper_domain_limit - X_initial[oddmodulos]
263 X_initial[oddmodulos] = differences
264 X_initial += lower_domain_limit # bring X_initial back to min value

for tuning
265 if X_initialization == "ones":
266 X_initial = np.ones(T)
267 if X_initialization == "pca":
268 X_initial = X_pca_initial
269 if X_initialization == "randomrandom":
270 X_initial = (max_inducing_point - min_inducing_point)*np.random.

random(T)
271 if X_initialization == "randomprior":
272 X_initial = (max_inducing_point - min_inducing_point)*np.random.

multivariate_normal(np.zeros(T), K_t)
273 if X_initialization == "linspace":
274 X_initial = np.linspace(min_inducing_point, max_inducing_point, T)
275 if X_initialization == "supreme":
276 X_initial = np.load("X_estimate_supreme.npy")
277 if X_initialization == "flatrandom":
278 X_initial = 1.5*np.ones(T) + 0.2*np.random.random(T)
279 if X_initialization == "flat":
280 X_initial = 1.5*np.ones(T)
281 initial_rmse = np.sqrt(sum((X_initial-path)**2) / T)
282 print("Initial RMSE", initial_rmse)
283 X_estimate = np.copy(X_initial)
284 # Initialize F
285 F_initial = np.sqrt(y_spikes) - np.amax(np.sqrt(y_spikes))/2 #np.log(

y_spikes + 0.0008)
286 F_estimate = np.copy(F_initial)
287 if GIVEN_TRUE_F:
288 F_estimate = true_f
289 if PLOTTING:
290 if T > 100:
291 plt.figure(figsize=(10,3))
292 else:
293 plt.figure()
294 #plt.title("Path of X")
295 plt.title("X estimate")
296 plt.xlabel("Time bin")
297 plt.ylabel("x")
298 plt.plot(path, color="black", label=’True X’)
299 plt.plot(X_initial, label=’Initial’)
300 #plt.legend(loc="upper right")
301 #plt.ylim((lower_domain_limit, upper_domain_limit))

95

302 plt.tight_layout()
303 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-eval-T-"

+ str(T) + "-lambda-" + str(peak_lambda_global) + "-background-" + str(
baseline_lambda_value) + "-seed-" + str(seeds[seedindex]) + ".png")

304 if PLOT_GRADIENT_CHECK:
305 sigma_n = np.copy(global_initial_sigma_n)
306 # Adding tiny jitter term to diagonal of K_gg (not the same as

sigma_n that we’re adding to the diagonal of K_xgK_ggˆ-1K_gx later on)
307 K_gg = K_gg_plain + jitter_term*np.identity(N_inducing_points) ##

K_gg = K_gg_plain + sigma_n*np.identity(N_inducing_points)
308 X_gradient = x_jacobian_no_la(X_estimate, sigma_n, F_estimate, K_gg,

x_grid_induce)
309 if T > 100:
310 plt.figure(figsize=(10,3))
311 else:
312 plt.figure()
313 plt.xlabel("Time bin")
314 plt.ylabel("x")
315 plt.title("Gradient at initial X")
316 plt.plot(path, color="black", label=’True X’)
317 plt.plot(X_initial, label="Initial")
318 #plt.plot(X_gradient, label="Gradient")
319 plt.plot(X_estimate + 2*X_gradient/max(X_gradient), label="Gradient

plus offset")
320 plt.legend(loc="upper right")
321 plt.tight_layout()
322 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-eval-T-"

+ str(T) + "-lambda-" + str(peak_lambda_global) + "-background-" + str(
baseline_lambda_value) + "-seed-" + str(seeds[seedindex]) + "-Gradient.png")

323 exit()
324 """
325 print("Testing gradient...")
326 #X_estimate = np.copy(path)
327 #F_estimate = true_f
328 print("Gradient difference using check_grad:",scipy.optimize.

check_grad(func=x_posterior_no_la, grad=x_jacobian_no_la, x0=path, args=(
sigma_n, F_estimate, K_gg, x_grid_induce)))

329

330 #optim_gradient = optimization_result.jac
331 print("Epsilon:", np.sqrt(np.finfo(float).eps))
332 optim_gradient1 = scipy.optimize.approx_fprime(xk=X_estimate, f=

x_posterior_no_la, epsilon=1*np.sqrt(np.finfo(float).eps), args=(sigma_n,
F_estimate, K_gg, x_grid_induce))

333 optim_gradient2 = scipy.optimize.approx_fprime(xk=X_estimate, f=
x_posterior_no_la, epsilon=x_posterior_no_la, 1e-4, args=(sigma_n, F_estimate
, K_gg, x_grid_induce))

334 optim_gradient3 = scipy.optimize.approx_fprime(xk=X_estimate, f=
x_posterior_no_la, epsilon=x_posterior_no_la, 1e-2, args=(sigma_n, F_estimate
, K_gg, x_grid_induce))

335 optim_gradient4 = scipy.optimize.approx_fprime(xk=X_estimate, f=
x_posterior_no_la, epsilon=x_posterior_no_la, 1e-2, args=(sigma_n, F_estimate
, K_gg, x_grid_induce))

336 calculated_gradient = x_jacobian_no_la(X_estimate, sigma_n,
F_estimate, K_gg, x_grid_induce)

337 difference_approx_fprime_1 = optim_gradient1 - calculated_gradient
338 difference_approx_fprime_2 = optim_gradient2 - calculated_gradient
339 difference_approx_fprime_3 = optim_gradient3 - calculated_gradient
340 difference_approx_fprime_4 = optim_gradient4 - calculated_gradient

96

341 difference_norm1 = np.linalg.norm(difference_approx_fprime_1)
342 difference_norm2 = np.linalg.norm(difference_approx_fprime_2)
343 difference_norm3 = np.linalg.norm(difference_approx_fprime_3)
344 difference_norm4 = np.linalg.norm(difference_approx_fprime_4)
345 print("Gradient difference using approx f prime, epsilon 1e-8:",

difference_norm1)
346 print("Gradient difference using approx f prime, epsilon 1e-4:",

difference_norm2)
347 print("Gradient difference using approx f prime, epsilon 1e-2:",

difference_norm3)
348 print("Gradient difference using approx f prime, epsilon 1e-2:",

difference_norm4)
349 plt.figure()
350 plt.title("Gradient compared to numerical gradient")
351 plt.plot(calculated_gradient, label="Analytic")
352 #plt.plot(optim_gradient1, label="Numerical 1")
353 plt.plot(optim_gradient2, label="Numerical 2")
354 plt.plot(optim_gradient3, label="Numerical 3")
355 plt.plot(optim_gradient4, label="Numerical 4")
356 plt.legend()
357 plt.figure()
358 #plt.plot(difference_approx_fprime_1, label="difference 1")
359 plt.plot(difference_approx_fprime_2, label="difference 2")
360 plt.plot(difference_approx_fprime_3, label="difference 3")
361 plt.plot(difference_approx_fprime_4, label="difference 4")
362 plt.legend()
363 plt.show()
364 exit()
365 """
366 #############################
367 # Iterate with EM algorithm #
368 #############################
369 prev_X_estimate = np.Inf
370 sigma_n = np.copy(global_initial_sigma_n)
371 startalgorithmtime = time.time()
372 for iteration in range(N_iterations):
373 if iteration > 0:
374 sigma_n = sigma_n * lr # decrease the noise variance with a

learning rate
375 if LET_INDUCING_POINTS_CHANGE_PLACE_WITH_X_ESTIMATE:
376 x_grid_induce = np.linspace(min(X_estimate), max(X_estimate)

, N_inducing_points) # Change position of grid to position of estimate
377 # Adding tiny jitter term to diagonal of K_gg (not the same as

sigma_n that we’re adding to the diagonal of K_xgK_ggˆ-1K_gx later on)
378 K_gg = K_gg_plain + jitter_term*np.identity(N_inducing_points) ##

K_gg = K_gg_plain + sigma_n*np.identity(N_inducing_points)
379 K_xg_prev = squared_exponential_covariance(X_estimate.reshape((T,1))

,x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)
380 # Find F estimate only if we’re not at the first iteration
381 if iteration == 0:
382 print("L value of initial estimate", x_posterior_no_la(

X_estimate, sigma_n, F_estimate, K_gg, x_grid_induce))
383 if iteration > 0:
384 if LIKELIHOOD_MODEL == "bernoulli":
385 for i in range(N):
386 y_i = y_spikes[i]
387 optimization_result = optimize.minimize(fun=

f_loglikelihood_bernoulli, x0=F_estimate[i], jac=f_jacobian_bernoulli, args=(

97

sigma_n, y_i, K_xg_prev, K_gg), method = ’L-BFGS-B’, options={’disp’:False})
#hess=f_hessian_bernoulli,

388 F_estimate[i] = optimization_result.x
389 elif LIKELIHOOD_MODEL == "poisson":
390 for i in range(N):
391 y_i = y_spikes[i]
392 optimization_result = optimize.minimize(fun=

f_loglikelihood_poisson, x0=F_estimate[i], jac=f_jacobian_poisson, args=(
sigma_n, y_i, K_xg_prev, K_gg), method = ’L-BFGS-B’, options={’disp’:False})
#hess=f_hessian_poisson,

393 F_estimate[i] = optimization_result.x
394 # Find next X estimate, that can be outside (0,2pi)
395 if NOISE_REGULARIZATION:
396 X_estimate += 2*np.random.multivariate_normal(np.zeros(T),

K_t_generate) - 1
397 if SMOOTHING_REGULARIZATION and iteration < (N_iterations-1) :
398 X_estimate = scipy.ndimage.filters.gaussian_filter1d(X_estimate,

4)
399 if GRADIENT_FLAG:
400 optimization_result = optimize.minimize(fun=x_posterior_no_la,

x0=X_estimate, args=(sigma_n, F_estimate, K_gg, x_grid_induce), method = "L-
BFGS-B", jac=x_jacobian_no_la, options = {’disp’:False})

401 else:
402 optimization_result = optimize.minimize(fun=x_posterior_no_la,

x0=X_estimate, args=(sigma_n, F_estimate, K_gg, x_grid_induce), method = "L-
BFGS-B", options = {’disp’:False})

403 X_estimate = optimization_result.x
404 if (iteration == (FLIP_AFTER_HOW_MANY - 1)) and

FLIP_AFTER_SOME_ITERATION:
405 # Flipping estimate after iteration 1 has been plotted
406 X_estimate = 2*mean(X_estimate) - X_estimate
407 if USE_OFFSET_AND_SCALING_AT_EVERY_ITERATION:
408 X_estimate -= min(X_estimate) #set offset of min to 0
409 X_estimate /= max(X_estimate) #scale length to 1
410 X_estimate *= (max(path)-min(path)) #scale length to length of

path
411 X_estimate += min(path) #set offset to offset of path
412 if PLOTTING:
413 plt.plot(X_estimate, label=’Estimate’)
414 #plt.ylim((lower_domain_limit, upper_domain_limit))
415 plt.tight_layout()
416 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-eval-

T-" + str(T) + "-lambda-" + str(peak_lambda_global) + "-background-" + str(
baseline_lambda_value) + "-seed-" + str(seeds[seedindex]) + ".png")

417 if np.linalg.norm(X_estimate - prev_X_estimate) < TOLERANCE:
418 #print("Seed", seeds[seedindex], "Iterations:", iteration+1, "

Change in X smaller than TOL")
419 break
420 #if iteration == N_iterations-1:
421 # print("Seed", seeds[seedindex], "Iterations:", iteration+1, "

N_iterations reached")
422 prev_X_estimate = X_estimate
423 if USE_OFFSET_AND_SCALING_AFTER_CONVERGENCE:
424 X_estimate -= min(X_estimate) #set offset of min to 0
425 X_estimate /= max(X_estimate) #scale length to 1
426 X_estimate *= (max(path)-min(path)) #scale length to length of path
427 X_estimate += min(path) #set offset to offset of path
428 # Flipped

98

429 X_flipped = - X_estimate + 2*mean(X_estimate)
430 # Rootmeansquarederror for X
431 X_rmse = np.sqrt(sum((X_estimate-path)**2) / T)
432 X_flipped_rmse = np.sqrt(sum((X_flipped-path)**2) / T)
433 ##### Check if flipped and maybe iterate again with flipped estimate
434 if X_flipped_rmse < X_rmse and RECONVERGE_IF_FLIPPED:
435 #print("RMSE for X:", X_rmse)
436 #print("RMSE for X flipped:", X_flipped_rmse)
437 #print("Re-iterating because of flip")
438 x_grid_induce = np.linspace(min_inducing_point, max_inducing_point,

N_inducing_points) #np.linspace(min(path), max(path), N_inducing_points)
439 K_gg_plain = squared_exponential_covariance(x_grid_induce.reshape((

N_inducing_points,1)),x_grid_induce.reshape((N_inducing_points,1)),
sigma_f_fit, delta_f_fit)

440 X_initial_2 = np.copy(X_flipped)
441 X_estimate = np.copy(X_flipped)
442 F_estimate = np.copy(F_initial)
443 if GIVEN_TRUE_F:
444 F_estimate = true_f
445 if PLOTTING:
446 if T > 100:
447 plt.figure(figsize=(10,3))
448 else:
449 plt.figure()
450 #plt.title("After flipping") # as we go
451 plt.xlabel("Time bin")
452 plt.ylabel("x")
453 plt.plot(path, color="black", label=’True X’)
454 plt.plot(X_initial_2, label=’Initial’)
455 #plt.ylim((lower_domain_limit, upper_domain_limit))
456 plt.tight_layout()
457 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-eval-

T-" + str(T) + "-lambda-" + str(peak_lambda_global) + "-background-" + str(
baseline_lambda_value) + "-seed-" + str(seeds[seedindex]) + "-flipped.png")

458 #############################
459 # EM after flipped #
460 #############################
461 prev_X_estimate = np.Inf
462 sigma_n = np.copy(global_initial_sigma_n)
463 for iteration in range(N_iterations):
464 if iteration > 0:
465 sigma_n = sigma_n * lr # decrease the noise variance with a

learning rate
466 if LET_INDUCING_POINTS_CHANGE_PLACE_WITH_X_ESTIMATE:
467 x_grid_induce = np.linspace(min(X_estimate), max(

X_estimate), N_inducing_points) # Change position of grid to position of
estimate

468 # Adding tiny jitter term to diagonal of K_gg (not the same as
sigma_n that we’re adding to the diagonal of K_xgK_ggˆ-1K_gx later on)

469 K_gg = K_gg_plain + jitter_term*np.identity(N_inducing_points) #
#K_gg = K_gg_plain + sigma_n*np.identity(N_inducing_points)

470 K_xg_prev = squared_exponential_covariance(X_estimate.reshape((T
,1)),x_grid_induce.reshape((N_inducing_points,1)), sigma_f_fit, delta_f_fit)

471 # Find F estimate only if we’re not at the first iteration
472 if iteration > 0:
473 if LIKELIHOOD_MODEL == "bernoulli":
474 for i in range(N):
475 y_i = y_spikes[i]

99

476 optimization_result = optimize.minimize(fun=
f_loglikelihood_bernoulli, x0=F_estimate[i], jac=f_jacobian_bernoulli, args=(
sigma_n, y_i, K_xg_prev, K_gg), method = ’L-BFGS-B’, options={’disp’:False})
#hess=f_hessian_bernoulli,

477 F_estimate[i] = optimization_result.x
478 elif LIKELIHOOD_MODEL == "poisson":
479 for i in range(N):
480 y_i = y_spikes[i]
481 optimization_result = optimize.minimize(fun=

f_loglikelihood_poisson, x0=F_estimate[i], jac=f_jacobian_poisson, args=(
sigma_n, y_i, K_xg_prev, K_gg), method = ’L-BFGS-B’, options={’disp’:False})
#hess=f_hessian_poisson,

482 F_estimate[i] = optimization_result.x
483 # Find next X estimate, that can be outside (0,2pi)
484 if NOISE_REGULARIZATION:
485 X_estimate += 2*np.random.multivariate_normal(np.zeros(T),

K_t_generate) - 1
486 if SMOOTHING_REGULARIZATION and iteration < (N_iterations-1) :
487 X_estimate = scipy.ndimage.filters.gaussian_filter1d(

X_estimate, 4)
488 if GRADIENT_FLAG:
489 optimization_result = optimize.minimize(fun=

x_posterior_no_la, x0=X_estimate, args=(sigma_n, F_estimate, K_gg,
x_grid_induce), method = "L-BFGS-B", jac=x_jacobian_no_la, options = {’disp’:
False})

490 else:
491 optimization_result = optimize.minimize(fun=

x_posterior_no_la, x0=X_estimate, args=(sigma_n, F_estimate, K_gg,
x_grid_induce), method = "L-BFGS-B", options = {’disp’:False})

492 X_estimate = optimization_result.x
493 if (iteration == (FLIP_AFTER_HOW_MANY - 1)) and

FLIP_AFTER_SOME_ITERATION:
494 # Flipping estimate after iteration 1 has been plotted
495 X_estimate = 2*mean(X_estimate) - X_estimate
496 if USE_OFFSET_AND_SCALING_AT_EVERY_ITERATION:
497 X_estimate -= min(X_estimate) #set offset of min to 0
498 X_estimate /= max(X_estimate) #scale length to 1
499 X_estimate *= (max(path)-min(path)) #scale length to length

of path
500 X_estimate += min(path) #set offset to offset of path
501 if PLOTTING:
502 plt.plot(X_estimate, label=’Estimate (after flip)’)
503 #plt.ylim((lower_domain_limit, upper_domain_limit))
504 plt.tight_layout()
505 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-

eval-T-" + str(T) + "-lambda-" + str(peak_lambda_global) + "-background-" +
str(baseline_lambda_value) + "-seed-" + str(seeds[seedindex]) + "-flipped.png
")

506 if np.linalg.norm(X_estimate - prev_X_estimate) < TOLERANCE:
507 #print("Seed", seeds[seedindex], "Iterations after flip:",

iteration+1, "Change in X smaller than TOL")
508 break
509 #if iteration == N_iterations-1:
510 # print("Seed", seeds[seedindex], "Iterations after flip:",

iteration+1, "N_iterations reached")
511 prev_X_estimate = X_estimate
512 if USE_OFFSET_AND_SCALING_AFTER_CONVERGENCE:
513 X_estimate -= min(X_estimate) #set offset of min to 0

100

514 X_estimate /= max(X_estimate) #scale length to 1
515 X_estimate *= (max(path)-min(path)) #scale length to length of

path
516 X_estimate += min(path) #set offset to offset of path
517 # Check if flipped is better even after flipped convergence:
518 X_flipped = - X_estimate + 2*mean(X_estimate)
519 # Rootmeansquarederror for X
520 X_rmse = np.sqrt(sum((X_estimate-path)**2) / T)
521 X_flipped_rmse = np.sqrt(sum((X_flipped-path)**2) / T)
522 ##### Check if flipped and maybe iterate again with flipped

estimate
523 if X_flipped_rmse < X_rmse:
524 X_estimate = X_flipped
525 # Rootmeansquarederror for X
526 X_rmse = np.sqrt(sum((X_estimate-path)**2) / T)
527 #print("Seed", seeds[seedindex], "smoothingwindow",

smoothingwindow_for_PCA, "finished. RMSE for X:", X_rmse)
528 #SStot = sum((path - mean(path))**2)
529 #SSdev = sum((X_estimate-path)**2)
530 #Rsquared = 1 - SSdev / SStot
531 #Rsquared_values[seed] = Rsquared
532 #print("R squared value of X estimate:", Rsquared, "\n")
533 #####
534 # Rootmeansquarederror for F
535 #if LIKELIHOOD_MODEL == "bernoulli":
536 # h_estimate = np.divide(np.exp(F_estimate), (1 + np.exp(F_estimate)

))
537 #if LIKELIHOOD_MODEL == "poisson":
538 # h_estimate = np.exp(F_estimate)
539 #F_rmse = np.sqrt(sum((h_estimate-true_f)**2) / (T*N))
540 if PLOTTING:
541 if T > 100:
542 plt.figure(figsize=(10,3))
543 else:
544 plt.figure()
545 plt.title("Final estimate") # as we go
546 plt.xlabel("Time bin")
547 plt.ylabel("x")
548 plt.plot(path, color="black", label=’True X’)
549 plt.plot(X_initial, label=’Initial’)
550 plt.plot(X_estimate, label=’Estimate’)
551 plt.legend(loc="upper right")
552 #plt.ylim((lower_domain_limit, upper_domain_limit))
553 plt.tight_layout()
554 plt.savefig(time.strftime("./plots/%Y-%m-%d")+"-robustness-eval-T-"

+ str(T) + "-lambda-" + str(peak_lambda_global) + "-background-" + str(
baseline_lambda_value) + "-seed-" + str(seeds[seedindex]) + "-final-L-" + str
(x_posterior_no_la(X_estimate, sigma_n, F_estimate, K_gg, x_grid_induce)) + "
.png")

555 ensemble_array_X_rmse[smoothingwindow_index] = X_rmse
556 ensemble_array_L_value[smoothingwindow_index] = x_posterior_no_la(

X_estimate, sigma_n, F_estimate, K_gg, x_grid_induce)
557 ensemble_array_X_estimate[smoothingwindow_index] = X_estimate
558 ensemble_array_F_estimate[smoothingwindow_index] = F_estimate
559 ensemble_array_y_spikes[smoothingwindow_index] = y_spikes
560 ensemble_array_path[smoothingwindow_index] = np.copy(path)
561 # End of loop for one smoothingwidth
562 # Three smoothingwidths done: Find best X estimate based on L value or RMSE

101

score across
563 final_rmse = ensemble_array_X_rmse[0] # when only one window
564 print("Final RMSE for tuning width 5", final_rmse)
565 index_of_smoothing_with_best_RMSE = np.argmin(ensemble_array_X_rmse)
566 best_X_rmse_based_on_RMSE = ensemble_array_X_rmse[

index_of_smoothing_with_best_RMSE]
567 index_of_smoothing_with_best_L = np.argmin(ensemble_array_L_value)
568 best_X_rmse_based_on_L = ensemble_array_X_rmse[

index_of_smoothing_with_best_L]
569 rmse_for_smoothingwidth_3 = ensemble_array_X_rmse[0]
570 rmse_for_smoothingwidth_5 = ensemble_array_X_rmse[1]
571 rmse_for_smoothingwidth_10 = ensemble_array_X_rmse[2]
572 X_estimate = ensemble_array_X_estimate[index_of_smoothing_with_best_L]
573 F_estimate = ensemble_array_F_estimate[index_of_smoothing_with_best_L]
574 y_spikes = ensemble_array_y_spikes[index_of_smoothing_with_best_L]
575 path = ensemble_array_path[index_of_smoothing_with_best_L]
576 endtime = time.time()
577 print("\nSeed", seeds[seedindex])
578 print("Time use:", endtime - starttime)
579 print("Time use without overhead", time.time()-startalgorithmtime)
580 print("RMSEs :", ensemble_array_X_rmse, "Best smoothing window: ",

ensemble_smoothingwidths[index_of_smoothing_with_best_RMSE], "Best RMSE:",
best_X_rmse_based_on_RMSE)

581 print("L values:", ensemble_array_L_value, "Best smoothing window:",
ensemble_smoothingwidths[index_of_smoothing_with_best_L], "Best RMSE:",
best_X_rmse_based_on_L)

582 print("
Smoothingwidth 3 RMSE:", rmse_for_smoothingwidth_3)

583 print("
Smoothingwidth 5 RMSE:", rmse_for_smoothingwidth_5)

584 print("
Smoothingwidth 10 RMSE:", rmse_for_smoothingwidth_10)

585 return [best_X_rmse_based_on_RMSE, best_X_rmse_based_on_L,
rmse_for_smoothingwidth_3, rmse_for_smoothingwidth_5,
rmse_for_smoothingwidth_10, X_estimate, F_estimate, y_spikes, path] #
Returning X, F estimates based on L value since that is the best we can do
unsupervised

586

587 if __name__ == "__main__":
588 # The job index is the lambda index
589 # Seeds are done sequentially and hope we don’t choke on them. Then one job

requires 4 OMP_THREADS
590 # For each seed we do the pca ensemble sequantially too, and we let the

numpy do its parallellization thing
591 lambda_index = int(sys.argv[1])
592 # The other version:
593 # The index in the job array is interpreted as a two-dimensional list with

Cols equal to the number of seeds and Rows equal to the number of lambdas
594 #n_cols = len(seeds)
595 #n_rows = len(peak_lambda_array)
596 #lambda_index = int(int(sys.argv[1]) // n_cols)
597 #seedindex = int(int(sys.argv[1]) % n_cols)
598

599 print("Likelihood model:",LIKELIHOOD_MODEL)
600 print("Covariance kernel for Kx:", COVARIANCE_KERNEL_KX)
601 print("Using gradient?", GRADIENT_FLAG)
602 print("Noise regulation:",NOISE_REGULARIZATION)
603 print("Tuning curve definition:", TUNINGCURVE_DEFINITION)

102

604 print("Uniform bumps:", UNIFORM_BUMPS)
605 print("Plotting:", PLOTTING)
606 print("Infer F posteriors:", INFER_F_POSTERIORS)
607 print("Initial sigma_n:", global_initial_sigma_n)
608 print("Learning rate:", lr)
609 print("T:", T)
610 print("N:", N)
611 print("Smoothingwidths:", ensemble_smoothingwidths)
612 print("Number of seeds we average over:", NUMBER_OF_SEEDS)
613 if FLIP_AFTER_SOME_ITERATION:
614 print("NBBBB!!! We’re flipping the estimate in line 600.")
615 print("\n")
616

617 global peak_lambda_global
618 peak_lambda_global = peak_lambda_array[lambda_index]
619

620 print("Lambda", peak_lambda_global, "started!")
621 seed_rmse_array_based_on_RMSE = np.zeros(len(seeds))
622 seed_rmse_array_based_on_L = np.zeros(len(seeds))
623 seed_rmse_array_for_smoothingwidth_3 = np.zeros(len(seeds))
624 seed_rmse_array_for_smoothingwidth_5 = np.zeros(len(seeds))
625 seed_rmse_array_for_smoothingwidth_10 = np.zeros(len(seeds))
626 X_array = np.zeros((len(seeds), T))
627 F_array = np.zeros((len(seeds), N, T))
628 Y_array = np.zeros((len(seeds), N, T))
629 path_array = np.zeros((len(seeds), T))
630

631 for i in range(len(seeds)):
632 result_array = find_rmse_for_this_lambda_this_seed(i) # i = seedindex
633 seed_rmse_array_based_on_RMSE[i] = result_array[0]
634 seed_rmse_array_based_on_L[i] = result_array[1]
635 seed_rmse_array_for_smoothingwidth_3[i] = result_array[2]
636 seed_rmse_array_for_smoothingwidth_5[i] = result_array[3]
637 seed_rmse_array_for_smoothingwidth_10[i] = result_array[4]
638 X_array[i] = result_array[5]
639 F_array[i] = result_array[6]
640 Y_array[i] = result_array[7]
641 path_array[i] = result_array[8]
642

643 # Using RMSE to choose best final X:
644 np.save("m_s_arrays/RMSE-m-base-" + str(baseline_lambda_value) + "-T-" + str

(T) + "-lambda-index-" + str(lambda_index), np.mean(
seed_rmse_array_based_on_RMSE))

645 np.save("m_s_arrays/RMSE-s-base-" + str(baseline_lambda_value) + "-T-" + str
(T) + "-lambda-index-" + str(lambda_index), sum((
seed_rmse_array_based_on_RMSE - np.mean(seed_rmse_array_based_on_RMSE))**2))

646 # Using L to choose best final X:
647 np.save("m_s_arrays/L-m-base-" + str(baseline_lambda_value) + "-T-" + str(T)

+ "-lambda-index-" + str(lambda_index), np.mean(seed_rmse_array_based_on_L))
648 np.save("m_s_arrays/L-s-base-" + str(baseline_lambda_value) + "-T-" + str(T)

+ "-lambda-index-" + str(lambda_index), sum((seed_rmse_array_based_on_L - np
.mean(seed_rmse_array_based_on_L))**2))

649 # Sticking with smoothingwidth 3:
650 np.save("m_s_arrays/3-m-base-" + str(baseline_lambda_value) + "-T-" + str(T)

+ "-lambda-index-" + str(lambda_index), np.mean(
seed_rmse_array_for_smoothingwidth_3))

651 np.save("m_s_arrays/3-s-base-" + str(baseline_lambda_value) + "-T-" + str(T)
+ "-lambda-index-" + str(lambda_index), sum((

103

seed_rmse_array_for_smoothingwidth_3 - np.mean(
seed_rmse_array_for_smoothingwidth_3))**2))

652 # Sticking with smoothingwidth 5:
653 np.save("m_s_arrays/5-m-base-" + str(baseline_lambda_value) + "-T-" + str(T)

+ "-lambda-index-" + str(lambda_index), np.mean(
seed_rmse_array_for_smoothingwidth_5))

654 np.save("m_s_arrays/5-s-base-" + str(baseline_lambda_value) + "-T-" + str(T)
+ "-lambda-index-" + str(lambda_index), sum((

seed_rmse_array_for_smoothingwidth_5 - np.mean(
seed_rmse_array_for_smoothingwidth_5))**2))

655 # Sticking with smoothingwidth 10:
656 np.save("m_s_arrays/10-m-base-" + str(baseline_lambda_value) + "-T-" + str(T

) + "-lambda-index-" + str(lambda_index), np.mean(
seed_rmse_array_for_smoothingwidth_10))

657 np.save("m_s_arrays/10-s-base-" + str(baseline_lambda_value) + "-T-" + str(T
) + "-lambda-index-" + str(lambda_index), sum((
seed_rmse_array_for_smoothingwidth_10 - np.mean(
seed_rmse_array_for_smoothingwidth_10))**2))

658

659 print("\n")
660 print("Lambda strength:", peak_lambda_global)
661 print("RMSE for X (chosen by RMSE) averaged across seeds:", np.mean(

seed_rmse_array_based_on_RMSE))
662 print("Sum of squared errors in the RMSE:", sum((

seed_rmse_array_based_on_RMSE - np.mean(seed_rmse_array_based_on_RMSE))**2))
663 print("RMSE for X (chosen by L value) averaged across seeds:", np.mean(

seed_rmse_array_based_on_L))
664 print("Sum of squared errors in the RMSE:", sum((seed_rmse_array_based_on_L

- np.mean(seed_rmse_array_based_on_L))**2))
665 print("RMSE for X (smoothing width 3) averaged across seeds:", np.mean(

seed_rmse_array_for_smoothingwidth_3))
666 print("Sum of squared errors in the RMSE:", sum((

seed_rmse_array_for_smoothingwidth_3 - np.mean(
seed_rmse_array_for_smoothingwidth_3))**2))

667 print("RMSE for X (smoothing width 5) averaged across seeds:", np.mean(
seed_rmse_array_for_smoothingwidth_5))

668 print("Sum of squared errors in the RMSE:", sum((
seed_rmse_array_for_smoothingwidth_5 - np.mean(
seed_rmse_array_for_smoothingwidth_5))**2))

669 print("RMSE for X (smoothing width 10) averaged across seeds:", np.mean(
seed_rmse_array_for_smoothingwidth_10))

670 print("Sum of squared errors in the RMSE:", sum((
seed_rmse_array_for_smoothingwidth_10 - np.mean(
seed_rmse_array_for_smoothingwidth_10))**2))

671 print("\n")
672 # Finished all seeds for this lambda
673

674 if INFER_F_POSTERIORS:
675 # Grid for plotting
676 bins_for_plotting = np.linspace(lower_domain_limit, upper_domain_limit,

num=N_plotgridpoints + 1)
677 x_grid_for_plotting = 0.5*(bins_for_plotting[:(-1)]+bins_for_plotting

[1:])
678 peak_lambda_global = peak_lambda_array[-1]
679 print("Peak lambda:", peak_lambda_global)
680 peak_f_offset = np.log(peak_lambda_global) - baseline_f_value
681 #posterior_f_inference(X_estimate, F_estimate, sigma_n, y_spikes, path,

x_grid_for_plotting, bins_for_plotting, peak_f_offset, baseline_f_value,

104

binsize)
682 posterior_f_inference(X_array[0], F_array[0], 1, Y_array[0], path_array

[0], x_grid_for_plotting, bins_for_plotting, peak_f_offset, baseline_f_value,
1000) # Bin size has no physical meaning for synthetic data

Listing B.5: cluster-parallel-robustness-evaluation.py

105

Even M
oa M

yklebust
A robustness evaluation of the latent m

anifold tuning m
odel

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Even Moa Myklebust

A robustness evaluation of the latent
manifold tuning model

Master’s thesis in Industrial Mathematics

Supervisor: Benjamin Adric Dunn

July 2020

	Abstract
	Sammendrag
	Preface
	Table of Contents
	Introduction
	Dimensionality reduction
	Neural tuning
	Probabilistic methods for dimensionality reduction
	Our contribution

	Neural activity and mouse head direction data
	Observed head direction and neural activity
	Neuron tuning

	Applying principal component analysis

	Theoretical background
	Parameter estimation
	Maximum likelihood estimate
	Maximum a posteriori estimate
	Heuristics for global optimization

	Gaussian processes
	Conditional distribution
	Noisy observations

	Approximate Gaussian processes
	Principal component analysis
	Generalized Linear Models

	The latent manifold tuning model
	The latent manifold tuning model
	Modeling the latent variable
	Modeling the spike counts and tuning curves

	Inference
	MAP estimate of tuning curves
	MAP estimate of the latent variable
	Gradient
	The iterative MAP procedure

	Applying the LMT model to simulated and experimental data
	Convergence and pitfalls
	Flipping
	Scaling
	Partly flipped estimates
	Placement of the inducing grid

	Initialization
	Initial estimate for bold0mu mumu FFfalseFFFF
	Initial estimate for bold0mu mumu XXfalseXXXX

	Robustness evaluation
	Choosing between final estimates

	Application to head direction data
	Initialization 1: True X and optimal F
	Initialization 2: True X and estimated F
	Initialization 3: PCA initialization of X and optimal F
	Initialization 4: PCA initialization of X and estimated F
	Initialization 5: Flat initialization of X and estimated F
	Comparison of different initializations

	Discussion and further work
	Simulated data
	Robustness evaluation
	Head direction data
	Future work
	Conclusion

	Bibliography
	Appendices
	Theorems and derivations
	Matrix calculus
	Maximizing the fraction of two quadratic forms
	Matrix inversion lemma
	Theorem 1.3.22 from horn1985matrix
	Matrix differentiation

	Bernoulli spike model

	Python code
	Function library
	Application to head direction dataset
	Robustness evaluation

