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Abstract

We present 3 schemes using lattice-based zero-knowledge, using the difficulty of the Ap-
proximate Shortest Vector Problem (SVPγ), and the Short Integer Solution Problem (SIS).
The first scheme is an identification scheme, proving knowledge of a secret key ŝ. The
second scheme is a signature scheme obtained by applying the Fiat-Shamir transform on
the identification scheme to create a non-interactive zero-knowledge scheme. The last
scheme is an argument of knowledge for the satisfiability of an arithmetic circuit. We
also present various theory necessary for these algorithms to work, as well as examples
illustrating what we are trying to accomplish in some of the more complicated parts of the
constructions.
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Chapter 1
Introduction

Zero-knowledge has been a hot topic in cryptography in recent years. It’s a very im-
portant part of many cryptographic protocols, to ensure that the protocol doesn’t leak
information other than the information that the sender intended to give to the receiver.
A zero-knowledge argument can be used to convince a verifier that the prover possesses
some specific information without giving any information to the verifier except what they
already knew. For example, given a hash function h(m) = M , we could construct a
zero-knowledge argument for the knowledge of m. That is, the prover could convince the
verifier that he possesses m such that h(m) = M , but without revealing any information
on m except for the fact that h(m) = M (which the verifier already knew).

Lattice-based cryptography is an important part of cryptography due to its resistance
to attacks from quantum computers. In this thesis we will present 3 lattice-based zero-
knowledge schemes, 2 of which are fairly similar and simple, and one that is more com-
plicated. The construction of the identification scheme and signature scheme follow the
work done in [4]. The more complicated scheme for creating a zero-knowledge argument
for the satisfiability of an arithmetic circuit follows the work done in [2].

The identification scheme and signature scheme both use the approximate shortest
vector problem SVPγ as their underlying hard problem. For these algorithms, we use a
public hash function h(s) = S for some matrix which will be detailed later. Given only
S it will be difficult to find s. The scheme then uses a random y s. t. h(y) = Y and a
random c. The verifier will be provided z = sc+ y, the public value S, and Y transmitted
by the prover. By the homomorphic properties of the hash function, the verifier can then
check that h(z) = h(sc + y) = Sc + Y which works given that we choose the random
c, y appropriately.

The arithmetic circuit satisfiability problem uses the properties of a lattice-based com-
mitment scheme to compress commitments to n elements of Zp into r elements of Zq ,
where n >> r and p << q. As a result of a property of the SIS-problem, we can let n get
very large compared to r, resulting in the commitments having sublinear communication
costs.

We first reduce the satisfiability of the arithmetic circuit to a set of multiplication con-
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straints and a set of linear constraints in 3 sets of variables. Then we encode these con-
straints into polynomials. Then we finally create an argument of knowledge using these
polynomials, and the compressing commitment scheme. This results in O(

√
N logN)

communication cost for an arithmetic circuit with N multiplication gates.
We first present theory necessary for these schemes in Chapter 2. Then in chapter 3

we detail the identification scheme and signature scheme. Chapter 4 will explain how we
can transform an arithmetic circuit into multiplication constraints and linear constraints in
3 sets of variables, and then use those to create equivalent polynomials. In chapter 5 we
detail the argument of knowledge for the arithmetic circuit. Finally, we end the thesis with
a few concluding remarks in chapter 6.
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Chapter 2
Algebraic and Cryptographic
Theory

2.1 Notation
This thesis contains a large amount of variables, and this makes it hard to create a consis-
tent notation scheme without constantly running out of reasonable letters to use. However,
in general we will be using bold lowercase letters to denote vectors, bold lowercase letters
with a hat to denote vectors of vectors, uppercase letters (both with and without a hat) to
denote matrices, and bold uppercase letters to denote the output of hash function or com-
mitment scheme in use. Uppercase letters will also be used to denote indeterminates in
equations. Additionally, greek letters will be used in situations where they make sense (σ
to denote variance, etc.). They will also be used in conjunction with similar letters in cases
where we need to perform a function on two variables. So given that we have a matrix
A that we wish to send into a commitment scheme taking two matrices as parameters, we
might use α to denote the other matrix.

2.2 Provable Security
Security is the most important performance metric of any cryptographic system. As such,
we would like to know with reasonable confidence that the system is not easily broken.
The most obvious way to do this is to perform cryptanalysis on the system, and if we are
unable to break it then it is more likely to be secure. The downside of this approach is that
we need to spend a lot of time analysing each system, and with the large amount of new
systems that are being created we can only spend so much time on each of them before
declaring them to be ”secure”. On the other hand, an adversary can focus all his effort into
a single system. This means that this adversary can spend more time trying to break the
system than the time spent cryptanalysing to ensure it is secure.

The provable security approach is somewhat different. Here most of the time is spent
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cryptanalysing only a few problems. Then for each new system we prove that a suc-
cessful attack on the system can be used to solve one of these problems. Given that the
number of these problems remains relatively low means that we can spend quite a bit of
time analysing each of them. And since we’ve spent a lot of time on each problem, the
probability of an exploitable flaw existing is much smaller.

The downside of this approach is that we need to prove that a successful attack on the
system can be used to create a successful attack on the underlying problem. This can be
quite difficult, even for simple systems. Furthermore, it is very easy to make mistakes
during these proofs, so the proofs themselves need to be thoroughly checked, which can
be time-consuming.

2.3 Lattices
An integer lattice Λ is a subgroup of Zn. Given any set v1,v2, ...,vn of vectors that form
a basis in Zn, the lattice generated by this basis is all linear combinations of the vectors
with integer coefficients. That is:

Λ =

[
n∑
i=1

aivi|ai ∈ Z

]

For the first two schemes, we will primarily be working with lattices that correspond
to ideals in the ring Zp[x]/〈xn + 1〉, where p is some odd integer, and n typically will
be a power of 2. In the last scheme, the lattices are in either the ring Zq or in the ring
Zq[x]/〈xn + 1〉 where q is some odd integer and n is even. In the case of the lattices
being Zp[x]/〈xn + 1〉 we can represent the polynomials in the ring as vectors, where the
vector (v0, v1, ..., vn−1) corresponds to the polynomial v0 + v1x + ... + vn−1x

n−1.
Furthermore, when we refer to multiplication of vectors in the first two schemes, what we
actually mean is multiplication of the polynomials that those vectors represent. We can
then get an element in a lattice of dimension m by choosing m such polynomials, and
having the lattice element be the vector of vectors representing these polynomials.

In the schemes described later one might wonder where these lattices appear, as it
isn’t immediately obvious. In fact, lattices aren’t necessary to do any of the calculations
in the schemes. The reason why they are important is that there are certain lattice-based
problems that are quite difficult to solve. Furthermore, the schemes are constructed in such
a way that breaking them are equivalent to solving the difficult lattice-based problems. The
lattice-based problems we will be using in this thesis is the approximate Shortest Vector
Problem SVPγ) for the first two schemes and the Short Integer Solution (SIS) for the last
scheme.

Approximate Shortest Vector Problem

The Shortest Vector Problem (SVP) asks us to find the vector in Λ with the lowest infinity
norm. The SVPγ is a variation of this problem where we attempt to find a vector that
is at most γ times as large as the shortest vector. That is, if we have that ||w0||∞ ≤
||w||∞∀w ∈ Λ then v is a solution to the SVPγ if γ||v||∞ ≤ ||w0||∞. It is important to
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note that while a lot is known about SVP for lattices in general, much less is known for
SVP when using ideal lattices . Still, the best available algorithms for solving SVP do not
appear to be able to take advantage of the usage of ideal lattices instead of general lattices.
Thus we still expect this problem to be difficult to solve.

Short Integer Solution

The Short Integer Solution problem (SIS) asks us, given some matrix A ∈ Zr×nq to find a
short vector x ∈ Zr such that Ax = 0 (mod q). The difficulty of this problem depends
on what we define as a ”short” vector. For x to be short it has to satisfy ||x|| < β for some
β. If β ≥ q we can use x = (q, 0, ..., 0) which is a trivial solution to the problem. Thus
the problem is only interesting if β < q. This problem has been shown to be secure in the
average case if SVPγ is hard in a worst case scenario by Ajtai [1] in 1996. Furthermore, if
n is large, it was shown in [7] that one should solve SIS for a submatrix in Zr×n′ , where
n′ =

√
r log q/ log δ for a constant δ. The best available algorithms are then able to find a

solution s of length approximately min(q, 2
√
r log q log δ).

2.4 Lattice-Based Collision-Resistant Hash Function

We will be using the constructions from [4] for our collision-resistant hash function, which
we will use in the schemes presented in chapter 3. Let R be the ring Zp[x]/〈xn + 1〉. We
are interested in mapping values from a subset ofRm toR. To create a hash function h we
choose a set ofm elements inR, denoted by â = (a1,a2, ...,am),ai ∈ R. The hash value
can then be calculated as h(x̂) = â · x̂ = a1x1 +a2x2 + ...+amxm (where the addition
and multiplication is perform inR). It can be shown that h(ŝc+ ŷ) = h(ŝ)c+h(ŷ) holds
for this hash function, which we will utilize in the schemes in chapter 3.

If we then restrict the valid input values to the hash function to D, where D ⊆ R, the
collision problem is then to find two distinct elements in D, ẑ and ẑ′, such that h(z) =
h(z′).

An important property of this hash function is that it is collision-resistant, which we
define as follows:

Definition 1. Let h be a hash function as defined above. Given D ⊆ R, the collision
problem Col(h,D) asks us to find two distinct elements ẑ and ẑ′, such that h(ẑ) = h(ẑ′)

In [6] it was shown that solving this problem, given restrictions on D, m and R, is as
hard as solving SVPγ for R, given by the following theorem:

Theorem 1. Let R = Zp[x]/〈xn + 1〉 be a ring where n is any power of 2, and define
D = y ∈ R : ||y||∞ ≤ d for some integer d. Let h be a hash function as defined above
such that m > log(p)

log(2d) and p ≥ 4dmn1.5 log(n). If there is a polynomial-time algorithm
that solves the Col(h,D) problem for a random h with some non-negligible probability,
then there is a polynomial-time algorithm that can solve SVPγ(Γ) for every (xn+1)-cyclic
lattice Γ, where γ = 16dmn log2(n).
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2.5 Lattice-Based Commitment Schemes
A commitment scheme is a scheme where one party commits to specific secret values,
and gains the option to later reveal those values. The other party would then be able
to verify that the revealed value was indeed the value that was commited to. The two
main properties of a commitment scheme are hiding and binding. Hiding means that the
receiving party cannot find the secret values given only the commitment, and binding
means that the sender cannot later change the value they commited to.

Typically this is done by using some collision-resistant one-way function f , that takes
the message m and something random r as input, and outputs a commitment M . Since
f is a one-way function it is difficult to find m given only M , thus satisfying the hiding
property. Furthermore, since f is collision resistant it is difficult to find m′, r′ such that
f(m, r) = f(m′, r′) = M . Then, given ck the receiver knows that a sender that can
change the message can also find a collision. Since the function is collision-resistant we
have satisfied the binding property.

This means that we can make a commitment scheme given a collision-resistant one
way function. In this thesis we will be utilizing the short integer solution problem to create
this function. Defining f(s) = As = S for some random matrix A, we note that a s such
that ||s||∞ is small would be a solution to the SIS-problem. Since this problem is very
difficult, we have that the function is both collision resistant and one-way. As explained
earlier in this chapter, given A ∈ Zr×nq the best currently available algorithms can find S

with ||s||∞ ≈ min(q, 2r log q log δ).
We can then use this function to create a commitment scheme. Let A1 be a matrix

in Zr×nq and A2 be a matrix in Zr×2rlogpqq . Given that we have a message m that is

a vector in Znp , and generate a random vector r ∈ Z2r logp q
p . Given that p << q, we

have that ||m||∞ ≤ p and ||r||∞ ≤ p are ”small”, and so we can send a commitment
S = A1m + A2r to some receiver. If we later were to reveal (m, r) to the receiver, the
receiver would be able to verify that S = A1m+A2r. If the sender is then somehow able
to change his message that would mean that the sender was able to find [m′, r′] such that
f([m′, r′]) = S. In that case we have that f([m−m′, r− r′]) = 0, so [m−m′, r− r′]
would be a short integer solution for the matrix A = [A1, A2]. Since this is a difficult
problem it is very unlikely that the sender can find such a pair [m′, r′].

2.6 Interactive zero-knowledge
In cryptographic schemes it can often be necessary for one party to prove that they possess
specific knowledge, such as knowing the value of a secret key. However, if you have to tell
other parties the value of the secret key then it wouldn’t remain a secret. So instead, the
goal has to be to somehow convince the other party that you possess the secret key without
giving them any information that would allow them to figure out what the secret key is. To
do this we typically depend on a function where the secret key is an input and the output
of the function is the public key. Then we can structure an interactive proof of knowledge
from a prover to a verifier by using the following steps:

1. The secret key is s and the public key is S = f(s). The prover wants to prove that
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they know the value s.

2. The prover picks a random value y, computes Y = f(y) and sends Y to the verifier.

3. The verifier picks a random value c, also referred to as a challenge and sends it back
to the prover.

4. The prover, knowing s and y now calculates z = sc+ y and sends z to the verifier.

5. The verifier then verifies that f(z) = Sc+ Y .

Obviously, there are some requirements to the process above. If the verifier is able to
invert the function f , then they could find the secret key by computing s = f−1(S). This
means that the function f has to be a one-way function for this to work. Additionally,
the way the verifier checks that we indeed have the secret key is checking whether or not
f(z) = Sc + Y . Since S = f(s) and Y = f(y), for this to be true, we need that our
function satisfies f(sc + y) = f(s)c + f(y). Note though that plus and multiplication
on the right side of the equtaion do not necessarily have to be plus and multiplication,
just some mathematical operations that make sense in the group in which the image of
the function resides. For example, if we were to construct this scheme using discrete
logarithms, we could have f(s) = gs = S, in which case the operations on the right hand
side would be multiplication and exponentiation instead of addition and multiplication (so
we get gz = ScY ).

2.7 Fiat-Shamir and non-interactive zero-knowledge
In zero-knowledge schemes we often desire for the schemes to be non-interactive. While
proving knowledge by interacting with some verifier is useful, it would be much more
convenient to be able to upload some proof and have anyone be able to verify this proof.
Fiat-Shamir is a technique used to transform an interactive scheme into a non-interactive
one by using a random oracle (in practice this is done with a cryptographic hash function).
The difference compared to the interactive proof is that instead of having the verifier send
some random c, we use a random oracle to give us a random c. In practice we use the hash
function to calculate some c that depends on the random value Y in the proof. This allows
the verifier to check that the generated c is correct, and also makes it more difficult for a
dishonest prover to generate a c that allows him to pretend to possess s. The steps in the
proof of knowledge with Fiat-Shamir is very similar to the interactive version, except now
the prover also has to calculate c himself as part of the proof:

1. The secret key is s and the public key is S = f(s). The prover wants to prove that
they know the value s.

2. The prover picks a random value y, computes Y = f(y).

3. Now instead of having the verifier send a random c the prover instead calculates
c = H(S,Y ), where H is a cryptographic hash function.
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4. The prover, knowing s and y now calculates z = sc + y and sends (z,Y ) to the
verifier.

5. The verifier then calculates c = H(S, Y ) and then verifies that f(z) = Sc+ Y .

In this version there is no interaction between the prover and the verifier - the prover
simply sends the pair (z,Y ) (with the value S already being known since it is the public
key of the prover), and then the verifier can check the proof. As a result anyone could
verify this proof if it were to be uploaded, while in the interactive version only the person
who sent the value c to the prover could verify the proof. The downside is that this proof
also relies on the hash function being known and trusted.

2.8 Argument of Knowledge for polynomials
In this section we will explain how to create an argument of knowledge for a polynomial
given a commitment scheme with certain homomorphic properties. A polynomial is of
the form f = c0 + c1x + c2x

2 + ...cnx
n. Thus knowledge of the polynomial simply

means knowing the coefficients c0, c1, ...cn of the polynomial. As a result of this, proving
knowledge of the coefficients is sufficient to convince a verifier that you do indeed know
the polynomial itself.

The typical process done to convince the verifier consists of the following steps:

1. The prover uses a commitment scheme to calculate commits for the coefficients, and
sends these to the verifier. Let F = (F 0,F 1, ...,F n) = (CK(c0), CK(c1), ..., CK(cn))
denote these commitments.

2. The receiver picks a random evaluation point x for the polynomial and sends it to
the prover.

3. The prover calculates the output y of the polynomial at the chosen evaluation point
and sends it to the verifier.

4. The verifier checks that CK(y) = F (x) (where F (x) is calculated by using F i as
the coefficients in the polynomial).

Obviously, for this scheme to work there are a few requirements, as it is for example not
immediately obvious that CK(y) = F (x). For this to work, we require the commitment
scheme to be homomorphic. If we chose CK such that CK(ax+ b) = CK(a)CK(x) +
CK(b) is true, then the following equation also holds:

F (x) = F 0 + F 1CK(x) + ...+ F nCK(xn)

= CK(F 0 + F 1x+ ...+ F nx
n) = CK(y)

Additionally, since CK is hard to invert it would be difficult to find y only knowing
CK(y), so the prover shouldn’t be able to calculate a y that satisfies CK(y) = F (x)
without knowing the polynomial. This gives us a scheme that allows the prover to convince
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the verifier that he possesses a polynomial. There are two other important properties we
would like to scheme to have.

The first is seemingly obvious - we have been able to convince the verifier that we know
some polynomial, but we haven’t convinced them of any properties of the polynomial. The
second issue is that the current scheme has no element of randomness, so the verifier can
potentially figure out what the polynomial is by playing the role of the prover for various
polynomials and see if he gets a match.

We will address the second issue first. The typical way to address this is to add an
element of randomness to the commitment scheme. If we generate a random polynomial
g = d0 + d1x + ...dnx

n of degree n and choose a modified commitment scheme where
we can have two input values we get the following modified scheme:

1. The prover calculates F = (CK(c0, d0), ..., CK(cn, dn)) and sends it to the veri-
fier.

2. The receiver sends a random evaluation point x to the prover.

3. The prover calculates y, y′ as the output of the two polynomials at the chosen eval-
uation point.

4. The verifier checks that CK(y, y′) = F (x)

The issue with f against a brute force attack was that if it is something simple like
f = xn + x + 1 then guessing it is far from impossible. On the other hand, guessing a
random polynomial of degree n is much more difficult, so as a result the security of f is
now guaranteed as long as g is difficult to guess (which should be the case for a randomly
generated g given a reasonably large field and/or a reasonably large n).

The last property we need from our scheme is the ability to show that our polynomial
has some specific properties. Since we have chosen a homomorphic commitment scheme
we can continue to perform operations on the commited values. We can then use this to
show that the polynomial in question has the desired properties. For example, if we wish to
prove that our polynomial f has the root r1 we could calculate h = f/(x− r1), calculate
y1 = h(x), and providing CK(y1) as well as commitments to the coefficients of h(x) to
the verifier. The verifier could then check that CK(y) = CK(y1)CK(x − r1) and that
H(x) = CK(y1). It also doesn’t necessarily have to be a root we are trying to prove -
we could demonstrate any property of the polynomial as long as the commitment scheme
preserves that property.

2.9 Aborting
In the basic schemes presented in chapter 2.5 and 2.6, we send the value z = sc + y to
the verifier. The verifier has access to the value c, so given that the underlying algebraic
structure is one where the verifier is able to invert c he would be able to access s if we
didn’t add y. This means that we need the value y to somehow protect us from leaking
any information on sc. Imagine now as an arbitrary example that 0 ≤ sc ≤ 100 and
0 ≤ y ≤ 100. Then if the value z is greater than 100, say for example 150, the verifier
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would know that since y ≤ 100 then sc ≥ 50, which leaks information on sc. One
way to combat this is to have y be much larger than sc, since then the probability of this
happening becomes much smaller. Another option is to only have y be a slightly larger
than sc, but only send z if it doesn’t reveal any information about sc. For example, if we
let 0 ≤ sc ≤ 100 and 0 ≤ y ≤ 200, this would give us 0 ≤ z ≤ 300. Now, we can
choose to abort the scheme unless 100 ≤ z ≤ 200. This way, for any value of sc, there
is exactly 1 value of y that gives the transmitted value z, which means that z doesn’t leak
any information on y. Of course, this example is very simplified, but it still illustrates the
concept behind why we will sometimes have to abort the scheme in the later constructions
to avoid leaking information on the secret key.

Non-binary aborting

In the basic example described above, for a given value we either abort or proceed, de-
pending on the value. This makes sense in the schemes that we presented in chapter 3, as
in that case we can clearly separate between values that don’t leak information values that
do. For example, taking the above example of 0 ≤ sc ≤ 100 and 0 ≤ y ≤ 200, we note
that for a random sc, any value z = sc+ y between 100 and 200 are leaks no information
on sc, but values less than 100 and greater than 200 do.

However, we wish to also be able to account for cases where the equivalent to y and
z can have the same values, but the probability distribution over these values are different
for y and z. Imagine for example that

y =

{
1 with probability 0.7

2 with probability 0.3
z =

{
1 with probability 0.5

2 with probability 0.5

This means that the distribution of z is different from that of y. To counteract this, we
can force their distribution to be the same by aborting some percentage of the time in each
case. If never abort when z is 1 and abort with probability 4

7 when z is 2, then we end up
with the distribution

z′ =


1 with probability 0.5

2 with probability 3
14

abort with probability 4
14

This means that when we send z, it has the same distribution as y. Similarly, if we had
20 different values, each with one probability for one of the distributions and another for
the other distributions, by aborting with various probabilities, we can make the probability
distributions appear to be the same one in the cases where we do not abort. The more
similar we want the probability distributions to be, the more often we will need to abort.

In the scheme presented in chapter 5 we will be using methods similar to what is de-
scribed above. To accomplish this, we will present a probability distribution and a rejection
sampling algorithm. Both are described in greater detail in [2]. Specifically, we will get
matrices S, depending on the secret and Y , which has a Gaussian distribution. Then we
wish to use aborting to make the distribution of Z = S + Y be similar to the one of Y .
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Probability Distribution for Rejection Sampling

We will be using a Gaussian distribution to create random matrices. However, the Gaus-
sian distribution is continuous, and our values, being in Zp and Zq , are discrete. Let
ρσ(x) = exp(−x

2

2σ2 ) represent the continuous Gaussian distribution. Then we get the dis-
crete Gaussian distribution over Zq by calculating

Gσ,q(x) =
ρσ(x)∑q
i=1 ρσ(i)

(2.1)

Additionally, given that q >> σ, we have that Gσ,q(x) ≈ Gσ , where Gσ represents
the distribution we get if we use Z instead of Zq .

Now, we define Gm×nσ (x) as a m × n matrix where each element has probability
distribution Gσ(x). We also define Gmv,σ(x) as the discrete normal distribution of a vector
in Zq , centered at the vector v, and similar for matrices with Gm×nM ,σ (x).

Rejection Sampling Algorithm

Given matricesZ, S, variance σ and success probability ρ the rejection sampling algorithm
proceeds with probability

Rej(Z, S, σ, ρ) =
1

ρ
exp

(
−2〈Z, S〉+ ||S||2

2σ2

)
(2.2)

and rejects otherwise. It was proven in [5] that for appropriately sized values σ and ρ,
this algorithm proceeds with roughly probability 1/ρ, and the statistical distance between
Z and a Z ′ chosen randomly from Gσ is small if Z is not rejected.

2.10 Arithmetic Circuits
An arithmetic circuit C is a directed acyclic graph over some field F . In the graph, every
source vertex contains an input value or a constant, and each other vertex contains either
a ”+” or a ”×”. To calculate the output of the circuit, for each internal vertex that has only
heads from vertices with numbers, we can calculate the value in this vertex by either adding
or multiplying these numbers together (depending on whether the vertex itself contains ”+”
or ”×”). By repeating this process we will eventually have calculated the values in all the
vertices in the graph, giving us as output the values in the sinks in the graph.

Given an arithmetic circuit and a specific output, it is typically very difficult to find
inputs that outputs the desired value. This is known as the arithmetic circuit satisfiability
problem. In this thesis we will later show how to provide a zero knowledge argument of
knowledge for knowing a set of inputs that outputs some public value.

For the arithmetic circuits we will be looking at later in this thesis, we will assume that
each vertex has indegree exactly 2. We can make this assumption because both the + and
× operations are associative, so instead of having a vertex of the form a1 + a2 + a3 = a4,
we could have a1 + a2 = a5 and a5 + a3 = a4. Doing this makes allows us to create 2 (or
more depending on the indegree) gates, each with indegree exactly 2 instead of a single
gate with a higher indegree. The same can be done for multiplication. Thus, it is possible
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to make an equivalent circuit where every vertex has exactly 2 inputs (but more gates in
total).
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Chapter 3
Lattice-based Identification and
Signature Schemes

3.1 Identification
We will now present an identification scheme utilizing an interactive zero-knowledge
proof, and the cryptographic hash function described in chapter 2.4.

First we create the instance of the hash function we will be utilizing. To do this, we
pickm elements, a1,a2, ...,am at random from the ringR, given by Zp[x]/〈xn+1〉. Now
we set â = (a1,a2, ...,am) and h(x̂) = â ·x̂ = a1x1+a2a2+ ...+amam. Then we can
generate the secret key ŝ by similarly choosing m polynomials, s1, s2, ..., sm, at random,
except now we also wish these polynomials to have an additional property, namely that
||si||∞ is small. For this scheme ŝ will be the secret key and S = h(ŝ) will be the public
key. The scheme works as follows:

1. The prover chooses m random elements in R, ŷ = (y1,y2, ...,ym), computes Y =
h(ŷ) and sends Y to the verifier.

2. The verifier then chooses a random polynomial c and sends c to the prover.

3. The prover computes ẑ = ŝc + ŷ and sends it to the verifier.

4. The verifier verifies that h(ẑ) = Sc + Y .

For this to be a proper zero-knowledge scheme we require completeness, soundness
and that it is zero-knowledge. The basic structure described above doesn’t satisfy these
properties, but it is possible to adjust it such that it does satisfy all three properties.

Completeness

First we note that it currently doesn’t satisfy the completeness property. Since the hash
function just takes the dot product of the value to be hashed and a set â = a1, ...,am
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publically known elements of R, we can easily find a solution to h(ẑ′) = Sc + Y . First
we let ẑ′ = (z1, z2, ...,zm), where (z1, z2, ...,zm−1) = z′ are random polynomials.
Then we denote â′ = a1,a2, ...,am−1. Now let v = Sc + Y − â′ · ẑ′. Then if we
choose zm = a−1m v we get h(ẑ′) = Sc+Y . The problem is that while we have required
that ||si||∞ is small, we need to have a similar requirement on zi. Thankfully it is fairly
simple to modify the scheme such that this will be the case.

It is not difficult to see that the following equation holds:

||ŝc + ŷ||∞ ≤ ||ŝ||∞||c||1 + ||ŷ||∞ (3.1)

As a result, by also requiring ||ŝ||∞, ||c||1 and ||ŷ||∞ to be small, the resulting ||ẑ||∞
will also be small. We define the following subsets of R.

Ds = s ∈ R : ||s||∞ ≤ σ
Dc = c ∈ R : ||c||1 ≤ κ
Dy = y ∈ R : ||y||∞ ≤ mnσκ
G = g ∈ R : ||g||∞ ≤ mnσκ− σκ

Now, by choosing ŝ from Dm
s , c from Dc and ŷ from Dm

y we get that ||ẑ||∞ is rela-
tively small. From equation 3.1 we can already see that ||ẑ||∞ ≤ mnσκ+ σκ. However,
if ||ẑ||∞ > mnσκ this would mean that ||ŝc||∞ > ||ẑ||∞ −mnσκ, which means that we
are leaking on the secret. This leakage would cause it to fail to satisfy the zero-knowledge
property, so it has to be avoided. This can be done by aborting the scheme every time it
would leak on the secret. Furthermore, if ẑ ∈ Dm

y but ẑ 6∈ Gm there exists ŝc such that
ẑ − ŝc 6∈ Dm

y , which means that this particular ŝc would not be possible since we know
that ŷ = ẑ − ŝc and that ŷ ∈ Dm

y . As a result, to avoid leaking on the secret, we also
have to abort if ẑ 6∈ Gm.

If ẑ ∈ Gm we have that any ẑ − ŝc is in Dm
y , so there is no restrction on ŝc given

that ẑ. This means that no information is leaked, so the operations can proceed. The
probability of ẑ ∈ Gm given that the other parameters are chosen randomly like above is
the same as the probability that ŷ is in Gm. This is true because given any pair (ŝc, ŷ)
such that ŷ ∈ Gm and ŝc + ŷ 6∈ Gm, there is also exactly 1 pair (ŝ′c′,y′) such that
ŷ′ 6∈ Gm but ŝ′c′ + ŷ′ is in Gm, given by ŝ′c′ = −ŝc and ŷ′ = ŝc + ŷ.

This means that the probability of scheme proceeding is the probability of a random
ŷ ∈ Dm

y being in Gm. Let pG denote the probability of a random coefficient from a
polynomial in Dy also being in G. ŷ is a set of m ring elements, each with n coefficients,
so the probability of a random ŷ ∈ Gm is equal to pmnG . Since each of the coefficients
have a random value between 0 and mnσκ, we get that pG = mnσκ−σκ

mnσκ = 1 − 1/mn.
Then the probability of ŷ being in Gm is (1− 1/mn)mn ≈ 1/e. So we conclude that the
scheme proceeds in roughly 1/e of cases, and aborts the rest of the time. As a result, the
completeness of the scheme is 1/e.

Obviously, completeness of 1/e by itself isn’t satisfying. However, there are some
simple measures that can be taken to increase this success rate dramatically. For example,
we could just repeat the scheme every time it fails, and since the success rate is 1/e we’d
only expect to have to repeat it e times before succeeding. Alternatively, we could have
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the prover choose multiple ŷ1, ŷ2, ..., ŷk. The verifier would then send back challenges
for these ŷi, and the prover could work his way down the list and respond to the first one
where the scheme doesn’t abort. That way, we can increase the chance of success by just
adding more ŷ’s. Additionally, instead of using different challenges for each ŷ, we can
use the same one each time, which saves us from having to generate and transmit so many
challenges.

Soundness

In the previous chapter we explained how an algorithm that solves the col(h,D) problem
can be used to solve the SVPγ problem, which we believe to be a difficult problem. As
a result, the goal will be to show that any attacker that breaks the described scheme can
be used to solve the col(h,D) problem and as a result also being able to solve the SVPγ
problem.

Theorem 2. For any given secret key ŝ, with a very high probability there exists ŝ′ such
that ŝ′ ∈ Dm

s and h(ŝ) = h(ŝ′).

We note that from the restrictions on Ds, there are n coefficients in each element in
Ds, and for each coefficient we have 2σ+ 1 possible choices [−σ, ...,−1, 0, 1, ..., σ]. This
gives us a total of (2σ + 1)n elements in Ds, and (2σ + 1)mn elements in Dm

s . The hash
function h maps elements from Rm to R. Since R is modulo p, and has n coefficients,
the number of elements in the image of the hash is pn. By setting p at some reasonable
size, we can thus make it such that there are many more possible secret keys than elements
in the image of the hash function which makes collisions very likely to occur. In [4] they
suggested p ≈ (2σ + 1)m2

−128
n . For this value of p, the number of elements in the image

of the hash is roughly (2σ+ 1)mn2−128, which means that for every element of the image
of the hash we have 2128 elements in Dm

s . Since the image has so many fewer elements
than the preimage, any random element in the image has a very high probability of having
a collision in the preimage.

Theorem 3. Given 2 possible secret keys (ŝ, ŝ′) satisfying h(ŝ) = h(ŝ′) it is impossible
for an adversary to tell which one was used for the scheme.

We will here use the results from theorem 2. In this case the verifier will see the values
S = h(ŝ), Y = h(ŷ) and ẑ = ŝc + ŷ. We define

ŷ′ = ŷ + ŝc− ŝ′c = ŷ + (ŝ− ŝ′)ĉ

We now note that ŷ′ ∈ Dm
y because ŝc+ ŷ ∈ Gm, and Gm and Dm

y are defined such that
ẑ − ŝc ∈ Dm

y for ẑ ∈ Gm, ŝ ∈ Dm
s , c ∈ Dc. Furthermore, we have that

h(ŷ′) = h(ŷ) + ch(ŝ− ŝ′)

As a result of h(ŝ) = h(ŝ′), we get h(ŝ)− h(ŝ′) = 0 which means that h(ŷ′) = h(ŷ) =
Y . Lastly, we have that

ŝ′c + ŷ′ = ŝ′c + ŷ + ŝc− ŝ′c = ŷ + ŝc = ẑ
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This means that whether we have secret key ŝ and random variable ŷ or secret key ŝ′ and
random variable ŷ′, the information sent to the verifier will be the same. Thus, the verifier
can’t possibly know which of the 2 possible secret keys were used for the scheme.

Theorem 4. Given that an adversary breaks the scheme and the above statements are true,
it is possible to use this to break the col(h,D) problem with a non-negligible probability.

We assume that we have some adversary that first acts as the verifier of the scheme,
and then acts as the prover for the same secret key. We will also be using the results from
theorem 2 and theorem 3. We generate some secret ŝ and public key S = h(ŝ). First we
will play the role of the prover and the adversary will play the role of the verifier. This
is simple to perform since we know the secret key, so we can just perform each step of
the scheme as normal. Then we have the adversary act as the prover. As the prover, the
adversary will generate some ŷ and send Y = h(ŷ). We generate random challenges ci
until we get the response ẑi from the adversary (where h(ẑi) = Sci + Y ). Then we
rewind the scheme and generate new random challenges cj until we get a second response
ẑj from the adversary. We have that

h(ẑi − ŝci) = h(ẑi)− h(ŝci) = Sci + Y − Sci = Y

Similarly

h(ẑj − ŝcj) = Scj + Y − Scj = Y

Thus we have that h(ẑi − ŝci) = h(ẑj − ŝcj). From theorem 2 and theorem 3 we know
that even if the adversary can break the scheme and finds a ŝ′ such that h(ŝ′) = S it is still
impossible for him to know whether or not ŝ = ŝ′. Since the probability of there being 2 or
more values satisfying h(ŝ′ = S) is very high from the theorem 2, the adversary will not
know the exact secret key with probability at least 1/2. This means that with probability
at least 1/2 we will have that ẑi− ŝci and ẑj − ŝcj will be different (they will only be the
same with non-negligible probability if both ẑi and ẑj are generated using ŝ, which has a
probability lower than 1/2 to occur). Since they are different but both hash to Y we have
used this adversary to break the col(h,D) problem with probability at least 1/2.

Theorem 5. An successful attack on the described identification scheme can be used to
construct an attack with a non-negligible success rate against the SVPγ problem.

This follows directly from theorem 1 and theorem 4.

Zero-Knowledge

We want to show that the verifier learns nothing about ŝ during the scheme. By running
the scheme, the verifier learns the values Y , which does not depend on ŝ, and ẑ, which
does depend on ŝ. Furthermore, if the adversary would be able to find ŷ given Y he
would also be able to find ŝ given S, so learning Y doesn’t help the adversary. To satisfy
the zero-knowledge property we then just need ẑ to not leak any information on ŝ. As
described earlier in the proof of completeness we will abort the scheme if ẑ 6∈ Gm. Given
ẑ ∈ Gm we have that ẑ− ŝc ∈ Dm

y , which means that for any (ŝ, c) there exists exactly 1
value ŷ such that ŷ ∈ Dm

y and ẑ = ŝc + ŷ. Then, for any (ẑ, c) known by the verifier all
secret keys ŝ are possible (and equally likely), meaning that no information was leaked.
This means that the scheme also satisfies the zero-knowledge property.
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3.2 Signature scheme
Using Fiat-Shamir, we can transform the identification scheme from the previous section
into a non-interactive signature scheme. Instead of having the verifier send a challenge c
we will be using a publically known hash function H to generate c. This hash function H
can be any secure hash function that given input S,Y gives us the output H(S,Y ) = c ∈
Dc. Now we can perform the scheme from the previous section, except we no longer need
the interaction from the verifier to obtain c. This gives us the following scheme:

1. The prover chooses m random elements, ŷ = (y1, y2, ..., ym) ∈ Dm
y and computes

Y = h(ŷ).

2. The prover computes c = H(S,Y ) ∈ Dc

3. The prover computes ẑ = ŝc + ŷ.

4. The prover checks that ẑ ∈ Gm, and either aborts if it is not, or sends ẑ to the
verifier if it is.

5. The verifier verifies that h(ẑ) = Sc + Y and that c = H(S,Y ).

Since the only action the verifier does is to verify that the proof is indeed correct, we
could even upload the proof on the internet, allowing anyone to take upon them the role of
the verifier of the scheme. Although this scheme still only succeeds with probability 1/e,
we also no longer need new data from the verifier each time it fails. This means that we
can generate new ŷ and repeat the scheme with the new ŷ until it succeeds. As a result,
the verifier only participates in the scheme in the case of success, reducing the amount of
necessary communication.

The completeness and zero-knowledge properties of this scheme follow from the iden-
tification scheme in the previous section. Furthermore, using similar ideas as the ones in
the previous section, we can prove that a cheating adversary that manages to deceive the
verifier can be used to find a collision in either h or H .
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Chapter 4
Reducing an arithmetic circuit into
equivalent polynomials

4.1 From arithmetic circuit to an equivalent polynomial

We want to provide an efficient method for creating arguments for the satisfiability of an
arithmetic circuit. To do this, we will first reduce the arithmetic circuit to two sets of
constraints. Then, once that is accomplished, we will create polynomials using these con-
straints, such that the constraints being satisfied implies equality on a specific coefficient
in the polynomial equation . The material in this chapter follows the material presented in
[2] and [3].

The first step is as mentioned to reduce an arithmetic circuit into two sets of constraints.
To make the rest of the section easier to follow, we will start with an example that will
illustrate the process, such that the reader can more easily understand what the two sets of
constraints are, and how to obtain them. In our example we will be looking at the following
circuit:

×

+ ×

× × ×

x1 x2 x3 3

The goal is to transform the above circuit into equations with variables ai, bi, ci for
i ∈ [1, 2, ..., N ] of two different types. The first type of constraint is of the form aibi = ci.
These will arise from the multiplication gates in which both inputs depend on the input
values xj . We will give each of these multiplication gates a number (in this case from 1
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to 4, as one of the multiplication gates has 3 as an input which doesn’t depend on the xj).
Then, for multiplication gate i, we define the left input as ai, the right input as bi and the
output as ci. Adding these to the circuit in the above example, we get the following:

×

+ ×

× × ×

x1 x2 x3 3

c4

c3

c2

b4

a3

a4

c1 c2 b3

a1 b1 a2 b2

The reader might observe that for example c2 and a3 share an edge. To ensure consis-
tency among the variables in the multiplication constraints we will be using the second set
of constraints - the linear constraints. These constraints will ensure that the variables in
the multiplication constraints are consistent with the circuit. To create these, we break the
circuit into subcircuits defined as the sections between the multiplication gates containing
2 or more of the values ai, bi, ci used to form the multiplication constraints. To illustrate
this we have given each edge in the circuit that is part of a linear relation a colour. We then
get a subcircuit from the edges of each colour.

×

+ ×

× × ×

x1 x2 x3 3

c4

c3

c2

b4

a3

a4

c1 c2 b3

a1 b1 a2 b2

Now, for each subcircuit (represented by edges of a single colour), we can create linear
constraints on the values ai, bi, ci present in this subcircuit. This subcircuit will have some
amount of edges going into the circuit (c1 and c2 in the case of the blue subcircuit) and
some amount of edges going out of the circuit (a4 in the case of the blue subcircuit).
Because of the way the subcircuits are defined, each edge going into the subcircuit will
be either a constant, one of the input values xi of the arithmetic circuit, or one of the ci.
The output edges will always be one of the ai or bi, as the subcircuit ends at multiplication
gates, and the input to those gates are always either ai or bi for some i.

Now, for each output edge of such a subcircuit we can create a linear constraint on it
as a function of the input edges. For example, in the blue subcircuit we note that we have
a4 = c1 + c2. Let N define the number of multiplication constraints aibi = ci and U
denote the number of linear constraints. We can write all the linear constraints as:
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N∑
i=1

aiwu,a,i +

N∑
i=1

biwu,b,i +

N∑
i=1

ciwu,c,i = Ku

for u ∈ [1, 2, ..., U ], where wu,a,i are the coefficients for the ai in equation u, and
similar for wu,b,i and wu,c,i. Now we wish to transform our coloured example circuit into
linear constraints.

1. The blue subcircuit gives us the equation a4 = c1+c2 or equivalently a4−c1−c2 =
0.

2. The teal subcircuit gives us the equation b1 − a2 = 0

3. The magenta subcircuit gives us the equation b3 − 3b2 = 0

4. The green subcircuit gives us the equation a3 − c2 = 0

5. The red subcircuit gives us the equation b4 − c3 = 0

6. Additionally, we wish the arithmetic circuit in its entirety to be satisfied, which
means that we wish c4 to have some specific value. This adds the constraint c4 = K,
where K is the desired output of the arithmetic circuit.

We can now describe the circuit as the equivalent 4+6 constraints:

a1b1 = c1 a2b2 = c2

a3b3 = c3 a4b4 = c4

b1 − a2 = 0 b3 − 3b2 = 0

a3 − c2 = 0 b4 − c3 = 0

a4 − c1 − c2 = 0 c4 = K

The idea presented in [3] is to first represent the entire circuit as two different sets of
constraints as illustrated in the example above. Knowing ai, bi, ci satisfying the constraints
then implies knowing inputs satisfying the arithmetic circuit. The prover can then convince
a verifier of this knowledge by sending an opening to ai, bi, ci to the verifier, then proving
knowledge of the polynomial matching these ai, bi, ci. The verifier would then use the
homomorphic properties of the commitment scheme to check that the proven polynomial
is a match with the commited values.

Now, having transformed the circuit into the two sets of constraints, let N = nm
denote the number of multiplication constraints of the form aibi = ci (potentially padding
N with some trivial constraints if necessary). We use these to create m× n matrices from
these constraints, where A contains all the ai, B contains all the bi and C contains all the
ci. Let ◦ denote the Hadamard (entry-wise) product of matrices. Then we note that the
multiplication constraints are all satisfied if the Hadamard product A ◦ B = C is true.
We now define ai, bi, ci as the rows of the matrices. Thus, ai = (ai,1, ai,2, ..., ai,n) for
i ∈ [1, ...,m] and similarly for bi and ci.
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Now let U denote the number of linear constraints. We have that U < 2N +O, where
O is the number of output values that the arithmetic circuit needs to satisfy. As mentioned
in the example, the constraints arise from edges going ”out” from the subcircuit, meaning
that they are the inputs of a multiplication gate. These edges are always either aj or bj for
some j ∈ [1, 2, ..., N ]. Given that there are at most 2N edges ai, bi in total, we get that
the total number of linear constraints is at most 2N +O.

After we mapped all of the constraints into the matrices, we get that the linear con-
straints are of the form

m∑
i=1

aiwu,a,i +
m∑
i=1

biwu,b,i +
m∑
i=1

ciwu,c,i = Ku

for u ∈ [1, 2, ..., U ], where wu,a,i denotes a vector representing the coefficients of ai
for equation u and Ku is a constant. Reusing the earlier example, we first set

(a1, a2, a3, a4) = (a1,1, a1,2, a2,1, a2,2)

giving us

a1 = (a1,1, a1,2) = (a1, a2)

a2 = (a2,1, a2,2) = (a3, a4)

and do the same for bi and ci. This gives us

A =

(
a1,1 a1,2
a2,1 a2,2

)
B =

(
b1,1 b1,2
b2,1 b2,2

)
C =

(
c1,1 c1,2
c2,1 c2,2

)
and the linear constraints now become

2∑
i=1

aiwu,a,i +

2∑
i=1

biwu,b,i +

2∑
i=1

ciwu,c,i = Ku (4.1)

for u ∈ [1, 2, ..., 6]
Then, if we for example let u = 1 represent the linear constraint a4 − c1 − c2 = 0,

with the new indexes we get a2,2− c1,1− c1,2 = 0. Then, transforming this to the form of
equation 4.1 we get

w1,a,1 = (0, 0) w1,a,2 = (0, 1)

w1,b,1 = (0, 0) w1,b,2 = (0, 0)

w1,c,1 = (−1,−1) w1,c,2 = (0, 0)

K1 = 0

We can now create a polynomial by embedding the constraints into different pow-
ers of the indeterminate. This will allow us to make an argument of knowledge for the
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polynomial, which we can use to convince the verifier that we know values satisfying the
arithmetic circuit. Let Y be the indeterminate for our polynomial. Then we first note
that

∑m
i=1 aibiY

i =
∑m
i=1 ciY

i. Now let Y ′ denote (1, Y m, ..., Y nm−m). Then since
(a ◦ b) · Y ′ = (a ◦ Y ′) · b we can multiply in Y ′ on both sides to get

m∑
i=1

ai · (bi ◦ Y ′)Y i =

m∑
i=1

ciY
iY ′ (4.2)

We now note that in this polynomial we have nm = N different powers of Y , each
corresponding to a single equation. Since we also have N equations, each power of Y
must correspond to exactly 1 equation. As a result, if the polynomial on the LHS and the
polynomial on the RHS are equal then it must also be the case that all the equations are
satisfied. And if all the equations are satisfied it must then mean that we have satisfied all
the multiplication constraints in the circuit.

We also want our polynomial to include all the linear constraints. We note that the
above polynomials uses powers of Y starting from Y 1 and ending at Y nm. Then, given U
linear constraints, we could embed these to the powers from Y N+1 to Y N+U .

Multiplying the relations by the powers of Y gives us:

U∑
u=1

(

m∑
i=1

aiwu,a,i +

m∑
i=1

biwu,b,i +

m∑
i=1

ciwu,c,i)Y
N+u =

U∑
u=1

KuY
N+u

Then, to make the equation look somewhat cleaner we define

wa,i =

U∑
u=1

wu,a,iY
N+u wb,i =

U∑
u=1

wu,b,iY
N+u

wc,i =

U∑
u=1

wu,c,iY
N+u K(Y ) =

U∑
u=1

KuY
N+u

Which gives us

m∑
i=1

aiwa,i +

m∑
i=1

biwb,i +

m∑
i=1

ciwc,i −K(Y ) = 0 (4.3)

Now, knowing matrices A,B,C satisfying 4.2 and 4.3 is equivalent to knowing inputs
satisfying the arithmetic circuit. This means that if we can prove knowledge of these
polynomials the verifier will be convinced that we know A,B,C.

Instead of proving the entire polynomial directly, we will create polynomials with a
second indeterminate, X , such that the multiplication constraints or linear constraints are
condensed into a single coefficient (specifically, the Xm+1-term).
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a(X) = a0 +

m∑
i=1

aiY
iXi

b(X) = bm+1 +

m∑
i=1

biX
m+1−i (4.4)

c =

m∑
i=1

ciY
i

We then note that

a(X) ◦ b(X) = cXm+1 +

2m∑
i=0,i6=m+1

hiX
i (4.5)

This means that the Xm+1 term of equation 4.5 is equal if ai ◦ bi = ci. This allows
us to prove knowledge of the multiplication relations by proving knowledge of these poly-
nomials a(X), b(X), c, by proving that the Xm+1 term is equal. The hi are here vectors
in Znp that depend on a(X) and b(X). The prover will calculate these during the scheme
and send openings for these values. Similarly, for the linear constraints we can define

a(X) = a0 +

m∑
i=1

aiX
i wa =

m∑
i=1

Xm+1−iwa,i

b(X) = b0 +

m∑
i=1

biX
i wb =

m∑
i=1

Xm+1−iwb,i

c(X) = c0 +

m∑
i=1

ciX
i wc =

m∑
i=1

Xm+1−iwc,i

Given these, we can then calculate (where · represents the dot product of the vectors).

a(X) ·wa + b(X) ·wb + c(X) ·wc =

U∑
u=1

Xm+1Y N+uKu +

2m∑
i=0,i6=m+1

hiX
i (4.6)

And similarly to equation 4.5, equation 4.6 is equal in the Xm+1-term if the linear
constraints are satisfied. From here it would be possible to make a zero knowledge argu-
ment, but this argument will not be detailed in this thesis. Instead we will first look into
how we can improve the efficiency of the scheme by using field extensions to reduce the
amount of necessary calculations.

4.2 Using field extensions to improve efficiency
The previous section explained how to transform N = nm multiplication constraints into
matrices such that the constraints are equivalent to a Hadamard product of the matrices.
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Extending this to GF (p2k) we can have each element of the matrix be a field element
represented by a vector. In this case, the N = nmk relations (with new values n,m)
can be represented in a smaller matrix, which speeds up computations. Instead of having 1
relation be represented by the multiplication ab = c for a, b, c ∈ Zp, we want to represent k
relations at the same time as the product ab = c for a, b, c ∈ GF (p2k), whereGF (p2k) ∼=
Z[φ]/〈f(φ)〉. We will use ∗ to denote multiplication of field elements represented by
vectors.

To illustrate the purpose of using the field elements, we will be using a simple example.
Let p = 3 and k = 2. Now we have that our field is GF (34). Let the field be represented
by Z3[x]/〈x4 + x+ 2〉. Then, we choose as our basis

β = u1, u2, u3, u4

where

u1 = x+ 2 u2 = 2x+ 2

u3 = x2 + 2 u4 = x3 + 2x

We note that (u1, u2, u3, u4) are linearly independent, and as a result form a basis in
our field. Now we wish to map two multiplication relations to a single field element. Let

a = (a1, a2, 0, 0)

b = (b1, b2, 0, 0)

c = (c1, c2, c
′
1, c
′
2)

for some c′1, c
′
2 ∈ Z3. If we now calculate

a ∗ b = (a1u1 + a2u2)(b1u1 + b2u2) = a1b1u
2
1 + (a1b2 + a2b1)u1u2 + a2b2u

2
2

We also have that

u21 = (x+ 2)2 ≡ x2 + x+ 4 = (x+ 2) + (x2 + 2) = u1 + u3 (mod 3)

u22 = (2x+ 2)2 ≡ x2 + 2x+ 4 = (2x+ 2) + (x2 + 2) = u2 + u3 (mod 3)

u1u2 = (x+ 2)(2x+ 2) ≡ 2x2 + 4 = 2(x2 + 2) = 2u3 (mod 3)

This means that we have

a ∗ b = a1b1(u1 + u3) + (a1b2 + a2b1)2u3 + a2b2(u2 + u3)

= a1b1u1 + a2b2u2 + (a1b1 + a2b2 + 2a1b2 + 2a2b1)u3

Now let
c′1 = (a1b1 + a2b2 + 2a1b2 + 2a2b1)

As a result

a ∗ b = c1u1 + c2u2 + c′1u3
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This means that with our current basis we can multiply field elements of the form a, b
and get a field element where the multiplication constraints are preserved for the first two
coefficients of the vector.

Given a field extension GF (p2k), we wish to find a basis with similar properties to the
one in the above example. Let a = (a1, a2, ..., ak, 0, ..., 0) and b = (b1, b2, ..., bk, 0, ..., 0),
where ai, bi are k multiplication constraints. Similarly, let (c1, c2, ..., ck) be the k ci
corresponding to the ai, bi in a, b. Then we want a field representation where â ∗ b̂ =
(c1, c2, ..., ck, c

′
1, c
′
2, ..., c

′
k), where c′i are arbitrary coefficients depending on a, b. Now

note that if we could find polynomials (f0, f1, ..., fk) satisfying the following equation

(

k∑
i=1

aifi)(

k∑
i=1

bifi) ≡ (

k∑
i=1

cifi) (mod f0) (4.7)

such that that the degree of f0 is k, the degree of f1, f2, ..., fk are k − 1, and that all
the polynomials are independent, then we get

(

k∑
i=1

aifi)(

k∑
i=1

bifi) = (

k∑
i=1

cifi) +

k−2∑
i=0

f0c
′
iφ
i (4.8)

In this case, if we use β = f1, f2, ..., fk, f0, φf0, ..., φ
k−1f0 as our basis, we observe

that this field representation satisfies a ∗ a = (c1, c2, ..., ck, c
′
1, ..., c

′
k). This means that

finding polynomials f1, f2, ..., fk, f0 satisfying these constraints will give us our desired
basis.

Let e1, e2, ..., ek be distinct points in Zp. Let fi be lagrange polynomials of degree k−1
associated with these points. Thus for all fi we have fi(ei) = 1 and fi(ej) = 0, i 6= j.
Furthermore, let f0 =

∏k
i=1(φ − ei). We wish to prove that these polynomials satisfy

equation 4.7.
We note that the left hand side of equation 4.7 can be split into k2 equations of the

form aifibjfj . We wish to prove that

1. aifibjfj ≡ 0 (mod f0) if i 6= j

2. aifibjfj ≡ cifi (mod f0) if i = j

If these two statements hold, then equation 4.7 also holds for the same polynomials.
First we look at aifibjfj ≡ 0 (mod f0) for i 6= j. Since fi(ej) = 0 for i 6= j it

follows that we can write fi as

fi = gi

k∏
l=1,i6=j

(φ− el)

Then

fifj = gigj

k∏
l=1,l 6=i,j

(φ− el)
k∏
l=1

(φ− el) = gigjf0

k∏
l=1,l 6=(i,j)

(φ− el)
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If we define gij = gigj
∏k
l=1,l 6=i,j , we then get

aifibjfj = (aibigij)f0 ≡ 0 (mod f0)

which obviously holds.
Then we look at

aifibifi ≡ fici (mod f0)

Since aibi = ci this reduces to

f2i ≡ fi (mod f0)

Moving fi to the left hand side, we get

fi(fi − 1) ≡ 0 (mod f0)

Now,

f0 =

k∏
i=1

(φ− ei)

and

fi = gi

k∏
j=1,i6=j

(φ− ej)

Additionally, by our definition of fi, fi(ei) = 1, so

fi − 1 = g′i(φ− ei)

for some polynomial g′i. Then we have that

fi(fi − 1) = gig
′
if0

and so
f2i − fi ≡ 0 (mod f0)

and
f2i ≡ fi (mod f0)

This means that β = f1, f2, ..., fk, f0, φf0, ..., φ
k−1f0 is a basis for GF (p2k) that

preserves k multiplication relations, which was what we were looking for.
Similarly, we want to create a basis for the linear constraints such that we can have k

linear relations represented by a single equation with field elements, in the same way that
we represented the multiplication relations above. To do this we need to find a basis where
this is doable.

Using a similar process as the one we used to create equation 4.3, we can create the
equation

k∑
i=1

aiwa,i +

k∑
i=1

biwb,i +

k∑
i=1

ciwc,i = K (mod p)
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Now adding an indeterminate φ to the equation, we can send all the linear constraints
to the φk−1-term of the new equation.

k∑
i=1

aiφ
i−1

k∑
i=1

wa,iφ
k−i +

k∑
i=1

biφ
i−1

k∑
i=1

wb,iφ
k−i (4.9)

+

k∑
i=1

ciφ
i−1

k∑
i=1

wc,iφ
k−i = Kφk−1 +

2k−2∑
i=0,i6=k−1

Kiφ
i (mod p)

This new equation now contains all the linear constraints in the φk−1-term, with the co-
efficients of the other powers of φ being arbitrary, depending on the a, b, c, w-values. That
means that if we choose a basis β′ = (1, φ, ..., φ2k−1), then we can represent a1, a2, ..., ak
as a single field element in our linear constraints. Essentially, calculating the left hand side
of the equation 4.9 will give a field element where the k-th component of the field element
will be the sum of the linear constraints.

By using these new equations, instead of having N relations represented by a m′ ×
n′ matrix where all the elements of the matrix are in Zp, we now have the N relations
represented by a m × n matrix where all the elements of the matrix are in GF (p2k), and
each element in GF (p2k) is used to represent k such relations. This allows n,m to be
smaller than n′,m′.

We will now describe the structure for the matrix A representing a1,a2, ...,aN in
detail (the matrix B has the same structure, so only A will be described in detail). Let
A = (A1, A2, ..., Am) be a vector with m elements. Then, we let each Ai be a 2k × n
matrix on this form

Ai =



ai,1,1 ai,1,2 · · · ai,1,n
ai,2,1 ai,2,2 · · · ai,2,n

...
...

. . .
...

ai,k,1 ai,k,2 · · · ai,k,n
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



We also define ai,j as the j-th row in matrixAi, consisting of the elements (ai,j,1, ai,j,2, ..., ai,j,n),
similar to how we used ai to denote the rows of the matrix in Zp in the previous section.

The matrix Ci has the same structure as above in its upper half. The lower half of the
matrix also has the same structure asAi, Bi in the case of linear constraints, but in the case
of multiplication constraints the lower half contains arbitrary coefficients ci,j,l depending
on A,B instead of 0’s.
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Ci =



ci,1,1 ci,1,2 · · · ci,1,n
ci,2,1 ci,2,2 · · · ci,2,n

...
...

. . .
...

ci,k,1 ci,k,2 · · · ci,k,n
c′i,1,1 c′i,1,2 · · · c′i,1,n
c′i,2,1 c′i,2,2 · · · c′i,2,n

...
...

. . .
...

c′i,k,1 c′i,k,2 · · · c′i,k,n


In this matrix, each column vector represents a single element of GF (p2k), where the

last half of the coefficients are all 0. If we denote âi,j as the j-th column of Ai, then let ~
be the multiplication of the field elements represented by the columns of a matrix. That is,

Ai ~Bi = (âi,1 ∗ b̂i,1, âi,2 ∗ b̂i,2, ..., âi,n ∗ b̂i,n)

Furthermore, given a field element x represented by a vector in Z2k
p , there exists a

matrix Mx such that for field elements x, y then x ∗ y = Mxy. This means that we can
represent all the field multiplication as matrix multiplication. Then

Ai ~Bi = (Mâi,1 b̂i,1,Mâi,2 b̂i,2, ...,Mâi,n b̂i,n)

This can be used to create polynomials similar to the ones found in 4.4, but now using
elements in GF (p2k) instead of Zp.

A(X) = A0 +

m∑
i=1

(My)i(Mx)iAi

B(X) = Bm+1 +

m∑
i=1

(Mx)m+1−iBiX
m+1−i (4.10)

C =
m∑
i=1

(My)iCi

Which gives us the equation

A(X) ~B(X) (mod p) = (Mx)m+1C +

2m∑
i=0,i6=m+1

(Mx)iHi (mod p) (4.11)

Here we get that Hi again are arbitrary matrices depending on the A(X) and B(X)
functions. The prover will calculate these during the scheme and send openings for these
coefficients to the verifier.

Similarly to the definition of ~, for scalar products we define � as the scalar product
of the field elements represented by the columns, so

Ai �Bi = (âi,1 ∗ b̂i,1 + âi,2 ∗ b̂i,2 + ...+ âi,n ∗ b̂i,n)
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and
Ai �Bi = (Mâi,1 b̂i,1 +Mâi,2 b̂i,2 + ...+Mâi,n b̂i,n)

We now wish to write equation 4.9 as a scalar product of columns. Noting that the
powers of wa,i are the same as the powers of ai, but in reverse order, we can then define

Wu,a,i =



wu,a,i,k,1 wu,a,i,k,2 · · · wu,a,i,k,n
wu,a,i,k−1,1 wu,a,i,k−1,2 · · · wu,a,i,k−1,n

...
...

. . .
...

wu,a,i,1,1 wu,a,i,1,2 · · · wu,a,i,1,n
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


While we initially had the powers of Y be from 1 to N + U such that each constraint
had a different power, since we will prove the multiplication constraints and the linear
constraints separately it makes more sense to instead let the powers be from 1 to N and
from 1 to U respectively. Thus we now define

Wa,i =

U∑
u=1

Mu
YWu,a,i

Now let the relations represented by Ai,Wa,i, Bi,Wb,i, Ci,Wc,i be denoted as Ki,j for
i ∈ [1, 2, ..., n] and j ∈ [1, 2, ..., k]. As a result of our basis β = 1, φ, ..., φ2k−1, we get

m∑
i=1

(Ai �Wa,i +Bi �Wb,i + Ci �Wc,i) =



0
0
...
0∑U

u=1Ku

0
...
0


+



t1
t2
...

tk−1
tk
tk+1

...
t2k


where ti are arbitrary coefficients depending on Ai,Wa,i, Bi,Wb,i, Ci,Wc,i. Notice

that all the linear constraints are sent to the k-th term of the output vector. We will now use
an indeterminate X to separate these from the rest of the arbitrary coefficients in that term
by sending the constraints to the Xm+1-term, and the other coefficients to other terms.
In that case, we will have the constraints separated from each other as a result of them
being different powers of Y , and separated from the rest of the arbitrary coefficients as
a result of the other coefficients either not being the k-th term in the field representation,
or having a different power of X . Additionally, we add A0, B0, C0 similar to how we
added A0, Bm+1 to the multiplication constraint scheme to avoid getting the same output
every time if the verifier chooses the same values every time, and to avoid leaking on the
secret by making its distribution similar to that of the discrete. Keeping all this in mind,
we define

34



A(X) = A0 +

m∑
i=1

M i
XAi Wa(X) =

m∑
i=1

Mm+1−i
X Wa,i

B(X) = B0 +

m∑
i=1

M i
XBi Wb(X) =

m∑
i=1

Mm+1−i
X Wb,i

C(X) = A0 +

m∑
i=1

M i
XCi Wc(X) =

m∑
i=1

Mm+1−i
X Wc,i

Then we get

A(X)�Wa(X) +B(X)�Wb(X) + C(X)�Wc(X)

= Mm+1
X



0
...
0∑U

u=1M
u
YKu

0
...
0


+Mm+1

X



v1
...

vk−1
0

vk+1

...
v2k


+

2m∑
i=0,i6=m+1

M i
XHi (4.12)

Where vi are arbitrary vectors andHi are arbitrary matrices with columns representing
elements in GF (p2k) depending on the above functions.

Using equation 4.11 and equation 4.12 we can create a argument of knowledge for the
arithmetic circuit.
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Chapter 5
Argument of knowledge for the
arithmetic circuit represented by
polynomials

A note on the commitment scheme

In chapter 4 assumed that all calculations take place in Zp (where field operations have
been calculated using vectors with elements in Zp). The commitment scheme we will be
using will map elements from Zp to elements in Zq , where q >> p. The construction is
very similar to the one presented in chapter 3, and the security is a result of the difficulty of
finding short integer solutions in a lattice. As a result of the commitment scheme mapping
elements from Zp to Zq , we have to be careful such that the prover and the verifier ends
up with the same values in their calculations. The prover and verifier will reduce terms
mod p multiple times during the computations, but not at the same times. This means that
we end up with values that are congruent mod p, but not necessarily equal in Zq . Since
the prover has access to all the information that the prover has, he can do the calculations
that the verifier will do to calculate this discrepancy D, and send it to the verifier.

In the schemes, we need commitments to matrices. These will be computed by creating
commitments to each row of the matrix individually, such that a 2k × n matrix has 2k
commitments to the rows of the matrix. We define

CK(M,R) =


CK(m1, r1)
CK(m2, r2)

...
CK(m2k, r2k)


as the commitment to the matrix M ∈ Z2k×n

p with randomness R ∈ Z2k×2r logp(q)
p .

Note that the verifier can access a commitment to a subset of the rows of the matrix by
choosing a subset of the rows in the commitment matrix. This will be useful because the
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matrix C is equal in the first k rows both for the multiplication and linear constraints, but
the lower half is all 0’s in the linear constraints.

Now let Si denote the columns of CK(M,R). By the homomorphic properties of the
commitment scheme, we have that for an element x ∈ GF (p2k)

MxCK(M,R) = [MxS1||MxS2||...||MxSn] = CK(x ∗M,x ∗R) = CK(MxM,MxR)
(5.1)

whereMx is the matrix describing field multiplication by x as mentioned in chapter 4. This
is true because the commitment scheme applies a linear transformation on the rows of its
input. Importantly, it applies the same linear transformation on each row of the input.
Similarly, Mx applies the same linear transformation on each column of the matrix we
multiply it by. Since the same operations are performed on each row by the commitment
scheme, and on each column by Mx, we can do them in either order, and as a result we
have that equation 5.1 holds.

Argument of knowledge for multiplication constraints

The following section follows the material presented in [2]. The prover knows A,B,C
such that A = (A1, A2, ..., Am), and Ai are the matrices described in chapter 4.2, and the
same holds for B,C. Let Ai, Bi, Ci denote the first k of these matrices. Then we have
that

Ai ◦Bi = Ci

and [
Ai

0k×n

]
~

[
Bi

0k×n

]
= Ai ~Bi =

[
Ci
C ′i

]
= Ci

Initially, we need to create some randomness that we will later use in the rejection sam-
pling, to ensure the outputs are indistinguishable from ones from a discrete Gaussian. In
[2] they use the following standard deviations, and success rates of the rejection sampling:

σ1 = 48
√
knkmp2 σ2 = 72

√
2knkmp

σ3 = 24
√

2knkp(1 + 6kmp) σ4 = 24
√

2k2pnσ2

ρ = e

Now we generate A0 and Bm+1 at random from G2k×n
σ1

. Our commitment scheme

uses a message in Znp and randomness in Z2r logp(q)
p . Let n′ = 2r logp(q). Then, the

prover generates random matrices α′i, β
′
i ∈ Zk×np for i ∈ [1, 2, ...,m]. Then, let

αi =

[
α′i

0k×n

]
βi =

[
β′i

0k×n

]
We also generate random matrices γi ∈ Z2k×n

p , as well as α0, βm+1 ∈ G2k×n′
σ1

.
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The prover then calculates

Ai = CK(Ai, αi) A0 = CK(A0, α0)

Bi = CK(Bi, βi) Bm+1 = CK(Bm+1, βm+1)

Ci = CK(Ci, γi)

for i ∈ [0, 1, ..., k]. The prover then sends Ai,Bi,Ci,A0,Bm+1 to the verifier.
We will be using Ai,Bi for i ∈ [1, 2, ..., 2k] and Ci for i ∈ [1, 2, ..., k] for both the

linear constraints and the multiplication constraints, but we will do each set of constraints
as a separate argument. For the linear constraints we will also generate new A0,B0,C0

and trivial commitments for Ci when i ∈ [k + 1, k + 2, ..., 2k]. This will be explained in
the section detailing the argument for linear constraints.

The verifier now chooses y ∈ GF (p2k) and sends y to the prover.
The prover then calculates A(X), B(X), Ĉ by using the y that the prover received

from the verifier as follows

A(X) = A0 +

m∑
i=1

M i
X(M i

y mod p)Ai

B(X) = Bm+1 +

m∑
i=1

Mm+1−i
X Bi

Ĉ =

m∑
i=1

M i
yCi (mod p)

The prover then computes

A(X) ~B(X) (mod p) = Mm+1
X Ĉ +

2m∑
i=0,i6=m+1

(MX)iHi (mod p) (5.2)

Having calculated the Hi, he chooses random ηi ∈ Z2k×n′
p and computes

Hi = CK(Hi, ηi)

for i ∈ [1, 2, ..., 2m], i 6= m+ 1 and sends these to the verifier.
The verifier now chooses x ∈ GF (p2k) and sends x to the prover.
The prover then computes

Â = A0 +

m∑
i=1

(M i
xM

i
y mod p)Ai B̂ = Bm+1 +

m∑
i=1

(Mm+1−i
x mod p)Bi

α̂ = α0 +

m∑
i=1

(M i
xM

i
y mod p)αi β̂ = βm+1 +

m∑
i=1

(Mm+1−i
x mod p)βi

39



Having now calculated these values, the verifier can calculate the discrepancy between
the numbers that are equal (mod p), but not equal in Zq by calculating

D = (Â~ B̂ mod p)−
m∑
i=1

(M i
yM

m+1
x mod p)Ci −

2m∑
i=1,i6=m+1

(M i
x mod p)Hi (5.3)

We have now calculated the discrepancy D. Note that we have D ≡ 0 mod p, as it
was calculated using values that were equal modulo p, but not equal in Zq . However, we
do not wish to give the verifier this value directly. Instead we will create an argument of
knowledge for this value that the verifier can use when verifying that our argument holds.

To do this, the prover generates δ ∈ G2k×n′
σ2

, E ∈ p · G2k×n
σ3

and ε ∈ G2k×n′
σ4

. Note
by the definition of E that it is 0 mod p. The prover now computes D = CK(D, δ) and
E = CK(E, ε) and sends D,E to the verifier.

The verifier now picks z ∈ GF (p2k) and sends it to the prover.
LetZ = (Â||α̂||B̂||β̂) and Y = (A0||α0||Bm+1||βm+1). Using the rejection sampling

algorithm described in equation 2.2, the prover runs Rej(Z,Z − Y, σ1, e), and aborts or
proceeds depending on the result of the rejection sampling.

When using the commitment scheme we need a message and some ”randomness” as
the second part of the vector which is multiplied by the matrix defining the specific instance
of our commitment scheme. We generated randomness which we used in our commitments
toA,B,C. Since we have calculated the coefficients in the right hand side in equation 5.2,
we can now use these to calculate the secondary input to the commitment scheme, using
the initial values γ, η, δ we used to commit to C,H,D.

τ =

m∑
i=1

(Mm+1
x M i

y mod p)γi +

2m∑
i=0,i6=m+1

(M i
x mod p)ηi + δ

The prover then performs the following calculations and rejection sampling:

Rej(τ, τ − δ, σ2, e)
D̂ = (Mz mod p)D + E

δ̂ = (Mz mod p)δ + ε

Rej(D̂/p,D/p, σ3, e)Rej(δ̂, δ, σ4, e)

Then, if none of the rejection sampling causes the scheme to abort, the prover sends
Â, α̂, B̂, β̂, τ, D̂, δ̂ to the verifier.

Finally, the verifier checks that

CK(Â, α̂) =

m∑
i=0

(M i
xM

i
y mod p)Ai

CK(B̂, β̂) =

m+1∑
i=1

(Mm+1−i
x mod p)Bi
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CK(Â~ B̂ mod p, τ) =

m∑
i=1

(Mm+1
x M i

y mod p)Ci +

2m∑
i=0,i6=m+1

(M i
x mod p)Hi + D

CK(D̂, δ̂) = (Mz mod p)D + E

D̂ = (Mz mod p)D + E ≡ 0 (mod p)

hold. Careful inspection would reveal that these all hold for an honest prover, using equa-
tion 5.1 and the fact that both D and E are 0 mod p. In [2] they also bounded the values
in Gσ as a function of σ. The verifier will then also check that the norms of various matri-
ces satisfy the bounds for the elements in Gσ , which is written in more detail in the cited
paper.

Now, having proved the multiplication relations, we will use the initial commits to
A,B,C to also prove the linear relations. By using the same commits we ensure that both
types of relations have to hold at the same time to convince the verifier (as it is obviously
trivial to construct only the multiplication relations with no linear relations or vice versa).

Linear Constraints

We wish to prove that the A,B,C we initially commited to satisfy the constraints

m,k∑
i=1,j=1

ai,jwu,a,i,j +

m,k∑
i=1,j=1

bi,jwu,b,i,j +

m,k∑
i=1,j=1

ci,jwu,c,i,j −Ku = 0 (5.4)

for u ∈ [1, 2, ..., U ], very similarly to equation 4.3. The prover has already sent the
openings for A,B,C, but since we don’t use the C ′i in this scheme, these will be replaced
by trivial commitments to 0, such that the matrix C has the same structure as A and B. So
we replace

Ci =



CK(ci,1, γi,1)
CK(ci,2, γi,2)

...
CK(ci,k, γi,k)
CK(c′i,1, γi,k+1)

...
CK(c′i,k, γi,2k)


with Ci =



CK(ci,1, γi,1)
CK(ci,2, γi,2)

...
CK(ci,k, γi,k)

0
...
0


This is easily accomplished by keeping the commitments to the first k rows of the

matrix Ci, and replacing the other commitments with trivial commitments to 0.
Additionally, we will generate new randomnessA0, B0, C0 ∈ G2k×n

σ1
and α0, β0, γ0 ∈

G2k×n′
σ1

. This ensures that each argument will be different, even if the verifier were to
choose the same input values to our polynomials.

The verifier then chooses y ∈ GF (p2k) and sends it to the prover.
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Using the constructions from equation 4.9, we calculate the following matrices.

Wa,i =

U∑
u=1

(Mu
y mod p)Wu,a,i

Wb,i =

U∑
u=1

(Mu
y mod p)Wu,b,i

Wc,i =

U∑
u=1

(Mu
y mod p)Wu,c,i

Then we calculate the following polynomials in the indeterminate X

A(X) = A0 +

m∑
i=1

M i
XAi Wa(X) =

m∑
i=1

Mm+1−i
X Wa,i

B(X) = B0 +

m∑
i=1

M i
XBi Wb(X) =

m∑
i=1

Mm+1−i
X Wb,i

C(X) = A0 +

m∑
i=1

M i
XCi Wc(X) =

m∑
i=1

Mm+1−i
X Wc,i

The prover now calculates the arbitrary coefficients ti and the arbitrary vectors hi, as we
described in equation 4.12.

A(X)�Wa(X) +B(X)�Wb(X) + C(X)�Wc(X)

= Mm+1
X



0
...
0∑U

u=1M
u
yKu

0
...
0


+Mm+1

X



v1

...
vk−1

0
vk+1

...
v2k


+

2m∑
i=0,i6=m+1

M i
XHi

We will now create commitments to vi and Hi. The prover chooses ηi at random from
Z2k×n′
p for i ∈ [1, 2, ..., 2m], i 6= m+1 and νi at random from Znp for i ∈ [1, 2, ..., 2k], i 6=

k. The prover then creates the matrices

ν =



ν1
...

νk−1
0

νk+1

...
ν2k


V =



v1

...
vk−1

0
vk+1

...
v2k


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Now the prover calculates Hi = CK(Hi, ηi) for i ∈ [0, 1, ..., 2m], i 6= m + 1 and
V = CK(V, ν). The prover then sends the Hi and V to the verifier.

The verifier then chooses x ∈ GF (p2k) and sends it to the prover.
The prover then calculates the following values, using x

Â = A0 +

m∑
i=0

(M i
x mod p)Ai α̂ = α0 +

m∑
i=0

(M i
x mod p)αi

B̂ = B0 +

m∑
i=0

(M i
x mod p)Bi β̂ = β0 +

m∑
i=0

(M i
x mod p)βi

Ĉ = C0 +

m∑
i=0

(M i
x mod p)Ci γ̂ = γ0 +

m∑
i=0

(M i
x mod p)γi

Wa =

m∑
i=1

(Mm+1−i
x mod p)Wa,i Wb =

m∑
i=1

(Mm+1−i
x mod p)Wb,i

Wc =

m∑
i=1

(Mm+1−i
x mod p)Wc,i

Now the prover can calculate the discrepancy D between the prover and verifier as a
multiple of p.

D = (Â�Wa + B̂ �Wb + Ĉ �Wc mod p)

−Mm+1
x



0
0
...
0∑U

u=1M
u
yKu

0
...
0


mod p− (Mm+1

x mod p)



v1
v2
...

vk−1
vk
vk+1

...
v2k


−

2m∑
i=0,i6=m+1

(M i
x mod p)hi

The prover generates δ ∈ G2k×n′
σ2

, E ∈ p · G2k×n
σ3

and ε ∈ G2k×n′
σ4

. The prover now
computes D = CK(D, δ) and E = CK(E, ε) and sends D,E to the verifier.

The prover also calculates the value

τ = (Mm+1
x mod p)ν +

2m∑
i=0,i6=m+1

(M i
x mod p)ηi + δ

The verifier chooses z ∈ GF (p2k) and sends it to the prover.
The prover now calculates

D̂ = (Mz mod p)D + E δ̂ = (Mz mod p)δ + ε
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Defining Z = (Â||α̂||B̂||β̂||Ĉ||γ̂) and (Â0||α̂0||B̂0||β̂0||Ĉ0||γ̂0), the prover then runs

Rej(Z,Z − Y, σ1, e)

Rej(δ̂, δ, σ2, e)

Rej(D̂/p,D/p, σ3, e)

and aborts or proceeds according to the results of these rejection samplings. If the prover
does not abort, he finally sends Â, α̂, B̂, β̂, Ĉ, γ̂, τ, D̂, δ̂ to the verifier.

The verifier now checks that

CK(Â) =

m∑
i=0

(M i
x mod p)Ai

CK(B̂) =

m∑
i=0

(M i
x mod p)Bi

CK(Ĉ) =

m∑
i=0

(M i
x mod p)Ci

CK((Â ·Wa + B̂ ·Wb + Ĉ ·Wc) mod p, τ)

=

U∑
u=1

Mm+1
x Mu

y



0
...
0

CK(Ku,0)
0
...
0


mod p+ (Mm+1

x mod p)V +

2m∑
i=0,i6=m+1

(M i
x mod p)Hi + D

CK(D̂, δ̂) = T1D̂ + T2δ̂] = (Mz mod p)D + E

D̂ = (Mx mod p)D + E ≡ 0 (mod p)

And again, the verifier should also check that the norms of the matrices satisfy the
bounds imposed on them by σi, simiarly to in the multiplication constraint scheme. If all
of this holds, the verifier will be convinced, and the argument of knowledge is complete.

Summary

Having performed both of these schemes, we have successfully created an argument of
knowledge for the satisfaction of an arithmetic circuit. We note that the amount of com-
munication is similar in both schemes, so the total asymptotic complexity of both schemes
should be the same as the complexity of the multiplication scheme alone. The com-
mitment scheme takes a message in Znp and outputs an element in Zrq . In [2] they used

44



r = O(log n). By using carefully chosen values of n,m, k, they were able to obtain com-
munication costsO(

√
N logN) elements in Zq , with computational costO(N logN) and

O(N) for respectively the prover and verifier.
We also note that we use the rejection sampling algorithm 4 times for the multiplication

constraints and 3 times for the linear constraints. Since we can choose new random values
A0, Bm+1 or A0, B0, C0, a rejection in the linear constraints doesn’t mean we need to
do the multiplication constraints again. It does however mean that we expect roughly
e4 + e3 ≈ 75 aborts before the scheme finally succeeds. By using techniques similar to
the ones we did in chapter 3.2, where we created a non-interactive signature scheme from
a signature scheme by using the Fiat-Shamir transform, we could also transform the above
scheme into a non-interactive one. We note that the only interaction from the verifier is
that the verifier provides the values x,y, z ∈ GF (p2k). By instead computing these using
a hash function H , we could perform the same scheme without any interaction, and only
transmit values in the case where we succeed.
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Chapter 6
Concluding remarks

We started by studying how lattice-based cryptography works in general, and then used
this in zero-knowledge signature and identification schemes. These turned out to be quite
simple to understand. Then we wanted to study how to create an argument of knowledge
for an arithmetic circuit. This turned out to be quite a bit more complicated, requiring a lot
more work to detail what exactly is going on. The argument of knowledge for arithmetic
circuits manages to convince a verifier of knowledge of inputs to N multiplication gates
with communication costs

√
N logN . The reason this is possible is that we can create a

SIS problem instance where it is difficult to find a small s ∈ Znp satisfying As = S for
S ∈ Zrq . According to [7], to solve a SIS problem instance when n is very large, the best
algorithm will solve only submatrix of A, by setting some of the elements in s to 0. This
means that we can choose n >> r, allowing us to transmit commitments to n elements in
Zp in only r log q bits. Thus the usage of lattice-based cryptography grants us access to
this compression that we wouldn’t have otherwise, and allows the communication cost to
be sub-linear in the number of multiplication gates in the circuit.

Future work

We have managed to learn a lot about the workings of lattice-based cryptography in this
thesis, but there is still more that could have be done. There was a lot of material to
cover, and in the end there wasn’t enough time to cover it all. The most obvious next
step is to include detailed proofs of completeness and soundness of the arithmetic circuit
argument. Additionally, there are multiple places where we have referred to proofs from
earlier works, where given more time we would want to include these proofs in this thesis.
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