
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Elias Loona Myklebust

Optimal Control of a Semi-Linear
Parabolic System Related to
Sustainable Marine Fishery

An attempt at finding better fishing strategies by
non-convex optimization

Master’s thesis in Industrial Mathematics

Supervisor: Dietmar Hömberg

July 2020





Elias Loona Myklebust

Optimal Control of a Semi-Linear
Parabolic System Related to
Sustainable Marine Fishery

An attempt at finding better fishing strategies by non-
convex optimization

Master’s thesis in Industrial Mathematics
Supervisor: Dietmar Hömberg
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Summary

Marine fisheries around the world are facing the increasing problem of overfishing. In
this thesis, we will attempt to find optimal and sustainable fishing strategies by formulat-
ing a non-convex optimal control problem. We begin by setting up a nonlinear parabolic
diffusion-reaction equation describing the behavior of fish biomass and its response to a
harvesting effort. Existence and uniqueness of solutions to this equation is proven. We
then formulate the optimal control problem and derive optimality conditions, and provide
rigorous justification for these. Finally, we will solve the optimal control problem numer-
ically using a gradient based method. The results we obtain are given an interpretation in
terms of marine policy.
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Chapter 1
Introduction

Marine fisheries play an essential role in the world economy. They provide millions of
people with both food security and job opportunities. Activity is increasing in this sector,
and from 1950 to 1990, the total production volume grew by 8-9% every year. In 2016
the total marine catch was 79.3 million tonnes globally, and today fish and fish products
make up 1% of the world’s total merchandise trade in terms of value [8]. Marine fish
stocks represent a valuable resource, and their preservation in the long term is of high
importance. However, overfishing is an ever-growing problem and is threatening to deplete
several fish stocks. From 1974 to 2015, the fraction of fish stocks exploited at a sustainable
level decreased from 90.0% to 66.9% [17]. With about a third of the fish stocks subject to
overfishing today, it is evident that unsustainable harvesting is a big problem. According to
Ye et al. [20], rebuilding overfished stocks could increase yearly production by as much as
16.5 million tonnes, suggesting that dealing with this problem would yield huge benefits.

In an attempt to combat the overfishing problem, the harvest in many regions is regu-
lated. The most common policy tools include quotas on the Total Allowable Catch (TAC)
and the imposition of Marine Protected Areas (MPAs), sometimes called No-Take Zones
(NTZs), where fishing is not allowed at all [8, 9]. To facilitate the design of such policies,
the development of good mathematical models for how the fish biomass develops over
time would be helpful, and these models could describe fishing strategies by formulation
optimization problems.

In research economics, a majority of models are based on ordinary differential equa-
tions (ODEs) [3]. These models only capture the temporal evolution of fish biomass and
neglect the spatial dimensions. The importance of including spatial dimensions in such
analysis is apparent when considering e.g., harvesting in different parts of a region where
fish is located.

In recent years, some attempts have been made to include one or two spatial dimen-
sions in such models, see e.g. Xepapadeas [19] or Faugeras and Maury [7]. There has
also been work examining the possibility of finding optimal fishing strategies by solving
optimal control problems. Ding and Lenhart [5] do this for a control problem where the
governing partial differential equation (PDE) is elliptic, i.e., the model is stationary. A

1



Chapter 1. Introduction

control problem where the governing PDE includes both spatial variables and a time vari-
able is studied by Joshi et al. [10]. Here, the aim was to maximize the harvest yield’s
present-day value for a certain period.

A particularly interesting optimal control problem is presented by Braack et al. [2].
Here, a nonlinear parabolic diffusion-reaction equation is used to model fish biomass and
its response to a harvesting effort. This model incorporates two spatial dimensions in
addition to the time dimension. The cost functional in the control problem is formulated
so that a solution to the control problem describes a fishing strategy that maximizes the
harvest while reducing costs and avoiding overfishing. In our work, we will expand on the
research done on this optimal control problem.

The main goal of this thesis will be to develop our own theoretical analysis of both
the state equation and the control problem. This will also be the most significant contri-
bution of this work. A second crucial goal for this thesis will be to solve numerically both
the state equation and the control problem, and illustrate how the results can be used by
policymakers who wish to regulate marine fisheries.

In Chapter 2, we present the state equation along with the cost functional, and state
the control problem formally. Chapter 3 deals with the state equation. We show here, by
introducing an auxiliary equation, the existence of a unique solution to the state equation.
We use Galerkin’s method to obtain this result. We also prove that such a solution has
to be nonnegative. Analysis of the cost functional and the control problem is done in
Chapter 4. We show here that the control problem attains a global minimum. We also
define a solution operator, which maps a control to the corresponding state, and prove that
it is Fréchet differentiable. This allows us to derive a first-order optimality system for the
control problem. To do so, we use the Lagrangian technique. In Chapter 5, we describe
the numerical methods used to solve the state equation and the control problem. To solve
the state equation, we use Rothe’s method. The control problem is solved with a projected
gradient method. The results obtained using these methods are presented, and we analyze
and discuss them. We give our concluding remarks in Chapter 6.

2



Chapter 2
Model Description

In this chapter we present the semilinear parabolic PDE, proposed by Braack et al. [2],
modeling the fish biomass, and derive the weak form of this equation. Next, we introduce
the cost functional through which we specify what is meant by an optimal fishing strategy.
Finally, we state the optimal control problem formally.

2.1 State Equation
The state equation for the fish biomass in some Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}, at
time t ∈ [0, T ] can be described as follows

ut −∆u+ u (u− a) = −qu in (0, T )× Ω,

∇u · n = 0 on (0, T )× ∂Ω, (2.1)
u(x, 0) = u0(x) in Ω.

Here u = u(x, t) represents the biomass of the fish, q = q(x, t) represents the harvesting
effort on the fish, and a is a time-independent function describing the growth rate of the
biomass. The second term on the left hand side represents diffusion of the biomass due
to isotropic movement of the fish. The third term is a classical logistic growth term. It is
assumed that the population can only sustain growth until a certain threshold is reached.
This threshold can be caused by e.g. food shortage. On the right hand side we have
the term representing depletion of the biomass due to harvesting. The assumption that
no fish can leave our specified domain is included in the Neumann boundary condition.
Throughout this work we will assume that u0 ∈ L∞(Ω), and that a(x) > 0 for every
x ∈ Ω.

A weak form of the state equation is found by multiplying (2.1) with a test function v
and using integration by parts to get rid of higher order derivatives. We say that a weak
solution of (2.1) is a function u ∈ L2

(
0, T ;H1 (Ω)

)
with ut ∈ L2

(
0, T ;H−1 (Ω)

)
for

which ∫
Ω

utv dx+

∫
Ω

∇u · ∇v dx+

∫
Ω

u (u+ q − a) v dx = 0, (2.2)

3



Chapter 2. Model Description

for each function v ∈ H1(Ω), for a.e. t ∈ [0, T ], and for which u(x, 0) = u0(x).
To make it less tedious to discuss solutions to the state equation we define the space

W (0, T ) :=
{
v ∈ L2(0, T ;H1(Ω)) : ∂tv ∈ L2(0, T ;H−1(Ω))

}
, (2.3)

and we will later use the well known result that W (0, T ) is compactly embedded into the
space L2(0, T ;L2(Ω)). We also define the space

Q := [0, T ]× Ω, (2.4)

to further simplify our discussion. Note also that throughout this work we use Lagrange’s
prime notation for derivatives to mean a derivative with respect to time.

2.2 Cost Functional
In the optimal control problem we aim to minimize a cost functional with respect to the
biomass (state) u and the harvesting effort (control) q. We define the cost functional to be

J(u, q) :=

∫ T

0

e−ρt
∫

Ω

q(r − u) dx dt− λ
∫

Ω

u(T ) dx+
α

2

∫ T

0

∫
Ω

q2 dx dt, (2.5)

for α, λ ∈ R, with α > 0 and λ ≥ 0. The exponential represents a discounting factor,
where ρ > 0 is the market interest rate. The purpose of this factor is to specify that it
is beneficial to acquire more fish/revenue at an earlier point in time. The function r is
intended to describe the cost of moving to different parts of the domain from the harbor.
This implies that the term qr gives the cost of fishing in different parts of the domain.
Typically, r is proportional to the distance to the harbor, and we require r ∈ L2(Ω). The
term qu represents the amount of fish that is harvested. One could choose to multiply this
term by the market price of the fish to represent the revenue associated with the harvest,
however, here price is normalized to be 1. The integral of the biomass at end time expresses
our desire to avoid causing the population to go extinct. The parameter λ determines the
emphasis put on this goal. The final term in the cost functional is a classical regularization
term on the control, where α determines the level of regularization.

2.3 Control Problem Formulation
Before stating the control problem we need to specify the set of admissible controls. Ob-
viously, the control, or harvesting effort, cannot become negative. Furthermore, it is not
allowed to become arbitrarily large. Therefore, we set an upper limit qmax. Consequently,
the set of admissible controls is defined as

Qad = {q ∈ L∞(Q) : 0 ≤ q ≤ qmax}. (2.6)

Now, we are ready to formulate the optimal control problem. It is stated as

minimize
u, q

J(u, q)

subject to u solves (2.1),
q ∈ Qad.

(2.7)

4



2.3 Control Problem Formulation

Our intention is that, given the definition of the cost functional, a solution to (2.7) will
describe an optimal fishing strategy in space and time.

5
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Chapter 3
The State Equation

In this chapter we do extensive analysis on the state equation, with the purpose of showing
that there exists a solution to this equation, and that such a solution is unique. Since the
state equation has a non-monotone term, it is not straightforward to obtain this result. In
order to facilitate our analysis we first begin by studying an auxiliary equation, where the
non-monotone term has been replaced by a monotone one. The intention here is that, after
a transformation, an existence and uniqueness result for the auxiliary equation will imply
that the same holds for the state equation. However, the auxiliary is not simple to analyze
either. We therefore modify it slightly by introducing a cut-off function. We then show
existence of a solution to the modified equation by using Galerkin’s method, as outlined in
Evans [6]. Once this result has been established we can, via the auxiliary equation, prove
the existence and uniqueness of a solution to the state equation.

3.1 An Auxiliary State Equation
We begin our analysis by studying an auxiliary state equation, where we replace the non-
monotone term u(u− a) in (2.1) by the monotone γ|u|u, where γ is some time dependent
function with 0 ≤ γ(t) <∞ for all t ∈ [0, T ], and γ(t) ∈ C1([0, T ]). Thus, we have

yt −∆y + γ|y|y = −qy in (0, T )× Ω,

∇y · n = 0 on (0, T )× ∂Ω, (3.1)
y(x, 0) = y0(x) in Ω.

We assume y0 ∈ L∞(Ω).
Similarly as before, we can obtain a weak form of this equation. We say that a weak

solution of (3.1) is a function y ∈ L2
(
0, T ;H1 (Ω)

)
with yt ∈ L2

(
0, T ;H−1 (Ω)

)
for

which ∫
Ω

ytv dx+

∫
Ω

∇y · ∇v dx+

∫
Ω

(γ|y|y + qy) v dx = 0, (3.2)

for each function v ∈ H1(Ω), for a.e. t ∈ [0, T ], and for which y(x, 0) = y0(x).

7



Chapter 3. The State Equation

To simplify our analysis of the auxiliary state equation we modify it slightly to obtain
a third equation. We begin by introducing the cut-off function τµ(x) defined by

τµ(x) =


x, if |x| ≤ y,
−µ, if x < −µ,
µ, if x > µ.

(3.3)

In the modified equation we replace the non-monotone term u(u − a) in (2.1) by the
monotone term γτµ(|u|)u, where γ is the same as it is in the auxiliary state equation. We
obtain

yt −∆y + γτµ(|y|)y = −qy in (0, T )× Ω,

∇y · n = 0 on (0, T )× ∂Ω, (3.4)
y(x, 0) = y0(x) in Ω.

Again we assume that y0(x) ∈ L∞(Ω). Again we obtain a weak form of (3.4) by multi-
plying with a test function v and using integration by parts. We say that a weak solution
of (3.4) is a function y ∈ L2

(
0, T ;H1 (Ω)

)
with yt ∈ L2

(
0, T ;H−1 (Ω)

)
for which∫

Ω

ytv dx+

∫
Ω

∇y · ∇v dx+

∫
Ω

(γτµ(|y|)y + qy) v dx = 0, (3.5)

for each function v ∈ H1(Ω), for a.e. t ∈ [0, T ], and for which y(x, 0) = y0(x).

3.2 Analysis on the Modified Equation
In the following we will show that the modified equation has a weak solution for any
0 < µ < ∞. We do so by using Galerkin’s method, and begin by constructing finite-
dimensional approximations to these solutions, and subsequently show that in the limit we
obtain a solution to (3.5).

A finite-dimensional approximation to a solution of (3.5) is expressed as

ym =

m∑
k=1

dkm(t)wk, (3.6)

where the functions {wk}∞k=1 form an orthogonal basis for H1(Ω) and an orthonormal
basis for L2(Ω). The coefficients dkm(t) (k = 1, . . . ,m) are time dependent, and we want
to choose them such that

dkm(0) =

∫
Ω

y0wk dx, (3.7)

and ∫
Ω

y′mwk dx+

∫
Ω

∇ym · ∇wk dx+

∫
Ω

(γτµ(|ym|)ym + qym)wk dx = 0, (3.8)

holds for k = 1, . . . ,m.

8



3.2 Analysis on the Modified Equation

3.2.1 Existence of the Finite-Dimensional Approximations
The first step in the Galerkin approach is to show that, for any m, the finite-dimensional
approximation ym exists. This result is presented below.

Lemma 3.2.1. For each m = 1, 2, . . . there exists a unique function ym of the form (3.6)
for which the conditions (3.7) and (3.8) hold.

Proof. We begin by noting that due to orthonormality of the functions {wk}∞k=1 in L2(Ω)
we have that ∫

Ω

y′mwk dx = dk′m(t). (3.9)

Inserting this into (3.8) yields

dk′m(t) +

m∑
l=1

dlm(t)

[∫
Ω

∇wl · ∇wk + qwlwk dx

]

+

∫
Ω

γ(t)τµ

(∣∣∣∣∣
m∑
r=1

drm(t)wr

∣∣∣∣∣
)(

m∑
s=1

dsm(t)ws

)
wk dx = 0. (3.10)

By taking advantage of the properties of the functions wk we can rewrite this as

dk′m(t) + dkm(t)

∫
Ω

|∇wk|2 dx+

m∑
l=1

dlm(t)

∫
Ω

qwlwk dx

+

∫
Ω

γ(t)τµ

(∣∣∣∣∣
m∑
r=1

drm(t)wr

∣∣∣∣∣
)(

m∑
s=1

dsm(t)ws

)
wk dx = 0. (3.11)

This can be expressed as the system of ODEs

dd

dt
+ F (t,d) = 0, (3.12)

with d(t) = [d1
m(t), . . . , dmm(t)]T and F (t,d) = [f1(t,d), . . . , fm(t,d)]T , where

fk(t,d) = dkm(t)

∫
Ω

|∇wk|2 dx+

m∑
l=1

dlm(t)

∫
Ω

qwlwk dx

+

∫
Ω

γ(t)τµ

(∣∣∣∣∣
m∑
r=1

drm(t)wr

∣∣∣∣∣
)(

m∑
s=1

dsm(t)ws

)
wk dx,

(3.13)

for k = 1, . . . ,m. Since the function q is in general not continuous we cannot use the
standard Picard-Lindelöf theorem to argue that this ODE system has a solution. However,
one can check that F satisfies the Carathéodory condition given on p. 800 of Zeidler [21],
and that it can be bounded by a real integrable function. This is sufficient to show that
there exists a continuous function d such that (3.12) holds for almost all t ∈ [0, T ] [21].

9



Chapter 3. The State Equation

3.2.2 Bounds on the Finite-Dimensional Approximations
We want to show that a subsequence of {ym}∞m=1 converges to a solution of (3.5). In order
to do so we need to obtain some bounds on these functions in the relevant spaces. This
result is presented in the following lemma.

Lemma 3.2.2. There exists a constant C, depending only on the harvesting effort q, T
and the initial value ym(0), such that

max
0≤t≤T

‖ym(t)‖2L2(Ω) + ‖ym‖2L2(0,T ;H1(Ω)) + ‖y′m‖2L2(0,T ;H−1(Ω)) ≤ C, (3.14)

for any m = 1, 2, . . . .

Proof. To obtain the first bound on ym we start by multiplying (3.8) by dkm(t) and sum
over indices k = 1, . . . ,m to get∫

Ω

y′mym dx+

∫
Ω

|∇ym|2 dx+

∫
Ω

(γ(t)τµ(|ym|)ym + qym) ym dx = 0, (3.15)

which implies that∫
Ω

y′mym dx+

∫
Ω

|∇ym|2 + y2
m dx

+ γ(t)

∫
Ω

τµ(|ym|)y2
m dx =

∫
Ω

(1− q) y2
m dx. (3.16)

From this we infer that

1

2

∂

∂t

∫
Ω

y2
m dx+ ‖ym‖2H1(Ω)

+ γ(t)

∫
Ω

τµ(|ym|)y2
m dx ≤ ‖1− q‖L∞(Ω)

∫
Ω

y2
m dx, (3.17)

where we have used that ∂t(y2
m/2) = y′mym. Integrating from 0 to t yields∫

Ω

ym(t)2 dx+ 2

∫ t

0

‖ym‖2H1(Ω) dt+ 2

∫ t

0

γ(t)

∫
Ω

τµ(|ym|)y2
m dx dt

≤ 2‖1− q‖L∞(Q)︸ ︷︷ ︸
=:A

∫ t

0

∫
Ω

y2
m dx dt+

∫
Ω

ym(0)2 dx︸ ︷︷ ︸
=:B

, (3.18)

where the constants A,B depend only on q, T and the initial value ym(0). By nonnega-
tivity of the terms on the left hand side we get∫

Ω

ym(t)2 dx ≤ A
∫ t

0

∫
Ω

y2
m dx dt+B. (3.19)

Now, Gronwall’s inequality implies that∫
Ω

ym(t)2 dx ≤ B
(
1 +AteAt

)
. (3.20)

10



3.2 Analysis on the Modified Equation

Since this argument holds for any t ∈ [0, T ], we conclude that there exists a constant C1,
depending only on q, T and ym(0), such that

max
0≤t≤T

‖ym(t)‖2L2(Ω) ≤ C1. (3.21)

To obtain the next bound we return to inequality (3.18). Again, nonnegativity of the
terms on the left hand side gives∫ t

0

‖ym‖2H1(Ω) dt ≤
A

2

∫ t

0

∫
Ω

y2
m dx dt+

B

2
. (3.22)

Extending the integration to end time T and employing (3.21) yields

‖ym‖2L2(0,T ;H1(Ω)) ≤ C2, (3.23)

for some constant C2 depending only on q, T and the initial value ym(0).
For the final bound we take any v ∈ H1(Ω) with ‖v‖H1(Ω) ≤ 1, and write it as

v = v1 + v2, with v1 ∈ span{wk}mk=1 and v2 being orthogonal to the functions {wk}mk=1.
Due to orthogonality of the functions {wk}∞k=1, it must hold that ‖v1‖H1(Ω) ≤ ‖v‖H1(Ω).
From equation (3.8) we infer that∫

Ω

y′mv
1 dx+

∫
Ω

∇ym · ∇v1 dx+

∫
Ω

(γτµ(|ym|)ym + qym) v1 dx = 0. (3.24)

Consequently, we have that∣∣∣∣∫
Ω

y′mv
1 dx

∣∣∣∣ =

∣∣∣∣∫
Ω

∇ym · ∇v1 dx+

∫
Ω

(γ(t)τµ(|ym|)ym + qym) v1 dx

∣∣∣∣
=

∣∣∣∣ ∫
Ω

∇ym · ∇v1 + ymv
1 dx+

∫
Ω

(q − 1)ymv
1 dx

+

∫
Ω

γ(t)τµ(|ym|)ymv1 dx

∣∣∣∣
≤ ‖ym‖H1(Ω)‖v1‖H1(Ω) + ‖q − 1‖L∞(Ω)‖ym‖L2(Ω)‖v1‖L2(Ω)

+ ‖γ‖L∞([0,T ])

∫
Ω

τµ(|ym|)|ym||v1| dx

≤ ‖ym‖H1(Ω)‖v1‖H1(Ω) + ‖q − 1‖L∞(Ω)‖ym‖H1(Ω)‖v1‖H1(Ω)

+ µ‖γ‖L∞([0,T ])‖ym‖L2(Ω)‖v1‖L2(Ω),

≤ ‖ym‖H1(Ω)‖v1‖H1(Ω) + ‖q − 1‖L∞(Ω)‖ym‖H1(Ω)‖v1‖H1(Ω)

+ µ‖γ‖L∞([0,T ])‖ym‖H1(Ω)‖v1‖H1(Ω),

(3.25)

where we have used the Cauchy-Schwarz inequality, the Hölder inequality and the bound
τµ(|ym|) ≤ µ. Next, observe that by (3.6) and the definition of v it must hold that∫

Ω

y′mv dx =

∫
Ω

y′mv
1 dx. (3.26)

11



Chapter 3. The State Equation

Consequently, combining (3.25) and the bound ‖v1‖H1(Ω) ≤ 1 gives

‖y′m‖H−1(Ω) ≤ ‖ym‖H1(Ω) + ‖q − 1‖L∞(Ω)‖ym‖H1(Ω)

+ µ‖γ‖L∞([0,T ])‖ym‖H1(Ω).
(3.27)

For some constant K we have

‖y′m‖2H−1(Ω) ≤ K
[
‖ym‖2H1(Ω) + ‖q − 1‖2L∞(Ω)‖ym‖

2
H1(Ω)

+ µ2‖γ‖2L∞([0,T ])‖ym‖
2
H1(Ω)

]
.

(3.28)

Integrating from 0 to T and applying (3.23) yields

‖y′m‖2L2(0,T ;H−1(Ω)) ≤ C3, (3.29)

for some constant C3, depending only on q, T and the initial value ym(0).

3.2.3 Existence of a Solution
We are now ready to establish that the weak form of the auxiliary state equation has a
solution. The result is stated in the following theorem.

Theorem 3.2.3. There exists a solution y to equation (3.5), and it holds that y ∈W (0, T ).

Proof. In lemma 3.2.2 we established that the sequences {ym}∞m=1 and {y′m}∞u=1 are
bounded in L2(0, T ;H1(Ω)) and L2(0, T ;H−1(Ω)) respectively. Therefore, there must
exist a subsequence {yml

}∞l=1 ⊂ {ym}∞m=1, and a function y ∈ L2(0, T ;H1(Ω)) with
derivative y′ ∈ L2(0, T ;H−1(Ω)) such that{

yml
−→ y weakly in L2(0, T ;H1(Ω))

y′ml
−→ y′ weakly in L2(0, T ;H−1(Ω)).

(3.30)

We now take a function v ∈ L2(0, T ;H1(Ω)) of the form

v(t) =

N∑
k=1

dk(t)wk, (3.31)

for given smooth functions {dk}Nk=1 and a fixed integer N . Taking m ≥ N , multiplying
(3.8) by dk(t), summing over indices k = 1, . . . , N , and integrating from 0 to T yields∫ T

0

∫
Ω

y′mv dx dt+

∫ T

0

∫
Ω

∇ym · ∇v + (γτµ(|ym|)ym + qym) v dx dt = 0. (3.32)

We now set m = ml with the intention of passing to weak limits. Before doing so, we
need to establish that the nonlinear term converges to the desired limit. We set ϕm =

12



3.2 Analysis on the Modified Equation

γ(t)τµ(|ym|)v and wish to show that ϕm → ϕ strongly in L2(Q). Since the space
W (0, T ) is compactly embedded into the space L2(Q), we have ym → y in L2(Q). Con-
sequently, there exists a subsequence {ym′}∞m′=1 such that ym′ → y pointwise, for a.e.
(x, t) ∈ Q. By continuity of ϕm we have that ϕm′ → ϕ pointwise, for a.e. (x, t) ∈ Q.
Furthermore, we have the bound

‖ϕm′‖2L2(Q) =

∫ T

0

γ(t)2

∫
Ω

τµ(|ym′ |)2v2 dx dt

≤ ‖γ‖2L∞([0,T ])µ
2

∫ T

0

‖v‖2L2(Ω) dt

≤ ‖γ‖2L∞([0,T ])µ
2

∫ T

0

‖v‖2H1(Ω) dt,

(3.33)

which is constant due to v ∈ L2(0, T ;H1(Ω)). Consequently, by the Lebesgue dominated
convergence theorem we have ϕm → ϕ strongly in L2(Q). Therefore, we get∫ T

0

∫
Ω

ymϕm dx dt→
∫ T

0

∫
Ω

yϕ dx dt. (3.34)

We return now to equation (3.32) where we set m = ml and pass to weak limits. By
(3.34) we obtain∫ T

0

∫
Ω

y′v dx dt+

∫ T

0

∫
Ω

∇y · ∇v + (γτµ(|y|)y + qy) v dx dt = 0. (3.35)

This equality holds for any v ∈ L2(0, T ;H1(Ω)). Thus, for every v ∈ H1(Ω) it holds that∫
Ω

y′v dx+

∫
Ω

∇y · ∇v + (γτµ(|y|)y + qy) v dx = 0, (3.36)

for a.e. 0 ≤ t ≤ T .
We now wish to show that y satisfies the initial condition y(x, 0) = y0(x). First, using

integration by parts on (3.35) gives∫ T

0

∫
Ω

−yv′ dx dt+

∫ T

0

∫
Ω

∇y · ∇v + (γτµ(|y|)y + qy) v dx dt =

∫
Ω

y(0)v(0) dx,

(3.37)
for any v ∈ L2(0, T ;H1(Ω)) for which v(T ) = 0. In a similar fashion, we obtain from
equation (3.32) that∫ T

0

∫
Ω

−ymv′ dx dt+

∫ T

0

∫
Ω

∇ym · ∇v + (γτµ(|ym|)ym + qym) v dx dt

=

∫
Ω

ym(0)v(0) dx, (3.38)

for any v ∈ L2(0, T ;H1(Ω)) for which v(T ) = 0. We now set m = ml and pass to weak
limits to obtain∫ T

0

∫
Ω

−yv′ dx dt+
∫ T

0

∫
Ω

∇y·∇v+(γτµ(|y|)y + qy) v dx dt =

∫
Ω

y0v(0) dx, (3.39)

13



Chapter 3. The State Equation

since yml
→ y0 in L2(Ω). Noting that this holds for any v(0), we find that y(0) = y0 by

comparing (3.37) and (3.39).

3.2.4 Boundedness of a Solution

Before establishing the existence of a weak solution to (3.1), we need to assert that a weak
solution to (3.4) has to be bounded. The result is given below.

Lemma 3.2.4. There exists a constant C, independent of µ, and depending on the initial
value y0, such that for a weak solution y of (3.4) we have ‖y‖L∞(Q) ≤ C.

Proof. We take v = y2p−1 in (3.5), with p ≥ 1, and obtain∫
Ω

y′y2p−1 dx+

∫
Ω

|∇y|2y2p dx+ γ

∫
Ω

τµ(|y|)y2p dx+

∫
Ω

qy2p dx = 0. (3.40)

Next, we note that for the first term we have∫
Ω

y′y2p−1 dx =
1

2p

∂

∂t

∫
Ω

y2p dx. (3.41)

Observing that all the other terms are nonnegative we deduce that

1

2p

∂

∂t

∫
Ω

y2p dx ≤ 0. (3.42)

Integrating from 0 to t yields

1

2p

∫
Ω

y2p(t) dx ≤ 1

2p

∫
Ω

y2p
0 dx. (3.43)

Since this argument holds for any t ∈ (0, T ), we infer that

ess sup
t∈(0,T )

‖y(t)‖L2p(Ω) ≤ ‖y0‖L2p(Ω), (3.44)

for any p ≥ 1. Next, we pass to the limit p→∞.This yields

‖y‖L∞(Q) ≤ ‖y0‖L∞(Ω). (3.45)

By recalling y0 ∈ L∞(Ω) we reach the desired conclusion.

3.3 Returning to the Auxiliary State Equation

In the following we will show that the auxiliary state equation (3.1) has a weak solution,
that such a solution is unique, and that it remains nonnegative for a.e. t ∈ [0, T ] given that
y0 ≥ 0.
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3.3 Returning to the Auxiliary State Equation

3.3.1 Existence of a Solution

We now use the results we have obtained for the modified equation to show that a solution
to the auxiliary state equation exists.

Theorem 3.3.1. There exists a weak solution to equation (3.1).

Proof. By lemma 3.2.4 there is a constant C such that for a weak solution y to (3.4) we
have ‖y‖L∞(Q) ≤ C. Since C is independent of µ, we may take µ > C. Observe now that
for any such µ it must hold that τµ(|y|) = |y|, and thus equation (3.4) becomes equivalent
to (3.1). By theorem 3.2.3 we must also have existence of a solution to (3.1).

3.3.2 Nonnegativity of a Solution

In order to prove that a solution to the auxiliary equation is unique, we first need to show
that a solution remains nonnegative given that the initial value is also nonnegative. Another
motivation for this is that we will later associate a solution of this equation with a solution
to the state equation, and we cannot have negative solutions to this problem, as we cannot
have a negative fish biomass. The result is given in the theorem below.

Theorem 3.3.2. For a solution to (3.2) with y0 ≥ 0, it holds that y(x, t) ≥ 0 for a.e.
(x, t) ∈ Ω× [0, T ].

Proof. We begin by taking advantage of the fact that a function can be split into its positive
and negative part in the following way

v = v+ − v−,

where

v+ = max{v, 0},
v− = max{−v, 0}.

Next, note that for any function v it holds that∫ T

0

∫
Ω

vtv
− dx dt =

∫ T

0

∫
Ω

(
v+
t − v−t

)
v− dx dt

= −
∫ T

0

∫
Ω

v−t v
− dx dt

= −1

2

∫ T

0

∫
Ω

∂

∂t

(
v− (t)

)2
dx dt

= −1

2

∫
Ω

(
v− (t)

)2
dx
∣∣∣T
0

= −1

2
‖v− (T ) ‖2L2(Ω) +

1

2
‖v− (0) ‖2L2(Ω),

(3.46)
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where we have taken advantage of the fact that
∫

Ω
v+
t v
− dx = 0 for a.e. t ∈ [0, T ]. We

now proceed by taking v = y− in (3.2). This gives∫ T

0

∫
Ω

yty
− dx dt+

∫ T

0

∫
Ω

∇
(
y+ − y−

)
· ∇y− dx dt

+

∫ T

0

∫
Ω

[
γ
(
y+ + y−

) (
y+ − y−

)
+ q

(
y+ − y−

)]
y− dx dt = 0. (3.47)

By (3.46) and ∫ T

0

∫
Ω

y+y− dx dt =

∫ T

0

∫
Ω

∇y+ · ∇y− dx dt = 0, (3.48)

we have

‖y−(T )‖2L2(Ω) = ‖y−(0)‖2L2(Ω)

− 2

∫ T

0

‖∇y−‖2L2(Ω) + γ‖y−‖3L3(Ω) + ‖q1/2y−‖2L2(Ω) dt

≤ ‖y−(0)‖2L2(Ω),

(3.49)

where the inequality holds due to nonnegativity of the integrand. If the initial value is
nonnegative then y− (0) = 0, meaning that y− (T ) ≡ 0 a.e. in Ω. Since the same argument
would hold if we integrated to any time 0 < t ≤ T , we conclude that y ≥ 0 a.e. in Ω for
any t ∈ [0, T ].

3.3.3 Uniqueness of a Solution
We now establish that a weak solution to the auxiliary state equation is unique. This result
will be important later.

Theorem 3.3.3. A weak solution to equation (3.1) is unique.

Proof. Suppose we have two solutions y1, y2 satisfying (3.2) for two different controls q1

and q2 respectively. We note that y1(0) = y2(0) = y0. Subtracting the equations for the
respective solutions yields∫

Ω

(y′1 − y′2) v dx+

∫
Ω

∇ (y1 − y2) · ∇v dx

+ γ

∫
Ω

(|y1|y1 − |y2|y2) v dx+

∫
Ω

(q1y1 − q2y2) v dx = 0 (3.50)

Next, we choose v = y1 − y2 as our test function. This gives∫
Ω

(y′1 − y′2) (y1 − y2) dx+

∫
Ω

|∇ (y1 − y2) |2 dx

+ γ

∫
Ω

(|y1|y1 − |y2|y2) (y1 − y2) dx =

∫
Ω

(q2y2 − q1y1) (y1 − y2) dx. (3.51)
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Now, observe that for the integrand in the third integral we have (due to nonnegativity)(
y2

1 − y2
2

)
(y1 − y2) = (y1 − y2)

2
(y1 + y2) ≥ 0. (3.52)

Consequently, it follows that∫
Ω

(y′1 − y′2) (y1 − y2) dx ≤
∫

Ω

(q2y2 − q1y1) (y1 − y2) dx. (3.53)

We now set y = y1 − y2. If the controls are equal, i.e. q1 = q2 =: q, we have

1

2

∂

∂t

(
‖y‖2L2(Ω)

)
≤ −

∫
Ω

qy2 dx

≤ ‖q‖L∞(Q)‖y‖2L2(Ω).

(3.54)

By Gronwall’s inequality we have

‖y(t)‖2L2(Ω) ≤ K‖y(0)‖2L2(Ω), (3.55)

for every t ∈ [0, T ], and for some constantK > 0. Since we have y(0) = y1(0)−y2(0) =
0, we conclude that y ≡ 0 for a.e. x in Ω, for every t ∈ [0, T ].

3.4 Returning to the State Equation
We can now utilize the results we have obtained in the previous sections to show that the
state equation has a unique nonnegative solution.

Theorem 3.4.1. Let the harvesting effort q ∈ Qad, and the initial value u0 ∈ L∞(Ω).
Furthermore, let u0 be nonnegative for a.e. x in Ω. Then, the sate equation (2.1) has a
unique weak solution which is nonnegative a.e. in Q. It further holds that u ∈W (0, T ) ∩
L∞(Q).

Proof. This proof is due to Braack et al. [2]. Let γ = eat and y0 = u0 in (3.1), and let y
be the unique solution to (3.2). Now, we set u = γy and insert this into (2.1). This yields

ut −∆u+ u2 − au+ qu = γyt + aγy − γ∆y + γ2y2 − aγy + γqy

= γ
[
yt −∆y + γy2 + qy

]
= γ [yt −∆y + γ|y|y + qy]

= 0.

(3.56)

Note that we also have∇u · n = γ∇y · n = 0 on (0, T )× ∂Ω. Thus, this u clearly solves
(2.1). Conversely, for any nonnegative solution u of (2.1) it is easy to check that y = γ−1u
solves (3.1). By uniqueness of solutions to (3.1) we therefore conclude that (2.1) also has
a unique solution. Nonnegativity is given by u = γy ≥ 0. Finally, it is simple to verify
that u belongs to the function spaces stated above by using the same result for y.
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Chapter 4
The Control Problem

In this chapter we begin by introducing a solution operator, mapping a control to the cor-
responding solution of the state equation. This allows us to state the control problem in
terms of a reduced cost functional, depending only on the control variable. We proceed by
showing that this control problem admits a unique solution. Next, we do analysis on the
solution operator to show that it is Fréchet differentiable. This result is necessary for the
final part of the chapter, where we derive a first order necessary optimality condition for
the control problem.

4.1 Existence of a Minimizer to the Control Problem

Now that we have shown the existence of a unique nonnegative solution to state equation
(2.1), we can define the solution operator

S : Qad →W (0, T ), q 7→ u. (4.1)

The solution operator maps a control q to the corresponding solution u of (2.2). Now,
define the reduced cost functional by

j : Qad → R, q 7→ J(S(q), q). (4.2)

This allows us to formulate the optimal control problem as

min
q∈Qad

j(q). (4.3)

It now remains to show that this control problem admits a solution.

Theorem 4.1.1. There exists a minimizer q̄ to control problem (4.3), and a corresponding
state ū = S(q̄), for which ū ∈W (0, T ) ∩ L∞(0, T ;L∞(Ω)) and q̄ ∈ Qad.
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Proof. This proof is due to Braack et al. [2]. We begin by showing that the reduced cost
functional is bounded from below. Trivially we have

j(q) ≥
∫ T

0

e−ρt
∫

Ω

q(r − u) dx dt− λ
∫

Ω

u(T ) dx. (4.4)

For the first term we have∫ T

0

e−ρt
∫

Ω

q(r − u) dx dt =

∫ T

0

e−ρt
∫

Ω

qr dx dt−
∫ T

0

e−ρt
∫

Ω

qu dx dt

≥ −
∫ T

0

e−ρt
∫

Ω

qu dx dt

≥ −
∫ T

0

∫
Ω

qu dx dt

≥ −

(
1

2

∫ T

0

∫
Ω

q2 dx dt+
1

2

∫ T

0

∫
Ω

u2 dx dt

)
,

(4.5)

where we have used Young’s inequality. This can be bounded by some constant due to
q ∈ Qad and u ∈W (0, T ). For the second term we have

λ

∫
Ω

u(T ) dx = λ‖u(T )‖L1(Ω) ≤ λ|Ω|‖u(T )‖L∞(Ω). (4.6)

Again, this term is bounded by some constant. Thus, we have that j is bounded from
below.

Consequently, since the set of admissible controls is non-empty there must exist a
(minimizing) sequence {qn}∞n=1 such that

lim
n→∞

j(qn) = inf
q∈Qad

j(q). (4.7)

Since Qad is a bounded subset of the space L∞(Q), there must exist a subsequence
{qk}∞k=1 which converges weakly to some q̄ in L∞(Q). BecauseQad is closed and convex
we have q̄ ∈ Qad.

Next, we look at the sequence {uk}∞k=1 defined by uk = S(qk). This means that we
have∫ T

0

∫
Ω

u′kv dx dt+

∫ T

0

∫
Ω

∇uk · ∇v dx dt

+

∫ T

0

∫
Ω

uk (uk + qk − a) v dx dt = 0, (4.8)

and by theorem 3.4.1 we have

‖uk‖L2(0,T ;H1(Ω)) + ‖uk‖L2(0,T ;H−1(Ω)) + ‖uk‖L∞(Q) ≤ C, (4.9)

for some constant C. Therefore, there exists a subsequence {uk′}∞k′=1 which converges
weakly to some ū in the space W (0, T ). We now want to show that ū = S(q̄) by setting
k = k′ in (4.8) and passing to weak limits. This requires special treatment of two terms.
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First, we note that the spaceW (0, T ) is compactly embedded intoL2(Q). Thus, uk′ →
ū strongly in L2(Q). We wish to show that∫ T

0

∫
Ω

uk′qk′v dx dt→
∫ T

0

∫
Ω

ūq̄v dx dt. (4.10)

We have ∫ T

0

∫
Ω

(uk′qk′ − ūq̄) v dx dt =

∫ T

0

∫
Ω

(qk′ − q̄) ūv dx dt

+

∫ T

0

∫
Ω

qk′ (uk′ − ū) v dx dt.

(4.11)

The first term converges to 0 by weak convergence of qk′ in L2(Q). The second term we
estimate by∫ T

0

∫
Ω

qk′ (uk′ − ū) v dx dt ≤ ‖qk′‖L∞(Q)‖uk′ − ū‖L2(Q)‖v‖L2(Q)

→ 0,

(4.12)

since uk′ → ū in L2(Q). Next, we want so show that∫ T

0

∫
Ω

u2
k′v dx dt→

∫ T

0

∫
Ω

ū2v dx dt. (4.13)

We use the same strategy as before, and write∫ T

0

∫
Ω

(
u2
k′ − ū2

)
v dx dt =

∫ T

0

∫
Ω

(uk′ − ū) ūv dx dt

+

∫ T

0

∫
Ω

uk′ (uk′ − ū) v dx dt.

(4.14)

Again, the first term converges by weak convergence of uk′ in L2(Q), and for the second
term we have∫ T

0

∫
Ω

uk′ (uk′ − ū) v dx dt ≤ ‖uk′‖L∞(Q)‖uk′ − ū‖L2(Q)‖v‖L2(Q)

→ 0,

(4.15)

by the same argument as before. Now, passing to weak limits in (4.8) gives∫ T

0

∫
Ω

ū′v dx dt+

∫ T

0

∫
Ω

∇ū · ∇v dx dt+

∫ T

0

∫
Ω

ū (ū+ q̄ − a) v dx dt = 0. (4.16)

Thus, we have ū = S(q̄).
Finally, we want to show that the pair (ū, q̄) minimizes the cost functional. Before

passing to the limit in the cost functional we show convergence for the terms∫ T

0

e−ρt
∫

Ω

qk′ (r − uk′) dx dt, λ

∫
Ω

uk′(T ) dx. (4.17)
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First, we take ϕ = e−ρt and write∫ T

0

e−ρt
∫

Ω

qk′ (r − uk′) dx dt =

∫ T

0

∫
Ω

qk′rϕ dx dt−
∫ T

0

∫
Ω

qk′uk′ϕdx dt. (4.18)

The first of these terms converges by weak convergence of qk′ in L2(Q), while the second
converges by a similar argument as above. Furthermore, since the trace operator from
W (0, T ) to L2(Ω) is continuous, it follows that uk′(T ) ⇀ ū(T ) in L2(Ω). Consequently,
we have

λ

∫
Ω

uk′(T ) dx→ λ

∫
Ω

ū(T ) dx. (4.19)

Therefore, we get

lim inf
k′→∞

j(qk′) = lim inf
k′→∞

J(uk′ , qk′)

=

∫ T

0

e−ρt
∫

Ω

q̄ (r − ū)− λ
∫

Ω

ū(T ) dx

+
α

2
lim inf
k′→∞

‖qk′‖2L2(ΩT )

≥
∫ T

0

e−ρt
∫

Ω

q̄ (r − ū)− λ
∫

Ω

ū(T ) dx+
α

2
‖q̄‖2L2(ΩT )

= J(ū, q̄)

= j(q̄),

(4.20)

where we have used the weak lower semi-continuity of the norm ‖ · ‖L2(Q). Thus, we
conclude that

j(q̄) = inf
q∈Qad

j(q). (4.21)

Since the solution operator S is non-linear, we can not guarantee that the reduced cost
functional is convex. Therefore, we will not be able to show uniqueness of a solution to
the control problem in this work.

4.2 Analysis of the Solution Operator
In order to obtain first order necessary optimality conditions for the control problem (2.7),
which we will use to characterize a solution, we need the solution operator to be differen-
tiable. In this section we will do this explicitly, but first we need a preliminary result.

4.2.1 Stability of the Solution Operator

To show that the solution operator is differentiable we need a stability result for the solution
operator, which is presented below.
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Lemma 4.2.1. Let u1 and u2 be solutions to equation (2.2) for controls q1 and q2, i.e.
u1 = S(q1) and u2 = S(q2). Then, for some constant C it holds

‖u1 − u2‖L4(Q) ≤ C‖q1 − q2‖L2(Q). (4.22)

Proof. We begin by showing that

max
0≤t≤T

‖u(t)‖2L2(Ω) ≤ C1‖q1 − q2‖2L2(Q), (4.23)

for some constant C1. To do this we subtract the weak equations for u1 and u2. This gives∫
Ω

(u′1 − u′2)v dx+

∫
Ω

∇(u1 − u2) · ∇v dx+

∫
Ω

(u2
1 − u2

2)v dx

+

∫
Ω

(u1q1 − u2q2)v dx−
∫

Ω

a(u1 − u2)v dx = 0. (4.24)

Now, we set u = u1 − u2 and take v = u. We obtain∫
Ω

u′u dx+

∫
Ω

|∇u|2 dx+

∫
Ω

u2(u1 + u2) dx

+

∫
Ω

[(q1 − q2)u1 + q2u]u dx−
∫

Ω

au2 dx = 0. (4.25)

We can rewrite this as∫
Ω

u′u dx+

∫
Ω

|∇u|2 + u2 dx+

∫
Ω

u2(u1 + u2) dx+

∫
Ω

q2u
2 dx

= −
∫

Ω

(q1 − q2)u1u dx+

∫
Ω

(a+ 1)u2 dx. (4.26)

Next, we apply Young’s inequality on the right hand side and obtain∫
Ω

u′u dx+

∫
Ω

|∇u|2 + u2 dx+

∫
Ω

u2(u1 + u2) dx+

∫
Ω

q2u
2 dx

≤
‖u1‖L∞(Q)

2︸ ︷︷ ︸
=:A

∫
Ω

(q1 − q2)2 dx+

[‖u1‖L∞(Q)

2
+ ‖a+ 1‖L∞(Ω)

]
︸ ︷︷ ︸

=:B

∫
Ω

u2 dx. (4.27)

Now, we integrate from 0 to t, and use ∂t(u2/2) = u′u in combination with u(0) =
u1(0)− u2(0) = 0. This yields

∫
Ω

u(t)2 dx+

∫ t

0

∫
Ω

|∇u|2 + u2 dx dt+

∫ t

0

∫
Ω

u2(u1 + u2) dx dt

+

∫ t

0

∫
Ω

q2u
2 dx dt ≤ A

∫ t

0

∫
Ω

(q1 − q2)2 dx dt+B

∫ t

0

∫
Ω

u2 dx dt. (4.28)
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From this we deduce, by positivity of the terms on the left hand side, that∫
Ω

u(t)2 dx ≤ A
∫ t

0

∫
Ω

(q1 − q2)2 dx dt+B

∫ t

0

∫
Ω

u2 dx dt. (4.29)

By applying Gronwall’s inequality we get∫
Ω

u(t)2 dx ≤ A‖q1 − q2‖2L2(Q)

(
1 +BteBt

)
. (4.30)

By extending the integration to end time T we conclude that for some constantC1 we have

max
0≤t≤T

‖u(t)‖2L2(Ω) ≤ C1‖q1 − q2‖2L2(Q). (4.31)

Now we are ready to prove that the desired stability estimate holds. We begin by rewriting
(4.24) as∫

Ω

utv dx+

∫
Ω

∇u · ∇v dx

=

∫
Ω

[a− q2 − (u1 + u2)]uv dx−
∫

Ω

u1(q1 − q2)v dx. (4.32)

Next, we would like choose v = ut as our test function. Note here that the following
derivation is then only formal, since we are using a test function which does not belong to
H1(Ω). However, the proof can be made rigorous by the use of difference quotients. See
Kačur [11] for an illustration of this. In this work we continue with the formal estimate.

The choice v = ut gives∫
Ω

u2
t dx+

∫
Ω

∇u · ∇ut dx =

∫
Ω

[a− q2 − (u1 + u2)]uut dx

−
∫

Ω

u1(q1 − q2)ut dx

≤ 1

2

∫
Ω

[a− q2 − (u1 + u2)]
2
u2 dx+

1

2

∫
Ω

u2
t dx

+
1

2

∫
Ω

u2
1(q1 − q2)2 dx+

1

2

∫
Ω

u2
t dx

≤
‖a− q2 − (u1 + u2)‖2L∞(Q)

2︸ ︷︷ ︸
=:A

∫
Ω

u2 dx

+
1

2

∫
Ω

u2
t dx

+
‖u1‖2L∞(Q)

2︸ ︷︷ ︸
=:B

∫
Ω

(q1 − q2)2 dx+
1

2

∫
Ω

u2
t dx,

(4.33)

where we have used Young’s inequality. Thus, we have∫
Ω

∇u · ∇ut dx ≤ A
∫

Ω

u2 dx+B

∫
Ω

(q1 − q2)2 dx. (4.34)
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Noting that ∂t(|∇u|2/2) = ∇u · ∇ut, we integrate in time to get∫
Ω

|∇u(t)|2 dx ≤ 2A

∫ t

0

∫
Ω

u2 dx ds+ 2B

∫ t

0

∫
Ω

(q1 − q2)2 dx ds, (4.35)

since ∇u(0) = 0 due to u(0) = 0. By applying the result (4.31) we obtain that for some
constant C̃ we have

max
0≤t≤T

‖∇u‖2L2(Ω)2 ≤ C̃‖q1 − q2‖2L2(Q). (4.36)

Combining this with (4.31) we get

‖u‖L∞(0,T ;H1(Ω)) ≤ C‖q1 − q2‖L2(Q), (4.37)

for some constant C.
Finally, we have for some constant Ĉ that

‖u‖4L4(Q) =

∫ T

0

‖u‖4L4(Ω) dt

≤ Ĉ
∫ T

0

‖u‖4H1(Ω) dt

≤ ĈT‖u‖4L∞(0,T ;H1(Ω))

≤ C̄‖q1 − q2‖4L2(Q),

(4.38)

due to the continuous embedding of H1(Ω) into L4(Ω) [12].

4.2.2 Differentiability of the Solution Operator

With the stability result at hand we are ready to establish differentiability of the solution
operator.

Theorem 4.2.2. The solution operator defined in (4.1) is Fréchet differentiable. Denote
its derivative at a point q in a direction h by y = S′(q)h. Then y solves the linearized
state equation

yt −∆y + 2uy + hu+ qy − ay = 0 in (0, T )× Ω,

∇y · n = 0 on (0, T )× ∂Ω, (4.39)
y(x, 0) = 0 in Ω.

Proof. The weak form of (4.39) is given by∫
Ω

ytv dx+

∫
∇y · ∇v dx+

∫
Ω

(2uy + hu+ qy − ay) v dx = 0. (4.40)

25



Chapter 4. The Control Problem

Now, let uh = S(q + h) and u = S(q). Subtracting the weak equations for u and y from
the weak equation for uh gives

∫
Ω

(uht −ut−yt)v dx+

∫
Ω

∇(uh−u−y)·∇v dx+

∫
Ω

(
(uh)2 + quh + huh − auh

)
v dx

−
∫

Ω

(
u2 + qu− au

)
v dx−

∫
Ω

(2uy + hu+ qy − ay) v dx = 0. (4.41)

Setting p = uh − u− y we get

∫
Ω

ptv dx+

∫
Ω

∇p · ∇v dx+

∫
Ω

[
(uh)2 − u2 − 2uy

]
v dx

+

∫
Ω

[
(q + h)uh − qu− qy − hu

]
v dx−

∫
Ω

apv dx = 0. (4.42)

Now, let f(u) = u2. Then, by Taylor’s theorem we have

(uh)2 − u2 − 2uy = f(uh)− f(u)− f ′(u)y

= f(u) + f ′(u+ ξ(uh − u))(uh − u)− f(u)− f ′(u)y,
(4.43)

for some 0 < ξ < 1. Using that y = uh − u− p we obtain

(uh)2 − u2 − 2uy =
[
f ′(u+ ξ(uh − u))− f ′(u)

]
(uh − u) + f ′(u)p

= 2ξ(uh − u)2 + 2up
(4.44)

Inserting this into (4.42) and using y = uh − u− p again we obtain

∫
Ω

ptv dx+

∫
Ω

∇p · ∇v dx+ 2

∫
Ω

upv dx+ 2ξ

∫
Ω

(uh − u)2v dx

+

∫
Ω

[
qp+ h(uh − u)

]
v dx−

∫
Ω

apv dx = 0. (4.45)

We now take v = p as our test function. This yields

∫
Ω

ptp dx+

∫
Ω

|∇p|2 + p2 dx+ 2

∫
Ω

up2 dx+

∫
Ω

qp2 dx

= −2ξ

∫
Ω

(uh − u)2p dx−
∫

Ω

h(uh − u)p dx+

∫
Ω

(a+ 1)p2 dx, (4.46)

where we have added an extra quadratic term on both sides. For the right hand side we
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have

− 2ξ

∫
Ω

(uh − u)2p dx−
∫

Ω

h(uh − u)p dx

∫
Ω

(a+ 1)p2 dx

≤ ξ
∫

Ω

(uh − u)4 dx+ ξ

∫
Ω

p2 dx+
1

2

∫
Ω

h2(uh − u)2 dx

+
1

2

∫
Ω

p2 dx+ ‖a+ 1‖L∞(Ω)

∫
Ω

p2 dx

=

[
ξ +

1

2
+ ‖a+ 1‖L∞(Ω)

]
‖p‖2L2(Ω)

+ ξ‖uh − u‖4L4(Ω) dx+
1

2
‖h‖2L4(Ω)‖u

h − u‖2L4(Ω) (4.47)

By nonnegativity of all terms on the left hand side in (4.46) except for the first, we deduce∫
Ω

ptp dx ≤ C1‖p‖2L2(Ω) + C2‖uh − u‖4L4(Ω) + C3‖h‖2L4(Ω)‖u
h − u‖2L4(Ω), (4.48)

for appropriate constants C1, C2, C3. Note that ∂t(p2/2) = ptp and that p(0) = uh(0) −
u(0)− y(0) = u0 − u0 − 0 = 0. Consequently, by integrating from 0 to t we obtain

‖p(t)‖2L2(Ω) ≤ C1

∫ t

0

‖p‖2L2(Ω) dt+ C2

∫ t

0

‖uh − u‖4L4(Ω) dt

+ C3

∫ t

0

‖h‖2L4(Ω)‖u
h − u‖2L4(Ω) dt

≤ C1

∫ t

0

‖p‖2L2(Ω) dt+ C2‖uh − u‖4L4(0,T ;L4(Ω))

+ C3‖h‖2L4(Q)‖u
h − u‖2L4(Q).

(4.49)

Now, we apply Gronwall’s inequality to find that for some constant Ĉ we have

max
0<t<T

‖p(t)‖2L2(Ω) ≤ Ĉ
(
‖uh − u‖4L4(Q) + ‖h‖2L4(Q)‖u

h − u‖2L4(Q)

)
. (4.50)

We now note that we have
‖h‖L4(Q) ≤ A‖h‖L∞(Q), (4.51)

for some constant A. From theorem 4.2.2 we get

‖uh − u‖L4(Q) ≤ B‖h‖L2(Q) ≤ B̄‖h‖L∞(Q), (4.52)

for constants B and B̄.
Using (4.51) and (4.52), we get by using (4.50) that

‖p‖L∞(0,T ;L2(Ω)) = o
(
‖h‖L∞(Q)

)
. (4.53)
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To obtain the next bound we return to (4.46) where we integrate over the time domain.
By (4.46) and (4.47), we deduce that∫ T

0

‖p‖2H1(Ω) ≤ C1

∫ t

0

‖p‖2L2(Ω) dt+ C2‖uh − u‖4L4(Q)

+ C3‖h‖2L4(Q)‖u
h − u‖2L4(Q).

(4.54)

Using (4.51), (4.52) and (4.53), we infer that

‖p‖L2(0,T ;H1(Ω)) = o
(
‖h‖L∞(Q)

)
. (4.55)

For the final bound let v be any function in H1(Ω) with ‖v‖H1(Ω) ≤ 1. By (4.45) we
have∣∣∣∣∫

Ω

ptv dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

∇p · ∇v dx
∣∣∣∣+ 2

∣∣∣∣∫
Ω

upv dx

∣∣∣∣+ 2ξ

∣∣∣∣∫
Ω

(uh − u)2v dx

∣∣∣∣
+

∣∣∣∣∫
Ω

apv dx

∣∣∣∣+

∣∣∣∣∫
Ω

qpv dx

∣∣∣∣+

∣∣∣∣∫
Ω

h(uh − u)v dx

∣∣∣∣
≤ ‖∇p‖L2(Ω)‖∇v‖L2(Ω) + 2‖u‖L∞(Q)‖p‖L2(Ω)‖v‖L2(Ω)

+ 2ξ‖uh − u‖2L4(Ω)‖v‖L2(Ω) + ‖a‖L∞(Ω)‖p‖L2(Ω)‖v‖L2(Ω)

+ ‖q‖L∞(Q)‖p‖L2(Ω)‖v‖L2(Ω) + ‖h(uh − u)‖L2(Ω)‖v‖L2(Ω)

≤ ‖p‖H1(Ω) + 2‖u‖L∞(Q)‖p‖H1(Ω)

+ 2ξ‖uh − u‖2L4(Ω) + ‖a‖L∞(Ω)‖p‖H1(Ω)

+ ‖q‖L∞(Q)‖p‖H1(Ω) + ‖h‖L4(Ω)‖uh − u‖L4(Ω),

(4.56)

where we have used the Hölder inequality. Thus, for some constant C̃ it must hold that

‖pt‖2H−1(Ω) ≤ C̃
(
‖p‖2H1(Ω) + ‖uh − u‖4L4(Ω) + ‖h‖2L4(Ω)‖u

h − u‖2L4(Ω)

)
. (4.57)

Integrating in time gives

‖pt‖2L2(0,T ;H−1(Ω)) ≤ C̃
(
‖p‖2L2(0,T ;H1(Ω)) + ‖uh − u‖4L4(Q)

+

∫ T

0

‖h‖2L4(Ω)‖(u
h − u)‖2L4(Ω) dt

)
≤ C̃

(
‖p‖2L2(0,T ;H1(Ω)) + ‖uh − u‖4L4(Q)

+ ‖h‖2L4(Q)‖u
h − u‖2L4(Q)

)
.

(4.58)

By (4.51), (4.52) and (4.55) we conclude that

‖pt‖L2(0,T ;H−1(Ω)) = o
(
‖h‖L∞(Q)

)
. (4.59)

Thus, it holds that
‖p‖W (0,T ) = o

(
‖h‖L∞(Q)

)
, (4.60)

and so the definition of Fréchet differentiability is satisfied.
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4.3 Derivation of First Order Necessary Optimality Con-
ditions

We need to be able to characterize a local optimum for the control problem when solving it
numerically. In this section we will derive a fist order optimality system using the standard
Lagrangian technique. To this end, we define the Lagrangian function as

L(u, p, q) = J(u, q)−
∫ T

0

∫
Ω

utp dx dt−
∫ T

0

∫
Ω

∇u · ∇p dx dt

−
∫ T

0

∫
Ω

(
u2 − au

)
p dx dt−

∫ T

0

∫
Ω

qup dx dt

=

∫ T

0

e−ρt
∫

Ω

q(r − u) dx dt− λ
∫

Ω

u(T ) dx+
α

2

∫ T

0

∫
Ω

q2 dx dt

−
∫ T

0

∫
Ω

utp dx dt−
∫ T

0

∫
Ω

∇u · ∇p dx dt

−
∫ T

0

∫
Ω

(
u2 − au

)
p dx dt−

∫ T

0

∫
Ω

qup dx dt

(4.61)

Here we have integrated over the time domain in the weak form (2.2), and subtracted the
result from the cost functional. We will obtain the optimality system by taking Fréchet
derivatives of the Lagrangian. We know that we can do this thanks to theorem 4.2.2.

To obtain the weak form of the adjoint equation, we differentiate the Lagrangian with
respect to the state u in a direction h, and set this equal to zero. Doing this yields

Lu(u, p, q)h = −
∫ T

0

∫
Ω

e−ρtqh dx dt− λ
∫

Ω

h(T ) dx−
∫ T

0

∫
Ω

htp dx dt

−
∫ T

0

∫
Ω

∇h · ∇p dx dt−
∫ T

0

∫
Ω

(2uhp− ahp) dx dt

−
∫ T

0

∫
Ω

qhp dx dt

=

∫ T

0

∫
Ω

h
[
−qe−ρt + pt + ∆p− 2up+ ap− qp

]
dx dt

+

∫
Ω

h(x, T ) [−λ− p(x, T )] dx dt

−
∫ T

0

∫
∂Ω

h
∂p

∂ν
dx dt

= 0,

(4.62)

where we have used integration by parts and assumed h(x, 0) = 0. From this we deduce
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the strong form of the adjoint equation

−pt −∆p+ (2u− a+ q) p = −qe−ρt in (0, T )× Ω,

∇p · n = 0 on (0, T )× ∂Ω, (4.63)
p(x, T ) = −λ in Ω,

where p is the adjoint variable. Using a similar approach as the one we used for the state
equation it is possible to show that the adjoint equation has a unique solution p ∈W (0, T ).
This proof is omitted here.

Next, we derive the variational inequality by taking the derivative of the Lagrangian
with respect to the control q in a direction h We obtain

Lq(u, p, q)h =

∫ T

0

∫
Ω

e−ρt (r − u)h dx dt+ α

∫ T

0

∫
Ω

qh dx dt

−
∫ T

0

∫
Ω

hup dx dt

=

∫ T

0

∫
Ω

h
[
e−ρt (r − u) + (αq − up)

]
dx dt.

(4.64)

Let h = q − q̄, and (ū, p̄, q̄) be a solution triple to the control problem. We then infer that
the variational inequality reads∫ T

0

∫
Ω

(q − q̄)
[
e−ρt (r − ū) + (αq̄ − ūp̄)

]
dx dt ≥ 0, ∀q ∈ Qad. (4.65)

Furthermore, we note that the gradient of the reduced cost functional can be expressed as

j′(q) = e−ρt (r − u) + (αq − up) . (4.66)

In summary, for the control problem (2.7) a first order necessary optimality condi-
tion for a solution triple (ū, p̄, q̄) is given by the variational inequality (4.65), where the
variables solve the state equation (2.1) as well as the adjoint equation (4.63).
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Chapter 5
Numerical Simulations

In this chapter we present a numerical method to solve the weak equation (2.2) using
Rothe’s method. We implement the method using the FEniCS library for Python. Specif-
ically, we have used FEniCS version 1.5, which is presented in Alnæs et al. [1]. An
extensive introduction to the FEniCS library can be found in Logg et al. [14]. For simplic-
ity we have taken the domain Ω to be the unit square in the numerical simulations. Some
examples of solutions to the state equation are presented.

Next, we describe how we have discretized the cost functional (2.5). This is also done
with the help of functions available in the FEniCS library. We then present the projected
gradient method, which is used to solve the control problem (2.7) numerically. We end
by showing some of the results we have obtained using these methods, and illustrate how
they could be useful in designing marine policy.

5.1 Discretization of the State Equation
In order to solve the state equation numerically we have chosen to follow the horizontal
method of lines (also known as Rothe’s method) [11], in which we begin by discretizing
the time variable. This yields a series of elliptic problems, which we can solve using the
finite element method. The reason we have chosen this method over the vertical method of
lines, outlined in Knabner and Angermann [13], is due to ease of implementation FEniCS,
since this library makes solving the elliptic PDEs arising from the time discretization of
(2.1) quite simple. We begin by describing the discretization in time.

5.1.1 Time Discretization of the State Equation
In this work we have chosen to do the time discretization according to the Backward Euler
method. This choice of method has been made due to its simplicity and desirable stability
properties (see [16, 18]).

We divide the interval [0, T ] intoN subintervals of equal length, withN+1 equidistant
nodes {tn}Nn=0 with internodal distance ∆t = T/N . In the following we let a superscript

31



Chapter 5. Numerical Simulations

denote the time at which a quantity is measured, e.g. un = u(x, tn). When using the
Backward Euler method on an equation of the form

yt + f(t, y) = 0, (5.1)

one obtains the discretized equation

yn+1 − yn

∆t
+ f(tn+1, yn+1) = 0. (5.2)

Thus, a Backward Euler discretization of the weak equation (2.2) yields∫
Ω

un+1 − un

∆t
v dx+

∫
Ω

∇un+1 ·∇v dx+

∫
Ω

un+1
(
un+1 + qn+1 − a

)
v dx = 0. (5.3)

In order to obtain a linear equation, which is easy to solve with the FEniCS software, we
have approximated the quadratic term by

(
un+1

)2 ≈ un+1un, which is reasonable for
sufficiently large values of N . In doing so we have reduced the parabolic equation to N
linear elliptic equations of the form∫

Ω

un+1v dx+ ∆t

∫
Ω

∇un+1 · ∇v + un+1
(
un + qn+1 − a

)
v dx =

∫
Ω

unv dx, (5.4)

where u0 = u0(x). In the next section we describe how to solve these equations numeri-
cally.

5.1.2 Solving the Elliptic Equations
The functions un+1 now depend only on the spatial variable. For simplicity we will write
u := un+1 and consider functions un from previous time steps to be known. We want u ∈
H1(Ω), but in the numerical implementation we will have to look for a finite dimensional
approximation. Let uh be an approximation of u, lying in a finite dimensional space Xh

with Xh ⊂ H1(Ω). In order to describe such a solution we begin by specifying Xh. Let
{ϕk}∞k=1 be a basis for H1(Ω). Then we define

Xh :=

{
v ∈ H1(Ω)

∣∣∣v =

M∑
i=1

vi(t)ϕi(x)

}
, (5.5)

for some integer M . In our implementation we have taken the functions {ϕk}Mk=1 to be
nodal polynomial basis functions of degree one, on triangular elements in the unit square.
We write

uh =

M∑
i=1

uiϕi(x), (5.6)

for coefficients ui. As test function we choose

vh =

M∑
i=1

ϕi(x). (5.7)
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Inserting this into (5.4) gives∑
i,j

ui

∫
Ω

ϕiϕj dx+ ∆t
∑
i,j

ui

∫
Ω

∇ϕi · ∇ϕj +
(
un + qn+1 − a

)
ϕiϕj dx

=
∑
j

∫
Ω

unϕj dx.

(5.8)

Define now the mass matrix M, the stiffness matrix A, the matrix Z as well as the load
vector F as

Mi,j =

∫
Ω

ϕiϕj dx, Ai,j =

∫
Ω

∇ϕi · ∇ϕj dx, (5.9)

Zi,j =

∫
Ω

(
un + qn+1 − a

)
ϕiϕj dx, Fi =

∫
Ω

unϕi dx. (5.10)

We can now write (5.8) as

[M + ∆t (A + Z)]u = F , (5.11)

where u = [u1, . . . , uM ]T . This is a linear system which can be solved easily using a
range of well known methods. The implementation of this, as well as the computation of
M, A, Z and F , is done by FEniCS.

In the following subsections we present some results obtained by solving the state
equation using this method. Each example presents a different scenario, which can be
interpreted to represent some real world situation. In all cases the domain has been taken
to be the unit square in two dimensions.

5.1.3 An Example with a Stationary Fishing Vessel
In the first simulation we have taken the initial value to be a Gaussian function with its
maximum located in the lower left corner of the domain. Specifically, we have set

u0(x) = A exp
(
−B((x1 − 0.25)2 + (x2 − 0.25)2)

)
, (5.12)

where x1 and x2 are the first and second coordinates of x, respectively. The parameters A
and B were set to be A = 1.0, B = 10.0. This indicates that the distribution of the fish
is initially centered around the point (0.25, 0.25), and other parts of the domain have very
few fish.

The function a(x) specifies the threshold for the logistic growth of the fish population.
In this example we have taken it to be the Gaussian function

a(x) = C exp
(
−D((x1 − 0.75)2 + (x2 − 0.75)2)

)
+ 0.5, (5.13)

where we set C = 1.0 and D = 20.0. A plot of this function can be seen in figure 5.1
The intention here was to simulate a case where the upper right corner of the domain has
a more favorable environment for the fish than other parts of the domain. This could for
example be due to a higher availability of food in some areas.

33



Chapter 5. Numerical Simulations

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Plot of a(x)

0.500

0.625

0.750

0.875

1.000

1.125

1.250

1.375

1.500

Figure 5.1: A plot of the logistic growth threshold a used in the first and second examples.

For this example we took the control to be the stationary Gaussian function

q(x) = E exp
(
−F ((x1 − 0.5)2 + (x2 − 0.5)2)

)
, (5.14)

with E = 1.5 and F = 50.0. A plot of this function can be seen in figure 5.2. This could
indicate the presence of a fishing fleet in the middle of the domain. Then end time was set
to be T = 1.0 in this example.

The results of this simulation can be seen in figure 5.3. We observe that the majority of
the fish biomass moves from the lower left corner of the domain to the upper right corner,
while there is hardly any fish located in the center. Clearly, there is less fish where the
fishing effort is higher. This is a type of behavior for the fish that we would expect given
the setup of this experiment.

5.1.4 An Example with a Moving Fishing Vessel
In the second example we took u0 and a to be as in (5.12) and (5.13), respectively. How-
ever, we now study the effect of a time dependent control on the fish biomass. At each
time t we still have a Gaussian control, but its center moves around the domain as the time
increases. For this simulation we chose

q(x, t) = E exp

[
− F

(
(x1 − (0.5− 0.25 sin(3.14t)))2

+ (x2 − (0.5− 0.25 cos(3.14t)))2
)]
,

(5.15)
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Figure 5.2: A plot of the stationary control used in the first example.

where E and F are as before. This could describe a fishing fleet moving clockwise on a
circular path in the domain. Again we took the end time to be T = 1.0.

The results of this simulation can be seen in figure 5.4. The bottom four panels show
how the fishing fleet moves around the domain as time passes. The top four panels show
the corresponding states. We clearly observe the combined effect of the moving fishing
fleet and the higher availability of food in the top right corner. This causes the fish to be
relocated to the area with more suitable living conditions, as determined by the growth
threshold a.

5.1.5 An Example with Two Moving Fishing Vessels
In the final example we add a second vessel to our fleet, to study a setting with more than
one vessel doing the harvest. To this end, we take the control to be the sum of two Gaussian
functions which are both time dependent. We chose the function

q(x, t) = E exp

[
− F

(
(x1 − (0.5− 0.25 sin(3.14t)))2

+ (x2 − (0.5− 0.25 cos(3.14t)))2
)]

+ E exp

[
− F

(
(x1 − (0.5 + 0.25 sin(3.14t)))2

+ (x2 − (0.5 + 0.25 cos(3.14t)))2
)]
,

(5.16)
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Figure 5.3: Plots of the solution to the state equation for the first example with a stationary control.
Solutions are shown at times t ∈ {0.0, 0.2, 0.4, 0.6}
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Figure 5.4: Plots of states and control for the second example. The top four panels show the state at
times t ∈ {0.0, 0.2, 0.4, 0.6}. The bottom four panels show the control at corresponding times.
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where, again, E and F are as before. For the initial value and the growth threshold we
chose u0(x) = 0.7 and a(x) = 10.0, and end time was set to be T = 1.0 in this example
as well.

The results can be seen in figure 5.5. The bottom four panels show the movement of
the fishing vessels as time passes. In the top four panels we clearly see their impact on
the distribution of the fish biomass. However, we note that due to a very high value of a,
the population grows rapidly in all parts of the domain. The effect of the harvest could be
increased by making q and a be closer in magnitude. This could be done by e.g. increasing
the value of E in the expression for q. The main point is, however, that as the fishing fleet
moves around the domain, the biomass is depleted in the appropriate places.

5.2 Solving the Control Problem Numerically
In this section we describe how the control problem can be solved numerically. We begin
by showing how the cost functional can be discretized. Next, we present a projected
gradient method for finding a solution to the problem (4.3).

5.2.1 Discretization of the Cost Functional
Although the cost functional is not used directly in the projected gradient method, it is
used in order to determine the step lengths for the descent. Therefore, it is necessary to be
able to compute its function values. Consequently, we need to discretize it.

We divide the time interval in the same way as we did for the state equation. The state
u is also represented in the same way as was done previously. Furthermore, the functions q
and r are for each tn, n = 0, . . . N , projected onto the finite dimensional spaceXh defined
in (5.5), i.e. these functions get represented in a similar manner as u.

We approximate the time integrals in the cost functional by a simple trapezoidal rule.
This choice was made due to simplicity of implementation. The resulting approximation
to the cost functional becomes

J(u, q) ≈ ∆t

2

N−1∑
n=0

[ ∫
Ω

(
e−ρt

n

qn (rn − un)
)
dx

+

∫
Ω

(
e−ρt

n+1

qn+1
(
rn+1 − un+1

))
dx

]
− λ

∫
Ω

uN dx+
α∆t

4

N−1∑
n=0

∫
Ω

(qn)
2

+
(
qn+1

)2
dx.

(5.17)

The spatial integrals are approximated using Gaussian quadrature. This is done with inte-
gration routines available in FEniCS.

5.2.2 A Projected Gradient Method
Since we know the gradient of the reduced cost functional (4.2), we can use a gradient
based method to solve (4.3). Because our problem has box constraints, we will use a
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Figure 5.5: Plots of states and control for the third example. The top four panels show the state at
times t ∈ {0.0, 0.2, 0.4, 0.6}. The bottom four panels show the control at corresponding times.
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projected gradient method, as outlined in De los Reyes [4]. A description of the algorithm
is given below:

Algorithm 1: Projected Gradient Method for Solving (4.3)
Result: Optimal control q̄
Initialize q0 ∈ Qad, set k = 0 ;
while Stopping criteria not met do

Compute uk as solution to the state equation (2.1);
Compute pk as solution to the adjoint equation (4.63);
Set νk = −j′(qk);
Compute step length sk based on an Armijo condition;
Set qk+1 to be the projection of qk + skνk onto Qad;
Set k = k + 1;

end

In algorithm 1 we need to specify what stopping criteria we would like to use, how to
compute the step length and how we project onto the admissible set.

Since we are likely to obtain optimal controls that lie on the boundary of the admissible
set, we cannot expect the gradient of the reduced cost functional to be zero for these
solutions. Therefore, this is not a useful stopping criterion. Instead, we will terminate
our gradient search when there is a small relative change in the value of the reduced cost
functional between two consecutive steps.

We compute the step length sk for the descent based on the Armijo condition, see e.g.
Nocedal and Wright [15]. Specifically, we start with a relatively large step size, e.g. set
sk = 1. Then we check whether the condition

j(qk + skνk) ≤ j(qk)− csk|νk|2, (5.18)

holds. Here c is some constant with c ∈ (0, 1). If it does not, we multiply sk by some
factor δ ∈ (0, 1) and check again. This is repeated until (5.18) is satisfied, or we reach a
certain number of iterations. In our implementation we set the Armijo search to end after
10 iterations.

Our control problem has box constraints. Consequently, projection onto the admissible
set is quite simple. We define the projection operator by

PQad
: L∞(Q)→ Qad, q 7→ min{qmax,max{0, q}}. (5.19)

In the implementation the projection is done component-wise. That is, for each element
in the vector representation of the function we check whether its value lies in [0, qmax] or
not. If it does not, we project it onto this interval.

In the following subsections we will present some of the results obtained using this
method.

5.2.3 An Example with High Transportation Costs
In the first simulation we set the initial value for the state to be u0(x) = 0.7. The growth
parameter was also set to be a constant, with a(x) = 0.5. In the cost functional we took
the interest rate to be ρ = 0, the sustainability constant λ = 1.4, and the regularization
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parameter α = 10−5. The function r, which describes the cost of moving around the
domain, was set to be equal to the distance from the harbor. The location of the harbor
was taken to be at the origin, i.e. we have r(x) =

√
x2

1 + x2
2. The upper bound on

the control was set to be qmax = 1.0, and we initialized the control to have the value
q0 = qmax/2 everywhere in Ω. We set the end time for this simulation to be T = 4.0.

Figure 5.6 shows the value of the objective function for different iterations of the pro-
jected gradient algorithm. It is very clear that the first iteration causes the biggest change
in the function value, while subsequent iterations only make minor adjustments. We also
note that the second iteration actually increases the function value by a small amount. This
is likely due to an unsuccessful Armijo search, which ended because the maximum num-
ber of iterations was reached. This increase in the function value is compensated for by
subsequent iterations.

The results of the simulation can be seen in figure 5.7. The three columns show, from
left to right, the plots of the state, the control and the adjoint variable at four different
times. We observe that for all the times shown we get a bang-bang control. Clearly,
the transportation cost is dominant in this example, since the control is only active in a
quarter circle centered at the harbor. The value of λ is relatively high in this example,
which emphasizes the importance of a large fish population at end time. In line with
this, we observe that the size of the region with an active control decreases with time.
Consequently, the population is still quite large after the harvesting is done.

These results can be translated into policy. One could place a No-Take Zone (NTZ)
in the region where the initial control is inactive. Ideally one would make the boundary
of this NTZ dynamic such that it at all times coveres the part of the domain where the
control is zero. The part of the domain where the control is active at maximal capacity
could be open to unrestricted harvesting. In practice, NTZs that change with time might
be difficult to enforce. An alternative could be to impose a Total Allowable Catch (TAC)
in this region, possibly splitting it into subregions with a decreasing number of catches
allowed further away from the harbor.

5.2.4 An Example with Low Transportation Costs
We chose the same initial value for the state in this example as in the previous one. How-
ever, we changed the growth parameter a from being a constant to being a Gaussian func-
tion. We set

a(x) = G exp
(
−H((x1 − 0.3)2 + (x2 − 0.4)2)

)
, (5.20)

with G = 1.4 and H = 20.0. This was done to study a situation where most of the food
was located near the point (0.3, 0.4). The parameters in the cost functional were all taken
to be the same as in the first example, except for the function r, which was changed to be
r(x) = 0.01

√
x2

1 + x2
2. Thus, in this example the harbor is located in the same point, but

the cost of moving around the domain is significantly reduced. The maximal control was
again set to be qmax = 1.0, and we initialized the control in the same way as described
earlier. The end time for this simulation was also T = 4.0.

The results from this example can be seen in figure 5.8. The layout of this figure is the
same as before. This time we do not get a bang-bang control. Rather, we get a seemingly
continuous output, and we note that the control is active in all parts of the domain. We
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Figure 5.6: A plot of the values of the objective function at different iterations of the projected
gradient algorithm.

clearly observe the effect of the reduced transportation costs. This is evident from the fact
that the control initially has its highest values in areas that lie far away from the harbor. As
time passes and the biomass is decreased in these areas, we see that the combination of less
fish and high transportation costs make it inefficient to fish in these parts of the domain.
Consequently, the highest harvesting effort is gradually shifted towards the harbor. We also
observe here that for all times the control has its lowest values in the part of the domain
where living conditions are most favorable for the fish. This suggests that a lower fishing
effort here is crucial for the conservation of the species.

Translating a continuous control into policy is not as simple as for the bang-bang con-
trol we had in the previous example. Since the control is never zero in this example, it
might not make sense to enforce NTZs. One possible solution could be to divide the do-
main into regions according to the level of the control in different areas. For example, parts
of the domain where the control is in the interval [0.37, 0.40] could form one region with a
given TAC. Another region could have controls in the interval [0.40, 0.43] and, therefore,
a higher TAC. Since the control is time dependent these regions would potentially have to
change over time. The feasibility of this would have to be evaluated by policymakers.
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Figure 5.7: Plots of the results from the first example. The left column shows the state, the middle
column shows the control and the right column shows the adjoint state. Each variable is plotted at
times t ∈ {0.0, 1.0, 2.0, 3.0}.
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Figure 5.8: Plots of the results from the first example. The left column shows the state, the middle
column shows the control and the right column shows the adjoint state. Each variable is plotted at
times t ∈ {0.0, 1.0, 3.0, 4.0}.
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6.1 Discussion

In this work we have studied a control problem intended to describe fishing strategies
in space and time. The cost functional related to this problem was designed such that a
solution to the problem would be an optimal fishing strategy. Here, we mean optimal in the
sense that one would get a large catch, while reducing costs and ensuring that the resource
is not depleted when the harvesting is terminated.

The control problem is governed by a non-linear parabolic partial differential equa-
tion. In order to facilitate the analysis of this equation we introduced an auxiliary state
equation. After modifying the auxiliary equation with a cut-off function, we were able to
show the existence of a unique solution to this problem. We also showed that a solution
to the auxiliary equation is nonnegative. After a simple transformation we were able to
demonstrate that the same results hold for the state equation. In turn, this allowed us to
define a solution operator, which we subsequently proved to be Fréchet differentiable.

After showing that the solution operator was well defined, we were able to restate the
optimal control problem in terms of a reduced cost functional. We then established the
existence of a solution to the control problem. The proof of this was carried out using a
direct approach. We also derived a first order optimality system by using the Lagrangian
technique. This system serves as a necessary optimality condition for a solution to the
control problem.

Finally, we described how both the state equation and the control problem can be
solved numerically. For the state equation we chose to use Rothe’s method. Following this
approach, we first did a semidiscretization in time, which resulted in a series of elliptic
problems. These were solved using standard finite element techniques. A projected gradi-
ent method was used to solve the optimal control problem. We provided some examples
for solutions to both the state equation and the control problem in a variety of different
settings. The results for the control problem were given a possible interpretation in terms
of feasible policies for the regulation of marine fisheries. We discovered that giving such
an interpretation was rather straightforward in cases where the output was a bang-bang
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control. However, we learned that a continuous control does not as easily translate directly
into policy. Still, it might be used as a guideline even in these cases.

6.2 Ideas for Further Work
An interesting next step for research in this area would be to incorporate real world data
into the model. If one could obtain an estimate for a diffusion coefficient, as well as an es-
timate for the growth rate and carrying capacity of a fish population, one could potentially
expand on this model to represent a real world setting.

In the theoretical analysis we allowed our spatial domain to be of either two or three
dimensions. Therefore, second possible extension of this work would be to expand the
numerical simulations to include three spatial dimensions. This might provide a more re-
alistic picture for how the fish moves around the ocean, and could perhaps make it possible
to capture differences in movement of the biomass in both shallow and deep waters.
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