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Abstract

Data-driven methods are flourishing in medicine, improving our understanding of diseases,
simulating the effect of treatment, and assisting medical professionals in surgery. At the
base of these methods lies image segmentation, a vital task for extracting information from
medical images. While achieving high segmentation scores, existing methods for image
segmentation have flaws in their ability to represent curved shapes accurately. Several
data transformation steps may be necessary before the segmentation output can be put to
good use. This thesis proposes a novel learning setup, combining the shape-representation
superiority of parametric curves with the well-investigated task of Cardiac MRI-image
segmentation.

The proposed setup consists of a parametric curve model for the heart shape, a custom
network architecture, and custom loss and gradient formulations. We validate the method
on the benchmark ACDC-dataset [1] and compare the performance to a state-of-the-art
network for medical image segmentation. The results obtained indicate that the method
does not work in current setup, but that it should be further developed and tested. Some
obvious improvements could likely significantly enhance the method’s performance, but
these are left for future studies.
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Chapter 1
Introduction

For as long as humans have practiced medicine, vision has been an integral part of di-
agnosing, treating, and preventing disease. Still, medical professionals use their sight to
look for bodily indications of diseases when evaluating a patient. Modern medical imag-
ing technology lets us look inside the human body without resorting to invasive surgery,
providing means to detect diseases that are not visible on the exterior of the body. The rise
of computer vision has unleashed computers’ powers on diagnostics, utilizing their unique
ability to discover patterns and outliers in images, and discovering symptoms invisible to
the human eye. At the fundaments of medical computer vision lies the image segmentation
task, letting computers extract information and detect objects in medical images. While
well-investigated, medical image segmentation is far from solved, and improvements has
the potential to significantly enhance the utility of computer-based medical diagnostics,
surgery-aid, and treatment.

1.1 Curve Segmentation through Parameter Learning

In this thesis, we present, investigate and implement a novel deep-learning-based approach
to image segmentation. While traditional image segmentation looks to assign each pixel
of an image to a class, we seek instead a parametric curve representing the shape of the
object to be segmented. This alternative approach is motivated by multiple factors. First of
all, we assume that a parametric curve representation can provide a more realistic shape of
an object than a pixel-wise discrete representation. Secondly, in the specific application of
image segmentation on cardiac MRI-images, the desired end-result is typically a geometric
model of the heart. Our proposed approach generates a segmentation output much closer
to the desired end-product.

3



Chapter 1. Introduction

1.2 Thesis Outline
This thesis mainly focuses on the presentation and implementation of the novel method for
cardiac MRI-image segmentation introduced in the previous section. Developing the code
and managing the unexpected difficulties one encounters when developing a new method
has undoubtedly been the most challenging and time-consuming part of the thesis work.
There have been significant uncertainties concerning the expected results, or even if the
method would work at all. The results should thus be interpreted as an initial investigation
of the method - further testing is necessary to draw any definite conclusions.

The reader will be presented with the thesis work in an orderly manner. We start by
introducing some necessary supporting theory before discussing technical aspects of the
proposed method’s implementation, and the results of the numerical experiment. In Chap-
ter 2, we examine the task of image segmentation in general, before narrowing down the
scope to the specific task of Cardiac MRI-image segmentation. We further look at some
technical aspects of MRI-images necessary for understanding the task at hand. In Chapter
3, we introduce spline curves and B-splines, and the theory of which we build our paramet-
ric curve heart-shape model. The model is explicitly defined near the end of the chapter.
The next chapters account for the various aspects of the learning setup. In Chapter 4, we
apply the parametric heart model to a supervised learning framework and define our spe-
cific image segmentation task. We discuss the proposed network architecture at the end of
the chapter. Chapter 5, presents the loss function, its gradient and their implementation.
In the experimental part of the thesis, the proposed method is implemented and validated
on the ACDC-dataset [1]. The results obtained are presented in Chapter 6, and the per-
formance is compared to the performance of a traditional segmentation method validated
on the same dataset. Finally, in Chapter 7, we discuss the obtained results and explore
improvements of our proposed method.
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Chapter 2
Cardiac MRI-Image Segmentation

Image segmentation is the division of a digital image into separate meaningful subparts.
The task has traditionally been executed manually by humans, but automatic image seg-
mentation methods are rapidly replacing the need for manual work. Despite its analogy
being a natural and trivial part of human vision [2], the task of automatic image segmen-
tation has been an object of significant scientific interest for decades. Deep learning has
dramatically enhanced the performance of image segmentation methods in the last decade
[1]. Currently, image segmentation is powering development within the fields of vision
for autonomous vehicles [3], face recognition [4], and computer-aided diagnosis based
on MRI-images [5]. This chapter provides a short but necessary introduction to image
segmentation and especially its applications on Cardiac MRI-images.

2.1 A Brief Introduction to Image Segmentation
Digital images are composed of image elements called pixels, associated with a discrete
value representing some color information [6]. We will only consider grey-scale images,
in which case each pixel holds a value representing the brightness of that pixel on a scale
with white at one endpoint and black at the other endpoint. The resolution of an image
is usually represented by two numbers: the number of pixel columns (the width of the
image) and the number of pixel rows (the height of the image). We define the domain of
an image of resolution h× w as Ω = {x, y ∈ R | 0 ≤ x ≤ w, 0 ≤ y ≤ h}. We assign to
Ω a square grid of elements with side lengths 1. These elements correspond to the pixels
of the digital image. Grey-scale images can thus be represented by a matrix, where each
element of the matrix is a pixel, and the value of the matrix element is the grey-scale value.
The resolution of the image defines the size of the matrix. Given a grey-scale image with
h pixel rows and w pixel columns, we represent it by the matrix M ∈ Rh×w. We will
make no distinction between a digital image and its matrix representation in this thesis,
and both terms may be used interchangeably depending on the context. We refer to the
representation of a digital image by a matrix as raster graphics.

Image segmentation is partitioning the pixels of digital images into regions, which
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Chapter 2. Cardiac MRI-Image Segmentation

Figure 2.1: The first image shows two climbers on a cliff by the sea. The second image shows an
image segmentation output based on the first image. In this case, the classes are people (white) and
background (green).

are usually required to be non-overlapping. Typically, some classes of interest should be
correctly identified and separated from the background of the image. In the binary case,
there are only two classes: the object of interest, which we label 1, and the background,
which we label 0. The output of binary segmentation can be represented by a prediction
matrix of the same size as the input image, for which each element holds a probability, a
value in [0, 1], that the corresponding pixel belongs to the object of interest. Alternatively,
a threshold can be applied such that each element of the prediction matrix is either 0 or 1.
Figure 2.1 shows a binary image segmentation output for the task of segmenting humans
from the background. The image to the left is the input image, and the image to the right
shows a prediction map for which the humans (white) in the image are separated from the
background (green). If the image segmentation task concerns multiple classes, the output
can be represented by a prediction matrix for each class. The segmentation task in this
thesis is a binary one, and we will not further discuss multi-class image segmentation.

We make a distinction between semantic image segmentation and instance image seg-
mentation. In semantic segmentation, we are only concerned with labeling each pixel with
the correct class. The middle image of Figure 2.2 visualizes the output of semantic image
segmentation. Note that while the pixels of the people are correctly identified (labeled
with blue), no distinction is made between the individuals. Instance segmentation is a
more complicated procedure, because, in addition to identifying each pixel class, we want
to separate different instances of a class. The rightmost image of Figure 2.2 visualizes the

6



2.1 A Brief Introduction to Image Segmentation

Figure 2.2: This figure illustrates the difference between semantic segmentation and instance seg-
mentation. The leftmost image shows the original image. The middle image visualizes the result of
a successful semantic segmentation. The people are all labeled with the correct class, but no dis-
tinction is made between the individuals. The rightmost image visualizes the result of a successful
instance segmentation. All the people are correctly identified as individuals.

Figure 2.3: Representing a curve, in blue, by pixels, in green.

output of instance image segmentation. Here, the individuals are all labeled with different
colors. While an important task in many segmentation applications, instance segmentation
is not relevant in our task of cardiac image segmentation.

2.1.1 Representation of Segmentation by Enclosing Curve
Representing object boundaries by raster graphics is practical and straightforward. Evalu-
ating the representation corresponds to looking up values in a fixed matrix. Furthermore,
resolution is easily adjusted by changing the size of the representation matrix, though the
process will cause a loss of information. However, many objects will have a shape which
is poorly represented by raster graphics. Curved primitives such as circles or ellipses can
only be approximated by pixels, typically resulting in a ”staircase” formation, as seen in
Figure 2.3. Parametric curves better represent curved object boundaries. Furthermore, a
curve representation does not have a fixed resolution, so scaling does not result in loss of
resolution. Shifts and rotations of objects are trivial in a curve representation but compli-
cated in a rastered representation. This thesis is based on the assumption that parametric

7



Chapter 2. Cardiac MRI-Image Segmentation

curves better represent the shape of a human heart than raster graphics. To apply a para-
metric curve representation of the heart shape to image segmentation, we make a small
modification to the image segmentation task described in Section 2.1. Instead of assign-
ing a class to each pixel, we will assign to each class an enclosing curve such that every
pixel inside the enclosing curve belongs to that class. The input to the segmentation task
will still be raster graphic cardiac MRI-images, but the output will be a closed parametric
curve enclosing the heart pixels. Applied to a learning framework, as we will do later in
this thesis, it may seem slightly counterintuitive to try to learn a parametric curve repre-
sentation from pixel-wise ground-truth images, but we believe that this setup could lead to
a more accurate learning of the true heart shape. Furthermore, many of the applications of
cardiac MRI-image segmentation, revolve around performing mathematical calculations
and simulations on the derived heart shape. Such processes will be significantly simplified
by directly obtaining a parametric curve representation from the image segmentation.

2.2 Cardiac MRI and its Applications
Magnetic resonance imaging (MRI) is a non-invasive imaging technique leveraging mag-
netic fields and gradients, as well as radio waves, to generate images of the insides of
a body. Cardiac MRI is used to create pictures of the heart, useful for detecting heart
diseases and planning surgery. Though MRI-imaging is an expensive and elaborate proce-
dure, the technique is widely used due to its strong performance in differentiating between
different types of biological tissue [7], as well as not exposing the subject to health risks
caused by radiation [8]. Cardiac MRI-images have become the gold standard for detecting
ischemia [9], the process where lack of oxygen necessary for cell metabolism causes tissue
in the heart to die. Ischemia is strongly linked to cardiovascular diseases (CVD), a group
of diseases affecting the heart and vessels. CVD’s are marked by the World Health Orga-
nization as the number one cause of death worldwide, claiming an estimated 17.9 million
lives annually [10]. As more and more diseases are linked to physical features observable
through MRI, the use of MRI in diagnosis context steadily grows, according to Lee et al.
[11].

2.2.1 Basic Heart Anatomy
The heart is an essential organ in the human body, responsible for pumping blood con-
taining oxygen and nutrients to body tissues [12]. There are four chambers in the heart,
namely the left and right atria and the left and right ventricles. These chambers are shown
in Figure 2.4. The atria receive blood returning from the body, and the ventricles pump the
blood back out to the body again. A cardiac cycle is one heartbeat, and can be divided into
a systole and diastole phase [13]. The systole is the phase in which blood pumps out from
the heart. It begins with the left and right atria contracting, pushing blood from the atria
into the left and right ventricles. The ventricles then contract, pushing the blood out into
the body through arteries. Specifically, the right ventricle sends blood to the lungs to refill
with oxygen, while the left ventricle supplies the body with oxygen holding blood through
the aorta, the largest artery in the body. In the diastole phase, the heart muscle relaxes, and
blood returns through veins from the lungs and body to the atria. The different valves seen

8



2.2 Cardiac MRI and its Applications

Figure 2.4: Overview of heart anatomy. The picture is edited from the original version from Pix-
abay.com.

in Figure 2.4 restrict the blood to only flow in the intended direction, avoiding backflow.
The myocardium or heart muscle (labeled at the bottom of the figure), is the muscle re-
sponsible for the contraction in the systole phase, and constitutes the main part of the heart
walls. To describe the heart’s spatial properties, the apex and base of the heart are often
used as references. The apex is located at the tip of the left ventricle and is close to the
point of maximum movement during the cardiac cycle. Figure 2.5 shows the location of
the apex in relation to the ventricles. The base of the heart lies opposite the apex, mainly
in the left atrium.

2.2.2 Computational Anatomy and Cardiac Segmentation
Medical imaging techniques allow the computational powers of computers to be unleashed
on medical tasks that previously have required time-consuming manual work or not been
possible at all. Driven by development within medical imaging, computer vision, statisti-
cal shape analysis and machine learning, Computer-aided Diagnosis and Computer-aided
Surgery are becoming essential tools in clinical practice [15], assisting medical profes-
sionals in both discovering and treating diseases. Fully automated diagnosis systems are

9



Chapter 2. Cardiac MRI-Image Segmentation

Figure 2.5: Orientation of the right and left ventricles in relation to the vertical axis. Figure provided
by Petitjean and Dacher [14].

on the horizon. In research, computer-based methods let scientists uncover differences in
biological structures between healthy and diseased people, improving our understanding
of diseases [15, 16]. The availability of data and data-driven methods makes quantita-
tive analysis a powerful tool for delineating the human body structures and the biological
processes affecting them [17].

Common for many of the data-driven methods is their reliance on the data provided
by the medical images and the information extracted by the image segmentation process.
Sengur et al. [5] claims that image segmentation is widely accepted as an essential sub-
process of computational medicine, and the problem is far from solved. Even though the
big international competition MICCAI’17 reports that state-of-the-art methods for Cardiac
MRI-Image segmentation achieve expert accuracy [1], effort is constantly made to get
methods that are faster, more generalizable, more reliable or that need less human input
or smaller datasets. Better segmentation can power improvements in nearly all aspects
of medical computing, and image segmentation research does not seem to be declining
anytime soon.

In the context of cardiac MRI-images, image segmentation is partitioning the pixels of
an MRI-image containing the heart into some relevant regions. Typically, the regions of
interest are some subparts of the heart, but we will only discuss the segmentation of the
heart as a whole for this thesis. Our setup is thus a binary segmentation of the heart. Figure
2.6 shows a Cardiac MRI-image with its corresponding segmentation. The red pixels in
the image belong to the heart class, while the others are background.

10



2.2 Cardiac MRI and its Applications

Cardiac MRI-image Ground truth mask

Figure 2.6: The left image shows the original MRI-image from the ACDC-dataset [1], and the right
image shows the corresponding ground-truth heart pixels in red.

2.2.3 Cardiac MRI-Image Format

MRI-images are two-dimensional images trying to capture a three-dimensional anatomy.
Images are taken sequentially along some axis in order to build a 3D-volume of the region
of interest. To better describe this process, it is necessary to introduce some anatomical
terms of location, created to describe a location in a body unambiguously [18]. Figure 2.7
show different planes used in medical context. In cardiac MRI-imaging, the anatomical
terms of location are defined in relation to the long-axis of the left ventricle, shown in
Figure 2.5. The long-axis of the left ventricle lies in the plane called the coronal plane,
shown in blue in Figure 2.7. In coronary context, the short-axis view show planes perpen-
dicular to the long-axis. While long-axis images provide useful supplementary insights to
the heart anatomy, improving the accuracy of heart models [19], short-axis imaging is the
most common format for diagnostics [20]. Long-axis images will not be discussed further
in this thesis. Figure 2.6 show a short-axis MRI image of a heart with its corresponding
labels.

To capture the whole heart volume, parallel slices of short-axis MRI-images are taken
along the long axis from the apex to the base capturing the entire ventricles. Stacking the
short axis slices along the long axis creates a complete 3D-image of the heart. Technical
issues put a lower limit on the slice thickness, limiting the resolution along the long axis
for the 3D-image. This resolution varies heavily depending on the MRI-machine. The
ACDC-dataset [1], which will be used as validation dataset for our proposed method in
Chapter 6, contain images with a resolution of 5 to 10 mm per pixel along the long axis,
and a resolution of 1.34 to 1.68 mm2 per pixel in the horizontal plane.

Modeling blood flow and heart movement during a cardiac cycle is useful for diag-
nostics and evaluation of many heart diseases [21]. To achieve this, spatial 3D-images
are captured at different times during the cardiac cycle. Thus, the cardiac MRI-images
can also be represented as 4D images with a temporal dimension in addition to the spatial
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Chapter 2. Cardiac MRI-Image Segmentation

Figure 2.7: Different planes used in medical context in relation to a human body. Created by David
Richfield and Mikael Häggström, M.D., and used with permission.
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2.3 U-Net

dimensions. In the ACDC-dataset [1] the temporal resolution varies from 28 to 40 images
per cycle. Variation along the temporal dimension is mainly of interest for diagnostics,
and not relevant for this thesis. Instead, we consider the images in a temporal sequence as
separate images. In the ACDC-dataset, two temporal snapshots are labeled per person.

2.2.4 Datasets for Cardiac MRI-image Segmentation

Modern automated image segmentation methods are usually constructed as supervised
learning tasks. In supervised learning, the objective is to learn some function that maps
an input to an output given some training dataset of corresponding input and output pairs.
When applying machine learning to automate a task, the result depends heavily on the col-
lection of data used in training. In general, both sufficient size of the dataset and sufficient
quality of the data is necessary to achieve valuable results. In the field of semantic im-
age segmentation, the response variable used in training is typically a ground truth image,
where each pixel is labeled with its correct class.

Labeling datasets for image segmentation is, in general, a very time-consuming pro-
cedure. Remez et al. [22] note that it took 40 person-years of labeling effort to label 80
object categories of the COCO dataset [23]. Labeled images are created by humans it-
erating through every pixel in an image and recording to which object or class the pixel
belongs. For medical MRI-images, this labeling strategy is exponentially more compli-
cated compared to most other applications. Firstly, the labeling must be performed by
a medical professional. While it is trivial to determine the motive of images in datasets
containing numbers or everyday objects, medical images can often be the subject of sub-
stantial interpretation, slowing down the process and making the result less sure. Thus, the
process relies on finding personnel with sufficient skills, willingness, and capacity to label
the images. Secondly, creating a dataset of unlabelled medical images has its complica-
tions. MRI-scanners are expensive to use, and while CT-scans are significantly cheaper,
the subject is exposed to ionizing radiation [9]. The consequence in both cases is that
image-taking is, to a large degree, restricted to patients. Regardless of the subjects, an
anonymization procedure has to be performed prior to access, and hospitals may still be
reluctant to share the images. The combination of these factors makes it altogether chal-
lenging to get the large datasets necessary for many traditional deep learning approaches.
Consequently, it was not until 2015 that Ronneberger et al. [24] proposed a specialized
network and training strategy for deep learning on cardiac image segmentation, which is
described in the next section.

2.3 U-Net

In this section, we take a look at the U-Net, the most commonly used network for cardiac
MRI-image segmentation in the last years. The U-Net architecture was strongly consid-
ered for the method proposed in this thesis, and the choice to abandon the U-Net is dis-
cussed in Chapter 4. In Chapter 6, we compare the performance of our proposed method
to the performance of a U-Net applied to the same dataset. For these reasons, we provide
a short introduction to the network to complete this chapter.
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Chapter 2. Cardiac MRI-Image Segmentation

Figure 2.8: U-Net architecture, created by Ronneberger et al. [24].

The U-Net is a deep neural network, first proposed in 2015 by Ronneberger et al. [24]
as a deep learning approach to biomedical image segmentation. While classification algo-
rithms were achieving good results at the time the U-Net was proposed, visual tasks like
biomedical image segmentation demanded a network that preserved spatial information
and performed on a limited sized training set. The solution was a network building on the
successful recipe of Convolutional Neural Networks [25] (CNN), but with an expanding
path recovering spatial information following the quite traditional contracting path, yield-
ing an almost symmetric architecture. A training strategy leveraging data augmentation
strategies was proposed to ensure sufficient training on relatively small datasets.

U-Net has its name from the U-shaped architecture of the network, which can be seen
in Figure 2.8. The contracting path is built of repeated groups of two 3x3 convolution
layers, followed by a ReLU, and a 2x2 max pooling layer, designed to capture the context
in the image. The convolution-filters are ”unpadded,” and the stride for the max pooling
operation is 2 for downsampling, effectively halving each of the image’s dimensions and
doubling the number of feature channels at each step. The trailing expansive path recovers
spatial information. Each step consists of upsampling of the feature map and a 2x2 up-
convolution followed by a concatenation with the corresponding feature map from the
contracting path, as well as two 3x3 convolutions with a ReLU. The necessity of cropping
is caused by the unpadded convolutions at each step loosing edges. The final layer of the
network maps to the desired number of classes.

The data augmentation scheme proposed primarily focuses on building robustness to-
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2.3 U-Net

wards rotation, shifting, deformations, and gray-scale variations. Data augmentation is
necessary due to the large variations found in MRI-images. Especially random elastic de-
formations are emphasized as a critical ingredient in doing training with small datasets
possible. In recent years many state-of-art methods for cardiac image segmentation build
upon the original U-Net architecture, and over one-half of the entries in the MICCAI 17
segmentation competition were U-Nets.
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Chapter 3
A Spline Based Heart Model

Based on the discussion about curve segmentation in Section 2.1.1, we propose a para-
metric curve representation of the heart shape, which we will eventually apply to a cardiac
MRI-image segmentation task in a supervised learning setup. In this chapter, we introduce
the necessary theory and define our curve based heart model. While the intention is that
the method is generalizable to multiple dimensions, this thesis focuses on the shape of a
heart in two dimensions.

In general, we will seek a parametric planar curve S(t) = (x(t), y(t)) defined on some
interval t ∈ [a, b] to represent the outline of the heart shape. The curve must be closed
and sufficiently smooth. We will also require a certain degree of flexibility in order to
achieve sufficient accuracy in the representation. Spline curves, constructed by piecewise
polynomials with some prescribed smoothness, satisfy these conditions and turn out to be
suitable for our model. Splines are a cornerstone in mathematics, and their applications
include curve and surface representation in computer graphics and manufacturing (CAD-
CAM), methods for solving differential equations, and function approximation of data
[26]. We will first take a closer look at the theory of splines and the basis for splines called
B-splines before applying the theory to our specific application. The theory is mainly
based on Floater [27].

3.1 B-Splines - Basis Functions for Spline Curves

Spline curves are piecewise polynomials defined on an interval [t0, tm] subdivided into
smaller intervals [tj , tj+1]. The breakpoints tj are called knots. We will refer to the vector
t = [t0, t1, . . . , tm] containing the breakpoints as the knot vector and the closed interval
[tj , tj+1] as the j’th knot span. In general, the only restriction on the knot sequence is
that it is non-decreasing. It follows that duplicate knots are allowed. Duplication of knots
can be used to alter smoothness properties of the spline curves - a useful property in some
applications. The heart model we present in this chapter does not require alterations of
the smoothness of a curve. Furthermore, we will control the curve’s path using weights
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Chapter 3. A Spline Based Heart Model

called control points, presented in Section 3.2. We will thus not dwell on the theory of
knot duplication, and enforce strictly increasing knot sequences.

We now introduce the B-splines, or basis splines. There are many different ways to
define B-splines [26], but we here present one of the more explicit formulations, namely
Cox-de Boor’s recursion formula [28]:

Definition 3.1.1. A degree zero B-spline is the step function

Bj,0(t) =

{
1 if tj ≤ t < tj+1,

0 else,
(3.1)

and B-splines of degree d can be recursively defined as

Bj,d(t) =
t− tj

tj+d − tj
Bj,d−1(t) +

tj+d+1 − t
tj+d+1 − tj+1

Bj+1,d−1(t). (3.2)

Here, a degree zero B-spline Bj,0 is a step function evaluating to 1 in the knot span
[tj , tj+1] and zero elsewhere. Higher degree B-splines are piecewise polynomials created
by calculating a weighted average over two B-splines of degree one less. This is visualized
in Figure 3.1 for B-splines up to degree d = 3 on the knot vector t = [0, 1, 2, 3, 4]. Figure
3.1b shows three B-splines of degree d = 1 created by pairwise weighted averages of the
degree d = 0 B-splines in Figure 3.1a. Similarly, Figure 3.1c shows two B-splines of
degree d = 2 created by pairwise weighted averages of the degree d = 1 B-splines in 3.1b
and Figure 3.1d shows a degree d = 3 B-spline which is the weighted average of the two
degree d = 2 B-splines in 3.1c.

There is a lot to be said concerning B-spline theory and its different applications. For
this thesis, it will suffice to discuss only the relevant theory. In the following section, we
look at some properties of B-splines necessary to build our heart model.

3.1.1 Some Properties of B-splines

Local Support

The right term in Equation (3.2) shifts one B-spline to the right in every recursion step. A
degree d B-spline requires d recursion steps before a degree d = 0 B-spline is reached.
Consequently, the j’th B-spline of degree d depends on d+1 degree zero B-splines, namely
Bj,0, Bj+1,0, . . . , Bj+d,0. It follows that Bj,d has support on the interval [tj , tj+d+1]. We
call this property the local support property of B-splines. Reversely, we can also conclude
that on a given knot span [tj , tj+1], at most d+1 B-splines of degree d are nonzero. These
are the B-splines Bj−d, Bj−d+1, . . . , Bj .

Uniform B-splines

In the example in Figure 3.1, we used equidistant knots. B-splines for which there is a
fixed distance h between the knots, are called uniform B-splines. We will refer to the
distance h as the knot spacing. We denote by th a knot vector with a fixed knot spacing h.
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Figure 3.1: The illustration shows B-splines defined on the knot vector t = [0, 1, 2, 3, 4] of in-
creasing degree. The recursive formulation in Equation (3.2) shows that B-splines of degree d are a
combination of two B-splines of degree d− 1. The degree d = 3 B-spline in the bottom right corner
is constructed recursively by the four degree d = 0 B-splines in the upper left corner.

In these cases Cox-de Boor’s recursion formula (Definition 3.1.1) simplifies to

Bj,0(t) =

{
1 if tj ≤ t < tj+1

0 else
. (3.3)

and

Bj,d(t) =
t− tj
dh

Bj,d−1(t) +
tj+d+1 − t

dh
Bj+1,d−1(t) (3.4)

=
(t− tj)Bj,d−1(t) + (tj+d+1 − t)Bj+1,d−1(t)

dh
. (3.5)

Uniform B-splines are convenient because they simplify some of the theory as well as
being straight forward to generate.
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Chapter 3. A Spline Based Heart Model

Derivatives

Differentiating the recursive formula in Equation (3.2) yields

d
dt
Bj,d(t) = d

(
Bj,d−1(t)

tj+d − tj
− Bj+1,d−1(t)

tj+d+1 − tj+1
.

)
(3.6)

We see that the derivative of a B-spline has a simple relationship with B-splines of one
degree less. The proof of this result [29] is a bit technical and is not included in this thesis.
We also note that B-splines of degree d are d times differentiable at the knots. Between
the knots, B-splines are polynomials and consequently smooth.

Positivity of B-splines and Partition of Unity

The recursive formulation of Equation (3.2) implies that B-splines of any degree are
weighted averages of degree zero B-splines. The degree zero B-splines are either 0 or
1, and thus

0 ≤ Bj,d(t) ≤ 1. (3.7)

Furthermore, the construction by weighted averages leads to the partition of unity property
[30] ∑

j

Bj,d(t) = 1. (3.8)

3.1.2 Spline Functions
We recall that splines are piecewise polynomials glued together on breakpoints called
knots, with some prescribed smoothness. B-splines can be used to approximate functions
by assigning weights to them and evaluating the sum

Sd(t) =

n∑
j=0

wjBj,d(t). (3.9)

The elegance of B-splines lies in the property that weighted sums like this generates func-
tions Sd(t) which automatically have continuous derivatives up to degree d− 1 if the knot
vector t is strictly increasing [30]. We call Sd(t) a spline of degree d.

Support and Domain

The spline in Equation (3.9) is a sum over n+ 1 pairs of weights and B-splines. In Section
3.1.1 we saw that Bj,d has support on the knot span [tj , tj+d+1]. Thus the support of the
spline Sd(t) is the combined support of the n + 1 B-splines of degree d, specifically the
interval [t0, tn+d+1]. It follows that we need m+ 1 knots where m = n+ d+ 1 to define
the n + 1 B-splines necessary to evaluate Sd(t). Figure 3.2 shows weighted B-splines of
increasing degree with weights w = [10, 0, 5, 3, 1]. The number of knots increases with
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Figure 3.2: The illustration shows splines of increasing degree with weights c = [10, 0, 5, 3, 1].
Notice that the number of knots increases with the degree to give support to the B-splines. The
red lines indicate the start and end of the interval of the spline with support from only non-zero
B-splines.

the degree of the spline to define the underlying B-splines. We henceforth denote the knot
vector necessary to define n+ 1 B-splines by t = (tj)

m
j=0, where m = n+ d+ 1.

We note that for d > 0, the splines evaluate to zero at both endpoints. This is because
the knot spans [t0, t1] and [tm−1, tm] each only have one B-spline which is non-zero at
the interval. We remember from Section 3.1.1 that at most d+ 1 B-splines of degree d are
non-zero at any given knot span. On [t0, t1] only B0,d is non-zero, and at [tm−1, tm] only
Bn,d is non-zero. In fact, only the interval [td, tm−d] has d + 1 non-zero B-splines. For
this reason we choose to only define splines of the form (3.9) on the domain [td, tm−d].
We refer to the weights (wj)

m−d
j=d as inner weights and the remaining weights as outer

weights. This definition does not remove the influence on the spline by the outer weights,
but it does imply that they have less influence than the inner weights. The red lines in
Figure 3.2 indicate the start and end of the interval [td, tm−d] which has d + 1 non-zero
B-splines. A degree d = 0 spline S0(t) is a piecewise constant function with the constant
values being equal to its weights, as seen in Figure 3.2a. A degree d = 1 spline S1(t),
as seen in Figure 3.2b, is a linear interpolation of its weights. Higher degree splines will
in general not pass through the weights. We discuss the interpretation of weights more in
detail in Section 3.2.2.
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Chapter 3. A Spline Based Heart Model

3.2 B-spline Curves
A spline curve is a vector-valued parametric curve in Rq, q ≥ 2 defined by piecewise
polynomials in its argument t. The most important property of B-splines is that they
are basis functions for general spline curves. Any spline curve can be expressed as a
linear combination of B-splines and weights ci called control points. This is the exact
formulation we investigated in Section 3.1.2, with the additional modification that the
weights must be vectors. We will refer to the degree d of the spline curve as the degree
of the piecewise polynomials on t. Based on the discussion in Section 3.1.2, we will only
define spline curves on the interval for which there are d + 1 non-zero B-splines, namely
the interval [td, tm−d].

We summarize this discussion in the following lemma:

Lemma 3.2.1. A degree d spline curve Sd(t) in Rq is uniquely defined by a knot vector
t = (tj)

m
j=0 and a set of control points cj ∈ Rq, q ≥ 2 such that

Sd(t) =

n∑
j=0

cjBj,d(t), t ∈ [td, tm−d]

Furthermore, the space of all spline curves in Rq of degree d and knots t is

Sqd,t = {
n∑

j=0

cjBj,d | cj ∈ Rq for 0 ≤ j ≤ n}.

While we will mostly be interested in the notion of closed periodic B-spline curves, it
is useful to firstly define an open B-spline curve. The next two sections discuss open and
closed curves.

3.2.1 Open, Closed and Periodic Curves
An open spline curve is simply a spline curve where the start and end of the curve are
disconnected. The left image in Figure 3.3 shows an open curve of degree d = 3 defined
on the 8 control points shown in red. The numbers beside the control points in the figure
indicate this order. The right image in the figure shows the corresponding B-splines of
degree d = 3 used to create the spline curve. The B-splines are defined on a knot vector
with m + 1 knots on the interval [0, 1]. The spline curve is defined on a subinterval of
[0, 1], namely the interval [td, tm−d].

A closed curve is a curve where the start and the end of the curve are connected.
We are mainly interested in the special case of closed periodic spline curves. A closed
periodic spline curve has the additional property that the join between the beginning and
end of the curve has the same smoothness properties as the other knots. As we saw in
Section 3.1.2, this property is (d − 1)-times continuous differentiability. Periodicity is
achieved by forcing the end of the curve to mimic the trajectory of the beginning of the
curve. Uniform B-splines of the same degree are identical, so it will suffice to apply
some periodicity to the control points. The local support property of B-splines presented
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(a) Example of an open spline curve of degree d = 3 in
R2. The 8 control points are shown as red dots, and the
number indicate their ordering.
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(b) B-splines of degree d = 3.

Figure 3.3: The left image shows an open spline curve of degree 3 and the right image shows a series
of B-splines of degree d = 3 from which the spline curve in left image is created. The B-splines are
defined on a knot vector with uniform spacing h = 1/12 on the interval [0, 1], and the spline curve
is defined on the interval [0.25, 0.75].

in Section 3.1.1 states that on a given knot span [tj , tj+1] only the degree d B-splines
Bj−d, Bj−d+1, . . . , Bj can be non-zero. It follows that the knot span only is affected by
the control points cj−d, cj−d+1, . . . , cj . The simplest procedure to enforce periodicity of
a closed spline curve is thus to wrap the d first and d last control points. That is, we let a
spline curve be defined by a knot vector as defined earlier and a sequence of control points
c = (ci)

n
i=1 for which c0 = cn−d, c1 = cn−d+1, . . . , cd−1 = cn. This spline curve will be

periodic on the interval [td, tm−d] and will have the desired smoothness properties.
The left image of Figure 3.4 shows a closed periodic spline curve of degree d = 3, and

the right image shows the underlying B-splines of degree d = 3. Notice that the closed
curve in Figure 3.4a is constructed from the same B-splines as the open curve in Figure
3.3a. The control points are visualized as red dots and numbered by their ordering. In the
closed periodic curve we see that c0 = c6, c1 = c7 and c2 = c8. If the numbering of the
control points were removed, there would be no way of telling the curve’s start point or
direction.

3.2.2 The Role of Control Points and the Control Polygon

A B-spline curve with a given degree d and a prespecified number of control points n+ 1
can be modified by modifying the control points’ location or changing the knots. Modi-
fying the control points is arguably a simpler and more predictable procedure, and is the
method we will use.

A spline curve with strictly increasing knots is guaranteed to pass through its control
points for degree d < 2, as discussed in the previous section. Higher degree spline curves
will ”bend” towards the control points, but it is difficult to predict the exact trajectory.
From Lemma 3.2.1 it is clear that a control point cj affects the part of the spline curve
Sd(t) for which Bj,d(t) is non-zero. From Section 3.1.1 we know that Bj,d(t) has support
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(a) Example of a closed spline curve of degree d = 3 in
R2. The 8 control points are shown as red dots, and the
number indicate their ordering. Notice that the d = 3
first and last control points are wrapped.
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Figure 3.4: The left image shows a closed spline curve of degree d = 3 and the right image shows
a series of B-splines of degree d = 3 from which the spline curve in left image is created. The
B-splines are defined on a knot vector with uniform spacing h = 1/12 on the interval [0, 1], and the
spline curve is defined on the interval [0.25, 0.75].

on the knot span [tj , tj+d+1]. Thus, cj only affects the spline curve on [tj , tj+d+1].
The control polygon of a spline curve is the polygon created by connecting all the

control points sequentially with straight lines. It can be shown, due to the convex combi-
nations in the construction in Equation (3.2), that a spline curve will always lie inside the
convex hull of the control polygon [30]. However, the spline curve formulation in Lemma
3.2.1 can not distinguish between a B-spline evaluating to zero and the corresponding con-
trol point being zero. We, therefore, need to include 0 as a control point in the convex hull
property.

We established in Section 3.1.1 that on some given interval [tj , tj+d+1) only the B-
splinesBj−d(t), Bj−d+1(t), . . . Bj(t) may be non-zero. It follows that only control points
cj−d, cj−d+1, . . . cj affect the given interval. Once again we have to include zero as a
control point in the general formulation. However, on the interval [td, tm−d] we have
shown that there are d+ 1 non-zero B-splines, and consequently zero does not need to be
included on this interval. We can now strengthen the convex hull property to the following:

Lemma 3.2.2. For t ∈ [tj , tj+d] a spline curve Sd(t) will lie inside the control polygon
spanned by the control points 0, cj−d, cj−d+1, . . . cj . Furthermore, for t ∈ [tj , tj+d] ⊂
[td, tm−d] a spline curve Sd(t) will lie inside the control polygon spanned by the control
points cj−d, cj−d+1, . . . cj .
Consequently, a closed periodic spline curve always lies in the precise control polygon
spanned by its control points.

Figure 3.5 shows a closed spline curve and convex hulls of four consecutive control
points.

24



3.3 A Spline-based Model of the Heart

0 2 4 6 8 10
x

0

2

4

6

8

10

y

0

1 2

3

4

5

Figure 3.5: A closed spline curve of degree d = 3 defined by six independent control points and
three wrapped control points. The coloured polygons visualize the convex hull of four consecutive
control points.

3.2.3 Advantages of B-spline Based Curves

Before we dive into defining our spline-based heart model, we take a moment to look at
why B-spline curves were chosen over equivalent representations. Among spline-based
methods, the closely related Bezier-splines and B-splines are frequently used, especially
in computer graphics. B-splines are a generalization of Bezier-splines, requiring more
information in its creation and having a more complex theory [30]. B-splines make up
for the higher complexity by several advantages. Firstly, the number of control points is
independent of the degree of the splines. This property makes it possible to create low-
degree spline curves with the flexibility and customizability that a high number of control
points allow. In Bezier-splines, the control points and the degree are directly related.
Secondly, changing any control point of a Bezier-spline affects the whole curve, making
it difficult to modify the curve in only a specific section of its domain. This property is
undesirable in our learning setup, which will be discussed in more detail later. The local
support property of B-splines makes it much easier to modify a section of the spline curve.
Thirdly, the strong convex hull property of B-splines grants higher and more intuitive
control over the curve’s trajectory. Bezier-splines do not share this property.

In general, choosing a framework for the heart shape model is a trade-off between
the complexity of the theory, practicality, and accuracy of representation. In this thesis,
we chose B-splines as the best compromise between the two. A generalization of B-
splines called NURBS [31] provides excellent flexibility and precision, but was deemed to
complex given the time restrictions on the thesis.

3.3 A Spline-based Model of the Heart
We are now equipped to develop our parametric heart shape model. We want a B-spline
curve of degree d = 3 to represent the outline of the heart shape. The relatively low
degree is chosen to avoid accuracy issues associated with high-degree polynomials [32].
Instead, the flexibility of the model comes from the number of control points. The number
of control points used in our heart model reflects a trade-off between flexibility and bias.
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A large number of control points allow the representation of complex shapes, but is more
prone to overfitting in the learning process. Oppositely, a low number of control points
is less prone to overfitting but will carry a strong bias in the heart shape and will not
be able to represent complex shapes. Additionally, many control points will increase the
risk of curve intersections difficult for the learning setup to escape. This aspect is more
closely examined in 3.3.1. In this thesis we chose to use 8 independent control points ci ∈
R2. This relatively low number affects the resulting B-spline curve’s ability to represent
particularly complex shapes. The reasoning behind the choice is that a higher number of
control points make learning more difficult. Since we are investigating a novel approach,
we are primarily interested in whether the method works, and we are less concerned with
optimizing the performance.

The B-spline curve should be closed and periodic to best represent the heart shape.
To satisfy the choice of 8 independent control points, we, therefore, need a total of 11
control points, for which the first and last 3 are wrapped, as discussed in Section 3.2.1.
From Lemma 3.2.1 we need 15 knots on some interval [a, b] to provide support for the B-
splines. Note that while the values a and b do not matter for our definition, we normalize
the interval to [0, 1] due to numerical accuracy issues concerning floating-point arithmetic
computations [33]. We will thus use the uniform knot vector t obtained by partitioning
[0, 1] into 15 equally spaced knots where the first and last are 0 and 1, respectively.

Using the definition of a spline space in Lemma 3.2.1, we specify our heart model:

Definition 3.3.1. The outline of the heart shape is represented by a degree d = 3 closed
periodic spline curve S3(t) with 11 control points ci ∈ R2 and knot vector th, h = 1/14
consisting of 15 equally spaced knots on [0, 1]. This spline curve lies in the spline space

S2
3,t = {

10∑
j=0

cjBj,d|cj ∈ R2 for 0 ≤ j ≤ n− 1},

where c0 = c8, c1 = c9, c2 = c10

3.3.1 Considerations with the Proposed Model
In restricting the number of control points in our heart model, we are also restricting the
flexibility of the spline curve. Using 8 independent control points allows for shapes with
some complexity, but can not accurately represent shapes with many complex regions. The
idea is that our proposed heart model will be able to provide a good representation for the
general shape of the heart, even though it will probably miss areas where the path of the
curve changes direction rapidly.

Some sequences of control points cause the closed curve to intersect itself, as shown in
Figure 3.6. This behavior creates shapes that are impossible in a real heart. We will see that
this poses a problem for our supervised learning image segmentation method presented in
the next chapters. Unfortunately, there is not any straight forward way of guaranteeing
that the curve does not intersect itself. Some possible solutions revolve around detecting
intersections and modifying the control points so that the curve no longer intersects itself.
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Figure 3.6: A closed spline curve of degree d = 3 defined by the five control points in blue. The
curve contains twists which we ideally should avoid, as there can be no such twists in the true heart
shape.
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Chapter 4
Curve Segmentation as Supervised
Learning

In the previous chapter, we defined a parametric curve representation of the heart shape.
In this chapter, we put the proposed heart model in a deep learning framework to construct
a complete image segmentation method as a supervised learning task.

4.1 Curve Segmentation using Deep Learning

Definition 3.3.1 in Section 3.3 describes the spline space in which we are looking for
curves to represent the heart shape. Since the knot vector, the degree of the spline curve,
and the number of control points are all fixed, modifying the control points is the only
means by which we can adjust the spline curve. Our curve segmentation task can thus be
defined as follows:

Task 4.1.1. Given some input MRI-image, the segmentation output is a sequence of 8
control points ci ∈ R2 defining a spline curve in S2

3,th with h = 1/14 on [0, 1], which
encloses the heart pixels in the input image.

We propose the Curve Segmentation task be solved as a supervised learning task, us-
ing a dataset of Cardiac MRI-Images denoted Xi and corresponding ground-truth labels
denoted Yi as discussed in Section 2.2.4. To achieve this, we define a Convolutional Neu-
ral Network [25] (CNN), which takes MRI-images as input and yields predicted control
points as output. Specifically, the output of the network from an input imageXi is a vector
containing the x and y coordinates of the eight predicted control points. The transforma-
tion between the output vector and the control point sequence is trivial so that we will
keep the notation used in Chapter 3. Namely, we denote by ĉi = (ĉij)

7
j=0 the sequence of

predicted control points based on an input image Xi. Furthermore, the j’th control point
of ĉi is denoted by ĉij .
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The goal is that, given a training dataset of cardiac MRI-images, the network will learn
to accurately perform the curve segmentation task defined above. This learning setup is
nontraditional in that the output of the network is in a different format than the ground truth
images in the training dataset. To handle this mismatch, we need a custom loss function.
These topics are thoroughly discussed in the next chapter. In the next section, we discuss
the architecture of our network.

4.2 Choice of Network Architecture

Image segmentation on medical images has, for the last years, been dominated by ap-
proaches and architectures building on the U-Net, introduced in Section 2.3. It was natural
to try the U-Net architecture also for the curve segmentation method proposed in this the-
sis. The symmetric architecture of the U-Net generates an output matrix with the same
dimensions as the input image. To get the output in the format discussed in the last sec-
tion, a fully connected layer of 16 nodes was added to the end of the network. However,
we achieved no learning when using the U-Net. It is difficult to say precisely why the
U-Net was a bad fit. As discussed in Section 2.3, the decoder part of the U-Net uses
skip-connections to retrieve spatial information from the high-resolution images at the
beginning of the network. It seems that this spatial information not easily translates to
locating good control points for our curve segmentation.

Instead, we used a simpler CNN architecture, specifically a modified version of the
ConvNet proposed by Krizhevsky et al. [34]. This ConvNet is typically used for image
classification. It is not evident that an image classification network should do well on
this task. However, unlike the U-net, the ConvNet is built to generate a low dimensional
output.

4.2.1 Curve CNN

CNN’s used for image recognition leverage convolutional layers and max-pooling layers
to sequentially downsample the input image while increasing the number of feature maps.
In this way, the network can identify increasingly complex features in the input image. A
convolutional layer has several learnable filters which convolve across the input image and
yields a feature map. In the proposed network architecture, the size of the filter is 3 × 3,
and the number of filters is doubled at each convolutional layer, starting at 32. A padding
preserves the image size through the convolutions. The max-pooling layers downsample
the image size by only sending the maximum value across some sliding filter to the next
layer. The proposed network uses max-pooling filters of size 2 × 2. The most common
activation function for CNN’s is the Rectified Linear Unit [35] (ReLU), which is defined
as f(x) = max(0, x). ReLU has many advantages, yielding sparse activations, efficient
computations and tackling the vanishing gradient problem [36]. Leaky ReLU [37] is an
improvement of the traditional ReLU [38], created to avoid the phenomenon of ReLU
death [39] in which the signal from ReLU’s get stuck at zero. This is achieved by letting
the function have a small, positive gradient even when it is not activated. The function for
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Figure 4.1: The Curve CNN used in the experiment in Chapter 6.

Leaky ReLU is presented in Equation (4.1).

f(x) =

{
x if x > 0

0.01x else
. (4.1)

Each convolutional layer in the proposed architecture is followed by a Leaky ReLU acti-
vation function.

The proposed network architecture Curve CNN is presented in Figure 4.1. The num-
bers at the top indicate the dimension of each operation’s output on the format number of
channels @ image height × image width. Conv indicates a convolutional layer, Max-Pool
indicates a max-pooling layer, Flatten refers to the transformation from any tensor to a sin-
gle vector holding all the values of the tensor and Dense indicate a fully connected layer.
The input to the network is a 256× 256 image. A series of convolutions and max-pooling
operations are then applied to the image. After the last max-pooling operation, the output
is 256 channels of 16×16 images. A flattening operation transforms the output to a vector
of size 65536. The last two layers are fully connected, yielding an output of the desired
size. Lastly, a Sigmoid activation function is applied, forcing the output values to lie in the
range of the input image’s height and width. In this way, the control points can be forced
to lie in the input image domain. The network was implemented using the Keras API [40]
in TensorFlow 2.0 [41].
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Chapter 5
Loss Function for Curve
Segmentation

We established in Chapter 4 that the output of our proposed learning method is a vector
of x and y coordinates for control points denoted by ĉi defining a parametric curve repre-
sentation of the heart shape. We do not, however, have access to ground-truth parametric
curves. As far as we know, no such dataset exists, and it would be very time consuming
to generate one. Thus, the task of validating the predicted curves is not a trivial process.
Instead, our ground truth images are pixel-wise segmentation maps in the form of matrices
denoted by Yi, as discussed in Section 2.2.4. We, therefore, require a loss function that
translates between these two representations. There is no immediate metric to compare a
parametric curve to a pixel-wise image, but multiple approaches are possible. The method
presented in this thesis uses the most straightforward approach: drawing an image of the
predicted curve and comparing the curve image Pi with the ground truth image Yi. The
most significant advantage of this setup is that it allows us to utilize traditional image seg-
mentation procedures for evaluating the similarity between two pixel-wise classifications.
This chapter contains a thorough description of the loss function and its gradient.

5.1 Outline of Loss Function

The construction of the loss function presented in this chapter can be divided into two
steps. The first step is the process discussed in Section 5.2, which aims to transform
the predicted curve representation of the heart shape to a curve image represented by a
matrix. We refer to this process as curve pixelation. We define a prediction matrix Pi

with the same dimensions as the input image Xi and initialize it to zero. We then trace
the predicted spline curve and fill in values, representing each pixel area intersected by the
curve, in the matrix Pi. Finally, we fill in every element of Pi lying completely inside the
curve. We will refer to this process as curve filling. The generation of the curve image only
relies on the predicted control points ĉi. We define a function f(ĉi) = Pi representing the
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transformation from control points to a curve image. The second step is to compare the
curve image Pi with the corresponding ground truth image Yi. For this part, we can use
existing loss functions for image segmentation. This step is discussed in Section 5.3.

5.2 Transforming a Spline Curve to an Curve Image

We remember from Chapter 3 that given some knot vector t = (tj)
n+d+1
j=0 , any spline curve

in R2 of degree d defined on that knot vector can be expressed as a linear combination of
B-splines and control points cj ∈ R2:

Sd(t) =

n∑
j=0

cjBj,d(t). (5.1)

In Section 3.2.2 we established that a spline curve lies completely inside the control poly-
gon spanned by its control points. Furthermore, we saw in Chapter 4 that the control
points ĉi produced by the network lie in the domain of the input image. It follows that
the spline curve Sd(t)i is contained in the same image domain. Recall from Section 2.1
that this domain has assigned to it a square grid with elements called pixels. We define a
matrix Pi representing this square grid. Pi we be the matrix representation of the image of
the spline curve defined by ĉi using Equation (5.1). Pi should have some value in (0, 1)
for every element representing a pixel intersected by the curve, value 1 for every element
representing a pixel completely inside the curve and value 0 for any element representing
a pixel completely outside the curve, to match the format of the ground truth image Yi.

We find the elements intersected by the curve by applying a discretization to t and
evaluating Equation (5.1) at the resulting steps. We will use a uniform discretization with
some stepsize ∆ti. We index the stepsize, because the stepsize might not be equal for
every training sample. To ensure that all elements intersected by the curve are found, we
would need ∆ti −→ 0. However, as we will discuss in Section 5.2.1 below, we will only
demand that ∆ti is small enough to guarantee that the curve pixelation generates an image
of a closed curve. The curve filling procedure is described in Section 5.2.2.

When transforming a spline curve to an image we are going from a continous to a
discrete representation. In the process we are losing information of the exact trajectory
of the spline curve. To restrict the information loss, the elements of Pi intersected by the
spline curve should reflect the fraction of the corresponding pixel lying inside the curve.
While information about the exact trajectory is still lost, it allows the loss function to make
distinctions between predicted spline curves intersecting the same pixels. It follows that
the learned segmentation can be more precise. Additionally, as will be discussed in Section
5.4, this procedure makes the gradient of the loss function at least piecewise continuous.
Figure 5.1 shows an artificial example of the curve pixelation process. The left image
shows a polygon approximating the spline curve, created by interpolating the points of
the spline curve evaluated in the pixelation algorithm. The right image shows a possible
matrix representation for the pixelation. We can not represent the trajectory of the curve
within the pixel, so we represent instead the area of the generated shape within each pixel.
Higher color-intensity corresponds to larger area.
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(a) Constructed example of curve pixelation. The
curve is evaluated once in every pixel, and a poly-
gon is constructed by connecting the evaluation
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(b) A possible matrix representation for the pix-
elated curve in (a). The area of the curve in
each pixel is represented by color-intensity, where
higher color intensity represents a larger area.

Figure 5.1: The left image shows an artificial example of the result of pixelating a curve. The right
image shows how the area intersected by the curve in each pixel can be represented in a matrix.
Higher color-intensity represents a larger value.

The example in Figure 5.1 has only one spline evaluation per pixel. In practice, the
spline curve is evaluated multiple times per pixel. The obtained values allow us to approx-
imate the curve-and-pixel-intersection area by integrating over the area between the spline
curve and the edge of the pixel. Specifically, we use the trapezoid rule [42] for numeri-
cal integration to approximate the area. The trapezoid integration function trapezoid
used in the implementation is provided by the Scipy library [43], and takes an array of
x-coordinates and an array of y-coordinates as input. The function then calculates the ap-
proximated area between the curve defined by the y-values and the x-axis. Depending on
the orientation of the curve within the pixel, some adjustments are made to get the correct
area, as seen in Algorithm 1.

Algorithm 1 shows the procedure for calculating the curve-and-pixel intersection area.
The variable array contains the x and y coordinates of spline curve evaluations within a
single pixel. Depending on whether the pixel in question contains a north, east, west, or
south edge of the spline curve, the numerical integrals are slightly different.

5.2.1 Stepsize ∆t

To ensure that the spline curve’s image is a closed curve, we need to find some upper
bound on the stepsize ∆t used to discretize the spline curve argument t. However, the
curve pixelation algorithm needs to evaluate Equation (5.1) 1/∆t times for each pass. It
turns out that the size of ∆t has a significant impact on the time complexity of our learning
setup, so it is crucial that ∆t is not unnecessary small. We achieve an image of a closed
curve by choosing a stepsize ∆t, such that

‖Sd(t+ ∆t)− Sd(t)‖ ≤ 1, for all t in [0, 1]. (5.2)
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Algorithm 1: calcIntersection Algorithm. This algorithm takes an array con-
taining spline curve values for a single pixel as input and estimates the fraction
of the pixel area laying inside the curve by numerical integration.

input : A vector array of the x and y coordinates for curve evaluations within
a pixel.

output: A number representing the approximated area of the curve-and-pixel
intersection.

if north edge then
area = trapezoid (array (y), array (x))

if south edge then
area = 1 - trapezoid (array (y), array (x))

if east edge then
area = trapezoid (array (x), array (y))

if west edge then
area = 1 - trapezoid (array (x), array (y))

return area

The left hand side also has the following bounds

‖Sd(t+ ∆t)− Sd(t)‖2 =
∥∥∥∫ t+∆t

t

S′d(s)ds
∥∥∥

2
(5.3)

≤
∫ t+∆t

t

∥∥∥S′d(s)
∥∥∥

2
ds (5.4)

≤ ∆t ·max
s

∥∥∥S′d(s)
∥∥∥

2
, (5.5)

where the first inequality follows from the triangle inequality and limit preservation of
non-strict inequalities. Setting this result into Equation 5.2, we get the following upper
bound on ∆t

∆t ·max
s

∥∥∥S′d(s)
∥∥∥

2
≤ 1. (5.6)

In Section 3.1.1 we saw that the derivative of a B-spline is a weighted sum of B-splines of
degree one less, yielding

max
s

∥∥∥S′d(s)
∥∥∥

2
= max

s

∥∥∥ n+d−1∑
j=0

cj
d
ds
Bj,d(s)

∥∥∥
2

(5.7)

≤ max
s

n+d−1∑
j=0

∥∥∥cj∥∥∥
2
·
∣∣∣d(Bj,d−1(s)

tj+d − tj
− Bj+1,d−1(s)

tj+d+1 − tj+1

) ∣∣∣. (5.8)

From Section 3.1.1 we know that the range of B-Splines is the closed set [0, 1]. Thus, the
upper bound for the maximum in Equation 5.8 is whenBj,d−1(s) = 1 andBj+1,d−1(s) =
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0. We get

max
s

∥∥∥S′d(s)
∥∥∥

2
≤ d

n+d−1∑
j=0

‖cj‖2
tj+d − tj

. (5.9)

For Uniform B-Splines as discussed in Section 3.1.1, we have tj+d − tj = dh, yielding

max
s

∥∥∥S′d(s)
∥∥∥

2
≤ d

n+d−1∑
j=0

‖cj‖2
dh

(5.10)

=
1

h

n+d−1∑
j=0

‖cj‖2. (5.11)

We can now put this into Equation 5.6, resulting in the bound

∆t ≤ h∑n+d−1
j=0 ‖cj‖2

. (5.12)

Stepsizes satisfying this bound are guaranteed to generate an image of a closed curve in
the pixelation algorithm.

5.2.2 Flood Fill
The labels available at training time are matrices Yi ∈ Rh×w for which an element ykl = 1
if the corresponding pixel belongs to the heart and ykl = 0 if the corresponding pixel does
not belong to the heart. The method outlined in the previous sections create a curve image
Pi for which only a closed curve has elements with value not equal to zero. In order to
compare Pi to a label matrix Yi, it is necessary to fill the elements of the interior of the
closed curve in Pi with a value 1.

To obtain the desired format of Pi, we need some algorithm that identifies connected
elements of the same value and changes their value to some target value. The Flood Fill
Algorithm [44] takes an image, a start element, a target value, and a replacement value as
inputs. The algorithm iteratively uses either a stack or a queue to find all elements of the
target value that can be reached by a path from the starting node and replaces that value
with the replacement value. Based on the heart usually being smaller than the background
in the MRI-images, it makes sense from a time perspective that the start node is in the
heart’s interior. However, as discussed in Section 3.3.1 in Chapter 3, the spline curve might
intersect itself, creating multiple closed curves that should be classified as belonging to the
heart. There is no simple way to identify these intersections and determine the number of
closed curves. As follows, the curve pixelation algorithm would have no way to identify
when all closed curves are filled by the Flood Fill Algorithm, and would necessarily have
to check every row of Pi to see if it contains any interior elements.

A better approach is to instead apply the Flood Fill to the area outside of the curve. In
the case where boundary pixels of the curve image Pi are classified as heart pixels, this
area may also be disconnected. We avoid this problem by padding Pi with one element in
both dimensions, and initialize the new elements with value 0. The background will now
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be a connected set of value zero elements, and the starting cell for Flood Fill can be set
to any of the padded elements to guarantee that the algorithm behaves as intended. The
replacement value is set to 1, and the result is a predicted matrix Pi, which has elements
of value 0 in the interior of the pixelated curve and elements of value 1 outside the curve.
Our desired format is achieved by changing all elements that are either 0 or 1 to the other
value, such that the interior gets elements of value 1, and the outside of the curve gets
elements of value 0. Finally, we remove the padding.

5.2.3 Implementation of Pixelation Algorithm

To increase the speed of the algorithm, pre-written Python packages are used whenever
possible. Specifically, we use the BSpline function from the SciPy library [43] and
the floodFill function from the OpenCV library [45]. The BSpline function is con-
structed by feeding in a knot vector t, a degree d and a set of control points ci to a construc-
tion function we will call constructBSpline. Once constructed, BSpline takes in
a variable t and returns the x and y coordinates of the B-spline at t. The floodFill
function takes the arguments described in Section 5.2.2 and returns an image for which
the pixelized curve has been filled in. We also use the function calcIntersection,
described in Section 5.2.

We are now equipped to formulate our complete pixelation algorithm. The function
calcStepsize calculates the maximum steplength defined in Section 5.2.1. The func-
tion pad takes a matrix and a number k as argument, and adds k elements of value
zero to the beginning and end of each row and column as described in Section 5.2.2.
binaryInvert makes zeros one and ones zero. The function floor is the floor func-
tion, returning the greatest integer smaller or equal to its argument. Algorithm 2 shows the
complete pixelation process.

5.3 Loss Function
We now introduce the loss function for our supervised learning setup. We recall that the
output of the network is a sequence of control points ĉi as defined in Chapter 4. Pi is
the curve image generated from ĉi by the curve pixelation algorithm. The corresponding
ground truth image is denoted by Yi. The image loss is

l(Pi, Yi) = BCE(Pi, Yi), (5.13)

where the function BCE() is the Binary Cross Entropy, defined as follows:

Definition 5.3.1. Given a prediction matrix P = (p)ij and a ground truth matrix Y =
(y)ij , Binary Cross Entropy loss is given by

Hp(q) = − 1

N

∑
i

∑
j

yij · log(pij) + (1− yij) · log(1− pij), (5.14)

where N is the number of elements h× w in the matrices.
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Algorithm 2: curvePixelation algorithm. This algorithm takes a vector of
control points c as input at returns a matrix P representing a curve image
of the spline curve defined by c.

input : A vector c of 8 control points in R2.
output: A matrix P of size m× n representing the pixelized spline curve.

BSpline← constructBSpline (c, t, d);
∆t← calcStepsize (BSpline);
while t < 1 do

x, y← BSpline (t) ;
element = floor (x), floor (y);
if element is same as previous element then

append x, y to array;
else

P [previous element ]← calcIntersection (array);
previous element = element;

t← t + ∆t;

P← pad (P, 1) startPixel← findStartFloodFill (P);
P← floodFill (P, startPixel);
P← binaryInvert (P) P← pad (P, -1) return P

5.3.1 Regularizing the Control Points
To avoid a training problem where the control points move towards the edge of the image
domain at the beginning of the training, we use a small penalty term. The idea is to
encourage the control points to stay near the middle of the image domain until some stable
learning strategy is found. For a point O representing the middle of the image domain, the
penalty term is a simple squared error on the form

E(ĉi) = λ‖ĉi −O‖2 (5.15)

which is added to the loss function. To account for the fact that this problem only occurs
at the beginning of training, λ decreases during the learning process.

5.4 Gradient
The training of a neural network requires a gradient for the loss function, which is used to
update the network’s weights through backpropagation [46]. Specifically, the gradient will
contain the partial derivatives of the loss function l() with respect to each of the predicted
control points. Since each control point ĉj is a vector in R2, the partial derivatives will also
be vectors in R2. We here present a numerical approximation to the gradient of the loss
function defined in Section 5.3, by using finite differences. A numerical approximation
is chosen over the analytical gradient due to continuity issues. Specifically, the analytical
gradient is discontinuous at the points where a change in a control point coordinate causes
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the curve to enter a new pixel. A finite difference approximation to the gradient alleviates
this problem.

5.4.1 Finite Difference Approximation
For a multivariate function g(x, y) ∈ C2, a central difference approximation to its partial
derivative is given by

∂g(x, y)

∂x
=
g(x+ ∆x, y)− g(x−∆x, y)

2∆x
+O(∆x2), (5.16)

We call δg = g(x+ ∆x, y)− g(x−∆x, y) a central difference of f .
Our loss function is not twice differentiable, so we can not say anything about the cen-

tral difference approximation error. However, due to its symmetry, we believe central dif-
ferences still provide a better approximation for the gradient than a single-sided difference.
We now recall that our curve images can be expressed as P = f(ĉ) = f(ĉ0, ĉ1, . . . , ĉ7)).
Denote by ĉ + ∆cxj that a small step ∆c is added to the x component of the j’th control
point. The same applies to the y component. The central difference for l with respect to
the x component of the j’th control point is

δxj l = l(f(ĉ + ∆cxj ), Yi)− l(f(ĉ−∆cxj ), Yi). (5.17)

For the y component the expression becomes

δyj l = l(f(ĉ + ∆cyj ), Yi)− l(f(ĉ−∆cyj ), Yi). (5.18)

Using the notation just introduced, a partial derivative of the loss function with respect
to a control point ĉj has central difference approximation

∂l(Pi, Yi)

∂ĉj
=

[
∂l(Pi, Yi)/∂c

x
j

∂l(Pi, Yi)/∂c
y
j

]
=

[
δxj l/2∆c

δyj l/2∆c

]
+O(∆c2). (5.19)

The gradient is created by calculating Equation (5.19) for each control point. It follows
that the curve pixelation algorithm is called 32 times for each time the gradient is created,
making this algorithm a bottleneck concerning computational efficiency.

When training the network, we will use a variable control point step ∆c. Specifically,
∆c will decrease every 10 epochs. This strategy intends that it will allow the network
to find its way out of the local bad minima created by self-intersections of the curve (as
discussed in Section 3.3.1) in the beginning of the training phase, while still getting the
necessary precision of the gradient towards the end of the training phase.

5.4.2 Implementation of Gradient
Algorithm 3 shows the implementation of the numerical gradient computation. The func-
tion curvePixelation is presented in Algorithm 2. The function append appends
an element at the end of a vector.
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Algorithm 3: Numerical Gradient Algorithm. This algorithm takes a sequence
of predicted control points ĉ as input and returns a numerical approximation
of the gradient of the loss function l with respect to each of the control points
ĉj .

input : A sequence c of 8 control points in R2.
output: A vector of size 16 holding numerical approximation of the gradient of

the loss function with respect to each component of every control
point.

initialize the empty vector grad;
for cj in c do

forwardStepX← curvePixelation (c + ∆cxj ) ;
backwardStepX← curvePixelation (c −∆cxj ) ;
grad← append ((forwardStepX − backwardStepX)/ 2∆c) ;
forwardStepY← curvePixelation (c + ∆cyj ) ;
backwardStepY← curvePixelation (c −∆cyj ) ;
grad← append ((forwardStepY − backwardStepY)/ 2∆c) ;

return grad
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Chapter 6
Curve Segmentation on ACDC
Cardiac MRI-Images

We now validate the proposed method on a real-world clinical data set of Cardiac MRI-
images. The dataset is described in detail in Section 6.1. Specifically, we train a Curve
CNN neural network with architecture as described in Chapter 4 to perform the proposed
supervised learning Cardiac MRI-image segmentation task. The training scheme utilizes
the loss function and gradient described in Chapter 5. We present the results towards the
end of this chapter, and the results are discussed in the next chapter. The performance
of the proposed method is compared to the performance of a traditional pixel-wise image
segmentation setup using a U-Net [24] and trained on the same dataset. The implementa-
tion of the Curve CNN can be found at https://github.com/vetlebh/spline_
learn.

6.1 The ACDC dataset
The ACDC-dataset consists of data from real clinical exams provided by the University
Hospital of Dijon, and was created for the MICCAI 2017 challenge. The competition,
as described by [1], had the goal of comparing state-of-the-art automatic methods for
segmentation and classification based on the MRI-images.

The dataset contains 150 medical exams, each from a different patient. In addition
to the MRI-images, each patient’s data includes height, weight, and diastolic and systolic
phase instants. The dataset is divided into a training set consisting of 100 medical exams
and a test set consisting of the remaining 50. The patients are distributed into the follow-
ing five groups, each consisting of 30 patients’ medical exams: healthy subjects, patients
with previous myocardial infarction, patients with dilated cardiomyopathy, patients with
hypertrophic cardiomyopathy, and patients with abnormal right ventricle. In total, there
are 25351 images among the 100 medical exams for training. Out of these images, 1902
contain labels. There are 6-18 slices per patient, and two frames per slice have labels. The
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data is stored in NIfTI format, a format developed for neuroimaging.

6.2 Training of the Curve CNN Network

Training was conducted using Google CoLab Pro on a NVIDIa Tesla P100 GPU (graphical
processing unit). The optimizer used in training the network was the Keras implementa-
tion of the Adam-algorithm [47]. The algorithm is a modification of stochastic gradient
descent specifically created for training deep neural networks with large datasets and high-
dimensional parameter space. The network was trained on a dataset of 68 individual slices,
with a validation set of 8 slices. The training set is just a fraction of the available data, but
a larger training dataset’s computational cost was too big for the GPU’s to handle. The
size of the training set strongly influences the learning of Neural Network, and should be
taken into consideration when evaluating the model. The U-Net used for comparison was
trained on 764 individual slices, more than ten times as many.

The ACDC-dataset comes in a standardized, preprocessed format. The only further
processing necessary for training was resizing the images to pixel-resolution 255x255.
Most of the samples had a higher initial resolution and had to be downsized. In order to
preserve features in the images, anti-aliasing was used. Also, edge-padding was used in
cases were images needed to be upsized, meaning that pixels added in the resize proce-
dure were appointed the same value as their closest neighbor inside the original image.
While other preprocessing steps could have improved performance, experimentation with
preprocessing steps is outside this thesis’s scope. The network was trained in batches of
128.

6.2.1 Evaluation Metrics

In this experiment, accuracy alone does not yield a meaningful measure of the performance
of the network. The MRI-images are mostly background, yielding a classification problem
where one of the classes is vastly over-represented. In cases where the network can predict
the general shape and location of the heart, the accuracy will be nearly 100%, giving the
impression that it is an almost perfect segmentation. This is not the case. A weak algorithm
classifying all pixels as background could get an accuracy over 90% (if there are few heart-
pixels in the relevant image).

Specifically, we look at mean IoU (mean intersection over union), also called Jaccard
Index [48]. As the name suggests, IoU is a measure of similarity between two sets mea-
sured by dividing the size of the intersection of the sets by the size of the union of the
sets. In our case, the IoU measure compares the MRI ground truth mask with the pre-
dicted mask. If there are no overlapping pixels in the two masks, the IoU score will be 0,
regardless of how many pixels are correctly identified as background. If the two masks are
completely overlapping the IoU score will be 1.

We also include precision and recall in our results. Precision is the fraction of correctly
classified heart pixels by the total number of predicted heart pixels. Recall is the fraction
of correctly classified heart pixels by the total number of true heart pixels.
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Figure 6.1: Learning curve of a training run of the Curve CNN Network. The y-axis shows log
training loss and log validation loss.

Model Epochs IoU Precision Recall Accuracy
Curve CNN 60 0.5623 69.07% 19.52% 72.94%
U-Net 60 0.7030 95.52% 80.62% 98.92%
U-Net 180 0.8434 95.61% 94.36% 99.53%

Table 6.1: Metrics on a test set after 60 epochs of the two different models.

6.3 Results
We here present the results of the numerical experiment on the ACDC-dataset. Both the
curve CNN and U-net were trained for 60 epochs on data from the same dataset. However,
the U-Net was allowed to utilize its much larger capacity for dataset size. Furthermore,
metrics for the U-Net after running for 180 epochs are included, to show its full potential.
Figure 6.1 shows the learning curve for a training run of 50 epochs for the Curve CNN.
There is a small improvement over time, but the learning is extremely slow. Figure 6.2
shows the learning curves of 5 runs of the U-Net for comparison. All but two of the runs
achieve significant learning within the first 20 epochs.

Table 6.1 shows performance metrics of the Curve CNN after 60 epochs and the U-
Net after 60 and 120 epochs respectively. The average IoU shows that the Curve CNN
generally outputs bad predictions. The higher precision than recall indicates that the Curve
CNN usually under predicts the size of the heart. In comparison the U-Net outperforms
the Curve CNN in all included metrics.

Figure 6.3 and 6.4 show some predictions by the Curve CNN. They are both poor in
their own way, and reflects what most of the predictions looked like. In the first, Curve
CNN predicts a self-intersecting curve. In the second, the predicted curve overlaps none
of the true heart pixels.

Figure 6.5 shows a prediction by the U-Net. The prediction almost perfectly overlaps
the true heart pixels.
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Figure 6.2: Learning curve of five training run of the U-Net Network. The y-axis shows log valida-
tion loss.
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Ground truth MRI Predicted MRI

Ground truth mask Predicted mask

Figure 6.3: Prediction by Curve CNN after 60 epochs. While in the right area of the image, the
prediction totally misses the shape of the heart. The predicted curve self-intersects - a problem
which happens quite often in the predictions.
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Ground truth MRI Predicted MRI

Ground truth mask Predicted mask

Figure 6.4: Prediction by Curve CNN after 60 epochs. The prediction is not too far off in size, but
misses the shape of the heart. Even worse, the prediction also misses the location of the heart and
has no overlapping pixels with the ground truth segmentation.
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Ground truth MRI Predicted MRI

Ground truth mask Predicted mask

Figure 6.5: Prediction by U-Net after 60 epochs. The U-Net is able to accurately predict the heart
shapes.
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Chapter 7
Discussion

The results clearly show that the method presented in this thesis does not work in the in-
tended way. While the implemented U-Net achieves high performance after 60 epochs,
the Curve CNN produces mostly worthless segmentations. There is some learning, but
it is prolonged, and no satisfactory results were achieved within a reasonable time. Part
of the problem is that the computational cost of training the proposed network puts strict
restrictions on the size of the training set and makes it difficult to experiment with hyper-
parameters.

The problem might lie in the presented learning strategy as a whole. It could be that the
network is simply unable to learn the connection between predicted control point coordi-
nates and spline curves, and between the spline curves and the ground truth segmentation.
We believe, however, that it is more likely a matter of improving the model. As a novel
method, many aspects of the procedure could be improved, and some might be vital for
the network’s learning.

The most significant problem with the proposed method is that we do not resolve the
issue with self-intersections on the curve, as discussed in Section 3.3.1. Self-intersecting
predicted curves are present all through the learning process. Random initialization of
the network weights makes it likely that self-intersecting curves are present from the start
of the learning process. It is difficult for the network to untangle the self-intersections,
because the current loss function has bad local minima on some control point predictions
corresponding to self-intersecting curves. The best way to handle this would be to add a
loss term, which explicitly penalizes self-intersections. It is possible to implement an algo-
rithm that detects self-intersections, but it would be computationally costly in the current
setup, putting an even higher toll on the run time.

In our learning setup, the control points are only rewarded for representing the heart
shape accurately. The heart model does not distinguish between representations where
the control points have different ordering as long as the spline curve is the same. This
may be a weakness. Instead, it could be advantageous to give incentive to the control
points to ”specialize” in different heart features. The consequences could be a more stable
performance and possibly resolving the issue with self-intersections, because the control
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points would learn an internal ordering. We saw in Section 2.2.3 that cardiac MRI-images
are taken in the same spatial view of a heart at different times during the cardiac cycle.
Our learning strategy could take advantage of the temporal dimension of the images by
penalizing the movement of a single control point between different images in a sequence.
In this way, the network would be encouraged to place a control point on the same place
in each image.

A noticeable improvement would be to formulate the problem to allow for a continuous
analytical gradient. In the current setup, the loss function is severely complex, and it is
possible that the gradient approximation not adequately represents the analytical gradient.
To achieve this, one would need to formulate an entirely new loss function.

7.1 Conclusion
We conclude that the presented method does not work in the current setup. However, we
firmly believe that given more computational resources, improvements could be made that
would significantly enhance the performance of the method. This project was carried out
as an initial investigation, and it is therefore too early to conclude on the validity of the
method. We hope that further studies explore the mentioned improvements, and a more
decisive conclusion can be drawn.
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